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Date of Degree: JULY, 2015

Title of Study: NEW PHYSICS AT THE TEV SCALE

Major Field: Physics

The Standard Model of particle physics is assumed to be a low-energy effective theory
with new physics theoretically motivated to be around TeV scale. The thesis presents
theories with new physics beyond the Standard Model in the TeV scale testable in
the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models
incorporating different approaches of enlarging the Standard Model gauge group to
a grand unified symmetry with each model presenting its unique signatures in the
colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model
in chapter 2 showed that their discovery mass range extends upto 1.5 TeV at 14
TeV LHC with luminosity of 100fb−1. On the other hand, in chapter 3 we studied
the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model
finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV
LHC with 300 fb−1 luminosity. In chapter 4 we have enlarged the bosonic symmetry
to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-
universalities in gaugino or scalar masses within high scale SUGRA set up can still be
accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the
e+e− collider and find that precise measurements of the higgs boson mass splittings
upto ∼ 100 MeV may be possible with high luminosity in the International Linear
Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino
masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino
models yielding a solution for the neutrino masses with inverted mass hierarchy and
large CP violating phase δ and thus can be tested experimentally. Chapter 7 of the
thesis incorporates a warm dark matter candidate in context of two Higgs doublet
model. The model has several testable consequences at colliders with the charged
scalar and pseudoscalar being in few hundred GeV mass range.
This thesis presents an endeavor to study beyond standard model physics at the TeV
scale with testable signals in the Colliders.
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CHAPTER 1

Introduction

1.1 The Standard Model

The standard model of particle physics, developed in the late ’60’s/ early 70’s and

based on the well known gauge symmetry SU(3)C×SU(2)L×U(1)Y , contains our best

formulation to date understanding the observed classification of elementary particles

and their interactions. In the Standard model, all matter consist of a finite irreducible

set of spin-1/2 particles denoted as fermions which interact via the exchange of integral

spin bosons. The bosons in the theory act as force carriers for the electro-weak and

strong nuclear forces. The fermions are subdivided into classifications of leptons and

quarks based on their electric charge and ability to interact with strong nuclear force.

Figure 1.1: Elementary particle structure in The Standard Model
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There are three flavors of leptons forming a progressive mass hierarchy in a doublet

arranged structure and consist of integral or zero electric charge (defined in units of

the charge of the electron). Each charged lepton is also associated with a neutral

particle denoted as a neutrino.νe

e


νµ

µ


ντ

τ

 (1.1)

The neutrinos are taken to be massless in the Standard Model, grouped into three

generations corresponding to their associated leptons. Within the standard model

there exists no mechanism which in a direct fashion provides for horizontal mixing

between the lepton families; as a result members of each family are assigned a quantum

number Lℓ corresponding to the lepton flavor of the particle.

The leptons do not experience a direct interaction with the strong color force. All

lepton interactions occur through electro-weak interaction couplings and as such are

a sensitive probe into the structure of the weak currents. All matter interactions can

be broken down into a finite system of fundamental particles interacting with a set

of four fundamental forces.

In contrast to leptons, quarks are distinguished by their interactions via the strong

color force and their fractional electric charge. Strong force binding and confinement

lead quarks to form the fundamental substructure for all hadronic matter, either in

the form of a color neutral three quark bound states that form the common baryons

such as the proton and neutron, or in quark-antiquark bound state mesons such as

the π,K, η, and ρ. Free quarks are not accessible due to the requirements of color

neutrality and strong force confinement at low energies. Similar to the leptons there

exists a generational hierarchy of distinct quark flavor doublets based on the masses

of each quark and their associated quantum properties. Each generation consists of

two quarks each with fractional electric charges equal to −1
3
and 2

3
× the charge

magnitude of the electron. There are three quark generations we label as up, down,
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Lepton Mass Charge Le Lµ Lτ

e− 0.51 MeV −1e 1 0 0

µ− 105.65 MeV −1e 0 1 0

τ− 1777.03 MeV −1e 0 0 1

νe < 3 eV 0 1 0 0

νµ < 0.19 MeV 0 0 1 0

ντ < 18.2 MeV 0 0 0 1

Table 1.1: Lepton Properties

Quark Mass Charge B number L number

u 1.8− 3 MeV/c2 2
3
e 1

3
0

d 4.5− 5.3 MeV/c2 −1
3
e 1

3
0

c 1.25− 1.3 GeV/c2 2
3
e 1

3
0

s 90− 100 MeV/c2 −1
3
e 1

3
0

t ≈ 174 GeV/c2 2
3
e 1

3
0

b 4.15− 4.21 GeV/c2 −1
3
e 1

3
0

Table 1.2: Quark Properties

charm, strange, top, bottom. They are arranged in flavor doublets as:u

d


c

s


t

b

 (1.2)

As with the leptons, each quark flavor has a corresponding anti-particle state leading

to a total of 36 distinct particles. These quarks have strong, weak, and electro-

magnetic interactions. The various properties like mass, charge for the leptons and

the quarks are listed in Tables 1.1 and 1.2 respectively.
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The non-abelian gauge symmetry for the Standard Model is known to be SU(3)C×

SU(2)L × U(1)Y . For Standard Model, SU(3) is unbroken and has eight massless

gluons. The remaining group SU(2)L×U(1)Y spontaneously breaks down to U(1)EM

producing three massive gauge bosons W± and Z. From the leftover U(1)EM , we get

a massless gauge boson known as photon.

Apart from these quarks and leptons and the gauge bosons, the theory also contains

a fundamental particle called the Higgs Boson. Over the years, the Standard Model

has successfully explained almost all experimental results and precisely predicted a

wide variety of phenomena to be discovered later, one example of which will be the

existence of top quark, which was discovered at the Fermilab Tevatron. In July

2012, a new boson with a mass of 125 GeV has been discovered at the Large Hadron

Collider(LHC) in CERN, Geneva. The experimental study of its properties, so far,

shows it is most likely to be the Standard Model Higgs Boson. This discovery seems

to complete the validation of the Standard Model as all of the predicted particles and

interactions in Standard Model have now been observed experimentally.

The Lagrangian based on the most general gauge theory SU(3)C × SU(2)L × U(1)Y

can be written as

L = Lk + Lf + Ls + Ly

where Lk contains the gauge boson kinetic terms, Lf contains the fermionic kinetic

terms, Ls contains the scalar mass terms, kinetic energy terms as well as the self

interactions and Ly contains interactions between the fermions and the scalars. To

summarize the standard (Weinberg-Salam) model, we gather together all the ingre-

dients of the Lagrangian. The complete Lagrangian is explicitly given by:
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L = −1
4
Wµν ·Wµν − 1

4
BµνB

µν


W±,Z, γ kinetic

energies and

self-interactions

+L̄γµ
(
i∂µ − g 1

2
τ ·Wµ − g′ Y

2
Bµ

)
L

+R̄γµ
(
i∂µ − g′ Y

2
Bµ

)
R



lepton and quark

kinetic energies

and their

interactions with

W±,Z, γ

+
∣∣(i∂µ − g 1

2
τ ·Wµ − g′ Y

2
Bµ

)
ϕ
∣∣2 − V (ϕ)


W±,Z, γ, and Higgs

masses and

couplings

−(G1L̄ϕR +G2L̄ϕcR + hermitian conjugate).


lepton and quark

masses and

coupling to Higgs

where Wµν , Bµν are the gauge bosons field strength tensors and the constants g, g’,

G1 and G2 are respectively the weak and yukawa coupling constants. Here L denotes a

left-handed fermion (lepton or quark) doublet, and R denotes a right-handed fermion

singlet. The scalar doublet ϕ which breaks the SU(2)L ×U(1)Y symmetry is written

with gauge quantum numbers and Vacuum expectation value (VEV) as,

Φ ∼ (1, 2, 1)

⟨Φ⟩ = 1√
2

0

v

 (1.3)
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1.2 Limitations of the Standard Model

The Standard Model (SM) of particle physics has been remarkably successful. How-

ever there are several reasons why it is widely believed that while working well in

the low energy regimes which have been investigated to date, the Standard Model

does not present the full picture. There are also several evidences and hints that

seem to suggest the presence of new physics Beyond the Standard Model (BSM). It is

the belief that there is physics Beyond the Standard Model (BSM) which motivates

the continuation of large scale particle physics experiments, most notably the Large

Hadron Collider (LHC) at CERN which is colliding protons with a center-of-mass

energy of 8 and 13 TeV respectively.

The issues with the Standard Model can be roughly divided into two classes: experi-

mental discrepancies and theoretical considerations that does not allow us to accept

the Standard Model as the ultimate theory. The work in this thesis will address some

of these issues but by no means all that are presented below.

Standard Model can not explain the experimental discoveries such as non-zero neu-

trino masses, existence of dark matter and dark energy, strong CP problem, baryon

asymmetry in the Universe to name a few in its original framework. On the other

hand, there are theoretical drawbacks such as, the higgs mass being in the electroweak

scale, parity violation, gauge coupling unification, quantization of the electric charges,

mass hierarchy of the elementary particles, flavor problem, quantum gravity etc which

cannot be accommodated in the Standard Model itself. Some of these issues are dis-

cussed in detail in the following sections:

Neutrino masses: In the Standard Model, neutrinos have exactly zero mass. This

is a consequence of the Standard Model containing only left-handed neutrinos. With

no suitable right-handed partner, it is impossible to add a renormalizable mass term

to the Standard Model. Measurements of neutrino oscillations however indicate that

neutrinos spontaneously change flavor, which implies that neutrinos have non-zero
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masses. These measurements only give the mass difference squares of the different fla-

vors. The best constraint on the absolute mass of the neutrinos comes from precision

measurements of tritium decay, providing an upper limit 2 eV electron anti-neutrinos,

which makes them at least seven orders of magnitude lighter than the electron in the

Standard Model. This necessitates an extension of the Standard Model, which not

only needs to explain how neutrinos get their mass, but also why the mass is so small.

Existence of dark matter and dark energy: Cosmological observations tell us

that the Standard Model explains only about 5% of the energy present in the uni-

verse. About 26% is the dark matter, which would behave just like other matter, but

only interacts weakly (or does not) with the Standard Model fields. Yet, the Stan-

dard Model does not supply any fundamental particles that are good dark matter

candidates. The rest (69%) should be dark energy, a constant energy density for the

vacuum and Standard Model does not include it also.

Strong CP problem: The Standard Model should contain a term that breaks CP

symmetry relating matter to antimatter, in the strong interaction sector. Experimen-

tally, however, no such violation has been found, implying that the coefficient of this

term is very close to zero. This fine tuning is also considered unnatural.

Matter-antimatter asymmetry: The universe is made out of mostly matter. How-

ever, the Standard Model predicts that matter and antimatter should have been cre-

ated in (almost) equal amounts if the initial conditions of the universe did not involve

disproportionate matter relative to antimatter. Yet, no mechanism sufficient to ex-

plain this asymmetry exists in the Standard Model.

Hierarchy problem: The Standard Model introduces particle masses through spon-

taneous symmetry breaking caused by the Higgs field. Within the Standard Model,

the mass of the Higgs gets some very large quantum corrections. These corrections

are of the order of Planck’s scale which is seventeen orders larger than the actual mass

of the Higgs. This means that the bare mass parameter of the Higgs in the Standard
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Model must be fine tuned in such a way that almost completely cancels the quantum

corrections. This level of fine-tuning is deemed unnatural by many theorists.There

are also issues of Quantum triviality, which suggests that it may not be possible to

create a consistent quantum field theory involving elementary scalar particles.

Coupling unification: If the strong and electroweak forces are to unify into a single

gauge theory at a high energy scale then the gauge couplings must also unify. The

particle content of a model determines how the couplings run with energy. The Stan-

dard model contains a semi-simple group in which the three gauge couplings almost

unify at a scale of about 1016 GeV if suitable new set of particles are added, although

this unification isnt quite exact. This can be seen as a motivation for a theory with a

larger group with additional particle content or new physics containing the Standard

model as a subgroup which will modify the running of the couplings to make the

unification more exact.

Gravity: A complete model for particle physics would be expected to describe all the

fundamental forces between particles, electroweak, strong and gravitational. However

the Standard Model does not include any gravitational force, and hence cannot be the

full fundamental model. At energy scales of order the Planck mass MP , a theory of

quantum gravitation will be required to describe the interactions between particles.

This shows that the Standard Model will need to be replaced by an alternative theory

at very high energy scales, and it is reasonable to expect that a more complete model

than the Standard Model might be required even at energy scales only moderately

higher than those which have already been investigated in detail.
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1.3 Extensions of the Standard Model

The work done in this thesis tries to address some of the limitations of the Standard

Model. Theoretical progress towards these questions has been made basically along

three directions:

(i) The first direction is enlarging the Standard Model gauge symmetry to a grand

unified symmetry such as SU(5), SO(10) or some other extensions like the Left-Right

symmetry. This explains the charge quantization and unification of the couplings,

but there is no sign of proton decay so far. Work done in the chapters 2, 3, 5 in this

thesis present some models in this direction.

(ii) In the second direction, the bosonic symmetry can be enlarged to fermi-bose

symmetry, example is supersymmetry. This approach solves hierarchy problem, in-

corporates the unification of the three gauge couplings, and has good candidate for

dark matter. But there is also no sign of superpartners at the Large Hadron Collider

(LHC) yet. Work done in the chapter 4 in this thesis presents models in this direction.

(iii) The third direction is increasing the number of spatial dimensions, an example

of this is the extra dimensions theories. Gravity can also be included into the mix as

in the examples of supergravity and string theory. Experimentally, we have not seen

any sign of Kaluza-Klein excitations so far in the Colliders.

Some other interesting avenues that can be persued includes explaining the non-zero

neutrino masses and mixing. Work done in the chapter 6 presents some models in

this neutrino sector.

Another important sector is cosmological model building which has been investigated

in Chapter 7 in this thesis. Some aspects of these kind of models is the presence

of dark matter candidates and description of their cosmological history. This the-

sis presents the completed works in this framework of “Beyond the Standard Model

Physics” which reside in TeV scale and are thus testable at Colliders like the Large

Hadron Collider (LHC) and the proposed International Linear Collider (ILC).
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CHAPTER 2

Top SU(5) Model: Baryon and Lepton Number Violating Resonances at

the LHC

2.1 Introduction

The Standard Model (SM), based on the local gauge symmetry SU(3)C × SU(2)L ×

U(1)Y , is very successful in describing all the experimental results below the TeV scale.

It is an excellent effective field theory, but it is widely believed not to be the final

theory. Discovery of new particles is highly anticipated at the Large Hadron Collider

(LHC). The most likely and reasonably well motivated candidates are supersymmetric

particles, and extra Z ′ boson. However, it is important to explore other alternatives

or entirely new possibilities at the current and future LHC.

In the SM, we have fermions (spin 1/2) and scalars (Higgs fields)(spin 0) which

do not belong to adjoint representations under the SM gauge symmetry. Can we also

have TeV scale gauge bosons (spin 1) belonging to the non-adjoint representations

under the SM gauge symmetry? Can we achieve the (partial) grand unified theory at

the TeV scale? Can we construct a renormalizable theory realizing such a possibility

which can be tested at the LHC? These are very interesting theoretical questions that

we shall address in this work. Discovery of such gauge bosons in the TeV scale at the

LHC will open up a new window for our understanding of the fundamental theory

describing the nature.

How can we construct a consistent theory involving the massive vector bosons

which do not belong to the adjoint representations under the SM gauge symmetry?

If the massive vector bosons are not the gauge bosons of a symmetry group, there are
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some theoretical problems from the consistency of quantum field theory, for instance,

the unitarity and renormalizability [1]. When the gauge symmetry is spontaneously

broken via the Higgs mechanism, the interactions of the massive gauge bosons satisfy

both the unitarity and the renormalizability of the theory [2, 3]. Thus, the massive

vector bosons must be the gauge bosons arising from the spontaneous gauge symmetry

breaking. As we know, a lot of models with extra TeV scale gauge bosons have been

proposed previously in the literature. However, those massive gauge bosons either

belong to the adjoint representations or are singlets under the SM gauge symmetry [4–

11]. For example, in the top color model [4–6], the colorons belong to the adjoint

representation of the SU(3)C ; in the top flavor model [7,8], the extraW ′ and Z ′ bosons

belong to the adjoint representation of the SU(2)L, while in the U(1)′ model [9] or top

hypercharge model [10], the new Z ′ boson is a singlet under the SM gauge symmetry.

In the Grand Unified Theories such as SU(5) and SO(10) [2,12], there are such kind

of massive gauge bosons. However, their masses have to be around the unification

scale ∼ 1016 GeV to satisfy the proton decay constraints.

Some years ago, TL and SN had proposed a class of models where the gauge

symmetry is G ≡
∏

i Gi × SU(3)′C × SU(2)′L × U(1)′Y [14]. The quantum numbers of

the SM fermions and Higgs fields under the SU(3)′C×SU(2)′L×U(1)′Y gauge symmetry

are the same as they have under the SM gauge symmetry SU(3)C ×SU(2)L×U(1)Y ,

while they are all singlets under
∏

iGi. Hence
∏

iGi is the hidden gauge symmetry.

After the gauge symmetry G is spontaneously broken down to the SM gauge symmetry

at the TeV scale via Higgs mechanism, some of the massive gauge bosons from the G

breaking do not belong to the adjoint representations under the SM gauge symmetry.

In particular, a concrete SU(5) × SU(3)′C × SU(2)′L × U(1)′Y has been studied in

detail. However, the corresponding (Xµ, Yµ) massive gauge bosons are meta-stable

and behave like the stable heavy quarks and anti-quarks at the LHC [14]. Thus, an

interesting question is whether we can construct the SU(5) × SU(3)′C × SU(2)′L ×
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U(1)′Y models where the (Xµ, Yµ) gauge bosons can decay and produce interesting

signals at the LHC. By the way, the six-dimensional orbifold non-supersymmetric

and supersymmetric SU(5) and SU(6) models with low energy gauge unification

have been constructed previously [15–17]. However, there is no direct interactions

between the (Xµ, Yµ) particles and the SM fermions.

As pointed out above, the top color model [4–6], top flavor model [7, 8], and top

hypercharge model [10] have been constructed before. Because of the proton decay

problem and quark CKM mixings, etc, the real challenging question is whether we

can construct the top SU(5) model as the unification of these models. Consequently,

we can explain the charge quantization for the third family, and probe the baryon

and lepton number violating interactions involving the third family at the LHC. Such

a model was proposed by us recently [18], and its implications for LHC was briefly

explored.

In this work, we propose two such models: the minimal and the renormalizable top

SU(5) model where the SU(5)×SU(3)′C×SU(2)′L×U(1)′Y gauge symmetry is broken

down to the SM gauge symmetry via the bifundamental Higgs fields at low energy.

The first two families of the SM fermions are charged under SU(3)′C×SU(2)′L×U(1)′Y

while the third family is charged under SU(5). In the minimal top SU(5) model,

we show that the quark CKM mixing matrix can be generated via dimension-five

operators, and the proton decay problem can be solved by fine-tuning the coefficients

of the higher dimensional operators at the order of 10−4. In the renormalizable top

SU(5) model, we can explain the quark CKM mixing matrix by introducing vector-

like particles, and we do not have proton decay problem. In these models, the non-

unification of the three SM couplings are remedied, because three SM couplings g3,

g2, g1 are now combinations of (g5, g
′
3), (g5, g

′
2),(g5, g

′
1), and need not be unified. Since

the models have baryon and lepton number violating interactions, it might be useful

in generating the baryon asymmetry of the Universe. In our models, since the third
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family quark lepton unification is at the TeV scale, we can probe the new (Xµ, Yµ)

gauge bosons at the LHC through their decays to the third family of the SM fermions.

This chapter is organized as follows. In section 2.2, we discuss the two models and

their formalism. In section 2.3, we discuss in detail the phenomenological implications

of the models. These include the productions and decays of the X and Y gauge bosons

at the LHC energies of 7, 8 and 14 TeV, their decay modes, and the signals for the

final states. We also discuss the LHC reach for the masses of these particle for various

LHC energies and luminosities. Section 2.4 contains the summary and conclusions.

2.2 The Minimal and Renormalizable Top SU(5) Models

We propose two non-supersymmetric top SU(5) models where the gauge symmetry

is SU(5) × SU(3)′C × SU(2)′L × U(1)′Y . The first two families of the SM fermions

are charged under SU(3)′C ×SU(2)′L×U(1)′Y while the third family is charged under

SU(5). We denote the gauge fields for SU(5) and SU(3)′C × SU(2)′L × U(1)′Y as

Âµ and Ãµ, respectively, and the gauge couplings for SU(5), SU(3)′C , SU(2)′L and

U(1)′Y are g5, g
′
3, g

′
2 and g′Y , respectively. The Lie algebra indices for the generators

of SU(3), SU(2) and U(1) are denoted by a3, a2 and a1, respectively, and the Lie

algebra indices for the generators of SU(5)/(SU(3)× SU(2)× U(1)) are denoted by

â. After the SU(5)× SU(3)′C × SU(2)′L × U(1)′Y gauge symmetry is broken down to

the SM gauge symmetry SU(3)C × SU(2)L × U(1)Y , we denote the massless gauge

fields for the SM gauge symmetry as Aai
µ , and the massive gauge fields as Bai

µ and Ââ
µ.

The gauge couplings for the SM gauge symmetry SU(3)C , SU(2)L and U(1)Y are g3,

g2 and gY , respectively.

To break the SU(5)×SU(3)′C×SU(2)′L×U(1)′Y gauge symmetry down to the SM

gauge symmetry, we introduce two bifundamental Higgs fields UT and UD [14]. Let us

explain our convention. We denote the first two family quark doublets, right-handed

up-type quarks, right-handed down-type quarks, lepton doublets, right-handed neu-
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trinos, right-handed charged leptons, and the corresponding Higgs field respectively

as Qi, U
c
i , D

c
i , Li, N

c
i , E

c
i , and H, as in the supersymmetric SM convention. We

denote the third family SM fermions as F3, f 3, and N c
3 . To give the masses to the

third family of the SM fermions, we introduce a SU(5) anti-fundamental Higgs field

Φ ≡ (H ′
T , H

′). We also need to introduce a scalar field XT if we require that the

triplet Higgs H ′
T have mass around the SU(5) × SU(3)′C × SU(2)′L × U(1)′Y gauge

symmetry breaking scale. However, it is not necessary, and we will explain it in the

following. In addition, note that the neutrino PMNS mixings can be generated via

the right-handed neutrino Majorana mass mixings. we propose two top SU(5) models

which can generate the mass for the possible pseudo-Nambu-Goldston boson (PNGB)

ϕ during the gauge symmetry breaking and generate the quark CKM mixings. In the

minimal top SU(5) model, we consider the dimension-five non-renormalizable opera-

tors and fine-tune some coefficients of the higher dimensional operators at the order

10−4 to suppress the proton decay. In the renormalizable top SU(5) model, we in-

troduce the additional vector-like particles. To give the PNGB mass, we introduce

a scalar field XU in the SU(5) anti-symmetric representation. And to generate the

quark CKM mixings while not to introduce the proton decay problem, we intro-

duce the vector-like fermionic particles (Xf, Xf c) and (XD, XDc). Note that the

SU(3)′C × SU(2)′L × U(1)′Y gauge symmetry can be formally embedded into a global

SU(5)′ symmetry, and to do that, we introduce the vector-like particles (XL, XLc)

as well. The complete particle content and the particle quantum numbers under

SU(5)× SU(3)′C × SU(2)′L × U(1)′Y gauge symmetry are given in Table 2.1.

To give the vacuum expectation values (VEVs) to the bifundamental Higgs fields

UT and UD, we consider the following Higgs potential

V = −m2
T |U2

T | −m2
D|U2

D|+ λT |U2
T |2 + λD|U2

D|2 + λTD|U2
T ||U2

D|

+

[
ATΦUTXT † + ADΦUDH

† +
yTD

M∗
U3
TU

2
D +H.C.

]
, (2.1)
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Particles Quantum Numbers Particles Quantum Numbers

Qi (1;3,2,1/6) Li (1;1,2,−1/2)

U c
i (1; 3̄,1,−2/3) N c

k (1;1,1,0)

Dc
i (1; 3̄,1,1/3) Ec

i (1;1,1,1)

F3 (10;1,1,0) f 3 (5̄;1,1,0)

H (1;1,2,−1/2) Φ (5̄;1,1,0)

UT (5; 3̄,1,1/3) UD (5;1,2,−1/2)

XT (1; 3̄,1,1/3) XU (10;1,1,−1)

Xf (5;1,1,0) Xf (5̄;1,1,0)

XD (1;3,1,−1/3) XD (1; 3̄,1,1/3)

XL (1;1,2,−1/2) XL (1;1,2,1/2)

Table 2.1: The complete particle content and the particle quantum numbers under

SU(5)× SU(3)′C × SU(2)′L × U(1)′Y gauge symmetry in the top SU(5) model. Here,

i = 1, 2, and k = 1, 2, 3.

where M∗ is a normalization mass scale.

A few remarks are in order. First, with XT particle, the Higgs triplet H ′
T will have

mass around the SU(5)×SU(3)′C ×SU(2)′L×U(1)′Y gauge symmetry breaking scale,

as given by the above AT term. However, it is still fine even if we do not introduce

the XT field. Let us explain it in detail. In our models, we have two Higgs doublets

H and H ′, which give the masses to the first two families and the third family of the

SM fermions, respectively. Thus, H ′
T will have mass around a few hundred GeV, and

it has interesting decay channels via Yukawa couplings, which will be discussed in the

following.

Second, without the non-renormalizable yTD term, we have global symmetry

U(5) × SU(3)′C × SU(2)′L × U(1)′Y in the above potential, and then we will have

a PNGB ϕ during the SU(5)×SU(3)′C ×SU(2)′L×U(1)′Y gauge symmetry breaking.
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To break the U(5) global symmetry down to SU(5) and then give mass to ϕ, we do

need this non-renormalizable term. Moreover, M∗ can be around the intermediate

scale, for example, 1000 TeV. If we assume that all the high-dimensional operators

are suppressed by the reduced Planck scale, i.e., M∗ = MPl, we can generate the yTD

term by introducing the XU field. The relevant Lagrangian is

−L =
(
yTU

3
TXU + yDµ

′U2
DXU † +H.C.

)
+M2

XU |XU |2 , (2.2)

where the mass scales µ′ and MXU will be assumed to be around 1000 TeV. After we

integrate out XU , we get the needed high-dimensional operator

V ⊃ −yTyDµ
′

M2
XU

U3
TU

2
D . (2.3)

We choose the following VEVs for the fields UT and UD

< UT >= vT

 I3×3

02×3

 , < UD >= vD

 03×2

I2×2

 , (2.4)

where Ii×i is the i× i identity matrix, and 0i×j is the i×j matrix where all the entries

are zero. We assume that vD and vT are in the TeV range so that the massive gauge

bosons have TeV scale masses.

From the kinetic terms for the fields UT and UD , we obtain the mass terms for

the gauge fields

∑
i=T,D

⟨(DµUi)
†DµUi⟩ =

1

2
v2T

(
g5Â

a3
µ − g′3Ã

a3
µ

)2
+

1

2
v2D

(
g5Â

a2
µ − g′2Ã

a2
µ

)2
+

(
v2T
3

+
v2D
2

)(
gY5 Â

a1
µ − g′Y Ã

a1
µ

)2
+
1

2
g25
(
v2T + v2D

) (
XµXµ + YµY µ

)
, (2.5)

where gY5 ≡
√
3g5/

√
5, and we define the complex fields (Xµ, Yµ) with quantum

numbers (3, 2, 5/6) from the gauge fields Ââ
µ, similar to that in the usual SU(5)

model [12].
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From the original gauge fields Âai
µ and Ãai

µ and from Eq. (2.5), we obtain the

massless gauge bosons Aai
µ and the TeV scale massive gauge bosons Bai

µ (i = 3, 2, 1)

which are in the adjoint representations of the SM gauge symmetry Aai
µ

Bai
µ

 =

 cos θi sin θi

− sin θi cos θi


 Âai

µ

Ãai
µ

 , (2.6)

where i = 3, 2, 1, and

sin θj ≡
g5√

g25 + (g′j)
2
, sin θ1 ≡

gY5√
(gY5 )

2 + (g′Y )
2

, (2.7)

where j = 3, 2. We also have the massive gauge bosons (Xµ, Yµ) and (Xµ, Y µ) which

are not in the adjoint representations of the SM gauge symmetry. So, the SU(5) ×

SU(3)′C ×SU(2)′L×U(1)′Y gauge symmetry is broken down to the diagonal SM gauge

symmetry SU(3)C × SU(2)L × U(1)Y , and the theory is unitary and renormalizable.

The SM gauge couplings gj (j = 3, 2) and gY are given by

1

g2j
=

1

g25
+

1

(g′j)
2
,

1

g2Y
=

1

(gY5 )
2
+

1

(g′Y )
2
. (2.8)

If the theory is perturbative, the upper and lower bounds on the gauge couplings

g5, g
′
3, g

′
2 and g′Y are

g3 < g5 <
√
4π , g3 < g′3 <

√
4π , (2.9)

g2 < g′2 <
g3g2√
g23 − g22

, (2.10)

gY < g′Y <

√
3g3gY√

3g23 − 5g2Y
. (2.11)

Note that the gauge coupling g5 for SU(5) is naturally large at the TeV scale because

the beta function of SU(5) is negative, i.e., SU(5) is asymptotically free.

2.2.1 The Minimal Model

We consider the minimal model first, where we do not introduce any extra (“X”)

particles XT , XU , Xf , Xf , XD, XD, XL, and XL. So the Higgs triplet H ′
T will
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be a few hundred GeV. We introduce the non-renormalizable operators to generate

the quark CKM mixings. We also escape the proton decay problem by fine-tuning

some coefficients of the higher-dimensional operators.

The renormalizable SM fermion Yukawa couplings are

−L = yuijU
c
i QjH̃ + yνkjN

c
kLjH̃ + ydijD

c
iQjH + yeijE

c
iLjH

+yu33F3F3Φ
† + yde33F3f 3Φ + yνk3N

c
kf 3Φ

† +mN
klN

c
kN

c
l +H.C. , (2.12)

where i/j = 1, 2, k/l = 1, 2, 3, and H̃ = iσ2H
† with σ2 the second Pauli matrix.

Because the three right-handed neutrinos can mix among themselves via the Majorana

masses, we can generate the observed neutrino masses and mixings. In addition,

we make a wrong prediction that the bottom Yukawa coupling is equal to the tau

Yukawa coupling at the low energy. We can easily avoid this problem by introducing

the high-dimensional Higgs field under SU(5), which is out of the scope of this paper.

In addition, the Yukawa terms between the triplet Higgs field H ′
T in Φ and the third

family of the SM fermions are yde33t
cbcH ′

T , y
de
33Q3L3H

′
T , and yu33t

cτ cH ′†
T . So, we have

(B + L) violating interactions as well.

To generate the quark CKM mixings, we consider the higher-dimensional opera-

tors. The dimension-five operators are

−L =
1

M∗

(
ydi3D

c
iF3ΦU

†
T + yei3E

c
i f 3HUD + yd3if 3QiHUT + ye3iF3LiΦU

†
D

)
+H.C. .(2.13)

And the dimension-six operators are

−L =
1

M2
∗

(
yui3U

c
i F3H̃U †

TU
†
D + y′di3D

c
iF3HU †

TU
†
D + yu3iF3QiΦ

†UTUD

+y′d3if 3QiΦUTUD

)
+H.C. . (2.14)

Interestingly, if we neglect the dimension-six operators in Eq. (2.14), we will gener-

ate the down-type quark mixings and charged lepton mixings via the dimension-five

operators in Eq. (2.13). Thus, the quark CKM mixing matrix can be realized via the
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down-type quark mixings. The proton decay is not a problem since there is no mixing

between the top quark and up quark. For example, if we assume that the Yukawa

couplings ydi3 and yd3i are order one and the VEVs of UT and UD are about 1 TeV, we

get M∗ ∼ 1000 TeV to generate the correct CKM mixings.

However, if we introduce the above dimension-six operators in Eq. (2.14), proton

decay can indeed arises due to the up-type quark mixings. For simplicity, we assume

that ydi3 and yd3i are order one, M∗ ∼ 1000 TeV, and the other Yukawa couplings yei3,

ye3i, y
u
i3, y

u
3i are very small and of the the same order. Noting that the dimension-six

proton decay operators have two up quarks, one down quark and one lepton, from the

current proton decay constraints, we obtain that the Yukawa couplings yei3, y
e
3i, y

u
i3,

yu3i are about 10−4. Because me/mt ∼ 10−5, our fine-tuning is one order smaller and

therefore is still acceptable. We would like to point out that the tau lepton decays to

electron and muon will be highly suppressed due to the very small yei3 and ye3i in the

minimal model.

2.2.2 The Renormalizable Model

In the renormalizable model, we assume that all the non-renormalizable operators are

suppressed by the reduced Planck scale. Thus, we need to introduce all the particles

in Table 2.1. However, there are two exceptions: (1) We do not have to introduce

the XT field since the triplet Higgs field H ′
T can have mass around a few hundred

GeV; (2) We do not have to introduce the vector-like particles (XL, XL) since the

neutrino masses and mixings can arise from the right-handed neutrino Majorana mass

mixings. Then both the tau lepton decays to electron/muon and the proton decays

to π0e+ will be highly suppressed.
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The relevant renormalizable operators for the SM fermions are

−L = F3XfΦ +N c
kXfΦ† +XDQiH + Ec

iXLH +XfXDUT

+f 3XDUT +XDXfU †
T +Dc

iXfU †
T +XLXfUD +XLf 3UD

+XfXLU †
D +XfLiU

†
D + µXf3f3Xf + µXDiD

c
iXD + µXLi

XLLi

+MXfXfXf +MXDXDXD +MXLXLXL+H.C. , (2.15)

where we neglect the Yukawa couplings for simplicity. We assume that the mass

terms MXf , MXD, and MXL are around 1000 TeV, while the mass terms µXf3, µXDi,

and µXLi
are relatively small. This can be realized via rotations of the fields since

Xf , XD and XL only couple to one linear combinations of Xf/f 3, XD/Dc
i , XL/Li,

respectively. Because the VEVs of UT and UD are around 1 TeV, the mixing terms

from f 3XDUT , D
c
iXfU †

T , XLf 3UD, and XfLiU
†
D are small and negligible.

For the dimension-five operators in Eq. (2.13), the ydi3 term can be generated

from the above renormalizable operators Dc
iXfU †

T and F3XfΦ, the yei3 term can

be generated from the above renormalizable operators Ec
iXLH and XLf 3UD, the

yd3i term can be generated from the above renormalizable operators f 3XDUT and

XDQiH, and the ye3i term can be generated from the above renormalizable operators

F3XfΦ and XfLiU
†
D.

In addition, we can show that there are no up-type quark mixings after we inte-

grate out the vector-like particles. Let us explain the point. The SU(3)′C ×SU(2)′L×

U(1)′Y gauge symmetry can be formally embedded into a global SU(5)′ symmetry.

Under SU(5)×SU(5)′, the bifundamental fields UT and UD form (5, 5̄) representation,

the vector-like particles Xf and Xf respectively form (5,1) and (5̄,1) representa-

tions, and the vector-like particles (XD, XL) and (XD, XL) respectively form (1,5)

and (1, 5̄) representations. Because all these fields are in the fundamental and/or anti-

fundamental representations of SU(5) and/or SU(5)′, we cannot create the Yukawa

interactions 10f10
′
f5H or 10f10

′
f5H′ for the up-type quarks after we integrate out the
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vector-like particles. Therefore, there is no proton decay problem.

2.3 Phenomenology and signals at the LHC

In this section we discuss the production mechanism for the exotic gauge bosons in

our model and focus on the Xµ and Yµ vector bosons predicted in our model. These

vector bosons carry both color and electroweak quantum numbers and behave as

leptoquarks as well as diquarks. As the gauge bosons have their origins in the gauge

group SU(5) which unifies only the third generation, as far as its coupling to fermions

is concerned, it couples only to the third generation quarks and leptons. However, it

interacts with the gluon as well as to all the other electroweak gauge bosons of the SM

which would help in producing these particles at collider experiments. As far as their

production at hadron colliders is concerned the dominant contributions would come

from the strongly interacting subprocesses and therefore one can neglect the sub-

dominant contributions coming from electroweak gauge boson exchanges. Note that

they will however be produced only through the exchange of electroweak gauge bosons

at electron positron colliders such as the International Linear Collider (ILC) [19] or

the CLIC [20], envisioned and proposed for the future. We restrict ourselves to the

study of these gauge boson at the currently operational LHC at CERN and therefore

only focus on the couplings of the Xµ and Yµ vector bosons with the gluons which

would be relevant for its production at the LHC. The general form of the interaction

can be derived from the Lagrangian given by [21]

L = −1

2
V i†
µνV

µν
i +M2

V V
i†
µ V µ

i − igsV
i†
µ T a

ijV
j
ν Gµν

a (2.16)

where V ≡ X,Y and T a are the SU(3)c generators. The field strength tensors for the

exotic vector fields Vµ and gluon Ga
µ are

Gµν
a = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGµbGνc (2.17)

Vµν
i = Dik

µ Vνk −Dik
ν Vµk (2.18)

21



(a)
(b)

V

V̄

G V

V̄

V

V

V̄

q

q̄
V̄

V

G

G

G

G

G

G

Figure 2.1: The tree level Feynman diagrams which contribute to the pair production

of the Xµ and Yµ gauge bosons at the LHC, where both of them are denoted as Vµ.

The subprocesses that contribute are (a) qq̄ → V V̄ and (b) GG → V V̄ .

and the covariant derivative is defined as

Dij
µ = ∂µδ

ij − igsT
ij
a Ga

µ. (2.19)

Using the above Lagrangian we derive the Feynman rules for the interactions of the

leptoquark gauge bosons V ≡ X, Y with the gluon fields. These interactions then

lead to the tree level Feynman diagrams as shown in Fig.(2.1) which contribute to

the pair production of these exotic particles at the LHC.

2.3.1 Calculation of cross sections

Using Feynman rules for the interaction vertices of the exotic gauge bosons with

gluons derived from Eq.(2.16) we can write down the full spin and color averaged

matrix amplitude square for the quark-antiquark annihilation subprocess qq̄ → V V̄ ,

(where q ≡ u, d, c, s, b and V ≡ X,Y ) as

|M|
2

qq̄ =
g4s

9M4
V s

2

[
−12M8

V − s2t(s+ t) + 4M6
V (s+ 6t) + 2M2

V s
(
2s2 + 3st+ 2t2

)
−M4

V

(
17s2 + 20st+ 12t2

)]
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while for the gluon induced subprocess GG → V V̄ , it is given by

|M|
2

GG = g4s

[
9M4

V + 4s2 + 9st+ 9t2 − 9M2
V (s+ 2t)

24s2 (t−M2
V )

2
(s+ t−M2

V )
2

] [
3M8

V + 2s4 − 12M6
V t+ 4s3t

+7s2t2 + 6st3 + 3t4 +M4
V

(
7s2 + 6st+ 18t2

)
− 4M2

V

(
s3 + 2s2t+ 3st2 + 3t3

)]
.

Note that the Mandelstam variables s and t are defined in the parton frame of ref-

erence. The pair production cross section at the parton level is then easily obtained

using the above expressions. To obtain the production cross section we convolute

the parton level cross sections σ̂(qiq̄i → V V̄ ) and σ̂(GG → V V̄ ) with the parton

distribution functions (PDF).

σ(pp → V V̄ ) =

{
5∑

i=1

∫
dx1

∫
dx2 Fqi(x1, Q

2)×Fq̄i(x2, Q
2)× σ̂(qiq̄i → V V̄ )

}

+

∫
dx1

∫
dx2 Fg(x1, Q

2)×Fg(x2, Q
2)× σ̂(GG → V V̄ ),

(2.20)

where Fqi , Fq̄i and Fg represent the respective PDF’s for partons (quark, antiquark

and gluons) in the colliding protons, while Q is the factorization scale. In Fig.(2.2)

we plot the leading-order production cross section for the process pp → V V̄ at center

of mass energies of 7, 8 and 14 TeV as a function of the leptoquark mass MV . We

set the factorization scale Q equal to MV , and have used the CTEQ6L1 PDF [22]. As

seen from the plot, we find that the pair production cross section for both the X

and Y leptoquark gauge bosons are quite big for significantly large values of their

mass even at the 7 and 8 TeV runs of LHC. Thus one expects severe bounds on

such particle masses from experimental data. In an earlier work [18], we had studied

specific signals from the pair production of Xµ at LHC and put expected limits on its

mass. This work was also followed up by the CMS experimental group which placed

comparable limits on such leptoquark vector bosons [23] using collision data from the

7 TeV run of the LHC. We note that as both the X and Y leptoquark gauge bosons

have identical masses, any limits on one of them invariably leads to a similar limit
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Figure 2.2: The production cross sections for pp → V V̄ at the LHC as a function of

leptoquark mass MV at center-of-mass energies, ECM = 7, 8 and 14 TeV. We have

chosen the scale as Q = MV , the mass of the leptoquark.

on the other. Thus it is important to explore all possible signals that come from

the pair productions of these particles. In this work we extend our earlier study by

looking at the different signals from the pair productions of such particles at LHC

with center-of-mass energies of 8 TeV and 14 TeV. We note that at the 14 TeV run

of LHC the production cross section for the leptoquark gauge bosons is significantly

enhanced and would therefore improve the reach for such particle searches.

2.3.2 Calculation of decays of the Xµ and Yµ gauge bosons

To study the possible signals for the leptoquark gauge bosons, we need to know their

decay properties. Since the third family of fermions is only charged under the gauge

group SU(5), these leptoquark gauge bosons which come from the SU(5) gauge fields

are only coupled to the third generation fermion fields. The interaction Lagrangian

of the leptoquark gauge bosons Xµ and Yµ with the third generation fermions is given
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by [24],

LG =
g5√
2
X̄α

µ

[
b̄Rαγ

µτ+R + b̄Lαγ
µτ+L + ϵβγα t̄cLγγ

µtLβ
]

+
g5√
2
Ȳ α
µ

[
− b̄Rαγ

µνc
R − t̄Lαγ

µτ+L + ϵβγα t̄cLγγ
µbLβ

]
+H.C. (2.21)

Using the above interaction Lagrangian, we can calculate the explicit decay modes of

the leptoquark gauge bosons, where Xµ decays to a top quark pair (tt) or anti-bottom

quark + positively charged tau lepton (b̄τ+) while Yµ has three decay modes to anti-

bottom quark + a tau-neutrino (b̄ντ ), anti-top quark + positively charged tau (t̄τ+)

or top quark + bottom quark (tb). The partial decay width for each mode calculated

using Eq.(2.21) is then given by

Γ(X → tt ) =
g25MX

24π

(
1− m2

t

M2
X

)(
1− 4m2

t

M2
X

)1/2

Γ(X → b̄τ+) =
g25MX

12π
(2.22)

Γ(Y → t̄τ+) =
g25MY

24π

(
1− m2

t

M2
Y

)2(
2 +

m2
t

M2
Y

)
Γ(Y → b̄ντ ) =

g25MY

12π

Γ(Y → tb ) =
g25MY

24π

(
1− m2

t

M2
Y

)2(
2 +

m2
t

M2
Y

)
(2.23)

where g5 is the SU(5) gauge coupling and we have only kept the top quark mass

(mt) and neglected the other fermion masses. We plot the branching fractions of

the leptoquark gauge bosons as shown in Fig.(2.3). It is interesting to note that

while the Xµ decays dominantly to b̄τ+, it also has a substantial branching fraction

to a pair of same sign top quarks. For very large values of the mass MX of the Xµ,

when the mass of the top quark can be neglected, we find that Γ(X→b̄τ+)
Γ(X→tt)

≃ 2. For

the Yµ leptoquark gauge boson we find that for smaller values of its mass it has the

dominant decay fraction to b̄ντ while its decay to t̄τ+ and tb are equal. But for MY

quite large such that the top quark mass may be neglected, all Yµ decay modes have
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the same branching probability of 1/3. With the knowledge of the decay modes of
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Figure 2.3: Illustrating the decay branching fractions of the leptoquark gauge bosons

(a) Xµ and (b) Yµ as a function of their mass.

the leptoquark gauge bosons and the branching fractions for the decays we can now

analyze all the different final states that we expect from the pair production of these

leptoquarks at the LHC.
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2.3.3 Signals at the LHC

In Ref. [18] we studied the signals for the pair production of the Xµ leptoquark gauge

bosons and their subsequent decays into the dominant mode b̄τ+ at LHC center of

mass energies of 7 TeV and 8 TeV. The final state signal was bb̄τ+τ− with all the

four particles being detected in the respective flavor tagged mode. It was observed

that the signal stands out as resonances in the invariant mass distribution of the

τ lepton paired with the b jets against the continuum SM background, provided

all the four final state particles carried significant transverse momenta. Using this

signal a phenomenological prediction on the LHC reach was made on the mass of

the Xµ which has subsequently been estimated as 760 GeV at 95 % C.L. by the

CMS Collaboration [23] at LHC with 7 TeV center of mass energy. As our model

predicts another decay mode (to top quark pairs) for the Xµ gauge boson, where the

Xµ behaves as a diquark, carrying quantum numbers of two quarks, it is of extreme

importance to be able to highlight this characteristic which distinguishes this particle

from the usual leptoquark particles. Establishing the existence of both decay modes is

needed to show that these interactions are both baryon and lepton number violating.

It is also worth pointing out that a similarly massive Yµ in the spectrum which couples

as strongly to the gluons as the Xµ will also be produced with similar rates and needs

to be studied in tandem with the production of the Xµ particles at the LHC.

We now consider all decay modes of both the Xµ and Yµ and discuss final states

which is then studied against the SM backgrounds. For the pair production process

of Xµ gauge bosons, where X → b̄τ+, tt we have the following different final states

given as

pp −→ XX̄ −→ b̄τ+bτ−, ttbτ−, b̄τ+t̄t̄, ttt̄t̄. (2.24)

The top quark would further decay, either semileptonically or hadronically to give

multi-lepton and high jet multiplicity final states. For our purposes, if we assume
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that the top quarks could be reconstructed with some reasonable efficiency in either

modes, we can just focus on the above mentioned final state signal. Similarly for the

pair production of the Yµ gauge bosons,

pp → Y Ȳ

where Y → b̄ντ , t̄τ
+, tb we get the following set of final states given as

pp −→ Y Ȳ −→ bb̄ET , b̄tτ−ET , t̄bτ+ET , b̄b̄t̄ET , bbtET ,−→ tt̄τ+τ−, t̄t̄b̄τ+, ttbτ−, tt̄bb̄.

(2.25)

Note that both the Xµ and Yµ gauge boson productions at the LHC leads to a rich

range of diverse final states which lead to many multi-particle signals and would lead

to distinct resonances in the invariant mass distributions in some pairs corresponding

to the mass of the Xµ and Yµ states. Notably we find that each particular event rate

is fixed once the model parameters have been fixed, which in our case is the mass of

the leptoquark gauge bosons while its coupling strength to the gluons has been fixed

to be the strong coupling constant. Thus the success of the model is not dependent

on an observation in only one particular final state but that observation needs to be

complemented simultaneously in various other channels as listed above in Eqs.(2.24)

and (2.25). Thus the study on all simultaneous channels deserves merit as it will be

able to confirm or falsify the model in question.

We now consider different final states and analyze the signals against the SM

background. As we expect that the new gauge bosons when produced on-shell will

decay to specific final state products, this would lead to a bump in the invariant

mass distribution of the decay products. Keeping this in mind, it is instructive

to first consider the most likely signals where the resonances would be observable.

Based on the decay channels and final states listed in Eqs.(2.24)–(2.25) one should

consider the (bτ) mode for the Xµ gauge bosons while the (tb and tτ) mode looks

the more promising for the Yµ resonance searches. The other modes either involve
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neutrinos or more than a single top quark in the final state, which further decays either

semileptonically or hadronically and therefore makes it more tasking to reconstruct

the leptoquark gauge boson mass. However, we must emphasize that for measuring

the electric charge of these gauge bosons one definitely requires that the Xµ resonance

is observed in the invariant mass distribution of same-sign top quark pair (tt) while

the Yµ resonance is observed in the (tτ−) final state or its charge conjugate mode.

Notwithstanding the fact that reconstructing the tt state would be challenging, it

would definitely lead to a very interesting observation. Final states involving b jets

require measuring the b jet charge which looks to be more difficult and hence not a

desired mode to get information on the charge of the exotic gauge bosons.

Signal SM Signal SM

2bτ+τ− 2bτ+τ−; 2jτ+τ−; bjτ+τ− ttbτ−, t̄t̄bτ+ –

ttt̄t̄ ttt̄t̄ tt̄τ+τ− tt̄τ+τ−

2btt̄ 2btt̄; 2jtt̄; bjtt̄ 2bET 2bET ; 2jET ; jbET

btτ−ET btτ−ET ; jtτ−ET bt̄τ+ET bt̄τ+ET ; jt̄τ+ET

2btET 2jtET ; bjtET 2bt̄ET 2jt̄ET ; bjt̄ET

Table 2.2: Illustrating the final state signals and the corresponding SM background

subprocesses. Note that ET for the SM subprocesses represents one or more neutrinos

in the final state.

In Table 2.2 we list the relevant SM background subprocesses that we have consid-

ered for each set of final states for the signal. Note that we do not make a distinction

between the b and b̄ but we distinguish between a τ+ and τ− by assuming exact

charge measurement will be possible. We also distinguish between a top quark and

anti-top quark assuming that they will be reconstructed with their respective charge

identifications from its semileptonic decay modes. We associate an efficiency factor of

εt with this reconstruction. For final state signals not involving neutrinos we have not
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considered SM subprocesses with ET as they will involve extra electroweak vertices

which suppress the contributions and further requirements on missing transverse mo-

menta would make these contributions too small to take into further consideration.

We highlight the above mentioned invariant mass distributions in our model for a few

choices of the Xµ and Yµ gauge boson masses considered at two different center of

mass energies for the LHC. We focus our attention to the recently concluded 8 TeV

run and the proposed upgrade in energy of 14 TeV for the LHC. As a current limit of

760 GeV exists on the leptoquark gauge boson mass from the CMS analysis [23] we

choose a mass of 800 GeV to show the distributions at the 8 TeV run of LHC while a

larger mass of 1 TeV is chosen to highlight the signal distributions at the 14 TeV run.

We note that there are more than one set of final states where a particular resonance

could be observed in the invariant mass distributions and so we consider the scenario

where we look at a few definite invariant mass distributions in individual final state

modes listed in Eqs.(2.24) and (2.25). We list below the pair of final state particles

for which the invariant mass distribution is considered, motivated by favored modes

for reconstructing the mass and the charge of the Xµ and Yµ gauge bosons.

(C1) Invariant mass distribution of bτ− coming from the final states b̄τ+bτ−, ttbτ−.

This is the most favorable mode for reconstructing the Xµ resonance.

(C2) Invariant mass distribution of same sign top quark pair tt coming from the final

states ttbτ−, ttt̄t̄. The reconstruction of the leptoquark mass in this mode,

although difficult, is essential in measuring the charge of the Xµ.

(C3) Invariant mass distribution of tb coming from the final states tt̄bb̄, ttbτ−, tb̄τ−ET , bbtET .

This is one of the favorable modes for reconstructing the Yµ resonance.

(C4) Invariant mass distribution of tτ− coming from the final states tt̄τ−τ+, ttbτ−, b̄tτ−ET .

This mode is essential to measure the charge of the Yµ. Note that the tτ− res-

onance corresponds to the charge conjugate mode of Yµ.
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We shall now discuss the signal and the associated SM backgrounds for the list

of resonances given by C1–C4. Note that the signal subprocesses which contribute

to give a bτ− final state as listed in (C1) come from both Xµ and Yµ pair pro-

ductions. However the resonant distribution only happens for the Xµ production

while the Yµ contribution acts to smear out the resonance although it does contribute

in enhancing the signal over the SM background. A further smearing effect would

come if the tb̄τ−ET signal is included. But we can reject that contribution by de-

manding that we don’t include events with large missing transverse momenta in the

final state when reconstructing the bτ− invariant mass. As discussed in Ref. [18]

the dominant background for the resonant signal in the bτ channel comes from

pp → 2b2τ, 4b, 2j2b, 2j2τ, 4j, tt̄ where j = u, d, s, c when we consider the signal coming

from the pair production of Xµ which then decay in the bτ mode to give a 2bτ+τ−

final state. The light jet final states in the SM can be mistaged as τ or b jets and thus

form a significant source for the background due to the large cross sections at LHC,

as they are dominantly produced through strong interactions. Guided by previous

analysis [18], we note that a very strong requirement on the transverse momenta for

the b jet and the τ lepton is very helpful in suppressing the SM background. The

SM background has been estimated using Madgraph 5 [25]. In this analysis we fur-

ther restrict the number of SM background sub-processes that contribute to the final

state with bτ− by demanding that the tau charge is measured. Therefore we neglect

the contributions coming from jets that fake a tau. For example, when we consider

the final state as 2bτ+τ− and demand that the tau lepton is tagged as well as its

charge measured, we include pp → 2b2τ, 2j2τ, tt̄ as the dominant SM processes for

the background.

We have used two values for the leptoquark gauge boson (V ≡ X, Y ) masses,

MV = 800 GeV at LHC with center of mass energy 8 TeV and MV = 1 TeV at

LHC with center of mass energy 14 TeV to highlight the signal cross sections and
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differential distributions for invariant mass. We set the factorization and renormal-

ization scale (Q = MZ) to the mass of the Z boson and also use the strong coupling

constant value of αs evaluated at the Z boson mass. Note that we have evaluated

the individual signals as listed in Eqs.(2.24) and (2.25) against their specific back-

grounds independently. We have assumed in our analysis that the top quark and the

anti-top quark are reconstructed with good efficiencies which we can parameterize as

εt. Note that we have used the following efficiencies for b and τ tagging, ϵb = ϵτ = 0.5

while we assume a mistag rate for light jets to be tagged as b jets as 1% and c jets

tagged as b jets to be 10%. All our results here are done at the parton level and

therefore to account for the detector resolutions for energy measurement of particles,

we have used a Gaussian smearing of the jet and τ energies with an energy resolution

given by ∆E/E = 0.8/
√

E (GeV ) and ∆E/E = 0.15/
√

E (GeV ) respectively when

analyzing the signal events.

In Table 2.3 we list the kinematic selection cuts on the events. As the primary

decay modes of the heavy leptoquark gauge bosons will have very large transverse

momenta we put strong cuts on them. This helps in suppressing the SM background

while it does not have any significant effect on the signal events. The cuts on ET

applies only to final states with neutrinos in the decay chain while the ∆Rij cut is on

any pair of visible particles. The invariant mass cut Mjj is on any pair of jets in the

final state.

With the above set of kinematic selection on the final state events we evaluate the

signal cross sections and the corresponding SM background given in Table 2.2. We

first consider the resonance given by (C1) and show the invariant mass distribution

of bτ− in Fig. 2.4. We must point out here that the τ− is paired with the b jet

which has the leading transverse momenta in case there exist more than one tagged

b jets. After including the efficiency factors ϵb and ϵτ associated with tagging the

b and τ jets and mistag rates, we estimate the signal cross section in the 2bτ+τ−
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Variable Cut C1 at 8 TeV Cut C2 at 14 TeV

pτ,b,jT > 80 GeV > 200 GeV

ET > 100 GeV > 200 GeV

|η| < 2.5 < 2.5

∆Rij > 0.4 > 0.4

Mjj,τ+τ− > 5 GeV > 5 GeV

Table 2.3: Two different set of cuts, C1 at LHC with
√
s = 8 TeV and C2 at LHC with

√
s = 14 TeV, imposed on the final states listed in Eqs.(2.24)–(2.25) where the cuts

on ET applies only to final states with neutrinos in the decay chain.

mode as 4.23 fb for MX,Y = 800 GeV at LHC with
√
s = 8 TeV and 12.05 fb for

MX,Y = 1 TeV at LHC with
√
s = 14 TeV. In Fig.2.4 we plot the invariant mass

distribution for the signal. The dominant SM background are given by the following

subprocesses, σ(2bτ+τ−) ≃ 1.8 fb, σ(2cτ+τ−) ≃ 1.6 fb and σ(2jτ+τ−) ≃ 167.6 fb

which after including the efficiency factors, mistag rates is added to give 0.119 fb.

This is plotted in Fig.(2.4) as “SM (2bτ+τ−)”. The corresponding SM background at

14 TeV center of mass energy is much more suppressed (∼ 0.002 fb) because of the

strong requirement on the transverse momenta of the jets and the charged tau leptons.

The signal is clearly seen to stand out as resonance and one therefore expects this

particular mode to be very favorable in searching for the Xµ resonance by suppressing

the SM background by demanding τ lepton charge identification which gets rid of the

large all jet background. Another mode for the bτ− resonance which has completely

negligible SM background, is for the final state ttbτ−. There are two different sources

for the signal in this case, one which corresponds to the final states coming from

the XX̄ pair production while the other from the Y Ȳ pair production. As the Y Ȳ

contribution does not lead to a resonance in the bτ− mode, it will act to smear out

the resonance as compared to that seen for the 2bτ+τ− final state. This is evident
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Figure 2.4: Invariant mass distribution of bτ− for the signal and SM background for

two different choices of leptoquark gauge boson mass, (a) MV = 800 GeV considered

at LHC with
√
s = 8 TeV and (b) MV = 1 TeV considered at LHC with

√
s = 14

TeV.

in Fig.(2.4) where the width of the resonance is seen to spread out in more invariant

mass bins for the ttbτ− final state. Assuming a top reconstruction with an efficiency

of εt we find that the signal cross section from XX̄ for MX = 800 (1000) GeV at

LHC with
√
s = 8 (14) TeV is 8.19 (28.23)× ε2t fb while the signal cross section from

Y Ȳ for MY = 800 (1000) GeV at LHC with
√
s = 8 (14) TeV is 4.04 (13.8)× ε2t fb.

Note that the τ and b tagging efficiencies have been already included. In Fig.(2.4)

we have assumed εt = 1 for illustration purposes. Therefore the efficacy of the signal

with the same sign top pairs in the final state is dependent on the inherent purity of

the top reconstruction at experiments.
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We now consider the resonance given by (C2) and show the invariant mass dis-

tribution of the same sign top pair tt in Fig. (2.5). As pointed out earlier, this

mode is necessary to measure the charge of the Xµ leptoquark gauge boson mass.

A resonant bump in the same sign top pair invariant mass distribution would be a

clear indication of a particle decaying into two same sign top quarks and therefore

give a strong indication that the particle carries 4/3 electric charge and has quan-

tum numbers of a diquark. The signal is again considered for two different set of
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Figure 2.5: Invariant mass distribution of same sign top pair tt for the signal and SM

background for two different choices of leptoquark gauge boson mass, (a) MV = 800

GeV considered at LHC with
√
s = 8 TeV and (b) MV = 1 TeV considered at LHC

with
√
s = 14 TeV.

final states, both of which show an invariant mass peak in the same sign top quark

pair. In the tt̄tt̄ final state the signal cross section comes solely from the pair pro-
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duction of the XX̄ gauge bosons. As we have assumed a reconstruction efficiency

for the top quarks as εt, the cross section for MX = 800 (1000) GeV at LHC with

√
s = 8 (14) TeV is 14.93 (62.81)× ε4t fb. The SM background for the same subpro-

cess is 2.31 (24.34)× ε4t fb at LHC with
√
s = 8 (14) TeV. Although the strength of

the signal crucially depends on the reconstruction efficiency, even a low efficiency in

the long run will lead to a very important observation provided similar resonances are

observed in the bτ− or bτ+ final states. The other final state which shows a bump in tt

invariant mass is ttbτ− and its strength was already discussed for Fig.(2.4). Note that

again the Y Ȳ contribution does not help the resonance, but is effective in enhancing

the signal in this mode.

We now look at the final states which correspond to resonant signals for the

Y gauge boson. We therefore consider the resonance given by (C3) and show the

invariant mass distribution of the top-bottom pair tb in Fig.(2.6). Note that one of the

dominant decay mode for the Yµ gauge boson gives neutrinos in the final states that

leads to large missing transverse energy (MET) and is not suitable to reconstruct

the Yµ mass. However, allowing one Y to decay in the neutrino mode still allows

reconstruction of the other in the visible decay modes of tb and tτ . A large MET in the

final state also helps in suppressing large contributions to the SM background through

all hadronic final states which proceed through strong interactions. In Fig.(2.6) we

consider four different final state signals which lead to a resonance in the tb invariant

mass, namely tt̄bb, ttbτ−, tbτ−ET and tbbET . The signal ttbτ− remains the same as

discussed for Fig.(2.4) with the only difference being that the contribution coming

from the XX̄ pair production now acts to smear out the resonance in tb invariant

mass distribution coming from the Yµ. This is the cleanest mode with practically no

SM background, although depending on the reconstruction of the top quarks. The

signal cross section for the tt̄bb final state comes from the Yµ pair production and

for MY = 800 (1000) GeV at LHC with
√
s = 8 (14) TeV is 4.04 (13.75) × ε2t fb.
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Figure 2.6: Invariant mass distribution of tb for the signal and SM background for

two different choices of leptoquark gauge boson mass, (a) MV = 800 GeV considered

at LHC with
√
s = 8 TeV and (b) MV = 1 TeV considered at LHC with

√
s = 14

TeV.

The SM background at LHC with
√
s = 8 (14) TeV for the signal comes dominantly

from three subprocesses with σ(tt̄bb) ∼ 54.4 (34.1) fb, σ(tt̄cc) ∼ 55.1 (34.4) fb and

σ(tt̄jj) ∼ 10.14 (7.45) pb. The stronger cuts at the 14 TeV run is responsible for the

relatively smaller numbers for the SM background for the higher energy run. Note

that after including the tagging efficiencies and misstag rates, the corresponding SM

background for the tt̄bb final state comes out to be 15.18 (9.65) × ε2t fb. Although

the SM backgrounds are large in this case, the differential cross section is seen to

fall rapidly for larger values of the invariant mass. Therefore, a strong cut on the tb

invariant mass will be useful to suppress the background further. For the two final
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states involving missing transverse energy, we have combined their contribution in

Fig.(2.6) under the signal “tbτ−(b) + MET”. We find that the SM background for

tbbET is completely negligible. The large contribution to the background comes from

the σ(tbτ−ET ) ∼ 88.7 (3.05) fb at LHC with
√
s = 8 (14) TeV, while the tcτ−ET

and tjτ−ET are much suppressed due to the small CKM mixings between the first

two generation quarks and the top quark. The SM background after including the

efficiency factors is then given as 22.16 (0.75) × εt fb, while the signal for MY =

800 (1000) GeV at the two center of mass energies is σ(tbbET ) = 4.21 (13.21)× εt fb

and σ(tbτ−ET ) = 4.21 (13.20) × εt fb. Note that tbbET is the one which gives a

resonant signal while tbτ−ET gives a continuum in the tb invariant mass distribution

because the t and b come from different Yµ (Y → b̄ντ , Ȳ → tτ−). This can be

seen in Fig.(2.6) where the large signal contribution in the tbτ−ET channel is spread

out in the invariant mass distribution. Therefore it is instructive to put a τ veto

on the signal with missing transverse momenta when looking at the invariant mass

distribution in tb. Again for illustrative purposes we have chosen εt = 1.

We finally consider the resonance given by (C4) which again is essential in mea-

suring the charge of the Yµ gauge boson. To measure the charge one requires the

charge measurement of the τ lepton as well as the reconstruction of the top quark

in its semileptonic channel. We therefore show the invariant mass distribution in

the reconstructed top quark and charged tau lepton pair (tτ−) in Fig.(2.7) which

corresponds to a resonance for the charge conjugated field of Yµ. The signal is ob-

tained from three different set of final states given by tt̄τ+τ−, tbτ−ET and 2tbτ−. As

discussed before the 2tbτ− contribution is found to have negligible SM background

but the contribution from the XX̄ production to the tτ− invariant mass distribution

itself acts as a background for the resonant signal from the Y Ȳ production. The

tt̄τ+τ− signal comes solely from the Yµ pair production and we find that with the

proper charge identification of the τ leptons, we can ignore contributions from SM
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Figure 2.7: Invariant mass distribution of tτ− for the signal and SM background for

two different choices of leptoquark gauge boson mass, (a) MV = 800 GeV considered

at LHC with
√
s = 8 TeV and (b) MV = 1 TeV considered at LHC with

√
s = 14

TeV.

background processes such as tt̄jj. The signal cross section in this mode is found to

be 4.04 (13.81)×ε2t fb for MY = 800 (1000) GeV at LHC with
√
s = 8 (14) TeV. The

SM background is quite suppressed at both center of mass energy values, given by

0.35 (0.04)× ε2t fb. The tbτ
−ET signal discussed for the tb resonance in Fig.(2.6) was

found to give a continuum distribution in the tb invariant mass. However it leads to

a resonance in the tτ− invariant mass distribution as Ȳ → tτ−. The event rates are

the same as before but one can clearly see a distinct resonance confined to a few bins

in the invariant mass distribution of tτ− in Fig.(2.7) for the tbτ−ET signal. The large

SM background for this mode can again be suppressed with a significantly strong cut
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on the tτ− invariant mass.

2.3.4 LHC sensitivity to the Xµ and Yµ gauge bosons

As evident from our analyses of the resonant signals for the Xµ and Yµ gauge bosons

in our models, the LHC would be able to see the signals in various different channels

for significantly large values of their mass. A single channel analysis in the bτ mode

relevant for Xµ search was considered for its search at the 7 TeV run of LHC [18,23]

while another experimental study relevant for the Yν search in the bbET channel has

been done by the CMS Collaboration [26]. Here we do a more expansive sensitivity

reach at the LHC for these gauge bosons that can be obtained at different integrated

luminosities. For the top decaying semileptonically to bℓ+νℓ where ℓ = e, µ the events

will be at most, or less than ∼ 22% of the reconstructed top events. While it would

be ∼ 66% in the hadronic decay mode. Thus it gives a clear demarcation on the event

rate we specify for the final states involving the top and anti-top quarks that would

lead to any signal events to reconstruct the tops.

For the sensitivity analysis we define the signal to be observable if the lower limit

on the signal plus background is larger than the corresponding upper limit on the

background [27] with statistical fluctuations

L(σs + σb)−N
√

L(σs + σb) ≥ Lσb +N
√
Lσb

or equivalently,

σs ≥
N

L

[
N + 2

√
Lσb

]
, (2.26)

where L is the integrated luminosity, σs is the signal cross section, and σb is the back-

ground cross section. The parameter N specifies the level or probability of discovery.

We take N = 2.5, which corresponds to a 5σ signal. For σb ≫ σs, this requirement

becomes similar to

S =
Ns√
Nb

=
Lσs√
Lσb

≥ 5, (2.27)
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Final State σSM (fb) Final State σSM (fb)

2bτ+τ− 0.12 (0.002) ttbτ−, t̄t̄bτ+ –

ttt̄t̄ 2.31 (24.34) tt̄τ+τ− 0.35 (0.04)

2btt̄ 15.18 (9.65) 2bET 25.06 (3.83)

btτ−ET 22.16 (0.75) bt̄τ+ET 22.16 (0.75)

2btET 0.003 (0.001) 2bt̄ET 0.001 0.0006)

Table 2.4: The combined SM cross sections estimated at parton level using MadGraph

5 for the different final state signals at LHC with
√
s = 8 TeV and

√
s = 14 TeV.

The 14 TeV values are given in parenthesis. Note that the cross sections given satisfy

the kinematic cuts listed in Table 2.3 and all tagging efficiencies and misstag rates

are included.

where Ns is the number of events for the signal, Nb is the number of events for the

background, and S equals the statistical significance.

In Table 2.4, we have calculated the SM background for the different final states

that we have considered for the signal coming form the pair productions of the Xµ and

Yµ gauge bosons. The cross sections shown in Table 2.4 are obtained after passing

the events through the kinematic selection conditions given in Table 2.3. In most

cases the SM backgrounds are quite small and would remain negligible even with

an integrated luminosity of 100 fb−1. Note that as the top reconstruction would

require sufficient events after it has decayed, we need much larger cross sections for

the final states involving top quarks. To use Eq.(2.26), we require the background

events to be sufficiently large such that the fluctuations to a Gaussian distribution

could be applied. We find that the best reaches are obtained for the bbET , bt̄τ+ET

and btτ−ET final states. For the bbET final state at LHC with
√
s = 8 TeV, the

signal cross section for a 5σ sensitivity must be greater than 8.54, 5.91, 4.78 fb for

an integrated luminosity of L = 10, 20, 30 fb−1 respectively. This corresponds to
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the mass reach of MY = 737, 772, 793 GeV respectively. With the higher center

of mass energy option for LHC with
√
s = 14 TeV, the signal cross section for a 5σ

sensitivity must be greater than 1.995, 1.041, 0.586 fb for an integrated luminosity of

L = 30, 100, 300 fb−1 respectively. These lead to a mass reach of 1325, 1440, 1545

GeV respectively. For the other channels involving the top quark in the final state,

we assume the reconstruction efficiency for the top quark εt ≃ 0.5 which includes

the event loss from kinematic cuts after the top decays. Adding the contributions for

bt̄τ+ET and btτ−ET we find that at the 8 TeV run of LHC, the mass reach is 770, 795

GeV for an integrated luminosity of L = 20, 30 fb−1 respectively while at the 14 TeV

run of LHC, where we use the high luminosity options of 200 fb−1 and 300 fb−1, the

5σ sensitivity comes out to be about 1650 GeV and 1690 GeV respectively. Inspired

by this work, CMS collaboration has searched for the third generation leptoquarks in

the ”bτ” mode and set a limit with vector leptoquarks with masses 760 GeV at
√
s

= 7 TeV with 95% CL.

2.4 Summary and Conclusions

Although the Standard Model, based on local gauge symmetries, accidentally con-

serve baryon and lepton numbers, there is no fundamental reason for the baryon and

lepton numbers to be exact symmetries of Nature. In fact, Grand Unification, unify-

ing quarks and leptons, naturally violate baryon and lepton number. The remarkable

stability of the proton dictate that the masses of these leptoquark and diquark gauge

bosons to be at the 1016 GeV scale. However, baryon and lepton number violating

interaction involving only the 3rd family of fermions is not much constrained exper-

imentally. Inspired by the topcolor, topflavor and top hypercharge models, we have

a top-GUT model where only the third family of fermions are unified in an SU(5)

with the symmetry breaking scale at the TeV. These models give baryon and lepton

number violating gauge interactions which involve only the third family, and with
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interesting resonant signals at the LHC.

We have proposed two models, the minimal and renormalizable top SU(5) where

the SU(5)×SU(3)′C×SU(2)′L×U(1)′Y gauge symmetry is broken down to the Standard

Model (SM) gauge symmetry via the bifundamental Higgs fields at low energy. The

first two families of the SM fermions are charged under SU(3)′C × SU(2)′L × U(1)′Y

while the third family is charged under SU(5). In the minimal top SU(5) model,

we showed that the quark CKM mixing matrix can be generated via dimension-five

operators, and the proton decay problem can be solved by fine-tuning the coefficients

of the high-dimensional operators at the order of 10−4. In the renormalizable top

SU(5) model, we introduced additional vector-like fermions whose renormalizable

interactions with the SM particles generate these dimension 5 interactions and we

can explain the quark CKM mixing matrix by introducing the vector-like particles,

and also there is no proton decay problem. We have discussed the phenomenology

of the models in details looking for the resonant signals for the baryon and lepton

number violating leptoquark as well as diquark gauge bosons at the LHC, as well as

the various final state arising from the productions and decays of these heavy gauge

bosons. We have also calculated the corresponding SM backgrounds. We find that a

5σ signal can be observed for a mass leptoquark / diquark of about 770/800 GeV at

the 8 TeV LHC with luminosity of 20fb−1/30fb−1. The mass reach extends to about

1450 TeV for 14 TeV LHC with a luminosity of 100fb−1.
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CHAPTER 3

New fermions in the framework of Left-Right Mirror Model

3.1 Introduction

The non-conservation of parity P (the left-right asymmetry of elementary particles)

is well incorporated in the Standard Model (SM) of particle physics. However, it has

been considered as an unpleasant feature of the model. One possible way to under-

stand the left-right asymmetry of elementary particles is to enlarge the SM into a

left-right (LR) symmetric structure and then, by some spontaneously breaking mech-

anism, to recover the SM symmetry structure. For instance, in left-right symmetric

models [1], SU(2)R interactions are introduced to maintain parity invariance at high

energy scales. The symmetry group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L of LR symmetric

models can be a part of a grand unified symmetry group such as SO(10) [2] or E6 [3]

or superstring inspired models [4]. In the framework of LR symmetric SM, the SM

left-handed fermions are placed in the SU(2)L doublets as they are in the SM while

the SM right-handed fermions (with the addition of right-handed neutrinos for the

case of leptons) are placed in the SU(2)R doublets. Subsequently, the LR symme-

try is spontaneously broken down to the SM electroweak symmetry using suitable

Higgs representations. There are different variants of LR symmetric models have

been proposed in the literature [5–8].

Another interesting solution to the non-conservation of parity in the SM was

proposed in a classic paper [9] by Lee and Yang. They postulated the existence

of additional (mirror) fermions of opposite chirality to the SM ones to make the

world left-right symmetric at high energies. The advantages of models with mirror
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fermions to solve some problems in particle physics have already been discussed in the

literature. For instance, the existence of mirror neutrinos can naturally explain the

smallness of neutrino mass via a see-saw like mechanism [10–12]. Moreover, it can also

be useful for the Dark Matter problem [12], neutrino oscillations as well as different

neutrino physics anomalies such as solar neutrino deficit and atmospheric neutrino

anomaly [11]. On the other hand, mirror fermions can provide a solution to the

strong CP problem if the parity symmetry is imposed [13, 14]. Finally, the existence

of mirror particles appear naturally in many extensions of the SM, like GUT and

string theories [15]. The masses of these mirror particles, though unknown, are not

experimentally excluded to be at or below the TeV scale. The agreement of the models

with mirror fermions with electroweak precision data, Higgs rate etc have been studied

in Ref. [16]. Therefore, it is important to study the phenomenological consequences of

the mirror particles in the context of collider experiments, in particular at the Large

Hadron Collider (LHC). In this work, we have investigated the phenomenology of

mirror particles in the context of a particular variant of LR symmetric mirror model

(LRMM), their associated final state signals, and the discovery potential at the LHC.

In the LRMM we propose in this work, the SM gauge group (GSM = SU(3)C ⊗

SU(2)L⊗U(1)Y ) is extended to GLR = SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)Y ′ together

with a discrete Z2 symmetry. The SM particle spectrum is also extended to include

mirror particles and a real scalar Higgs singlet under both SU(2)L and SU(2)R. For

the fermion sector, the right-handed (left-handed) components of mirror fermions

transform as doublets (singlets) under SU(2)R. The SM fermions are singlets under

SU(2)R, whereas doublets under SU(2)L. Similarly there are mirror singlet fermions

corresponding to the SM singlet fermions. Since the fermion representations are

exactly mirror symmetric, all triangle anomalies are exactly canceled with respect to

the entire gauge symmetry, the model is anomaly free. Because of even number of

doublets, there is also no gravitational anomaly. The SM fermions are even under the
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Z2 symmetry, whereas, the corresponding mirror fermions are odd. Therefore, any

mass mixing between SM charged fermions and with mirror partners are forbidden

by the Z2 symmetry. The spontaneous symmetry breaking (SSB), GLR → GSM is

realized by introducing a mirror Higgs doublet which is singlet under SU(2)L and

doublet under SU(2)R. Subsequently the SSB, GSM → SU(3)C ⊗U(1)EM is achieved

via the SM Higgs doublet which is doublet under SU(2)L and singlet under SU(2)R.

After the SSB, the gauge boson sector of LRMM contains the usual SM gauge bosons

(gluon, W± bosons, Z boson and photon) along with the mirror partners of W± and

Z-boson. The non zero vacuum expectation value (VEV) for a singlet scalar breaks

the Z2 symmetry and gives rise to mixing between the SM and mirror fermions.

The parity symmetry in LRMM determines the ratio among the charged mirror

fermion masses from the SM charged fermion mass spectrum. In particular, the

ratio of the SM fermion mass and the corresponding mirror fermion mass is given by

O(1)v
v̂
, where O(1) is an order one number, v ∼ 250 GeV and v̂ are the VEV’s for

the SM Higgs and mirror Higgs respectively. Connecting the model for generating

tiny neutrino masses ≃ 10−11 GeV gives v̂ ∼ 107 GeV. This gives TeV scale masses,

or few hundred GeV masses for the mirror partners of electron, up and down quarks,

namely ê, û and d̂. This makes the model testable at the ongoing LHC and proposed

linear electron-positron collider experiments.

Different variants of LR symmetric mirror models have been proposed and studied

in the literature in different contexts. For example, in Ref. [18], the SM particle

content have been extended to include mirror fermions and tiny neutrino mass have

been explained via see-saw mechanism. In this model, the gauge group is the SM

gauge group and for each SM left (right) handed SU(2)L doublet (singlet) there is

right (left) handed mirror doublet (singlet). Therefore, both the SM (left handed)

and mirror (right handed) neutrinos in this model transform as a doublet under

SU(2)L. As a result, triplet Higgs fields are required in this model for the Majorana
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mass terms. However, in our model the gauge structure is different and in addition to

doublet neutrinos, we have singlet left handed and right handed neutrinos. Therefore,

triplet Higgs is not required in our model. Another class of mirror models have been

proposed in Ref. [13] as a solution to the strong CP problem. The gauge group and

particle content for our model is somewhat similar to the model in Ref. [13]. However,

our model includes a singlet scalar and the gauge symmetry is supplemented by an

additional discrete Z2 symmetry. This modifications give rise to TeV scale mirror

fermions and make our model testable at the collider experiments.

One of the major goals of the LHC experiment is to find new physics beyond the

SM. The LHC is a proton-proton collider and thus, the collision processes are over-

whelmed by the QCD interactions. Therefore, in the framework of LRMM, the new

TeV scale colored particles, namely û and d̂ quarks will be copiously pair produced at

the LHC. After being produced, û and d̂ quarks will decay to the SM particles giving

rise to interesting signatures at the LHC. The TeV scale mirror quarks are found to

decay into a Z/W boson or a Higgs boson in association with a SM quark. This leads

to new fermionic resonances as well as new physics signals in two SM gauge bosons

+ two jet final states. Note that the gauge bosons could be either Z or W and the

highlight of the signal would be the presence of a clear resonance in the jet+Z and

jet+W invariant mass distributions. Such a resonance will stand out against any SM

background in these final states. In this paper we have therefore studied in detail the

signal coming from the pair production of the mirror quarks, û and d̂ and their sub-

sequent decays in our LRMM and compared it with the dominant SM background

processes.

The chapter is organized as follows. In Section 3.2, we discuss our model and the

formalism. Section 3.3 is devoted for the phenomenological implications of the model.

Finally, a summary of our work, and the conclusions are given in Section 3.4.
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3.2 Left-Right symmetric mirror model (LRMM) and the formalism

Our LR symmetric mirror model is based on the gauge symmetry GLR = SU(3)C ⊗

SU(2)L⊗SU(2)R⊗U(1)Y ′ supplemented by a discrete Z2 symmetry. Left-right sym-

metry, as in the usual left-right model, provides a natural explanation why the parity

is violated at low energy. Inclusion of mirror particles gives an alternate realization

of the LR symmetry in the fermion sector. The fermion representations in our model

for leptons and quarks in the first family is given by

l0L =

ν0

e0


L

∼ (1, 2, 1,−1) , e0R ∼ (1, 1, 1,−2) , ν0
R ∼ (1, 1, 1, 0);

l̂0R =

ν̂0

ê0


R

∼ (1, 1, 2,−1) , ê0L ∼ (1, 1, 1,−2) , ν̂0
L ∼ (1, 1, 1, 0);

Q0
L =

u0

d0


L

∼ (3, 2, 1,
1

3
) , u0

R ∼ (3, 1, 1,
4

3
) , d0R ∼ (3, 1, 1,−2

3
);

Q̂0
R =

û0

d̂0


R

∼ (3, 1, 2,
1

3
) , û0

L ∼ (3, 1, 1,
4

3
) , d̂0L ∼ (1, 1, 1,−2

3
); (3.1)

where the bracketed entries correspond to the transformation properties under the

symmetries of the group GLR. Note that since the model is left-right symmetric, for

every fermion representation of SU(2)L, there is a there is a multiplet corresponding

to the same representation of SU(2)R.The superscripts (0) denote gauge eigenstates

and the hat symbol (̂ ) is associated with the mirror fermions. The charge generator

is given by: Q = T3L + T3R + Y ′/2. In the usual LR symmetric model, SU(2)L ⊗

SU(2)R⊗U(1), the U(1) symmetry is U(1)B−L. This is easily embedded into SU(4)C⊗

SU(2)L ⊗ SU(2)R or SO(10) GUT. The U(1)Y ′ in our model is not U(1)B−L. This

can be seen from the Y ′ quantum numbers of the fermions in Eq. 3.1. Thus, U(1)Y ′ ,

in this model, can not be embedded in the usual SO(10) GUT.

Under the Z2 symmetry, the SM fermions as well as the right handed singlet
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neutrino (denoted by without hat) are even, whereas, the mirror fermions including

the left handed singlet mirror neutrino (denoted by hat) are odd. This structure of Z2

symmetry for the SM and corresponding mirror fermion is required to forbid the large

(in general of the order of symmetry breaking scale) singlet mass terms between the

SM and mirror singlets.The fermion representations for the second and third family

are identical to the first family.

Note that in the traditional LR model, the fermion sector is completely symmetric

for the ordinary SM fermions. For example, we have (u, d)L and (u, d)R, and similarly

for every fermion family. Another version, proposed in [9] is to introduce new fermions

to make it LR symmetric, i.e. for every (u, d)L, we have new fermions, (û, d̂)R. Hence

it is the left-right mirror model (LRMM). It is this realization that we pursue here. It

was shown in Ref. [13,14] that the complete invariance of such a model under parity

can guarantee a vanishing strong CP phase from the QCD θ-vacuum and thus, solves

strong CP problem.

3.2.1 Symmetry breaking and the scalar sector

In the framework of LRMM, spontaneous symmetry breaking is achieved via the

following steps:

SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′ → SU(2)L ⊗ U(1)Y → U(1)Q, (3.2)

where, Y/2 = T3R + Y ′/2. In order to realize the above SSB, two Higgs doublets

are required i.e., the SM Higgs doublet (Φ) and its mirror partner (Φ̂). In order to

have the Yukawa interactions between doublet and singlet fermions for SM and mirror

sector, both the Higgs doublets has to be even under the Z2 symmetry. The gauge
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quantum numbers and VEV’s of these Higgs doublets are summarized below:

Φ ∼ (1, 2, 1, 1) , Φ̂ ∼ (1, 1, 2, 1);

⟨Φ⟩ = 1√
2

0

v

 , ˆ⟨Φ⟩ = 1√
2

0

v̂

. (3.3)

In addition to these two Higgs doublets, we have introduced a singlet (under both

SU(2)L and SU(2)R) real scalar which is odd under the Z2 symmetry: χ ∼ (1, 1, 1, 0).

The VEV of χ: ⟨χ⟩ = vχ, breaks the Z2 symmetry spontaneously. This enables us to

generate mixing between the SM fermions and the mirror fermions. This mixing with

the SM fermions allows the mirror fermions to decay to lighter SM particles after

they are pair produced at colliders such as the LHC, giving rise to interesting final

state signals. It is important to mention that spontaneous breaking of Z2 discrete

symmetry gives rise to domain walls problem in the theory. However, this problem

is easily solved by breaking the Z2 symmetry softly by introducing a µ3χ
3 in the

potential. With this soft breaking the world will have no domain walls and choosing

µ3 much smaller compared to µχ, there will be no significant effect on the collider

phenomenology.

In order to generate the above structure of VEV’s for Φ and Φ̂, the LR symmetry

has to be broken, otherwise, we will end up with v = v̂. The most general scalar

potential that develops this pattern of VEV’s is given by,

V = −
(
µ2Φ†Φ + µ̂2Φ̂†Φ̂

)
+

λ

2

[(
Φ†Φ

)2
+
(
Φ̂†Φ̂

)2]
+ λ1

(
Φ†Φ

) (
Φ̂†Φ̂

)
− 1

2
µ2
χχ

2 +
1

3
µ3χ

3 +
1

4
λχχ

4 + λϕχχ
2
(
Φ†Φ + Φ̂†Φ̂

)
(3.4)

It is important to note that in the above potential, the terms with µ, µ̂ break the

parity symmetry softly, i.e., only through the dimension-two mass terms of the scalar

potential. Note that after the two stages of symmetry breaking, we are left with three

neutral scalars, SM like Higgs, h, Mirror Higgs, ĥ, and a singlet Higgs χ. We consider
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a solution of the Higgs potential such that v << vχ << v̂, and so the mixing among

these Higgses are negligible.

3.2.2 Gauge bosons masses and mixings

The gauge bosons masses and mixings are obtained from the kinetic terms of the

scalars in the Lagrangian:

L ⊃ (DµΦ)
† (DµΦ) +

(
D̂µΦ̂

)† (
D̂µΦ̂

)
, (3.5)

where, D and D̂ are the covariant derivatives associated with the SM and mirror

sector respectively.

Dµ(D̂µ) = ∂µ + ig
τa
2
W a

µ (Ŵ
a
µ ) + ig′

Y ′

2
Bµ, (3.6)

where, λa’s and τa’s are the Gell Mann and Pauli matrices respectively. The gauge

bosons and gauge couplings related to the gauge group SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′

are respectively W a
µ , Ŵ a

µ , Bµ and g, g, g′. Note that to ensure parity symmetry, we

have chosen identical gauge coupling for SU(2)L and SU(2)R.

Substituting the VEV’s of Eq. 3.3 in the kinetic terms for the scalars in Eq. 3.5, we

obtain the masses and mixings of the seven electroweak gauge bosons of this model.

The light gauge bosons are denoted as: W±, Z and γ, which are identified with the

SM ones, whereas the mirror gauge bosons are denoted by Ŵ± and Ẑ. The mass

matrix for the charged gauge bosons is diagonal, with masses:

MW± =
1

2
gv , MŴ± =

1

2
gv̂. (3.7)

The mass matrix for the neutral gauge boson sector is not diagonal and in the basis

(W 3, Ŵ 3, B), the neutral gauge boson mass matrix is given by,

M =
1

4


g2v2 0 −gg′v2

0 g2v̂2 −gg′v̂2

−gg′v2 −gg′v̂2 g′2(v2 + v̂2)

. (3.8)
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This mass matrix can be diagonalized by means of an orthogonal transformation R

which connects the weak eigenstates: (W 3, Ŵ 3, B) to the physical mass eigenstates:

(Z, Ẑ, γ); 
W 3

Ŵ 3

B

 = R


Z

Ẑ

γ

. (3.9)

We have obtained the eigenvalues and eigenvectors of the matrix in Eq. 3.8. The

eigenvalues correspond to the masses of the physical states. One eigenstate (γ) has

zero eigenvalue which is identified with the SM photon and the masses of other eigen-

states are given by,

M2
Z =

1

4
v2g2

g2 + 2g′2

g2 + g′2

[
1− g′4

(g2 + g′2)2
ϵ

]
,

M2
Ẑ

=
1

4
v̂2
(
g2 + g′2

) [
1 +

g′4

(g2 + g′2)2
ϵ

]
, (3.10)

where, ϵ = v2/v̂2. Since we assume that v̂ >> v, the O(ϵ2) terms in Eq. 3.10 can be

neglected. The mixing matrix R in the neutral gauge boson sector can be analytically

expressed in terms of two mixing angle: θW and θ̂W . The angles are defined in the

following:

cos2θW =

(
M2

W

M2
Z

)
ϵ=0

=
g2 + g′2

g2 + 2g′2
, cos2θ̂W =

(
M2

Ŵ

M2
Ẑ

)
ϵ=0

=
g2

g2 + g′2
. (3.11)

The analytic expression for the mixing matrix upto O(ϵ) is given by,

R =


−cosθW −cosθ̂W sin2θ̂W ϵ sinθW

sinθW sinθ̂W

[
1 + cos2θ̂W

cos2θW
ϵ
]

−cosθ̂W

[
1− sin4θ̂W ϵ

]
sinθW

sinθW cosθ̂W

[
1− sin2θ̂W

cosθW
ϵ
]

sinθ̂W

[
1 + sin2θ̂W cos2θ̂W ϵ

]
cosθW cosθ̂W


(3.12)

It is important to note that in the limit ϵ = 0, one recovers the SM gauge boson

couplings. The couplings of our theory are related to the electric charge (e) by,

g =
e

sinθW
, g′ =

e

cosθW cosθ̂W
, which implies,

1

e2
=

2

g2
+

1

g′2
. (3.13)
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Note that there are only two independent gauge couplings in the theory which we

express in terms of e and cosθW and therefore θ̂W is not an independent angle, but is

related to θW as sinθ̂W = tanθW .

3.2.3 Fermion mass and mixing

Charged fermion sector:

The charged fermion mass Lagrangian includes Yukawa terms for the SM fermions and

its mirror partners. Mass terms between the singlet SM fermions and mirror fermions

are forbidden by the Z2 symmetry. However, the Yukawa interactions between the

singlet SM fermions and mirror fermions with the singlet scalar χ are allowed. The

Lagrangian invariant under our gauge symmetry as well as the Z2 symmetry for the

down type quark and its mirror partner is given by,

L ⊃ yd

(
Q̄0

LΦd
0
R +

¯̂
Q0

RΦ̂d̂
0
L

)
+ hd χd̄Rd̂L + h.c.

⊃
(
d̄0L

¯̂
d0L

) ydv√
2

0

M∗
dd̂

y∗d v̂√
2


d0R

d̂0R

 + h.c., (3.14)

where, yd and hd are the Yukawa couplings for the SM d-quark and Mdd̂ = hdvχ.

It is important to mention that hd, in general, is a 3 × 3 matrix for 3 families and

gives rise to flavor mixing. Flavor mixing in the leptonic sector results into lepton

flavor violating (LFV) processes like µ → eγ, τ → µγ, µ → eee e.t.c. which are

highly constrained from BaBar [24] abd Belle [25] experiments. For example, in the

present model, dominant contribution to the flavor violating µ or τ decay arises from

the diagram with singlet scalar (χ) and mirror lepton propagating in the loop. LFV

processes in the context of models with TeV scale mirror fermions have already been

studied in Ref. [26].

To ensure LR symmetry, we have used the same Yukawa coupling for the ordi-

nary and the mirror sector. Notice that the Yukawa terms involving χ introduce

mixing between SM and mirror fermions. The charged fermion mass matrix can be
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diagonalized via bi-unitary transformation by introducing two mixing angles. The

charged fermion mass (physical) eigenstates are related to the gauge eigenstates by

the following relation:f 0

f̂ 0


L,R

=

 cosθf sinθf

−sinθf cosθf


L,R

f

f̂


L,R

(3.15)

where, fL,R can be identified with the L and R-handed component of the SM fermions

and f̂L,R corresponds to the heavy mirror fermions. The masses and mixing angles

are given by:

mf =
yfv√
2

, mf̂ =

√
y2f v̂

2 + 2M2
ff̂

2
;

tan2θfR =
2
√
2yfMff̂ v̂

y2f (v
2 − v̂2) + 2M2

ff̂

, tan2θfL =
2
√
2yfMff̂v

y2f (v
2 − v̂2)− 2M2

ff̂

. (3.16)

Neutrino Sector:

The SM and singlet neutrinos (both in the ordinary and the mirror sector) are even

under the Z2 symmetry. Therefore, the mass terms between SU(2)L and SU(2)R

singlet neutrinos are allowed. The Lagrangian allowed by our gauge symmetry and

respecting the discrete Z2 symmetry is given by

L ⊃ fν

(
l̄0LΦν

0
R +

¯̂
l0RΦ̂ν̂

0
L

)
+Mν0T

R C−1ν0
R + hνχν̄

0
Rν̂

0
L +Mν̂0T

L C−1ν̂0
L + h.c.

where fν is the neutrino Yukawa coupling, and M is the singlet neutrino mass of order

v̂. The neutrino mass matrix with both Dirac mass (m = fνv/
√
2, m′ = fν v̂/

√
2 and

Mνν̂ = hνvχ) and Majorana mass (M) terms in (ν0
L, ν

0
R, ν̂

0
R, ν̂

0
L) basis is given by,

0 m 0 0

m M 0 Mνν̂

0 0 0 m′

0 Mνν̂ m′ M


. (3.17)
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f f ′ AW
ff ′ AŴ

ff ′

d u cos2θL sin2θR

d û cosθLsinθL -cosθRsinθR

d̂ u cosθLsinθL -cosθRsinθR

d̂ û sin2θL cos2θR

Table 3.1: Analytical expressions for AW
ff ′ and AŴ

ff ′ . Note that we have assumed Vud = 1.

We have also assumed fermion mixing angles (θL and θR) are same for up and down flavor.

Assuming Mνν̂ ∼ M , the order of magnitude for the eigenvalues of the neutrino mass

matrix are given

−m2/M, m′/
√
2,−m′/

√
2, 2M. (3.18)

Thus to generate a light neutrino mass ≃ 10−11 GeV with a Yukawa coupling strength

of fν ∼ 10−4(6) (which is somewhat similar to the Yukawa coupling of the electron),

we need v̂ ∼ 107(3) GeV. This v̂ ∼ 107(3) scale and Mff̂ (see Eq. 3.16) determines the

masses of the mirror fermions. For the first family, the mirror fermion masses then

come out to be in the few hundred GeV to TeV range. Note that to fit the neutrino

mass and mixing angles to experimental data would require a more detailed analysis

of the neutrino sector which we leave for future studies. Another realization with a

mirror like symmetry to generate neutrino masses was considered in Ref [18].

3.3 Phenomenology

In this section, we discuss the collider phenomenology of the LRMM. Before going into

the details of the collider signatures of LRMM, we first need to study the properties

of mirror fermions and bosons. From the point of view of collider phenomenology,

we are interested in the interactions between SM particles and mirror particles which

give the production and decay properties of the mirror particles. The Lagrangian for
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the charge currents with W± and Ŵ± boson contributions are given by,

LCC = − g

2
√
2
f̄γµ

[
AW

ff ′(1− γ5)W−
µ + AŴ

ff ′(1 + γ5)Ŵ−
µ

]
f ′, (3.19)

where the coefficients AW
ff ′ and AŴ

ff ′ depend on the charged fermion mixing angles:

θL and θR. The analytical expressions for these coefficients are presented in Table 3.11

for up and down flavored SM and mirror fermions. The neutral current interactions

of fermions with neutral gauge bosons (γ, Z and Ẑ-bosons) are described by the

following Lagrangian.

LNC = − eQf f̄γ
µAµf

− 1

6

g

cos3θW
f̄γµ

[
AZ

ff ′
1− γ5

2
+BZ

ff ′
1 + γ5

2

]
Zµf

′

− 1

6

g

cos3θW
√
cos2θW

f̄γµ

[
AẐ

ff ′
1− γ5

2
+BẐ

ff ′
1 + γ5

2

]
Ẑµf

′, (3.20)

where, e is electron charge and Qf is the charge of fermion f . For up and down

flavored SM and mirror fermions, analytical expressions upto O(ϵ) for the coefficients

AZ
ff ′ , BZ

ff ′ are presented in Table 3.2. The interactions of fermions with the SM Higgs

and mirror Higgs are described in Eq. 3.21.

LS =
yf√
2
f̄

[
AH

ff ′
1− γ5

2
+BH

ff ′
1 + γ5

2

]
Hf ′

yf√
2
f̄

[
AĤ

ff ′
1− γ5

2
+BĤ

ff ′
1 + γ5

2

]
Ĥf ′, (3.21)

where, yf is the Yukawa coupling of fermion f . The expressions for the coefficients

AH
ff ′ , BH

ff ′ , AĤ
ff ′ and BĤ

ff ′ can be found in Table 3.3. It is important to note that in

the limit ϵ = 0 and cosθL,R = 1, the SM fermions decouple from the mirror fermions

and we recover the SM couplings.

The decays of the TeV scale mirror fermions into Ŵ , Ẑ or Ĥ are kinematically

forbidden since the mass of these mirror bosons are proportional to v̂ ∼ 107 GeV.

1Fermion mixing angles (θL and θR) depend on the Yukawa coupling of the corresponding fermion.

Therefore, the mixing angles are different for up and down flavor. However, we have used the same

symbol for the mixing angles of up and down quarks.
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f f ′ AZ
ff ′ BZ

ff ′

d d 3cos2θLcos
2θW − 2cos2θW sin2θW −2cos2θW sin2θW − 3sin2θRsin

2θW
√
cos2θW ϵ

−(1− 3sin2θL)sin
2θW ϵ +(2− 3sin2θR)sin

3θW ϵ

d d̂ 3cos2θW sinθLcosθL − 3sinθLsin
3θW cosθLϵ 3sinθRsin

2θW cosθR
√
cos2θW ϵ

+3sinθRsin
3θW cosθRϵ

d̂ d̂ 3cos2θW sin2θL − 2cos2θW sin2θW −3cos2θRsin
2θW

√
cos2θW ϵ

+(2− 3sin2θL)sin
3θW ϵ −(1− 3sin2θR)sin

3θW ϵ

u u −3cos2θLcos
2θW + 4cos2θW sin2θW +4cos2θW sin2θW + 3sin2θRsin

2θW
√
cos2θW ϵ

−(1 + 3sin2θL)sin
3θW ϵ −(4− 3sin2θR)sin

3θW ϵ

u û −3cos2θW sinθLcosθL + 3sinθLsin
3θW cosθLϵ −3sinθRsin

2θW cosθR
√
cos2θW ϵ

−3sinθRsin
3θW cosθRϵ

û û −3cos2θW sin2θL + 4cos2θW sin2θW 4cos2θW sin2θW + 3cos2θRsin
2θW

√
cos2θW ϵ

−(4− 3sin2θL)sin
3θW ϵ −(1 + 3sin2θR)sin

3θW ϵ

Table 3.2: Analytical expressions for AZ
ff ′ and BZ

ff ′ .

Because of the mixing of the mirror fermions with the ordinary fermions, the mirror

fermions can decay into a SM fermion, and a Z, W or a Higgs boson. The expressions

for the partial decay widths are:

Γ(f̂ → fZ) =
g2

36cos6θw

(
AZ

ff ′

)2
+
(
BZ

ff ′

)2
64π

M3
f̂

M2
Z

(
1− M2

Z

M2
f̂

)2(
1 + 2

M2
Z

M2
f̂

)
,

Γ(f̂ → f ′W ) =
g2

8

(
AW

ff ′

)2
+
(
BW

ff ′

)2
16π

M3
f̂

M2
W

(
1− M2

W

M2
f̂

)2(
1 + 2

M2
W

M2
f̂

)
,

Γ(f̂ → fH) =
y2f
2

(
AH

ff ′

)2
+
(
BH

ff ′

)2
64π

Mf̂

(
1− M2

H

M2
f̂

)2

, (3.22)

where, MZ , MW , MH and Mf̂ are the masses of Z, W , Higgs and mirror fermion

respectively. Apart from the known SM parameters and mirror fermion masses, the

decay widths of mirror fermions depend on ϵ, θL and θR. For v̂ ∼ 107 GeV, the value

of ϵ is about 10−10. Therefore, the terms proportional to ϵ in the decay widths can be
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f f ′ AH
ff ′ BH

ff ′ AĤ
ff ′ BĤ

ff ′

f f cosθLcosθR cosθLcosθR sinθLsinθR sinθLsinθR

f f̂ sinθLcosθR cosθLsinθR -cosθLsinθR -sinθLcosθR

f̂ f̂ sinθLsinθR sinθLsinθR cosθLcosθR cosθLcosθR

Table 3.3: Analytical expressions for AH
ff ′ , BH

ff ′ , AĤ
ff ′ and BĤ

ff ′ .

safely neglected. The mirror fermions decay widths depend primarily on the fermion

mixing angles. According to Eq. 3.16, the fermion mixing angles are determined

in terms of two parameters, namely, v̂ and Mff̂ . Assuming the up quark Yukawa

coupling, yu = 1.3 × 10−5 and the SM VEV, v = 250 GeV, in Fig. 5.2, we show the

mixing angles, sinθL (left panel) and sinθR (right panel), by color gradient, in the v̂-

Mff̂ plane. Eq. 3.16, shows that tan2θL is suppressed by the SM quark mass (∼ yfv)

in the numerator and mirror quark mass (∼
√

y2f v̂
2 + 2M2

ff̂
) in the denominator.

Therefore, for a MeV scale SM quark and TeV scale mirror partner, the value of

sinθL is about 10−6 which can be seen in Fig. 5.2 (left panel). Whereas, Fig. 5.2

(right panel) shows that, sinθR can be large depending on the values of v̂ and Mff̂ .

The neutral (see Eq. 3.20) and charge (see Eq. 3.19) current interactions of mirror

quarks with SM quarks and Z/W bosons are suppressed by sinθL. Moreover, the

interactions of mirror quarks with the SM quarks and Higgs boson are suppressed by

the Yukawa couplings. Therefore, before going into the details of collider analysis,

it is important to ensure that light mirror quarks decay inside the detectors of the

LHC experiment. In Fig. 3.2, we plot the total decay width of up-type mirror quark

as a function of sinθR for three different values of the mirror quark mass, viz., Mû =

300, 500 and 1000 GeV. We have considered the lowest possible value of sinθL = 10−6

in Fig. 3.2. According to Fig. 3.2, the total decay width of up-type mirror quark is

always greater than 10−12 GeV, Γtotal > 10−12 GeV, which corresponds to a mean
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Figure 3.1: Fermion mixing angles, sinθL (left panel) and sinθR (right panel), for the up

quark are presented by color gradient on the LRMM parameter space defined by v̂ (along

x-axis) and Mff̂ (along y-axis). The up quark Yukawa coupling, yu = 1.3× 10−5, and the

SM VEV, v = 250 GeV are assumed in these plots.
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distance of cτ < 10−3 cm (without including Lorentz boost) traversed by a mirror

quark inside a detector before its decay. These numbers assure us that the mirror

quarks will always decay inside the detector for a wide range of model parameters.

In Fig. 3.3, we plot the branching ratios for the up-type mirror quark into dW ,

uZ and uH channel as a function of sinθR. We have assumed two different values of

sinθL = 10−5 (left panel) and 10−6 (right panel). We have varied the mirror quark

mass over 300 GeV to 1 TeV which gives rise to the bands in Fig. 3.3. Fig. 3.3 (left

panel) shows that for sinθL = 10−5, the decay of û into SM vector bosons dominates

over the decay into Higgs boson. Whereas, for sinθL = 10−6 (right panel), the decay

into vector bosons dominates only in the low sinθR region (sinθR < 0.08).

3.3.1 Signature of mirror fermions at the LHC

In this section, we will first discuss the production of TeV scale mirror quarks, namely

û and d̂ quarks, at the LHC. As a consequence of the Z2 symmetry, the couplings

between a mirror quark and the SM particles are forbidden. Therefore, in presence

of this Z2 symmetry, the single production of the mirror fermions is not possible at

the collider. As discussed in the previous section, spontaneous breaking of the Z2

symmetry introduces mixing between the mirror and SM quarks and thus, gives rise

to interactions between mirror and SM quarks with a Z, W or Higgs boson. However,

the single production rates of TeV scale mirror quarks via the Z2 symmetry violating

couplings are suppressed by the quark mixing angles. Therefore, in this work, we

have considered the pair production of mirror quarks at the LHC.

As the mirror quarks carry SU(3)C quantum numbers, they couple directly to

the gluons. The pair production of TeV scale mirror quarks, namely û¯̂u and d̂
¯̂
d

production, in a proton-proton collision therefore is analogous to that of the pair

production of SM heavy quarks, the analytic expressions for which can be found in

Ref. [19]. Both gluon-gluon (gg) and quark-antiquark (qq̄) initial states contribute
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Figure 3.3: Illustrating the up-type mirror quark branching ratios in dW , uZ and uH

channel as a function of sinθR for two different values of sinθL = 10−5 (left panel) and 10−6

(right panel). We have varied û mass over a range between 300 GeV to 1 TeV which gives

rise to the bands instead of lines.
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Figure 3.4: Pair production cross-sections of mirror quarks as a function of their masses

in proton proton collisions at center-of-mass energies 8 TeV and 14 TeV respectively.
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to the pair production (q̂ ¯̂q) of mirror quarks (see Fig. 3.5). For numerical evaluation

of the cross-sections, we have used a tree-level Monte-Carlo program incorporating

CTEQ6L [20] parton distribution functions. Both the renormalization and the factor-

ization scales have been set equal to the subprocess center-of-mass energy
√
ŝ. The

ensuing leading-order (LO) q̂ ¯̂q production cross-sections are presented in Fig. 3.4 as

a function of mirror quark mass (Mq̂) for two different values of the proton-proton

center-of-mass energy viz.,
√
spp = 8 TeV and 14 TeV. While the NLO and NLL

corrections can be well estimated by a proper rescaling of the corresponding results

for tt̄ production, we deliberately resist from doing so. With the K-factor expected

to be large [21], our results would thus be a conservative one. The pair production

cross section is found to be a few hundred femtobarns (fb) for mirror quark mass of

close to a TeV. As discussed before, these mirror quarks once produced will decay

within the detector. We now analyze the possible signatures of mirror quarks at the

LHC following its decay properties. Mirror quarks can decay into a Z-boson, a W -

boson or Higgs boson in association with a SM quark: q̂ → qZ, q′W and qH. Thus

the pair production of mirror quarks, at the LHC, gives rise to a pair of heavy SM

bosons (Z-boson, W -boson or Higgs boson) in association with multiple jets in the

final state. In this work, we have focused on the signal with the vector bosons in

the final states. We choose the LRMM parameter space where the decay of mirror

quarks into vector bosons dominates over its decay into Higgs boson. Fig. 3.3 shows

that for negligible q̂ → qH branching ratio, the mirror quarks decay into qW and

qZ pairs with about 61% and 39% branching probability respectively. In the rest of

our analysis, we have used the above mentioned values for the decay probability to

compute the signal cross-sections. Pair production and the decay of mirror quarks in

to qW and qZ channels gives rise to the following signatures:

• 2 jets+2 Z final state arises when both mirror quarks decay into qZ pairs.

pp → q̂ ¯̂q → (qZ)(q̄Z)
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Figure 3.5: Feynman diagrams for the q̂ ¯̂q production and their subsequent decay to qZ.

The production and decay of mirror quarks in this channel are schematically

shown in Fig. 3.5.

• 2 jets+Z+W final state results when one mirror quark decays into qZ channel

and other one decays into qW channel.

pp → q̂ ¯̂q → (qZ)(q̄′W )

• If both mirror quarks decay into qW channel then pair production of mirror

quarks gives rise to 2 jets+2 W final state.

We consider the reconstruction of mirror quark mass from the invariant mass distri-

bution of qZ pairs which is possible for the first two signal topologies only. Therefore,

we have only considered 2 jets+2 Z and 2 jets+Z+W final states for further analysis.

Note that in the leptonic channel the Z reconstruction would be very clean while

for the 2 jets+Z+W , even the W can be reconstructed well as there is only a single

neutrino in the final state. The W ’s can be reconstructed in the all hadronic mode

but with significant challenge in efficiencies in a hadronic machine such as the LHC.

So we have chosen to neglect the 2 jets+2 W final state in our analysis.
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A 2 jets+2 Z-bosons signature

In this section, we have investigated 2 jets + 2 Z final state as a signature of

mirror quarks in the framework of LRMM. We have used a parton level Monte-Carlo

simulation to evaluate the cross-sections and different kinematic distributions for the

signal. We have assumed that Z-bosons decaying into leptons (electrons and muons)

can be identified at the LHC with good efficiency. Therefore, in our parton level

analysis, we consider Z-boson as a standard object2 without simulating its decay to

leptons. We must however point out that the total number of signal events are crucial

in identifying the Z boson in the leptonic channel because of the small branching

probability of the Z decaying to charged leptons.

The dominant SM background to the signal comes from the pair production of

Z-bosons in association with two jets. Before going into the details of signal and

background, it is important to list a set of basic requirements for jets to be visible at

the detector. To parametrize detector acceptance and enhance signal to background

ratio, we have imposed kinematic cuts (Acc. Cuts), listed in Table 5.4, on the jets

(denoted by j1 and j2) after ordering the jets according to their transverse momentum

(pT ) hardness (p
j1
T > pj2T ). It should also be realized that any detector has only a finite

resolution. For a realistic detector, this applies to both energy/transverse momentum

measurements as well as determination of the angle of motion. For our purpose, the

latter can be safely neglected3 and we simulate the former by smearing the jet energy

with Gaussian functions defined by an energy-dependent width, σE:

σE

E
=

0.80√
E

⊕ 0.05, (3.23)

where, ⊕ denotes a sum in quadrature.

2All the cross-sections (signal as well as background) presented in the next part of this article are

multiplied by the leptonic branching fraction (6.7% in electron and muon channel) of the Z-boson.
3The angular resolution is, generically, far superior to the energy/momentum resolutions and too

fine to be of any consequence at the level of sophistication of this analysis.
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Kinematic Variable Minimum value Maximum value

pj1,j2T 100 GeV -

ηj1,j2 -2.5 2.5

∆R(j1, j2) 0.7 -

Table 3.4: Acceptance cuts on the kinematical variables. pj1,j2T is the transverse momentum

and ηj1,j2 is the rapidity of the jets. ∆R(j1, j2) =
√
(∆η)2 + (∆ϕ)2 is the distance among

the jets in the η − ϕ plane, with ϕ being the azimuthal angle.

The signal jets arise from the decay of a significantly heavy mirror quark to a

SM Z and jet. Due to the large phase space available for the decay of the mirror

quarks, the resulting jets will be predominantly hard. Therefore, the large jet pT cuts,

listed in Table 5.4, are mainly aimed to reduce the SM background contributions.

With the set of acceptance cuts (see Table 5.4) and detector resolution defined in the

previous paragraph, we compute the signal and background cross-sections at the LHC

operating with
√
s = 8 TeV and 14 TeV respectively and display them in Table 3.5.

Table 3.5 shows that signal cross-sections are larger than the background for lower

values of mirror quark masses. However, if we increase Mq̂, signal cross-sections fall

sharply as the pair production cross section for the mirror quarks fall with increasing

mass.

Since the mirror quarks decay into a jet and Z-boson, the signal is characterized

by a peak at Mq̂ in the invariant mass distributions of jet-Z pairs. The signal consists

of two jets and two Z-bosons. In absence of any knowledge about the right jet-Z pair

arising from a particular q̂ decay, we have ordered the jets and Z’s according to their

pT hardness (pj1T > pj2T and pZ1
T > pZ2

T ) and constructed invariant mass distributions

in the jet-Z pairs as follows: M11 = Invariant mass of j1 and Z1; M12 = Invariant

mass of j1 and Z2; M21 = Invariant mass of j2 and Z1 and M22 = Invariant mass

of j2 and Z2. The four invariant mass distributions (for both signal and the SM
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Figure 3.6: Jet-Z invariant mass distributions after ordering the jets (pj1T > pj2T ) and Z’s

(pZ1
T > pZ2

T ) according to their pT hardness for the LHC with center-of-mass energy 8 TeV

(top panel) and 14 TeV (bottom panel).
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√
s= 8 TeV

√
s= 14 TeV

Cross-sections in fb Cross-sections in fb

Signal Background Signal Background

Mq̂ [GeV] A.C. S.C. A.C. S.C. Mq̂ [GeV] A.C. S.C. A.C. S.C.

300 1.65 1.07 0.08 400 2.93 1.5 0.22

350 0.92 0.52 0.35 0.07 500 1.04 0.48 1.36 0.14

400 0.5 0.26 0.05 600 0.40 0.18 0.09

Table 3.5: Signal and SM background cross-section after the acceptance cuts (A.C.) and

selection cuts (S.C.) for two different values of proton-proton center-of-mass energies. Signal

cross-sections (σSignal) are presented for three different values of mirror quark masses (Mq̂).

background) are presented in Fig. 3.6 for the LHC with center-of-mass energy 8 TeV

(left panel) and 14 TeV (right panel). In Fig. 3.6, we have presented the signal

invariant mass distributions for two different values of Mq̂. We have included the

leptonic branching ratio (6.7% into electron and muon channel) of Z-boson into the

cross-section in the Fig. 3.6. Fig. 3.6 shows that the signal peaks are clearly visible

over the SM background. Moreover, it is important to notice that signal peaks are

more prominent inM12 andM21 distributions compared toM11 andM22 distributions.

Due to the momentum conservation in the transverse direction at the LHC, both

the mirror quarks are produced with equal and opposite transverse momentum4.

Therefore, if the decay of a particular mirror quark gives rise to the hardest jet then

it is more likely that the Z-boson arising in the same decay will be the softest one.

M12(M21) is the invariant mass of hardest-softest (softest-hardest) jet-Z pairs which

come from the decay of a particular q̂ in most of the events. As a result, we observe

more prominent peaks in the signal M12(M21) distribution compared to the M11(M22)

4We do not consider initial/final state radiation (ISR/FSR) in our analysis. In presence of

ISR/FSR, the transverse momentum of the mirror quarks might not be exactly equal and opposite.
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distribution. In our analysis, we have utilized this feature of the signal for the further

enhancement of signal to background ratio. Our final event selection criteria (S.C.)

is summarized in the following:

• To ensure the observability of a peak for a given luminosity in the signal M12

distribution, we have imposed the following criteria: (i) There are atleast 5

signal events in the peak bin. (ii) The number of signal events in the peak bin

is greater than the 3σ fluctuation of SM background events in the same bin.

• If the signal peak in M12 distribution is detectable then we selected events in

the bins corresponding to the peak in the M12 distribution and its four (two

on the left hand side and two on the right hand side) adjacent bins as signal

events. We have used a bin size of 20 GeV.

• The total number of SM background events is given by the sum of events of the

above mentioned five bins in the background M12 distribution.

After imposing the final event selection criteria, the signal and background cross-

sections for different Mq̂ and
√
s are presented in Table 3.5. Table 3.5 shows that

selection cuts significantly suppress the SM background cross-section, whereas, signal

cross-sections are reduced only by a factor ∼ 2.

After discussing the characteristics features of the signal and the SM background,

we are now equipped enough to discuss the discovery reach of this scenario at the LHC

with center-of-mass energy 8 TeV and 14 TeV. We define the signal to be observable

over the background with confidence level (CL) X for a integrated luminosity L if,

X-CL upper limit on the background is smaller than the X-CL lower limit on the

signal plus background [22]:

L(σS + σB)−N
√
L(σS + σB) > LσB +N

√
LσB, (3.24)
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Figure 3.7: Required luminosity for 5σ discovery is plotted as a function of Mq̂ for the

LHC with center-of-mass energy 8 TeV and 14 TeV.

or, equivalently,

σS >
N2

L

[
1 + 2

√
LσB

N

]
, (3.25)

where, σS and σB are the signal and background cross-sections, respectively and

N = 2.5 for X = 99.4% [23] CL discovery. The signal and background cross-sections

in Table 3.5 shows that at the LHC with center-of-mass energy 8 TeV (14 TeV),

350 GeV (550 GeV) mirror quark mass can be probed with integrated luminosity 25

fb−1 (72 fb−1). In Fig. 5.9, we have presented the required luminosity for 99.4% CL

discovery as a function of Mq̂ for the LHC with center-of-mass energy 8 TeV and 14

TeV.
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Kinematic Variable Minimum value Maximum value

plT 25 GeV -

ηl -2.5 2.5

∆R(l, j1,2) 0.4 -

Table 3.6: Acceptance cuts on the kinematical variables. plT is the transverse momentum

and ηl is the rapidity of the lepton. ∆R(l, j1,2) is the distance among the jet-lepton pairs

in the η − ϕ plane, with ϕ being the azimuthal angle.

B Two jets+Z-boson+W -boson signature

Another interesting final state results from the pair production of mirror quarks which

then decay to give 2 jets+Z+W signal. This happens when one mirror quark decays

into qZ while the other one decays into qW . As before we have considered the

Z boson as a standard object without simulating its decay to leptons (electrons and

muons). Even the W boson can be reconstructed to a certain efficiency in the leptonic

channel, where the neutrino pz is determined by using the W mass constraints. This

is possible because of a single neutrino in the final state. However, we have chosen

to ignore the W as a standard object since the qZ resonance will be much more

well defined and with less ambiguity. In our parton level Monte-Carlo analysis, we

have simulated the decay of W bosons into leptons (electron and muons only) and

neutrinos. Electrons and muons show charge tracks in the tracker and are detected at

the electromagnetic calorimeter and muon detector respectively. However, neutrinos

remain invisible in the detector and give rise to a imbalance in the visible transverse

momentum vector which is known as missing transverse momentum (pT ). Therefore,

the resulting signature in this case will be 2 jets+1 charged lepton + Z + pT .

The dominant SM background to the signal arises from the production of ZW pairs

in association with two jets. Both signal and background jets energy are smeared by

a Gaussian function defined in Eq. 3.23. To ensure the visibility of the jets at the
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detector, acceptance cuts listed in Table 5.4 are applied on the jets. The acceptance

√
s= 8 TeV

√
s= 14 TeV

Cross-sections in fb Cross-sections in fb

Signal Background Signal Background

Mq̂ A.C. Cut Cut A.C. Cut Cut Mq̂ A.C. Cut Cut A.C. Cut Cut

GeV I II I II GeV I II I II

300 14.4 7.28 3.13 0.74 400 26.3 18.1 6.46 2.13

350 8.01 4.85 1.92 6.69 2.81 0.63 500 9.36 7.33 2.39 26.4 11.9 1.39

400 4.35 2.98 1.11 0.51 600 3.6 3.07 0.95 0.90

Table 3.7: Signal and SM background cross-section after the acceptance cuts (A.C.), Cut

I and Cut II for two different values of proton-proton center-of-mass energies. Signal cross-

sections (σSignal) are presented for three different values of mirror quark masses (Mq̂).

cuts for the lepton are listed in Table 3.6. We do not apply any cuts on the missing

transverse momentum. With these set of cuts (A.C.) on jets (see Table 5.4) and

lepton (see Table 3.6), we have computed the signal and background cross-sections

for the LHC with 8 TeV and 14 TeV center-of-mass energy and presented in Table 3.7.

Table 3.7 shows that for relatively large mirror quark masses, signal cross-sections are

much smaller than the SM background cross-section. For example, at the LHC with

14 TeV center-of-mass energy, the signal to background ratio is 0.14 after acceptance

cuts for mq̂ = 600 GeV.

The signal contains a lepton and pT arises from the decay of a W -boson. The

SM background lepton and pT also results from the W -boson decay. However, the

signal W -boson will be boosted in most of the events since it arises from the decay of

a TeV scale mirror quark. We have tried to exploit this feature of the signal for the

further enhancement of signal to background ratio. We have examined the following

kinematic distributions:
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• In Fig. 3.8, we have presented normalized lepton pT (left panel) and missing

pT (right panel) distributions for the signal (mq̂ = 400 and 600 GeV) and the

SM background at the LHC with
√
s = 14 TeV. The boost of the signal W -

boson results into a long tail in the signal lepton and missing pT distributions.

Fig. 3.8 shows that harder cuts on the lepton and/or missing pT will suppress the

SM background significantly. However, these cuts will also reduce signal cross-

sections considerably. For example, a kinematic requirement of pT > 75 GeV

on the charged lepton at 14 TeV LHC will reduce 45% of the SM background

and 25% of the signal for mq̂ = 600 GeV. As a result, we do not use any further

cuts on lepton and/or missing pT .

• Since the signal W -boson is boosted, we expect that the signal lepton and

neutrino will be collimated. Therefore, it is viable to study the azimuthal angle

(∆ϕ) between lepton transverse momentum vector (p⃗lT ) and missing transverse

momentum vector (p⃗T ). In Fig. 7.10, we have presented normalized ∆ϕ(p⃗lT , p⃗T )

distributions for the signal (mq̂ = 400 and 600 GeV) and the SM background at

the LHC with
√
s = 14 TeV. Since the backgroundW -bosons are predominantly

produced with small transverse momentum, background ∆ϕ(p⃗lT , p⃗T ) distribution

is almost flat (see Fig. 7.10). Whereas, the signal ∆ϕ(p⃗lT , p⃗T ) distributions peaks

in the small ∆ϕ(p⃗lT , p⃗T ) region. As a result, we have imposed an upper bound

of 1 on the azimuthal angle between lepton pT vector and missing pT vector:

∆ϕ(p⃗lT , p⃗T ) < 1. We collectively call acceptance cuts and ∆ϕ(p⃗lT , p⃗T ) < 1 cut

as Cut I. The signal and background cross-sections after Cut I are presented

in Table 3.7. For 14 TeV center-of-mass energy, ∆ϕ(p⃗lT , p⃗T ) < 1 cut reduces

55% of the SM background and 14% of the signal for mq̂ = 600 GeV and thus,

enhances the signal to background ratio by a factor about 2.

• After q̂ ¯̂q production, one mirror quark decays into qZ pair. Therefore, signal jet-
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Figure 3.8: Normalized lepton pT (top panel) and missing pT (bottom panel) distributions

for the signal (mq̂ = 400 and 600 GeV) and the SM background after the acceptance cuts

at the LHC with
√
s = 14 TeV.
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Figure 3.10: Jet-Z invariant mass distributions after Cut I for the signal (mq̂ = 400 and 600

GeV) and the SM background at the LHC with 14 TeV center-of-mass energy.

Z invariant mass distribution is characterized by a peak at mq̂. After ordering

the jets according to their pT hardness (pj1T > pj2T ), we have constructed two

invariant mass: (i) M1: invariant mass of j1-Z pair and (ii) M2: invariant

mass of j2-Z pair. The signal and background invariant mass distributions

are presented in Fig. 3.10 for the LHC with
√
s = 14 TeV. For the further

enhancement of signal to background ratio, we have imposed cuts on M2 in a

way similar to that discussed in the previous section. This cut and Cut I are

collectively called as Cut II in Table 3.7. Table 3.7 shows that for mq̂ = 600

GeV, j2-Z invariant mass cut suppress the SM background by a factor about

13, whereas, the signal is reduced by a factor of 3 only.

To estimate the required integrated luminosity for the discovery of the mirror

quarks in two jets+one charged lepton + Z + pT channel, we have used Eq. 3.25.
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Figure 3.11: Required luminosity for 5σ discovery in two-jets+one lepton + one Z-boson

+ pT/ channel is plotted as a function of Mq̂ for the LHC with center-of-mass energy 8 TeV

and 14 TeV.

The signal and background cross-sections after Cut II in Table 3.7 shows that at

the LHC with center-of-mass energy 8 TeV (14 TeV), 400 GeV (600 GeV) mirror

quark mass can be probed with integrated luminosity 20 fb−1 (37 fb−1). In Fig. 3.11,

we have presented the required luminosity for 99.4% CL discovery in two jets+one

charged lepton + Z + pT channel as a function of Mq̂ for the LHC with center-of-mass

energy 8 TeV and 14 TeV. Inspired by this work, ATLAS collaboration has looked for

a heavy quark decaying into a W boson and a light quark and has set a mass limit

of 690 GeV at center of mass energy 8 TeV at 95% CL.
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3.4 Conclusions

In this work, we have a realistic left-right symmetric model with mirror fermions and

mirror Higgs, and the possibility of discovering the low lying mirror fermions at the

LHC. The model is SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)′Y supplemented by a discrete

Z2. For each chiral multiplet of the SM fermions, we have corresponding mirror

fermions of opposite chirality. The symmetry is broken to the usual SM symmetry

by a mirror Higgs doublet. The mixing between the SM fermions and the mirror

fermions is achieved by using a Higgs multiplet which is a singlet under the gauge

symmetry, but odd under the Z2 symmetry. The model has singlet right handed

neutrinos, and the corresponding mirror neutrinos which are even under Z2. These

are used to generate tiny neutrino masses ≃ 10−11 GeV with a primary symmetry

breaking scale of ≃ 107 GeV (which is the VEV of the mirror Higgs doublet). In this

model, only the mirror fermion of the 1st family (ê, û, d̂) are light with well-defined

relative spectrum. All the other mirror fermions are much heavier, and well above the

LHC reach. Since the model is completely left-right symmetric in the fermion sector,

it is naturally anomaly free. Parity conservation, and the nature of the fermion mass

matrices also provides a solution for the strong CP in the model.

The light mirror fermions, û, d̂, with masses around few hundred GeV to about a

TeV, can be pair produced at the LHC via their QCD color interactions. They domi-

nantly decay to a Z boson plus the corresponding ordinary fermion (û → u+ Z, d̂ →

d+ Z), or to a W boson and the corresponding ordinary fermions (û → d+W, d̂ →

u+W ). (The decays (û → u+H, d̂ → d+H) are highly suppressed for most of

the parameter space). Thus the most striking signal of the model is the existence

of of resonances in the jet plus Z channel. Since both the jet and the Z is coming

from the decay of a very heavy particle, both will have very high pT . We have shown

that putting a high pT cut on the jet, and reconstructing the Z in the e+e− or µ+µ−

channels, these resonances û, d̂ can be reconstructed upto a mass of ≃ 350 GeV at the
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8 TeV LHC, and upto a mass of ≃ 550 GeV at the 14 TeV LHC. We are not aware of

any other model which predicts such a resonance. We have also studied, in some de-

tail, the final states arising from the pair productions of these light mirror fermions at

the LHC. These final states are (uZ)(ūZ), (dZ)(d̄Z), (uZ)(d̄W ), (dZ)(ūW ), and the

subsequent decays of W and Z into the leptonic channels. The signals are much more

observable in the (jet jet ZZ) channel than the (jet jet ZW ) channel because of the

missing neutrino in the latter. (The resonance in the signals involving the two W’s

will be difficult to observe). We have studied these final states and the corresponding

backgrounds, and find that the reaches for the light mirror quarks can be≃ 450 GeV

at the 8 TeV LHC with luminosity of 30 fb−1, and upto 750 GeV at the 14 TeV

LHC with 300 fb−1 luminosity.

Our model predicts a definite pattern of spectrum for the light mirror fermions,

ê, û, d̂. Thus with mû < md̂, if a resonance û is observed, we expect a nearby d̂ within

few hundred GeV. This makes the prediction of the model somewhat unique. Also

the ê will have even lower mass, and can be looked for in the proposed future e+e−

collider.

In this work, we have studied the collider phenomenology of TeV scale mirror

fermions in the framework of a particular variant of LRMM in which mirror fermions

dominantly decays into the SM fermion and W/Z-boson. However, our collider anal-

ysis is general enough to be applicable to a class of models with TeV scale fermions

decaying into a SM fermion and W/Z-boson.
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CHAPTER 4

Prospects and discovery potential of Non-universal SUGRA at the LHC

4.1 Introduction

Supersymmetry (SUSY) [1, 2] has been under scanner since last forty years or more.

On-going Large Hadron Collider (LHC) has put strong bounds on the squark and

gluino masses of minimal supersymmetric Standard Model (MSSM); particularly on

minimal supergravity (mSUGRA) or constrained minimal supersymmetric Standard

Model (CMSSM) [3], not seeing any of those supersymmetric particles. Still, SUSY

search in different forms is the most studied subject of particle physics research due

to its unparalleled theoretical appeal and phenomenological implications.

Out of different SUSY-breaking schemes, mSUGRA has been most popular due

to its economy of parameters; the universal gaugino mass (M1/2), the universal scalar

mass (m0), the universal trilinear coupling (A0) all at the GUT scale, tan β, the ratio

of the vacuum expectation values (vev) of the two Higgses and the sign of SUSY-

conserving Higgsino mass parameter µ. However, this framework has been highly

constrained by direct and indirect search experiments [4–7] and non-universality in

scalar [8–19] and gaugino masses [20–22] are getting more and more importance to

keep low-scale SUSY alive.

Recent discovery of Higgs boson with mH ≃ 125 GeV at LHC by the ATLAS and

CMS Collaborations [23] has put a severe constraint on SUSY parameter space. SUSY

Higgs gets significant correction from the top squark (stop) loop, which increases with

increasing stop mixing and/or stop mass scale. Therefore, in order to get a Higgs

boson around 125 GeV, significant stop mixing or a large stop mass scale is required.
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Large stop mixing results into large mass splitting in the stop sector and consequently

gives rise to a lighter stop (t̃1) in the mass spectrum. Hence, Higgs boson mass at

125 GeV results in a SUSY mass spectrum with light third family scalars.

Light third family scalars, but relatively heavy first two families1 favor SUSY

discovery at future LHC runs given gluino (g̃) dominantly decays into top-stop pairs

(g̃ → tt̃1) and subsequently stop decays into top-neutralino or b-chargino where

t → bW± gives rise to multiple b-jets, leptons and large missing energy (ET/). Final

states with multiple b jets and charged leptons, together with large missing energy,

cut down the SM background much more than the usual SUSY signals with multijets

plus large missing energy, and both ATLAS and CMS experiments has achieved b-

tagging efficiency 50% or more and have put bounds on SUSY from the available

data [5].

Another important aspect of SUSY is the dark matter (DM); R-parity conserva-

tion yields a natural candidate namely, the lightest supersymmetric particle (LSP).

DM relic density limits from WMAP [24] and PLANCK [25] can be easily satisfied

in the non-universal gaugino and/or scalar mass scenarios where CMSSM is tightly

constrained. For example, if wino mass is smaller than bino mass at GUT scale

(M2 ≤ M1), we obtain wino dominated LSP yielding correct abundance in a larger

parameter space. Similarly, non-universality in the scalar sector may results in a hig-

gsino like LSP (from non-universality in the Higgs sector) or stau-LSP co annihilation

(from non-universality in the soft SUSY breaking stau mass). We have systemati-

cally studied such non-universal gaugino and/or scalar mass scenarios and proposed

benchmark points for collider studies at LHC with ECM= 14 TeV.

Vast amount of work has already been done in mSUGRA to discover SUSY at the

LHC. However, because of the observed Higgs mass, and the dark matter constraint,

the only region left in mSUGRA and accessible at the LHC is the stop co-annihilation

1Such scenarios have already been considered for studies in different contexts [8–10].
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region (where the lighter top squark t̃1 and the lightest neutralino χ̃0
1 annihilate to

satisfy the dark matter constraint. However, in this parameter space, t̃1 mass is

very close to the χ̃0
1 mass giving rise to very little high pT multijet activity from

its decay [26]. Significant number of works have also been done by increasing the

number of parameters, with non-universal gaugino masses and non-universality in

the scalar masses satisfying all the existing constraints [27]. However, we pin point

that to survive Higgs mass and dark matter constraint in the framework of gravity

mediated supersymmetry breaking, a larger region of parameter space is available

with specific non-universal gaugino and scalar mass patterns with a generic signature

in bottom rich, and bottom quark plus charged lepton rich final states with large

missing energy, which with suitable cuts can be observed over the SM background at

the 14 TeV LHC. We claim that these will be the most favorable final states at the

14 TeV LHC to discover SUSY or to put strongest bounds on them.

The chapter is organized as follows. In Section 2, we discuss the model under

consideration and the selected benchmark points. We also review dark matter con-

straints on SUSY parameter space to motivate our benchmark points. In Section 3,

we discuss the final states in which SUSY signals can be observed over the SM back-

ground, including the details of the collider simulation strategy and the numerical

results at the 14 TeV LHC. We conclude in Section 4.

4.2 Model, Constraints and Benchmark Points

4.2.1 Constraints on SUSY models:

Following measurements play a key role to constrain SUSY parameter space. We

discuss their effect and motivate how that leads eventually to the benchmark points

chosen in this article for SUSY searches at LHC.

• The main constraint on the SUSY parameter space after LHC 7/8 TeV data is
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that the CP even Higgs mass to be within [23]:

123 ≤ mh ≤ 127. (4.1)

• The branching ratio for b −→ sγ [6] which at the 3σ level is

2.13× 10−4 < Br(b → sγ) < 4.97× 10−4. (4.2)

• We also take into account the constraint coming from Bs −→ µ+µ− branching

ratio which by LHCb observation [7] at 95% CL is given as

2× 10−9 < Br(Bs → µ+µ−) < 4.7× 10−9. (4.3)

• Parameters are fine-tuned in a way that it gives a correct cold dark matter relic

abundance according to WMAP data [24], which at 3σ is

0.091 < ΩCDMh2 < 0.128 , (4.4)

where ΩCDM is the dark matter relic density in units of the critical density

and h = 0.71 ± 0.026 is the reduced Hubble constant (namely, in units of

100 km s−1 Mpc−1).

To note here, the PLANCK constraints 0.112 ≤ ΩDMh
2 ≤ 0.128 [25] is more

stringent, and cuts a significant amount of dark matter allowed SUSY parameter

space. We choose our benchmark points satisfying PLANCK on top of WMAP.

In the following subsection, we discuss mainly the dark matter and Higgs mass

constraints on SUSY parameter space as they have been the key to choose our bench-

mark points.

4.2.2 Dark matter and Higgs mass on SUSY: Benchmark Points

One of the main motivations for postulating R-parity conserving SUSY is the presence

of a stable weakly interacting massive particle (WIMP) which can be a good cold dark
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matter. Lightest neutralino χ̃0
1 is most often the lightest supersymmetric particle

(LSP) and a good candidate for cold dark matter. In some regions of the parameter

space, it has the annihilation cross-section to Standard Model (SM) particles yielding

correct relic abundance satisfying WMAP/PLANCK [24,25].

In mSUGRA, χ̃0
1 is bino dominated in a large part of the parameter space. For

a bino DM, WIMP miracle occurs when they annihilate to leptons via t-channel

exchange of sleptons with mass in the 30-80 GeV range [28]. However, slepton masses

that light was already discarded by direct slepton searches at LEP2 [29]. Therefore,

after LEP2, some distinct parts of mSUGRA parameter space that satisfies relic

abundance are as follows:

• The h-resonance region [30] is characterized by 2m
χ̃0
1
∼ mh which occurs

at low m1/2. In this region, χ̃0
1 annihilation cross-section enhances due to the

presence of a s-channel h-resonance.

• A-funnel region [31] is where 2m
χ̃0
1
∼ mA; A is the CP-odd Higgs boson. This

region is characterized by large tanβ ∼ 50.

• Hyperbolic branch/focus point (HB/FP) region [32] is the parameter

space where largem0 region corresponds to small µ and thus Higgsino dominates

χ̃0
1 and annihilates to WW , ZZ and Ah significantly.

• Stau co-annihilation region [33] arises if neutralino-LSP is nearly degenerate

with the stau (m
χ̃0
1
≃ mτ̃1). In mSUGRA, this occurs at low m0 and high M1/2.

• Stop co-annihilation [34] occurs in mSUGRA with some particular values of

A0, where lighter stop (t̃1) becomes nearly degenerate with the LSP.

After LHC data with the discovery of Higgs and exclusion limits on the squark/gluino

masses, many of the above DM regions in mSUGRA are highly constrained. With
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20.3 fb−1 integrated luminosity and ECM= 8 TeV, ATLAS [1] and CMS [36] collabo-

rations have excluded equal squark and gluino mass below 1.7 TeV completely ruling

out h-resonance region whereas, the A-funnel, stau and stop co-annihilation regions

are partly excluded. Observation of Higgs mass at about 125 GeV indicates towards

large m0 (m0 > 0.8 TeV) and large A0 ( |A0| > 1.8m0 for m0 < 5 TeV) [37]. For

m0 > 0.8 TeV, stau co-annihilation is only viable at very large M1/2 values which

makes the SUSY discovery at the collider very challenging. The HB/FP region re-

mains unscathed by the LHC squark/gluino searches as it requires low µ at very large

m0 ∼ 3− 10 TeV for A0 = 0. However, Higgs mass at 125 GeV (requires large |A0|)

push the region to much higher m0 ∼ 10 − 50 TeV values. A small part of stop

co-annihilation is the only region of mSUGRA parameter space alive, having some

possibilities of seeing at 14 TeV LHC.

Non-universality in the gaugino and/or scalar sector on the other hand, can pro-

vide a lot more breathing space. The implications of direct search bound from LHC

on neutralino dark matter have been studied extensively. See for example, [38–40].

In our analysis, we choose four benchmark points (BP) which are motivated from

different LSP annihilation and co-annihilation mechanism and consistent with all

experimental limits.

i) BP1: IfM2 < M1 at GUT scale and EW scale, andM2 < µ at low scale, the LSP χ̃0
1

is wino dominated and then lightest chargino is almost degenerate with LSP. Chargino

co-annihilation crucially controls relic abundance in such a region of parameter space,

apart from larger wino component itself increases annihilation cross-section. A large

part of purely wino DM hence provides under-abundance [41]. However, we scan the

wino dominated parameter space where it is consistent with relic abundance from

WMAP. As an example, we have scanned the parameter space over M1, M2 and A0

for m0 = 2000 GeV, M3 = 500 GeV tanβ = 15 and µ > 0. The allowed values of

M2/M1 as a function of A0 are plotted in Fig. 4.1 for three different values M2 = 700,
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Figure 4.1: A sample parameter space scan for gaugino mass non-universality with

M3 < M2 < M1 in A0 vs M2/M1 plane to satisfy DM abundance. M2= (700, 800,

900) GeV, yields three discrete consistent regions in red, blue and green respectively

with M2/M1 varying along y-axis with A0 varying along x-axis. We choose M3= 500

GeV, m0= 2000 GeV, tan β= 15. BP1 represent a benchmark point of this sort.
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800 and 900 GeV in red, blue and green respectively. When we vary M2 continuously,

they merge into a continuous region. It is important to note in Fig. 4.1 the vertical

high A0 region is dominated by stop co annihilation as the stop becomes lighter

with increasing A0 and a small change in A0 results in a big change in M2/M1 to

keep relic abundance within proper limit. The horizontal part of red, blue and green

region with smaller A0 on the other hand, represent wino dominated dark matter

with nearly degenerate chargino and co-annihilation to yield proper abundance. For

example, with M2 = 700 GeV, |A0| > 4000 GeV is dominated by stop co-annihilation

and |A0| < 4000 GeV characterizes wino DM. Our first benchmark point BP1 is a

representative of this particular non-universal gaugino mass scenario M3 < M2 < M1

with wino dominated DM. The benchmark points are explicitly written in Table 4.2.

While gaugino mass non-universality has been used to obtain BP1, scalar masses are

kept universal.

Also note that gaugino non-universality with M3 < M2 < M1 is obtained within

the framework of SUSY-GUT in SU(5) or SO(10) [20, 21] with dimension five oper-

ator in the extension of the gauge kinetic function fab(Φ
j) where non-singlet chiral

superfields ΦN belongs to the symmetric product of the adjoint representation of the

underlying gauge group as

SU(5) : (24× 24)symm = 1 + 24 + 75 + 200 (4.5)

SO(10) : (45× 45)symm = 1 + 54 + 210 + 770

Gaugino masses become non-universal if these non-singlet Higgses are responsible

for the GUT-breaking. 75 and 200 belonging to SU(5) or 7702 of SO(10) yield a

hierarchy of M3 < M1,M2 shown in Table 1. The specific non-universal ratio(s)

2For breaking through 770, we quote the result, when it breaks through the Pati-Salam gauge

group G422D (SU(4)C × SU(2)L × SU(2)R with even D-parity and assumed to break at the GUT

scale itself.
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Representation M3 : M2 : M1 at MGUT

75 of SU(5) 1:3:(-5)

200 of SU(5) 1:2:10

770 of SO(10): H → SU(4)× SU(2)× SU(2) 1:(2.5):(1.9)

Table 4.1: Non-universal gaugino mass ratios for different non-singlet representations

belonging to SU(5) or SO(10) GUT-group that gives rise to the hierarchy of M3 <

M1,M2 at the GUT scale.

used in the scan can be motivated from GUT breaking with a linear combination of

aforementioned non-singlet representations.

ii) BP2: Our second benchmark point BP2 is motivated from the Hyperbolic branch/Focus

Point region of DM. As has already been mentioned, for mSUGRA, very large values

m0 ∼ 10−50 TeV is required to make µ small such that LSP becomes predominantly

a Higgsino, that paves the way for correct relic abundance through annihilation to

WW , ZZ and Ah final states. However, introduction of non-universality in the scalar

sector, in particular in the Higgs parameters mHu and mHd
at GUT scale, gives rise

to small µ, even without going to such high scalar masses, making it accessible to

collider events at LHC. Again, following our strategy to minimize the number of pa-

rameters to choose BP2, we kept all gaugino and other scalar masses universal at the

high scale.

iii) BP3: Our third benchmark point BP3 represents stau co-annihilation region

exploiting non-universality in the scalar sector. We have used squark-slepton non-

universality as well as non-universality in the family to make the third family slep-

ton masses lighter than other scalars at the high scale. Although such scalar non-

universality is mostly phenomenological, having impacts on CP and FCNC issues, it

can be motivated from string-inspired models with flavor dependent couplings to the

modular fields [8, 9]. In Table 4.2 we show all the inputs at high scale as well as the
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low-scale SUSY masses.

iv) MSG: The mSUGRA benchmark point represent stop co-annihilation region of

DM parameter space. In mSUGRA, stop co-annihilation occurs at distinct non-zero

values of |A0| in a narrow range, for particular values of m0, M1/2, tanβ and Sign(µ).

Higgs mass of 125 GeV can also be obtained in the whole m0 − M1/2 plane with

m0 > 0.8 TeV for large A0. Hence, a tiny region of m0, M1/2 and A0 parameter space

simultaneously satisfy right Higgs mass and dark matter constraints.

However, the situation changes dramatically if we introduce non-universality in

gaugino sector, if we assume M3 < M2 = M1, effectively adding one more parameter

to mSUGRA. Then Higgs mass of 125 GeV can be satisfied in a larger range of A0

values; while for a given A0, dark matter density can be satisfied by varying M1,2

appropriately through stop co-annihilation.

In Fig. 4.2, we have presented a sample scan of such a four-dimensional parameter

space m0, M3, M1,2 and A0, for tanβ = 15 and positive µ. Left panel shows a three-

dimensional subset of the scan with M3 (along x-axis), m0 (along y-axis), A0 (color

gradient) and on the right panel we haveM3 (along x-axis),m0 (along y-axis) andM1,2

(color gradient). For a given M3 and m0, there is a range of A0 and M1,2 which gives

rise to right relic abundance and Higgs mass. For simplicity, in Fig. 4.2, we consider

the minimum possible values of A0 and M1,2 which are consistent with experimental

constraints. As a result, the whole parameter space shown in the figure is allowed

by dark matter and Higgs mass constraint. White dots in Fig. 4.2 corresponds to

M3 = M1,2, i.e. mSUGRA points as a subspace of such gaugino non-universality.

Our benchmark point MSG is represented by one of these white dots. We didn’t

chose a non-universal benchmark point from this region as the collider signature is

expected to be the same as the chosen MSG point.

For renormalization group equation RGE, we use the code SuSpect v2.3 [42] with

mt = 173.2 GeV, mb = 4.2 GeV, mτ = 1.777 GeV and stick to two-loop RGE with
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Figure 4.2: Four-dimensional parameter space scan with m0, M3, M1,2 and A0; for

tanβ = 15 and positive µ to obtain correct dark matter relic abundance, Higgs mass

and other low energy constraints. LHS: Three-dimensional subset of the scan with

M3 (along x-axis), m0 (along y-axis), A0 (color gradient); RHS: M3 (along x-axis), m0

(along y-axis) and M1,2 (color gradient). mSUGRA points are represented in white

dots and our benchmark MSG is one of them.
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radiative corrections to the gauginos and squarks. We use full one loop and dominant

two loop corrections for the Higgs mass. We ensure radiative electroweak symmetry

breaking to evaluate the Higgsino parameter µ at the low scale out of high-scale

inputs m2
Hu

and m2
Hd

and the electroweak symmetry breaking scale has been set at

√
mt̃L

mt̃R
, the default value in the code SuSpect. The low scale value of the strong

coupling constant has been chosen at α3(MZ)
MS = 0.1172. We compute the cold

dark matter relic density with the code micrOMEGAs3.1 [43].

4.3 Collider Simulation and Results

Non-universal SUGRA points advocated in the earlier section can be seen at the

future run of LHC in bottom rich and leptonic final states. This also serves as a

major distinguishing feature from mSUGRA points surviving Higgs mass and dark

matter constraints.

We first discuss the strategy for the simulation including the final state observables

and the cuts employed therein and then we discuss the numerical results in next

subsection.

4.3.1 Strategy for Simulation

The spectrum generated by SuSpect as described in the earlier section, at the bench-

mark points are fed into the event generator Pythia 6.4.16 [44] by SLHA interface [45]

for the simulation of pp collision with center of mass energy 14 TeV for LHC.

The default parton distribution functions CTEQ5L [46], QCD scale
√
ŝ in Pythia

has been used. All possible SUSY processes (mainly 2→2) and decay chains consistent

with conserved R-parity have been kept open with initial and final state radiation

on. We take hadronization into account using the fragmentation functions inbuilt in

Pythia.

The main ’physics objects’ that are reconstructed in a collider, are:
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parameter BP1 BP2 BP3 MSG

tan β 15.00 15.00 15.00 15.00

(M3,M2,M1) (500,700,1282) (500,500,500) (500,500,500) (480,480,480)

(mf̃ ,mτ̃ ) (2000,2000) (2500,2500) (2000,518) (1900,1900)

(mHu ,mHd
) (2000,2000) (3047,4000) (2000,2000) (1900,1900)

A0 -3700 -3500 -3500 -4239

sgn(µ) + + + +

mg̃ 1251 1277 1265.2 1201.3

mũL
2234 2667 2217.6 2108

mt̃1
761 785.6 865 243

mt̃2
1656.5 1950.2 1670 1487

mb̃1
1635 1940.5 1651 1442

mb̃2
2117 2558.3 2124.6 1988

mẽL 2054 2473 2019 1918.3

mτ̃1 1962 2420.3 219.7 1797

mτ̃2 2013.8 2467.2 492.2 1870

mχ̃±
1

588.3 262.6 417.6 404.6

mχ̃±
2

1584.4 447.5 1523 1742

mχ̃0
4

1584.3 447.7 1522.4 1741

mχ̃0
3

1581.3 285.3 1520.3 1739.4

mχ̃0
2

588.4 275.3 417.6 404.6

mχ̃0
1

561.7 201.7 211.4 208.3

mh 124.1 123.4 123.2 123.8

Ωχ̃1h
2 0.118 0.127 0.116 0.112

BF (b → sγ) 2.98× 10−4 2.83× 10−4 3.00× 10−4 3.25× 10−4

Br(Bs → µ+µ−) 3.10× 10−9 3.07× 10−9 3.09× 10−9 3.13× 10−9

Table 4.2: Benchmark points BP1, BP2, BP3 and MSG. Model inputs, low scale predictions

and constraints are mentioned. 99



• Isolated leptons identified from electrons and muons

• Hadronic Jets formed after identifying isolated leptons

• Unclustered Energy made of calorimeter clusters with pT > 0.5 GeV (ATLAS)

and |η| < 5, not associated to any of the above types of high-ET objects (jets

or isolated leptons).

We try to mimic the experimental reconstruction for these objects in Pythia as follows.

Isolated leptons: Isolated leptons are identified as electrons and muons with pT > 10

GeV and |η| <2.5. An isolated lepton is separated from another lepton by△Rℓℓ ≥0.2,

from jet (jets with ET > 20 GeV) with △Rℓj ≥ 0.4, while the energy deposit
∑

ET

due to low-ET hadron activity around a lepton within △R ≤ 0.2 of the lepton axis

should be ≤ 10 GeV. △R =
√

△η2 +△ϕ2 is the separation in pseudo rapidity and

azimuthal angle plane. The smearing functions of isolated electrons, photons and

muons are described below.

Jets: Jets are formed with all the final state particles after removing the isolated

leptons from the list with PYCELL, an inbuilt cluster routine in Pythia. The detector is

assumed to stretch within the pseudorapidity range |η| from -5 to +5 and is segmented

in 100 pseudorapidity (η) bins and 64 azimuthal (ϕ) bins. The minimum ET of each

cell is considered as 0.5 GeV, while the minimum ET for a cell to act as a jet initiator

is taken as 2 GeV. All the partons within △R=0.4 from the jet initiator cell is

considered for the jet formation and the minimum
∑

parton ET
jet for a collected cell

to be considered as a jet is taken to be 20 GeV. We have used the smearing function

and parameters for jets that are used in PYCELL in Pythia.

b-jets: We identify partonic b jets by simple b-tagging algorithm with efficiency of

ϵb = 0.5 for pT > 40 GeV and |η| < 2.5 [47].

Unclustered Objects: All the other final state particles, which are not isolated

leptons and separated from jets by △R ≥0.4 are considered as unclustered objects.

100



This clearly means all the particles (electron/photon/muon) with 0.5 < ET < 10GeV

and |η| < 5 (for muon-like track |η| < 2.5) and jets with 0.5 < ET < 20GeV and

|η| < 5, which are detected at the detector, are considered as unclustered objects.

• Electron/Photon Energy Resolution

σ(E)/E = a/
√
E ⊕ b⊕ c/E 3

Where,

a = 0.03 [GeV1/2], b = 0.005 & c = 0.2 [GeV] for |η| < 1.5

= 0.055 = 0.005 = 0.6 for 1.5 < |η| < 5

• Muon PT Resolution :

σ(PT )/PT = a if PT < 100GeV (4.6)

= a+ b log(PT/ξ) if PT > 100GeV (4.7)

Where,

a= 0.008 & b= 0.037 for |η| < 1.5

= 0.02 = 0.05 1.5 < |η| < 2.5

and ξ = 100 GeV.

• Jet Energy Resolution :

σ(ET )/ET = a/
√
ET

Where,

a= 0.55 [GeV1/2], default value used in PYCELL.

• Unclustered Energy Resolution :

3⊕ indicates addition in quadrature
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σ(ET ) =

√
ΣiE

(Unc.O)i
T

Where, ≈ 0.55. One should keep in mind that the x and y component of EUnc.O
T

need to be smeared independently with same smearing parameter.

We sum vectorially the x and y components of the momenta separately for all visi-

ble objects to form visible transverse momentum (pT )vis, (pT )vis =
√
(
∑

px)2 + (
∑

py)2

where,
∑

px =
∑

(px)iso ℓ+
∑

(px)jet+
∑

(px)Unc.O and similarly for
∑

py. We identify

(pT )vis as missing energy ET/: ET/ = (pT )vis

We also define Effective mass HT as the scalar sum of transverse momenta of

visible objects like lepton and jets with missing energy

HT =
∑

pT
ℓi + pT

jets + ET/

Effective mass cuts have really been useful to reduce SM background for the signals

as we will see shortly.

We studied the benchmark points in multi-lepton final states as well as in b-rich

final states at ECM= 14 TeV at LHC with varying cuts. The channels we study are:

• Four b-jet with inclusive lepton and jets (4b) : 4b +X + ET/ ; Here X implies

any number of inclusive jets or leptons without any specific veto on that. Basic

cuts applied here are pT
b > 40 GeV, ET/ >100 GeV.

• Four b-jet with single lepton (4bℓ) : 4b + ℓ + X + ET/ ; Here X implies any

number of inclusive jets without any specific veto on that. The lepton can have

any charge ±. Basic cuts applied here are pT
b > 40 GeV, pT

ℓ > 20 GeV, |η| <

2.5, ET/ >100 GeV.

• Two b-jets with di-lepton (2b2ℓ): 2b + 2ℓ + X + ET/ ; Here X implies any

number of inclusive jets without any specific veto on that. Leptons can have

any charge ± (including same and opposite sign). Basic cuts applied here are

pT
b > 40 GeV, pT

ℓ > 20 GeV, |η| < 2.5, ET/ >100 GeV.
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• Same sign dilepton with inclusive jets (ℓ±ℓ±): ℓ±ℓ± +X +ET/ ; The basic cuts

applied are ET/ > 30 GeV, pT
ℓ1 > 40 GeV and pT

ℓ2 > 30 GeV with |η| < 2.5.

• Trilepton with inclusive jets (ℓ±ℓ±ℓ±): ℓ±ℓ±ℓ± +X +ET/ ; Basic cuts ET/ > 30

GeV, pT
ℓ1 > 30 GeV, pT

ℓ2 > 30 GeV and pT
ℓ3 > 20 GeV with |η| < 2.5.

• Four-lepton with inclusive jets (ℓ±ℓ±ℓ±): ℓ±ℓ±ℓ±ℓ± +X +ET/ ; For basic cuts

no missing energy cut is employed while, lepton transverse momentum cuts are

as follows: pT
ℓ1 > 20 GeV, pT

ℓ2 > 20 GeV and pT
ℓ3 > 20 GeV and pT

ℓ4 > 20

GeV with |η| < 2.5.

ℓ stands for final state isolated electrons and or muons as discussed above and ET/

depicts the missing energy. Opposite-sign dilepton was not considered mainly because

of the huge SM background from tt̄ process.

Apart from the basic cuts including a Z-veto of |MZ −Mℓ+ℓ−| ≥15 GeV on same

flavor opposite sign dilepton arising in 2b2l, trilepton and four lepton final states, we

apply sum of lepton pT cut (
∑

pT
ℓi) and combination of lepton pT cut with MET,

called modified effective mass cut HT1 =
∑

pT
ℓi +ET/ to the leptonic final states, and

harder HT cuts on b-rich final states and we refer to them as follows:

• C1:
∑

pT
ℓi > 200 GeV

• C2:
∑

pT
ℓi > 400 GeV

• C3: HT1 > 400 GeV

• C4: HT1 > 500 GeV

• C1′:
∑

pT
ℓi > 100 GeV

• C2′:
∑

pT
ℓi > 200 GeV

• C3′: HT1 > 150 GeV

103



• C4′: HT1 > 250 GeV

• C5: HT > 1000 GeV, ET/ > 200 GeV, pT
b > 60 GeV.

We have generated dominant SM events from tt̄ in Pythia for the same final

states with same cuts and multiplied the corresponding events in different channels

by proper K-factor (1.59) to obtain the usually noted next to leading order (NLO)

and next to leading log re summed (NLL) cross-section at LHC [48]. bb̄bb̄ ,bb̄bb̄W/Z

and tt̄bb̄ background have been calculated in Madgraph5 [49]. The cuts are motivated

such that we reduce the background to a great extent as shown in next subsection.

Note that softer cuts C1′, C2′, C3′, C4′ have been used for four lepton channel where

the SM background is much smaller.

4.3.2 Numerical results

Model Points Total g̃g̃ t̃1t̃
∗
1 χ̃0

i χ̃
0
j χ̃±

i χ̃
∓
j χ̃0

i χ̃
±
j g̃ → t̃1t̄ t̃1 → tχ0

1 t̃1 → bχ+
1

BP1 107.6 29.20 32.06 0.11 7.18 14.6 99 % 76.3 % 23.7 %

BP2 607 26.3 15.1 64.7 126.9 354.8 99 % 10.3% 45.2%

BP3 188 26.5 13.8 0.33 37.1 74.2 99 % 86.5% 9.4%

MSG 18208 39 18010 0.1 28 84 99% 0% 0%

Table 4.3: Total supersymmetric particle production cross-sections (in fb) as well

as some leading contributions from g̃g̃ and t̃1t̃
∗
1 and electroweak neutralino-chargino

productions for each of the benchmark points with ECM= 14 TeV. We also quote the

significant decay branching fractions (in percentage).

The main SUSY production cross-sections for the benchmark points have been

noted in Table 4.3 with the total cross-section for all 2→2 SUSY processes. All

the non-universal benchmark points have similar gluino production and third family

stop production, while the mSUGRA point has a huge stop production due to very
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light stop mass and the total cross-section for this point is also dominated by that.

Although other benchmark points have sufficiently large branching fraction of stop

going to bottom chargino or stop neutralino, MSG has nothing in these channels as

the stop is almost degenerate with the lightest neutralino, it only decays to cχ̃0
1 in

loop. For MSG, χ̃0
2 decays to χ̃0

1h 95% and first chargino dominantly decays to t̃1b̄.

Hence 3b channel can be a better channel to look for such MSG points. As mSUGRA

is only alive in such a region of parameter space for the sake of dark matter, all MSG

points will be similar in this aspect. We also note that for BP1: χ̃±
1 decays into

ℓ + νℓ + χ̃0
1 through off-shell sleptons in 33% while χ̃0

2 decays to leptonic final state

is only ≃ 1%. BP2 has dominant production in electroweak gauginos. Associated

production of the gluinos with neutralinos are also quite heavy. Here t̃1 → tχ̃0
2,3

branchings are also of the same order of t̃1 → tχ̃0
1. Although χ̃0

2 decays to leptonic

final state is 1%, χ̃±
1 decays into ℓ + νℓ + χ̃0

1 in 33%. Huge electroweak production

will significantly contribute to leptonic final states for BP2. For BP3, chargino and

neutralino decays to tau-rich final state as a result of lighter stau. Hence, in addition

to the standard leptons, channels with tau-tagging can be a better channel to look

for this benchmark point.

Missing energy distribution of the benchmark points in bottom rich final states

are shown in figure 4.3. Missing Energy has been normalized to 1. 4b and 4bℓ final

states doesn’t have a significant background, hence only signal events are shown. It

occurs that the benchmark points have a similar missing energy pattern, while for

2b2ℓ, the tt̄ background has a sharper peak at low missing energy as can be expected.

Similarly effective mass HT distribution in bottom-rich final states is shown in figure

4.4. There is no significant difference between the benchmark points in terms of this

distribution either. We can see for 4bℓ channel (Fig 4.3, top right), the peaks of the

distributions are a bit separated. For 2b2ℓ, background tt̄ peaks at a much lower

value while the signal events have a peak ≥ 1000 GeV. This gives us the opportunity
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Figure 4.3: Missing energy distribution in bottom rich final states at the benchmark

points. Top left: 4b channel, Top right: 4bℓ channel; bottom: 2b2ℓ channel. CTEQ5L

pdfset was used. Factorization and Renormalization scale has been set to µF = µR =
√
ŝ, sub-process center of mass energy.

106



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  500  1000  1500  2000  2500  3000

N
u

m
b

e
r 

O
f 

E
v
e

n
ts

 (
N

o
rm

a
lis

e
d

)

Effective Mass (GeV)

BP1
BP2
BP3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  500  1000  1500  2000  2500  3000

N
u

m
b

e
r 

O
f 

E
v
e

n
ts

 (
N

o
rm

a
lis

e
d

)

Effective Mass (GeV)

BP1
BP2
BP3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  500  1000  1500  2000  2500  3000

N
u

m
b

e
r 

O
f 

E
v
e

n
ts

 (
N

o
rm

a
lis

e
d

)

Effective Mass (GeV)

BP1
BP2
BP3
ttbar

Figure 4.4: Effective mass distribution in bottom rich final states at the benchmark

points. Top left: 4b channel, Top right: 4bℓ channel; bottom: 2b2ℓ channel. CTEQ5L

pdfset was used. Factorization and Renormalization scale has been set to µF = µR =
√
ŝ, sub-process center of mass energy.
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Benchmark Points σ4b σ4bl σ2b2l σ4b(C5) σ4bl(C5) σ2b2l(C5)

BP1 1.35 0.44 1.15 0.60 0.18 0.84

BP2 1.56 0.50 1.24 1.53 0.49 1.11

BP3 1.34 0.41 1.17 0.76 0.22 0.91

MSG 0.004 0.004 0.1 ≤0.001 ≤0.001 0.01

tt̄ ≤0.01 ≤0.01 973.1 ≤0.01 ≤0.01 ≤0.01

bb̄bb̄, bb̄bb̄+W/Z 0.106 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01

tt̄bb̄ 0.8825 0.634 1.03 0.005 ≤0.01 ≤0.01

Table 4.4: Event-rates (fb) in bottom rich final states at the chosen benchmark points

for ECM= 14 TeV with basic cuts and cuts C5. CTEQ5L pdfset was used. Factorization

and Renormalization scale has been set to µF = µR =
√
ŝ, subprocess center of mass

energy. Contributions from dominant SM backgrounds are also noted.

to put a very hard effective mass HT cut, which reduces the background to almost

zero, while retaining the signal. Hard effective mass cut also helps to remove other

hadronic and QCD backgrounds as shown in Table 4.4.

In summary, from Table 4.4, BP1, BP2 and BP3 have very good prospects of being

discovered at LHC in 4b, 4bℓ and 2b2ℓ final states while the corresponding MSG point

doesn’t contribute at all in such final states. The main reason of this is clear from

Table 4.3. Although t̃1t̃
∗
1 production is huge for MSG, stop being almost degenerate

with LSP, it can not decay to tχ̃0
1 or bχ̃

+
1 and hence it doesn’t produce any b-jets. We

might however, see 3b events from electroweak production.

The SM backgrounds are negligible in bottom rich channels excepting 2b2ℓ, which

suffers from a sufficiently large background from tt̄ production. But, a heavy Effective

mass cut (HT ) eliminates this to a large extent, while retaining the signals. The

Effective mass distribution in Fig. 4.4 bears the testimony to the fact. We also note
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Figure 4.5: Missing energy distribution in ℓ±ℓ± (left) and ℓ±ℓ±ℓ± (right) final states

at the benchmark points.
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Figure 4.6: Effective mass HT1 distribution in ℓ±ℓ± (left) and ℓ±ℓ±ℓ± (right) final

states at the benchmark points.
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that SM background events were simulated with very high number of events, such

that each event carries a small weight, 0.01 fb of cross-section; hence, null events in

simulation corresponds to cross-section less than that.

Missing energy and effective mass distribution for Same-sign dilepton and trilepton

events are shown in fig 4.5 and 4.6 respectively. Again all the benchmark points show

very similar distribution, while the tt̄ can be reduced with a heavy HT1 cut. All the

leptonic event numbers for the benchmark points are shown in Table 4.5.

Table 4.5 tells us, that trilepton events are still good for all the benchmark points

while 4-lepton channel is good for BP2 and BP3 only. We also need to note that

the background for 4-lepton channel is negligible (hadronically quiet part comes from

4W or ZZZ production). After the cuts they vanish almost completely. Similarly

ZW , which contributes to trilepton reduces to a great extent after the Z-veto. Hence,

we didn’t quote those background events here. We also see that C2 and C4 cut

reduce the tt̄ background significantly. C2 kills the signal events to a great extent

too, hence, C4 is a better choice to reduce background and retain signal. Hence,

these leptonic final states are also good channels to study such benchmark points.

The reason of BP2 having larger leptonic events, comes also from huge electroweak

gaugino productions as pointed in Table 4.3. Hence, a significant part of these leptonic

final states should contain hadronically quiet lepton events. The minimal supergravity

benchmark point doesn’t contribute at all to the leptonic final states, the reason being

simply understood as not having lighter stops to decay through top or sleptons leading

to leptons. Hence, such mSUGRA points can only be studied in hadronic channels or

perhaps 3b final states as mentioned earlier. After mSUGRA being alive only in stop

co-annihilation region, this seems to be a generic feature for all mSUGRA parameter

space points to obey Higgs mass and dark matter constraint. This in turn, can help

distinguishing such non-universal frameworks from mSUGRA in LHC signature space.
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Channels and Event rates (fb) BP1 BP2 BP3 MSG tt̄

ℓ±ℓ± (Basic) 0.48 1.03 0.65 0.2 40.32

ℓ±ℓ±+C1 0.16 0.30 0.30 0.1 1.08

ℓ±ℓ±+C2 0.03 0.03 0.05 ≤0.001 ≤0.01

ℓ±ℓ±+C3 0.35 0.53 0.54 0.1 0.54

ℓ±ℓ±+C4 0.26 0.40 0.44 ≤0.001 0.17

ℓ±ℓ±ℓ± (Basic) 0.18 0.96 0.24 ≤0.001 33.96

ℓ±ℓ±ℓ±+C1 0.11 0.40 0.18 ≤0.001 3.62

ℓ±ℓ±ℓ±+C2 0.02 0.06 0.04 ≤0.001 0.17

ℓ±ℓ±ℓ±+C3 0.15 0.38 0.22 ≤0.001 0.54

ℓ±ℓ±ℓ±+C4 0.11 0.31 0.19 ≤0.001 ≤0.01

ℓ±ℓ±ℓ±ℓ± (Basic) 0.018 0.21 0.019 ≤0.001 0.17

ℓ±ℓ±ℓ±ℓ±+C1′ 0.018 0.20 0.019 ≤0.001 0.17

ℓ±ℓ±ℓ±ℓ±+C2′ 0.013 0.11 0.017 ≤0.001 ≤0.01

ℓ±ℓ±ℓ±ℓ±+C3′ 0.017 0.21 0.019 ≤0.001 0.17

ℓ±ℓ±ℓ±ℓ±+C4′ 0.016 0.16 0.019 ≤0.001 ≤0.01

Table 4.5: Event-rates (fb) in leptonic final states at the chosen benchmark points

for ECM= 14 TeV with basic cuts and cuts C1, C2, C3, C4 as described. The main

background tt̄ is also noted. CTEQ5L pdfset was used. Factorization and Renormal-

ization scale has been set to µF = µR =
√
ŝ, subprocess center of mass energy. Note

that trilepton and four-lepton final states include Z−veto.

111



4.4 Summary and Conclusions

It is remarkable that a Higgs boson has been discovered with a mass ≃ 125 GeV. In

pure SM, theoretically there is no reason why its mass should be at the EW scale,

or even it is, why it is not much higher or lower than 125 GeV. (In fact, in pure

SM, best fit to the EW data prefers a much lower mass). This gives us hope that

some symmetry principle is there beyond the pure SM, and supersymmetry being

the most natural candidate, because it solves the hierarchy problem, as well as it

constraints the Higgs mass to be less than ∼ 135 GeV. In addition, supersymmetry

has a natural candidate for the dark matter. However, the minimal version of the

most desirable version of MSSM, mSUGRA, is in very tight corner to satisfy all the

existing experimental constraints, as well as being within the reach of LHC. We find

that mSUGRA is still viable in the stop co-annihilation region in which the classic

SUSY signal (multijet plus missing ET ) is essentially unobservable beyond the SM

background at the LHC. (The other allowed region such as hyperbolic/ focus point

has SUSY particle masses well beyond the reach of LHC). However, if we relax little

bit from mSUGRA with non-universal gaugino and /or scalar masses, the situation

becomes much more favorable to discover SUSY at the LHC.

In this work, we have shown that SUSY with non-universalities in gaugino or scalar

masses within high scale SUGRA set up can still be accessible at LHC with ECM = 14

TeV. In particular, we show the consistency of the parameter space in different dark

matter annihilation regions. Wino dominated LSP with chargino co-annihilation can

be achieved with gaugino mass non-universality with M3 < M2 < M1. Hyperbolic

Branch/Focus point region with Higgsino dominated LSP can be obtained easily

with Higgs non-universality as BP2. Such parameter space automatically occurs with

lighter gauginos and hence they may dominate the production and leptonic final

states at LHC. Stau co annihilation can occur with scalar non-universality while

stop co annihilation can arise simply with high-scale gaugino non-universality with
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M3 < M2 = M1. mSUGRA, though viable in only stop co-annihilation region, do

not yield lepton or b-rich final states due to lack of phase space for the stop to decay

leptonically. There exist a reasonable region of parameter space in the non-universal

scenario which not only satisfy all the existing constraints, but also can unravel SUSY

in bottom and lepton rich final states with third family squarks being lighter than the

first two automatically. We have made detailed studied of three benchmark points in

these allowed parameter spaces, and find that SUSY signal in the bottom or bottom

plus lepton-rich final state stands over the SM background with suitable cuts. We

have also investigated pure leptonic final states with suitable cuts, and find some of

these final state have viable prospects. Finally we also emphasize that with good

luminosity in the upcoming 14 TeV LHC runs, these allowed parameter space can be

ruled out easily, or we we will discover SUSY.
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CHAPTER 5

Parallel Universe, Dark Matter and Invisible Higgs Decays

5.1 Introduction

Symmetry seems to play an important role in the classification and interactions of

the elementary particles. The Standard Model (SM) based on the gauge symmetry

SU(3)C×SU(2)L×UY (1) has been extremely successful in describing all experimental

results so far to a precision less than one percent. The final ingredient of the SM,

namely the Higgs boson, has finally been observed at the LHC [1]. However, SM is

unable to explain why the charges of the elementary particle are quantized because

of the presence of U(1)Y . This was remedied by enlarging the SU(3)C symmetry

to SU(4)C with the lepton number as the fourth color,(or grand unifying all three

interaction in SM in SU(5) [2] or SO(10) [3]).

SM also has no candidate for the dark matter whose existence is now well estab-

lished experimentally [4]. Many extensions of the SM models, such as models with

weakly interacting massive particles (WIMP) can explain the dark matter [4]. The

most poplar examples are the lightest stable particles in supersymmetry [4], or the

lightest Kaluza-Klein particle in extra dimensions [5]. Of course, axion [6] is also a

good candidate for dark matter. Several experiments are ongoing to detect signals of

dark matter in the laboratory. However, it is possible that the dark matter is just the

analogue of ordinary matter belonging to a parallel universe. Such a parallel universe

naturally appears in the superstring theory with the E8 ×E ′
8 gauge symmetry before

compactification [7]. Parallel universe in which the gauge symmetry is just the repli-

cation of our ordinary universe, i,e the gauge symmetry in the parallel universe being
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SU(3)′×SU(2)′×U(1)′ has also been considered [8]. If the particles analogous to the

proton and neutron in the parallel universe is about five times heavier than the proton

and neutron of our universe, then that will naturally explain why the dark matter of

the universe is about five times the ordinary matter. This can be easily arranged by

assuming strong coupling constant square/4π, α′
s is about five times larger than the

QCD αs. Thus, in this work, we assume that the two universe where the electroweak

sector is exactly symmetric, whereas the corresponding couplings in the strong sec-

tor are different, explaining why the dark matter is larger than the ordinary matter.

Also, we assume that both universes are described by non-abelian gauge symmetry

so that the kinetic mixing between the photon (γ) and the parallel photon (γ′) is

forbidden. We also assume that post-inflationary reheating in the two worlds are

different, and the the parallel universe is colder than our universe [9]. This makes it

possible to maintain the successful prediction of the big bang nucleosynthesis, though

the number of degrees of freedom is increased from the usual SM of 10.75 at the time

of nucleosynthesis due the extra light degrees of freedom (due to the γ′, e′ and three

ν ′s).

In this work, we explore the LHC and ILC implications of this scenario due to

the mixing among the Higgs bosons in the two electroweak sectors. Such a mixing,

which is allowed by the gauge symmetry, will mix the lightest Higgs bosons of our

universe (h1) and the lightest Higgs boson of the parallel universe (h2), which we will

call the dark Higgs. One of the corresponding mass eigenstates, hSM we identify with

the observed Higgs boson with mass of 125 GeV. The other mass eigenstate, which

we denote by hDS, the dark Higgs, will also have a mass in the electroweak scale.

Due to the mixing effects, both Higgs will decay to the kinematically allowed modes

in our universe and as well as to the modes of the dark universe. One particularly

interesting scenario is when the two Higgs bosons are very close in mass, say within

4 GeV so that the LHC can not resolve it [10]. However, this scenario will lead to
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the invisible decay modes [11]. The existence of such invisible decay modes can be

established at the LHC when sufficient data accumulates. (The current upper limit

on the invisible decay branching ratio of the observed Higgs at the LHC is 0.65). At

the proposed future International Linear Collider (ILC) [12], the existence of such

invisible modes can be easily established, and the model can be tested in much more

detail.

The chapter is organized as follows. In Section 2, we discuss the model and formalism.

We also discuss the symmetry breaking. In Section 3, we discuss the phenomenological

implications at the LHC, including the interactions and decays of light higgses, details

of the data used in collider analysis and bounds on mixing angle. In section 4, we

discuss in detail possible phenomenological implications of the model at the ILC. At

the end, we conclude in Section 5.

5.2 Model and the Formalism

The gauge symmetry we propose for our work is SU(4)C × SU(2)L × SU(2)R for

our universe, and SU(4)′C ×SU(2)′L×SU(2)′R for the parallel universe. Note that we

choose this non-abelian symmetry not only to explain charge quantization (as in Pati-

Salam model [17]), but also to avoid the kinetic mixing of γ and γ′ as would be allowed

in the Standard Model. All the elementary particles belong to the representations

of this symmetry group and their interactions are governed by this symmetry. The

21 gauge bosons belong to the adjoint representations (15, 1, 1), (1, 3, 1), (1, 1, 3).

(15, 1, 1) contain the 8 usual colored gluons, 6 lepto-quark gauge bosons (X, X̄),

and one (B − L) gauge boson [18]. (1, 3, 1) contain the 3 left handed weak gauge

bosons, while (1, 1, 3) contain the 3 right handed weak gauge bosons. The parallel

universe contains the corresponding parallel gauge bosons. However, so far as the

gauge interactions are concerned, we do not assume that the coupling for SU(4)

and SU(4)′ interactions are the same, but strong coupling in the parallel universe is
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larger in order to account for the p′ (proton of the parallel universe) mass to be about

five times larger than the proton. For the electroweak sector, we assume the exact

symmetry between our universe and the parallel universe.

The fermions belong to the fundamental representations (4, 2, 1) + (4, 1, 2). The

4 represent three color of quarks and the lepton number as the 4th color, (2, 1) and

(1, 2) represent the left and right handed doublets. The forty eight Weyl fermions

belonging to three generations may be represented by the matrix



u

d


1

u

d


2

u

d


3

νe

e


4c

s


1

c

s


2

c

s


3

νµ

µ


4t

b


1

t

b


2

t

b


3

ντ

τ


4


L,R

. (5.1)

We have similar fermion representations for the parallel universe, denoted by

primes.

The model has 3 gauge coupling constants: g4 for SU(4) color which we will

identify with the strong coupling constant of our universe, g′4 for SU(4)′ color of

the parallel universe, and g for SU(2)L and SU(2)R, and corresponding electroweak

couplings for the parallel universe (gL = gR = g′L = g′R = g (we assume that the

gauge couplings of the electroweak sectors of the two universe are the same).

5.2.1 Symmetry breaking

SU(4) color symmetry is spontaneously broken to SU(3)C × U(1)B−L in the usual

Pati-Salam way using the Higgs fields (15, 1, 1) at a scale Vc. The most stringent

limit on the scale of this symmetry breaking comes from the upper limit of the rare

decay mode KL → µe [19]. SU(2)L × SU(2)R × U(1)B−L can be broken to the SM
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using the Higgs representations (1, 2, 1) and 1, 1, 2) at a scale VLR. Alternatively, one

can use the Higgs multiplets (1.3, 1) and (1, 1, 3) if we want to generate the light

neutrino masses at the observed scale. Finally the remaining symmetry is broken

to the U(1)EM using the Higgs bi-doublet (1, 2, 2) as in the left-right model. The

(15, 2, 2) Higgs multiplet could also be added to eliminate unwanted mass relations

among the charged fermions. Similar Higgs representations are used to break the

symmetry in the parallel universe to U ′(1)EM . A study of the Higgs potential shows

that there exist a parameter space where only one neutral Higgs in the bi-doublet

remains light, and becomes very similar to the SM Higgs in our universe [20]. All

other Higgs fields become very heavy compared to the EW scale. Similar is true in

the parallel universe. The symmetry of the Higgs fields in the EW sector between

our universe and the parallel universe will make the two electroweak VEV’s the same.

Thus the mixing terms between the two bi-doublets (one in our universe and one

in the parallel universe) then leads to mixing between the two remaining SM like

Higgs fields. The resulting mass terms for the remaining two light Higgs fields can be

written as m2
V Sh

2
1+m2

DSh
2
2+2λvV SvDSh1h2, (where vV S and vDS are the electroweak

symmetric breaking scale in the visible sector and dark sector respectively) from which

the two mass eigenstates and the mixing can be calculated.

The implications for this is when the two light Higgses are very close in mass

(within about 4 GeV, which LHC can not resolve) leads to the invisible decay of

the observed Higgs boson. The main motivation for postulating this kind of parallel

universe scenario is to explain the dark matter density which is five time larger than

the ordinary matter density. The particles analogous to the proton and neutron in

the dark sector, namely, the dark proton and dark neutron, are stable due to the

conservation of the dark baryon number. Moreover, the gauge symmetry and the

particle content of the model does not allow any gauge or Yukawa interactions of

dark protons and dark neutrons with the visible sector particles. Therefore, in the
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framework of this model, the dark protons and dark neutrons are the candidates for

the dark matter. If the dark protons and dark neutrons in the parallel universe are

about five times heavier than the protons and neutrons of our universe, then that

will naturally explain why the dark matter of the universe is about five times the

ordinary matter. The Lagrangian quark masses for the up and down quarks are only

of order of 10 MeV or less. Therefore,99% of the mass of the proton or neutron arises

from the strong interaction of the constituent quarks and the gluons. The mass scale

associated with these interactions is set by the value of the three-quark QCD scale

ΛQCD. Therefore, one can easily achieve a dark proton or neutron mass which is

five times larger than the visible proton or neutron mass by assuming the QCD scale

in the dark sector (ΛDS) to be five times larger than the QCD scale in the visible

sector (ΛV S = 340 MeV). Different QCD scales give rise to different running of the

strong coupling constant in the visible sector (αV S
S (Q)) and dark sector (αDS

S (Q)).

In Fig. 5.1, we have presented the running of the strong coupling constant in the

visible sector and dark sector. Fig. 5.1 shows that αDS
S (Q = mH = 125 GeV)=

1.4 αV S
S (Q = mH = 125 GeV).

Below we discuss the phenomenological implications for this scenario at the LHC,

and briefly at the proposed ILC [12].

5.3 Phenomenological Implications at the LHC

In the framework of this model, interaction between fermions and/or gauge bosons of

dark sector and visible sector (the SM particles) are forbidden by the gauge symme-

try. However, quartic Higgs interactions of the form λ(H†
V SHV S)(H

†
DSHDS) (where

HV S and HDS symbols denote the Higgs fields in the visible sector and dark sector

respectively) are allowed by the gauge symmetry and gives rise to mixing between

the Higgses of dark and visible sector. The mixing between the lightest Higgses of

dark sector and visible sector gives rise to interesting phenomenological implications
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Figure 5.1: Running of the strong coupling constant in the visible sector (αV S
S (Q))

and dark sector (αDS
S (Q))

at the collider experiments. In this section, we will discuss the phenomenological

implications of the lightest dark and visible neutral Higgs mixing (h1 and h2). As dis-

cussed in the previous section, the bi-linear terms involving the lightest visible sector

(denoted by h1) and dark sector (denoted by h2) Higgses in the scalar potential are

given by,

LScalar ⊃ m2
V Sh

2
1 +m2

DSh
2
2 + 2λvV SvDSh1h2 (5.2)

where, vV S and vDS are the electroweak symmetric breaking scale in the visible sector

and dark sector respectively. In our analysis, we have assumed the both vV S and vDS

are equal to the SM electroweak symmetry breaking scale vSM ∼ 250 GeV. mV S, mDS

and λ are the free parameters in the theory and the masses (m
h
(p)
1

and m
h
(p)
2
) and

mixing between physical light Higgs states (denoted by h
(p)
1 and h

(p)
2 ) are determined

by these parameters:

h
(p)
1 = cosθ h1 + sinθ h2,

h
(p)
2 = −sinθ h1 + cosθ h2, (5.3)
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where the masses and the mixing angle of these physical states are given by,

m2

h
(p)
1 ,h

(p)
2

=
1

2
[(m2

V S +m2
DS)∓

√
(m2

V S −m2
DS)

2 + 4λ2v2V Sv
2
DS]

tan2θ =
2λ vV S vDS

m2
DS −m2

V S

. (5.4)

In the framework of this model, we have two light physical neutral Higgs (h
(p)
1 and h

(p)
2 )

states. Out of these two Higgs states, we define the SM like Higgs hSM is the state

which is dominantly h1-like, i.e., if cosθ > sinθ then hSM = h
(p)
1 and vice versa. The

other Higgs is denoted as dark Higgs (hDS). Since ATLAS and CMS collaborations

have already detected a SM like Higgs boson with mass about 125 GeV, we only

studied the scenario where the mass of hSM is between 123 to 127 GeV. Before going

into the details of collider implication of visible sector and dark sector Higgs mixing,

it is important to understand the correlation between the mixing and mass of the

dark Higgs (mhDS
). To understand the correlation, for few fixed values of λ, we

have scanned the mV S −mDS parameter space. We have only considered the points

which gives rise to a hSM in the mass range between 123 GeV to 127 GeV. For these

points, the resulting dark Higgs masses (mhDS
) and mixing (θ) are plotted in Fig. 5.2.

The scatter plot in Fig. 5.2 shows that large mixing in the visible and dark sector is

possible only when the dark Higgs mass is near 125 GeV i.e., near the mass of SM like

Higgs boson. It is important to note that the LHC is a proton-proton collider, i.e.,

LHC collides the visible sector particles only. Therefore, the production cross-section

of dark Higgs at the LHC is proportional to the square of the visible sector Higgs

component in hDS. Therefore, in order to detect the signature of dark Higgs at the

collider experiments, we must have significant mixing between the visible and dark

sector Higgses. And Fig. 5.2 shows that significant mixing arises only when dark

Higgs and SM like Higgs are nearly degenerate in mass. Therefore, in this article, we

studied the phenomenology of two nearly degenerate Higgs bosons with mass about

125 GeV.
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Figure 5.2: Scatter plot of dark Higgs mass vs mixing angle for different values of λ.

The SM-like Higgs mass is kept fixed in the range between 123 to 127 GeV denoted

by the shaded region in the plot.

5.3.1 Interactions and Decays of light Higgses

In the present model, two light Higgs physical states (h
(p)
1 and h

(p)
2 ) result from the

mixing of visible sector and dark sector light Higgs weak eigenstate h1 and h2 re-

spectively. Visible sector light Higgs weak eigenstates, h1 interacts only with the

visible sector fermions (f) via Yukawa interactions and gauge bosons (V ) via gauge

interactions. Whereas the dark sector light Higgs weak eigenstate interacts only with

the dark fermions fD and dark gauge bosons VD. However, as a result of mixing, the

physical light Higgses interact with both the visible particles and dark particles and

thus, they can be produced at the Large Hadron Collider(LHC) experiment. The

coupling of the physical states h
(p)
1 and h

(p)
2 with the visible as well as dark fermions

and gauge bosons can be written as a product of corresponding SM coupling and

sine or cosine of the mixing angle. As a result the production cross sections of h
(p)
1

and h
(p)
2 and decay widths into visible as well as dark particles can be computed in
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terms of the SM Higgs production cross-sections/decay widths and the mixing angle.

For example, total h
(p)
1 production cross section at the LHC is given by σSMcos2θ,

where σSM is the production cross-section of the SM Higgs with equal mass. Simi-

larly, the decay widths of h
(p)
1 (h

(p)
2 ) into visible and dark sector fermions are given by

ΓH→ff̄
SM cos2θ (ΓH→ff̄

SM sin2θ) and ΓH→ff̄
SM sin2θ (ΓH→ff̄

SM sin2θ) respectively, where ΓH→ff̄
SM

is the decay width of the SM Higgs into fermions. It is important to note that since

the QCD coupling in the dark sector is about 5 times larger than the QCD coupling

in the visible sector, the Higgs coupling with dark gluon in this model is enhanced by

a factor about 5.

In this analysis we are considering both the higgs states in the mass range between

123−127 GeV. Here we present the expressions for µ = σ/σSM and total σ×BRinvisible

for present model,

µ =
(σh1cos

4θBRh1/(1 + 24BRgg
h1sin

2θ)) + (σh2sin
4θBRh2/(1 + 24BRgg

h2cos
2θ))

σSM ∗BR

σ ×BRinv =
σh1cos

2θsin2θ(BRinv
h1 + 25BRgg

h1)

1 + 24BRgg
h1sin

2θ
+

σh2cos
2θsin2θ(BRinv

h2 + 25BRgg
h2)

1 + 24BRgg
h2cos

2θ
(5.5)

where σh1 corresponds to Standard Model Higgs production cross-section at mass

of h
(p)
1 and σh2 corresponds to Standard Model production cross-section at mass of

h
(p)
2 (see Table 5.1) and BRh1 and BRh2 corresponds to Branching ratios of Higgs

boson at mass h
(p)
1 and h

(p)
2 respectively(see Table 5.2). For calculating the µ values

in present model we have used Branching Ratios of H → WW → lνlν and H → γγ

channels(see Table 5.3).

5.3.2 Data used in Collider Analysis

In this section, we discuss the collider phenomenology of invisible Higgs Decays.

Before going into the details of the collider prediction, we first need to study the

constraints on the parameter space coming from present Standard Model predictions

and experimental data. The Higgs mass eigenstates of hSM and hDS will be produced
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Mass of Higgs(GeV) σggf σttH σV BF σV h

123 20.15 1.608 1.15 0.1366

124 19.83 1.595 1.12 0.1334

125 19.52 1.578 1.09 0.1302

126 19.22 1.568 1.06 0.1271

127 18.92 1.552 1.03 0.1241

Table 5.1: Standard Model production cross section (pb) in different channels for

ECM = 8 TeV.

in Colliders through the top loop as top quark has Standard Model couplings to the

hSM mass eigen state. The Higgs, which comprises of both h1 and h2 eigen states,

will then decay in both the Standard Model decay modes along with Dark sector

decay modes. We will perceive these dark sector decay modes as enhancement in the

invisible Branching Fraction of the Higgs.

We first discuss the different constraints on the mixing angle θ between the two

eigenstates coming from experimental data of H → WW → lνlν and H → γγ

channels. Along with these experimental data in Higgs decays in different modes, we

have also taken into account constraints on the mixing angle parameter space coming

from the ATLAS search for the invisible decays of a 125 GeV Higgs Boson produced

in association with a Z boson [11].

The Standard Model production cross-sections in different channels (such as gluon-

gluon fusion, ttH, vector boson fusion and vector boson (both W boson and Z boson)

in association with a Higgs boson) at ECM = 8 TeV and Decay Branching ratios in

different channels (such as H→WW , H→ZZ,H→γγ,H→gg,H→ff) has been given

by ATLAS collaboration in reference [17] [18]. We have used these cross-sections

and branching ratios in different channels in our analysis. The relevant cross-sections

and branching ratios used for our analysis are presented in Table 5.1 and Table 5.2
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Mass of Higgs(GeV) BR(H→WW ) BR(H→ZZ) BR(H→γγ) BR(H→gg) BR(H→ff)

123 0.183 2.18× 10−2 2.27× 10−3 8.71× 10−2 0.687

124 0.199 2.41× 10−2 2.27× 10−3 8.65× 10−2 0.687

125 0.215 2.64× 10−2 2.28× 10−3 8.57× 10−2 0.670

126 0.231 2.89× 10−2 2.28× 10−3 8.48× 10−2 0.651

127 0.248 3.15× 10−2 2.27× 10−3 8.37× 10−2 0.633

Table 5.2: Standard Model Decay Branching Ratio in different channels.

Channels for Higgs Decay µ value by ATLAS µ value by CMS

H → WW → lνlν 1.01± 0.31 0.76± 0.21

H → γγ 1.65± 0.24(stat)+0.25
−0.18(syst) 0.78± 0.27

Table 5.3: Experimental values of best fit signal strength µ = σ/σSM at ECM = 8

TeV.
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respectively. We have taken the mass range between 123 − 127 GeV which is the

interesting parameter space for our analysis.

In Table 5.3 we present the results of the different experimental searches in the

H → WW → lνlν channel by ATLAS collaborations [23] and CMS collaboration [24]

and in H → γγ channel by ATLAS collaborations [25] CMS collaborations [26] .

5.3.3 Bounds on Mixing Angle

In this section we use the data that we presented in the previous section to constrain

the mixing angle parameter space. In Fig 5.3, we present the total invisible decay

rate i.e σ × BR in the invisible channel vs the mixing angle θ for m
(p)
h1 = 123 GeV

and m
(p)
h2 = 127 GeV (m

(p)
h1 = 124GeV and m

(p)
h2 = 126GeV ). ATLAS collaboration

has searched for the invisible decay of higgs boson in Z H production channel at

ECM = 8TeV . In absence of any significant deviation of data from the Standard

Model background prediction, ATLAS collaboration has set an upper limit of 65% on

the invisible decay branching of a SM higgs boson of mass 125 GeV [11]. Assuming

σtotal = 22.32 pb Higgs cross-section at 125 GeV (see Table 5.1), 65% upper limit on

invisible decay branching ratio corresponds to 14.5 pb upper limit on the invisible

Higgs decay rate. This limit is shown in the shaded green region in Fig 5.3. It can be

seen from the plot that present model is consistent with ATLAS experimental data

for θ < 33o and θ > 58o in the parameter space region.

In Fig. 5.4 we have presented a plot of µ = σ/σSM in the H → γγ channel as a

function of the mixing angle θ. The plot shows prediction in present model for m
(p)
h1 =

123 GeV andm
(p)
h2 = 127 GeV (m

(p)
h1 = 124 GeV andm

(p)
h2 = 126 GeV) mass values.The

yellow shaded region corresponds for allowed region by CMS collaboration and green

shaded region is allowed region for ATLAS collaboration in this channel. It can be

seen from the plot that CMS allowed region is consistent for all θ’s for the present

model,but present model is not consistent with ATLAS allowed region for any values
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Figure 5.3: Decay rate in invisible channels in present model as a function of mixing

angle θ. The shaded regions correspond to SM allowed values for σ ×BRinv.
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Figure 5.5: H → WW → lνlν rate in present model as a function of mixing angle θ.

The shaded regions correspond to ATLAS and CMS allowed µ = σ/σSM values.

of θ. We point out that H → γγ data for ATLAS, is well above the SM expectation.

If the present model is realized by Nature, with the accumulation of more data with

higher luminosities at the Large Hadron Collider(LHC) the H → γγ branching ratio

measured by ATLAS experiment should should come down significantly from present

experimental value of 1.65 ± 0.24(stat)+0.25
−0.18(syst). Our model is consistent with the

lower µ value of 0.78± 0.27 for H → γγ as measured by the CMS experiment for the

whole parameter of the parameter space.

In Fig. 5.5 we present a plot of µ = σ/σSM in the H → WW → lνlν channel with

mixing angle θ. Two curves form
(p)
h1 = 123 GeV andm

(p)
h2 = 127 GeV (m

(p)
h1 = 124 GeV

and m
(p)
h2 = 126 GeV) present the prediction for present model. The yellow shaded

region corresponds for allowed region by CMS collaboration and green shaded region

is for allowed region by ATLAS collaboration in this channel. It can be seen from the

plot that ATLAS allowed region is consistent with present model for θ < 13(16)o and

θ > 70(71)o region in the parameter space. It can also be seen that present model is

also consistent with CMS allowed region for θ < 20(23)o and θ > 65(66)o parameter

space. It is interesting to note that the prediction curves for the present model with
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mass values of m
(p)
h1 = 123 GeV and m

(p)
h2 = 127 GeV (m

(p)
h1 = 124 GeV and m

(p)
h2 = 126

GeV) are not symmetric. It can be understood by taking into the fact that in low θ

region m
(p)
h1 is SM like. As m

(p)
h1 is lower than m

(p)
h2 for both curves, the cross-section

× Branching ratio is smaller in lower θ region. Whereas for high θ region m
(p)
h2 is SM

like and as it is heavier than m
(p)
h1 for both curves the cross section × Branching Ratio

is higher in this region,which makes the curves non-symmetric.

This present analysis in the H → WW → lνlν channel gives the most stringent

constraint of θ < 13(16)o and θ > 70(71)o on the parameter space for the mixing

angle θ taking into account all the constraints coming from analysis in σ×BRinvisible,

H → γγ and H → WW → lνlν channels. From this analysis in different channels it

is certain that there is still plenty of parameter space available for the present model

taking into account all the known experimental constraints at the LHC.

We would also like to comment that in a linear collider like the proposed International

Linear Collider(ILC) this analysis can be done without any ambiguity about the

resolution of the two Higgs in the close range of 4GeV . In a e+ e− collider the Higgs

will be produced in association with a Z boson and from the mass recoil of the Z boson

the peak resolution of the Higgs boson can be measured in the limit of 40 MeV [12].

So from linear colliders we will be able to tell for sure if there are two Higgs bosons

in the comparable mass range between (123− 127GeV), which is not possible in this

precision from Hadron Collider like LHC.

5.4 Phenomenological Implications at the ILC

After discussing the mixings and the decays of the physical Higgs states h
(p)
1 and h

(p)
2 ,

we are now equipped enough to discuss the collider phenomenology in the context of

an electron-positron collider. In this section, we are particularly interested in the sce-

nario in which two light physical Higgs states are quasi-degenerate. Due to the large

background, it will be challenging to distinguish such a scenario at the hadron collider
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experiments. The advantages of an electron-positron collider compared to a hadron

collider are the cleanliness of the environment, the precision of the measurements and

the large number of Higgs bosons production. Therefore, it could be possible for an

electron-positron collider to probe a scenario with two quasi-degenerate Higgs bosons.

It has recently been shown by the International Large Detector (ILD) Concept Group

in Ref. [13] that the proposed electron-positron collider will be able to determine the

Higgs boson mass with a statistical precision of 40 MeV. Motivated by the results of

Ref. [13], in our analysis, we have considered two different mass splittings between

the Higgs bosons:

• Scenario I: We have considered the mass splitting between the two Higgs

bosons to be about 40 MeV. Therefore, electron-positron collider can not resolve

two Higgs bosons mass peaks in this case. The LHC experiment has already

observed a Higgs boson with mass about 125 GeV. Therefore, we have assumed

one Higgs boson mass to be 124.98 GeV and the other Higgs boson mass is

125.02 GeV.

• Scenario II: In this case, we assume relatively large mass splitting (about 500

MeV) between the two Higgs bosons so that the electron-positron collider can

resolve the Higgs bosons mass peaks. The numerical values of the Higgs boson

masses are chosen to be 124.75 GeV and 125.25 GeV.

At the electron-positron collider the main production mechanism of the Higgs

boson is the Higgs-strahlung process i.e., the production of the Higgs boson in asso-

ciation with a Z-boson: e+e− → ZH. The Higgs-strahlung process is an s-channel

process so that its production cross section is maximal just above the threshold of

the process. As a result, for the proposed electron-positron collider to study the

observed Higgs boson properties in detail, we should start with the e+e− collision

initial center-of-mass energy of 250 GeV at which the Higgs-strahlung cross-section
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Figure 5.6: Invariant mass distributions of bb̄ pairs for two different values of the

mixing angle, θ = 200 (left panel) and 100 (right panel). The masses of the two

physical Higgs states are given by mhSM
= 124.75 GeV and mhDH

= 125.25 GeV.

123 GeV < mbb < 127 GeV regions are magnified in the insets.

reaches its maximum value for a 125 GeV Higgs boson mass. In our analysis, we have

also considered 250 GeV center-of-mass energy for the electron-positron collider. In

the framework of the present model, both physical Higgs states will be produced in

association with a Z-boson. The production cross-sections of h
(p)
1 and h

(p)
2 are given

in terms of the SM Higgs production cross-section (σSM(ZH)) and the mixing an-

gle: σ(e+e− → Zh
(p)
1 ) = cos2θσSM(ZH) and σ(e+e− → Zh

(p)
2 ) = sin2θσSM(ZH) .

From the Higgs-strahlung process, the Higgs signature could be detected and hence,

Higgs mass could be measured by the direct Higgs decays and the recoiling to the

Z-boson. In our analysis, we have studied both the direct Higgs decays as well as

the recoiling to the Z-boson. The recoil mass to the Z-boson is the invariant mass of

the decay products against which the Z-boson recoils assuming the collision occurs

at the nominal center of mass energy
√
s and is defined as,

M2
recoil = (

√
s− EZ)

2 − |p⃗Z |2 = s+M2
Z − 2EZ

√
s,
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Figure 5.7: Same as Fig. 5.6 for mhSM
= 124.98 GeV and mhDH

= 125.02 GeV.

where MZ denote the mass of the Z-boson as reconstructed from the decay products

of the Z-boson and EZ is the corresponding energy. Recoil mass to the Z-boson do

not depend on the decay products of the Higgs boson and hence, provides an unique

opportunity for the reconstruction of the Higgs mass from its invisible decays. In the

framework of the present model, both h
(p)
1 and h

(p)
2 decay to the dark sector particles

which remain invisible in the detector. Therefore, in order to detect the decays h
(p)
1

and h
(p)
2 into a pair of dark particles, we have used the recoil mass to the Z-boson.

We have used CalcHEP package [14] for the simulation of the signal and the back-

ground. The recoil mass to the Z-boson crucially depends on the initial state radiation

(ISR) and beamstrahlung. CalcHEP implements the Jadach, Skrzypek and Ward ex-

pressions of Refs. [15] for the simulation of ISR. Whereas for the Beamstrahlung, we

have used the parameterizations specified for the ILD project [16]: beam size (x +

y) = 645:7 nm, bunch length = 300 µm and bunch population = 2× 1010.

Higgs boson dominantly decays into a pair of bottom-quarks. For the reconstruc-

tion of the Higgs bosons from its decay products, we consider the decays of Higgs

boson into a pair of b-quarks. For the associated Z-boson, we consider its leptonic
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Kinematic Variable Minimum value Maximum value

∆R(l+l−) 0.3 -

∆R(bb) 0.7 -

∆R(l±b) 0.7 -

pl
+,l−

T 10 GeV -

ηl+,l− -2.5 2.5

pbT 20 GeV -

ηb -2.5 2.5

M(l+l−) 80 GeV 100 GeV

Table 5.4: Acceptance cuts,used in this calculation, on the kinematical variables for

2-lepton + 2-b signal.

(electron and muon) decay modes only. Therefore, the signal is characterized by two

opposite sign same flavor leptons and two bottom quarks. The dominant background

arises from the production of a pair of Z-bosons when one Z decays in to a pair of

b-quarks and another Z decays leptonically. To parameterize detector acceptance

and enhance signal to background ratio, we have imposed kinematic cuts, listed in

Table 5.4. In Fig. 5.6, we have presented the invariant mass distributions of bb̄ pairs

for two different values of the mixing angle, θ = 20o (left panel) and 10o (right panel)

for Scenario II. We have used a bin size of 40 MeV. Scenario II corresponds to

relatively large mass splitting between the two Higgs bosons. As a result, in Fig. 5.6,

two characteristic mass peaks in the bb̄ invariant mass distributions are clearly visible.

Fig. 5.7 corresponds to the bb̄ invariant mass distributions for the Scenario I.

We have also studied the recoil mass to the Z-boson when the two Higgs bosons

decay invisibly to a pair of dark sector particles. The Z-boson is assumed to decay

into a pair of leptons (electrons and muons only). Although the branching ratio of

the Z → l+l−, where l refers to e or µ, is only about 3.4%, which is about 20 times
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Figure 5.8: Recoil mass distribution for invisible Higgs decays for two different values

of the mixing angle, θ = 20o (left panel) and 10o (right panel). The masses of the

two physical Higgs states are given by mhSM
= 124.75 GeV and mhDH

= 125.25 GeV.

123 GeV < mbb < 127 GeV regions are magnified in the insets.

smaller than that of the Z → qq̄, the high momentum resolution of leptons could

overcome the shortage in statistics to gain even higher precision on the Higgs mass

measurement. The signal in this case is characterized by two opposite sign same

flavor leptons and missing energy. The dominant background in this case is again

ZZ production followed by leptonic decay of one Z-boson and invisible decay of the

other Z-boson. The cuts listed in Table 5.4 are applied for the leptons. Fig. 5.8 gives

the background and signal+background recoil mass distributions for Scenario II for

two different values of the mixing angle, θ = 20o (left panel) and 10o (right panel).

The Higgs recoil mass distributions are crucially affected by the beamstrahlung and

the initial state radiation which are responsible for the long tail of the distributions

as visible in Fig. 5.8. However, the two Higgs bosons mass peaks are clearly visible

in Fig. 5.8.

Invisible Higgs decay is a characteristic signature of this model. The invisible

decay rate directly depends on the mixing angle and hence, could be used to probe the
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Figure 5.9: Required luminosity for 5σ discovery as a function of the mixing angle θ.

mixing angle. In view of Fig. 5.8, we impose further cuts on the MRecoil: 123 GeV ≤

MRecoil ≤ 127 GeV, to enhance the signal to background ratio. In order to quantify the

ability of extracting signal event, NS = σSL, for a given integrated luminosity L over

the SM background events, NB = σBL, we define the significance S = NS/
√
NB +NS.

In Fig. 5.9, we have presented the required luminosity for 5σ (i.e., s = 5) discovery as

a function of the mixing angle θ for an electron-positron collider with center-of-mass

energy of 250 GeV. Fig. 5.9 shows that a 250 GeV electron-positron collider with 300

fb−1 integrated luminosity will be able to probe θ upto 5o.

5.5 Summary and Conclusions

Motivated by the fact that the dark matter is about five times the ordinary matter,

we have proposed that the dark matter can just be like the ordinary matter in a

parallel universe with the QCD scale in the dark sector (ΛDS) is about five times

larger than the QCD scale in the visible sector (ΛV S). The parallel universe needs

to be much colder than our universe to keep the successful prediction for the big

bang nucleosynthesis. We have used the non-abelian Pati-Salam gauge symmetry

for both universe to have the charge quantization, as well as, to avoid any kinetic
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mixing between the photon of our universe and the parallel universe. However, the

two universes will be connected via the electroweak Higgs bosons of the two universes.

If the electroweak sector of the two universes are symmetric, the lightest Higgs bosons

of the two universes will mix. In particular, if these two Higgses mix significantly,

and their masses are close (say within 4 GeV), LHC will not be able to resolve if it is

observing one Higgs or two Higgses. However, each Higgs will decay to the particles

of our universe as well as to the corresponding particles of the the parallel universe.

This leads to the invisible decays of the observed Higgs boson (or bosons). We have

used all the available experimental data at the LHC to set constraint on this mixing

angle, and find that in can be as large as 16o. If the mixing angle is not very small,

LHC will be able to infer the existence of such invisible decays when sufficient data

accumulates. (The current limit on the invisible branching ratio from the LHC data

is < 65%). We also find that the cross section times the branching ratio for Higgs to

γγ channel is fully consistent with our model as measured by the CMS collaboration,

but not by the ATLAS collaboration. The results by the ATLAS collaboration for

this channel has to come down if our model is realized by nature. We get very

interesting phenomenology in the special case when the two light Higgs bosons of the

two Universes are almost degenerate in mass. Specifically, if their mass difference is

∼ 100MeV, the LHC would not be able to resolve them as two separate mass peaks in

its entire run time. We consider proposed ILC where because of its clean environment,

the precise measurements and large number of Higgs boson production, Higgs mass

splittings upto ∼ 100 MeV may be possible with high luminosity. We investigate two

scenarios where the mass difference between the two Higgs bosons are 40 MeV and

500 MeV for two mixing angles of 20o and 10o. We find that with a 250 GeV ILC, for

500 MeV mass splitting we can see two clear mass peaks when the Higges decay to bb̄

or invisibly. But for the more ambitious ∼ 40 MeV mass splitting, it is not possible to

resolve them. We also study the sensitivity to the mixing angle to the recoil mass to
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the Z-boson when the both the Higgs bosons decay invisibly to a pair of dark sector

particles. We show that with a 250 GeV ILC with 300 fb−1 integrated luminosity it

will be possible to probe the mixing angle θ between the two Higgs bosons upto 5o.

145



REFERENCES

[1] ATLAS Collaboration, G. Aad et.al, Phys. Lett. B716(2012)1; CMA Collabo-

ration, S. Chatrchyan et. al, Phys. Lett. B716(2012)30.

[2] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974)438.

[3] H. Georgi, in Proceedings of the American Institute of Physics, edited by C.

E. Carlson, Meetings at College of William and Mary, 1974; H. Fritzsch and P.

Minkowski, Ann. Phys. 93 (1975)193.

[4] For example, see Particle Data Group Review on Dark Matter by M Drees and

G. Geibier, September, 2011.

[5] Hsin-Chia Chen, Jonathan L. Feng and Konstantin T. Matchev, Phys. Rev.

Lett. 89(2002)211301; Geraldine Servant and Tim M.P. Tait, Nucl. Phys.

B650(2003)391.

[6] S. Weinberg, Phys. Rev. Lett. 40(1978)223; F. Wilczek, Phys. Rev. Lett. 40

(1978)279.

[7] P. Candelas, Gary t. Horowitz, Andrew Strominger and Edward Witten, Nucl.

Phys. B258(1985)46.

[8] R. Foot, H. Lew and R. R. Volkas, JHEP 0007(2000)032; H. An, S.-L. Chen,

R. N. Mohapatra and Y. Zhang, JHEP 1003(2010)124.

[9] C. A. Bertulani, T. Frederico, J. Fuqua, M. S. Hussein, O. Oliveira and W. de

Paula, AIP Conf. Proc. 1498, 134 (2012). Z. G. Berezhiani, A. D. Dolgov

146



and R. N. Mohapatra, Phys. Lett. B 375, 26 (1996) [hep-ph/9511221]. Z. G.

Berezhiani and Rabindra N. Mohapatra, Phys. Rev. D 52 (1995)6607.

[10] Measurements of the properties of the Higgs-like boson in the two photon decay

channel with the ATLAS detector using 25 fb1 of proton-proton collision data-

ATLAS Collaboration ATLAS-CONF-2013-012.

[11] Search for invisible decays of a Higgs boson produced in association with a Z

boson in ATLAS-ATLAS Collaboration ATLAS-CONF-2013-011.

[12] The International Linear Collider,Technical Design Report,Volume 2 Physics

[13] T. Abe et al. [ILD Concept Group - Linear Collider Collaboration],

arXiv:1006.3396 [hep-ex];

[14] A. Belyaev, N. D. Christensen and A. Pukhov, Comput. Phys. Commun. 184,

1729 (2013).

[15] S. Jadach and B. F. L. Ward, Comput. Phys. Commun. 56, 351 (1990);

M. Skrzypek and S. Jadach, Z. Phys. C 49, 577 (1991).

[16] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M. Paterson,

M. Peskin and M. Stanitzki et al., arXiv:1306.6327 [physics.acc-ph].

[17] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974) [Erratum-ibid. D 11, 703

(1975)].

[18] R. E. Marshak and R. N. Mohapatra, Phys. Lett. B 91, 222 (1980).

[19] J. L. Ritchie and S. G. Wojcicki, Rev. Mod. Phys. 65, 1149 (1993); J. Beringer

et al (Particle Data Group), Phys. Rev. D86 (2012)010001; G. Valencia and S.

Willenbrock, Phys. Rev. D50 (1994)6843; S. Chakdar, T. Li, S. Nandi and S.

K. Rai, Phys. Lett. B718(2012)121.

147



[20] G. Senjanovic, Nucl. Phys. B 153, 334 (1979).

[21] CERN Yellow Report Page At 8 TeV 2012 update.

[22] CERN Yellow Report Page At 8 TeV 2012 update.

[23] Measurements of the properties of the Higgs-like boson in the WW (∗) decay

channel with the ATLAS detector using 25fb−1 of proton-proton collision data-

ATLAS Collaboration ATLAS-CONF-2013-030.

[24] Evidence for a particle decaying to W+W- in the fully leptonic final state in a

standard model Higgs boson search in pp collisions at the LHC-CMS Collabo-

ration CMS-PAS-HIG-13-003.

[25] Measurements of the properties of the Higgs-like boson in the two photon decay

channel with the ATLAS detector using 25fb−1 of proton-proton collision data-

ATLAS Collaboration ATLAS-CONF-2013-012.

[26] Updated measurements of the Higgs boson at 125 GeV in the two photon decay

channel-CMS Collaboration CMS-PAS-HIG-13-001.

148



CHAPTER 6

Predictive models of the Dirac Neutrinos

6.1 Introduction

In the past 20 years, there has been a great deal of progress in neutrino physics

from the atmospheric neutrino experiments (Super-K [1], K2K [2], MINOS [3]), so-

lar neutrino experiments ( SNO [4], Super-K [5] , KamLAND [6]) as well as reac-

tor/accelerator neutrino experiments (Daya Bay [7], RENO [8], Double Chooz [9],

T2K [10], NOνa [11]). These experiments have pinned down three mixing angles

- θ12, θ23, θ13 and two mass squared differences ∆m2
ij = m2

i − m2
j with reasonable

accuracy [12]. However there are several important parameters yet to be measured.

These include the value of the CP phase δ which will determine the magnitude of CP

violation in the leptonic sector and the sign of ∆m2
32 which will determine whether

the neutrino mass hierarchy is normal or inverted. We also don’t know yet if the

neutrinos are Majorana or Dirac particles.

On the theory side, the most popular mechanism for neutrino mass generation is

the see-saw [13]. This requires heavy right handed neutrinos, and this comes natu-

rally in the SO(10) grand unified theory (GUT) [14] in the 16 dimensional fermion

representation. The tiny neutrino masses require the scale of these right handed neu-

trinos close the GUT scale. The light neutrinos generated via the sea-saw mechanism

are Majorana particles. However, the neutrinos can also be Dirac particles just like

ordinary quarks and lepton.This can be achieved by adding right handed neutrinos to

the Standard Model. The neutrinos can get tiny Dirac masses via the usual Yukawa

couplings with the SM Higgs. In this case, we have to assume that the corresponding
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Yukawa couplings are very tiny, ∼ 10−12. Interesting works in Dirac neutrinos can be

found in these references [15]. Alternatively, we can introduce a 2nd Higgs doublet

and a discrete Z2 symmetry so that the neutrino masses are generated only from the

2nd Higgs doublet. The neutrino masses are generated from the spontaneous break-

ing of this discrete symmetry from a tiny vev of this 2nd Higgs doublet in the eV or

keV range, and then the associated Yukawa couplings need not be so tiny [16]. At

this stage of neutrino physics, we can not determine which of these two possibilities

are realized by nature.

In the first work, we show that with the three known mixing angles and two

known mass difference squares, we find an interesting pattern in the neutrino mass

matrix if the neutrinos are Dirac particles. With three reasonable assumptions : (i)

lepton number conservation, (ii) hermiticity of the neutrino mass matrix, and (iii)

νµ - ντ exchange symmetry, we can construct the neutrino mass matrix completely.

The resulting mass matrix satisfies all the constraints implied by the above three

assumptions, and gives an inverted hierarchy (IH) (very close to the degenerate)

pattern. We can now predict the absolute values of the masses of the three neutrinos,

as well as the value of the CP violating phase δ. We also predict the absence of

neutrinoless double ββ decay.

In the second work, we have considered a general symmetry involving the inter-

change of the right handed muon neutrino (νµR) and tau neutrino (ντR). The three

RH charged leptons and neutrinos are singlet under SU(2)L and thus they do not

form a multiplate. Therefore, we can invoke any symmetry in the RH neutrino sec-

tor without imposing that symmetry in the charged lepton sector. If any symmetry

exists in the Dirac neutrino mass matrix under interchange of νµR-ντR then this will

be symmetry of the whole Lagrangian. We have constructed the different Dirac neu-

trino mass matrices assuming different kinds of symmetries in the νµR and ντR sector

and tried to fit the experimentally observed quantities. Finally, we end up with a
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four parameter Dirac neutrino mass matrix which is based on the assumption of the

Hermiticity1 of the Dirac neutrino mass matrix and a particular symmetry between

νµR and ντR. We have also shown that assuming IH in the neutrino sector, this four

parameter neutrino mass matrix is consistent with the observed values of the three

mixing angles and two squared-mass differences listed in Table 6.1, and also makes

definite predictions for the values of the three neutrino masses and the leptonic CP

violating phase.

The chapter is organized as follows. In Section 2, we discuss the details of the Model

with five parameters in the neutrino mass matrix. In Section 3, we discuss the phe-

nomenological implications and results of this framework. In section 4, we discuss in

detail the Model with only four parameters in the neutrino mass matrix. We present

the summary and conclusions in Section 5.

6.2 The Model with five parameters in the neutrino mass matrix

Our first model is based on the Standard Model (SM) Gauge symmetry, SU(3)C ×

SU(2)L × U(1)Y , supplemented by a discrete Z2 symmetry. [16]. In addition to the

SM particles, we have three SM singlet right handed neutrinos, NRi, i = 1,2,3, one

for each family of fermions. We also have one additional Higgs doublet ϕ, in addition

to the usual SM Higgs doublet χ. All the SM particles are even under Z2, while the

NRi and the ϕ are odd under Z2. Thus while the SM quarks and leptons obtain their

1It is important to note that the assumption of Hermiticity is somewhat ad hoc i.e., Hermiticity

of neutrino mass matrix is not an outcome of symmetry argument. However, we have shown in

the following that with this assumption, the existing neutrino data can completely determine the

mass matrix for the Dirac neutrinos with particular predictions for the neutrino masses and the CP

violating phase which can be tested at the ongoing and future neutrino experiments. Therefore, in

our analysis, the assumption of hermiticity of neutrino mass matrix is a purely phenomenological

assumption. However, in the future, there might be some compelling theoretical framework which

requires the hermiticity of neutrino mass matrix.
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masses from the usual Yukawa couplings with χ with vev of ∼ 250 GeV, the neutrinos

get masses only from its Yukawa coupling with ϕ for which we assume the vev is ∼

keV to satisfy the cosmological constraints which we will discuss later briefly. Note

that even with as large as a keV vev for ϕ, the corresponding Yukawa coupling is

of order 10−4 which is not too different from the light quarks and leptons Yukawa

coupling in the SM. The Yukawa interactions of the Higgs fields χ and ϕ and the

leptons can be written as,

LY = ylΨ̄
l
LlRχ+ yνlΨ̄

l
LNRΦ̃ + h.c., (6.1)

where Ψ̄l
L = (ν̄l, l̄)L is the usual lepton doublet and lR is the charged lepton singlet,

and we have omitted the family indices. The first term gives rise to the masses of the

charged leptons, while the second term gives tiny neutrino masses. The interactions

with the quarks are the same as in the Standard Model with χ playing the role of the

SM Higgs doublet. Note that in our model, the tiny neutrino masses are generated

from the spontaneous breaking of the discrete Z2 symmetry with its tiny vev of ∼

keV. The left handed doublet neutrino combine with its corresponding right handed

singlet neutrino to produce a massive Dirac neutrino. Since we assume lepton number

conservation, the Majorana mass terms for the right handed neutrinos, having the

form, MνT
RC

−1νR are not allowed.

The model has a very light neutral scalar σ with mass of the order of this Z2

symmetry breaking scale. Detailed phenomenology of this light scalar σ in context

of e + e− collider has been done previously [16] and also some phenomenological

works have been done on the chromophobic charged Higgs of this model at the LHC

whose signal are very different from the charged Higgs in the usual two Higgs doublet

model [17]. There are bounds on vϕ from cosmology, big bang nucleosynthesis, because

of the presence of extra degree of freedom compared to the SM; puts a lower limit

on vϕ ≥ 2 eV [18], while the bound from supernova neutrino observation is vϕ ≥ 1

keV [19].
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In this work, we study the neutrino sector of the model using the input of all

the experimental information regarding the neutrino mass difference squares and the

three mixing angles. Our additional theoretical inputs are that the neutrino mass

matrix is hermitian and also has νµ − ντ exchange symmetry. We find that in order

for our model to be consistent with the current available experimental data, the

neutrino mass hierarchy has to be inverted type (with neutrino mass values close to

degenerate case). We also predict the values of all three neutrino masses, as well as

the CP violating phase δ.

With the three assumptions stated in the introduction, namely, lepton number

conservation, Hermiticity of the neutrino mass matrix, and the νµ − ντ exchange

symmetry, the neutrino mass matrix can be written as

Mν =


a b b

b∗ c d

b∗ d c

 . (6.2)

The parameters a, c and d are real, while the parameter b is complex. Thus the

model has a total of five real parameters. The important question at this point is

whether the experimental data is consistent with this form. Choosing a basis in which

the Yukawa couplings for the charged leptons are diagonal, the PMNS matrix in our

model is simply given by Uν , where Uν is the matrix which diagonalizes the neutrino

mass matrix. Since the neutrino mass matrix is hermitian, it can then be obtained

from

Mν = UνM
diag
ν U †

ν (6.3)

where

Mdiag
ν =


m1 0 0

0 m2 0

0 0 m3

 . (6.4)
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The matrix Uν is the PMNS matrix for our model (since Ul is the identity matrix

from our choice of basis), and is conventionally written as:

Uν =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (6.5)

where, cij = Cosθij and sij = Sinθij.

6.3 Phenomenological Implications and Results

The values of three mixing angles and the two neutrino mass squared differences are

now determined from the various solar, reactor and accelerator neutrino experiments

with reasonable accuracy (the sign of ∆m2
32 is still unknown). The current knowledge

of the mixing angles and mass squared differences are given by [20] Table 6.1.

Parameter best-fit (±σ)

∆m2
21[10

−5eV 2] 7.53+0.26
−0.22

∆m2[10−3eV 2] 2.43+0.06
−0.10

sin2 θ12 0.307+0.018
−0.016

sin2 θ23 0.392+0.039
−0.022

sin2 θ13 0.0244+0.0023
−0.0025

Table 6.1: The best-fit values and 1σ allowed ranges of the 3-neutrino oscillation

parameters. The definition of ∆m2 used is ∆m2 = m2
3 − (m2

2 +m2
1)/2. Thus ∆m2 =

∆m2
31 −m2

21/2 if m1 < m2 < m3 and ∆m2 = ∆m2
32 +m2

21/2 for m3 < m1 < m2.

It is not at all sure that the data will satisfy our model given by Eqn. (6.2), either for

the direct hierarchy or the indirect hierarchy. We first try the indirect hierarchy. In

this case, the diagonal neutrino mass matrix, using the experimental mass difference

squares, can be written as
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Mdiag
ν =


√
m2

3 + 0.002315 0 0

0
√
m2

3 + 0.00239 0

0 0 m3

 , (6.6)

where we have used the definition of ∆m2 in the inverse hierarchy mode as referred

in Table 6.1.

Taking these experimental values in the best-fit(±σ) region from Table 6.1, for

the PMNS mixing matrix, we get from Eqn (6.5)

Uν =


0.822 0.547 0.156 exp(−iδ)

−0.432− 0.081 exp(iδ) 0.649− 0.054 exp(iδ) 0.618

0.347− 0.101 exp(iδ) −0.521− 0.067 exp(iδ) 0.771

 . (6.7)

We plug these expressions for Mdiag
ν and Uν in Mν = UνM

diag
ν U †

ν and demand that

the resulting mass matrix satisfy the form of our model predicted Eqn. (6.2). First,

using Mµµ = Mττ as in Eqn. (6.2), we obtain the following 2nd order equation for

cos δ

(−123.27m4
3 − 0.15m2

3 + 0.0026) cos2 δ + (6.66m4
3 − 6.7m2

3 − 0.006) cos δ

+29.654m4
3 − 3.19m2

3 + 0.0031 = 0 ,(6.8)

where, we have used some approximations while simplifying the equation analytically,

which would not affect our result, if it is done numerically. Further, Eqn. (6.8) is

satisfied only for certain range of values of m3 demanding that −1 < cos δ < 1. For

that range of m3, now we demand that Meµ = Meτ to be satisfied. This takes into

account separately satisfying the equality of the real and imaginary parts of Meµ

and Meτ elements. It is intriguing that a solution exists, and gives the values of

m3 = 7.8× 10−2 eV and δ = 109.63o.

Thus the prediction for the three neutrino masses and the CP violating phase in
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our model are,

m1 =
√

m2
3 + 0.002315 = 9.16× 10−2eV, (6.9)

m2 =
√
m2

3 + 0.00239 = 9.21× 10−2eV,

m3 = 7.8× 10−2eV,

δ = 109.63o.

with δ being close to the maximum CP violating phase.

As a double check of our calculation, we have calculated the neutrino mass matrix

numerically using the above obtained values of m1,m2,m3 and δ as given by mass

matrix Eqn.(6.16). The resulting numerical neutrino mass matrix we obtain is given

by,

Mν =


0.091 0.00048 + 0.001i 0.00044 + 0.0015i

0.00048− 0.001i 0.086 −0.0066

0.00044− 0.0015i −0.0066 0.084

 . (6.10)

We see that with this verification, the mass matrix predicted by our model in

Eqn.(6.2), is well satisfied.

We note that we also investigated the normal hierarchy case for our model satis-

fying hermiticity and νµ − ντ exchange symmetry. We found no solution for cos δ for

that case. Thus normal hierarchy for the neutrino masses can not be accommodated

in our model.

Our model predicts the electron type neutrino mass to be rather large (9.16×10−2

eV), and the CP violating parameter δ close to the maximal value (δ ≃ 109o). Let us

now discuss briefly how our model can be tested in the proposed future experiments

of electron type neutrino mass measurement directly and also for the leptonic CP

violation. The measurement of the electron anti-neutrino mass from tritium β decay

in Troitsk ν-mass experiment set a limit of mν < 2.2eV [21]. New experimental

approaches such as the MARE [22] will perform measurements of the neutrino mass
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in the sub-eV region. So with a little more improvement, it may be possible to reach

our predicted value of ∼ 0.1 eV.

The magnitude of the CP violation effect depends directly on the magnitude of

the well known Jarlskog Invariant [23], which is a function of the three mixing angles

and CP violating phase δ in standard parametrization of the mixing matrix:

JCP = 1/8 cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ (6.11)

Given the best fit values for the mixing angles in Table 6.1 and the value of CP

violating phase δ = 110o in our model, we find the value of Jarlskog Invariant,

JCP = 0.032, (6.12)

which corresponds to large CP violating effects. The study of νµ → νe and ν̄µ → ν̄e

transitions using accelerator based beams is sensitive to the CP violating phenomena

arising from the CP violating phase δ. We are particularly interested in the Long

Baseline Neutrino Experiment (LBNE) [24], which with its baseline of 1300 Km and

neutrino energy Eν between 1 − 6 GeV would be able to unambiguously shed light

both on the mass hierarchy and the CP phase simultaneously. Evidence of the CP

violation in the neutrino sector requires the explicit observation of asymmetry between

P (νµ → νe) and P (ν̄µ → ν̄e), which is defined as the CP asymmetry ACP ,

ACP =
P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
(6.13)

In three-flavor model the asymmetry can be approximated to leading order in ∆m2
21

as, [25]

ACP ∼ cos θ23 sin 2θ12 sin δ

sin θ23 sin θ13
(
∆m2

21L

4Eν

) + matter effects (6.14)

For our model, taking LBNE Baseline value L = 1300 Km and Eν = 1 GeV, we get

the value of ACP = 0.17 + matter effects. With this relatively large values of ACP ,

LBNE10 in first phase with values of 700 KW wide-band muon neutrino and muon
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anti-neutrino beams and 100 kt.yrs will be sensitive to our predicted value of CP

violating phase δ with 3-Sigma significance [26].

Finally, we compare our model for the sum of the three neutrino masses against the

cosmological observation. The sum of neutrino masses m1+m2+m3 < (0.32±0.081)

eV [27] from (Planck + WMAP + CMB + BAO) for an active neutrino model with

three degenerate neutrinos has become an important cosmological bound. For our

model, we find m1 +m2 +m3 ≃ 0.26 eV, which is consistent with this bound.

6.4 The Model with four parameters in the neutrino mass matrix

The most general Dirac neutrino mass matrix contain 9 complex parameters and can

be written as:

Mν =


meLeR meLµR

meLτR

mµLeR mµLµR
mµLτR

mτLeR mτLµR
meLτR

 . (6.15)

On this 18 parameter Dirac neutrino mass matrix, we have imposed the following

conditions:

• We have assumed the hermiticity of the neutrino mass matrix. As a result of

this assumption, the diagonal elements of Eq. 6.15 become real and off-diagonal

elements become complex conjugate of each other: mµLeR = m∗
eLµR

, mτLeR =

m∗
eLτR

and mτLµR
= m∗

µLτR
. Therefore, after demanding the hermiticity, we have

a 9 parameter neutrino mass matrix.

The hermitian neutrino mass matrix is given in the flavor basis by

Mν = UνM
diag
ν U †

ν , (6.16)

where, Mdiag
ν is the diagonal neutrino mass matrix in the mass basis. Two squared-

mass differences of the neutrinos are known from the experiments. Therefore, Mdiag
ν
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can be constructed with only one mass as unknown. For IH, the diagonal neutrino

mass matrix is given by,

Mdiag
ν =


√
m2

3 + 0.002315 0 0

0
√
m2

3 + 0.00239 0

0 0 m3

 , (6.17)

where, m3 is the unknown mass and we have used the central values of the squared-

mass differences listed in Table 6.1 for IH. In the mixing matrix U , there are three

angles and one phase. The mixing angles are already measured (see Table 6.1 for their

central values and 3σ range) with good precision. In our analysis, we have considered

the IH central values for the s212 and s213. However, we have considered s223 = 0.5

which is not the central value but well within 3σ of the central value.

If we assume one particular neutrino mass hierarchy, there are still two quantities

unknown in for the Dirac neutrinos namely, the mass m3 in the diagonal mass matrix

and the CP violating phase (δ) in the mixing matrix. In our analysis, we have

scanned unknown parameters (m3 and δ) over a range of values and tried to find out

a constrained phenomenological neutrino mass matrix which is consistent with the

5 experimental results (three mixing angles and two squared-mass differences). Our

phenomenological results are summarized in the following:

• In Fig. 6.1, we have presented mµLµR
and real part of -mµLτR elements of the

Dirac neutrino mass matrix in Eq. 6.15 as a function of m3. The other free

parameter δ was randomly varied between 0 and π. Fig. 6.1 shows that two

curves interests each other at m3 = −1.198× 10−3eV.

• In Fig. 6.2, we have presented real and imaginary parts of the elements meLµR

and meLτR (left panel) and diagonal elements mµLµR
and mτLτR (right panel)

of the Dirac neutrino mass matrix in Eq. 6.15 as a function of δ for m3 =

−1.198 × 10−3 eV. Fig. 6.2 shows that a constrained neutrino mass matrix is
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Figure 6.1: The elements mµLµR
and real part of -mµLτR of the Dirac neutrino mass

matrix in Eq. 6.15 as a function of m3. The other free parameter δ was randomly

varied between 0 and π. We have used IH central values for the ∆m2
21, ∆m2, s212 and

s213 from Table 6.1 and for s223, we choose s223 = 0.5.

obtained for δ = π/2 and m3 = −1.198 × 10−3 eV. The numerical form of the

mass matrix in the flavor basis for δ = π/2 and m3 = −1.198×10−3 eV is given

by,
4.72× 10−2 2.49× 10−4 − 5.37× 10−3i −2.49× 10−4 − 5.37× 10−3i

2.49× 10−4 + 5.37× 10−3i 2.43× 10−2 −2.43× 10−2

−2.49× 10−4 + 5.37× 10−3i −2.43× 10−2 2.43× 10−2

 ,

(6.18)

It is important to note that the mass matrix in Eq. 6.18 is a four parameter matrix

can be written as,

Mpheno
ν =


a beiη −be−iη

be−iη c −c

−beiη −c c

 , (6.19)
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Figure 6.2: Left panel: The real and imaginary part of the elements meLµR
and

meLτR of the Dirac neutrino mass matrix in Eq. 6.15 as a function of δ (in radian) for

m3 = −1.198 × 10−3. Right panel: The diagonal elements mµLµR
and mτLτR of the

Dirac neutrino mass matrix in Eq. 6.15 as a function of δ for m3 = −1.198 × 10−3.

We have used IH central values for the ∆m2
21, ∆m2, s212 and s213 from Table 6.1 and

for s223, we choose s223 = 0.5.

with a = 4.72 × 10−2, b = 5.38 × 10−3, c = 2.43 × 10−2 and η = 272.60. We now

search for symmetry in the νµR-ντR sector which is consistent with the structure of

the phenomenological neutrino mass matrix in Eq. 6.19.

The most general transformation in the νµR-ντR sector can be written as,

ΨR =


νe

νµ

ντ

→


eiϕ1 0 0

0 peiϕ2 −qe−iϕ3

0 qeiϕ3 pe−iϕ2

 ΨR → URΨR, (6.20)

where, p2 + q2 = 1 and ϕ1, ϕ2 and ϕ3 are the arbitrary phases. As already discussed

in the beginning of this paper, we do not want to introduce any symmetry in νµL-ντL

sector in order to make the symmetry as the symmetry of the Lagrangian. However,
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phase transformation for the left-handed neutrino fields are still allowed:

ΨL =


νe

νµ

ντ

→


e−iθ1 0 0

0 e−iθ2 0

0 0 e−iθ3

 ΨL → ULΨL, (6.21)

We have demanded the invariance under simultaneous transformations ΨR → URΨR

and ΨL → ULΨL followed by a complex conjugation of the couplings. Complex

conjugation of the couplings is equivalent to making a CP transformation. In the rest

of this article, the symmetry under above mentioned transformations followed by a

CP transformation is denoted as νµR-ντR reflection symmetry. As a consequence of

the νµR-ντR reflection symmetry, we obtain the following matrix equation:

[
U †
LM

pheno
ν UR

]∗
= Mpheno

ν . (6.22)

The most general solution of Eq. 6.22 is given by

ϕ1 = n1π − cos−1 [(−1)n2p] ; θ1 = n1π + cos−1 [(−1)n2p] ;

ϕ2 = n2π ; θ2 = cos−1 [(−1)n2p] ;

ϕ2 =

(
n3 +

1

2

)
π ; θ2 = sin−1 [(−1)n3q] (6.23)

and

η =
nπ

2
; (6.24)

where, n, n1, n2 and n3 are arbitrary integers. The trivial solution (n1 = 0, n2 = 0

and n3 = 0) of Eq. 6.22 physically corresponds to a symmetry under interchange of

νµR ↔ −iντR followed by a CP transformation with η = 00, 900, 1800, 2700, .....

However, the phenomenological neutrino mass matrix under consideration (Eq. 6.18

and Eq. 6.19) corresponds to η = 272.60. Therefore, tiny violation of the symmetry

under interchange of νµR ↔ −iντR followed by a CP transformation is required to

satisfy all the experimental results.
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6.5 Summary and Conclusions

In this work, we have presented predictive models for Dirac neutrinos. The first model

has three assumptions: (i) lepton number conservation, (ii) hermiticity of the neu-

trino mass matrix, and (iii) νµ - ντ exchange symmetry. The resulting neutrino mass

matrix is of Dirac type, and has five real parameters, (three real and one complex).

We have shown that the data on neutrino mass differences squares, and three mix-

ing angles are consistent with this model yielding a solution for the neutrino masses

with inverted mass hierarchy (close the degenerate pattern). The values predicted

by the model for the three neutrino masses are 9.16 × 10−2 eV, 9.21 × 10−2 eV and

7.80 × 10−2 eV. In addition, the model also predicts the CP violating phase δ to be

109.63o, thus predicting a rather large CP violation in the neutrino sector, and will be

easily tested in the early runs of the LBNE. The mass of the electron type neutrino

is also rather large, and has a good possibility for being accessible for measurement

in the proposed tritium beta decay experiments. Neutrinos being Dirac, neutrinoless

double beta decay is also forbidden in this model. Thus, all of these predictions can

be tested in the upcoming and future precision neutrino experiments.

In the second model, we have also considered Dirac neutrino mass matrix and in-

vestigated the possible symmetries in the νµR-ντR sector. In order to ensure that

the imposed condition is a symmetry of the Lagrangian (not only the symmetry of

the neutrino mass matrix in the flavor basis), we have restricted the requirements

only to the singlet right-handed muon and tau neutrinos. Assuming the hermiticity

of the neutrino mass matrix, we have obtained a particular structure of the phe-

nomenological Dirac neutrino mass matrix with only 4 parameters. This 4 parameter

Dirac neutrino mass matrix can explain all five (two squared-mass differences and

three mixing angles) experimental results in the neutrino sector with particular pre-

dictions for the absolute values of the neutrino masses (m1 = 4.81 × 10−2, m2 =

4.89 × 10−2 and m3 = −1.198 × 10−3 eV) and CP violating phase δ = 2700. We
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have shown that the 4 parameters phenomenological mass matrix corresponds to a

symmetry under interchange of νµR ↔ −iντR followed by a CP transformation with

a tiny violation of this symmetry to accommodate a value of the phase δ = 272.60 as

required by the mass matrix in Eq. (6).
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CHAPTER 7

Warm Dark Matter in two higgs doublet models

7.1 Introduction

One of the simplest extensions of the Standard Model is the addition of a second

Higgs doublet to its spectrum. A second Higgs doublet appears naturally in a vari-

ety of well motivated scenarios that go beyond the Standard Model. These include

supersymmetric models [1], left-right symmetric models [2], axion models [3] and

models of spontaneous CP violation [4], to name a few. These models have the po-

tential for rich phenomenology that may be subject to tests at colliders and in low

energy experiments. A notable feature of these models is the presence of additional

scalar states, two neutral and one charged, which may be accessible experimentally

at the LHC. Naturally, two Higgs doublet models have been extensively studied in

the literature [5].

In this chapter we focus on certain cosmological and astrophysical aspects of the

two Higgs doublet models in a regime that has not been previously considered. It is

well known that no particle in the Standard Model can fit the observed properties of

the dark matter in the universe inferred from astrophysical and cosmological data.

New particles are postulated to fulfill this role. Two Higgs doublet models do contain

a candidate for dark matter in one of its neutral scalar bosons. It is generally assumed

that this particle, which is stable on cosmological time scales owing to an approximate

(or exact) symmetry, is a cold dark matter candidate with masses in the several 100

GeV range [6, 7]. These particles annihilates into lighter Standard Model particles

in the early thermal history of the universe with cross sections of order picobarn. In
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this work we show that there is an alternative possibility where the extra neutral

scalar boson of these models can have mass of the order of a keV and be identified

as a warm dark matter candidate. This scenario is completely consistent with known

observations and would have distinct signatures at colliders as well as in cosmology

and astrophysics, which we outline here.

The ΛCDM cosmological paradigm, which assumes a significant cold dark matter

component along with a dark energy component in the energy density of the universe,

has been immensely successful in confronting cosmological and astrophysical data

over a wide range of distance scales, of order Gpc to about 10 Mpc. However, at

distance scales below a Mpc, cold dark matter, which has negligible free–streaming

velocity, appears to show some inconsistencies. There is a shortage in the number of

galactic satellites observed compared to CDM N–body simulations; density profiles

of galactic dark matter haloes are too centrally concentrated in simulations compared

to data; and the central density profile of dwarf galaxies are observed to be shallower

than predicted by CDM [8]. These problems can be remedied if the dark matter

is warm [9], rather than cold. Warm dark matter (WDM) has non-negligible free–

streaming velocity, and is able to wipe out structures at distance scales below a Mpc,

while behaving very much like CDM at larger distance scales. This would alleviate the

small scale problems of CDM, while preserving its success at larger distance scales.

The free streaming length of warm dark matter can be written down very roughly

as [10]

Rfs ≈ 1Mpc

(
keV

mσ

)(
⟨pσ⟩
3.15T

)
T≈keV

, (7.1)

where mσ is the dark matter mass and ⟨pσ⟩ its average momentum. For a fully

thermalized WDM, ⟨pσ⟩ = 3.15T . In the WDM of two Higgs doublet model, as we

shall see later, ⟨pσ⟩/(3.15T ) ≃ 0.18, so that an effective thermal mass of σ, about six

times larger than mσ can be defined corresponding to fully thermalized momentum

distribution. Formσ of order few keV, we see that the free–streaming length is of order
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Mpc, as required for solving the CDM small scale problems. Note that structures

at larger scales would not be significantly effected, and thus WDM scenario would

preserve the success of CDM at large scales.

The WDM candidate of two Higgs doublet extensions of the Standard Model is

a neutral scalar, σ, which can have a mass of order keV. Such a particle, which

remains in thermal equilibrium in the early universe down to temperatures of order

150 MeV through weak interaction processes (see below), would contribute too much

to the energy density of the universe, by about a factor of 34 (for mσ = 1 keV). This

unpleasant situation is remedied by the late decay of a particle that dumps entropy

into other species and heats up the photons relative to σ. A natural candidate for

such a late decay is a right-handed neutrino N that takes part in neutrino mass

generation via the seesaw mechanism. We find that for MN = (25 GeV − 20 TeV),

and τN = (10−4 − 1) sec. for the mass and lifetime of N , consistency with dark

matter abundance can be realized. Novel signals for collider experiments as well

as for cosmology and astrophysics for this scenario are outlined. In particular, by

introducing a tiny breaking of a Z2 symmetry that acts on the second Higgs doublet

and makes the dark matter stable, the decay σ → γγ can occur with a lifetime longer

than the age of the universe. This can explain the recently reported anomaly in

the X-ray spectrum from extra-galactic sources, if mσ = 7.1 keV is adopted, which is

compatible with other WDM requirements. This feature is somewhat analogous to the

proposal of Ref. [11] where a SM singlet scalar which coupled very feebly with the SM

sector played the role of the 7.1 keV particle decaying into two photons. The present

model with σ belonging to a Higgs doublet has an entirely different cosmological

history; in particular σ interacts with the weak gauge bosons with a coupling strength

of g2 ∼ O(1) and remains in thermal equilibrium in the early universe down to

T ≈ 150 MeV, while the singlet scalar of Ref. [11] was never thermalized.

The rest of the chapter is organized as follows. In Sec. 2 we describe the two
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Higgs doublet model for warm dark matter. Here we also study the experimental

constraints on the model parameter. In Sec. 3 we derive the freeze-out temperature

of the WDM particle σ and compute its relic abundance including the late decays of

N . Here we show the full consistency of the framework. In Sec. 4 we analyze some

other implications of the model. These include supernova energy loss, dark matter

self interactions, 7.1 keV X-ray anomaly, and collider signals of the model. Finally

in Sec. 5 we conclude.

7.2 Two Higgs Doublet Model for Warm Dark Matter

The model we study is a specific realization of two Higgs doublet models that have

been widely studied in the context of dark matter [6, 7]. The two Higgs doublet

fields are denoted as ϕ1 and ϕ2. A discrete Z2 symmetry acts on ϕ2 and not on any

other field. This Z2 prevents any Yukawa couplings of ϕ2. While ϕ1 acquires a vacuum

expectation value v ≃ 174 GeV, ⟨ϕ0
2⟩ = 0, so that the Z2 symmetry remains unbroken.

The lightest member of the ϕ2 doublet will then be stable. We shall identify one of

the neutral members of ϕ2 as the WDM σ with a mass of order keV.

Neutrino masses are generated via the seesaw mechanism. Three Z2 even singlet

neutrinos, Ni, are introduced. The Yukawa Lagrangian of the model is

LYuk = LSM
Yuk + (YN)ijℓiNj ϕ1 +

MNi

2
NT

i CNi + h.c. (7.2)

Here LSM
Yuk is the SM Yukawa coupling Lagrangian and involves only the ϕ1 field owing

to the ϕ2 → −ϕ2 reflection (Z2) symmetry. The Higgs potential of the model is

V = −m2
1|ϕ1|2 +m2

2|ϕ2|2 + λ1|ϕ1|4 + λ2|ϕ2|4 + λ3|ϕ1|2|ϕ2|2

+ λ4|ϕ†
1ϕ2|2 + {λ5

2
(ϕ†

1ϕ2)
2 + h.c.}. (7.3)

With ⟨ϕ0
1⟩ = v ≃ 174 GeV and ⟨ϕ0

2⟩ = 0, the masses of the various fields are obtained
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as

m2
h = 4λ1v

2, m2
σ = m2

2 + (λ3 + λ4 + λ5) v
2;

m2
A = m2

2 + (λ3 + λ4 − λ5) v
2; m2

H± = m2
2 + λ3v

2 . (7.4)

Here h is the SM Higgs boson with a mass of 126 GeV; σ and A are the second scalar

and pseudoscalar fields, while H± are the charged scalars. We wish to identify σ as

the keV warm dark matter candidate.1 In order to go from 100 GeV to a few keV for

the mass of σ, some fine-tuning will have to be done. While this may be viewed as

not natural, we note that in any non-supersymmetric model of this type, such fine-

tunings are needed to protect the scalar masses from quadratic divergences. This is

true in the inert doublet model with cold dark matter as well. An immediate concern

is whether the other scalars can all be made heavy, of order 100 GeV or above, to be

consistent with experimental data. This can indeed be done, as can be seen from Eq.

(7.4). Note that m2
A = m2

σ − 2λ5v
2 and m2

H± = m2
σ − (λ4 + λ5)v

2, so that even for

mσ ∼ keV, mA and mH± can be large. However, the masses of A and H± cannot be

taken to arbitrary large values, since λiv
2 are at most of order a few hundred (GeV)2

for perturbative values of λi. The boundedness conditions on the Higgs potential can

all be satisfied [5] with the choice of positive λ1,2,3 and negative λ5 and (λ4 + λ5).

The keV WDM version of the two Higgs doublet model would thus predict that the

neutral scalar A and the charged scalar H± have masses not more than a few hundred

GeV. The present limits on the masses of A and H± are approximately mA > 90 GeV

(from Z boson decays into σ+A) and mH± > 100 GeV from LEP searches for charged

scalars. This would mean that |λ5| > 0.13 and |λ4 + λ5| > 0.17.

1Alternatively, A can be identified as the WDM candidate. With some redefinitions of couplings,

this scenario would lead to identical phenomenology as in the case of σ WDM.
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7.2.1 Electroweak precision data and Higgs decay constraints

The precision electroweak parameter T receives an additional contribution from the

second Higgs doublet, which is given by [7]

∆T =
m2

H±

32π2αv2

[
1− m2

A

m2
H± −m2

A

log
m2

H±

m2
A

]
(7.5)

where the mass of σ has been neglected. For {mH± , mA} = {150, 200} GeV, ∆T ≃

−0.095 while for {mH± , mA} = {200, 150} GeV, ∆T ≃ +0.139. Both these numbers

are consistent with current precision electroweak data constraints, T = 0.01±0.12 [12].

Note, however, that the mass splitting between H± and A cannot be too much, or

else the limits on T will be violated. For example, if {mH± , mA} = {150, 300} GeV,

∆T ≃ −0.255, which may be disfavored.

The parameter S receives a new contribution from the second Higgs doublet, which

is evaluated to be

∆S =
1

12π

(
log

m2
A

m2
H±

− 5

6

)
. (7.6)

If {mH± , mA} = {150, 200} GeV, ∆S ≃ +0.025, while for {mH± , mA} = {200, 150}

GeV, ∆S ≃ −0.007. These values are consistent with precision electroweak data

which has S = −0.03± 0.10 [12].

In this model the decay h → σσ can occur proportional to the quartic coupling

combination (λ3 + λ4 + λ5). The decay rate is given by

Γ(h → σσ) =
|λ3 + λ4 + λ5|2

16π

v2

mh

. (7.7)

Since the invisible decay of the SM Higgs should have a branching ratio less than

23% [13], we obtain the limit (using Γ = 4.2± 0.08 MeV for the SM Higgs width)

|λ3 + λ4 + λ5| < 1.4× 10−2 . (7.8)

The cubic scalar coupling hσσ can also arise through loops mediated by gauge bosons.

The dominant such contribution is from a W+W− loop, which has an amplitude of
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order g4v/(16π2), which should be compared with the tree-level amplitude of |λ3 +

λ4 + λ5|v. As long as |λ3 + λ4 + λ5| > 10−3, the tree level contribution will dominate.

There is a mini fine-tuning needed to realize the constraint quoted in Eq. (7.8), since

|λ5| > 0.13 and |λ4+λ5| > 0.17 are required to meet the constraints on the masses of

A and H±. This tuning is at the level of 10%, which is quite stable under radiative

corrections. We thus see broad agreement with all experimental constraints in the

two Higgs doublet models with a keV neutral scalar identified as warm dark matter.

7.2.2 Late decay of right-handed neutrino N

Before proceeding to discuss the early universe cosmology within the two Higgs dou-

blet model with warm dark matter, let us identify the parameter space of the model

where the late decay of a particle occurs with a lifetime in the range of (10−4−1) sec.

Such a decay is necessary in order to dilute the warm dark matter abundance within

the model, which would otherwise be too large. A natural candidate for such late

decays is one of the heavy right-handed neutrinos, N , that participates in the seesaw

mechanism for small neutrino mass generation. If its lifetime were longer than 1 sec.

that would affect adversely the highly successful big bang nucleosynthesis scheme.

Lifetime shorter than 10−4 sec. would not lead to efficient reheating of radiation in

the present model, as that would also reheat the warm dark matter field.

It turns out that the masses and couplings of the late–decaying field N are such

that its contribution to the light neutrino mass is negligibly small. The smallest

neutrino mass being essentially zero can be taken as one of the predictions of the

present model. We can therefore focus on the mixing of this nearly decoupled N field

with light neutrinos. For simplicity we shall assume mixing of N with one flavor of

light neutrino, denoted simply as ν. The mass matrix of the ν − N system is then
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given by

Mν =

 0 YNv

YNv MN

 . (7.9)

A light–heavy neutrino mixing angle can be defined from Eq. (7.9):

sin θνN ≃ Y v

MN

. (7.10)

This mixing angle will determine the lifetime of N .

If kinematically allowed, N would decay into hν, hν, W+e−, W−e+, Zν and Zν.

These decays arise through the ν−N mixing. The total two body decay rate of N is

given by

Γ(N → hν, hν, W+e−, W−e+, Zν, Zν) = ‘

Y 2
NMN

32π

[(
1− m2

h

M2
N

)2

+ 2

(
1− m2

W

M2
N

)2(
1 +

2m2
W

M2
N

)
+

(
1− m2

Z

M2
N

)2(
1 +

2m2
Z

M2
N

)]
.

(7.11)

Here the first term inside the square bracket arises from the decays N → hν and

N → hν, the second term from decays of N into W±e∓ and the last term from N

decays into Zν and Zν. We have made use of the expression for the mixing angle

given in Eq. (7.10), which is assumed to be small.

When the mass of N is smaller than 80 GeV, these two body decays are kinemat-

ically not allowed. In this case, three body decays involving virtual W and Z will be

dominant. The total decay rate for N decaying into three body final states through

the exchange of the W boson is given by

Γ(N → 3 body) =
G2

FM
5
N

192π3
sin2 θνN

(
1 +

3

5

M2
N

m2
W

)
(2)

[
5 + 3F

(
m2

c

M2
N

)
+ F

(
m2

τ

M2
N

)]
.

(7.12)

This expression is analogous to the standard muon decay rate. An overall factor of

2 appears here since N being Majorana fermion decays into conjugate channels. The

factor 5 inside the square bracket accounts for the virtual W+ boson decaying into
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e+νe, µ
+νµ and du for which the kinematic function F (x) = {1 − 8x + 8x3 − x4 −

12x2 lnx} is close to one [14]. For MN > 175 GeV, an additional piece, 3F (m2
t/M

2
N),

should be included inside the square bracket of Eq. (7.12). Analogous expressions for

three body decay of N via virtual Z boson are found to be numerically less important

(about 10% of the virtual W contributions) and we ignore them here. Virtual Higgs

boson exchange for three bodyN decays are negligible owing to small Yukawa coupling

suppressions. We shall utilize expressions (7.11) and (7.12) in the next section where

the relic density of σ WDM is computed.

7.3 Relic Abundance of Warm Dark Matter σ

Here we present a calculation of the relic abundance of σ which is taken to have a

mass of order keV, and which serves as warm dark matter of the universe. Since σ has

thermal abundance, it turns out that relic abundance today is too large compared

to observations. This situation is remedied in the model by the late decay of N ,

the right–handed neutrino present in the seesaw sector. To see consistency of such a

scheme, we should follow carefully the thermal history of the WDM particle σ.

When the universe was hot, at temperatures above the W boson mass, σ was in

thermal equilibrium via its weak interactions through scattering processes such as

W+W− → σσ. As temperature dropped below the W boson mass, such processes

became rare, since the number density of W boson got depleted. The cross section

for the process W+W− → σ + σ is given by

σ(W+W− → σ + σ) ≃
(

g4

64π

)
1

m2
W

. (7.13)

The interaction rate ⟨σnv⟩ is then given by

⟨nσv⟩ ≈
(

g4

64π

)
1

m2
W

T 3
(mW

T

)3
e−2mW /T (7.14)

where the Boltzmann suppression factor in number density of W s appears explicitly.

Demanding this interaction rate to be below the Hubble expansion rate at temper-
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ature T , given by H(T ) = 1.66g
1/2
∗ T 2/MP , with g∗ being the effective degrees of

freedom at T and MP = 1.19 × 1019 GeV, we obtain the freeze–out temperature for

this process to be Tf ≃ 4.5 GeV (with g∗ ≈ 80 used).

σ may remain in thermal equilibrium through other processes. The scattering

bb̄ → σσ mediated by the Higgs boson h of mass 126 GeV is worth considering. (b

quark has the largest Yukawa coupling among light fermions.) The cross section for

this process at energies below the b-quark mass is given by

σ(bb̄ → σσ) ≃ |λ3 + λ4 + λ5|2m2
b

4πm4
h

. (7.15)

If |λ3 + λ4 + λ5| = 10−2, this process will freeze out at Tf ≈ 240 MeV (g∗ = 70

is used in this estimate, along with Boltzmann suppression.) For smaller values of

|λ3 + λ4 + λ5|, the freeze–out temperature will be higher.

The process µ+µ− → σσ mediated by the Higgs boson h can potentially keep σ

in thermal equilibrium down to lower temperatures, since the µ± abundance is not

Boltzmann suppressed. (Note however, that this process suffers from a stronger chiral

suppression compared to the process bb̄ → σσ.) The cross section is given by

σ(µ+µ− → σσ) =
|λ3 + λ4 + λ5|2

64π

m2
µ

m4
h

. (7.16)

The number density of µ±, which are in equilibrium, is given by 0.2T 3, from which

we find that this process would go out of thermal equilibrium at T ≈ 250 MeV for

|λ3+λ4+λ5| = 10−2. This process could freeze out at higher temperatures for smaller

values of |λ3 + λ4 + λ5|.

There is one process which remains in thermal equilibrium independent of the

values of the Higgs quartic couplings. This is the scattering γγ → σσ mediated by

the W± gauge bosons shown in Fig. 7.1. The relevant couplings are all fixed, so that

the cross section has no free parameters. We find it to be

σ(γγ → σσ) =
E2

σF
2
W

64π

[
e2g2

32π2m2
W

]2
(7.17)
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Figure 7.1: Loop diagrams leading to γγ → σσ.

where FW = 7 is a loop function. Using Eσ = 3.15T and nγ = 0.2T 3, the interaction

rate ⟨σnv⟩ can be computed. Setting this rate to be equal to the Hubble expansion

rate, we find that this process freezes out at T ≈ 150 MeV (with g∗ = 17.25 appro-

priate for this temperature used). Among all scattering processes, this one keeps σ to

the lowest temperature, and thus the freeze-out of σ occurs at Tf,σ ≈ 150 MeV with

a corresponding gσ∗ = 17.25.

Having determined the freeze–out temperature of σ to be T σ
f ≈ 150 MeV, we can

now proceed to compute the relic abundance of σ. We define the abundance of σ as

Yσ =
nσ

s
(7.18)

where nσ is the number density of σ and s is the entropy density. These two quantities

are given for relativistic species to be

nσ =
gσζ(3)

π2
T 3, s =

2π4

45
gefffT

3, (7.19)

where

gefff =
∑
bosons

gb +
7

8

∑
fermions

gf . (7.20)

Thus

Yσ =
45ζ(3)

2π4

gσ
geff

. (7.21)

Since Yσ is a thermally conserved quantity as the universe cools, we can obtain the

abundance of σ today as

Ωσ = Yσmσ
s0
ρc
, (7.22)
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where s0 = 2889.2/cm3 is the present entropy density and ρc = 1.05368×10−5h2 GeV/cm3

is the critical density. Using gσ = 1 appropriate for a real scalar field and with h = 0.7

we thus obtain

Ωσ = 9.02

(
17.25

geff

)( mσ

1 keV

)
. (7.23)

Here we have normalized geff = 17.25, appropriate for the freeze–out temperature of

σ. We see from Eq. (7.23) that for a keV warm dark matter, Ωσ is a factor of 34

larger than the observed value of 0.265. For a clear discussion of the relic abundance

in a different context see Ref. [15].

7.3.1 Dilution of σ abundance via late decay of N

The decay of N involved in the seesaw mechanism, as discussed in Sec. 7.2.2, can

dilute the abundance of σ and make the scenario consistent. We assume that at

very high temperature N was in thermal equilibrium. This requires going beyond the

model described in Sec. 2. This could happen in a variety of ways.2 For example,

one could have inflaton field S couple to N via a Yukawa coupling of type SNN

which would then produce enough N ’s in the process of reheating after inflation [17].

Alternatively, the two Higgs extension of SM model could be an effective low energy

theory which at high energies could have a local B − L symmetry. The B − L gauge

interactions would keep N in thermal equilibrium down to temperatures a few times

below the gauge boson mass, at which point N freezes out. As the universe cools, the

Hubble expansion rate also slows down. The two body and three body decays of N ,

given in Eqs. (7.11)-(7.12), will come into equilibrium at some temperature at which

time N would begin to decay. If this temperature Td is in the range of 150 MeV to 1

MeV, the decay products (electron, muon, neutrinos, up quark and down quark) will

2Late decays of heavy particles have been used in order to dilute dark matter abundance in other

contexts [15,16].
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gain entropy as do the photons which are in thermal equilibrium with these species.3

Since σ froze out at T ≈ 150 MeV, and since σ is not a decay product of N , the

decay of N will cause the temperature of photons to increase relative to that of σ.

Thus a dilution in the abundance of σ is realized. Note that the decay temperature

Td should be above one MeV, so that big bang nucleosynthesis is not affected. The

desired range for the lifetime of N is thus τN = (10−4 − 1) sec.

The reheat temperature Tr of the thermal plasma due to the decays of N is given

by [18]

Tr = 0.78[g∗(Tr)]
−1/4

√
ΓNMP . (7.24)

Energy conservation then implies the relation

MNYNsbefore =
3

4
safterTr . (7.25)

If the final state particles are relativistic, as in our case, a dilution factor defined as

d =
sbefore
safter

(7.26)

takes the form

d = 0.58 [g∗(Tr)]
−1/4

√
ΓNMP/(MNYN) . (7.27)

The abundance of N is given by

YN =
135

4π4

ζ(3)

g(Tf,N)
, (7.28)

where g(Tf,N) stands for the degrees of freedom at N freeze–out. Putting all these

together we obtain the final abundance of σ as

Ωσ = (0.265)
( mσ

1 keV

)(7.87GeV

MN

)(
1 sec.

τN

)1/2(
g(Tf,N)

106.75

)(
17.25

gσf

)
. (7.29)

Here we have normalized various parameters to their likely central values and used

g∗(Tr) = 10.75. The value of g(Tf,N) = 106.75 counts all SM degrees and nothing

else.
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Figure 7.2: Allowed parameter space of the model in the MN −YN plane. The shaded

region corresponds to the decay temperature Td of N lying in the range 150 MeV –

1 MeV. The three solid curves generate the correct dark matter density ΩD for three

different values of the WDM mass mσ = {3.5, 7, 15} keV.
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From Eq. (7.29) we see that the correct relic abundance of σ can be obtained

for MN ∼ 10 GeV and τN ∼ 1 sec. In Fig. 7.2 we have plotted the dark matter

abundance as a function of MN and its Yukawa coupling YN for three different values

of mσ (3.5, 7 and 15 keV). Also shown in the figure are the allowed band for τN to lie

in the range of (10−4 − 1) sec., or equivalently for Td = (150− 1) MeV. We see that

there is a significant region allowed by the model parameters. We also note that the

mass of N should lie in the range MN = 25GeV− 20TeV for the correct abundance

of dark matter.

A remark on the average momentum ⟨pσ⟩ of the dark matter is in order. The

dilution factor d ≃ 1/34 for mσ = 1 keV. The temperature of σ is thus cooler by a

factor of 1/(34)1/3 = 0.31 relative to the photon. The momentum of σ gets redshifted

by a factor ξ−1/3 = 0.58 where ξ = gσf /gtoday = 17.25/3.36. The net effect is to make

⟨pσ⟩/(3.15T ) = 0.18.

7.4 Other Implications of the Model

In this section we discuss briefly some of the other implications of the model.

7.4.1 Supernova energy loss

The process γγ → σσ can lead to the production of σ inside supernova core. Once

produced these particles will freely escape, thus contributing to new channels of su-

pernova energy loss. Note that σ does not have interactions with the light fermions.

The cross section for σ production is given in Eq. (7.17). Here we make a rough

estimate of the energy lost via this process and ensure that this is not the dominant

cooling mechanism of supernovae. We follow the steps of Ref. [11] here. The rate of

3At T = 150 MeV, it is not completely clear if we should include the light quark degrees of

freedom or the hadronic degrees. We have kept the u and d quarks in our decay rate evaluations.
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energy loss is given by

Q = Vcoren
2
γ⟨E⟩σ(γγ → σσ) (7.30)

where Vcore = 4πR3
core/3 is the core volume and we take Rcore = 10 km. nγ ≃ 0.2T 3

γ

is the photon number density, and ⟨E⟩ = 3.15Tγ is the average energy of the photon.

Using Eq. (7.17) for the cross section we obtain Q ∼ 2.8×1051 erg/sec, when Tγ = 30

MeV is used. Since the supernova explosion from 1987A lasted for about 10 seconds,

the total energy loss in σ would be about 2.8 × 1052 erg, which is to be compared

with the total energy loss of about 1053 erg. This crude estimate suggests that energy

loss in the new channel is not excessive. We should note that the energy loss scales

as the ninth power of core temperature, so for larger values of Tγ, this process could

be significant. A more detailed study of this problem would be desirable.

7.4.2 Dark matter self interaction

In our model dark matter self interaction, σσ → σσ, occurs proportional to |λ2|2.

There are rather severe constraints on self-interaction of dark matter from dense

cores of galaxies and galaxy clusters where the velocity distribution can be isotropized.

Constraints from such halo shapes, as well as from dynamics of bullet cluster merger

have been used to infer an upper limit on the dark matter self-interaction cross section

[19]:

σ

mσ

< 1 barn/GeV . (7.31)

The self interaction cross section in the model is given by

σ(σσ → σσ) =
9λ̂2

2

8πs
(7.32)

where λ̂2 = λ2−|λ3+λ4+λ5|2 (v2/m2
h), with the second term arising from integrating

out the SM Higgs field h. This leads to a limit on the coupling λ̂2 given by

λ̂2 < 5.4× 10−6
( mσ

10 keV

)3/2
. (7.33)
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The one loop corrections to σ self interaction strength is of order g4/(16π2) ∼ 10−3.

So we use the tree level λ2 to cancel this to make the effective self interaction strength

of order 10−6 as needed. Such a fine-tuning is unpleasant, but nevertheless can be

done within the model consistently. One can choose |λ3 + λ4 + λ5| ∼ 10−3, so that

the effective quartic coupling λ̂2 is positive.

7.4.3 The extra-galactic X-ray anomaly

Recently two independent groups have reported the observation of a peak in the extra-

galactic X-ray spectrum at 3.55 keV [20, 21], which appear to be not understood

in terms of known physics and astrophysics. While these claims still have to be

confirmed by other observations, it is tempting to speculate that they arise from

the decay of WDM into two photons. If the Z2 symmetry remains unbroken, σ is

absolutely stable in our model and will not explain this anomaly. (The cross section

for σσ → γγ is orders of magnitude smaller than required to be relevant for the X-ray

anomaly.) However, extremely tiny breaking of this symmetry via a soft term of the

type m2
12ϕ

†
1ϕ2+h.c. can generate the reported signal. Such a soft breaking term would

induce a nonzero vacuum expectation value for σ which we denote as u. Explicitly,

the relevant potential for the σ field will be

V (σ) =
m2

σ

2
σ2 +

√
2m2

12vσ + ... (7.34)

which minimizes to

u = ⟨σ⟩ = −
√
2m2

12

m2
σ

v . (7.35)

Such an induced VEV is quite stable, since m12 ∼ 0.003 eV and u ∼ 0.03 eV will

be needed, which are much smaller than mσ ∼ 7 keV. In order to explain the X-ray

anomaly, this VEV has to be in the range u = (0.03 − 0.09) eV. This comes about

from the decay rate, which is given by

Γ(σ → γγ) =
( α

4π

)2
F 2
W

(
u2

v2

)
GFm

3
σ

8
√
2π

(7.36)
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with FW = 7, which is matched to a partial lifetime in the range Γ−1(σ → γγ) =

(4 × 1027 − 4 × 1028) sec [20, 21]. Once σ develops a vacuum expectation value, it

also mixes with SM Higgs field h, but this effect is subleading for the decay σ → γγ.

Such mixing was the main source of the two photon decay of WDM in the case of a

singlet scalar WDM of Ref. [11].

7.4.4 Effective number of neutrinos for BBN

Since the warm dark matter σ is in thermal equilibrium down to temperatures of

order 150 MeV, it can modify the number of neutrino species that affect big bang

nucleosynthesis. A fully thermalized real scalar would count as 4/7 of a neutrino

species, but the abundance of σ is diluted via the late decay of N in our case. The

dilution factor is about 1/36 (compare Eq. (23) and (29)), which would mean that

the effective number of neutrinos for BBN is shifted from 3 only by a tiny amount of

about 0.02.

7.4.5 Collider signals

The charged scalar H± of the model can be pair produced at the Large Hadron

Collider via the Drell-Yan process. H+ will decay into a W+ and a σ. This signal

has been analyzed in Ref. [22] within the context of a similar model [23]. Sensitivity

for these charged scalars would require 300 fb−1 of luminosity of LHC running at 14

TeV.

The pseudoscalar A can be produced in pair with a σ via Z boson exchange. A

will decay into a σ and a Z. The Z can be tagged by its leptonic decay. Thus the final

states will have two leptons and missing energy. The Standard Model ZZ background

with the same final states would be much larger. We can make use of the fact that in

the signal events, the Z boson which originates from the decay A → Zσ with a heavy

A and a massless σ will be boosted in comparison with the background Z events.
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This will reflect in the pT distribution which would be different for the signal events

compared to the SM background Z’s. Studies to look for this kind of signals in this

particular framework are in order.

7.5 Conclusions

In this chapter we have proposed a novel warm dark matter candidate in the context

of two Higgs doublet extensions of the Standard Model. We have shown that a neutral

scalar boson of these models can have a mass in the keV range. The abundance of such

a thermal dark matter is generally much higher than observations; we have proposed

a way to dilute this by the late decay of a heavy right-handed neutrino which takes

part in the seesaw mechanism. A consistent picture emerges where the mass of N

is in the range 25 GeV to 20 TeV. The model has several testable consequences at

colliders as well as in astrophysical settings. The charged scalar and the pseudoscalar

in the model cannot be much heavier than a few hundred GeV. It will be difficult

to see such a warm dark matter candidate in direct detection experiments. The

cross sections for the processes σe → σe and σN → σN are of order 10−49 cm2

and 10−45 cm2 respectively in the model (the expressions for these cross sections are

analogous to Eq. (7.16)). Since the warm dark matter has a velocity of 10−3, the

kinetic energy of σ today is of order 10−2 eV, which would mean that the recoil energy

will be well below the detection threshold in ongoing direct detection experiments.

Supernova dynamics may be significantly modified by the production of σ pairs in

photon–photon collisions. The model can also explain the anomalous X-ray signal

reported by different groups in the extra-galactic spectrum.
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CHAPTER 8

Conclusions and Outlook

The individual chapters of this thesis contain their own conclusions, so here there is

only a brief overview, and a few comments about the future of the field. Some different

approaches for new physics beyond the Standard Model have been examined which

includes topSU(5) model, left-right mirror symmetry, supergravity, Standard model

extensions with neutrino sector, dark matter sector and Higgs sectors. Although

the phenomenology of each model is diverse and different in outcome, the particular

common aspects addressed in each chapter were the detection of new particles in TeV

scales. In all the cases it was shown that the next generation of particle colliders

like the high luminosity Large Hadron Collider at 14 TeV and proposed International

linear collider will be able to investigate these models.

There can be many possibilities of the nature of these new particles. The study

in the chapter 2 on leptoquarks as well as diquark gauge bosons showed that, in

the particular framework of TopSU(5) model considered, the discovery mass range

extends upto 1.5 TeV at the LHC with center of mass energy of 14 TeV with a

luminosity of 100fb−1. On the other hand, in chapter 3 we have studied the collider

phenomenology of TeV scale mirror fermions in the framework of a particular variant

of Left-Right Mirror model in which mirror fermions dominantly decays into the SM

fermion and W/Z-boson. We find that the reaches for the light mirror quarks can be

upto 750 GeV at the 14 TeV LHC with 300 fb−1 luminosity.

One of the most exciting possibilities beyond the Standard Model physics is the

well motivated and well studied case of Supersymmetry. In chapter 4, we have shown
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that SUSY with non-universalities in gaugino or scalar masses within high scale

SUGRA set up can still be accessible at LHC with ECM = 14 TeV. In particular,

we show the consistency of the parameter space in different dark matter annihila-

tion regions. We find that there exists a reasonable region of parameter space in the

non-universal scenario which not only satisfy all the existing constraints, but also can

unravel SUSY in bottom and lepton rich final states with third family squarks being

lighter than the first two automatically. With the next run of high luminosity LHC

at 14 TeV, this allowed parameter space can be ruled out easily or we we will be able

to discover SUSY in its glory.

In chapter 5, motivated by the fact that the dark matter is about five times the

ordinary matter, we have proposed that the dark matter can just be like the ordinary

matter in a parallel universe with the two sectors connecting via the electroweak Higgs

bosons of the respective universes. If the electroweak sector of the two universes are

symmetric, the lightest Higgs bosons of the two universes will mix. In particular, if

these two Higgses mix significantly, and their masses are close (say within 4 GeV),

LHC will not be able to resolve if it is observing one Higgs or two Higgses. We take

refuge in the proposed International Linear Collider (ILC) where because of its clean

environment, the precise measurements and large number of Higgs boson production,

Higgs mass splittings upto ∼ 100 MeV may be possible with high luminosity. We

show that with a 250 GeV ILC with 300 fb−1 integrated luminosity it will be possible

to probe the mixing angle θ between the two Higgs bosons upto 5o.

Chapter 6 is dedicated to one of the most important and exciting sectors of beyond

the standard model physics, the Neutrinos. We have shown that the experimental

data on neutrino mass differences squares and three mixing angles are consistent

with the proposed 4/5 parameter Dirac neutrino models, based on some reasonable

assumptions yielding a solution for the neutrino masses with inverted mass hierar-

chy (close the degenerate pattern). In addition, the model also predicts a large CP
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violating phase δ, thus predicting a rather large CP violation in the neutrino sector,

and will be easily tested in the early runs of the The Deep Underground Neutrino

Experiment (DUNE). Neutrinos being Dirac, neutrinoless double beta decay is also

forbidden in this model. Thus, all of these predictions can be tested in the upcoming

and future precision neutrino experiments.

In chapter 7 we present a novel warm dark matter candidate in the context of

two Higgs doublet extensions of the Standard Model. We have shown that such a

warm dark matter candidate in these models can have a mass in the keV range, which

although will be difficult to see in direct detection experiments. The model has several

testable consequences at colliders as well as in astrophysical settings as the charged

scalar and the pseudoscalar in the model are in few hundred GeV mass range. The

model also has the added feature of explaining the anomalous X-ray signal reported

by different groups in the extra-galactic spectrum.

Thus this thesis presents a well rounded effort to study many different extensions

in the beyond standard model scenario. The main characteristics in all these mod-

els are the testability of the new physics particles or associated signals at the TeV

scale. Almost all high-energy physicists are convinced that the LHC will discover

new physics of some kind. Leaving aside all the theoretical arguments, it would be

unprecedented in the history of the field if the order-of-magnitude increase in avail-

able energy did not reveal something new. It may well be that nature surprises us

and make the physics much more complicated than the simple cases discussed here.

With CERNs Large Hadron Collider having started its Run II with 14 TeV center of

mass energy with a substantial amount of luminosity and possibility of new colliders

in the horizon, this is a very exciting time for the theorists to continue investigate

the beyond standard model scenarios and refine and extend their phenomenological

studies for the possible detection of possible new physics.
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