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TOPOLOGICAL CONVEXITY STRUCTURES AND

THE KREIN-MILMAN THEOREM
CHAPTER 1
INTRODUCTION

The setting for this dissertation is a set X and a family of subsets
of X, called convex sets, satisfying given convexity properties. In this
setting the convex hull operator can be used to define the analogues of
segments and lines. Basic relationships between the hull operator and what
are called segment and line operators are derived, leading to Kuratowski-
like theorems for each. A set of alignment axioms 4is considered, which
allows a line operator to be developed from a segment operator, where the
lines involved are shown to possess a linear order.

Properties of convex-preserving functions and convexity isomorphisms
are derived, including conditions for continuity and the preservation of
Carathéodory, Helly and Radon numbers.

A topology is then introduced which leads to several results which
parallel fundamental properties in the theory of linear topological
spaces, culminating in a condition analogous to local convexity and the
proof of the Krein-Milman theorem applied to this setting. Thus is
obtained, among other classical results, a Krein-Milman theorem for a

more general class of spaces than that normally considered. In particular,
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2
it is shown that no underlying algebraic structure is needed.
The usual set-theoretic symbols will be used throughout without
definition. 1In particular, the notation established in Valentine [12]

will be employed.



CHAPTER II

RELATIONSHIPS BEIWEEN CONVEXITY STRUCTURES

AND SEGMENT OPERATORS

2.1. Definition, Let & be a family of subsets of a set X. & is called

a convexlty structure if

i) nNF=N{c:c €edre & for dc &,
(ii) ¢ and X € G,

Further if & satisfies

(iii) {x} € @ for each x €X

then € is said to be Tl'

2.2. Definition. The hull operator H associated with € is defined by

H(S) = N{c € €:C DS}, s cX.

2.3. Theorem, Let & be a convexity structure and H the corresponding

hullv operator. Then H satisfies the following:
(a) AcC H(:A) for any A c X.
(b) H(A) C H(B) if A c B.
(c) HeH = H.
(d) A € € iff H(A) = A.
Conversely let H be a map from P(X), the power set of X, to P(X) such

that H(¢) = ¢.

Also suppose that H satisfies (a), (b), (c) and & is defined as in
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(d) ; then € is a convexity structure,and the corresponding hull operator
H' coincides with H.

Proof . Axioms (a), (b), and (c) can be demonstrated by direct appli-
cations of the definition of H. To prove (d) consider A € G. Then
since A € € and A DA, the definition of H implies H(A) C A. By (a)

AC H(A) so A =H(A). Also if A= H(A) € £ then A € (.

i

Conversely let & = {A: H(A) = A} where H is an operator from P(X)

to P(X) such that H(¢)

¢ and H satisfies (a), (b) and (¢). Now ¢ € &,
and X € € by applying (a), so it must be shown that & is closed under
arbitrary intersections. Let § C & and note that N¥ C Cwhere C is
any member of F. So by (b) and the definition of &, H(NJF ) c H(C) = C.
herefore, H(NJF) C N{C:C € 3} = NF. By (a) it must be that
N3 € H(NY3). Therefore H(NZ) = NI, and nNd € GC.

Let H' be the corresponding hull operator associated with &. If
A CX then H'(A) = N{C € €:C DA}, s0o H'(A) € € and AC H'(A). By (b)
and the definition of &, H(A) C H(H'(A)) = H'(A). But by (c)
H(H(A)) = H(A),so H(A) € €. Since H(A) € € and A C H(A), by definition
of H',

H'(A) = N{C € €:C DA} c H(A).

Therefore H'(A) = H(A) for each subset A C X,compieting the proof.

2.4. Definition, Any mapping 0:X < X + P(X) such that o(x,y)= o(y,x),

o(x,x) = x, and x € o(x,y) for all (x,y) € X x X is called a segment

operator on X < X. For any segment operator o, a corresponding join

operator Jn on all n-tuples of X, n € N, is defined inductively by

Jl(xl) = {xl}, J2(x1,x2) = o(xl,xz) and, if Jn_lis defined,d‘n(xl,*",xn) =

: e LA X 2 . }
U{G(Xnau) u Jn-l(xl’ ’ xn-l} We call J  commutative iff for any
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n-tuple (xl,-- . ,xn) and any permutation (xkl,- X ,xkn) it is true that
Jn(xl,o-- ,xn) = Jn(xkl,- --,xkn). When Jn is commutative and B =
{xl, cee ,xn} then we write simply Jn(B) for Jn{xl, ces ,xn} .

2.5. Definition. The join operator on a point x € X and set A C X is

defined by a mapping J:X><P(X) » P(X), where for xe€ X and Ac X

J(x,A) = U{o(x,a):a € A}.
Thus 'the operator Jn above may be defined inductively by Jn(xl,' ",xn) =
T I 1 By e ek, 1))

If H is a hull operator (satisfying axioms (a), (b) and (c) of
Theorem 2.3) and if, in addition, H(x) = {x} for x € X, then a natural
segment operator is that defined by o(x,y) = H {x,y} = H(x,y) for each
(x,y) € X <X. In this case the join operator J:X » P(x) -+ P(x) becomes

J(x,A) = U{H(x,a): a € A}.
In classical convexity, if xA denotes the join of x and A in the
usual sense we have
conv ¥A = x conv A for x€ X and ACX.
In abstract settings this property becomes
H(I(x,4)) = J(x,H(A)) (*)

2.6. Definition. Property (*) is called join-hull commutativity for either

@ or H. 1If (*) is required only for finite sets A, then we say that @

or H is finitely join-hull commutative.

Another important property in classical convexity is the following,
due to Carathéodory: If x € conv A there is a finite set B € A such that
X € conv B. In abstract settings this property may be assumed as an axiom.

2.7. Definition. If for each subset A of X, x € H(A) implies there

exists a finite subset B of A such that x € H(B) then either Gor H



is said to be domain finite.

Kay and Womble {&] have established the first two following lemmas.
2.8. Lemma. A convexity structure @ is [finitelyl join-hull commutative
iff for each x € X and [finite] subset A C X it is true that
H(x U A) C J(x,H(A)).
2.9. Remark. Let © be a convexity structure on a set X. It can easily
be shown that if x € X and A C X then H(x U A) = H(J(x,A)).
2.10. Lemma. If € is a convexity structure that is finitely join-hull
commutative and domain finite then G is join-hull commutative.
2.11. Lemma. If the convexity structure & is finitely join-hull
commutative, then for any finite set B = {xl,---,xn}, Jn(x.l""’xn} = H(B).
Consequently Jn is commutative for all n > 2.

Proof. The proof is by induction on n. Now Jz(xl,x2)= H(xl,xz)
so the assertion is true for n = 2. Let B =  {x ,---,xn} and
A= Bq,{xn}; then by the induction hypotheses, finite join~hull commutativity
and Remark 2.9 we have Jn(xl,---,xn) = J(xn,Jn_l(A)) = J(xn,H(A)) =
_H(J(xn,A)) = I-I(xn U A) = H(B). Hence if xkl,--’,xknis any permuta-
‘tion of X a0t X then Jn(xk ,-o-,xk) = H(jxk creaXy ) =

1 n 1 n

Ul coe vV =u T (v oo w )
--\-‘1$ ,--nl “n\“ls ’--nl A

It is often useful to develop a convexity structure from a segment
operator and vice versa. The following theorem gives the relationship
which arises when basic properties of each are desired.

2.12. Theorem. Let @ be a convexity structure on X, whose corresponding

hull operator H satisfies the axioms:

(a) H1is Tl'

(b) H is domain finite.
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(c) H is finitely join-hull commutative.

(d) If z € H(x,y) then H(x,y = H(x,z) U H(z,y).

Let a segment operator on X be defined by o(x,y) = H(x,y) for each
(x,5) € X > X, with g-sets defined as those sets C with the property
that g(x,y) € C for x and y in C. Then ¢ will obey the following:

(a') 1If x, y, z are in X, u € 0(x,y) and v ¢ 0(u,z) then there
is awe 0(y,z) such that ve€ O(g,w).

(') z € o(x,y) implies o(x,y) = o(x,2) U a(z,y).

(c') G 1is precisely the family of g-sets.

Conversely, if g is a segment operator on X satisfying axioms (a')
and (b'), and a convexity structure & is defined as in (c'), then the
corresponding hull operator H will obey axioms (a), (b), (c) and (d)
and the segment operator o' defined from G\will coincide with the
original operator g.

Proof.

(a') Let x,y, 2z € X, ué€ o(x,5) and v€ 6(u,z). By definition
v e J(z,0(x,y) = J3(z,x,y). Lemma 2.11 implies that J3(z,x,y) =
J3(x,Y,Z)- Hence, v € J3(x,y,z) = J(%,0(y,2)) so there exists

w & gly

2Y gurh that v =«
Nt P s waew

(b') This follows directly from (d).

(c') This is a result proved by Kay and Womble [8]

For the converse, let ¢ satisfy (a') and (b') and let & be the set
of o-sets,with H the corresponding hull operator. & is obviously closed
under intersections, since any iptersection of g-sets is a Oo-set. By

the definition of segment operators, a singleton set {x} 1s a O -set since

o (x,x) = {x} , so (a) follows.
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(b) Set C=U {H(B): B is a finite subset of A}. We show that
Ce @ and A ¢ C c H(A), thereby proving that H(A) = C and establishing

domain finiteness. If x,ye€ C then there exists finite subsets B of

1> B2
A such that x e H(Bl) and y € H(Bz). But BIU Bzis a finite subset of A,
and since H(BlU BZ) is a member of @€ and thus is a 0 - set, 0(x,y) C
H(BlU BZ) C C and so CE&E. It is obvious that ACC; 1if x € C then
x € H(B) for some finite set B¢C A, and hence x € H(B) ¢ H(4).

(c) We first show that for any CE€ &, J(x,0)c € . Let
y's 2'€ J(x,C) and ve d(y',2z'). Then there exists y and z in C such

that y'e o(x,y) and z'€ (x,z). Comsider z, x, ¥y' in X, .2' € 0(z,x),

and ve g (z',y'). By (a') there is u e g(x,y') such that ve g (z,u). But

o x,y Uy 'Y) =o(x,y) by (b'), so ueo(x,y). Consider x, ¥y, z in
X with u e 0(x,Y), ve d(u,z); by (a') there is w € g (y,2) such that

v € g(x,w). Since C is a ¢g-set with both y€ C and z € C, g (y,2) C C.
Hence, w € C. Then ve U {o(x,w):w & C} = J(x,C) , sog(y',2') C J(x,0).
Therefore J(x,C) is a O-~set, so it belongs to & . Now for any AC X
H(A) € & therefore since x U AC J(x,A)C J(x,H(A)) we have

H(x U A) C H(J(x,H(A)) = J(x,H(A)). By Lemma 2.8 @ is join-hull
commutative.

(d) We must show that the segment operator given by ¢g'(x,y) =
H(x,y) coincides with ¢, that 15, that 0 (x,y) = H(x,y). If u,ve g(x,y)
then by (b') ve o(x,y) = a(x,u) U o(u,y), so v & d(x,u) or v € o(u,y).
In the first case, 0(x,v) ¢4 o(v,u) = o(x,u) € 0(x,y), and in the second,
o (u,v) U d(v,y) =0(u,y) C 0(x,y). Since 0(u,v) = o(v,u) either case

implies that g(u,v) ¢ o(x,y). Therefore g(x,y) is a o-set, and
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o(x,y) € 8, and {x,y} C o(x,y) implies H(x,y) C o(x,y). Also
{x,y}CH(x,¥), so since H(x,y) is a o-set, 0(x,y) C H(x,y) implying

that o(x,y) = H(x,y).



CHAPTER III

THE AXIOMATIC DEVELOPMENT OF LINES

FROM SEGMENT OPERATORS

In this chapter a system of axioms %8 considered which essentially
allows us to build lines from proper}:ies of segments. These axioms serve
as a replacement for axiom systems for lines yielding the usual alignment
properties as normally encountered in foundations of geometry [11],

Let 0 be a segment operator on X X< X which for arbitrary v, w, X,
Y, 2z in X satisfies the following alignment axioms:

(@) If z € o(x,y) then o(x,y) = 0(x,2) U o(z,y).

(b) If o(x,y) = o(x,z) theny = z.

(¢) o(x,y) contains a: least three elements of X.

(@) Ifyeo(x,2z) No(x,w) and y # x then there exists v € X such

that both z and w belong to o(x,v) ~{v},

(A TE v oo ~les v\ amd o ~foe o\ ehoam o o= ~foe =\
N/ dede a2 T VAW Y S Sldw ) o Uyl LG o o C\w,(ajo

For brevity xy is written for o(x,y). The notation (xyz) means
y € o(x,z) ~ {x,z},and further (wxyz) means (wxy), (wxz), (wyz) and (xyz).

3.1. Theorem, If (xyz) then not (xzy) nor (yxz).

Proof. If (xyz)} and (xzy) then by (a) xz = xy U yz and

Xy = xz U zy. Therefore xy c xy Uyz = xz and xz € xz U 2y = xy, or
Xy = xz. Axiom (b) then implies that y = z, which is a contradiction.
A similar argument implies not both (xyz) and (yxz).

10
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3.2. Theorem. If (wxy) and (wyz), then (wxyz).

Proof. By definition it need only be shown that (wxz) and (xyz)
hold. Now (wxy) implies that w # x, and if x = z then (wxy) and (wyz)
become (wxy) and (wyx), which is impossible by Theorem 3.1. By
hypothesis and axiom (a) x € wy ¢ wy U yz =wz; therefore (wxz). Again by
hypotheses and axiom (a) x #y, ¥y # 2, and x € wy c wy Uyz =wz, hence
y € wz = wx UXxz, The proof will be complete by showing y ¢ wx. But

y #w, Y #¥X, so ¥ € wx > (wyx), which together with (wxy), is a contradic-

tion.
The following theorem follows directly from axiom (c).

3.3. Theorem. If x,y € X and x # y there exists z € X such that (xzy).

3.4. Theorem. If x,y € X and x # y then there is a point z € X such

that (xyz).
Proof. By Theorem 3.3 there is w € X such that (xwy), so applying

axiom (d) to w € o(x,y¥) N1 0(x,y) there is z € X such that y € o(x,z) ~{z}.

But v # x so (xyz).

3.5. Theorem. If (wxy) and (xyz) then (wxyz).

Proof. By axiom (e) x € o(w,2z% but x # w and x # z so (wxz}. Hence

Theorem 3.2 implies that (wxyz).

3.6. Theorem. If x #y, (wxz) and (wyz) then (wxyz) or (wyxz).
‘ Proof. The hypotheses and axiom (a) imply x e wz = wy U yz. If
x € wy then x # w and x # y imply (wxy), and if x € yz then x # y and
x # z.imply (yxz). But by Theorem 3.2 (wxy) and (wyz) imply (wxyz), while
(yxz) and (wyz) imply (wyxz).

3.7. Theorem. If (wxy) and (wxz) then y = z, (wxyz), or (wxzy).

Proof. By axiom (d) there exists v € X such that (wyv) and (wzv).
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If y # z Theorem 3.6 implies (wzyv) or (wyzv). Now (wzyv) implies (wzy)

which with (wxz) implies (wxzy). Also (wyzv) implies (wyz) which with

(wxy) implies (wxyz).

3.8. Definition. If x,y €X, and x # y then a ray R(x,y) from x in the

direction of y is defined as R(x,y) = {z: z = x, z =y, (xzy or (xyz)}.

3.9. Theorem. If z € R(x,y) and z # x then R(x,y) € R(x,2z).

Proof. Assuming z # y then either (xzy) or (xyz). Suppose (xzy)
and that v € R(x,y); we prove v € R(x,z). Ifv = y then (xzy) implies
(xzv) and v € R(x,z). The result is obvious for v = x and v = z. If
(xvy) then (x2y) and Theorem 3.6 imply either (xvzy) or (xzvy). Thus,
either (xvz) or (xzv), either of which implies that v ¢ R(x,z). If (xyv)
then (xzy) and Theorem 3.2 imply that (xzyv), which implies (xzv)so
again,v € R(x,v).

I1f (xyz) then again let v € R(x,y). If v =x, y, or z then v € R(x,2)
as above. If (xvy) then Theorem 3.2 and (xyz) imply (xvyz) which implies
(xvz) and v € R(x,2). If (xyv) then (xyz) and Theorem 3.7 imply (xyvz)

or (xyzv), so (xvz) or (xzv), and in each case this implies v € R(x,z).

Therefore R(x,y) € R(x,z).
An obvious corollary is the following.

3.10. Corollary, If z € R(x,y) and z # x then R(x,y) = R(x,2).

3.11. Theorem, If z € £(x,y) ~ {y} then R(z,y) C R(x,y).

Proof. The case z = x clearly satisfies the theorem, so assume 2 # X,
then (xzy). If v € R(z,y) either v=2, v=1y, (zvy) or (zyv). Ifv=2
or v = y then v is clearly in R(x,y). If (zvy) then (xzy) and Theorem
3.2 imply (xzvy) which implies (xvy); hence v € R(x,y). If (zyv) then

(xzy) and Theorem 3.5 imply (xzyv), which implies (xyv) and again
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v € R(x,y) proving the theorem.

3.12. Corollary. If (zxy) then R(x,¥) € R(z,x).

3.13. Definition. The line through the points x and y (x # y) is

defined by _
L(x,y) = R(x,¥) U R(¥,x).

3.14. Theorem.A if z e L(x,y) and z # x then L(x,y) = L(x,2).

Proof. The case z =y is obvious. If z # y then either (zxy),
(xzy) or (xyz) must hold.

In case (zxy) then by corollary 3.12 R(x,y) € R(z,x) C L(x,z). But
(zxy) also means (yxz) so by Corollary 3.12 R(x,z) C R(y,x) € L(x,y).
Let v € R(y,x). If v = y, then (zxy) implies ve€ R(z,x) ¢ L(x,z). If v = x,
v € R(x,z). If (yvx) then i(zxy) and Theorem 3.2 imply (zxvy), which
implies (zxv), so v € R(z,x) € L(x,z). If (yxv) then (zxy) (which is the
same as (yxz)) and Theorem 3.7 implies either v = z, (yxvz), or (yxzv).

If v = z then V € L(x,z). If (yxvz) then (xvz), which implies

v € R(x,2) ¢ L(x,z). If (yxzv) then (xzv), which implies

v € R(x,z) € L(x,2). Therefore R(y,x) ¢ L(x,2), so L(x,y) ¢ L(x,z). It
can also be shown that R(z,x) € L(x,y) so that L(x,z) ¢ L(x,y). The

other two cases (xzy) or (xyz) are left to the reader.

3.15. The¢.om If v,z € L(x,y) and v # z, then L(x,y) = L(v,z). That

. 1s, two points lie on a unique line.

Proof. Assume v and z are not x and y in some order,and unless
v#x, V#y, 2z# x, and 2 #y Theorem 3.14 implies the result. Otherwise
veL(x,y) and v # x3 so L(x,y) = L(x,v) = L(v,x) by Theorem 3.14. But
z € L(x,y) = L(v,x) and v # z3s0 again by Theorem 3.14 L(v,x) = L(v,2).

Therefore L(x,y) = L(v,2).
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3.16. Definition. A relation < on L(x,y) is defined by u < v where

u,v & L(xy) iff R(u,v) N R(x,y) = R(z,w) for some z # w.

3.17. Theorem. The above relation on the line L(x,y) is a linear order.
Proof. If u # v and u,v € L(x,y) then it can be shown that u < v or
v < u. A typical case is when (uxy) and (vxy); then since u # v, Theorem
3.7 implies (uvxy) or (vuxy). But (uvxy) implies R(u,v) N R(x,¥) = R(u,v),
so u < v. The relation (vuxy) implies R(v,u) N R(x,y) = R(v,u), so v < u.
The relation < is also antisymmetric, nonreflexive and transitive. The
proofs involve several cases each of which is easily analyzed.
It can be shown that if ¢'(x,y) is the set of points on L(x,y) between
x and y in the above linear order then ¢' = g, the original segment
operator. So starting from a segment operator o a "line operator" L
has been constructed whose "restriction" is o.
IfQis the family of all flats (translates of subspaces) in a
vector space, one can consider the corresponding (affine) hull operator
as before, since @ is closed under intersections. A member F of @
is characterized by the property; xe¢ F and y € F iff the line L(x,y)
determined by x and y is contained in F. Hence, we might consider
the question whether there is a theorem for an affine hull operator
analogous to 2.12, pertaining to the convex hull operator. The following
theorem is the analogue we seek.

3.18. Theorem. Let® be a convexity structure on X, whose correspond-

ing hull operator A satigsfies the axioms:
(a) A is Tl'
(b) A is domain finite.

(c) A is finitely join-hull commutative.
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(d) If u,ve A(x,y) then A(u,v) = A(x,y).

Let a mapping from XX to P(X) be defined by L(x,y) = A(x,y) for
each %,y € X, with L-sets defined as those sets F with the property that
L(x,y) C F if x,y are in F. Then L will obey the following:

(a') L(x,x) = x.

'Y If x, ¥y, z are in X and u € L(x,y), v € L(u,z), then there is
w € L(y,z) such that v € L(x,w).

(") u,v e L(x,y) implies L(x,y) = L(u,v).

(d') @ is precisely the family of L-sets.

Conversely if L is a map from X < X into P(X) satisfying (a'), ('),
(c¢') and a convexity structure @ is defined as in (d'), then the
corresponding hull operator A will obey (a), (b), (c) and (d) and the
mapping L' defined by L'(x,y) = A(x,y) will coincide with L.

Proof. The arguments used in Theorem 2.12 apply.

If X = R? and A is the usual affine hull operator on X then
L(x,y) = A(x,y) gives lines in R?. Note that in this case A is not
finitely join-hull commutative, since the join of a line L and a point
x ¢ L does not contain the line through x parallel to L. However, this
is not the case in the projective plane since every pair of lines must
intersect. Therefore, the projective plane X, with:@ = the family
of all flats, would be an example of a system satisfying the hypothesis
of Theorem 3.18. Note also that the projective plane with the line at
infinity removed is isomorphic to the Euclidean plane. Hence, the
properties of line operators could be studied in the projective plane,

then transferred to the Euclidean plane by simply removing some line.

The above idea admits the following generalization: Let (X,F) be
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a vector space over F. Introduce the equivalence relation = on X by
x=Ax iff A #0.

X %
3.19. Definition. Let X = {%:x€ X, x # 0} then X is called a pro-

jective space over F of dimension equal to dim X - 1 if dim X< ®, and

* -
infinite otherwise. Let H be a hyperplane of X then H = {x:xe H, x ¥ 0}

is called a projective hyperplane. We state without proof

* *
3.20. Theorem. If H is any hyperplane in a vector space X, then X ~H

is a vector space over T that is isomorphic to H.

Thus, as in the 2-dimensional case, properties of line operators for
*
X have implications for wvector spaces by lifting their properties from

* *
X ~H.



CHAPTER IV
PROPERTIES OF CONVEX AND PRECONVEX FUNCTIONS

4.1. Definition. If € is a convexity structure on the set X then the

pair (X,8) is called a convexity space.

4.2, Definition. Consider the convexity spaces (X,&) and (Y,£) and a

mapping £ from X to Y. The map f is said to be convex (with respect to
@ and ) if £(C) €€ when C € @ . Further, f is said to be preconvex
(with respect to @ and, &) if f-l(D)e € vhen D € &. The function £

is a convexity isomorphism if £ is one to one, onto, convex and preconvex.

In such a case the convexity structures are called isomorphic.

Recall that a map f from R® to R is called convex (in the classical
sense) 1f for each x and y in R®

£EQx + (1-0)y) < Af(x) + (1-X)f(y) for 0 <A < 1.

Any such function is continuous and so preserves connectedness. Let gn
and € denote the usual convexity structure on R” and R respectively. Then
ce e implies £(C) € &, because £(C) is connected and therefore it is
an interval. Soyevery classically convex function is convex with respect
to ¢” and €.

Meyer and Kay [10} have established the following result, which shows
a close relationship between classically linear functions and functions
which are convex in our sense.

4.3. Theorem. If V and W are real vector spaces with dim V > 1 and

17
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f: V >~ W is a one to one mapping which preserves the usual convex sets
then if £(0) = 0, £ is a linear map.

The following question, referred to as '"the linearization problem"
is of interest: Find. a set of conditions on a given convexity space
(X, 6) involving only the members of @ which will imply the existence
of a vector space structure (X,F) over an ordered field F such that the
usual convex sets of (X,F) become the elements of @ . In a recent paper([7]
Kay has answered this question in the affirmative.

The following theorem allows the linearization problem to be
stated in terms of the existence of a certain convexity isomorphism,

4.4. Theorem. Let (X,6) and (Y,&) be convexity spaces, where Y is a

vector space over an ordered field F and« is the usual convexity
structure; that is, D € & iff x,y € D implies that gx + (1-q)y € D for
a€Fand 0 £og £1. If (X,8) is isomorphic to (Y,«), then there exists
a vector space structure on X over F such that € is the usual convexity
structure.

Proof. Let f be the cgnve:dty isomorphism in the hypotheses. For
any x,y € X and o € F define x + y and ¢-x to be the elements of X whose
images are f(x) + f£(y) and of(x) respectively: then (X,+,.:,F) is a
vector space. By definition of +,.

QE(X) + af(y)

flo-x) + f(a-y)

fla-(xty)] = af(xty) = o[f(x) + £(y)}

flox + q-y)
Since f is 1 ~ 1 this implies g+(x +y) = g+x + Y. The demonstration of
the other vector space properties is similar. Let C € & and suppose

x,y€ C. Then if 0 <4 £1,
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flax + (1-0)y] = of(x) + (1~a)f(y). Since f is convex £(C) € ¥ so that

f(x), £(y) € £(C) implies oaf(x) + (1-a)f(y) € £(C); therefore,
ox + (1-0)y € C, and C is convex in the usual sense.

Conversely let C be any set satisfying the property that if u,v € C
ou + (l-a)v € C for 0 £ a £ 1. Then £(C) has the property that for any
pair £(x), £(y) € £(C)y af(x) + (1-0)f(y) = flex + (1-a)y] € £(C) so that
f(C) € K. But since f is preconvex C € G. Therefore, € 1is the usual
convexity structure on (X,F).

If in the above theorem one replaces the usual convexity structure
¥ by the family of all flats in (Y,F), then an argument similar to the
one above shows that & would be the usual flats on the vector space
(X,F). In this case it could be said that f is linear and prelinear
since the image of a line is a line,and conversely. More generally, one
can use this terminology for a mapping f from a "linear" space (X, @)
into (¥, ®), where @ and ® are thought of as affine hull operators,
instead of convex hull operators.

We now show that a number of properties which have been considered

by other authors are isomorphism invariants in our terminology.

4,5, Dafinition A co wvevity structure £ 3¢ ecatid +o0 hava Carathdodory
1.0, lerfimifion , L convexit = 18 gaic €0 have Laratheodory

number ¢ iff ¢ is the smallest positive integer for which it is true that
the C-hull of any set S € X is the union of the C-hulls of those
subsets of S of cardinality less than or equal to c.

4.6. Definition. A convexity structure has Helly number h iff h is the

smallest positive integer for which it is true that a finite subfamily
J of sets in € has nonempty intersection provided each h members of J

have nonempty intersection.
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4.7. Definition. A convexity structure G has Radon number r iff r is

the smallest positive integer for which it is true that any set S with

cardinality greater than or equal to r has a Radon partition, that is, S

may be partitioned into two nonempty subsets (Sl’Sz) such that
H(Sl)ﬂ H(Sz) # ¢,

4.8. Theorem. If (x, &) is isomorphic to (Y,dJ) then £[H(S)] = H(f[S])

for S C X.

Proof. Since S € H(S) and f is convex,f[S] C £[H(S)] € b;therefore,
by the definition of H, H(£[S]) € £[H(S)].

Conversely, if D € & and £(S) € D then S C f—l(D) and f—l(D) € C

since f is preconvex. Therefore

Hs) 2 Ne € N 2o =Y no = f'l[u(f[s]],
c>oS Ded DeD
cecC DO £(S) D 2 £(8)

so f[H(S)] c H(f[S]).

4.9. Corollary. If (X, €) is isomorphic to (Y, &) then (X,C) has

Carathéodory number ¢ iff (Y, ) has Carathéodory number c.

Proof. Let G have Carathéodory number ¢, Thenif D €
-1 -1 -1
£ T[H(D)] = H(f "[D]) = U{H(T): T € £ "[D] and |T| < c},

where |T| denotes the cardinality of T. Hence

H(D) = £[UH(T):T € £ 1[D], |T] < e}] = ULEHMIT c £ 1), |T] < )

U{H(E[T]) : £(T) € D and |£(T)|

A

< cl,so N has Carathéodory number less
than or equal to ¢. The argument is symmetric so the Carathéodory

numbers are equal.

4.10. Corollary. Domain finiteness and join-hull commutativity are

preserved by isomorphisms.
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4.11. Theorem. If f maps X onto Y and f is preconvex with respect to &

and & then if (X,&) has Helly number h, (Y,d) has Helly number < h.

Proof. Let F = {Dk :k =1,2,--+,n Dk-e &1} and suppose that the

intersection of each h members of F have a nonempty intersection. Let

-1
C, = f (Dk) and H = {Ck: k = 1,-+.,n}; since £ is preconvex, Ck. € &

for each k. Let Ckl,Ckz,- . "Ckh be any h elements of H. Then

h ho 4 b h
N c = NE (M) =¢£ (N D). But [] D # ¢ and since f is
i=1 1 =1 i i=1 1 j=1 1
h
onto this implies [ C; # ¢. But (X,C) has Helly number h so
i=1 1

n
N ¢ # ¢. Since
k=1

n n_, -1
Nog =NE@) = (D,
k=1
n
N Dk # ¢. Therefore, (Y,§) has Helly number less than or equal to h.
k=1

4.12. Corollary, If (X,C) and (Y, R) are isomorphic, then (X,&) has

Helly number h iff (Y, ) has Helly number h.

4.13. Theorem Let (X,C) and (Y,0) be convexity spaces and f a one to

one map from X onto Y which is preconvex. If (X, €) has finite Radon
number ¢ chen the Radom mumber of (Y, K) iz zr=.

Proof. Let D be any set in Y with cardinality greater than or equal
to the number h. Since f is onto,l |c| > h where C = f-'l(D), so there exists
a Radon partition (Cl,C

of C. Since f is one to one,D, = f(Cl) and D2 = f(Cz)

5 2)
partition D. But f‘lm(ni)) :f”l(ni) oS¢

1

1 i=1,2, and since £ is

preconvex f_l[H(Di)] € € s0 H(Ci) c f-ltﬂ(Di)] . Therefore,

-1
b # H(_Cl) N H(Cz) Cr [H(Dl) N n(nzn S0 H(Dl) n H(Dz) # 4.



22

4.14. Corollary. If (X,¢) and (Y,£) are isomorphic, then (X,& ) has

Radon number r iff (¥, ) has Radon number r.

The composition of convex isomorphisms is again a convex isomorphism
and in fact, under the operation of composition the set of convex
isomorphisms from a convexity space (X,8) to itself forme a group. The
next result, which is used later, is the analogue of a classic theorem
in linear topological spaces.

4.15. Definition. A set S is said to be starshaped at a point x iff for

each y € S it is true that H(x,y)cS. The notation (X,8,%) is used for

a set X with convexity structure @ and topology¢f . It is said that

(X,8,9) is locally starshaped at x if for each neighborhood U of x
there exists a neighborhood V of x such that V¢ U and V is starshaped

with respect to x. If the above holds for each x ¢ X then (X, €, ) is

called locally starshaped.

4,16 Theorem. If (X,€,J) is locally starshaped and £ is a convex

function from (X, ) to the real numbers (with the usual convexity struc-

ture) then f is_continuous iff f—l'(Ot)' is closed for each real number a.
Proof. If f is continuous then the preimage of a point must be closed.
Conversely, suppose £ (o) is closed for cach geR and that there

is a point x € X at which f is not continuous. Let €>0 be such that

every neighborhood U of x contains at least one point y such that

|£(y) -~ £(x)| >e. Let K= £ L) - €/2) U £72(£(x) + /2); then K is

closed and x ¢ K. So there is a neighborhood U of x such that UM K = ¢.

Since (X,&, g/) is locally starshaped, let V be a starshaped neighborhood

of x such that V¢ U; then VN1 K = ¢. But there is a point ye V

such that |£(y) - £(x)| > e . Now H(x,y) ¢ V and f (H(x,y)] must be an
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interval containing the points f(x) and f(y). Hence, If(y) - f(x)l > €
implies some point z € H(x,y) exists whose image is f(x) + €/2 or
f(x) - €/2. Hence z € H(x,y) N K, implying that VAN K # ¢, which is

a contradiction.



CHAPTER V
ANALOGUES OF THE KREIN-MILMAN THEOREM

M. C. Gemignani [5], and P. C. Hammer [6] have considered relation-
ships between convexity and topology in nonclassical settings. In the
classical setting continuity of vector addition and scalar multiplica-
tion provide a connecting link between convexity and topology. The
convex hull and join operators provide this link in abstract settings,

as we shall see.

5.1. Definition. Recall that in a topological space (X,9) a sequence

of sets Sn converges to the set S, denoted Sn + S, iff 1im sup Sn =

lim inf Sn = 8. Thus a topology known as the Hausdorff topology is

determined on P(X), the power set of X.

Let (X, &) be a convexity space and J a topology on X. The hull
operator H associated with & is a set function from P(X) to P(X). A
natural property would be the requirement that H be continuous relative

to the Hausdorff topology of P(X). But if X is the plane R2 with the usual

topology and convexity structure then H is not continuous.

5.2. Example. Let §_ = {(-,y)}y € RIU{(1,D)} and

S = {(0,y):y € RIU{(1,0)} then Sn+ S but H(Sn) +~ {(x,y) 0 <x <1}
and H(S) = {(x,y) : 0 < x <1} U {(1,0)}. A concept which has been found

to generalize the idea of a linear topological space is contained in the

24
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following definition.

5.3. Definition. The triple (X, € ,J ) is called a topological

convexity space (T.C.S.) if & is a convexity structure for X and { is
a topology on X for which:

(a) Y is first countable and Hausdorff

(b) UEY implies for x € X, J(x,U) ~ {x} € 7

(c) 1f {Sn} is a sequence of p-element sets contained in a compact
set, where p is a positive integer, then Sn + S implies H(Sn) + H(S).

The following are examples of topological convexity spaces.

5.4. Example. Let (X, %4 ) be any linear topological space and € the

usual convexity structure on X. If 9 is first countzble and Hausdorff
(therefore, metrizable) then (X, & , &/ ) is a T.C.S. The proof involves
continuity of addition, scalar multiplication and Carathe'odory's theorem.

5.5. Example. Let X = R2 and € the usual convexity structure on R2. Let

a basis for?% be given by sets of the form {(x,y) : a<x$b, c<y s d}

where a,b,c, and d are real numbers such that a <b and ¢ < d.

5.6. Example. Let X = R2 and J the usual topology on R2. Let € be gener-
ated (see Theorem 2.12) by the segment operator o defined below. Every
pair of points u,v€ X either lie on a vertical line or determine a
parabola of the formy = x2 +bx + c. In either case let o(x,y) be the
closed curve between x and y.

5.7. Example. Let X = R*, % the usual topology on R" and let € be any

one of the following families of subsets:
(a) the closed subsets of X.
(b) the closed convex subsets of X.

(¢) X and all bounded, convex subsets of X.



26

Then in each case (X,&,%) is a T.C.S.

5.8. Example. Let X consist of n-dimensional hyperbolic or elliptic

geometry with the usual segment operator 0 (x,y) = the points x and y, to-
gether with the points between x and y. Take & to be the family of g-sets
(see Theorem 2.12) and % the topology of X as a metric space. Then
(X,6,%) is a T.C.S.

5.9 Theorem. Let (X, &,%) be a T.C.S. and Sc X which is starshaped at a

point x. Then ¢l S, the closure of S, is also starshaped at x.

Proof. Let X € cl S and { xn} a sequence in S converging to X, Let S

o]
{X 0¥ }and So= { xo,x]' then Sn is a 2-element sequence and rL1J=1 S'n cix, X s

n

Xpsmees X 5000 which is a compact set. Further Sn-> So so H(Sn.) + H(S).
But S is starshaped at x so H(Sn) = H(xn,x) C S for each n. Therefore, by
the definition of convergence, H(x,xo) C cl S.

5.10 Remark. If @ is domain finite then S¢ X is &-convex 1ff for any finite
set {xl,n--,xn} contained in S it is true that H{xl,---,xn}C S.

5.11 Theorem. If S is a & -convex set in a domain finite T.C.S. (X,& ,%)

then cl S is also €-convex.

Proof. Let {xl,_---,xp} be any finite subset of cl S; by the above
remark it is enough to show that H(xl,---,xp) C cl S, For each 1, 1i=1,2,
sre,p, let {xi} be a sequence in S converging to xi. Define Sn={xt.];,--~ g}
and So= {xl,---,xp} ; then the sequence of p-element sets {Sn} converges
to So’ and is contained in the compact set (nglsn)uso; Therefore,

H(Sn) > H(So) and since SnCS and S is 6 -convex, H(Sn)CS. Hence, it fol- '
lows that H(SO)C cl S. That is, H(gl,--o,xP)Ccl S and.cl S is €~convex.

A modification of Example 5.7 (c) shows.that the assumption of domain

finiteness is needed in Theorem 5.11: Simply include one nonclosed,
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unbounded, convex subset of X in the family @ .

5.12. Theorem. Let (X,%¥,C) be a domain finite and join-hull commutative

T.C.S. then for any A C X, H(int A) C int H(A).

Proof. Let x € H(int A). Then domain finiteness implies there is a
minimal integer n such that x€ H(al,---,an) for a,€ int A (1<£1< n). But
by join-hull commutativity xe J(a,, H(az,---,an)). Since n was minimal,

x & H(a2,~—~ ,an), SO0 X€ H(al,b) ~ {b}cJ(b,U)~ {b} , where b is some
point in H(az,---,an) and U is an open set such that ale UC A, Now
b€ H(A) and UC A CH(A), so x€ G = J(b,U) ~ {b}CI(b,U) =

H( V U) ¢ H(A). Since G is open, x € int H(A).

Two results follow immediately (valid in any domain finite and join-
hull commutative T.C.S.)

5.13. Corollary. If S € g then H(S)E .

5.14. Corollary. The interior of a @ -convex set is & -convex.

5.15. Theorem. If € has Carathéodory number ¢ and (X,&,%) is a T.C.S.,

then for each compact set K, H(K) is closed.
Proof. Let z be a limit point of H(K); then there is a sequence

{zn}C H(K) such that z + 2. Note that if y is any point of H(K), then

such

-~ P - - . .
since G has Caratheodory number ¢ there are poinis A ,yz, cee ,ym ia

’

that y € H(yl,---,ym), where m £ c¢. If m < ¢ choose points Yo = Yme2

cee = yc = yn-l in Kso that y € H(yl,yz,-- ',yc). Therefore, we may assume

that zné. H(xI];,n',x;) where xié K, 1 £4i £c. Let {xl } be a subsequence

1 1
of {xn} converging to say xlé K; then znké H(xnk

process for the sequence {x“2 }, and continue inductively. By change of

,---,xc ). Repeat the

notation it may be assumed that zne H(xi,---,x:) where x:‘l > X and
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xiE K, 1 <i<c. Let Sn = {xi,---,xﬁ} and S = {xl,"'xc}. Then {Sn} is a
c-element sequence coniained in K so H(Sn) + H(S). Since ScK, we have
H(S)C H(K) . But z + 2 and z € H(Sn) so z¢€ lim sup H(Sn) = H(S) ¢ H(K).
It will be assumed that € is domain finite and join-hull commutative

in all that follows.

5.16 Definition., Let (X,&,% ) be a T.C.S. If C,LDe & then C and D are

said to be complementary ¢ -half spaces if C and D are nonempty, CUD = X,

and CN D= ¢.
Ellis [3] has proved the following.

5.17. Theorem. Let (X, @ ) be a domain finite and finitely Join-hull

commutative convexity space. If u€ H(x,y) and v € H(x,z) imply that
H(u,z) N H(v,y) # ¢ then for any two disjoint sets A, B € @ there exist.
complementary & half spaces C and D such that C2 A and D D B.

5.18. Definition. Let C and D be complementary @ half spaces and let

H=clCNclD IfH# ¢ and H # X then H is called the closed hyperplane

determined by C and D.

5.19. Remark. Since D = X~ C and C = X~ D, the set H just defined is

actually the boundary of both C and D, since bd C = c1 C N cl(X~C) =
el (X~D)YN el D=bd D.Thus if H= ¢ thenbd C = ¢ so C = int C, and
D = int D. Thus, if X is connected and either int C # ¢ or int D # ¢ ,
then both H # ¢ and H # X, and H is a closed hyperplane.

5.20. Theorem., If H is a closed hyperplane determined by C and D then

either H D C, HD D, or the sets int C, int D, and H are each nonempty
members of @ and partition X, with int C= C~H and int D = D~ H.
Proof. Suppose H» C and H» D. Then int C # ¢, int D #¢ and

H# ¢ . Since C, D€ @ Theorem 5.14 implies that int C and int D are in G.
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Also by Theorem 5.11 cl C and c1 D are in {;hence H € G. Suppose

x EX~@HU int CV int D); Since x € X =¢1 C U ¢l D and

x4 ¢l CN cl D it may be assumed that x ¢ cl D. Thus,

XEX~clDC X~ D =2C_Cysa x € int C. This contradiction implies that

X

H U int C U int D, and since int C, int D and H are disjoint they
partition X. It is a result from tepology that int C = C ~ H and
int D= D VY H, so the proof is complete.

The theory necessary to derive the analogue of the Krein-Milman
theorem will now be introduced.

5.21. Definition. If K € € and x € K,then x is an extreme point of K

if y,2 € K and x € H(y,2) imply that x =y or x = z. A nonempty set M

contained in a set K CX, is called an extremal subset of K if x,y€K and

M 0 H(x,y) ~ {x,y} # ¢ imply {x,y}C M.

The next theorem requires an extensive hypothesis, which is, of
course satisfied in the usual setting of locally convex linear topological
spaces in which the theorem of Krein-Milman normally applies. However,
it is not difficult to see that this hypothesis is satisfied also by a
few of our previous examples (5.6 and 5. 8). Following the proof, we
show how to opbtain simiiar nypotheses in a class of spaces studied by
Cantwell [6], providing further examples. Parts (a) and. (b) of the
hypothesis are general requirements pertaining to the space X (in
particular, to the convexity structure &), while -part (c) concerns
properties demanded of closed hyperplanes (involving both & and I).

5.22. Definition. For convenience, let us call a closed hyperplane H

flat if whenever the set H(x,y) ) H contains at least two points then

H(x,y) € H. Let H be called regular if there exists a continuous convex
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function f from X onto R (with usual convexity structure and topolecgy
on R) such that for some real a, H = f-l(a.) . A regular closed hyper-
plane H = {x:f(x) = o} is called translatable iff f_l(B) is a closed
hyperplane for all real B.

5.23. Definition. A T.C.S. (X, &,J) is sald to be locally comvex at a

point x if for each neighborhood U of x there exists a neighborhood V of
x such that V € € and V cU. If (X,€,d) is locally convex at each

point then it is said to be locally convex.

5.24. Theorem.(Krein-Milman) Let (X,C,J) be a connected locally

convex T.C.S. satisfying:
(a) € is domain finite and finitely join-hull commutative.
(b) If x, vy, z €X and u € H(x,y), v € H(x,z) then H(u,z) ) H(v,y) # ¢.
(c) Each closed hyperplane is flat, regular, and tramnslatable.
If A is any compact element of & then the above properties imply

that A = cl(H(ext A)), where ext A is the set of all extreme points of A.
The proof will be given in a sequence of lemmas.

5.25. Lemma. If F is a family of extremal subsets of a set K, then a

nonempty intersection of any subfamily of % is an extremal subset of K.

Proof. Let Fi € #, 1€ A, Choose x €EK, y € K. If

(N F,) NH(xy)~{x,y} # ¢ then F, N H(xy) ~ {x,y} # ¢ so that
1eal i

{x,y} C Fi» i € A. Therefore {x,y}C (1 F
i€eA

5.26. Lemma, Let H be a regular closed hyperplane determined by comple-

i.

mentary sets C and D. Then there exists a continuous convex function £

from X onto R and o € R, such that H = {x: £(x) = a}, and
int C = {x:f(x) <a }andint D= {x | £(c) > o }.

Proof. There exists a continuous convex function f0 from X onto R and
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o€ R, such that H = f—l(a). There is X € H, so either xo € C or Xo € D,

say XOE C. Then xoe C~H=int C. If fo(xo) < o take f = fo; if
fo(xo) > a define f by £(x) = 20 - fo(x) for x € X. Then f is also a
continuous convex function from X onto R, and f(xo) < o in either case.
Let Y, be any point in X such that f(yo) > oj we show that v, € D. 1If
not then Yo € C and hence Yo € C ~H = int C. By the convexity of f it
follows there is a point 2, € H(xo,yo) such that f(zo) = a, Thus,

z € int C (since int C € &) and z € H = bd C, an impossibility.
Therefore, yo € D~ H = int D. The same argument proves

{x|f(x) > ¢} ¢ int D; similarly, {x|f(x) < a} € int C. Now we have
H?C and H 75 D so by Theorem 5.20 the sets int C, int D, H partition
X. Since also the sets {x:f(x) < o}, {x:f(x) = a}=H, and {x:f(x) > al}
partition X, the assertion follows.

5.27. Lemma. With hypotheses as in Theorem 5.24, a compact set A has at
least one extreme point.

Proof. Let J be the set of all compact extremal subsets of A.
Since A € & the famlly & # ¢. An application of Zorns lemma implies
that J has a minimal element F. The goal is to prove that F is a
single point. (Hence F is an extreme point of A.) Suppose x, y are
distinct points of F. Since (X,G’,.‘?) is a locally convex space and
is Hausdorff, there exist disjoint € -convex neighborhoods A, B of x
and y respectively. Theorem 5.17 implies there exists complementary
G -half spaces C and D such that A CC and B C D, Since H=cl CNcl D is a
closed hyperplane, Theorem 5.26 implies there exists a.continuous convex
onto function f:X + R such that H = {x:f(x) = d} and £(x) <o < £(@.

Since f is continuous and F is compact
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B = sup{f(z)} = f(zo)
z€F

exists for some 2, € F. Also by hypothesis Hl = {x'f(x) =R} # ¢ 1s a
closed hyperplane. If E = F N1 H, then E is compact, z € E, and x ¢ E
so E is a proper subset of F. We show that E is an extremal subset of A.
If u,v € A withw € [H(u,v) ~ {u,v}] N E then u,v € F becausew € E CF
and F is an extremal subset of A. But u,v € F implies f(u) < B and

f(v) < B. If both f(u) < B and f(v) < B then u,v € {x:f(x) < B} € &,
implying w € H(u,v) € {x:f(x) < B}. This is impossible since w € H,.
If £f(u) < B and £(v) = B then w,v € H(u,v) 0} H, so by hypothesis

H(u,v) C Hl,implying that u,v € E. The above proves that E is an extremal

subset of A. Hence, E € #,contradicting the minimality of F.

Proof of Theorem 5.24, Let B = cl(H(ext A)). Since ext AC A it is

true that

H(ext A) C H(A) = A and cl(H(ext A) C ¢l A = A,

It remains to prove that A € B. Suppose x € A ~B. Since B is closed

X ~B is a neighborhood of x. From the local convexity of (X,¢€,J)
there is a (-convex neighborhood U of x such that x € U c X ~B. From
Theorem 5.10, B is & -convex so U,B € £ and U N B = ¢. Again by Theorem
5.17 there is a closed hyperplane H determined by C and D such that U CC
and B C D; thus U < int C. By hypothesis H is regular,which with Theorem
5.26 implies the existence of a continuous convex function f and a € R,
such that H € f-l(a) and f(int C) < o < f(int D). Since f is continuous

and A is compact,define 8 =y12fA{f(y)}° (Note that B < o since x € A

and £(x) < a). Let Hl = {y|f(y) = B}; then E Hln A # ¢ (f takes its

minimal value at an element of A). Now E is compact, so by Lemma 5.27
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there is a point w € ext E. Tt will be shown that w €.ext A. If ugA,
v € A and w € H(u,v) ~ {u,v}, then from the definition of 8, f(u) > 8 and
f(v) 2 B. If both f(u) > B and £(v) > B, then u,ve {x:£(x) > B}E€ & so
w € H(u,v) ¢ {x:£(x) > B). But this contradicts the fact that f(w) =8,
sincewe€ EC Hl' If f(u) = B and £(v) > 8 then u,w € H(u,Vv) N Hl and
hence, H(u,v) C H,. Therefore f(u) = £(v)=8 and u,veE. But this contra-
dicts the fact that we¢ ext E, since w€ H(u,v)~ (u,v) where u,v € E.Hence
w € ext A. But thenwe ext AC BC D implies f(w) > «, a contradiction
since f(w) = B < . Therefore A = B.

We now develop the theory for the Krein-Milman theorem where the
convexity structure and topology involved are related to lines instead
of segments, which yields added properties sufficient to develop a general

hyperplaze.

5.28. Definition. Consider a set X and a family &£ of subsets called

lines. We assume every line has a given total ordering. If x,ye L € X,
x # y let (x,y) denote the set of points on L strictly between x and y.
Similarly define Ux,y} = (x,y) U {x,v}, (x,¥), = (xy) U {x} and

(x,y7 = (x,¥) U {y}. The pair (X,&£) is called a generalized linear

space 1f X gatigfies the following avioms:
a) Every line is order isomorphic to the real numbers.
b) Each pair of points in X belongs to a unique member of Z.
c) If x,y,z2€ X, u e (x,y), and v € (u,z) then there is w € (v,2)
such that v ¢ (x,w).
The family.Z determines a convexity structure (X, & ) where
G = {C:x,y € C implies [x,y3C C}.

5.29. Definition. If CC X then lin C={x¢€ X:there is ye C with (y,x)C cl
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and core C = {x€ C: for each y # x there is z € (x,y) such that (x,z)C C}.

5.30. Definition. A subset FC X is called a flat if x,y € F implies

L(x,y) C F, where L(x,y) is the line in£ which, by axiom (b), is determined
by x and y. The affine hull of a set SC X is defined as f1(S)=N{F:FDS,F

a flat}. A flat H separates X into (A,B) if X~ H = AU B with A,B€ €,

where A and B are nonempty disjoint and x € A, y € B implies (x,y)N Héd .

A flat H is a hyperplane iff it separates X. A flat is of deficiency 1

if there exists x € H such that f1(x,H) = X.
Cantwell (2], who has worked extensively with generalized linear
spaces, has proved the following results:
5.31. Lemma, H is a hyperplane iff it is of deficiency 1l,and further,
a hyperplane is a maximal proper flat.
5,32, Lemma. If A,LBE & and A/l B = ¢ there exist complementary
G -half spaces C,D such that AC C and B C D.
5.33. Lemma. If C and D are complementary @ half-spaces, H = lin C /N 1lin D,
and H # X, then H is a hyperplane.

5.34. Definition. The space X is said to be linearly decomposable if

for any hyperplane HC X there exist a line L and a family of hyper-

planes {Hx:x € L} such that

(a) The family of sets {Hx:x € L} partitions X.
(b) Hxn L = {x}.
(c) For some x ¢ L, Hx = H,

5.35. Theorem. If X is linearly decomposable then for each hyperplane H

there exists a convex and preconvex function £ from (X, &) onto the reals,
where § is the convexity structure determined by £ . Further there is € R

such that H = {x : f(x) =al}.
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Proof. Let L and {Hx:xe L} be the line and family of hyperplanes
partitioning x as determined by H. Define f:X » L by f(x)=y 1ff x ¢ Hy.
let C € € and z € [x,y] , where x,y € £(C). Suppose u,v € C and £(u)= x,
f(v) = y; then [u,vic C. Suppose Hz N [u,v] = ¢. Since Hz is a hyper-
plane it separates X into (A,B), and if u€& A, ve& B then (u,v) /N Hz# ds
which is not the case. Therefore suppose u,v ¢ A. Then [u,v] CA, If
x € B then [uoxJ('\ Hz # ¢, but l,'u,chHx and Hxn Hz = ¢, a contradiction.
Therefore, x € A. Similarly y € A, so [x,y] C A implies H, Nrx,y) # ¢, a
contradiction. Hence we conclude Hz N tu,vi = {p}, so that £(p) = z.
Hence z € £(C) and £(C) is convex.

Similar reasoning shows that f is preconvex. Since L is order isomor-
phic to the reals, the existence of tre desired function is now apparent.

5.36. Remark. Since {Hx:x € L} partitions X, f-l(x) = Hx for any xeL. Hence

the preimage of a point is a hyperplane, and each hyperplane is translatable.

5.37. Definition. If (X,#) is a generalized linear space, then (X,Z,J)

is said to be a generalized linear topological space (G.L.T.S.) if:
(a) Jis a first countable Hausdorff topology for X.
(b) If xeU e ¢ then x € core U.
(¢c) Whenever {xn}, {yn} are sequences which converge to x and y
respectively, then L(sn,yn) + L{x,y) (Hausdorff limit
. understood).

5.38. Theorem. If F 1s a flat then cl F is a flat.

Proof. If x,y € cl1 F let {xn},{yn} be sequences in F converging

to x and y respectively; then L(xn,yn) -+ L(x,y). Since F is a flat
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L(xn,yn) C F,so L(x,y) € cl F.

5.39. Theorem. If H is a hyperplane, then either c1 H = H or ¢l H = X,

Proof. Lemma 5.38 implies that cl H is a flat. From Lemma 5.31
a hyperplane is a maximal proper flat, hence c1 H = H or cl H = X.

5.40. Theorem. If C € & then lin Cc cl C.

Proof. Let x € 1in C; then there is y € C such that [y,x) ¢ C. If
U is a neighborhood of x since (X,Z ,3) is a G.L.T.S. there is z € (y,x)
such that (z,x) € U. Therefore y f1C # ¢.

5.41. Theorem (Krein-Milman) Suppose (X,&,J) is a locally convex,

linearly decomposable G.L.T.S. then if A € & is compact

A = cl(H(ext 4)).
The following lemma is proved using the hypotheses of Theorem 5.41.

5.42. Lemma, If U and V are disjoint open convex sets there exists a

hyperplane H = {x:£f(x) = a} such that £(U) < o < £(V), and further, f is

continuous.

Proof. By Lemma 5.32 there exists complémentary &-half spaces C

and D such that U €C and VCD. Let H = 1in C N 1in D; then by Theorem
5.0, Hc cl ¢ ¢l D # X. By Lemma 5.33 H is a hyperplane. Now
clHccl C fNlclD# X,s0 by Theorem 5.39 cL H = H and H is closed. By
Theorem 5.35 there is a convex and preconvex function f from X to R

such that H = {x!f(x) = a}. As in Theorem 5.26 it can he shown that

f(U) <a < £(V). IfB < then f_l(B)l'IV = ¢. From the construction of f,
f-l(B) is a hyperplane, so f—l(B) NV = ¢ implies f-l(s) is closed.
Similarly, if 8 > o then f"l(B) is closed. Therefore, by Theorem 4.16 £
is continuous.

We now have sufficient power to prove Theorem 5.41 by a method
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parallel to the proof of Theorem 5.24. Thus, we find that the class of
linearly decomposable generalized linear topological spaces is a class of
spaces in which a Krein-Milman type theorem holds.

We remark that in the presence of local convexity it can be shown
that a generalized linear topological space (X,Z£,&) is a topological
convexity space, (X,8,% ), where @ is the convexity structure determined
by & . The rather lengthy proof involves the following property: If
{xn}, {yn}, and {zn} are sequences converging to x, ~ and z respectively,
where for each mZ s yn and zn lie on some line Ln and v € (x,2z) then
for all n sufficiently large v, € (xn, zn). |

5.43. Example, Let X = R2 and ¢ the usual topology on R2. Let & consist of:

1) all ordinary Euclidean lines of zero, negative or infinite slope

2) all broken lines of positive slope comsisting of two half-lines
meeting at the x axis with the slope of the upper half-line twice the
slope of the lower half-line.

One can easily show that (X,% ) is not equivalent to an open subset
of R?, since this is the classic example of a non-Desarguesian affine
plane.

This comstruction can be applied to any finite dimension, with the
usual topology of R".

More generally, Cantwell's axiomatic system in finite dimensions
satisfies the linear decomposition property, and so provides a class
of spaces more general than the classical setting for which the analogue

of the Krein-Milman theorem holds.
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