Oklahoma Agricultural Experiment Station, STILLWATER, OKLAHOMA. BULLETIN NO. 37. APRIL, 1899 DIGESTION EXPERIMENTS AND FODDER ANALYSES. GEO. L. HOLTER AND JOHN FIELDS ## DIGESTION EXPERIMENTS WITH STEERS. #### PRACTICAL RESULTS. - 1. Kafir stover contained as much digestible matter as average corn stover. - 2. Kafir fodder contained 10 per cent. less digestible matter than average corn fodder. - 3. *Kafir heads* contained one-third as much digestible matter as average corn-and-cob-meal. - 4. Kafir corn fed in the heads was neither more nor less digestible than when fed after thrashing. - 5. *Kafir corn* fed after soaking in water for twelve hours was less digestible than when fed dry. - 6. Kafir corn fed dry contained 40 per cent. less digestible matter than coarsely gound Kafir meal. - 7. Kafir meal, coarsely ground, contained 20 per cent. less digestible matter than average corn meal. - 8. It paid to Grind Kafir Corn —One hundred pounds of Kafir meal contained as much digestible matter as one hundred and sixty-seven pounds of Kafir corn - 9. A gain of thirteen per cent. in the amount of digestible matter was secured when Kafir fodder was thrashed, the grain ground and fed to steers along with the shredded stover from the fodder. - 10. A gain of less than two per cent. in the amount of digestible matter was secured when Kafir todder was thrashed, and the resulting Kafir corn fed to steers along with the shredded stover from the fodder. NOTE.—This Bulletin gives full discussion of work summarized in Bulletin No. 35. It was ready for publication June 1, 1898. A legal controversy concerning printing for the Station caused delay in printing this and other bulletins. #### INTRODUCTION. The general trend of results of feeding trials with Kafir products is that it requires more Kafir than it does of Indian corn to produce a pound of live-weight. In an experiment with pigs at the Kansas Station (Bul. 53.) it was found that 5.15 lbs. red Kafir meal were required to produce a pound of gain while 4.38 lbs. corn meal gave the same result. In each case, the pigs were given all they would eat and while those fed Kafir meal gained 1.37 lbs per day, those fed on corn meal gained 1.7 lbs. Another trial at the same station (Bul. 61) gave even more marked results in favor of corn meal, 3.96 lbs. of which gave a pound of gain against 6.21 lbs. of Kafir meal. The pigs fed corn meal made an average daily gain of 1.44 lbs. while those fed Kafir meal gained but one half pound per day. An experiment in fattening heifers is also reported in the same bulletin. It is concluded "that red Kafir corn meal is not quite equal to corn meal for fattening cattle, though the difference in favor of corn is less marked than in the case of the hogs." In another trial at the Kansas Station (Bul. 67) three lots of steers were fed corn meal, red Kafir meal, and white Kafir meal, respectively, making daily gains of 1.86 lbs., 1.71 lbs., and 1.78 lbs. per head. To produce a pound of gain in weight, it required 9 97 lbs. of corn meal, 10.86 lbs. red Kafir meal, or 10.41 lbs. white Kafir meal. The profit from the five steers fed corn meal was \$47.60; from the five fed red Kafir meal, \$44.98; from the five fed white Kafir meal, \$42.02. Hogs followed the steers during the experiment and made gains which bring the profit from the feeding of corn meal up to \$54.70; red Kafir meal to \$55.10; and white Kafir meal to \$53.23, "which practically places Kafir corn on the same basis as corn in regard to feeding value." Practical feeding experiments have been conducted at this Station, the results of which will be published in a separate bulletin. It will be seen from a study of the results of the experiments here reported that they explain and in turn are explained by the results of feeding experiments. The slightly lower digestibility of the different parts of the Kafir crop as usually fed, as compared with the corresponding parts of Indian corn accounts for the fact that larger amounts of Kafir are required to produce a pound of live-weight. After a crop has been grown successfully and proved adapted to conditions which exist and must be met, a correct estimate of its value is most desirable. Chemical analyses alone will not furnish a basis for this estimate, but in connection with trials of the digestibility of the feeding stuff in question, will determine to a great extent the relative value which should be attached to a crop. With this purpose in view, the investigations reported in this bulletin have been carried out. In view of the increasing importance of Kafir in this and similar regions, it is necessary that a definite system of nomenclature be used when speaking and writing of the crop. The following, based principally on current usage among farmers, has been used in this bulletin. Kafir, the crop in general. Kafir corn, thrashed grain. Kafir heads, portion bearing grain. Kafir fodder, whole plant above ground. Kafir stover, Kafir fodder minus the heads or grain. Kafir meal, ground Kafir corn. A brief explanation of the terms used in this bulletin is also inserted for the convenience of those who are not thoroughly conversant with the subject. It is taken, for the most part, from Farmer's Bulletin No. 73, of the U. S. Department of Agriculture. Water is contained in all foods and feeding stuffs. The amount varies from 8 to 15 pounds per 100 pounds of such dry materials as hay, straw, or grain, to 80 pounds in silage and 90 pounds in some roots. Dry matter is the portion remaining after removing or excluding the water. Ash is what is left when the combustible part of the feeding stuff is burned away. It consists chiefly of lime, magnesia, potash, soda, iron, chlorin, and carbonic, sulphuric, and phosphoric acids, and is used largely in making bones. Part of the ash constituents of the food is stored up in the animal's body; the rest is voided in the urine and manure. Protein (nitrogenous matter) is the name of a group of substances containing nitrogen. Protein furnishes the materials for the lean flesh, blood, skin, muscles, tendons, nerves, hair, horns, wool, casein of milk, albumen of egg, etc., and is one of the most important constituents of feeding stuffs. Albuminoids is the name given to one of the most important groups of substances classed together under the general term protein. The albumen of eggs is a type of the albuminoids. Carbohydrates.—The nitrogen free extract and fiber are usually classed together under the name of carbohydrates. The carbohydrates form the largest part of all vegetable foods. They are either stored up as fat or burned in the body to produce heat and energy. The most common and important carbohydrates are sugar and starch. Fiber, sometimes called crude cellulose, is the frame work of plants, and is, as a rule, the most indigestible constituent of feeding stuffs. The coarse fodders, such as hay and straw, contain a much larger proportion of fiber than the grains, oil cakes, etc. Nitrogen-free extract includes starch, sugar, gums, and the like, and forms an important part of all feeding stuffs, but especially of most grains. Fat, or the materials dissolved from a feeding stuff by ether, is a substance of mixed character, and may include, besides real fats, wax, the green coloring matter of plants, etc. The fat of food is either stored up in the body as fat or burned, to furnish heat and energy. Nutritive ratio is a term used to express the relation existing between the digestible protein and the digestible carbohydrates and fat. More protein is required for animals that are growing or producing milk than for animals doing work or being fattened. In a digestion experiment, weighed quantities of feed are given to animals (usually steers or sheep) and the dung is collected and weighed. Both the feed and dung are analyzed and from these data, the per cent. of the food digested is determined. It is not anticipated that the busy stockman will find the tables presented in this bulletin full of enlivening interest. In order that an experiment of this sort may have its full value for those who study so as to feed to the best advantage, it is necessary that the essential details of the experiment be published and this has been done. The feeder who does not care for these details will find the practical results summarized at the beginning of the bulletin. #### DIGEST ON EXPERIMENTS. The usual methods were followed in the experiments here reported. The animals used were grade shorthorn steers past two years ola. A and B had been fed Kafir in some form throughout the fall while C and D had been fed a ration containing cottonseed. Mr. J. T. Clark of the senior class in college performed the work of feeding and sampling in a most efficient and satisfactory manner. The duration of the digestion period in each case was seven days preceded by a preliminary feeding of seven days except in the trial with Kafir stover when A and B were fed five days and C and D twelve days before the digestion period. The following table shows the extreme variation in liveweights of steers during digestion periods. Weights were taken daily throughout the experiment, and are stated in pounds. | STEER | A | В | C | D | |--|--|--|---|---| | Period I Period II Period III Period IV Period V Period VI | 753-765
753-762
756-765
765-771
764-786
772-779 | 633-648
644-661
638 651
642-649
644-660
651-661 | 560-588
580-600
589-604
572-605
610-618 | 686-695
682-701
693-702
667-700
698-710 | In the calculations of digestibility, all weights are in grams. 453.6 grams weigh one pou d avoirdupois. #### I. DIGESTIBILITY OF SHREDDED KAFIR
35TOVER. It is the practice of farmers to some extent to thrash Kafir fodder, thereby removing the grain and effectually shredding the stover. The feed used in this trial was prepared in this manner. Protein No. DESCRIPTION. $\begin{array}{c} 7.15 \\ 7.57 \\ 6.33 \end{array}$ 21.10 Kafir stover... 25.80 26.25 27.89 21.83 30.10 Kafir stover. 5.06 Rejected by A. Rejected by B. R jected by C. 3.45 3.88 3.99 34.67 25 61 7.11 11.6131.16 20.61 6.76 3.04 3.56 Rej cted by D..... 26.02 4.63 Dung, A..... 8.01 $82.67 \\ 83.12$ $\frac{3.00}{2.82}$ 1.56 Dung, B.. 4.62 4 35 Dung, C. Dung, D..... Analyses of material as sampled. Calculation of Digestibility. | | Drv
Matter | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | |---|--|--|---|---|---|--| | STEER A. | | | | | | | | Offered Rejected Eaten Excreted Digested Per cent, digested | 27489
1068
26421
10970
15451
58.5 | 2576
97
2479
1839
640
25.8 | 1579
53
1526
1057
469
30.7 | 9341
401
8940
2798
6142
68.7 | 13493
507
12986
5185
7801
60.1 | 500
10
490
91
399
81.4 | | STEER B. | | | | | | | | Offered | 27489
1555
25934
11012
14922
57.5 | 2576
149
2427
1908
519
21.4 | 1579
81
1498
990
508
33.9 | 93 11
583
8758
2937
821
66.5 | 13493
724
12769
5088
7681
60.1 | 500
18
482
89
393
81,5 | | STEER C. | | | | | | | | Offered | 27489
1152
26337
12069
14268
54.2 | 2576
194
2382
2014
368
15.4 | 1579
67
1512
1073
439
29.0 | 9341
345
8996
3110
5886
65,4 | 13493
531
12962
5761
7201
55.6 | 500
15
485
111
375
77.1 | | STEER D. | | | | | | | | Offered Rejected Eaten Excreted Digested Per cent. digested | 25918
1423
24495
11056
13439
54.9 | 2429
130
2299
1996
303
13.2 | 1488
68
1420
1018
402
28.3 | 8801
528
8273
2725
5548
67.1 | 12728
674
12054
5214
6840
56.7 | 472
23
449
103
346
77.1 | | Average per cent, digested | £6.3 | 19.0 | 30.5 | 67.0 | 58.2 | 79.3 | ## II. DIGESTIBILITY OF WHILE KAFIR CORN. Kafir stover, the digestibility of which was determined, was fed in connection with white Kafir corn which consisted of 29 per cent. of cracked and imperfect grains and 71 per cent. of perfect grains. In the calculations which follow, the individual digestion coefficients as determined were used for each animal. (The variety designated as "white Kafir corn" in this bulletin is commonly called "black-hulled white Kafir). Analyses of material as sampled. | No. | Description | Water | Ash | Protein | Fiber | N-free
ex'ct. | Ether
exict. | |---|---|--|--|---|---|--|--| | 954
955
952
953
974
975
976
977
996 | Kafir stover Kafir corn Rejected by A Rejected by B Rejected by D Dung, A Dung, B Dung, C Dung, D | 19.63
13.29
22.76
27.81
20.72
21.32
78.35
78.54
79.22
79.07 | 7.65
1.13
10.24
9.65
10.85
9.73
2.87
2.61
2.62
2.59 | 5.18
11.03
3.98
4.23
5.34
4.33
2.50
2.43
2.32
2.22 | 25.95
1.58
26.02
24.08
27.11
23.08
3.39
3.55
4.18
3.65 | 39.99
70.23
35.82
33.12
34.66
40.22
12.38
12.37
11.25
12.07 | 1.60
2.74
1.18
1.11
1.32
1.32
0.51
0.50
0.41
0.40 | ## Calculation of Digestibility. | | Dry
Matter | Ash | Protein | Fiber | N-Free
Ex'ct. | Ether
Ext'ct. | |--|--|--|--|--|--|--| | STEER A. Stover offered | 9105
36462
16446
20016
16004 | 2678
102
2576
119
2695
2181
514
665 | 1813
40
1773
1158
2931
1900
1031
544
487
42.1
35.2 | 9083
260
8823
166
8989
2576
6413
6061 | 13995
358
13637
7374
21011
9401
11610
8196
3414
46.3
55.2 | 560
12
548
288
836
388
448
475 | | STEER B. Stover offered | 28129
1242
26887
9105
35992
17772
18220
15594
2626
28.8
50.6 | 2678
166
2512
119
2631
2162
469
593 | 1813
73
1740
1158
2898
2013
885
562
323
27.9
30.5 | 9083
414
8669
166
8835
2940
5895
5860
35
21.1
66.7 | 13995
570
13425
7374
20799
10243
10556
8068
2488
33.7
50.7 | 560
19
541
288
829
414
415
441 | | Stover offered. Stover rejected. Stover eaten. Grain eaten. Total eaten. Excreted. Digested. Stover digested. Grain Digested. Per cent. grain digested. Per cent. ration digested. | 28129
718
27411
9105
36516
16370
20416
14857
5289
58.1
55.2 | 2678
98
2580
119
2699
2064
635
398 | 1813
48
1765
1158
2923
1828
1095
512
583
50.3
37.5 | 9083
246
8837
166
9003
3294
5709
5779 | 13995
314
13681
7374
21055
8861
12194
7607
4587
62.2
57.4 | 560
12
548
288
836
323
513
423
90
31.2
61.4 | | STEER D. Stover offered. Stover rejected. Stover eaten. Grain eaten. Excreted. Digested. Stover digested. Grain digested. Per cent. grain digested. Per cent. ration digested. | 24915
946
23969
9105
33074
15521
17553
12965
4588
50.4
53.1 | 2372
117
2255
119
2374
1921
453
298 | 1606
52
1554
1158
2712
1646
1066
440
626
54.0
39.3 | 8045
277
7768
166
7934
2707
5227
5212
15
9.0
65.8 | 12396
484
11912
7374
19286
8950
10336
6754
3582
48.6
53.6 | 496
16
480
288
768
297
471
370
101
35.1
61.3 | | Grainaverage per cent. digested | 45.4 | | 43 6 | | 47.7 | | | Ration—average per cent. digested | 53,5 | 1.98 | 35.6 | 66.8 | 51.7 | 56.6 | ## III. DIGESTIBILITY OF MATURE WHITE KAFIR HEADS. Kafir stover was fed with the heads and calculation of digestibility made as in II. Analyses of material as sampled | | | | - | | | | | |--|---|---|---|---|---|--|--| | No. | Description | Water | Ash | Protein | Fiber | N-free
ext ct. | Ether
ext'ct. | | 986. "987
998. 999
1016. 10 7
1018. 1019
1035. 1036 | Kafir stover Kafir heads Rejected by A. Rejected by B. Rejected by B. Dung A. Dung B. Dung, C. Dung, D. | 23.16
21.63
22.04
26.80
27.41
33.19
78.94
79.10
79.61
80.08 | 8.41
2.38
7.28
6.49
12.50
14.59
2.56
2.36
2.67
2.63 | 4.74
8.40
4.07
3.57
5.74
5.03
2.45
2.43
2.22
2.14 | 25.21
6.92
27.53
29.44
19.35
13.43
4.06
3.43
3.80
3.66 | 36.88
58.26
37.66
33.13
33.55
32.77
11.58
12.25
11.23
11.12 | 1 60
2 41
1 42
0 57
1 45
0 99
0 41
0 43
0 47
0 37 | | | Calculation of | Diges | tibilıty. | | | | | | • • • • • • • • • • • • • • • • • • • | | Dry
Matter | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | | Stover reject
Stover eater
Heads eaten
Total eaten
Excreted
Digested
Stover diges
Heads diges
Per cent | STEER A. ed | 26894
260
26634
10972
37606
19192
18414
15581
2833
25.8
48.9 | 2944
24
2920
333
3253
2333
920
753
167
50 1
28.3 | 1659
13
1646
1176
2822
2233
589
505
84
7.1
20.9 | 8824
92
8732
969
9701
3700
6001
5999
2
0.2
61.8 |
12907
126
12781
8158
20939
10552
10387
7681
2706
33.1
49.6 | 560
555
336
891
374
517
452
65
19.3
58.0 | | Stover reject
Stover eater
Heads eater
Total eater
Excreted
Digested
Stover eiges
Heads digest | STEER B. ed | 26894
896
25998
10972
36970
20429
16541
14949 | 2944
79
2865
333
3198
2307
891
613
278 | 1659
44
1615
1176
2791
2375
416
547 | 8824
360
8464
969
9433
3353
6080
5631
449 | 12907
406
12501
8158
20659
11974
8685
7513
1172
14,3 | 560
7
553
336
889
420
469
451
18
5,3 | | | ads digested | 14.5
44.8 | 83.4
27.9 | 14.9 | 64.4 | 42.0 | 52.7 | | Stover rejectives eaten Heads eaten Total eaten Excreted Digested Stover digested Heads digest Per cent. he | edted | 26894
1031
25863
10972
36835
1 965
17870
14018
3852
35.1
48.5 | 2944
178
2766
333
3099
2483
616
426
190
57.1
19.9 | 1659
82
1577
1176
27 3
2065
688
457
231
19 7
25.0 | 8824
275
8549
969
9518
3534
5984
5591
393
40.6
62.9 | 12907
475
12432
8158
20590
10446
10144
6912
3232
39.6
49.3 | 560
21
539
336
875
437
438
416
22
65.5
50.0 | | | STEER D. | | | | | | | | Stover reject Stover eaten Heads eaten Total eaten Excreted | ed ted ted ted ted ads digested tion digested | 24205
968
23237
10972
34209
17948
16261
12757
3504
31,9
47,5 | 2649
211
2438
333
2771
2370
401
322
79
23.7
14.5 | 1493
73
1420
1176
2596
1928
668
402
266
22 6
25 7 | 7941
195
7746
969
8715
3298
5417
5198
219
22.6
62.1 | 11618
475
11143
8158
19301
10019
9282
6318
2964
36,3
48,1 | 504
14
490
336
826
333
493
378
115
34.2
59.6 | | HeadsAver | rage per cent, digested | 24.3 | 53.6 | 12.3 | 27.4 | 30.8 | 31.1 | | Ration—Ave | rage per cent. digested | 47.4 | 22.7 | 21.6 | 62.8 | 47.3 | 55.1 | ## IV. DIGESTIBILITY OF WHITE KAFIR MEAL. Kafir stover, of the same lot as that previously fed, was fed in connection with coarsely ground white Kafir meal, the fineness of which is appended. Sample No. 1057, White Kafir meal:—Coarser than 2 mm. 1 per cent.; 1 to 2 mm. 67 per cent.; $\frac{1}{2}$ to 1 mm. 30 per cent.; finer than $\frac{1}{2}$ mm. 2 per cent. Analyses of material as sampled, | Analyses of material as samplea, | | | | | | | |--|--|--|--|---|---|--| | No. D scription | Water | Ash | Pratein | Fiber | N-free
ext'ct | Ether | | 1030 Kafir stover | 17, 95
13, 10
24, 00
24, 63
21, 70
21, 55
82, 02
84, 57
81, 96
80, 72 | 9.57
1.38
22.55
7.74
7.86
11.96
3.03
2.35
2.76
2.79 | 5.02
10.94
3.69
3.66
4.44
5.58
1.93
1.81
2.01
2.18 | 25.87
1.71
19.00
29.06
28.85
24.25
4.12
3.35
4.22
4.49 | 40 03
69.34
29.62
33.61
35.62
34.93
8.61
7.55
8.71
9.38 | 1.56
3.53
1.14
1.30
1.53
1.73
0.29
0.37
0.34
0.44 | | Calculation of | Diges | tibility | | | | | | | Dry
Matter | A h | Protein | Fiber | N. free
Ext'ct | Ether
Ext'ct | | STEER A. Stover offered Stover rejected Stover eaten Meal eaten Total eaten Excreted Digested Stover digested Meal digested Per cent, meal digested | 28717
746
27971
9125
37096
14842
22254
16363
5891
64.5
60.0 | 3350
221
3129
145
3274
2501
773
807 | 1757
36
1721
1149
2870
1593
1277
528
749
65.2
44.9 | \$\colon 0.55 \\ 186 \\ 8869 \\ 180 \\ 9049 \\ 3401 \\ 5648 \\ 6093 \\ 62.4 | 14009
292
13717
7280
20997
7108
13889
8244
5645
77.5
66.1 | 643
11
535
371
906
239
667
435
232
62,5
73,6 | | STEER B. Stover offered | 28717
1820
26897
9125
36022
15615
20407
15466
4941
54.1
56 6 | 3350
187
3163
145
3308
2378
930
677 | 1757
88
1669
1149
2818
1832
986
567
419
36.5
35.0 | 9055
702
8353
180
8533
3390
5143
5555 | 14009
812
13197
7280
20477
7641
12836
7931
4905
67.4
62.7 | 546
31
515
371
886
374
512
420
92
24.8
57.8 | | STEER C. | | | | | | | | Stover offered Stover rejected Stover eaten Meal eaten Total eaten Excreted Digested Stover digested Meal digested Per cent. meal digested Per cent. ration digested | 28717
1475
27242
9125
36367
14619
21748
14765
6983
76.5
59.8 | 3350
148
3202
145
3347
2237
1110
493 | 1757
84
1673
1149
2822
1629
1193
485
708
61.6
42.3 | 9055
544
8511
180
8691
3420
5271
5566 | 14009
670
13339
7280
20619
7057
13552
7416
6136
84.3
65.7 | 546
29
517
371
888
276
612
399
213
57.4
68.9 | | STEER D. | | | | | | | | Stover offe ed Stover rejected Stover eaten Meal eate ' Total eaten | 25846
1511
24335
9125
33460 | 3015
230
2785
145
2930 | 1581
107
1474
1149
2623 | 8149
467
7682
180
7862 | 12610
674
11936
7280
19216 | 491
33
458
371
829 | ## Calculation of Digestibility—Continued. | Excreted Digested Stover digested Meal digested Per cent. meal digested Per cent. ration digested | 14462
18998
13360
5638
61.8
56.8 | 2093
837
368
 | 1635
988
417
571
49.7
37.7 | 3368
4494
5155
 | 7036
12180
6768
5412
74.3
63.4 | 330
499
353
146
39.4
54.1 | |---|---|------------------------|---|--------------------------|---|--| | Meal-Average per cent. digested | 64.2 | | 53.3 | | 75.9 | 46.1 | | Ration—Average per cent. digested | 58.3 | 28.3 | 40.0 | 60.1 | 64.5 | 63.6 | ## V. DIGESTIBILITY OF FIELD-CURED KAFIR FODDER. Mature Kafir fodder, as usually cut and shocked, was fed without any preparation other than cutting the stalks in two so that they would go into the feed troughs. | | Analyses of mate | erial as | samp | led. | | | | |-------------------------------|---|---|--|--|---|---|---| | No. | Description | Water | Ash | Protein | Fiber | N-free
Ext'ct. | Ether
Ext'ct. | | 1096 | Kafir fodder. Rejected by A Rejected by B Rejected by C Rejected by D Dung A Dung B Dung C Dung D | 11.78
12.79
17.60
14.21
11.12
77.29
82.18
81.64
80.79 | 4.05
5.95
7.06
5.37
5.37
2.09
1.67
1.90
1.97 | 5.73
3.42
3.59
4.04
4.29
2.56
1.99
1.94
1.92 | 20.78
31.50
27.73
29.37
30.77
4.36
3.79
4.09
4.56 | 55.24
44.70
42.52
44.92
46.40
13.01
9.84
9.97
10.23 | 2.4
1.6
1.5
2.0
2.0
0.6
0.5
0.4
0.5 | | | Calculation | of Dig | estibili | ty. | | | | | | | Dry
Matter | Ash | Protein | Fiber | N. free
Ext'ct. | Ether
Ext'ct. | | Rejected
Eaten
Excreted | STEER A | 46316
6998
39318
16015
23303
59,5 | 2126
477
1649
1474
175
10.6 | 3008
274
2734
1805
929
34.0 | 10910
2528
8382
3075
5307
63.3 | 23001
3587
25414
9174
16240
63.9 | 1271
132
1139
487
652
57.5 | | Rejected
Eaten
Excreted | STEER B | 46316
5780
40536
16073
24463
60,3 | 2126
495
1631
1506
125
7.6 | 3008
252
2756
1795
961
34.9 | 10910
1945
8965
3418
5547
61.8 | 29001
2983
26018
8876
17142
65.9 | 1277
105
1166
478
688
59.0 | | | STEER C. | | | | | | | | Rejected
Eaten
Excreted | digested | 46316
8100
38216
14336
23880
62.2 | 2126
507
1619
1483
126
7.7 | 3008
381
2627
1515
1112
41.9 | 10910
2773
8137
3194
4943
60.7 | 29001
4242
24759
7784
16975
68.5 | 1271
197
1074
359
715
66,6 | | | STEER D, | | | | | | | | Rejected
Eaten
Excreted | digested | 46316
7560
38756
15388
23368
60.3 | 2126
457
1669
1578
91
5,4 | 3008
365
2613
1544
1099
41.6 | 10910
2617
8293
3653
4640
55.9 | 29001
3947
25054
8188
16866
67.3 |
1271
174
1097
425
672
61 . 3 | | A | per cent. digested | 60.6 | 7.8 | 38,1 | 60.4 | 66.4 | 61.0 | ## VI. DIGESTIBILITY OF SOAKED WHITE KAFIR CORN. Kafir corn, consisting of 66 per cent. of perfect grains and 34 per cent. of cracked and imperfect grains, was soaked in sufficient water to cover, for twelve hours and then fed along with shredded Kafir stover as used in previous trials. Analyses of material as sampled | | Analyses of mate | rial as | ssampl | led | | | | |---|---|--|--|--|---|---|--| | No. | Description. | Water | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | | 1119
1118
1116
1117
1125
1126 | Kafir corn Kafir stover Rejected by A Rejected by B Dung, A Dung, B | 13.30
11.42
12.48
14.44
77.44
80.50 | 1.19
7.77
19.46
8.97
2.86
2.49 | 11.37
5.14
6.03
4.29
2.40
2.13 | 1.63
30.26
20.14
32.02
3.47
3.28 | 69.47
43.58
40 42
39.17
13.24
11.10 | 3.04
1.83
1.47
1.11
0.59
0.50 | | | Calculation of | Digest | tibility. | | | | | | - | Dry
Matter
Ash
Protein
Fiber
Extot | | | | | | | | Stover rejective eater Grain eaten Total eaten Excreted Digested Stover dige Grain diges Per cent. gr | STEER A. ed cted sted ted rain digested tion digested | 31003
602
30401
9104
39505
18046
21459
17785
3674
40.3
54.3 | 2720
134
2586
125
2711
2288
423
667 | 1799
41
1758
1194
2952
1920
1032
540
492
41.2
35.0 | 10591
139
10452
171
10623
2776
7847
7181 | 15252
278
14974
7295
22269
10590
11679
8999
2680
36.8
52.4 | 641
100
631
319
950
472
478
514 | | Stover reje
Stover eater
Grain eaten
Total eaten
Excreted
Digested
Stover dige
Grain diges
Per cent. gr | STEER B. ed | 31003
2563
28440
9104
37544
17647
19897
16353
3544
38.9
53.0 | 2720
269
2451
125
2576
2253
323
525
 | 1799
129
1670
1194
2864
1925
936
566
370
31.0
32.7 | 10591
959
9632
171
9803
2968
6835
6405 | 15252
1173
14079
7295
21374
10046
11328
8461
2837
39.3
53.4 | 641
33
608
319
927
452
475
496 | | Grain, fed s | oaked-Av. per ct. digested | .39.6 | | 36.1 | | 38.1 | | | Ration—Ave | erage per cent, digested | 53.7 | 14.2 | 33.9 | 71.8 | 52.9 | 50.8 | # A CHECK METHOD OF DETERMINING THE DIGESTIBILITY OF KAFIR CORN. Whenever in a digestion trial, it is necessary to feed a coarse fodder with a concentrated feed and assume that the fodder has the same digestibility as when fed alone in making the calculations of digestibility of the concentrated feed, the results are to some extent a matter of conjecture. This subject has been discussed frequently and no review of the discussion is necessary here. The kernel of Kafir corn is covered with a tough coat and is so small that when fed without grinding it is imperfectly masticated by cattle. A casual inspection shows that much of the grain appears in the dung. In the digestion trials here reported, the amount and composition of grain excreted was determined. The grain was removed from the dung by the following method: An aliquot part of the dung excreted each day was placed in a sieve having circular holes 2mm. in diameter fitted with a cover having a tube so arranged that a stream of water was directed a little above the junction between the side and bottom of the sieve. This was attached to a water pipe and all the finer particles of the dung washed out. The residue was dried, and the grain separated from other materials and weighed. These aliquots were combined for each steer for each period and analyzed. It is possible from these data to calculate the per cent. of grain which certainly was not digested and compare the results with those obtained by the usual method. The only trials in which direct comparisons can be made are those in which the thrashed grain was fed. (See II and VI.) | | Composition of the dry grain. | | | | | | | | | | |--|-------------------------------|------------------------------|--|--|--|--|--|--|--|--| | No. | Description. | Water | Ash | Protein | Fiber | N-free
Ext,ct | Ether
Ext'ct | | | | | 962
963
982
983
1123
1124 | From dung, C, II | 6.13
5.82
5.71
6.00 | 0.77
0.76
0.80
0.70
0.73
0.73 | 10.94
12.77
11.81
10.41
12.08
11.81 | 1.54
1.65
1.59
1.64
2.11
1.61 | 76.78
75.83
77.23
79.15
75.88
77.03 | 3.22
2.86
2.75
2.39
3.20
3.34 | | | | KAFIR CORN FED DRY. Calculation of Digestibility. | | C.7 | | | | | | |---|------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|----------------------------| | STEER A. (II) | Dry
Matter | Ash | Protein | Fiber | N. free
Ext`ct | Ether
Ext'ct | | Grain eaten Grain excreted Per cent not digested Per cent possibly digested | 9105
5029
55.2
44.8 | 119
42
35.3
64.7 | 1158
590
50.9
49.1 | 166
83
50.0
50.0 | 7374
4140
56.2
43.8 | 288
174
60.4
39.6 | | STEER B. (II) | | | | | | | | Grain eaten Grain excreted Per cent. not digested Per cent. possibly digested | 9105
6095
66.9
33.1 | 119
49
41.1
58.9 | 1158
829
71.6
28.4 | 166
107
64.4
35.6 | 7374
4924
66.8
33.2 | 288
186
64.5
35.5 | | STEER C. (II) | | | | | | | | Grain eaten Grain excreted Per cent_not digested Per cent_possibly digested | 9105
5032
55.3
44.7 | 119
43
36,1
63.9 | 1158
631
54.5
45.5 | 166
85
51.2
48.8 | 7374
4126
55,9
44,1 | 288
147
51.0
49.0 | | STEER D. (II) | | | | | | | | Grain eaten Grain excreted Per cent, not digested Per cent, possibly digested | 9105
5086
55.7
44.3 | 119
38
31.9
68.1 | 1158
562
48.5
51.5 | 166
88
53.0
47.0 | 7374
4269
57 9
42 1 | 288
129
44.8
55.2 | | Av. of four; per cent. possibly digested | 41.7 | 63.9 | 43.6 | 45.4 | 40.8 | 44.8 | | Av. per cent, digested by usual method | 45.4 | | 43,6 | | 47.7 | | Although the assumption that all of the grain not recovered was digested is not valid, it is clear from a comparison of the results obtained by the two methods and of the methods themselves, that the results obtained by the check method more closely approximate the truth. From the results above, the highest possible digestibility of Kafir corn fed dry under the conditions of the experiment is that given in the table as 'per cent. possibly digested'. SOAKED KAFIR CORN. Calculation of Digestibility. | | 2 18 600 | | | | | | |---|------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|----------------------------| | STEED A (VI) | Dry
Matter | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | | STEER A. (VI) Grain eaten | 9104
5717
62.8
37.2 | 125
44
35,2
64,8 | 1194
735
61.5
38.5 | 171
128
74.8
25.2 | 7295
4615
63.2
36.8 | 319
195
61.1
38.9 | | Grain eaten Grain excreted Per cent. not digested Per cent. possibly digested | 9104
5544
60.9
39.1 | 125
43
34.4
65.6 | 1194
693
58.0
42.0 | 171
94
54.9
45.1 | 7295
4518
60.9
39.1 | 319
196
61.4
38.6 | | Av. of two; per cent. possibly digested | 38.0 | 65.7 | 40.2 | 35.2 | 38.0 | 38.8 | | Av. per cent, digested by usual method | 39.6 | | 36.1 | | 38.1 | | As was the case when the grain was fed dry, results by the check method, except for protein, are lower than those by the usual method and seem to justify the conclusion that the check method has given results more nearly correct. Summarizing, we have the following for the digestion coefficients of Kafir corn. | DESCRIPTION. | | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Extict | |-------------------------|------|------|---------|-------|------------------|-----------------| | Fed dry Soaked 12 hours | 41.7 | 63.9 | 43.6 | 45.4 | 40.8 | 44 8 | | | 38.0 | 65.7 | 40.2 | 35.2 | 38.0 | 38.8 | These results may seem somewhat anomalous to those who have fed Kafir corn. It is possible, however, that the soaking serves to toughen the grains so that they are really more difficult of mastication than the dry grains, which although hard, are easily cracked. #### SUMMARY OF RESULTS. The results reported in the preceding pages are summarized in the following tables. Per Cent. Digestible. | DESCRIPTION | Dry
Matier | Ash | Protein | Fiber | N-free
Ext'ct. | Ether
Ext'ct. |
---|--|-------------------------------------|--|--------------------------------------|--|--| | Shredded Kafir Stover White Kafir corn fed dry Soaked white Kafir corn Mature white Kafir heads Coarsely-ground white Kafir meal Field-cured white Kafir fodder | 56.3
41.7
38.0
24.3
64.2
60.6 | 19.0
63.9
65.7
53.6
7.8 | 30.5
43.6
40.2
12.3
53.3
38.1 | 67.0
45.4
35.2
27.4
60.4 | 58.2
40.8
38.0
30.8
75.9
66.4 | 79.3
44.8
38.8
31.1
46.1
61.0 | Average of analyses of Kafir products made at this Station are given in the following table. Results are stated on the basis of the material as sampled in each case. Percentage Composition. | DESCRIPTION | Number of
Analyses | Water | Ash | Protein | Fiber | N-free
Ext'ct. | Ether
Extet. | |---------------------------|-----------------------|-------|------|---------|-------|-------------------|-----------------| | Kafir stover fiield-cured | 6 | 19.18 | 8.02 | 4.85 | 26.78 | 39.60 | 1 57 | | Kafir fodder field-cured | 2 | 9.65 | 4.74 | 5.64 | 21.78 | 55.79 | 2.40 | | Kafir heads, white | 1 | 21.63 | 2.38 | 8.40 | 6.92 | 58.26 | 2.41 | | Kafir corn | 6 | 12.52 | 1.26 | 10.86 | 1.94 | 70.48 | 2.94 | Combining the above tables, the per cent. of digestible matter is given. Carbohydrates and fat includes the sum of the digestible fiber, nitrogen-free extract, and two and one-fourth times the fat. Per cent, of Digestible Matter. | DESCRIPTION | Dry
Matter | Protein | Carbo-
hydrates
and fat | Total | Nutritive
Ratio | |--|----------------------------------|--|--|--|---------------------------| | Shredded Kafir stover Kafir fodder, field-cured Mature white Kafir heads Kafir corn Whole, fed dry Whole, soaked Coarsely ground | 80,82
90,35
78,37
87,48 | 1.48
2.15
1.03
4.73
4.37
5.79 | 43.78
53.49
21.53
32.60
30.03
56.54 | 45.26
55.64
22.56
37.33
34.40
62.33 | 1:24.9
1:20.9
1:6.9 | For sake of comparison, the following average results for Indian corn are here inserted. The data for corn are, in each case, calculated to the same content of moisture as the average Oklahoma analyses, on the assumption (partially borne out by actual results) that Kafir products have the same content of moisture as the corresponding parts of Indian corn under like conditions. The analyses are taken from "The Computation of Rations for Farm Animals" by Armsby. Digestion coefficients for corn stover, corn fodder, corn meal, and corn and cob meal, are averages compiled by Lindsey and published in Massachusetts Hatch Station Report for 1897. Coefficients for corn fed whole are Jordan's averages published in Experiment Station Record, Volume 6. | Percentage | Composition. | |--------------|--------------| | 1 cr centuge | Composition. | | Description | Number of
Analyses | *Water | Ash | Protein | Fiber | N-free
Extract | Ether
Extract | |--------------------------|-----------------------|--------|------|---------|-------|-------------------|------------------| | Corn stover, field-cured | 60 | 19.18 | 4.58 | 5.12 | 26.58 | 43.06 | 1.48 | | Corn fodder, field-cured | 35 | 9.65 | 4.22 | 7.03 | 22.35 | 54.25 | 2.50 | | Corn ears, (ground) | 7 | 21.63 | 1.39 | 7.84 | 6.09 | 59.82 | 3.23 | | Corn | 154 | 12.52 | 1.47 | 10.22 | 1.86 | 69.01 | 4.92 | ^{*} Calculated to Oklahoma moisture-content. The next table has been calculated from the above analyses and the digestion coefficients indicated. Per cent. of Digestible Matter | Description | Dry
Matter | Protein | Carbo-
hydrates
and fat | Total | Nutritive
Ratio | |---|---------------|---------|-------------------------------|-------|--------------------| | Corn stover, field-cured Corn fodder, field-cured Corn and cob meal Corn fed whole to hogs. Corn meal | 80.82 | 2.05 | 43.89 | 45.94 | 1:21.4 | | | 90.35 | 3.87 | 58.27 | 62.14 | 1:15 | | | 78.37 | 4.08 | 61.49 | 65.57 | 1:15.1 | | | 87.48 | 8.07 | 68.27 | 76.34 | 1:8.5 | | | 87.48 | 6.13 | 74.36 | 80.49 | 1:12 | Practical lessons taught by the results of these digestion trials will be found elsewhere in this bulletin. #### DIGESTIBILITY OF KAFIR CORN WHEN FED IN THE HEADS. It has been stated that Kafir corn is better digested by animals when fed in the heads than when fed thrashed without grinding. It is argued that the grains are held together in the heads so that they may be better masticated than the loose grains. In connection with the digestion trial of Kafir heads reported in another place, data were secured which have a direct bearing on this question. The undigested Kafir corn was washed from the dung as previously described, and analyzed. (16) Composition of Air-dry Grain. | No. | Description. | Water | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | |------|---|-------|------|---------|-------|------------------|-----------------| | 1004 | From dung, A, III From dung, B, III From dung, C, III From dung, D, III | 4.90 | 0.79 | 11.42 | 1.69 | 78.68 | 2.52 | | 10+5 | | 4.70 | 0.79 | 12.12 | 1.58 | 78.30 | 2.51 | | 1024 | | 5.24 | 0.83 | 11.24 | 1.74 | 78.25 | 2.70 | | 1025 | | 4.78 | 0.76 | 11.73 | 1.75 | 78.08 | 2.90 | A number of determinations made by the agricultural department shows that Kafir heads contain from 71 to 75 per cent. of thrashed grain. Assuming the latter figure to be correct for the heads fed, and that the grain fed in the heads was of the same composition as that fed in II, the following tables show the calculations of the greatest possible digestion of the grain in the heads. #### KAFIR CORN FED IN THE HEADS. Calculation of Digestibility | STEER A, (III) | Lry | Ash | Protein | Fiber | N-free
Ext'ct | Ether | |---|---------------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|----------------------------| | Grain eaten Grain excreted Per cent, not digested Per cent, possibly digested | 9105
5538
60.8
39.2 | 119
46
38.6
61.4 | 1158
665
57.4
42.6 | 166
98
59 0
41.0 | 7374
4582
62.1
37.9 | 288
147
51.0
49.0 | | STEER B, (III) | | | | | | | | Grain eaten Grain excreted Per cent not digested Per cent. possibly digested | 9105
62: 0
68: 1
31: 9 | 119
51
42.9
57.1 | 1158
789
68.1
31.9 | 166
103
62.0
38.0 | 7374
5094
69.1
30.9 | 288
163
56,6
43,4 | | STEER C, (III) | | | | | , | | | Grain eaten Grain excreted Per cent. not digested Per cent. possibly digested | 9105
4881
53.6
46.4 | 119
43
36.1
63.9 | 1158
579
50.0
50.0 | 166
90
54.2
45.8 | 7374
4030
54.6
45.4 | 288
139
48.2
51.8 | | STEER D, (III) | | | | | | | | Grain eaten | 9105
7443
52.1
47.9 | 119
38
31.9
68.1 | 1158
584
50.4
49.6 | 166
87
52.4
47.6 | 7374
3890
52.8
47.2 | 288
144
50.0
50.0 | | Av. of four; per cent. possibly digested | 41.3 | 62.6 | 43.5 | 43.1 | 40.3 | 48.5 | | Per cent. possibly digested, fed thrashed | 41.7 | 63.9 | 43.6 | 45.4 | 40.8 | 41.8 | These average results, if the assumptions made are correct, show that there was no difference in this trial whether the grain was fed in the heads or thrashed and then fed. #### FODDER ANALYSES. The following fodder analyses have been made in connection with studies of forage crops which are not yet completed. It is believed, however, that the analyses, especially of Kafir may be of some value in this form. The customary methods of fodder analysis were followed with the exception that no condenser was used in the determination of fiber, that moisture was determined by drying in flat-bottomed platinum dishes in the air at the temperature of boiling water, and that ether extract was calculated from the loss in weight of extraction tube. A number of trials showed that this method for ether extract was more easily carried out and gave more concordant results than when the fat was weighed after extraction. The extracted fat is apparently partially oxidized by drying in air making it difficult to dry to constant weight. ## ANALYSES OF KAFIR FODDER—WHITE VARIETY. | Per ce | ent, in | Material | as | Sampled. | |--------|---------|----------|----|----------| |--------|---------|----------|----|----------| | | Date of pling, 1896 | Height of Plants | Water | Ash | Protein | Fiber | Nitrogen
free
ext'ct | Ether
Extract | |--|---------------------|------------------|---|--|--
--|--|--| | 562. Ma
564. Ma
567. Jun
571. Jun
574. Jun
580. Jun
583. Jun
599. Jul
604. Jul
616. Jul
616. Aug
624. Aug | 7 18 | 6 inches | 84.67
83.13
87.60
86.52
83.58
85.61
85.64
83.97
78.87
76.30
73.62
69.18
66.59 | 2.09
2.10
2.08
1.50
1.72
1.76
1.54
1.53
1.64
1.93
1.93
1.97
2.40
2.73
2.38 | 3.91
3.78
2.95
3.02
2.82
3.07
2.24
2.04
1.91
2.12
2.26
2.24
2.43
2.57
1.85 | 3.65
3.55
3.97
3.20
3.34
4.01
4.16
4.37
5.61
6.25
6.11
6.56
7.79
7.80
6.43 | 6.29
4 941
6.86
3.98
5.07
6.93
5.74
5.86
6.45
10.10
12.484
14.86
17.45
19.49
15.89 | 1.13
0.96
1.01
0.70
0.53
0.65
0.71
0.56
0.42
0.73
0.56
0.75
0.82
0.59 | ## ANALYSES OF KAFIR FODDER—RED VARIETY. Per cent. in Material as Sampled. | Sample
No. | Date of
Sampling 1896 | Height of plants | Water | Ash | Protein | Fiber | N-free
Ext'ct | Ether
Ext'ct | |---------------|---|------------------|---|--|--|--|--|--| | 559 | June 1 June 8 June 15 June 22 June 29 July 6 July 13 July 21 July 27 August 3 August 10 | 5.2 inches | 84.44
85.21
86.02
88.58
86.84
84.32
85.09
82.54
83.58
79.32
87.59
74.89
72.67
67.31
67.83 | 1.70
1.81
1.75
1.48
1.67
1.77
1.63
1.82
1.56
1.65
0.99
1.91
2.23
2.64 | 3.76
2.70
3.04
2.94
2.86
3.01
2.43
2.50
1.96
2.14
1.33
2.40
2.38
2.67
2.29 | 3.04
3.11
3.12
2.67
3.27
3.60
4.02
5.31
5.13
6,61
3.69
6.32
7.03
7.51
7.76 | 5,95
6,13
5,16
3,65
4,84
6,65
6,22
7,33
7,25
9,62
6,10
13,73
15,06
19,00
18,88 | 1.11
1.04
0.91
0.68
0.52
0.65
0.61
0.52
0.66
0.30
0.75
0.63 | #### MISCELLANEOUS ANALYSES OF KAFIR—WHITE VARIETY. | Sample
No. | Date of
Sampling 1897 | Remarks | Water | Ash | Protein | Fiber | Nitrogen-
free
Extract | Ether
Extract | |---------------|--|--|---|--|--|--|--|--| | 768 | July 9th July 26th August 6th August 6th August 6th Sept. 18th Sept. 18th Sept. 18th | Fodder. Fodder-heading. Fodder in bloom Leaves and heads. Stalks. Fodder Heads. Leaves Stalks. | 84.03
82.59
78.70
73.95
81.70
64.47
39.80
68.44
78.71 | 1.61
1.50
1.60
2.68
1.35
2.69
2.63
4.35
1.58 | 2.31
2.12
2.11
2.97
1.73
3.80
6.99
2.83
1.16 | 4.51
5.08
6.24
7.50
4.78
6.15
6.63
8.86
6.44 | 6.67
8.11
10.54
12.25
9.89
21.36
41.86
14.26
11.37 | 0.87
0.60
0.81
0.65
0.55
1.53
2.09
1.26
0.74 | #### ANALYSES OF CORN FODDER. Per cent. in Material as Sampled. | operation of Sampling 1896 | Height of Plants | Water | Ash | Protein | Fiber | Nitrogen
free
Extract | Ether | |---|------------------|--|--|--|--|---|--| | 601 July 21. 606 Juiy 27. 613 August 3. 621 August 10. 626 August 17. 717 September 29. 1897 738 May 22. 767 July 9. 769 July 25. | 10.6 " | 84.73
86.37
85.76
85.69
87.77
86.82
85.19
84.34
81.31
83.53
83.02
79.04
67.95
53.80
42.84
13.07 | 1.59
1.77
1.87
1.97
1.50
1.34
1.34
1.17
1.26
1.28
1.36
1.04
1.11
1.14
1.38
2.05
2.76
7.32
0.91
1.80
1.35
1.50 | 3.04
3.16
3.55
2.65
2.66
2.53
2.21
1.76
1.86
1.67
2.06
1.64
1.66
2.00
2.60
4.23
4.82
7.64
1.63
1.53
2.57 | 2.51
2.68
3.46
3.15
3.45
2.97
3.25
4.65
4.79
4.86
4.79
6.13
5.91
10.95
19.03
1.84
5.69
5.59 | 5.83
5.78
5.78
5.22
5.89
3.96
4.93
6.62
6.30
7,49
8.26
8.81
11.20
21.29
29,84
37.14
51.24
3.82
8.30
11.01
10.95 | 0.77
0·62
0.66
0.64
0.74
0.51
0.46
0.38
0.74
0.52
0.51
0.67
0.61
1.49
1.70
0.42
0.84
0.97
0.56 | ## ANALYSES OF DIFFERENT PARTS OF CORN FODDER. Per cent. in Material as Sampled. Sample No. Protein N-free Ext'ct Ether Ext'ct Water Date of Sampling, 1896 Remarks Fiber 585 Leaves and tops 7.627.94 9.14 14.95 24.51 595 84.71 84.28 74.30 1.66 1.49 2.22 3.92 3.78 6.43 $\frac{1.11}{0.91}$ $0.66 \\ 0.40$ ears and tops 66 1.36 1.66 • 6 0.74 " 614 August 3 August 10 August 17 September 29 June 29 July 10 July 21 July 27 August 3 August 10 August 10 August 17 61.84 1.53 1.80 1.58 0.78 0.63 2.70 3.27 7.00 622 46.278 91 35.24 627. .. 5.98 8.26 11.61 17.67 5.31 29.24 12.93 48.10 52.56 7.45 8.86 7.78 8.51 10 11 13.57 17.77 716 0.84 0.88 Stalks 1.17 84.45 $0.88 \\ 0.71$.59682.13 6.62 603 0.52 0.76 0.87 1.26 2,20 3.71 0.35 0.49 0.31 0.18 4.56 6.58 86.08 608 82.87 79 22 72.51 0.89 1.05 615.. 8.44 10 90 18.85 1.58 2.24 623..... " 628...... 715 August 17... ... September 29 1897 August 16..... " 5.01 13.63 40.16 37.20 0.29 $75.07 \\ 80.32$ 5.97 5.25 $0.68 \\ 0.28$ 1.65 2.23 14.40 11.47 Leaves and ears August 16....... Stalks and tassels... 0.87 1.81 (19) ## FODDER ANALYSES, 1898. Per cent, in material as sampled, | | | | , | | | | | |--------------|--|------------------|---|---|--|---|---| | No | DESCRIPTION | er | | Protein | Į, | ex. | ×i | | No. | DESCRIPTION | Water | Ash | rot | Fiber | -F | . ex | | | | × | A | 凸 | 뎐 | Z | 덛 | | 1107 | ALFALFA | 76.49 | 2.04 | 4.08 | 7.47 | 9.51 | 0.40 | | 1127
1133 | Plat 1, Field F | 69.17 | 2.36 | 5.48 | 9 94 | 12.35 | 0.71 | | 1149 | B'K H'D WHITE KAFIR First heads showing | 80.43 | 1.37 | 1.51 | 6.43 | 9.78 | 0.48 | | 1110 | First heads showing | 82.42 | 1.24 | 1.61 | 6,28 | 8.08 | 0.37 | | 1155
1152 | First heads showing
First heads showing | 83.13
80.08 | 1.12
1.43 | 1.46
2.01 | 5.89
6.10 | 8.12
10.00 | $0.28 \\ 0.38$ | | 1179 | Milk stage | 74,17 | 1.50 | 1.25 | 7.89 | 14,57 | 0.62 | | 1180
1181 | Milk stage | 74.87
72.71 | $\frac{1.74}{2.23}$ | 1.51
1.64 | $7,76 \\ 9.47$ | 13.53
13.38 | $0.59 \\ 0.57$ | | 1182 | Milk stage | 69.56 | 2.03 | 2.70 | 7,54
8.36 | $17.44 \\ 24.22$ | $0.73 \\ 0.61$ | | 1221
1222 | Mature fodder | $61.81 \\ 60.78$ | $\begin{array}{c} 2.13 \\ 2.24 \end{array}$ | 2.87
3,60 | 7.16 | 25.43 | 0.79 | | 1224 | ₁ature fodder | 43.15
60,49 | $\frac{3.16}{2,13}$ | 2,59
2,52 | 15.92
8.16 | $34.26 \\ 25.85$ | $0.92 \\ 0.85$ | | 1239
1268 | Mature fodder
Stalks | 72.10 | 1.25 | 0.63 | 7:41 | 18.16 | 0.45 | | 1269
1270 | LeavesHeads | 55.43
29.82 | 4.52
2.60 | $\frac{3.51}{8.21}$ | 13.74
4.86 | 21.40
52.44 | $\frac{1.40}{2.07}$ | | | WHITE DENT CORN | | | | | | | | 1130
1131 | Beginning to tassel
Beginning to tassel | 88.23
88.10 | 0.95
1,01 | 1.28
1,26 | 3.78
4.07 |
5.52
5.36 | 0.24
0.2 0 | | 1132 | Beginning to tassel | 87.33 | 1.09 | 1.79 | 3.44
4.76 | 6.10
8.13 | 0.25
0.30 | | 1134
1135 | In full tassel
In full tassel | 84.63
85.56 | $0.95 \\ 0.94$ | 1,23
1,64 | 4.21 | 7.37 | 0.28 | | 1136
1140 | In full tassel
Roasting ear stage | 81,21
81.86 | $\frac{1.20}{0.97}$ | 1.50
1.46 | 5.13
5.71 | $\frac{10.58}{9.71}$ | $0.38 \\ 0.29$ | | 1141 | Roasting ear stage | 79.83 | 1,05 | 1.07 | 6.21 | 11,49 | 0.35 | | 1142
1153 | Roasting ear stageGlazed | 79.05
76.42 | 1.18
1.14 | 1.48
2,25 | 6.01
4.69 | 11 88
14.9 | $0.40 \\ 0.54$ | | 1154 | Glazed | 75 72 | 1.36 | 1.42 | 6,53 | 14.60 | 3,37 | | 1155
1162 | Glazed
Mature fodder | 75.41
68.66 | $\frac{1,16}{1.51}$ | 1.15
1.68 | $7.00 \\ 8.44$ | 14.95
19.16 | 0,33
0 5 5 | | 1163 | Mature fodder | 65.55 | 1 72
1.44 | 2.56
2.98 | 8,78
7.48 | 20.62
21. 8 | $0.77 \\ 1.07$ | | 1164
1265 | Mature fodder
Ears | $65.25 \\ 51.92$ | 0.91 | 4.83 | 3.87 | 36.36 | 2.11 | | 1266
1267 | LeavesStalks | 69.86
79.55 | 2.60
0.63 | $\begin{array}{c c} 1.93 \\ 0.97 \end{array}$ | 8.74
5.79 | $17.23 \\ 12.73$ | $0.54 \\ 0.33$ | | | SMALL SORGHUM | | | | | | | | 1138
1146 | First cutting
First heads showing | 85.15
85.56 | $\frac{1.28}{0.78}$ | $\frac{1.89}{1.23}$ | 4.63
4.44 | 6.54
7.53 | 0,51
0,46 | | 1147
1148 | First heads showing | 85.97
80.26 | $\begin{array}{c c} 0.82 \\ 1.03 \end{array}$ | 1,31
1,36 | 4.31
5.65 | 7.14
11.11 | $0.45 \\ 0.59$ | | 1158 | First heads showing
Milk stage | 73.50 | 1.24 | 1.59 | 6,34 | 16.72 | 0.61 | | 1160
1223 | Milk stage
Mature fodder | 77.58
52 75 | $\frac{1}{2.28}$ | $\begin{array}{c} 1,19 \\ 1.49 \end{array}$ | $\begin{array}{c c} 5.34 & \\ 13.65 & \end{array}$ | 14.24
28 62 | $\begin{array}{c} 0.55 \\ 1.21 \end{array}$ | | 1240 | Mature fodder | 63.31 | 1.43 | 2.40 | 6.71 | 25.23 | $0.92 \\ 1.04$ | | 1254
1255 | StalksLeaves | 72.94
50.27 | $\begin{bmatrix} 0.76 \\ 4.69 \end{bmatrix}$ | 0.63
4,12 | $\begin{array}{c} 5.55 \\ 13.49 \end{array}$ | $ \begin{array}{c c} 19.08 \\ 25.66 \end{array} $ | $\frac{1.04}{1.77}$ | | 1256 | HeadsLARGE SORGHUM | 17.03 | 2,66 | 8.41 | 5,39 | 64.15 | 2.36 | | 1137 | First cutting | 84.24 | 1.49 | 2.03 | 4.41 | 7.31 | 0.51 | | 1143 | First heads showing | 88.11
85.60 | $\begin{array}{c c} 1.18 \\ 0.92 \end{array}$ | 1.14
1.49 | 4.11
4.84 | 5.20
6.81 | (),26
0,34 | | 1206 | Milk stage | 75 85 | 1.25 | 0.80 | 7.87 | 13.75 | 0.48 | | 1207
1241 | Milk stage
Mature fodder | 77.85
68.99 | 1.14 | 1.08
1.83 | 6.75
6.55 | 12,61
20,55 | $\begin{array}{c} 0.57 \\ 0.64 \end{array}$ | | 1264 | Mature fodder | 64.53 | 1.48
1 03 | 1.65 | 8.74
6.94 | 22.20
16.68 | $1.40 \\ 1.30$ | | 1271
1272 | StalksLeaves | 73 35
50,63 | 4.35 | $\frac{0.70}{3.57}$ | 15.34 | 24,45 | 1.66 | | 1273 | HeadsBLACK RICE CORN | 25 43 | 2.87 | 7.67 | 7.63 | 53.95 | 2.45 | | 1144 | First heads showing | 81.41 | 1.11 | 1.28 | 6,43
6 05 | .9.38 | $0.39 \\ 0.41$ | | 1159
1238 | Milk stage
Mature fodder | 75.61
63.08 | $\begin{bmatrix} 1.32 \\ 2.06 \end{bmatrix}$ | $\frac{1.33}{2.28}$ | 7.55 | 15 28
24,34 | 0.69 | | 1248
1249 | Stalks
Leaves | 76,02
71.34 | 1.19
3.18 | $0.79 \\ 2.50$ | 6.57
8.45 | 15.18
13.76 | $0.25 \\ 0.77$ | | 1250 | Heads | 16.29 | 3.18 | 8.62 | 7.05 | 62.79 | 2,21 | | 1157 | MILO MAIZE First heads showing | 77.60 | 1.15 | 1.22 | 7.68 | 12.02 | 0.33 | | 1205 | Milk stage | 74.79 | 1.37 | 1.13 | 8.92 | 13.24 | $0.55 \\ 0.22$ | | 1260
1261 | StalksLeaves | 74.35
47.80 | 1.91
5.66 | 0.79
2.98 | 10.75
17.02 | 11.98
25,22 | 1.32 | | 1262
1263 | Heads
Mature fodder | 18.01
65 79 | 3.01
2.10 | 9.20
2.27 | 5 23
10.08 | 62,10
19.02 | $2,45 \\ 0,74$ | | | | 00 15 | ~.10 | ~.~! | | | | | | | | | | | | | ## MISCELLANEOUS ANALYSES. Per cent. in Material as Sampled. | Sample
No. | Date of
Sampling | Material | Water | Ash | Protein | Fiber | N-free
Ext'ct | Ext'ct | |--|--|----------|---|--|---|--|---|---| | 142.
497.
154.
576.
597.
553.
555.
569.
737.
765.
772.
730.
731. | Oct. 2, '93 Sept.21, '95 Mar. 19, '94 June 13, '96 July 10, '96 April 20 '96 June 5, '96 June 5, '96 July 1, '96 May 19, '97 June 25, '97 July 29, '97 Oct. 31, '96 Oct. 31, '96 | Chufas | 62.75 64.02 2.23 .53 6.21 73.95 57.23 70.58 81.25 74.29 68.71 14.02 15.18 | 3.68
3.53
2.02
5.42
0.80
2.96
4.93
2.93
2.02
2.52
2.52
2.58
1.55
1.51 | 5.02
2.33
3.52
5.54
12.43
5.33
8.31
5.65
4.14
4.62
4.24
5.84
9.89
9.48 | 11.20
12.52
10.52
22.78
3.09
5.91
9.41
8.35
4.99
7.20
9.22
7.87
2.02
1.64 | 15.60
17.10
50.15
56.35
75.29
10.81
18.13
11.36
6.82
9.57
8.76
13.60
69.44
69.13 | 1.75
0.50
31.56
2.38
2.18
1.04
1.99
1.13
0.78
1.28
0.89
1.40
3.08
3.06 | ## FERTILIZER ANALYSES. ## Per cent in Material as Sampled. | Sample
No. | Date of
Sampling | Material | Water | Nitrogen | Potash | Phos-
phoric
Acid | |---------------------------|---|-------------------------|-------|----------|--------------------------------|--------------------------------| | *576
718
593
594 | June 13, '96
Oct. 1, '96
July 6, '96
July 6, '96 | Kafir fodder from stack | | 0.76 | 2.22
2.72
0.315
0.355 | 0.91
1.58
0.096
0.133 | st Calculated to water-free substance.