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Abstract: Advanced stage melanoma tumors are chemo- and radio-resistant, demonstrate poor 

antigenicity and defective antigen presentation mechanisms, and low tumor specific cytotoxic T 

cell population, resulting in poor survival rates in patients. Novel therapeutic approaches that can 

reprogram the tumor immune microenvironment and improve outcomes against refractory and 

aggressive melanoma is urgently needed. We hypothesized that focused ultrasound (FUS) and its 

combination with anti-CD40 agonistic antibody (CD40) will improve the melanoma therapy 

outcomes by activating the innate and adaptive immune cells in the tumors. Prior research has 

shown that FUS has an immunomodulatory effect in solid tumors, and CD40 is a known enhancer 

of antigen presenting cell (APC) function. To investigate our hypothesis, we exposed B16F10 

murine melanoma to various FUS parameters (thermal and histotripsy [HT]) in the presence and 

absence of CD40 stimulation. We found that CD40 and FUS combination increased the anti-

tumoral M1 macrophages and granzyme B+ cytotoxic T cell population in murine melanoma and 

suppressed both treated and untreated tumors. In particular, HT plus CD40 (HT40) caused a 

significant increase in the expression of immune checkpoints, namely CTLA4 and PD-L1, to aid 

the anti-CTLA4 and PD-L1 therapy (ICI), thereby prolonging the mice survival rates in 

HT40+ICI group compared to ICI therapy alone group. In conclusion, our data suggest that 

focused ultrasound and anti-CD40 agonistic antibody combination enhances the anti-tumor 

immunity and sensitization to checkpoint inhibitor therapy in advanced stages.  
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CHAPTER I 

 

 
REVIEW OF LITERATURE 

 

REPROGRAMMING MELANOMA MICROENVIRONMENT TO ACHIEVE 

IMMUNOTHERAPEUTIC SUCCESS 

 

Abstract 

Melanoma is an aggressive form of skin cancer that responds poorly to available treatments. 

Cancer evades immune clearance by inducing an immunosuppressive microenvironment, thereby 

limiting the efficacy of anti-cancer therapies based on immune recognition and response. 

Therapeutic interventions that can generate tumor specific systemic immunity are highly 

desirable to treat metastatic cancers. Novel therapies that can enhance tumor immune cell 

infiltration and activate tumor antigen presentation mechanisms can be highly beneficial to 

reprogram refractory malignancies into therapy responsive tumors. Here, we review how the 

tumor immune environment decides success of therapies and the potential role of upcoming novel 

technologies in linking innate immune players to adaptive immune players for a better therapeutic 

outcome.  
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Introduction 

Skin is the largest organ of the body and is made up of different layers, namely epidermis, dermis, 

and subcutaneous adipose tissue 1. Melanocytes are pigmented cells that are predominantly present in 

the basal layer of skin epidermis, producing melanin pigment that gives color to our skin, eyes, and 

hair 2,3. Melanocytes protect skin from the harmful effects of UV radiation and are known to prevent 

occurrence of skin cancer 3. However, the mutations of growth regulatory genes, autocrine production 

of growth factors and loss of adhesion receptors can impair the cell signaling in melanoma4,5, causing 

an uncontrolled proliferation and melanoma formation 6. Uncontrolled melanocyte proliferation from 

basal layer of epidermis may progress into other skin layers or metastasize to distant sites causing 

malignant melanoma 7. When left untreated, malignant melanoma is the most fatal form of skin 

cancer 8 since it is refractory to most of the existing therapies 9. In fact, the median survival rate of 

malignant melanoma in some cases can be as low as 6 months and less than 5% of malignant 

melanoma patient survive beyond 5 years 9. U.S. cancer statistics data listed the overall incidence rate 

of melanoma as 21.8 per 100,000 from 2012 to 2016 10. The American Cancer Society estimated that 

100,350 new cases of invasive melanoma will be diagnosed in 2020 in the US, impacting 60,190 men 

and 40,160 women 11, suggesting a need to urgently develop novel therapies to tackle this disease.  

Current treatment options for melanoma 

Chemotherapy 

Different chemotherapy drug combinations have been evaluated in advanced melanoma patients, but 

the overall survival of patients show only a modest improvement with chemotherapy 12. Dacarbazine 

is the drug of choice for metastatic melanoma. Dacarbazine achieves complete response in less than 

5% of patients and only 2% to 6% of patients survived at 5 years post treatment 13. Temozolomide, an 

active metabolite prodrug of dacarbazine has also been evaluated in advanced melanoma cases, but it 

showed minimal improvement in progression-free survival compared to dacarbazine 14. A variation of 
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chemotherapy known as electro-chemotherapy, in which high intensity electric pulses were combined 

with cytotoxic drugs like cisplatin and bleomycin was attempted to facilitate drug delivery into the 

melanoma cells15. Electrochemotherapy was reported to be effective in treating cutaneous and 

subcutaneous melanoma nodules 16, but was not effective in tumors that metastasized to deep seated 

organs. 

Photodynamic therapy (PDT) 

Photodynamic therapy or PDT is a minimally invasive therapeutic procedure that uses a 

photosensitizer molecule, which gets activated upon exposure to light of a particular wavelength 17,18. 

PDT generates reactive oxygen species (ROS) that causes an irreversible damage to tumor cells and 

blood vessels, resulting in inflammation and generation of anti-tumor immune response 19,20. PDT as a 

monotherapy in melanoma shows only limited efficiency 21. Dacarbazine and PDT combination 

therapy have been reported to be slightly more effective in metastatic melanoma 22.  

Immunotherapy 

Immunotherapies train the patient’s own immune system to fight the cancer. Interleukin-2 (IL-2) was 

the first immunotherapy agent approved by FDA in 1998 for the treatment of metastatic melanoma. 

IL-2 achieved an overall response rate (patients with a complete or partial remission of cancer) of 16-

60% in immune-sensitive patients 23. The second immunotherapeutic adjuvant approved by the FDA 

was interferon-α (IFN-α) against resected high-risk melanoma. IFN-α showed an overall response rate 

(patients with a complete or partial remission of cancer) of 22% in metastatic melanoma patients, but 

only those patients with lower tumor load responded to the treatment 24. The clinical responses to IL-2 

and IFN-α  therapy has significantly expanded an interest in immunotherapy research, leading to new 

developments in melanoma cancer research23.  

In 1987, James P. Allison identified an immune checkpoint molecule named cytotoxic T-lymphocyte 

antigen 4 (CTLA-4, an immune checkpoint) and demonstrated its involvement in T cell inactivation 
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and ability to prevent T cells from attacking tumor cells 25. Dr. Allison proposed that CTLA-4 blocks 

the immune system to fight cancer. Subsequent developments of anti-CTLA-4 antibody to block the 

inhibitory effect of CTLA-4 molecule restored the T cell functional status and infiltration in to the 

tumors 26,27, and enhanced the 1 and 2 year survival rate by 46 and 24% in patients 23, leading to FDA 

approval in 2011 for advanced melanoma treatment 28. In 1992,  Tasuku Honjo independently 

discovered another immune checkpoint molecule on T cells, known as programmed cell death protein 

1 (PD-1) 29. PD-1 expressed on T cells binds to PDL-1 expressed on tumor cells to inactivate the T 

cells 30. Tumor cells use the PDL-1/PD-1 axis to evade immune surveillance and anti-tumor response 

31. In CheckMate-066, a Phase III clinical study involving naïve patients with unresectable or 

metastaticBRAF WT melanoma, anti-PD-1 antibody (PD-1 inhibitor) achieved the objectivresponse 

rate (data included patients with a complete remission and those with a partial remission of cancer) of 

40%in 63 out of 72 (88%) and 1-year survival rate of ~73% in the treated patients 32.  

Another clinical study with anti-PD-1 antibody (Pembrolizumab) showed that melanoma patients 

demonstrated long term control with 78% of patients remaining progression free 2 years post 

treatment 33. Additionally, the combination of anti-CTLA-4 antibody and anti-PD-1 antibody 

demonstrated better objective  response rates (data included patients with a complete remission and 

those with a partial remission of cancer) compared to anti-PD-1 antibody and anti-CTLA-4 antibody  

alone, resulting in the objective  response rates of 57.6%, 43.7%, and 19% respectively 34. It may be 

noted that the efficacy of these immune checkpoint blockers is mostly limited to tumors with high 

mutation burden and is dependent on the expression of neoantigens on tumor cells 35,36.  In fact, a 

large proportion of patients (>50%) do not respond at all to checkpoint blockade 37-39. Immune 

checkpoint inhibitors work well in patients with optimal baseline tumor specific T cell population, 

and poor antigen presentation by APCs to T cells can be one of the limiting factors for their efficacy 

40,41. A phase Ib clinical trial with the APC activator (CMP-001) in combination with anti-PD-1 

supported this concept. A patient resistant to anti-PD-1 therapy demonstrated overall response rate 
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(patients with a complete or partial remission of cancer) of 22% when CMP-001, an APC activator, 

was added to the treatment regimen 42. New therapies that increase the expression of tumor associated 

antigens and link innate immunity to adaptive immunity are needed to improve the efficacy of 

immune checkpoint inhibitors in non-responders.  

Tumor immunogenicity decides patient survival 

The ability of tumor cells to induce an adaptive immune response is known as the immunogenicity of 

the tumor 43,44. Tumors develop from the body’s own cells, making the immune system recognize 

them as “self” and tolerant to cytotoxic cells 45. Transplantation experiments in mice have defined 

immunogenicity of different types of cancer as follows: a. Tumor cells that do not form tumor mass 

upon transplantation in naive syngeneic mice are considered highly immunogenic, b. Tumor cells that 

require development of immunity by prior immunization for rejection are known as intermediate 

immunogenic, and c. Tumor cells that are not rejected even after prior immunization and form tumor 

are known as non-immunogenic 46. Possibly, all types of tumors have antigens that could be targeted 

by T cells, however, the expression of antigens is dependent on the cancer sub-type 47. This 

differential antigen expression defines tumor immunogenicity 48. Several dysregulated mechanisms 

such as mutations in major histocompatibility complex (MHC) expression and loss of DNA repair 

mechanism in immunogenic tumors, lead to antigenic mutation and expression of neoantigens on 

tumor cells, thus improving patient’s response to immunotherapies 49,50. 

There is a need to understand the nature of cancer tissue. For example, to develop successful therapy 

regimen for a cancer patient, it is of utmost importance to know the immunogenicity of the tumor 51,52. 

In 1914, the first link between cancer and mutation was found by observing chromosomal 

abnormalities in cancer cells 53. Mutations can result from cell replication errors or failure in repair of 

damaged DNA 53. Damage to DNA can result from exogenous means like chemicals, ionizing 

radiation, ultraviolet (UV) light, and by endogenous factors such as reactive oxygen species, mitotic 
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errors or enzymes involved in gene editing or DNA repair 54. Types of cancer that have high genetic 

mutation are readily detected by patient’s immune system and have a better chance to respond to 

immunotherapies 55. Melanoma and non-small cell lung carcinoma show higher mutational burdens 

than other tumors and are hence considered as the most responsive cancer types for immunotherapies, 

particularly to immune checkpoint inhibitors 56,57. Previous reports have shown that lung 

adenocarcinoma patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations and 

concomitant TP53 mutations had upregulation of PD-L1 expression and responded well to PD-1 

checkpoint inhibitors 58. Similarly, melanoma patients who had high tumor mutation burden showed 

better overall survival after PDL-1 inhibitor therapy compared to patients with low mutation rates 57. 

Tumor mutation load can result in generation of novel antigens known as neoantigens and as these 

neoantigens are non-self, they are mostly not subjected to immune system tolerance 59. Expression of 

neoantigens on previously undetected tumor results in a robust adaptive anti-tumor immune response 

by the host 60. These clinical findings clearly show that tumors with high mutation and antigen load 

respond well with immune based treatments.  

Therapies aimed to increase the expression of antigens on tumor cells may hold promise to improve 

the survival of cancer patients. Preclinical murine solid tumor models namely CT26 colon cancer, 

renal cell carcinoma (RENCA) kidney cancer, and 4T1 breast cancer are highly immunogenic cancer 

models while B16F10 melanoma, MAD109 lung cancer, and LLC lung carcinoma are poorly 

immunogenic 61. It was found that strongly immunogenic tumors like CT26, RENCA, and 4T1 had 

significant up-regulation of CD45 (leukocyte), CD11b, and CD11b (myeloid cell), and (CD3, and 

CD4) T cell genes 61. In contrast, poorly immunogenic tumors B16F10, LLC, and MAD109 showed 

downregulation of these genes, such differences in immunologic profile suggest that cancer cells have 

evolved to avoid immune system surveillance, due to loss of antigen expression, lower degree of 

antigen presentation, and eventually making themselves look like normal self-cells 61. These findings 

also corroborated with lower frequency of co-stimulatory markers namely CD40, CD40L, OX40L, 
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and CD137L on tumor infiltrating leukocyte 14 in poorly immunogenic tumor models B16F10, LLC, 

and MAD109 than in immunogenic models 61. To generate successful anti-tumor immunity efficient 

priming of APCsis also indispensable 62. APCs should be in an activated state so that they can process 

tumor antigens and present them to T cells, the key player for tumor destruction 63.  These 

observations further our understanding to devise immunotherapy regimen that can provide exogenous 

stimulatory molecules to APCs in the form of agonist antibodies or fusion proteins to achieve better 

treatment outcomes in poorly immunogenic tumors.  

Focused Ultrasound (FUS) - a non-invasive cancer treatment technology  

Ultrasound has been used for diagnosing abnormalities in organs, observe fetal growth, and in the 

treatment of musculoskeletal conditions like ligament and muscle strains, inflammation of joints, 

arthritis etc. 64-67. Focused ultrasound (FUS) is a proven, efficient, and non-invasive technology that 

has been extensively investigated for treatment of neuro-degenerative disorders, drug delivery, 

musculoskeletal abnormalities, and cancer 68. In fact, FUS was used as early as in 1961 to treat breast 

cancer patients 69. FUS as a therapeutic modality involves an interaction of acoustic waves with 

biological tissues for generation of thermal and non-thermal biological effects in the targeted 

treatment area without affecting the surrounding healthy tissue. This is because in FUS therapy, 

acoustic intensity is high only in the focal region and not in the intervening tissue, and thus it is 

associated with minimal side effects like discomfort, skin burns and collateral damage (i.e., 

hemorrhage). As sound waves are non-ionizing, multiple sessions of FUS therapy can be safely given 

to cancer patients.  Thermal effects of FUS arise from the absorption of acoustic energy and 

subsequent vibration of molecules and macromolecules in the treated tissue, leading to generation of 

heat by friction 70. The degree of heat generation and biological effects in exposed tissue depend on 

FUS parameters, beam focus, and tissue properties 71. For example, application of FUS-hyperthermia 

to uniformly heat tumors to 42-45 °C for about an hour can effectively reduce tumor growth 72,73. 
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FUS based hyperthermia treatment increases the release of damage associated molecular patterns like 

calreticulin (CRT), ATP, and heat shock proteins (HSP) from dying tumor cells 74. Released CRT and 

HSPs in the tumor microenvironment can act as an antigen source because of their inherent ability to 

chaperone intracellular tumor peptides and attract APCs 75. Hyperthermia also increases adhesion 

molecules like vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 

(ICAM-1) in endothelial cells of tumor blood vessels 76. The increase in expression of cell adhesion 

molecule is associated with improvement in translocation of APCs and lymphocytes from blood 

vessels into the tumor 77.. Studies have shown that FUS-heating improves antigen uptake and 

migration capacity of APCs and lymphocytes 78,79.  

Efficient antigen uptake and immune cell migration to lymphoid organs and subsequent infiltration of 

T cells into tumors is critical for efficient anti-tumor therapy. FDA recently approved FUS therapy to 

treat prostate cancer patients 80,81. In a clinical trial, a total of 181 prostate cancer patients underwent 

FUS therapy and the disease-free survival (DFS) rates were 84%, 80%, and 78% at 1, 3, and 5 years, 

respectively in all patients 82. In another clinical trial in China, 48 women with breast cancer were 

randomized to control group (radical mastectomy was performed) and FUS group (extracorporeal 

FUS ablation of breast cancer followed by radical mastectomy). Pathologic and 

immunohistochemical analysis revealed that breast cancer tissue treated with FUS underwent 

complete coagulative necrosis and exhibited reduced ability to proliferate, invade, and metastasize  83. 

In a preclinical B16F10 murine melanoma study, FUS treated mice delayed the tumor progression 

and frequency of lung metastasis compared to  control mice 84.  

In recent years, interest in using focused ultrasound to treat tumors by non-thermal mechanical effect 

is also increasing. Mechanical fragmentation of tumor tissue with FUS or histotripsy (HT) is achieved 

by treating tumor tissue by repeated microsecond to millisecond duration, high-intensity US pulses, 

and with low duty cycles 85. When high intensity focused ultrasound pulses are applied for a short 

duration, small gas-filled or vaporized cavities or microbubbles are formed in the exposed area, a 
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phenomenon known as cavitation. Cavitation can be of two types: stable and inertial/unstable. In the 

case of stable cavitation, the bubble or cavity oscillates with the upcoming wave, as long as the 

bubble resonance frequency is smaller than that of the  frequency of FUS wave 86. Inertial cavitation 

happens when the resonance frequency of bubble or cavity becomes larger than the ultrasound 

frequency. This increase in frequency results in increase in size of cavity or bubble which is followed 

by collapse of bubble 86,87. This bubble or cavity collapse creates an extremely large pressure shock 

wave resulting in fragmentation of treated tumor tissue 88.  

HT technique for mechanical disintegration of tumor tissue liquefies tumor tissues, which then 

enhances physiological or immunologic responses 89,90. HT has several important advantages over 

non-invasive thermal therapy: 1) Bubbles that are produced at the ultrasound focus are hyperechoic 

and visible as bright spots on ultrasound imaging which allows the operator to effectively monitor 

targeted volume; 2)  Microbubble cloud is seen on an imaging monitor, thus providing real-time 

feedback to take prompt decision during therapy; 3) After HT treatment, the targeted lesion appears  

dark on imaging, giving operator information about successful disintegration of tumor tissue; and 4) 

HT technique without any thermal diffusion to surrounding healthy tissue can produce desired tumor 

fragmentation in a very precise and controlled manner 91-93. HT damages tumor cells without thermal 

denaturation of proteins or antigens while the surrounding healthy areas are also protected from 

thermal diffusion 89. HT based biological effect is different than the coagulation of tissue by thermal 

therapy, HT provides more precise control over targeted site with no thermal diffusion induced effects 

on surrounding tissue. In a rabbit model, kidneys were treated with histotripsy and after 1 to 60 days 

post treatment, kidneys were harvested for histological evaluation. Results suggested that the 

homogenized debris were resorbed completely with a little fibrotic tissue left behind as scar 94. In 

canine studies, it was found that the application of HT on prostate gland liquefied the tissue and 

facilitated its drainage through urethra resulting in effective reduction of prostate size 95,96. In a 
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subcutaneous hepatocellular carcinoma (HCC) model, tumors treated with HT exhibited delay in 

tumor growth and there was no sign of metastasis in lung and brain 97.  

Recent European clinical trial results from HT therapy was published in February 2020. Eight patients 

between 46 to 87 years of age were enrolled in the clinical trial. These patients suffered from either 

primary or multifocal liver metastases after the development of breast cancer (1 patient), colorectal 

cancer (5 patients), hepatocellular carcinoma (1 patient), and gallbladder carcinoma (1 patient). Liver 

lesions ranging from 0.5 to 2.1 cm (average size was 1.3 cm) were chosen for the study. Researchers 

noted a reduction in the lesion which averaged 36.0% after first week, 53.6% one month, and 71.8% 

two months post HT therapy. Treatment was well tolerated by patients with no adverse event. 

Findings from renal cell carcinoma rat model suggested an increased plasma concentration of TNF, 

IL-6, high-mobility group box 1 (HMGB1), IL-10 cytokines with enhanced CD8+ T cells infiltration 

in tumors after histotripsy treatment 98. In murine melanoma and hepatocellular carcinoma studies, it 

was observed that HT treated cohorts had significantly higher intratumoral infiltration of dendritic 

cells (DCs), natural killer cells (NK cells), B cells, CD4+ and CD8+ T cells. This increase in immune 

cell infiltration in HT treated mice correlated with a significant delay of tumor progression 99.  

Despite these advancements and achievements in FUS based approaches, FUS alone has not been 

very successful in inhibiting tumor growth and improve survival in preclinical cancer models and 

clinical trials which may be due to the imbalance in efficient antigen processing and presentation by 

APCs and upregulation of immune suppressive factors in the tumor microenvironment. For example, 

in a 4T1 mammary tumor preclinical study, it was found that there was an increase in infiltration of 

immunosuppressive immune cells namely MDSCs and M2 macrophages after thermal ablation of 

tumors 100. When an immune adjuvant namely CpG and immune checkpoint blockade, anti-PD-1, 

were added to their FUS treatment regimens, the authors observed an enhanced therapeutic efficacy 

and generation of robust anti-tumor immunity with FUS 101. CpG is an activator of dendritic cell and  

anti-PD-1 checkpoint inhibitor presrves functional status of T cells by blocking immune checkpoint 
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PD-1 present on T cells.  Based on these findings, we can speculate that addition of APC activators to 

FUS treatment regimen can be highly valuable in keeping tumor infiltrating APCs in an activated 

state to generate robust tumor specific cytotoxic T cell response.  

Importance of tumor antigen presentation in generating potent anti-tumor immunity 

For anti-tumor therapy to be effective, tumor associated antigens or neoantigens must be recognized 

and efficiently processed by APCs and eventually evoke T cell based anti-tumor response. Preclinical 

studies in different mouse cancer models have demonstrated the significance of effective tumor 

antigen processing and presentation process in the generation of anti-tumor immunity 102,103. APCs 

ingest cancer cells expressing antigen and migrate to regional lymph nodes to present tumor specific 

antigen to naïve T cells and generate tumor specific immunity 104. Tumor associated antigens 

presented by APCs are essential to prime tumor (antigen) specific T cells, which subsequently 

identify and kill tumor cells that express the target antigen 105. APCs such as DCs, macrophages, and 

B cells act as a bridge between innate and adaptive anti-tumor immunity. Mature APCs after 

encountering tumor specific antigen migrate to secondary lymphoid organs for antigen presentation to 

naive T cells 106. APCs break down ingested tumor antigens into peptides and express them on their 

surface as MHC-peptide complex.  Naive T cells recognize and attach to MHC-peptide complex on 

the APCs through T cell receptor specific for the tumor antigen, this serve as first signal for T cell 

priming 107. To effectively activate T cells, APCs must provide additional stimulation through co-

stimulatory molecules on their surface 108. Mature and activated APCs upregulate expression of CD80 

and CD86 co-stimulatory molecules on their surface, which bind to CD28 on T cells to act as the 

second signal 109. Immature and non-functional APCs express insufficient co-stimulatory molecules, 

resulting in generation of weak or non-functional T cells 109.  

In addition to these two signals, production of specific cytokines after APC-T cell engagement drives 

differentiation of naive T cells towards CD4 T cells or CD8 T cells and serves as the third signal for T 
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cell activation 107. Tumors acquire an important mechanism of immune escape by maintaining APCs 

in an immature stage and thus preventing these cells from generating anti-tumor T cell immunity 110. 

Tumor cells secrete IL-10 cytokine that inhibits dendritic cell maturation and their secretion of IL-12, 

a T cell activating cytokine 111. Several other studies have shown that tumor cells also secrete factors 

like VEGF and TGF-β which significantly inhibit maturation and function of DCs and enable them to 

escape T cell based immune response 112-114.  

In a mouse melanoma study, it was found that intratumoral injection of CpG (a dendritic cell 

activator) resulted in enhanced infiltration of melanoma specific CD8 T cells into tumors and caused 

tumor suppression 115.  Combination of CpG and cryoablation in a B16F10 melanoma study resulted 

in a more effective tumor suppression than either of the treatments alone. The underlying mechanism 

behind superior efficacy of combination treatment was found to be synergy between antigen release 

after tumor ablation and DC maturation following CpG therapy, which together resulted in an 

efficient presentation of released tumor antigens and activation of T cells 116. In line with these 

studies, when agonist anti-CD40 antibody, an APC activator, was combined with radiation therapy an 

improved therapeutic outcome was observed in preclinical pancreatic cancer models. This 

combination therapy enhanced T cell priming and there was a generation of CD8 T cell memory 

response against the tumor, resulting in long survival of mice 117. Based on these studies, it is evident 

that the functional status of APCs is important for generation of tumor specific T cell immunity. 

Inclusion of APCs activator like CpG or agonistic CD40 antibody can enhance therapeutic outcomes 

of other therapies in poorly immunogenic tumors, where inefficient antigen processing and 

presentation is expected. 

Role of CD40 signaling, cytokines (Interferon-γ, IL-2, IL-12, TGF-β2), and granzymes in anti-

tumor immunity 

CD40-CD40L signaling and antigen presentation 
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CD40 is a member of the tumor necrosis factor α (TNF-α) receptor family. It is a transmembrane 

glycoprotein with a molecular weight of 48 KDa 118,119, and  is found in antigen presenting cells 

(APCs; e.g. DCs and macrophages), hematopoietic progenitor, epithelial and activated T cell 120,121. 

CD40L (CD154) is the ligand of CD40 receptor. It is an integral membrane protein with a molecular 

weight of ~39 KDa, and is expressed on activated T cells, platelets, and B cells type II membranes 122-

124. The interaction of CD40L-CD40 invokes cell-mediated immunity via activation of APCs and 

efficient T-cell functions, and humoral immunity via B cells 125,126. Specifically, CD40 enhances the 

maturation of DCs, upregulating costimulatory molecules that help the clonal expansion and 

differentiation of T cells 127.  

Mechanistically, CD40-CD40L ligation induces the recruitment of tumor necrosis factor receptor–

associated factors (TRAFs) adaptor proteins to CD40’s cytoplasmic tail 128. This binding activates the 

downstream signaling  through activation of NF-κB inducing kinase (NIK), members of the mitogen-

activated protein kinase (MAPK) family, and receptor interacting protein (RIP), leading to 

transcription of target genes and production of inflammatory mediators, prolongation of MHC/antigen 

complex presentation and improvement in DC survival  129-131. In particular, activation of the NF-κB 

pathway via CD40 in mice and human can upregulate the level of antiapoptotic protein Bcl-XL and 

Bcl-2, which is vital for DC maturation and survival 132-134. 135-137. There are five members of NF-κB 

family in the mammalian system- NF-κB1 (p50), NF-κB2 (p52), c-Rel, RelA (p65), and RelB 138. The 

canonical NF-κB pathway is comprised of active NF-κB dimers mainly NF-κB1/RelA, and the 

noncanonical pathway consists of NF-κB2/RelB 139. The canonical NF-κB1 pathway induced IL-12 

production from DCs leading to immediate inflammatory responses and differentiation of naïve T 

cells to Th1 phenotype 140,141. The noncanonical NF-κB2 pathway regulates various chemokines such 

as CCL9 and CCL21 142,143.   

Interaction of CD40L present on activated CD4+ T helper cells with APCs 144,  enhances the levels of 

MHC class II, CD80/CD86, and CD58, aiding the DC’s antigen presentation efficiency by providing 
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a ‘second’ indispensable signal for T cell activation 145. Besides providing the costimulatory signals to 

naïve T cells, mature DCs also secrete the proinflammatory cytokine IL-12, that drives differentiation 

of naïve CD4+ T cells towards Th1 phenotype 146,147. In contrast, “immature” or “tolerogenic” DCs 

can present signal 1 (antigen peptide–MHC complex) but lack the costimulatory signals. This results 

in the differentiation of naïve CD4+ T cells to CD4+ regulatory T cells and dysfunction or anergy of 

antigen-specific cytotoxic CD8+ T cells 148. Among various tumor types, melanoma in advanced 

stages can keep the DCs in an immature state by increasing the  production of IL-10 and TGF-β, 

leading to T cell anergy 149,150. T cell dysfunction or anergy is one of the biggest challenges faced by 

cancer immunotherapy. In normal conditions, CD40 ligand (CD40-L) present on helper T cell 

interacts with CD40 receptor on APCs and activates APCs. Agonistic CD40 antibody binds to the 

CD40 receptor present on dendritic cells and can substitute the need of CD40-L based stimulation of 

APCs by helper T cells 151.  The activation of DCs by CD40 stimulators such as agonistic CD40 

antibody may therefore protect T cells from dysfunction. Additionally, CD40 stimulation can directly 

inhibit cancer growth in CD40+ tumors such as breast, bladder, ovarian, non-small cell lung, cervical, 

and squamous epithelial through apoptosis induction and/or blockade of cell cycle 152. For instance, in 

one study, agonist CD40 antibody was shown to cause direct lymphoma and leukemia cell killing by 

antibody dependent cellular phagocytosis (ADCP) and antibody dependent cell mediated cytotoxicity 

(ADCC) 153,154. Importantly, by enhancing the Fc receptor (FcγR) binding capacity of CD40 antibody 

through Fc end engineering, an 150 fold enhancement in ADCP and ADCC was observed in 

leukemia, multiple myeloma, and B-lymphoma cell lines 154.  

Tumor cells evade recognition by cytotoxic T lymphocytes (CTL) by down-regulating MHCs  and 

transporter associated with antigen processing (TAP), TAP is involved in transport of  peptides from 

cytosol to endoplasmic reticulum, where then the transported peptides bind with nascent MHC 

molecules 155,156.  CD40 stimulations can prevent this immune escape mechanism, resulting in an 

enhanced TAP expression, MHC class I molecule expression, and processing of endogenous antigen 
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157. Further, the ligation of CD40 with endothelial cells drives proinflammatory cytokine production 

and expression of cell adhesion molecules such as ICAM-1, and VCAM-1, improving the migration 

of leukocytes and T cell homing 158.  

CD40–CD40L engagement not only activates APCs, but is also crucial for the generation and survival 

of plasma and B memory cells 125. CD40 stimulation on B cells promotes formation of germinal 

center, immunoglobulin isotype switching, and immunoglobulin somatic mutation to enhance antigen 

affinity of produced antibody, leading to efficient humoral immune response 159,160. Like DCs, in 

macrophages, ligation of CD40 improves antigen presentation and effector function. Peritoneal 

macrophages activated with agonist CD40 antibody in vivo resulted in enhanced production of nitric 

oxide, tumor necrosis factor alpha (TNF-α), IL-12, IFN, and demonstrated cytostatic effect on B16 

melanoma cells in vitro by apoptosis 161,162. 163. Additionally, CD40 stimulated macrophages were 

shown to achieve tumor cell killing, depleted tumor stroma and facilitated infiltration of immune cells 

into the pancreatic tumor 28.  

CD40s can also directly or indirectly activate NK cells 164. NK cells expressing CD40L can directly 

interact with CD40+ APCs, or indirectly following IL-12 production by the activated APCs 165. IL-12 

promotes proliferation of NK cells and enhances their effector function by inducing IFN-γ secretion 

166. Activated NK cells then exerts tumor cell killing by increasing the expression of TNF-related 

apoptosis-inducing ligand (TRAIL) 167. TRAIL binds with death receptors DR4 and DR5, leading to 

target cell apoptosis 168. Further, the activated NK cells can kill target cell by IL-12 dependent 

upregulation of perforin and granzyme B 169.  

CD40 stimulation a novel approach towards anti-tumor immunity 

In pancreatic tumor models like KPC and Panc02, where baseline T cell infiltration and presence of 

tumor associated or neoantigen is low, CD40 stimulation has been shown to achieve tumor regression 

and cure 117,170. In murine tumors that had poor expression of tumor associated antigen the addition of 
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CD40 agonist antibody with chemotherapies (gemcitabine and paclitaxel) resulted in generation of 

anti-tumor immunity 171-174. These studies demonstrated that APCs activation by CD40 antibody after 

tumor cell killing and release of antigens resulted in generation of tumor specific T cell immune 

response. Regression of tumors with combination of chemotherapy and CD40 was not observed in T 

cells depleted or BATF3 knockout (lacking antigen cross-presenting dendritic cells) mice, further 

validating the necessity of APCs and T cells cross-talk for the generation of anti-tumor immunity 170. 

CD40 stimulation in mice has also been shown to activate  macrophages which in turn lead to in the 

shrinkage of tumor stroma and eventually high immune cell infiltration followed by tumor regression 

28. In spite of encouraging therapeutic outcomes in pre-clinical study, anti-CD40 agonistic antibody 

achieved only moderate success in clinical trials as a monotherapy. .  

CD40 antibody (Selicrelumab) produced partial responses in 27% of enrolled advanced melanoma 

patients (4 out of 15) while none of 14 non-melanoma solid tumors patients responded to single dose 

CD40 antibody monotherapy 175. Other clinical trials with CD40 antibody as a single therapy agent 

also resulted in minimal anti-tumor response in spite of trying different routes of administration in the 

patients 176,177. However, clinical outcomes were improved when CD40 antibody was used as a part of 

combination therapy. Based on clinical trials, CD40 antibody in combination with chemotherapy 

drugs namely cisplatin, carboplatin/paclitaxel, and gemcitabine achieved an overall response rate of 

20-40% in solid tumor patients 173,178. CD40 antibody in combination with anti-CTLA4 antibody 

(immune checkpoint inhibitor) was tested in 22 patients of metastatic melanoma. Clinicians observed 

complete remission of cancer  in 2 patients while 9 out of 22 patients are long term survivor (more 

than 3 years) 179. Combination of radiation  and CD40 antibody in mouse pancreatic cancer models 

achieved tumor regression and better survival outcomes compared to either therapy alone 117. Results 

from these clinical trials and pre-clinical studies support the notion that CD40 antibody therapy can 

be a potential candidate for evaluation with emerging non-invasive therapies like FUS or HT to 

achieve maximum therapeutic success.   



17 

Role of cytokines in cancer immunity 

Cytokines are proteins with low molecular weight involved in cell to cell communication. Different 

types of immune cells and stromal cells such as macrophages, DCs, T cells, NK cells, endothelial 

cells, and fibroblasts produce cytokines 180. These proteins interact with target cells having 

corresponding receptors by autocrine signaling (acting on the same cells that produce them), 

paracrine signaling (acting on  the nearby cells), or in some cases by endocrine signaling (acting on 

distant cells) 181. This interaction can regulate target cell survival, cell differentiation and 

proliferation, immune cell activation, or cell death (Fig. 1.1) 182. Some of the important cytokines that 

are involved in cancer immunity are listed in Table 1.1. and discussed below. 

Interferon-γ (IFN-γ) 

Interferons (IFNs) are the cytokines with antiviral, antitumor and immunomodulatory properties 183. 

These cytokines are named “interferons” since they protected the cells by interfering with the viral 

infection 184. IFN are of three types. Type I IFN family is represented by IFN-α and IFN-β and type II 

IFN family is made up of IFN-γ. Type III IFN family comprising of four homologous proteins IFN-λ1 

to 4 was recently reported 185. Expression of type I and III IFNs is activated by pattern recognition 

receptors (PRRs) involved in host-pathogen interactions 186. In contrast, Type II IFN responds to 

microorganisms and cancer cells 187,188.  

IFN-γ is a homodimer with two 17 KDa polypeptide subunits 189,190. The symmetry of IFN-γ allows it 

to bind simultaneously to two receptors, resulting in amplification of the underlying responses 186. 

IFN-γ  is secreted predominantly by activated CD4+ T helper type 1 (Th1) cells, CD8+ cytotoxic T 

cells, natural killer (NK) cells and to a lesser extent, by natural killer T cells (NKT), professional 

antigen-presenting cells (APCs) and B cells 191-195. Expression of IFN- γ is induced by mitogens and 

cytokines like IL-12, IL-18, type I IFN, and IL-15 196-199. Autocrine secretion of IFN-γ by APCs 

contributes to sustained self and neighbor cell activation. This is needed for early control of pathogen 
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spread and in adaptive immunity. T lymphocytes are the main paracrine IFN-γ source 186,200,201. The 

biological effects of IFN-γ happen through activation of intracellular molecular signaling, mainly by 

the JAK/STAT pathway 202. Upregulation of the major histocompatibility complex (MHC) molecules 

is one of the first reported biological effects of IFNs 203,204. IFNs are also involved in the upregulation 

of the MHC I and II antigen processing and presentation. In melanoma and multiple myeloma IFN-γ 

can result in upregulation of the MHC class II trans-activator (CIITA) leading to MHC II expression 

205,206.  

Th1-mediated immune response results in the production of IFN-γ which orchestrates activation of 

macrophages and NK cells. IFN-γ based upregulation of cell surface MHC I molecule mediates cell-

based immunity through cytotoxic T cell activation against intracellular pathogens and tumor cells 186. 

IFN-γ is crucial for the proliferation of cytotoxic T cell precursor and directly acts as a differentiation 

signal for cytotoxic CD8 T cell 207,208. IFN-γ also promotes peptide-specific activation of CD4 T cells 

by upregulating cell surface MHC II on APCs 209,210. IFN-γ promotes macrophages activation towards 

a pro-inflammatory phenotype leading to an increase in phagocytic ability 211. IFN-γ induces tumor 

cell killing by various means such as nitric oxide production, activation of the NADPH-dependent 

phagocyte oxidase system, upregulation of lysosomal enzymes, and tryptophan depletion 212-214. 

IFN-γ based activation of STAT1 regulates the expression of cyclin-dependent kinase inhibitor 1 

(p21) in tumor cells, thereby inhibiting tumor cell proliferation 215,216. IFN-γ can promote tumor cell 

apoptosis by upregulating expression of caspase-1, caspase-3, and caspase-8 and enhancing the 

secretion of FAS/FAS ligand 217-219. IFN-γ induces tumoricidal effects through necroptosis, a form of 

regulated necrotic death that depends on the activity of the serine–threonine kinase known as RIP1 

220. Interestingly, IFN-γ is also able to inhibit angiogenesis and survival of endothelial cells, leading to 

ischemia in the tumor stroma 221,222. IFN-γ induces production of chemokines such as CXCL9, 

CXCL10, and CXCL11 that are involved in trafficking of T cell, NKT cell and NK cell into the 

tumors 223,224. IFN-γ deficiency results in failure of T cells migration to tumor site 225. IFN-γ induces 
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ifi202 and survivin genes that are involved in T cell survival, proliferation, and maturation in tumor-

specific T cells 226.  

IFN-γ can also lead to T cell suppression by increasing the population of myeloid derived suppressor 

cells (MDSCs) 227. Nitric oxide produced by MDSCs decreases T and NK cells responsiveness to 

IFN- γ 228. IFN-γ can also induce PD-L1 expression in cancer, myeloid, and stromal cells to inhibit 

effector tumor immunity 229. It was demonstrated that for the induction of PD-L1 in tumors, the 

contact between tumor cells and CD8 T cells is crucial, suggesting the importance of paracrine IFN-γ 

exposure 230. Anti-PD-1/anti-PD-L1 therapy may be effective in the cases where high levels of IFN-γ 

signaling is expected. 

Interleukin-2 (IL-2) 

IL-2 is a 15.5-kDa cytokine that is predominately secreted by antigen stimulated CD4+ T cells and 

CD8+ T cells, activated dendritic cells, and NK cells 231,232. IL-2 stimulated cells express a high-

affinity trimeric IL-2 receptor with the α-, β-, and γ-chains or a low-affinity dimeric receptor with β- 

and γ-chains 233,234. Optimal activation of T cell with tumor antigen peptide-MHC-I complex and 

costimulatory ligands results in the production of IL-2 that in turn causes expression of IL-2Rα 

(CD25), IL-2Rβ (CD122), and IL-2Rγ (CD132), thereby forming the high affinity trimeric receptor 

for robust IL-2 signal transduction, resulting in clonal expansion of  T cell and their differentiation 

into effector cells 235. IL-2 stimulates cell growth of CD8+ T cells and their differentiation into 

memory and terminally differentiated lymphocytes occurs by multiple signaling cascades (e.g. STAT-

5, Akt, and MAPK) 236 .  

Following IL-2 stimulation, STAT-5 enhances Blimp-1 (a pro-differentiation transcription factor) to 

promote effector cell differentiation 237-239. Activation of Akt by IL-2 regulates the expression of Bcl-

6, leading to the control of Foxo family transcription factors activities and promotion of immune cell 

survival and proliferation 240. IL-2-Akt activation also alters the expression of proteins involved in 
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trafficking of CD8 T cell such as CD62L, S1P1, and CCR7 and promotes their migration to 

peripheral sites of inflammation and infection 241,242. In addition to STAT-5 and Akt signaling which 

mostly promote differentiation into effector T cell, IL-2 activates MAPK signaling that augments 

clonal expansion and activation of T cell 240. IL-2 also promotes proliferation of T cell by 

upregulating cyclins and anti-apoptotic molecule Bcl-2 and downregulating p21 243.  

IL-2 produced from activated T cells can act in an autocrine or paracrine mode on cells expressing 

high affinity IL-2 receptor (IL-2R) 244. Both helper T (Th) and nearby regulatory T cells (Tregs) upon 

IL-2 exposure upregulates the expression of L-2Rα (CD25) to form high affinity trimeric IL-2R 245,246. 

IL-2 is not produced by Tregs but proliferation and function of Tregs is dependent on IL-2 secreted 

from Th cells 247,248. Tregs act as a sink for IL-2 and compete with Th cells for IL-2. IL-2 can induce 

paracrine signaling in Treg cells leading to downstream activation of STAT5 and immunosuppression 

249-251. Thus, presence of high Treg cell population in cancer patients can deprive the effector T cells 

from IL-2 and severely affect their proliferation and expansion.  

Redeker et al. showed that autocrine production of IL-2 promotes the expansion of antigen specific 

CD8+ T cells and this expansion of CD8+ T cells depended on the available dose of IL-2. The  

enhanced autocrine production of IL-2 by CD8+ T cells was able to delay tumor growth in mice 252. 

Feau et al. demonstrated that autocrine production of IL-2 by CD8+ T cells is necessary for optimal 

secondary proliferation upon re-challenge with antigen. Interestingly, CD8+ T cells required their 

own autocrine IL-2 to generate optimal memory response even when adequate CD4+ T cell help was 

present to supply paracrine IL-2. CD4+ T cell help was required only to activate APCs via CD40- 

CD40L interactions and subsequent priming of CD8+ T cells to synthesize their own autocrine IL-2 

253. Pro-inflammatory cytokines such as IL-12, IFN-γ, and IFN-α/β are believed to complement IL-2 

in promoting clonal expansion of CD8+ effector T cells 254.  IL-2 based responses are highly desirable 

to achieve robust cytotoxic T cell based anti-tumor immunity. 
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Interleukin-12 (IL-12)  

Interleukin-12 was originally described as a product of Epstein–Barr virus (EBV) transformed human 

B-cells that generated lymphokine-activated killer cells, activated NK cells, induced IFN-γ production 

and proliferation of T cell 255,256. IL-12 is mainly produced by activated inflammatory cells such as 

monocytes, macrophages, DCs, neutrophils, and microglia 257-260.  During infection or presence of 

danger signals such as binding of LPS with toll like receptor on APCs induces production of IL-12. 

For instance, in macrophages IL-12 production can be induced through binding of TLR4 ligand such 

as LPS and TLR7/8 ligand such as R848 with their cognate receptors 261,262. IL-12 receptor is 

expressed mainly by activated NK cells and T cells 263. Other cell types, namely DCs and B cells 

express IL-12R 264,265. Resting T cells have undetectable IL-12R but NK cells can express IL-12 at a 

low level 266. 

IL-12 is a heterodimer made from 35 kDa light chain (p35 or IL-12α) and a 40 kDa heavy chain 

(p40 or IL-12β) 255. IL-12 is a ligand of  IL-12R receptor that is  composed of  two chains namely IL-

12Rβ1 and IL-12Rβ2 267. Engagement of IL-12 with its receptor activates Janus kinase (JAK)–STAT 

(signal transducer and activator of transcription) pathway and in particular activation of STAT4 leads 

to specific cellular effects of IL-12 268. T cell activation upregulates the transcription and expression 

of both IL-12Rβ1 and IL-12Rβ2 chains of IL-12R. This upregulation, especially of the β2-chain is 

enhanced by IFN-γ, IFN-α, IL-12 itself, TNF and co-stimulation via CD28 266.  

Direct cell to cell contacts with other immune cells (via CD40L-CD40 interaction) or presence of 

cytokines like IL-1β and IFN-γ amplifies the production of IL-12 from DCs and monocytes 269-271. 

The exact molecular event that triggers IL-12 production in solid tumors is uncertain, but CD40L–

CD40 interaction may be the most likely mechanism involved in induction of IL-12 secretion 272. 

Cytokines such as IL-10 and TGF-β produced in various cancers suppress production of IL-12 273. T-

cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) can also inhibit the production 

http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3592
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3593
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3594
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3594
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3595
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3594
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3595
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of IL-12 by DCs 262. IL-12 is a key player that links innate and adaptive immune response. Activated 

APCs produced IL-12 leads to activation and proliferation of T cells and NK cells, and enhances their 

effector function by inducing the transcription of cytokines and cytolytic factors such as perforin and 

granzyme B 274,275.  

IL-12 promotes polarization of T cells into a Th1 effector cell phenotype 276,277. Th1 polarization by 

IL-12 is achieved by inhibition of TGF-β. TGF-β induced T cell differentiation causes the production 

of Tregs and Th17 cells 278. In addition, IL-12 programs T effector cells for the generation of effector 

T memory cells 279. Direct effect of IL-12 on APCs has also been reported. The activation of IL-12R 

in APCs did not involve the canonical STAT pathway but it enhanced the ability of these cells to 

present poorly immunogenic tumor peptides 280. IFN-γ secreted upon IL-12 stimulation alone or along 

with other synergizing cytokines such as IL-2 and IL-18 is the key mediator of IL-12 induced 

responses 196,281. This secreted IFN-γ after IL-12 stimulation, in turn acts on APCs by positive 

feedback loop to initiate or increase IL-12 secretion 282. In addition to IFN-γ release, IL-12 triggers 

the secretion of IL-2, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) 266. 

IL-12 hampers tumor angiogenesis by IFN-γ dependent increase in the levels of CXCL9 and 

CXCL10 and decrease in vascular endothelial growth factor (VEGF) and metalloproteinase-9 

production 283,284. 

Transforming growth factor beta (TGF-β)  

TGF-β is a major factor that controls development and physiology of both immune and  

hematopoietic cell 285. The important role of TGF-β in the immune system regulation was 

demonstrated in mice that were deficient in TGF- β. It caused a multifocal and lethal inflammatory 

response along with disarrangement of various immune cell compartments including macrophages, 

dendritic cells, B cells, and T cells 286-288. TGF-β is a cytokine that is conserved evolutionally and 

belongs to a large family of growth factors and morphogens 289. In cancer, TGF-β supports evasion of 
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cancer cells from immune surveillance to promote malignant growth 290,291. TGF-beta is produced by 

parenchymal and tumor infiltrating macrophages, dendritic cells, lymphocytes, and platelet cells 292. 

Three isoforms of TGF-β identified in the mammals are TGF-β1, TGF-β2, and TGF-β3. TGF-β1 is 

the predominant isoform that controls the development, differentiation, function and homeostasis of 

different types of immune cells 293,294.  

TGF-β is synthesized as an inactive molecule, containing a mature TGF-β’s homodimer connected 

with latency-associated protein (LAP). This latent complex is either associated or released with 

latent-TGF-β-binding protein (LTBP). LTBP guides TGF-β to the extracellular matrix for activation 

294,295. To achieve its biological activity, mature TGF-β must be dissociated from LAP. This 

dissociation can happen through various mechanisms such as interaction with integrins, acidic pH 

based dissociation, or LAP proteolysis by matrix metalloproteinases 296. Integrins play a very 

important  role in TGF-β activation during both normal physiological and pathological conditions 285. 

Integrin αvβ8 deletion on leukocytes resulted in age related autoimmunity and inflammatory bowel 

disease in mice, which suggested a crucial role of leukocyte’s αvβ8 integrin in TGF-β activation and 

maintenance of T cell homeostasis and inflammation control 297.  

Tregs present in tumor microenvironment can capture latent TGF-β by binding it to a transmembrane 

protein called glycoprotein A repetitions predominant (GARP) protein 298. Integrin αvβ8 expressed on 

Tregs then mediates the activation and release of active TGF-β from the latent TGF-β/GARP complex 

285. Once released, active TGF-β binds to dimeric type 1 receptor (TGFbRI) and dimeric TGFb type 2 

receptor (TGFbRII) to form a tetrameric receptor complex. This binding through its kinase activity 

initiates signaling pathways. TGFbRI activation leads to phosphorylation of SMAD2 and SMAD3 

(mothers against decapentaplegic homologs 2 and 3)and these transcription factors then subsequently 

form a complex with the transcriptional intermediary factor 1 gamma (TIF1γ) or SMAD4 299,300. This 

complex translocates from cytoplasm into the nucleus and recruits transcription cofactors that 

modulate the expression of different target genes 301. Additionally, TGF-β receptor complex can also 
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trigger SMAD-independent pathways such as phosphatidylinositol-3-kinase/AKT pathways, Rho-like 

GTPase signaling pathways, and various mitogen-activating protein kinases (MAPKs) pathways to 

regulate an array of functions in different types of cells and tissues 302.  

TGF-β suppresses adaptive anti-tumor immune response by interfering with both differentiation and 

function of T cells. TGF- β inhibits differentiation of naïve T cells to Th1 phenotype. It was shown 

that mice lacking TGFBR2 on T cells had enhanced Th1 response 303, via TCR dependent activation 

of CD4+ and CD8+ T cells upon stimulation with antigen, and enhanced production of  IFN-γ and 

granzyme-B 304,305. TGF-β signaling impedes differentiation of T cells by silencing two master 

transcription factors of Th1 namely STAT4 and TBET. STAT4 blockade prevents (IFN)-γ production 

during the priming phase and TBET loss reduces production of IFN-γ during T cells re-stimulation 

after initial priming 306,307. TGF-β affects T cell in early phase of activation by interfering with the 

Ca2+ influx-triggered T cell receptor stimulation (TCR) 308. TGF-β also inhibits the proliferation of  T 

cells by SMAD3, SMAD4, and cofactor TOB1 mediated silencing of IL-2  expression during the 

priming phase 309,310. TGF-β controls various  downstream regulators of cell cycle such as  p21Cip1, c-

Myc, and p27Kip1 and promote T cell apoptosis and cytostasis 311,312. TGF-β activated SMADs along 

with transcription factor ATF1 suppress the promoters of genes involved in the lytic function of 

CD8+ T cells including granzyme B and IFN-γ, leading to direct inhibition of cytotoxic CD8+ T cells 

function 313.  TGF-β promotes the regulatory program on T cells and induce differentiation of naïve T 

cells or sub-optimally stimulated CD4+ T cells to the Tregs 314,315. Transcriptomic datasets revealed 

correlation of FoxP3 expression with TGF-β levels in breast cancer and skin cutaneous melanoma 316. 

Differentiation of naive CD4 + T cells to Tregs by TGF- β can be counteracted by pro-inflammatory 

cytokines rich environment that favors differentiation of T cells towards an effector phenotype 317,318.  

In B16 melanoma tumors Tregs based inhibition of the cytolytic function of CD8+ T cells was 

observed and this immunosuppressive effect of TGF-β was reversed by TGF-β neutralizing antibodies 

319. TGF-β can inhibit antigen presenting abilities of dendritic cells by suppressing expression of 

https://www.sciencedirect.com/topics/medicine-and-dentistry/granzyme-b
https://www.sciencedirect.com/topics/medicine-and-dentistry/oncogene-c-myc
https://www.sciencedirect.com/topics/medicine-and-dentistry/oncogene-c-myc
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MHC-II genes or redirecting the differentiation of DCs toward an immunosuppressive 

immature myeloid cell phenotype 320. This switching of DC phenotype  is mediated by ID1 a 

transcriptional regulator of downstream TGF- β signaling 321. Additionally, TGF-β affects the 

function of NK cells by silencing TBET and IFN-γ expression in these cells leading to inhibition of 

Th1 responses. TGF-β induced silencing of NK cell surface receptors namely NKp30 

and NKG2D inhibit ability of these cytotoxic lymphocytes to recognize stressed and transformed 

cancer cells 322. TGF-β also promotes phenotype switching of tumor associated macrophages towards 

pro-tumoral and immunosuppressive M2 phenotype 323. All these effects of TGF- β promote growth 

of tumors by making a highly immunosuppressive tumor microenvironment. 

Granzymes mediated killing of target cells by cytotoxic lymphocytes 

NK cells and CTL identify and kill infected or transformed cells through two major pathways. CTL 

and NK cells use the granule exocytosis pathway to induce cell death in the target cell, once these 

cytotoxic cells come in contact with the target cell, cytotoxic secretory granules present in the CTL 

and NK cells traffic to the immunological synapse and a cargo of deadly proteins namely perforin and 

granzymes is released into the synaptic cleft 324.  

Perforin granule protein forms pores on target cell and promotes delivery of granzymes into the 

cytosol of target cells, that on entry, cleave their substrates to induce efficient and rapid cell death 325. 

The activity of perforin is highly pH and calcium ion (Ca2+) dependent such that perforin is inactive 

under acidic condition of secretory granules (pH 5) and active in the neutral pH environment of the 

immunological synapse 326,327. These properties of perforin make acidic secretory granule a safe 

storage platform for perforin inside cytotoxic lymphocytes. X-ray crystallography studies suggest that 

various perforin related proteins are homologous in their pore-forming domain (the membrane attack 

complex and perforin (MACPF) domain) to the bacterial cholesterol-dependent cytolysins (CDCs) 324. 

Several clues about the function of perforin have been provided by this relationship. Initially, CDCs 

https://www.sciencedirect.com/topics/immunology-and-microbiology/myeloid
https://www.sciencedirect.com/topics/immunology-and-microbiology/nkg2d
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bind and oligomerize on the membrane surface into a pre-pore of 20–50 monomers. After this pre-

pore assembly, two α-helices (transmembrane helical region 1 (TMH1) and TMH2) in every 

monomer unwind and insert as a pair of amphipathic β-hairpins into the membrane. This forms a full 

pore with a large β-barrel of 80 to 200 strands 328,329. Perforin induced pores result in the delivery of 

granzymes to cytosol of target cell.  

Granzymes are serine proteases with two six-stranded β-barrels that regulates substrate specificity and 

in the middle present is a catalytic triad containing aspartic acid, histidine, and serine 330. In humans 

there are five types of granzymes namely A, B, H, K, and M. Mice express granzymes from A to G, 

K, M, and N 331,332. Granzyme A upon entering the target cell induces an inflammatory form of cell 

death known as pyroptosis. Pyroptosis is a caspase-1 dependent inflammatory form of cell death. 

During pyroptosis there is formation of pores in the target cell which results in ion imbalance leading 

to cell swelling and death. The cell undergoing pyroptosis spills its content and forms a depot of 

immunogenic molecules known as damage associated molecular patterns (DAMPs) leading to 

inflammation 333. Caspase-1 activation during pyroptosis results in cleavage of pro-IL-1β and pro-IL-

18 to active forms 334. Release of IL-1β and IL-18 inflammatory cytokine during this form of cell 

death further enhances immune response 335.  

Recent studies have shown that pore forming effector proteins known as gasdermins are actively 

involved in the process of pyroptosis. There are different types of gasdermins namely, GSDMA, 

GSDMB, GSDMC, GSDMD, GSDME, and DFNB5 336. Gasdermins have two domains connected by 

a flexible linker, a C-terminal repressor domain and cytotoxic N-terminal domain. Proteolytic 

cleavage separates cytotoxic N-terminal domain from C-terminal domain, this free cytotoxic domain 

then inserts itself into the cell membrane and forms cell death causing pores in the membrane 337. 

Disruption of membrane integrity by pore formation results in failure of ion homeostasis which leads 

to cell death. Zhou et al. has shown that granzyme A can induce caspase-1 independent pyroptosis in 

the target cell by cleaving inter-domain linkage in gasdermin B (GSDMB), after cleavage of 
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GSDMB’s cytotoxic domain, it forms a pore in the target cell membrane resulting in cell death. It was 

also found that presence of IFN-γ up-regulated GSDMB expression and promoted granzyme A based 

pyroptosis. Both NK and T lymphocytes can induce pyroptosis in the target cell by granzyme A 338. 

Earlier studies had shown that granzyme A after entering the target cell is transported from the 

cytosol to the mitochondrial matrix, which results in cleavage of an electron transport chain complex 

I component 339,340. This led to a defect in mitochondrial redox function, maintenance of membrane 

potential, and ATP generation. These changes in mitochondria generated superoxide that drove an 

endoplasmic reticulum associated oxidative stress response complex known as the SET complex, 

(containing nucleases) which then promoted granzyme A induced target cell nuclear damage and cell 

death 341.  

Another important granzyme involved in control of infection and cancer is granzyme B. Both CTLs 

and NK cells express granzyme B. Effector immune cells lacking granzyme B are much slower in 

killing target cells than the wild type cell. This suggests the important role of this serine protease in 

executing destruction of infected or oncogenic cells 342,343. Granzyme B after entering into target cell 

induces cell death by directly or indirectly activating cell’s intrinsic cell death proteases known as 

caspases 344. Direct proteolysis of pro-caspase-3 and -7 into active caspases-3, and -7 by granzyme B 

results in caspase based degradation of numerous cellular protein substrates, promoting efficient and 

fast apoptosis 345,346. Granzyme B is also able to directly cleave inhibitor of caspase activated DNAase 

(ICAD), promoting DNA hydrolysis. Studies have shown that granzyme B can cleave various 

proteins involved in protection against cell death such as MCL-1, DNA repair (DNA-PKcs), and 

Lamin B that are involved in the maintenance of nuclear integrity 344. Additionally, granzyme B can 

also activate caspases through the cytochrome c/Apaf-1 pathway in which granzyme B mediated 

activation of the BH3-only protein Bid opens up BAX/BAK channel in the outer membrane of 

mitochondria 347. This results in release of cytochrome c from the mitochondrial intermembrane space 

into the cell cytosol. Cytochrome c then binds and activates apoptosome, a caspase-activating 
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platform. Activation of the apoptosome in turn promotes downstream activation of caspases leading 

to cell death 348,349.  

Granzyme H is highly expressed in NK cells and plays a crucial role in NK cell mediated immune 

response 350,351. Studies have shown that granzyme H induces cell death by both caspase dependent 

and caspase independent manner 350,352. Hou et al. found that granzyme H induced apoptosis in target 

cell by activating caspase-3 and Bid protein which resulted in release of cytochrome c from 

mitochondria into the cell cytoplasm and mitochrondrial damage. Cytochrome c release in the 

cytoplasm leads to activation of downstream apoptotic caspases and cell death. Granzyme H cleaves 

inhibitor of caspase activated DNAase (ICAD) directly, thus promoting fragmentation of DNA. The 

cell death induced by granzyme H is typically characterized by caspase activation, externalization of 

phophatidylserine, DNA fragmentation, condensation of nucleus, and cytochrome c release 352. 

Fellow et al. demonstrated that granzyme H induced damage to mitochondria was due to its 

proteolytic activity and did not accompany with caspase activation. Mitochondrial depolarization 

resulted in production of reactive oxygen species (ROS) and cell death in target cell. In addition, 

condensation of chromatin and DNA degradation were also noticed while the induction of cell death 

was not mediated by Bid cleavage, cytochrome c release,  activation of downstream caspases, or 

inactivation of ICAD 350.  

Granzymes K and A are tryptases and closely linked on the same chromosome in both humans and 

mice 353,354. Granzyme K is expressed in NK cells and CTLs 355. Zhao et al. showed that granzyme K 

can directly cleave Bid to generate its active form and result in cell death by mitochondrial damage. 

This active form of Bid resulted in disruption of the outer mitochondrial membrane and escape of 

cytochrome c and endonuclease G in cytosol. The collapse of mitochondrial inner membrane 

potential was accompanied with rapid generation of ROS and cell death. It has also been shown that 

granzyme K can hydrolyze SET (nucleosome assembly protein), promote single stranded DNA nicks, 
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and inhibit repair mechanisms in target cell. These changes induce rapid cell death that is independent 

of caspase activation 354.  

Granzyme M is highly expressed in NK cells and plays a critical role in NK cell mediated target cell 

killing 356. Lu et al. showed that granzyme M directly cleaves ICAD to unleash the nuclease activity 

of CAD for inducing DNA fragmentation in the target cell. In addition, granzyme M also prevents 

cellular DNA repair by cleaving the DNA damage sensor enzyme poly(ADP-ribose) polymerase and 

forces cell to apoptosis 357. Bovenschen et al. found that granzyme M can cleave the linker of actin-

plasma membrane known as ezrin and also α-tubulin, the microtubule component. These cleavage 

events were independent of caspases involvement and granzyme M caused disorganization of 

microtubules affecting cell cytoskeleton 358. NK cells and lymphokine activated killer (LAK) cells in 

mice  express another granzyme known as granzyme F 359. Shi et al. demonstrated that granzyme F 

can induce mitochondrial swelling and depolarization leading to ROS generation. Cell death caused 

by granzyme F death did not involve cleavage of Bid or caspase activation but was characterized by 

condensation of nucleus, mitochondrial damage and cytochrome c release, phosphatidylserine 

externalization, and nicking of single-stranded DNA 360. 

Nanoparticles - a new era in therapeutics  

In the last two decades, nanoparticle (NP) based therapeutics are successfully used in the treatment of 

cancer, infectious diseases, and pain management 361,362. These nano-therapeutics are able to deliver 

cargo drugs precisely to the target site, enhance solubility of drugs, extend drug half-life, and also 

reduce drug immunogenicity 363,364. First generation of NPs were made of lipids and polymers 

commonly known as liposomes and polymeric NPs 365. Liposomes are spherical vesicular structure 

surrounded by a bilayer that can encapsulate both hydrophobic and hydrophilic agents and protect 

these agents (proteins, nucleotides, small molecule drugs, radionucleotides or imaging agents) during 

circulation in the body 366. Encapsulation of agents in the liposomes protects them from early 
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degradation, inactivation, and dilution in blood after administration 367. In 1980s, the first studies to 

evaluate the clinical potential of liposomes were conducted and it was found that liposomes improved 

therapeutic index of drugs namely amphotericin and doxorubicin 368,369.  NPs can also be 

functionalized, for example, with ligands for cell surface receptors, to promote targeting to specific 

cells and tissues. In addition, they can be coated with polymers to prolong circulation half-life 370.  

Liposome formulations modified pharmacokinetics and biodistribution of encapsulated drugs and 

enhanced their delivery to diseased tissue in comparison to free drug 371. This resulted in reduction of 

free drug toxicity in vivo. Doxil, a FDA approved liposomal formulation, showed significantly 

reduced cardiotoxicity compared to free doxorubicin (chemotherapy drug) 372,373. In spite of these 

advantages, therapeutic efficacy of liposomal formulations is greatly affected by their rapid 

elimination from circulation 374. To increase stability and circulation time of liposomes they were 

sterically stabilized by coating with a hydrophilic polymer know polyethylene glycol (PEG). This 

modification resulted in a modest improvement of liposome circulation time both in mice and humans 

375-377. To further improve the stability of nanoparticles, resilient materials like polymers were 

introduced in the field of nanotherapy.  

Polymeric nanoparticles can be made from either natural polymers like chitosan, dextran etc. or 

biodegradable synthetic polymers like polylactic-co-glycolic acid (PLGA) and poly l-lysine (PLL)-

LL. Thick and tough membrane of polymeric nanoparticles provides them better stability both in vitro 

and in vivo and addition of PEG further enhance their biological stability in circulation by protecting 

them from recognition by immune cells 378. The advantages of higher stability of polymer 

nanoparticles than liposomes can be harnessed to obtain better control over drug delivery. These 

developments are encouraging but still nanoparticle based formulation achieve <10% of delivery to 

target site in vivo 379. Once injected intravenously, proteins adsorb onto nanoparticles and form a 

protein corona on them, this leads to their recognition by immune cells mainly macrophages and 

rapidly get cleared 380. Since, reticulo-endothelial system has very high population of macrophages it 
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clears off injected flagged nanotherapeutics within minutes of injection 381. PEGylation can help in 

improving circulation life of nanoparticles to some extent, but it is not enough for clinical translation 

of NPs 382. Preclinical studies done with polymeric nanoparticles showed that ~95% of particles were 

eliminated from the circulation in <30 minutes after injection 383,384. To avoid rapid clearance of NPs 

from the circulation, new approaches which can make them less detectable by macrophages and RES 

can be highly beneficial for their clinical translation 385,386.  

Red blood cell (RBC) an old carrier with new role 

Erythrocytes or RBCs are natural carriers of oxygen and involved in oxygen transportation to various 

tissues and are key to sustain life. RBCs are biconcave discs of about 7 µm in diameter, have a 

surface area of about 160 µm2, and life span of 100-120 days 387. There are ~5x106 RBCs in 1 µl of 

blood and the total number of RBCs in a human being is ~30x1012, and thus are the most abundant 

cells in the blood 385. All these properties make them an ideal candidate to serve as a drug delivery 

platform.  The life cycle of a blood parasite known as Mycoplasma hemofelis, a parasite that attaches 

itself to RBC, shows that the organism circulates for several weeks, completely undetected by 

immune cells 384. This key observation paved the way for several investigations that were focused on 

the feasibility of attaching drugs or nanoparticles to RBCs and improve their circulation life. In early 

efforts, various agents like steroid, antibiotics, DNA, and proteins were encapsulated into RBC by 

hypotonic modification or electric insertion resulting in a loading efficiency of 10-70% of the agent 

388-390. Modification of RBC by osmotic swelling during hypotonic drug loading or electrical drug 

insertion caused unintentional changes in RBC namely cytoskeletal dysfunction (loss in stability and 

plasticity) and  damage to the membrane resulting in phosphotidylserine exposure (a signal of cell 

damage and attracts phagocytes like macrophages) 391,392. To improve drug delivery by RBCs, an 

alternate approach of coupling therapeutics on RBC surface has been immensely investigated in the 

last decade. RBC membrane has large surface area and provides opportunity to anchor multiple 

copies of therapeutics or proteins on them 385. Coupling of drugs to the surface of RBCs theoretically 
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avoids damages caused by osmotic or electrical encapsulation procedures and therefore achieves drug 

loading on RBCs without compromising their biocompatibility 385,393. Surface coupling greatly 

resolves diffusional issues of encapsulated drug inside cell, as drug coupled outside can interact easily 

to their substrate 394. In a preclinical study, rat RBCs were tagged with tissue plasminogen activator 

(tPA) ex vivo and reinfused and circulation kinetics of RBC-tPA was compared with free tPA. RBC 

coupled tPA remained in circulation for about 2 hours whereas free tPA was eliminated from 

circulation within a few minutes after injection 395. This study encouraged researchers to further 

explore ex vivo coupling procedure for nanoparticles. Polystyrene polymeric nanoparticles were 

adsorbed on the surface of harvested rat RBCs ex vivo and nanoparticle-RBC complexes were 

reinfused into the rats. 95% of the injected free polymeric nanoparticles were cleared from circulation 

within <30 minutes whereas 10% of the injected RBC coupled nanoparticles remained in circulation 

for 2 hours 384. In a similar study with mice, harvested RBCs were modified ex vivo by coupling 

polymeric nanoparticles on their surface. These modified RBC-nanoparticle complexes when 

reinfused in mice remained in circulation for about 24 hours 396. Ex vivo RBC manipulation 

procedures require availability of compatible blood donor, technical skills, and there is possibility of 

transferring blood-borne infection to the patients, thereby limiting smooth translation of this approach 

to clinics 385.  Nanoparticle based drug delivery system that can target anchor sites (e.g. glycophorin 

A receptors) present on RBC surface can allow safe and easy coupling of therapeutics on the 

circulating RBCs 397. Nanotherapeutics decorated with RBC targeting ligands (e.g. Ter119 antibody) 

may resolve the limitations of ex vivo RBC modification and greatly enhance the clinical translation 

of RBC based drug delivery. 
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Abbreviations 

ADCC            Antibody dependent cell mediated cytotoxicity 

APC               Antigen presenting cell 

CAD              Caspase activated DNAase 

CTL               Cytotoxic T lymphocyte 

DC                 Dendritic cell 

FUS               Focused ultrasound 

ICAD             Inhibitor of caspase activated DNAase 

ICAM            Intercellular adhesion molecule 

MAPK           Mitogen-activated protein kinase 

MHC              Major histocompatibility complex 

MDSC            Myeloid derived suppressor cells 

NK cell          Natural Killer cell 

TRAIL           TNF-related apoptosis-inducing ligand 

Th cell            Helper T cell 

Treg               Regulatory T cell 

STAT             Signal transducer and activator of transcription proteins 

VCAM           Vascular cell adhesion molecule 
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Table 1.1. Cytokines and granzymes in cancer immunity 

Cytokine/granzyme 
Signaling 

pathway/target 
Primary source Target cell 

IFN-γ JAK-STAT 

Activated CD4+ Th1 and 

CD8+ T cells, NK cells, 

NKT cells, APCs 

T cells, NK cells, 

macrophages 

IL-2 
STAT-5, Akt, and 

MAPK 

Antigen stimulated CD4+ 

and CD8+T cells, activated 

DCs and NK cells 

T cells 

IL-12 JAK-STAT 
Activated monocytes, 

macrophages, DCs 
T cells, NK cells 

TGF-β 
SMAD, JNK, and 

MAPK 
Macrophages, DCs, T cells 

T cells, NK cells, 

DCs 

Granzyme A 

Gasdermin B, 

mitochondrial electron 

transport chain 

CTLs, NK cells Cancer cell 

Granzyme B 
Caspase-3, -7, -8 

ICAD, Bid 
CTLs, NK cells Cancer cell 

Granzyme H 

Caspase-3, Bid, ICAD, 

mitochondrial 

depolarization 

 NK cells Cancer cell 

Granzyme K 

Bid, mitochondrial 

depolarization, 

nucleosome assembly 

protein SET 

CTLs, NK cells Cancer cell 

Granzyme M 

ICAD, poly (ADP-

ribosome) polymerase, 

cell cytoskeleton 

NK cells Cancer cell 

Granzyme F 
Mitochondrial and 

nuclear damage 

NK cells, lymphokine 

activated killer cells 
Cancer cell 
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Fig. 1.1. Summary of CD40-CD40L interactions between APCs and T cells and the resultant 

antitumor immunity. 
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CENTRAL HYPOTHESIS 

In-situ vaccination with CD40 agonist antibody (CD40) and local focused ultrasound (FUS) will 

improve anti-tumor immune response and immune checkpoint inhibitor (ICI) efficacy against 

advance stage melanoma 

Aim 1: Investigate the role of FUS+CD-40 (FUS40) in preservation of immune cell function, and 

anti-tumor immunity in murine melanoma 

• Evaluate the local and systemic anti-tumor effects of FUS40 

• Determine the role of FUS40 in the preservation of T-cell function 

• Assess the generation of melanoma-specific systemic immunity with FUS40 

 Aim 2: Determine the ability of FUS induced histotripsy (HT) with CD40 to improve checkpoint 

inhibitor therapy of advanced stage melanoma tumors 

• Determine the immune mechanisms of HT+CD40 (HT40) in melanoma tumors 

• Determine the role of HT40 priming in ICI therapy 

• Evaluate abscopal effect of HT40 ± ICI in murine melanoma 
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CHAPTER II 
 

 

 IN-SITU VACCINATION USING FOCUSED ULTRASOUND HEATING AND ANTI-

CD-40 AGONISTIC ANTIBODY ENHANCES T-CELL MEDIATED LOCAL AND 

ABSCOPAL EFFECTS IN MURINE MELANOMA 

Abstract 

The success of melanoma immunotherapy is dependent on the presence of activated and 

functional T-cells in tumors. The objective of this study was to investigate the impact of local-

focused ultrasound (FUS) heating (~42–45°C) and in-situ anti-CD-40 agonistic antibody in 

enhancing T-cell function for melanoma immunotherapy. We compared the following groups of 

mice with bilateral flank B16 F10 melanoma: 1) Control, 2) FUS, 3) CD-40, and 4) CD-40+FUS 

(FUS40). FUS heating was applied for ~15min in right flank tumor, and intratumoral injections of 

CD-40 were performed sequentially within 4h. A total of 3 FUS and 4 anti-CD-40 treatments 

were administered unilaterally 3 days apart. Mice were sacrificed 30 days post-inoculation, and 

the treated tumor and spleen tissues were profiled for T-cell function and macrophage 

polarization. Compared to all other groups, histology and flow cytometry showed that FUS40 

increased the population of tumor-specific CD-4+ and CD-8+ T cells rich in Granzyme B+, 

interleukin-2 (IL-2) and IFN-γ production and poor in PD-1 expression. In addition, FUS40 

promoted the infiltration of tumor-suppressing M1 phenotype macrophages in the treated mice. 

The resultant immune-enhancing effects of FUS40 suppressed B16 melanoma growth at the 

treated site by 2-3-folds compared to control, FUS, and CD-40, and also achieved significant 
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abscopal effects in untreated tumors relative to CD40 alone. Additionally, the local FUS40 

prevented adverse liver toxicities in the treated mice. Our study suggests that combined FUS and 

CD-40 can enhance T-cell and macrophage functions to aid effective melanoma immunotherapy. 
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Introduction 

Metastatic melanoma is a highly metastatic and often lethal cancer, and incidence rates continue 

to rise steadily 398. Most melanoma patients with metastatic disease are resistant to chemo- and 

radiotherapy and median survival rates are typically <4years. Immunotherapy using antibodies 

that block CTLA-4, PD-1, and PD-L1 to activate anti-tumor immunity has improved outcomes in 

a subset of patients 399,400. This is a highly promising strategy, and depending on the tumor 

microenvironment, expression of target proteins, and cancer types can generate a response rate of 

10-50% 401. Despite profound clinical benefits for some, a large proportion (>50%) of melanoma 

patients do not respond to the immunotherapy. This is attributed to a lack of a baseline T-cell 

infiltration, and presence of dysfunctional T-cells characterized by an enhancement of PD-1 

inhibitory functions and reduced Interleukin-2 (IL-2), Granzyme B and IFN-γ cytokine 

production 402. Thus, new approaches are needed to prevent immune cell dysfunctions and T-cell 

exhaustion for effective immunotherapy. Towards this goal, this study investigated the role of 

locally applied focused ultrasound (FUS) heating (~42–45°C) and in-situ (intratumoral) injection 

of anti-CD-40 agonistic antibody in augmenting T-cell and macrophage functions for local and 

systemic immunity against murine melanoma. In-situ vaccination compared to systemic therapies 

utilize all relevant antigens, whether tumor-associated or neoantigens to generate robust antitumor 

response, therebyl eliminating the need to identify and isolate the tumor antigens for adaptive 

immunity 403,404. 

 CD-40 is a member of the tumor necrosis factor receptor family and is highly expressed in 

antigen presenting cells (APCs) including macrophages, monocytes, dendritic cells, and B cells 

118,405. Under normal conditions, T-helper cells expressing CD-40 ligand (CD-40L, CD154) can 

interact with APCs via CD-40, resulting in enhanced antigen-presentation and release of 

proinflammatory cytokines 406-410. Some studies have also shown that the systemic administration 

of CD-40 agonists lowers the intratumoral PD-1 expression in T-cells, and aid the phenotypic 
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conversion of macrophages from M2 to M1  411-413. Currently, several clinical trials are 

investigating the role of anti-CD40 in various tumor types (NCT02376699, NCT03389802, 

NCT03123783, NCT03597282 NCT03165994, NCT02706353) 177,179. FUS-induced local heating 

and associated stress can modify the tumor cells and microenvironment, causing antigen release, 

expression of heat-shock proteins, upregulation of pro-phagocytic signals such as calreticulin 

(CRT), and overall stimulate tumor immunity. Unlike ionizing radiation, which damages 

collateral tissues and induces oncogenic proteins, FUS generates protein coagulation and non-

lethal thermal stress in less aggressively treated tumors 414,415. Although radiation combined CD40 

studies are starting to emerge 117,416, not much is currently known about how anti-CD40 

synergises with FUS heating. Here, murine melanoma treated locally with CD-40 and FUS were 

profiled for the polarization status of macrophages and T-cell phenotypes. Data suggest that the 

combined CD-40 and FUS can prevent T-cell dysfunction and exhaustion, and improve 

macrophage polarization dynamics, suggesting the value of the proposed combinatorial modality 

in melanoma immunotherapy. 

Materials  

B16F10 murine melanoma cells were provided by Dr. Mary Jo Turk at Geisel School of Medicine 

at Dartmouth (Hanover, NH). B16F10 cells were cultured in DMEM supplemented with 10% 

fetal bovine serum (FBS) and 1% streptomycin/penicillin. Anti-CD-40 agonist antibody (FGK45) 

was purchased from BioXCell (West Lebanon, NH, USA). Fluorochrome-conjugated monoclonal 

antibodies (mAbs) for flow cytometry were purchased from BioLegend (San Diego, CA) and are 

listed here: APC anti-CD-4 (GK1.5), PE anti-CD3 (145-2C11), BB515 anti-MHCII (2G9), APC-

Cy7 anti-IFN-γ (XMG1.2), APC-Cy7 anti-CD11c (1A8), FITC anti-CD-45.2 (104), PE anti-

Granzyme B (QA16A02), APC anti-CD206 (C068C2), PE anti-CD11b (M1/70), and Pe-Cy7 

anti-IL-2 (JES6-5H4) and anti-CD16/CD32 (Clone 93). Alexa Fluor 700 or Pe-Cy7 anti-CD-45 

(30-F11), BV480 anti-F4/80 (T45-2342), V500 anti-CD3 (500A2), BV786 anti-CD-4, APC-H7 

http://clinicaltrials.gov/show/NCT03389802
http://clinicaltrials.gov/show/NCT03123783
http://clinicaltrials.gov/show/NCT03597282
http://clinicaltrials.gov/show/NCT03165994
http://clinicaltrials.gov/show/NCT02706353
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anti-CD-8a (53-6.7), BV650 anti-IFN-γ (XMG1.2), and Alexa Fluor 488 anti-Foxp3 (MF23) 

were purchased from BD Biosciences (San Jose, CA2). 

Methods 

Mouse melanoma model generation and study design  

All animal-related procedures were approved and carried out under the guidelines of the 

Oklahoma State University Animal Care and Use Committee. We compared the following groups 

(n=6): 1) Control, 2) FUS, 3) CD-40, and 4) FUS+CD-40 (FUS40). 0.5 × 106 B16F10 cells in 50 

μL of PBS was injected subcutaneously (sc) in the right flank regions of C57/BL6 mice. 4 days 

later, the mice were injected with 0.125 × 106 cells in the left flank region by sc route. Mice 

tumor volumes were measured daily by serial caliper measurements using the formula (length × 

width2)/2, where length was the largest dimension and width was the smallest dimension 

perpendicular to the length. Unilateral treatment of the right flank tumor was initiated at a volume 

of 20-40 mm3. FUS heating (42-45⁰C) was applied for ~15min, and intratumoral injections of 

CD-40 antibody (50g/session) was performed sequentially within 4h after FUS heating (Fig. 

2.1). A total of 3 FUS and 3 anti-CD-40 treatments 3 days apart was performed. Additionally, on 

day 20 post inoculation, CD-40 alone was administered in the mice. Mice were sacrificed when 

the tumors reached >1cm in any dimension or 30 days post-inoculation. The right flank tumors 

and the spleen from the euthanized mice were excised, weighed, and processed for flow 

cytometry and histopathological studies. For flow cytometry, two-thirds of the harvested tumor 

was processed immediately. Specifically for flow studies, tumor samples (n=5/group) and spleen 

(n=4-5/group) were randomly selected and processed for immune cell profiling. For 

histopathological analysis, the remaining one-third of the tumor tissue was fixed in 10% neutral 

buffered formalin. Blood samples (n=6) were also collected by intracardiac route for biochemical 

analysis of liver function.  
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FUS set-up and treatment methodology 

All FUS tumor treatment was performed using an Alpinion transducer with a 1.5 MHz central 

frequency, 45 mm radius, and 64 mm aperture diameter with a central opening of 40 mm in 

diameter. For FUS exposure, the center of the tumor was aligned at a fixed focal depth for 

efficient coverage (voxel size: 5 x 5 x 12 mm), and the alpinion VIFU-2000 software was used to 

define target boundary and slice distance in x, y, and z directions for automatic rastering of the 

transducer for 15 min. As the tumor grew, the focal point was rastered to cover the entire tumor. 

FUS treatment parameters used were as follows: 5 Hz frequency, 50% duty cycle, and 6 W 

acoustic power. The combination of these parameters achieved a mean target temperature of 42–

45°C at the focus (measured by inserting a fiber optic temperature sensor; Qualitrol, Quebec, 

Canada) inside the tumor (Fig. 2.S3).  

Immunophenotyping of melanoma tumors with flow cytometry 

Single-cell suspensions obtained from the mechanical disruption of the tumors (n=5 mice/group) 

followed by enzymatic digestion with 200 U/mL collagenase IV (Life Technologies, NY, USA) 

were filtered through a 70-μm cell strainer (Corning Inc, Corning, NY). Cell suspensions were 

stained using the fixable viability stain 575V (BD Biosciences) according to the manufacturer’s 

instructions to exclude dead cells and anti-CD16/CD32 antibody to block FcγIII/II receptor-

mediated unspecific binding (93). The following panel of the indicated fluorochrome-conjugated 

anti-mouse antibodies were used to stain cells for 30 min in dark on ice:  CD-45+ (Tumor 

infiltrating leukocytes; TILs), CD3+, CD-4+ (CD-4+ T or helper Th cells), CD3+, CD-8+ (CD-

8+ T cells), CD11b+, F4/80+ (macrophages), CD11b+, F4/80+, MHCII high (MHCII high M1 

macrophages), and CD11b+, F4/80+ MHCII lo/neg, CD206+ (M2 macrophages). For detecting 

IL-2, IFN-γ, Granzyme-B, and Foxp3 positive Treg cells, cells were washed after surface marker 

staining, fixed and permeabilized with transcription factor buffer set (BD Biosciences, San Jose, 
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CA) and incubated with Pe-Cy7 anti-IL-2, BV650 or APC-Cy7 anti-IFN-γ, PE anti-Granzyme-B 

or Alexa Fluor 488 anti-Foxp3 antibody for 30 min in the dark on ice. Stained cells were run in an 

LSRII analyzer (BD Biosciences) within 24h. Compensations were performed with single-stained 

UltraComp eBeads or cells (Fig. 2.S5). Datasets were analyzed using FlowJo software v.10.2 

(Treestar Inc, Ashland, OR, USA). For all channels, positive and negative cells were gated on the 

basis of fluorescence minus one control. 

Characterization of the T-cell activity and melanoma-specific systemic immunity 

Single cell suspension of splenocytes (n=4-5) were stimulated ex-vivo with melanoma-specific 

differentiation antigen tyrosinase-related protein 2 (TRP-2) peptide for 10-12h to evaluate 

generation of TRP-2 melanoma antigen-specific immunity 417,418. Briefly, 1-2x106 splenocytes 

were incubated with 2.5 µg TRP-2 peptide for 10-12h in the presence of Brefeldin A 

(eBioscience, 1000X solution) at 37°C and 5% CO2. Treated cells were washed with PBS and 

stained with CD-45, CD3, CD-4, CD-8, IL-2 and IFN-γ antibodies for flow cytometry. The 

number of T-effector (Teff) responding to TRP-2 stimulation was calculated as CD-45+ CD3+ 

CD-4+ or CD-8+ T cells that were positive for IFN-γ or IL-2. Data were expressed as the 

percentage of the total splenocytes. 

Histopathological analysis of treated tumors 

The control, FUS, CD-40, and FUS/CD-40 tumor tissues (n=5) were fixed in 10% neutral 

buffered formalin, processed, and embedded in paraffin as previously described 419. 

Histopathological examination was made on sections (4 μm) stained with hematoxylin and eosin 

(HE). The tumor sections were screened qualitatively for immune infiltration  using an Olympus 

BX50 microscope with Olympus DP26 digital photography by a veterinary pathologist blinded to 

treatment groups. These findings were also validated by quantitative flow cytometry assessment 

of tumor infiltrating leukocytes in the tumor samples (n=5). 
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Hepatotoxicity assessment of serum samples from the treated mice 

Serum samples (n=6/group) from mice that reached study endpoints were analyzed by Dr. 

Charles Wiedmeyer from Comparative Clinical Pathology Services (Columbia, MO) for the liver 

function test. Specifically, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) 

and albumin to globulin ratio were evaluated to assess liver function.  

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 8.0 software (GraphPad Software Inc, 

La Jolla, CA, USA). Data are presented as mean ± SEM unless otherwise indicated. For analysis 

of 3 or more groups, a one-way ANOVA test was performed followed by Fisher’s LSD without 

multiple comparisons correction. Analysis of differences between 2 normally distributed test 

groups was performed using an unpaired t-test assuming unequal variance. P values less than 0.05 

were considered significant. 

Results 

FUS40 enhanced survival and delayed tumor growth rates in treated and untreated sites 

The treated and untreated flank tumor volumes in mice were monitored over 30 days post-

inoculation (pi). Both control and FUS treated tumors showed a progressive increase in the tumor 

volumes in the treated site and reached sacrifice end-points (>1cm in any dimension or >15% loss 

in the body weight) by day 21 pi. In contrast, CD-40 and FUS40 achieved significant growth 

delay at the treated site. That said, FUS40 most effective amongst all the treatment groups (~2-3-

fold> tumor supression compared to control, FUS, and CD-40; Fig. 2.2A). FUS40 also decreased 

tumor weight to a significantly greater extent by visual and statistical measures compared to all 

other groups (Fig. 2.2B & 2C). We next compared abscopal effects in the contralateral untreated 

site. As control and FUS mice reached sacrifice endpoint early in the trial, they were not included 
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for the enumeration of systemic immune-effects. Data showed that FUS40 induced superior 

suppression of untreated tumor volumes over 30 days compared to CD40 alone (Fig. 2.2D). 

Furthermore, two out of six FUS40 treated mice demonstrated systemic immunity against tumor 

challenge. In contrast, CD-40 treated mice demonstrated a 100% tumor take at the untreated side 

(Fig. 2.2E).  

FUS40 promoted the recruitment of tumor infiltrating leukocytes (TILs) and Granzyme B+ 

PD-1- CD-8+cells in treated tumors 

Analysis of tumor sections by H&E staining revealed prominent multifocal regions of coagulative 

necrosis in treated tumors compared to untreated control (Fig. 2.3A). FUS40-treated tumors 

exhibited significantly higher levels of perivascular infiltration of lymphocytes within the tumor 

mass and the presence of CD-45 expressing leukocyte in histology and flow cytometry among all 

the groups (Fig. 2.3A-C). To further characterize the functional status of the infiltrated immune 

cells, the CD8 T-cells were probed for Granzyme B+ and PD-1+ expression by flow cytometry. 

We found that FUS40 promoted an activated Granzyme B+ PD-1-CD-8+ T-cells phenotype and 

these were 2-fold higher than other groups (Fig. 2.3D). In contrast, the control, FUS, and CD-40 

tumors were primarily composed of PD-1+ Granzyme B- or non-activated PD-1- Granzyme B-

phenotypes, indicating that the functional status of CD-8+ was likely preserved by FUS40 

therapy. 

FUS40 enhanced the melanoma-specific production of IL-2 and IFN-γ from T-cells in the 

spleen  

Dysfunctional and exhausted T-cells are not efficient in producing cytokines such as IL-2, TNF-

α, and IFN-γ, or Granzyme B. Thus, to gain an understanding of the functional status of T-cells, 

the splenocytes were stimulated with the melanoma-specific TRP-2 peptide and assessed for the 
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production of IL-2 and IFN-γ. A 2-fold higher expression of the cytokines was noted in the CD-

4+ and CD-8+T cells for FUS40 compared to CD-40, FUS, and control treatments (Fig. 2.4A-C).  

FUS and CD-40 promoted the M1 macrophage phenotype in the tumors and spleen without 

significantly altering T-reg populations 

Tumor-associated macrophages (TAMs) are known to release cytokines and chemokines that 

generally suppress cytotoxic effects of CD-8+ T cell 420,421. These suppressive cells are often 

referred to as M2 macrophages or MDSC. One potential mechanism of immunotherapy is 

reducing the prevalence of immunosuppressive macrophages and increasing immunostimulatory 

macrophages  MHCII high expressing M1 phenotype cells can activate and restore T cell effector 

activity 422,423. We analyzed the tumors and spleen for M1 and M2 macrophage populations. 

FUS40 resulted in a ~1.3-2- fold enhancement of M1 phenotype compared to other groups in 

spleen and tumors (Fig. 2.5A-B). The increase in M1 phenotype did not accompany an increase 

of M2 macrophages in the tumor. Additionally, the M2 macrophage was significantly decreased 

(~2-2.5 fold) in the spleen with FUS40 compared to FUS and CD-40 alone (Fig. 2.5B). 

Furthermore, the population of Tregs that infiltrate tumors in response to chemokines secreted by 

TAMs was found to be unchanged between various treatments (supplementary data) 424.  

In-situ FUS40 treatment did not impair liver functions 

Systemic anti-CD-40 agonist administration is known to cause immune-mediated hepatotoxicity 

425. To assess whether intratumoral CD-40 impacted the liver functions, the ALT, AST, and 

albumin/globulin ratio in the treated mice sera were assessed. Both monotherapies (CD-40 or 

FUS) and combined FUS40 did not significantly alter the serum levels of liver enzymes and 

protein compared to untreated mice (Fig. 2.6).  
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Discussion 

The success of melanoma immunotherapy is highly dependent on the type of tumor 

microenvironment 426. The objective of this study was to test whether combined FUS40 can 

modify key immune-suppressive pathways and stimulate immune effector pathways in melanoma 

tumors to promote local and systemic immunity. FUS-induced local heating and stress are known 

to modify the tumor microenvironment to enhance vascular permeability and infiltration of 

immune cells 414,427-436. We hypothesized that FUS enhanced immune infiltration combined with 

intratumoral agonistic anti-CD-40 antibody would enrich the populations of functional T-cells 

and macrophages, allowing superior protection against metastatic disease.  

For evaluation of therapeutic and systemic immune effects, mice with bilateral tumors were 

exposed to FUS, CD-40 and combined FUS and CD-40 (FUS40) on the right flank tumor (Fig. 

2.1). Monotherapy with FUS failed to improve survival rates compared to control. In contrast, 

CD-40 and FUS40 prolonged survival and suppressed the tumor growth rates at the treated sites 

(Fig. 2A-C). Also, amongst all the groups, FUS40 was most potent at inducing tumor growth 

delay and abscopal effect at the untreated site compared to CD40 alone, highlighting that the 

nonablative FUS dose can synergize with in-situ immune therapies (Fig. 2.2D and supplementary 

data). To determine if the induction of abscopal effects was mediated by the infiltration of 

cytotoxic T-cells, the treated tumor and spleen tissues were characterized for the production of 

IL-2, IFN-γ, and Granzyme B and the surface expressions of PD-1 421,437. Production of cytokines 

such as IL-2 from CD-4+ and CD-8+ T cells regulate the differentiation of T cells to Th1 cells, 

induce perforin, granzyme B, and IFN-γ production, and prevent T-cell exhaustion 234,438. Results 

indicated that the splenocytes from the FUS and CD-40 treated mice that were stimulated with 

melanoma-specific TRP-2 antigen did not alter the IL-2 and IFN-γ productions from the CD4+ 

and CD8+T cells. In contrast, the FUS40 treated mice achieved a 2-3 fold higher production of 

the cytokines as well as the expansion of the T-cells. To gain further understanding of the 
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activation mechanisms, we next characterized the surface expression of PD-1 checkpoint protein 

and production of Granzyme B from the T-cells present in the treated tumor. Granzyme B is the 

key to T-cell tumor lysis 439.  However, a higher expression of PD-1 expression can reduce 

Granzyme B effect and drive T-cells to an exhausted stage 440. We found that FUS40 consistently 

increased the proportion of Granzyme B+ PD-1- CD-8+ T-cells in the treated tumors (Fig. 2.3) 

compared to the control, FUS and CD-40 treated mice. In contrast, CD-40, FUS, and control mice 

tumors showed the presence of more dysfunctional PD-1+ Granzyme B- and non-activated PD-1- 

Granzyme B T cells. Collectively, these data suggested that adding FUS heating prior to CD-40 

tumor treatments protected the T-cells from PD-1 mediated exhaustion, and expanded the 

population of activated and effector T cells populations rich in IL-2 and IFN-γ; features crucial 

for systemic immunity and abscopal effects. 

The presence of activated innate cells (e.g. macrophages) and Treg can also influence 

immunotherapy outcomes in patients 441-443. In particular, tumor-associated macrophages (TAMs) 

of M1 origin suppress T-cell exhaustion 444,445. In contrast, M2 macrophages suppress antigen 

presentation and adaptive immune responses 446. To dissect the TAM profiles, the M1 and M2 

populations in the tumor and spleen tissues were assessed. We noted a significant enhancement of 

macrophage population of MHCII high M1 phenotype for the FUS40 mice compared to FUS, 

CD-40, and untreated control. Also, a significant reduction in the population of CD206+ M2 

macrophages (~2-fold; Fig. 2.5) in the spleen tissues for FUS40 relative to other treatments was 

observed. Importantly, the increase of M1 macrophages in the FUS40 tumor was not associated 

with significant changes in the Treg populations (supplementary data). Tregs infiltrate tumors in 

response to chemokines secreted in the tumor microenvironments by TAMs (e.g., IL10, a 

cytokine produced by tumor macrophages) and can inhibit cancer cell cytotoxicity 447-449. Our 

data suggest that FUS40 induce the polarization of macrophages without altering the Tregs.  
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Finally, the systemic administration of anti-CD-40 can damage hepatocytes and impair liver 

function 425. A damaged liver is characterized by the release of ALT and AST enzymes from the 

hepatocytes and decreased albumin producing capacities. We tested if in-situ administration of 

anti-CD-40 antibody mitigates the adverse liver toxicity outcomes.  Data suggested that the serum 

ALT and AST, and albumin levels were not impacted by CD-40 or FUS, or with FUS40 relative 

to control (Fig. 2.6). Thus, the proposed in-situ CD-40 approaches modulated tumor immunity 

without triggering liver toxicities. 

Our study has some limitations. We didn’t investigate the FUS40 therapeutic effects in a second 

tumor model. We believe that investigating the local and abscopal effect in tumors that are 

relatively more immunogenic (e.g. colon) compared to melanoma with FUS40 can shed new 

lights on the merits of the proposed combinatorial approach for clinical translational. Notably, a 

recent study in murine Panc02 pancreatic model showed that local CD-40 and radiation (5 Gy) 

induced infiltrations of T-cells (~20-fold higher) and improved anti-tumor immunity compared to 

representative controls 117. Similarly, another study showed that anti-CD40 antibody and 5 Gy 

total body irradiation (TBI) increased T‐cell–mediated survival by 100 days in murine B-cell 

lymphoma416. Additionally, a recent phase 1 clinical trials with anti-CD-40 and anti-CTLA-4 

therapy in malignant melanoma caused the activation of cytotoxic immune cells and achieved an 

objective response rate of 27.3%179. These promising findings highlight the important role of anti-

CD40 in augmenting therapeutic outcomes in the combinatorial regimen, and a need to conduct 

additional studies in various tumor types with FUS. The second limitation is that we didn’t notice 

dramatic differences in tumor growth retardation between anti-CD40 alone and FUS40. We 

speculate that this is likely due to an insufficient CD40 treatment dosage/frequency or the release 

of tumor antigens with heating, and the development of adaptive resistance in tumors. Future 

studies with modulated anti-CD40 dosages, heating conditions, and combinations with other 

immunotherapies (e.g. checkpoints) can be performed to achieve superior outcomes. Finally, the 
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differences in the immune-activation mechanisms between FUS and tumor irradiation were not 

compared in our model system. Hypo-fractionated irradiation is known to induce immunogenic 

death of cancer cells. For example, local irradiation of B16gp melanoma tumors with a single 

dose of 10 Gy achieved significant retardation of tumor growth by increasing the infiltration of 

CD45+ leukocytes (2-2.5-folds),enhancement of specific cytotoxic CD8+ T cells, and 

macrophages 450. Although promising, the enhanced immune responses with radiation is often 

inconsistent, and contrastingly some studies also show an increase in the immunosuppressive 

TGFβ cytokine production, and impaired effector T-cell function451,452. Importantly, prior studies 

conducted in 3LL Lewis lung carcinoma heated to to 42–43 °C for 1h  achieved infiltration of DC 

and T cells in the tumor while also decreasing the regulatory T cells 453 and myeloid-derived 

suppressor cells (MDSC) 454. Similarly, B16 primary tumors heated to 43°C for 30 min activated 

the dendritic and CD8+ T cells in the tumor-draining lymph node (~1.35-fold) to result in local 

and systemic tumor growth inhibitions 455. Furthermore, local heating has been shown to release 

heat shock protein from cancer cells to enhance sensitization to chemo-, radio- and immune-

therapies456-458. These promising studies and our current data shows that FUS heating and CD40 

can play a crucial role in mitigating the inconsistent immune responses from radiation. 

In conclusion, our in vivo data show that FUS40 enhanced the proportion of IL-2, IFN-γ, and 

Granzyme B rich CD-4+ and CD-8+ T cells and population of M1 macrophages to suppress B16 

tumor growth at the treated and untreated site, more so than CD-40 or FUS treatment alone. 

Studies are currently underway to characterize the role of FUS parameters (hyperthermia vs 

ablative) and CD-40 treatment sequences to aid the development of a pharmacologic phase 1 

clinical trial. 
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Fig. 2.1. Experimental design to assess the efficacy of FUS and CD-40 combination against 

melanoma tumors. 0.5 × 106 B16F10 cells were injected subcutaneously (sc) in the right flank 

regions of C57/BL6 mice. 4 days later, the mice were injected with 0.125 × 106 cells in the left 

flank region by sc route. Unilateral treatment of the right flank tumor was initiated at a volume of 

20-40 mm3. FUS heating (42-45⁰C) was applied for ~15min, and intratumoral injection of anti-

CD-40 agonistic antibody (50 µg) was performed sequentially within 4h of FUS heating. Red 

arrows indicate the three treatments with FUS and CD-40. Green arrow indicates the fourth anti-

CD-40 dose. Mice were sacrificed when tumors reached >1cm in any dimension or reached 30 

days post-inoculation. The harvested treated tumor and spleen were analyzed for the population 

and type of immune cell. 

 

  



52 

 

Fig. 2.2. Local FUS therapy and in situ anti-CD-40 agonistic antibody suppressed the tumor 

growth of local and distant untreated site in B16F10 melanoma model. (A) Mean volumes of 

the treated tumors are shown till 30 days. Control and FUS reached sacrifice end points by day 

21. CD-40 and FUS40 significantly decreased tumor volumes compared to FUS and untreated 

tumors; (B) Tumor weights at the time of sacrifice showed a significant reduction in the overall 

weight for FUS40 compared to other groups. (C) Representative images of the treated tumor. (D) 

Mean volumes of the distant untreated tumors are shown till 30 days. (E) Number of mice that 

were tumor free at the distant untreated site. Results are shown as mean ± SEM. One-way 

ANOVA followed by Fisher’s LSD without multiple comparisons correction. * p < 0.05, ** 

p<0.01. 
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Fig. 2.3. FUS40 enhanced the recruitment of leukocytes and prevented T-cell dysfunction. 

(A)  Compared to other groups, FUS40-treated tumors exhibited relatively higher perivascular 

infiltration of lymphocytes (red box) within the tumor mass upon qualitative imaging by a 

veterinary pathologist blinded for the groups; n=5, Hematoxylin:Eosin stain, Bar = 50μm.  (B) 

Enlarged view of FUS40 tumor sections (red box) showing perivascular infiltration of 

lymphocytes (black arrows). Bar = 20μm. (C) Flow cytometry showed that the frequency of 

tumor infiltrating leukocytes in FUS40 tumors was significantly greater than the control tumors 

(p<0.04). (D) Percentage of Granzyme-B+ CD3+ CD8+ T cells was significantly higher for 

FUS40 (2-3-fold) compared to all other groups. FUS40 preserved activated CD8+ T cell from 

functional exhaustion by inhibiting PD-1 expression and enhancing Granzyme B production. For 

all channels, positive and negative cells were gated on the basis of fluorescence minus one 

control. Results are shown as mean ± SEM. * p < 0.05, Data were analyzed using a one-way 

ANOVA followed by Fisher’s LSD without multiple comparisons correction. 
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Fig. 2.4. FUS40 revived the production of effector cytokines from melanoma specific CD4+ 

and CD8+ T cells in spleen. B16F10 melanoma bearing mice treated sequentially with FUS and 

anti-CD-40 agonistic antibody were sacrificed and spleen was evaluated for TRP-2 specific 

immunity in an ex vivo stimulation assay. (A) Flow cytometry contour plots representing the 

gating strategy for CD4+ and CD8+ T cells producing IL-2 and IFN-γ. (B) IL-2 and IFN-γ 

secreting CD4+ T cells in splenocytes after ex vivo TRP-2 stimulation were significantly 

increased by the FUS40 compared to control. Differences were analyzed by an unpaired t test 

assuming unequal variance.  (C) The highest frequency of CD8+ T cells producing IL-2 and IFN-

γ was observed in FUS40. * p < 0.05, ** p < 0.01, one-way ANOVA followed by Fisher’s LSD 

without multiple comparisons correction.  
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Fig. 2.5. FUS40 promoted M1 macrophage polarization in the tumor and the spleen. (A) 

Frequency of M1 macrophages in the tumor was increased by 4-fold for FUS40 compared to FUS 

and control, whereas M2 macrophages in treated tumors remained unaltered compared to 

controls. CD11b+ F4/80+ MHCII high (M1 macrophages) and CD11b+ F4/80+ MHCII lo/neg 

CD206+ (M2 macrophages). (B) An increased percentage of M1 macrophages was observed in 

the spleens from CD-40 and FUS40 cohorts. FUS40 reduced the frequency of M2 macrophages 

in the spleen compared to other groups. Data are shown as mean ± SEM. Statistics were 

determined by ANOVA followed by Fisher’s LSD without multiple comparisons correction. * p 

< 0.05, ** p < 0.01. 
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Fig. 2.6. Local FUS40 and CD-40 therapy did not cause liver toxicity in B16F10 melanoma 

bearing mice. Levels of ALT, AST, and Albumin to Globulin ratio in the serum of mice were 

determined at the time of sacrifice 25-30 days post tumor inoculation. Data were analyzed by 

ANOVA followed by Fisher’s LSD without multiple comparisons correction (n=6).  

 

 

  



57 

 

Supplementary data 

 

Fig. 2.S1. (A) Tumor volumes at the primary treated site from different groups (n=6 per group). 

(B) Individual tumor growth curves at contralateral untreated tumor site.  

 

 

Fig. 2.S2. FUS40 therapy improved the functional cytotoxic Teff to Treg ratio in tumors. (A) 

Frequency of Foxp3+ CD3+ CD4+ Tregs was unaltered between the groups.  (B) FUS40 

exhibited higher Granzyme-B+ cytotoxic Teff cells to Tregs ratio than control. Data are shown as 
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mean ± SEM, * p < 0.05, ** p < 0.01, one-way ANOVA followed by Fisher’s LSD without 

multiple comparisons correction.  

 

.Fig. 2.S3. (A) FUS system for mice tumor treatment; (B) Tumor regions of the anesthetized mice 

were aligned with the therapeutic transducer; (C) Tumor temperature during FUS therapy was 

measured by inserting a fiber optic temperature sensor into the solid core (indicated by yellow 

arrows); (D) Mean tumor temperature (n=3) measured during FUS treatment. Data are expressed 

as mean ± SEM. 

 

Fig. 2.S4.  Mean initial treatment volumes in the treatment groups.   
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Fig. 2.S5. Flow cytometry contour plots showing the gating strategy for CD4+ and CD8+ T cells 

producing IL-2 and IFN-γ based on FMO controls. \ 
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CHAPTER III 
 

 

LOCAL IN-SITU HISTOTRIPSY AND CD40 STIMULATION IMPROVE THE 

CHECKPOINT BLOCKADE THERAPY OF MURINE MELANOMA   

Abstract 

Advanced stage cancers with a suppressive tumor microenvironment (TME) are often refractory 

to immune checkpoint inhibitor (ICI) therapy. Recent studies have shown that focused ultrasound 

(FUS) TME-modulation can synergize ICI therapy, but enhancing survival outcomes in poorly 

immunogenic tumors remains challenging. Here, we investigated the role of FUS histotripsy (HT) 

and in-situ anti-CD40 agonist antibody (HT+CD40: HT40) in ICI refractory murine melanoma. 

Unilateral and bilateral large (~330-400 mm3) and poorly immunogenic B16F10 melanoma 

tumors were established in the flank regions of mice. Tumors were exposed to single local HT 

followed by an in-situ administration of anti-CD40 agonistic antibody. Inflammatory signatures 

post treatment were assessed using pan-cancer immune profiling and flow cytometry. The ability 

of HT40  ICI to enhance local and systemic effects was determined by immunological 

characterization of the harvested tissues, and by tumor growth delay of local and distant untreated 

tumors 4-6 weeks post treatment. Immune profiling revealed that HT40 upregulated a variety of 

inflammatory markers in the tumors. Immunologically, HT40 treated tumors showed an increased 

population of granzyme B+ expressing functional CD8+ T cells (~4-fold) as well as an increased 

M1 to M2 macrophage ratio (~2–3-fold) and CD8+ T: regulatory T cell ratio (~5-fold) compared 

to the untreated control. Systemically, the proliferation rates of the melanoma-specific memory T 
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cell population were significantly enhanced by HT40 treatment. Finally, the combination of HT40 

and ICI therapy (anti-CTLA-4 and anti-PD-L1) caused superior inhibition of distant untreated 

tumors, and prolonged survival rates compared to the control. Data suggest that HT40 reprograms 

immunologically cold tumors and sensitizes them to ICI therapy. This approach may be clinically 

useful for treating advanced stage melanoma cancers. 
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Introduction 

Immune Immune checkpoint inhibitors (ICIs) targeting CTLA-4, PD-1, and PD-L1 proteins have 

revolutionized the treatment of melanoma and other tumor types in patients 38,459-461. Although 

promising, the immunosuppressive tumor microenvironment (TME) can influence ICI outcomes 

in a large proportion of treated patients 462-467.  This occurs due to masking of tumor antigens and 

proliferation of suppressive immune cells (e.g., regulatory T cells and M2 macrophages), which 

directly influence the functions of cytotoxic T cells 468-472. Thus, there is a critical need to develop 

novel means for efficient activation of innate and adaptive immunity in the TME for superior ICI 

outcomes 62,473-476. Herein, we evaluated the role of anti-CD40 agonistic antibody combined with 

focused ultrasound (FUS)-induced local histotripsy (HT) in TME activation and ICI therapy of 

melanoma tumors.  

Focused ultrasound (FUS) is a non-invasive treatment modality that utilizes sonic energy to treat 

at an unlimited depth from the body surface. We and others have shown that FUS thermal therapy 

has an immunomodulatory effect in melanoma tumors 477-479. Recently, mechanical FUS was also 

shown to cause immune-modulations 99. In particular FUS induced mechanical tissue 

fractionation (aka histotripsy or HT) achieved with microsecond-length ultrasound pulses was 

shown to be particularly efficient in enhancement of tumor inflammation 99,480-482, and anti-tumor 

immune effects 483,484. HT generates negligible heat, and thereby protects the tumor antigens from 

denaturation, which enhances immune cell infiltration by chemotaxis 485,486. The activation of 

infiltrated antigen-presenting cells (APCs) and their subsequent migration to lymphoid tissues 

improve tumor antigen presentation to naïve T cells, thus causing antigen-specific tumor 

destruction 99,108,487.  

Although the feasibility of HT in murine models has increasingly been reported 488, its ability to 

reprogram advanced stage poorly immunogenic tumors (e.g., B16F10) that lack major 

histocompatibility complex (MHC) and co-stimulatory molecules is not known. In general, 
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“immunologically cold” tumors such as B16F10 exhibit minimal APC functions, failure to 

accumulate cytotoxic infiltrating lymphocytes, dominant expression of PDL1 on tumor cells, and 

poor response to ICIs in advanced stages, thereby evading antitumor immunity 489,490. To 

overcome this barrier, we combined HT with an in situ anti-CD40 agonist antibody. Agonist anti-

CD40 antibody attaches to the CD40 receptor on APCs, enhancing CD40 signaling as well as 

expression of CD80, IL-12, and CCR7. These cause efficient APC activity and T cell-based 

cytotoxic responses 28,491-493. Based on this premise, we posited that anti-CD40 agonist antibody 

will prevent B16F10 tumors from undergoing anergy or exhaustion and resistance to ICI. To 

investigate our hypothesis, we established late stage ICI refractory B16F10 melanoma and 

assessed the gene signatures involved in APC infiltration and T cell homing. Additionally, we 

assessed the types of immune cells in the treated and systemic organs. Our data suggested that 

HT40 sensitized poorly immunogenic B16F10 melanoma to ICI therapy and improved the 

survival outcomes in melanoma bearing mice. 

Materials  

B16F10 murine melanoma cells were provided by Dr. Mary Jo Turk at the Geisel School of 

Medicine at Dartmouth College (Hanover, NH, USA). They were cultured in DMEM 

supplemented with 10% fetal bovine serum and 1% streptomycin/penicillin. Agonist anti-CD40 

antibody (FGK45), anti-PDL-1 antibody (10F.9G2), and anti-CTLA-4 antibody (9H10) were 

purchased from BioXCell (West Lebanon, NH, USA). Fluorochrome-conjugated monoclonal 

antibodies (mAbs) purchased from BioLegend (San Diego, CA, USA) and BD Biosciences (San 

Jose, CA, USA) for flow cytometry were as follows: FITC, APC-Cy7 or PE-Cy7 anti-CD45.2 

(104 and 30-F11), APC-Cy7 anti-CD11c (1A8), APC or BV786 anti-CD4 (GK1.5 and RM4-5), 

PE, PERCP, or BV510 anti-CD3 (145-2C11), BB515 anti-MHCII (2G9), PE anti-Granzyme B 

(QA16A02), APC anti-CD206 (C068C2),  AF700 anti-IFN-γ (XMG1.2), BB700 anti-CD11b 

(M1/70), PE-Cy7 anti-IL-2 (JES6-5H4), APC anti-CD44 (IM7), AF488 anti-CD62L (MEL-14), 

BV711 anti-F4/80 (T45-2342), PE-Cy7 anti-CD8a (53-6.7), and Alexa Fluor 488 anti-Foxp3 
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(MF23). Quick-RNA Miniprep Kits were purchased from Zymo Research (Tustin, CA, USA). 

The nCounter PanCancer Immune Profiling Panel was purchased from NanoString Technologies, 

Inc. (Seattle, WA). 

Methods 

Mouse melanoma study design and ICI treatments 

All the animal related procedures were approved by the Oklahoma State University Animal Care 

and Use Committee. For tumor inoculation, B16F10 cells at 80– 90% confluency were harvested, 

washed, and diluted with sterile cold PBS. Male C57/BL-6 mice (n=5/group, 6-8 weeks old), 

were subcutaneously implanted with 0.5 × 106 cells (50L) in the right flank for flow cytometry 

and gene expression assessment. To measure the abscopal effect and survival, mice (n=5) were 

injected subcutaneously in the right flank on day 0 with 0.5 × 106 cells and in the left flank on day 

4 with 0.125 × 106 cells 477,494. Tumor volume of mice was measured every day using a serial 

caliper (General Tools Fraction™, New York, NY, USA); volumes were calculated using the 

formula (length × width2)/2, where length was the largest dimension and width was the smallest 

dimension perpendicular to the length. Treatments were initiated once the mice tumor volumes 

reached 330–400 mm3. We compared the following groups: 1) Untreated Control, 2) HT, 3) 

CD40, and 4) HT40, each with and without the combination of anti-CTLA-4 and anti-PDL-1. HT 

treatment of tumors covered 40–50% of the tumor volume. For group 4, anti-CD40 agonist 

antibody at a dose of 50 µg was injected by intratumoral injection within 2 h of HT. Anti-CTLA-

4 (100 µg/dose) and anti-PD-1(200 µg/dose) were injected intraperitoneally following HT, CD40, 

or HT40 treatment, and two subsequent ICI dose were given every third day. Mice were 

sacrificed for survival studies when the tumors reached ~2 cm in any dimension. For pan-cancer 

immune profiling and flow cytometry, mice tumors (n=3-5) and spleens (n=3-5) from surviving 

mice were harvested 1wk post treatment. For flow cytometry, harvested tissues were processed 



65 

on the same day. For gene expression analysis, tumor tissues were snap-frozen in liquid nitrogen 

and stored at −80 °C until further use.  

HT set-up and tumor exposures 

We utilized the Alpinion FUS transducer with a 1.5 MHz central frequency, 45 mm radius, and 

64 mm aperture diameter with a central opening of 40 mm in diameter for HT exposures. For 

ultrasound exposure, the tumor was aligned at a fixed focal depth to cover voxel size of 1 x 1 x 10 

mm. VIFU-2000 software was used to define the target boundary and slice distance in x, y, and z 

directions for automatic rastering of the transducer during treatment. The focal points were 

rastered to cover 40-50 % of the tumor. HT parameters were used in the boiling ranges (1 Hz 

PRF, 1 % duty cycle, 450 W acoustic power) and were adapted from prior publications that used 

a similar device 488,495.  Each focal spot was treated for 10 sec. Mice were given sub-cutaneous 

injections of buprenorphine (0.1 mg/kg) for 3 days post HT treatment. 

Histopathological analysis  

Prior to survival and immunological studies, HT was confirmed by histopathology. HT exposed 

tumor tissues (n=3) were fixed in 10% neutral buffered formalin, processed, and embedded in 

paraffin as previously described 419. Histopathological examination was made on sections (4 μm) 

stained with hematoxylin and eosin (H&E). The tumor sections were analyzed by a veterinary 

pathologist. 

Pan-cancer immune profiling of tumors 

Total RNA extracted from snap-frozen tumors (n = 3/treatment group) using the Quick-RNA 

Miniprep Kit (Zymo Research) was profiled using the nCounter® PanCancer Immune Profiling 

Panel (NanoString Technologies, Inc., Seattle, WA, USA). This panel contains 770 genes 

involved in the cancer immune response. Gene expression profiling was performed using the 

following steps: (i) Hybridization: 25 ng of total RNA were hybridized with the mouse 
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PanCancer immune profiling code set having 770 unique pairs of 35–50 base pair biotin-labeled 

capture probes and reporter probes with internal reference controls. Hybridization was performed 

overnight at 65 °C. (ii) Washing: Excess probes were removed with magnetic bead purification on 

the nCounter® Prep Station (software v4.0.11.2). Unbound probes were washed away, the 

tripartite structure was bound to the streptavidin-coated cartridge by the biotin capture probe, 

aligned by an electric current (negative to positive), and immobilized. Degradation of fluorophore 

and photobleaching were prevented by adding SlowFade. Read counts from the raw data output 

were assessed for differential gene expression and cell type scoring after normalization using 

NanoString nSolver (version 3.0) 496. Briefly, Log2 counts were represented as z-scores in heat 

map to indicate alterations in gene expression and immune cell profile for each sample. 

Additionally, the relative differences in gene signatures between treated and control tumors were 

represented as volcano plots (log2 fold change vs log10 P-value). 

Immune profiling of melanoma tumors by flow cytometry 

Tumors were mechanically disrupted and digested with 200 U/mL collagenase IV (Life 

Technologies, NY, USA) followed by filtration through a 70 μm cell strainer (Corning Inc., 

Corning, NY, USA) to obtain a single cell suspension. Fixable Viability Stain 575V (BD 

Biosciences) was used to stain cell suspensions to exclude dead cells from analysis as per the 

manufacturer’s instructions. To block FcγIII/II receptor-mediated unspecific binding, anti-

CD16/CD32 antibody was used. Cells were stained with indicated anti-mouse fluorochrome-

conjugated antibody combinations for 30 min on ice in the dark using the following panel:  

CD45+ (tumor infiltrating leukocytes; TILs), CD11b+, F4/80+ (macrophages), CD11b+, F4/80+, 

MHCIIhi (M1 macrophages), CD11b+, F4/80+ MHCII lo/neg, CD206+ (M2 macrophages), 

CD11b+ CD11c+, F4/80−, MHCII+ (dendritic cells), CD3+, CD4+ (CD4+ T or helper Th cells), 

CD3+, CD4+, CD44hi CD62lo (CD4+ T effector/memory cells), and CD3+, CD8+ (CD8+ T 

cells). To detect IFN-γ, IL-2, Granzyme-B, and Foxp3 positive T cells, cells were washed after 
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surface marker staining, fixed and permeabilized with a transcription factor buffer set (BD 

Biosciences), and incubated with Pe-Cy7 anti-IL-2, BV650 or APC-Cy7 anti-IFN-γ, PE anti-

Granzyme-B, or Alexa Fluor 488 anti-Foxp3 antibody for 30 min in the dark on ice. Stained cells 

were run in an LSRII flow cytometer (BD Biosciences) within 24 h. Compensations were 

performed with single-stained UltraComp eBeads or cells. FlowJo software v.10.2 (Treestar Inc., 

Ashland, OR, USA) was used for data analysis. For all channels, positive and negative cells were 

gated based on a fluorescence minus one control. 

Evaluation of the melanoma-specific systemic T cell response 

Single cell suspension of splenocytes were stimulated ex-vivo with the melanoma-specific 

differentiation antigen tyrosinase-related protein 2 (TRP-2) peptide for 8 h to determine 

generation of TRP-2 melanoma antigen specific immunity in mice 417,418. Briefly, 1–2 x 106 

splenocytes were incubated at 37°C and 5% CO2 with 2.5 µg of TRP-2 peptide for 8 h in the 

presence of Brefeldin A (eBioscience, San Diego, CA; 1000X solution). Treated cells were 

washed with PBS and stained with CD45, CD3, CD4, CD8, IFN-γ and IL-2 antibodies for flow 

cytometry analysis. The number of T effector cells responding to TRP-2 stimulation was 

calculated as CD45+ CD3+ CD4+ or CD8+ T cells that were positive for IFN-γ or IL-2, and 

results were expressed as percentage of total splenocytes. 

Tumor regression and survival rate evaluations in murine melanoma 

Tumor regression in the treated and untreated sites were determined by computing the difference 

in the tumor volumes for the various groups relative to untreated control. For survival studies, 

tumor bearing mice were followed for 40 days post inoculations, and the median survival for each 

treatment group was assessed by the Kaplan-Meier survival curve. 

Statistical analyses 
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Statistical analyses were performed using GraphPad Prism 8.4.2 software (GraphPad Software 

Inc, La Jolla, CA, USA). The differences between the treatments compared to the untreated 

control were analyzed by multiple t-tests without multiple comparisons correction. The 

nanostring data were represented as mean of log2 fold change relative to control. All other data 

were presented as mean ± standard error of the mean (SEM) unless otherwise indicated. For 

analysis of three or more groups, one-way analysis of variance was performed followed by 

Tukey’s multiple comparison tests. The overall P value for Kaplan-Meier analysis was calculated 

using the log-rank test. Analysis of differences between two normally distributed test groups was 

performed using an unpaired t-test assuming unequal variance and multiple t-tests. P < 0.05 was 

considered to be statistically significant.  

Results 

Local HT achieved precise fractionation of the treated regions 

H&E showed that HT created a core of fractionated tumor tissue covering 40-50% of the total 

volume and this was surrounded by intact tumor tissue (Fig. 2A). There was a clear transition 

zone between the HT-treated and non-treated tumor regions such that viable tumor tissue was 

negligible in the area treated with HT. These were also verified by real-time US imaging during 

HT treatment in those regions, whereby hyperechoic regions during each pulse at the focal point 

followed by hypoechoic contrast at the end of the pulse was noted (Fig. 2 B-D).  

HT40 induced inflammation and checkpoint expression in established melanoma 

HT40 was performed in established B16F10 melanoma tumors (Fig. 3A). Screening of immune 

related genes in the tumor microenvironment using nanostring technique suggested an increased 

expression of inflammatory genes associated with phagocytosis, cell adhesion, cytokine, and 

antigen processing and presentation for HT, CD40 and HT40 compared to the control, but this 

profile was most significant and dominant in HT40-treated tumors (Supplementary Fig. S1). HT 
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alone increased immune infiltration markers (1.26 log2 fold for ICAM-2 and 0.71 log2 fold for 

VCAM-1), and APC chemo attractants (CCL8: ~2.6- and CSF1R: ~1.78-log2 fold) compared to 

control (Fig. 3B; also see Fig. S2 volcano plots for quantitative changes in gene expression). 

CD40 and HT40 upregulated the expressions of the genes associated with CD45, T cells, and NK 

cell activations (Fig. 3C). Also, HT40 tumors enhanced dendritic, Th1, CD8+ T, cytotoxic, and 

NK CD56 dim cell markers. For example, HT40 increased the CXCL9 (~4.23 log2 fold), TLR-8 

and TLR-9 (~2 log2 fold), and ~ IL12-α and STAT1 (~1 log2 fold) (Fig. 3C). Further, it 

upregulated the T cell activation genes (IFNβ1, IFNL2, granzyme α, granzyme β, IL1b, IL2, 

ICOSL, ICOS, TBET, CD69, CD44, CD160, and 4-1BB) and downregulated TGFβ2 (Fig. 4A). 

Consistent with T cell activation, the checkpoint marker genes (CTLA4, PDL1, PD1, TIM3, and 

LAG3) were enhanced with CD40 and HT40 treatment (Fig. 4B). In particular, immune 

activation markers such as TIGIT, IDO1, STAT1, and EOMES were significantly expressed in 

HT40-treated tumors relative to controls (Fig. 4B). Finally, to test, whether the gene expression 

results correlated with flow cytometry findings, we isolated the CD45+ and CD45- cells 

harvested from the tumors and assessed the PDL1 expressions. A 1.3–1.5-fold enhanced 

expression of PDL1 in TILs for CD40 and HT40 treated tumors were noted, demonstrating strong 

associations between assays (Fig. 4C).  

Local treatment suppressed tumor progression and enhanced melanoma immunogenicity 

HT treatment alone slightly inhibited the tumor growth rate 1-wk post treatment, but its 

combination with anti-CD40 antibody reduced tumor growth by > 70% compared to the control. 

This reduction was 30-50% greater than that of respective monotherapies (Fig. 5A). The 

reduction in tumor volumes accompanied a significant reduction in tumor weights for the HT40 

cohort compared to the other groups (Fig. 5B). Local and systemic evaluation of the immune 

responses of harvested tumors revealed an increase (~1.2-2-fold) in the populations of CD45+ 

TILs and CD3+ T cells in the HT-treated group compared to the untreated control. The TIL 
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increase was not accompanied by a significant increase in CD8+ subtypes in HT-treated tumors. 

In contrast, HT40 enhanced the CD3+ CD8+ T cell population by 2–3-fold relative to HT post 

treatment (Fig. 5C-E). The populations of effector CD8+ T cells exhibited an increased level of 

IFN-γ and granzyme B expression, suggesting an activated cytotoxic phenotype (Fig. 6A and B). 

We also found that the T cell activation was not accompanied by a concurrent increase in the 

Foxp3+ CD4+ Tregs. Overall, we found a 2.5 to 5-fold increase in the granzyme B+ CD8+ T cell 

to Treg ratio in CD40 and HT40-treated tumors compared to the untreated control, which reflects 

enhanced mobilization of cytotoxic cells in the treated tumor (Fig. 6C). 

HT40 promoted melanoma specific immunological memory 

A significant increase in CD44+ CD62lo CD4+ T cells, which represent the CD4+ effector-

memory T cell population, was observed for the HT- and HT40-treated tumors (1.5–2-fold). 

Additionally, an increased population of M1 macrophages along with a concurrent decrease of 

M2 macrophages was noted for HT40-treated tumors.  CD40 alone did not increase CD4+ 

effector cells, but it did enhance the populations of M1 macrophages, which suggests APC 

activation (Fig. 7A-C). HT, CD40, and HT40 also increased M1 macrophages and reduced the 

M2 phenotype in the spleen tissues, with HT40 having the greatest effect (Fig. 7D and E). To 

assess antigen specificity, splenocytes stimulated ex vivo with TRP-2 were assessed for IL2 

production. A significant (1.3–1.7-fold) increase in TRP-2 specific IL2+ CD4+ T cells in the 

spleen of HT40-treated mice compared to the control was noted, and this number was relatively 

higher compared to that of the other therapies (Fig. 7F). Thus, we posited that the HT40 induced a 

potent melanoma memory response. 

HT40 therapy sensitized melanoma tumors to checkpoint blockade 

For assessing ICI effect in a bilateral melanoma model, HT40 treatment of the right flank tumor 

was followed by intraperitoneal injection of ICI (n=5, Fig. 8A). ICI by themselves were 
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ineffective in inducing tumor growth suppression and survival rates compared to the control, 

suggesting that B16F10 melanoma was refractory to the checkpoint blockade therapy in the 

selected size-range (Fig. 8B and Fig. 9). Also, HT or CD40 alone did not enhance checkpoint 

blockade efficacy compared to ICI alone (Fig. 9). In contrast, HT40 significantly reduced tumor 

rates compared to HT or CD40 alone. Additionally, when primed with HT40, ICI therapy was 

most effective in delaying tumor growth rates, and in enhancing survival responses compared to 

all other combination treatments (Fig. 8B and Fig.9). We next probed whether the enhanced 

survival with HT40+ICI was because of superior anti-tumor effects. We found that 40% (2 out 5) 

of HT40+ICI mice showed abscopal tumor suppression and survived the entire treatment period 

(40 days, Fig. 8B&9). In contrast, other treatments were relatively less effective, and mice 

reached the sacrifice end points before the end of study. 

Discussion  

The objective of this study was to understand the ability of HT40 to reprogram the 

immunologically cold melanoma tumor such that it becomes more receptive to ICI therapy. HT 

has been utilized to debulk tumor tissue, release damage associated molecular patterns (DAMPs), 

and improve immune sensitization in various tumor models 98,99,482,486.  We and others have also 

shown that local anti-CD40 agonistic antibody therapy activates APCs and improves the 

functional status of TILs 117,477,497. This is likely via enhanced antigen presentation by APCs 

through improved CD40L binding with CD40 receptor on APCs, and by the upregulation of 

costimulatory molecules such as MHC class II, CD80, CD86, and CD58 on the cell membrane 

125. However, whether the combination of HT and anti-CD40 antibody can be effective in anti-

tumor immunity induction in immunologically cold tumors was not known prior to this study.  

To investigate the potential of the HT and CD40 combination, we utilized an ICI refractory and 

poorly immunogenic B16F10 model. B16F10 tumors downregulates the MHC class I and co-
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stimulatory molecules such as CD80, CD86, OX40L, GITRL, CD40, CD137L, and exhibit low 

levels of IL2 and IFN-γ levels in the tumors 489. Its self-antigen (TRP-2) also shows poor affinity 

to T cell receptors, thereby making it an excellent poorly immunogenic model for immunotherapy 

studies 498,499. High intensity, low duty cycle, and short ultrasound HT pulses were used to 

fractionate ~40–50% of the tumor mass (Fig. 2A&B). Pan-cancer immune profiling suggested 

that the selected HT parameters elevated the expression of chemo-attractants (CCL8 and CSF1R) 

and cell adhesion molecules (ICAM and VCAM). These markers are essential for cell-cell 

interaction and leukocyte migration into tumors (Fig. 3) 500-502. HT treatment also lowered the 

immunosuppressive cytokine TGFβ2 in tumors, and the addition of CD40 caused upregulation of 

several immune-activation markers, including CXCL9. Chemokines such as CCL3-5, CCL8, 

CCL11-12, CXCL9 and CXCL10 produced from mature APCs play a crucial role in recruiting 

CD8+ T cells, CD4+ helper T cells, and natural killer cells into TME 501,503. CXCL9 also 

positions tumor infiltrating T cells in APC rich regions to remove T cell anergy 504. CXCL9 is 

constitutively produced from myeloid cells following stimulation of IFN secreting T cells 504,505. 

IFN-γ can induce additional production of this chemokines via STAT1 signaling to enhance 

CD8+ T cells recruitment into tumors 506-508.  Our tumor immune analysis suggested that HT40 

treatment induced an influx of CD8+ IFN-γ expressing T cells (Fig.5&6), indicating a CXCL9 

mediated amplification of cytotoxic T cell-based antitumor immunity 509,510. In addition, increased 

accumulation of M1 macrophages and granzyme B+ activated CD8+ T cells without alteration of 

Tregs was noted in tumors treated with HT40 (Fig.7). Also, the population of TRP-2 specific 

CD4+ T cells and CD44hi CD62lo CD4+ T cells that help with the memory T cell response was 

enhanced. Surprisingly, HT also increased PD-L1, CTLA4, and other immune checkpoints within 

the tumor microenvironment (Fig. 3). These phenotypic alterations are typically an adaptive 

mechanism to suppress T cell function 511. However, enhanced expression of checkpoint proteins 

can also be a positive prognostic marker of ICI outcomes in melanoma patients 512-514. To 

investigate whether this was true in our model system, ICIs were added to the HT40 regimen, and 
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this resulted in improved efficacy and mice survival rates (Fig. 8 and 9). Thus, we believe that 

HT40 may have significant clinical value, especially when combined with ICIs or other immune 

activators such as TLR and chemokine/cytokine agonists. 

Our study had some limitations. First, HT40 therapy improved survival but did not eliminate the 

melanoma. We do not know the reasons for this outcome, but the response of melanoma to HT40 

may depend on the degree of mechanical damage, dosing, sequence, and schedule of the HT and 

CD40 therapies. Studies are currently underway to further investigate these mechanisms. These 

include first enhancing CD40 stimulation in smaller tumors, followed by HT40 treatment of 

larger tumors to provide sufficient priming. Alternatively, combining other FUS parameters (e.g., 

mild hyperthermia + HT) with CD40 stimulation might be more insightful. Second, although the 

addition of HT40 to ICI improved the response of refractory melanoma,  local recurrence and 

emergence of  distant metastasis may still be possible 515. Future re-challenge studies and 

histopathological evaluations of lung tissues may shed more light on such mechanisms. Third, 

only a single B16F10 model was investigated. Future studies employing multiple models would 

elucidate the differences in clinical efficacies of various therapies. Lastly, mechanical 

fractionation of tumors using HT can induce metastasis. This aspect was not studied, although 

recent studies from other groups suggest that it is highly unlikely 482,484. 

In summary, HT40 therapy augmented innate and adaptive immunity in the B16F10 model. An 

inflamed TME with an active interaction of CXCL9-cytotoxic T cell axis was the likely 

mechanism responsible for sensitization to ICI and improved survival rates of mice. Combining 

HT40 with ICIs may enhance outcomes in advanced stage cancer patients.  
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Fig. 3.1. Schematic representation of HT40 induced reprogramming B16F10 tumor 

microenvironment and subsequent sensitization of the tumors to ICIs therapy. 

 

 



75 

 

Fig. 3.2. Local HT achieved precise melanoma fractionation. (A) The H&E stained tumor 

sections showing sharp transition zone (black arrows) between histotripsy treated and non-treated 

tumor region (n=3). Left image: 20x, scale bar 200μm; Right image: 40x, scale bar 100μm. (B-D) 

Ultrasound images collected during HT therapy of melanoma tumors. (B) Pre-treatment image. 

(C) Hyperechoic regions during each pulse (indicated by the red circle). (D) Hypoechoic contrast 

at the end of the pulse that was visible adjacent to the focal point (indicated by red arrow). 
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Fig. 3.3.  HT40 therapy increased pro-inflammatory immune markers in tumors. (A) 

C57BL/6J mice were implanted subcutaneously in the right flank with 0.5 million B16F10 cells 

and treated once with HT, CD40 or HT40 (n=4-5 per group). Tumors were harvested 7 days post 

treatments. Total RNA (n = 3/group) was isolated, and immune profiling was performed using the 

NanoString PanCancer Immune panel. (B) Gene markers of cell adhesion molecules, chemokines, 

innate sensors, and activation status of APCs was higher for HT40 tumors relative to the 

corresponding controls. (C) Total tumor infiltrating leucocytes, dendritic cells, Th1 cells, 

cytotoxic cells and activated NK cell expression markers were significantly higher with HT40 

therapy compared to the control, CD40, an HT40 tumors. Statistical analysis was performed using 

multiple t-tests without correction for multiple comparisons. p < 0.05 is considered significant. 
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Fig. 3.4. HT40 and CD40 therapy enhanced T-cell activation and checkpoint expressions in 

the melanoma tumors. (A) Enhanced expression of T-cell activation genes in the treated tumors 

compared to the control. (B) The checkpoint marker genes (e.g. CTLA4, PDL1, PD1, TIM3, and 

LAG3) were enhanced with CD40 and HT40 treatment. (C) PD-L1+ CD45+ (tumor infiltrating 

leukocytes; TILs) and PD-L1+ CD45- (tumor cells) cells assessed using flow cytometry (n=3-5). 

Gene expression statistical analysis was performed using multiple t-tests without correction for 

multiple comparisons. For flow cytometry, data were presented as mean ± SEM and the statistical 

differences between groups were measured by ANOVA followed by Tukey’s multiple 

comparisons. * p < 0.05, ** p < 0.01. 
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Fig. 3.5. Local HT40 suppressed tumor progression and improved the infiltration of T 

lymphocytes. (A) Mean volumes of the treated tumors plotted till 21 days post tumor inoculation. 

HT40 induced significant growth inhibitions compared to the respective controls. (B)  

Tumor weights at the time of harvest. HT40 mice showed significant reductions in mean weight 

compared to other groups. (C) HT, CD40, and HT40 enhanced the populations of tumor infiltrating 
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leucocytes (TILs) compared to control in the harvested tumors of surviving mice. Overall, HT40 

demonstrated the highest infiltration rates compared to the other groups. (D) HT40 induced a 

higher percentage of CD3+ T cell population than the control. (E) Frequency of CD8+ T cells in 

HT40 group was 2-folds higher compared to the HT and control group. Results are shown as 

mean ± SEM, n=3-5 per group. One-way ANOVA followed by Tukey’s multiple comparison was 

used for data analysis. * p < 0.05, ** p<0.01. 

 

Fig. 3.6. HT40 augmented the T cell functions in tumors. (A and B) HT40 promoted IFNg (~2- 

fold) and Granzyme B (~4-fold) secretion from CD8+ T cells in tumors. (C) Ratio of cytotoxic 

CD8+ T cells and immunosuppressive regulatory T (Treg) cells in tumors increased by 2.5 and 5-

fold with CD40 and HT40 compared to the untreated controls, respectively. Data are shown as 

mean ± SEM, n=3-5 per group, * p < 0.05, ** p < 0.01. Data were analyzed by One-way ANOVA 

followed by Tukey’s multiple comparisons; changes between control and treatments in Fig. 5C 

were analyzed using an unpaired t test assuming unequal variance. 
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Fig. 3.7.  HT40 increased melanoma specific antitumor immunity. (A) A significant increase 

in CD44hi CD62lo CD4+ effector T memory cells (percentage out of total leukocytes) in HT and 

HT40 treated tumors was noted. (B and C) CD40 and HT40 enhanced the percent of M1 

macrophages by 2-fold and decreased M2 macrophages by 1.5-fold compared to controls. (D and 

E) HT, CD40 and HT40 increased M1 macrophages (~1.3-1.7-fold) and decreased M2 
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macrophages (~1.5-2-fold) in splenic tissues compared to the control. (F) IL-2 production from 

CD4+ T cells was significantly improved by CD40 and HT40 treatments compared to untreated 

controls. Amongst all the treatments, HT40 showed the most dominant effect upon TRP-2 

stimulation ex-vivo. Data are shown as mean ± SEM, n=3-5 per group. Data were analyzed by 

ANOVA followed by Tukey’s multiple comparisons. * p < 0.05, ** p < 0.01. 

 

 

Fig. 3.8. HT40 priming enhanced the therapeutic effects in ICI refractory melanoma. (A) 

HT40 priming of tumor (unilateral) was followed by ICI therapy in mice bearing B16F10 

melanoma in the left and right flank regions. (B) HT40 priming improved dual immune checkpoint 

blockade outcomes. Differences in the median survival (n=5) were determined by the Kaplan–

Meier method and the log-rank test was used to determine P value. p < 0.05: HT40+ICI vs 

CD40+ICI; p < 0.1: HT40+ICI vs HT+ICI, HT40.  
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Fig. 3.9. Tumor growth rates in mice bearing melanoma in left and right flank regions. (A) 

HT40 and HT40+ICI delayed growth of treated tumors compared to HT and CD40 alone. (B) 

Tumor growth rates at distant untreated sites were relatively slower with HT40+ICI and HT40 

compared to other treatments. Data shown till day 28 post inoculation. Data were analyzed by 

ANOVA followed by Tukey’s multiple comparisons; * p < 0.05, ** p < 0.01. 
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Supplementary data 

 

Fig. 3.S1. Pan cancer immune profiling by nanostring analysis assessed 730-immuno regulatory 

genes in the treated tumors (n = 3). 
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Fig. 3.S2. Quantitative assessment of inflammatory and immune cell markers. (A-C) 

Significantly higher expressions of cell adhesion molecules, chemokines, innate sensors, 

activation status of APCs, natural killer cells (NK), and T cells was noted in HT40 tumors relative 

to control. The volcano plots represent log2 fold change in gene expression compared to control. 

Statistical analysis was performed using multiple t-tests without multiple comparisons correction. 

p < 0.05 is considered significant. 
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CHAPTER IV 
 

 

REPROGRAMMING THE RAPID CLEARANCE OF THROMBOLYTIC AGENTS BY 

AN ON-DEMAND ANCHORING OF NANOPARTICLES TO CIRCULATORY 

ERYTHROCYTES 

Abstract 

Rapid clearance of thrombolytics from blood following intravenous injection is a major clinical 

challenge in cardiovascular medicine. To overcome this barrier, nanoparticle (NP) based drug 

delivery systems have been reported. Although superior than conventional therapy, a large 

proportion of the injected NP is still cleared by the reticuloendothelial system. Previously, we and 

others showed that ex vivo attachment of bioscavengers, thrombolytics, and nanoparticles (NPs) 

to glycophorin A receptors on red blood cells (RBCs) improved the blood half-life. This is 

promising, but ex-vivo approaches are cumbersome and challenging to translate clinically. Here, 

we developed a novel Ter119-polymeric NP encapsulating a model thrombolytic agent for on-

demand targeting of GPA receptors in vivo. Upon intravenous injection, the Ter119-NPs achieved 

remarkable RBC labeling efficiencies (>95%) and their blood residence time markedly increased 

from minutes to several days without any morphological, hematological, and histological 

complications. In addition, the RBC labeling of NPs prevented its lysis by reticuloendothelial and 

the activations of innate and adaptive system. Our data suggests that real-time targeting of 

therapeutics to RBC with NPs can be an innovative means to improve outcomes and reduce 

complications in chronic diseases.   
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Introduction  

Thromboembolic diseases (e.g. myocardial infarction, deep-vein thrombosis) are frequently 

treated with thrombolytic agents (e.g. altepase, tissue plasminogen activator (tPA etc.) 516-518. 

Although a commonly used treatment modality, thrombolytics typically demonstrate rapid 

clearance (<15-20 minutes) from the body following intravenous injection, thereby requiring 

large dosages and increasing the risk of intracranial hemorrhages 519,520. To overcome this 

limitation, nanoparticle (NP)-encapsulation of thrombolytics have been attempted, and these have 

shown to prolong circulatory half-life compared to conventional therapy521,522. Despite this, the in 

vivo effectiveness of NP-based therapies can be impacted by the rapid reticuloendothelial 

clearance, thereby pointing towards a need for discovering innovative methodologies for efficient 

reprograming of the thrombolytic pharmacokinetics 523-525. Towards this goal, in this study, we 

investigated the feasibility of direct labeling of the red blood cell (RBC) membranes with 

intravenously administered NPs for improving the pharmacokinetics and biodistribution of 

thrombolytic agents 379,526,527. 

RBCs have a large surface area and are involved in clot formation 2,528, so the premise of labeling 

their membranes with NP-encapsulated thrombolytics can be clinically relevant for preventing 

clot formation. Previous studies employing the ex-vivo coating of drugs and NPs with RBC 

membranes have shown to enhance the drug half-life, but the limitations imposed by the donor 

availability, damages to the cell membranes, and lack of necessary infrastructures prevented the 

large-scale translation of this approach for human use 379,527,529-531. We propose that these 

treatment barriers can be overcome by decorating the NPs with RBC-specific targeting ligands 

for selective targeting of the circulating erythrocytes, and this will allow prolonged blood 

residence time of thrombolytic agents and reduce toxic outcomes. To meet our objectives, herein, 

we targeted the transmembrane glycophorin A 532 docking sites on the RBC membrane since it 

represents approximately 2% of the total RBC membrane proteins533.  GPAs can be targeted by 
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ligands such as dodecapeptide acid peptide (ERY1) that are derived from phage proteins, and 

single chain variable fragment (scFv) of the Ter119 antibody 534-536.  Importantly, we have shown 

that ERY1 can localize NPs on to the RBC membrane in vitro, however, its feasibility for in vivo 

therapy is yet to be demonstrated 537. In this study, we innovated further by designing a novel 

polymer-based Ter119-NP encapsulating tPA, as a model drug.  We compared the in vivo RBC 

labeling efficiency and improvement in circulation time for Ter119-NP, ERY1-NPs and tPA 

alone in a mice model. Our mice data suggested that targeting the circulating RBCs using 

intravenously injected Ter119-NPs prolonged the circulatory retention of tPAs from minute to 

days compared to unbound-tPA or ERY1-NPs. Furthermore, the direct labeling RBC with NPs 

did not impact the hematological or histological parameters, indicating a high translational value 

of our described approach. 

Materials 

Tissue plasminogen activator (Alteplase; tPA) was purchased from Genentech (South San 

Francisco, CA). Polyethylene glycol (2kDa mPEG-NHS and 5kDa Maleimide-PEG-NHS) was 

purchased from Creative PEGWorks (Winston Salem, NC). Poly-l-lysine (15-30kDa) and 

fluorescein isothiocyanate (FITC) was purchased from Sigma Aldrich (St. Louis, MO). ERY1 

peptide with C-terminal cysteine linker (WMVLPWLPGTLDGGSGCR) was custom synthesized 

by EZBiolab (Caramel, IN). Ter119 antibody was purchased from eBioscience (San Diego, CA). 

Glutaraldehyde, AlexaFluor 790 antibody labeling kit, acrylamide/bisacrylamide, and other gel 

electrophoresis materials were purchased from Fisher (Hampton, NH). The fluorochrome-

conjugated monoclonal antibodies (mAbs) were purchased from BioLegend (San Diego, CA): 

FITC anti-CD45.2 (104), PE anti-CD3 (145-2C11), APC anti-CD4 GK1.5), and APC-Cy7 anti-

IFN-γ (XMG1.2) and PERCP anti-CD8a (53-6.7). 

Methods 

https://www.biolegend.com/en-us/search-results?Clone=XMG1.2
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PLL-g-PEG-Maleimide Synthesis 

PLL-g-PEG-Maleimide was synthesized using methods previously described 537. A 50/50 (w/w) 

mixture of 40 mg of mPEG-NHS (2kDa) and Mal-PEG-NHS (5 kDa) was added to 15 mg of PLL 

dissolved in 200 µl of PBS. The mixture was allowed to react for two hours before the PLL-g-

PEG mixture was washed with PBS containing 50% ethanol in a 10 kDa Pierce centrifugal 

concentrator. The copolymer was then air-dried and stored at -20°C until use. The grafting ratio 

was determined using H1 NMR with a Bruker INOVA 400 spectroscope. The PEG : PLL grafting 

ratio was determined by integrating the peaks corresponding to the PEG linkage to PLL ε-amino 

groups at 3.2 ppm and the PLL α-carbon at 4.2 ppm, as has been previously described 538. The 

ratio of the two peak areas was used to calculate the grafting ratio.  

Synthesis of NPs 

Encapsulation of tPA into nanoparticles was performed using an approach previously described 

[1]. PLL-g-PEG-Mal in PBS (14 mg/ml, 50 µl) was added dropwise to tPA (2 mg/ml, 50 µl) 

while gently vortexing. After incubating one hour, PLL-g-PEG/tPA was cross-linked with 

glutaraldehyde (0.06%) for three hours to produce non-liganded NPs (Bare NPs). To produce 

ERY1-NPs, 125 µg of ERY1 peptide dissolved in DMSO was added to Bare NPs immediately 

after glutaraldehyde cross-linking and allowed to incubate 30 minutes. To produce Ter119-NPs, 

Ter119 antibody (100 µg) was treated with dithiothreitol (DTT) (20 mM), according to previous 

methods, for 30 minutes at 37°C 539. The reduced antibody was added to the Bare NPs after cross-

linking and allowed to incubate for 30 minutes to produce Ter119-NPs (Fig. 4.1A). For 

pharmacokinetic studies, the tPA, Bare NPs, ERY1-NPs, and Ter119-NPs were labeled with 

FITC (4 mM) overnight at 4°C to facilitate free tPA or NP detection using flow cytometry and 

spectrophotometry. For biodistribution and in vivo imaging experiments, tPA and all tPA-NP 

(Bare NP, ERY1-NP, Ter119-NP) groups were labeled with AlexaFluor 790 using the 
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manufacturer’s suggested protocol for standard protein labeling. After labeling, unconjugated 

FITC, AlexaFluor 790 and ligands were removed by washing with 300 kDa Pall centrifugal 

concentrators.  

Physicochemical characterization of NPs  

SDS-PAGE was used to characterize tPA association with the PLL-g-PEG copolymer. Standard 

acrylamide/bisacrylamide SDS-PAGE gels (8%) were prepared to perform the assay. A control 

sample of free tPA (5 µg) as well as tPA NPs (5 µg) were loaded onto SDS-PAGE gels and the 

gels were run at 200 V on a Bio-Rad Mini-PROTEAN Tetra Cell electrophoresis system 540. 

Approximately 45 minutes after beginning the run, SDS-PAGE gels were removed and stained 

with Coomassie G-250 to visualize protein migration.  

Dynamic light scattering (DLS) was used to characterize the size of Bare-NPs, ERY1-NPs, and 

Ter119-NPs. A 50 µl aliquot of each type of NP was loaded into a cuvette and the size was 

measured at 90° using a Brookhaven Instrument Corporation ZetaPALS ζ-potential analyzer. The 

mean of triplicate measurements, with each measurement consisting of five runs (each lasting one 

minute), was used to determine the NP size. 

Characterization of in vivo RBC targeting and binding of NPs by flow cytometry and 

confocal microscopy 

We compared the RBC binding efficiency of FITC labeled NPs by infusing tPA loaded Ter119-

NPs or ERY1-NPs in Balb/C mice. FITC labeled Bare NPs containing tPA and FITC-tPA served 

as representative control. A single NP or free tPA injection at a dose of 90 µg of tPA/mouse was 

performed intravenously. To estimate RBC targeting and binding efficiency of NPs, whole blood 

(30-50 µL) was collected by facial vein phlebotomy at 1, 3, 6, 24, 48, 72, 96, 120, 144, and 168h 

(n=3 per time point) for 7 days post injection. The fluorescence signal of FITC labelled NPs and 

free tPA on isolated RBCs was measured using FACS Calibur (BD Biosciences, NJ) with an 
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excitation/emission of 488/530 nm. Datasets were analyzed using FlowJo software v.10.2 

(Treestar Inc, OR). The relative density of injected FITC-NPs attached to RBCs at different time 

points were represented as histograms showing median fluorescence intensity (MFI) of the cells.  

To confirm cellular attachment of NPs, the isolated RBCs were examined under confocal 

microscope (n=3/time point). All imaging was performed with constant acquisition and display 

parameters using an inverted microscope (Olympus IX81-ZDC2) equipped with a color CCD 

camera, cooled monochrome CCD camera, motorized scanning stage, and mosaic stitching 

software (Metamorph) with a 10x objective. The FITC channel (480/520 nm) was used for gating 

to quantify the percentage of cells positive for FITC signal after excitation with a mercury lamp-

based monochromator. 

Quantitative estimation of tPA-NPs in blood by spectrophotometry 

To evaluate NP half-life, a single intravenous injection of FITC labeled tPA and tPA-NPs was 

performed in Balb/c mice at a dose of 90 µg of tPA/mouse. Blood samples were collected at 

specified time points for 5 days (n=3 per time point). Diluted samples were analyzed for FITC 

fluorescence at 490/525 nm using a SpectraMax M2e spectrophotometer. DPBS was used as 

blank control. Time-dependent in vivo concentration of tPA-NPs was represented as the 

percentage of injected dose (%ID). %ID in circulation at a given time (t) was calculated using the 

equation below 

% 𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝐷𝑜𝑠𝑒 (𝐼𝐷) =
(𝐼𝑡 − 𝐵𝑙𝑎𝑛𝑘)

(𝐼0 − 𝐵𝑙𝑎𝑛𝑘)
× 100  

where I0 represents the initial fluorescence intensity at 0 h, and It is its intensity at time (t).  

The data from %ID in circulation were exported to GraphPad Prism 7.0 software (GraphPad 

Software Inc, La Jolla, CA, USA) and area under the curve (AUC) from time 0h through 5 days 
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post injection was calculated by trapezoid rule using the software and compared between the 

treatments. 

Investigation of biodistribution and clearance kinetics of RBC targeted NPs in mice by in-

vivo and ex-vivo imaging  

The tPA or tPA-NPs were labeled with Alexa Fluor 790 near infrared (NIR) fluorescent probe 

and injected at a dose of 90 µg tPA/mouse via tail vein. Injected tPA or tPA-NPs were tracked 

longitudinally (n=3/time point) using an in vivo imaging system (Bruker In-vivo Xtreme II, MA, 

USA). Longitudinal in vivo imaging was controlled by image acquisition and analysis software 

(Bruker molecular imaging (MI) software). Mice were sacrificed on day 7 post-treatment and 

organs of interest (heart, lungs, liver, kidneys, spleen, and lymph nodes) were harvested for ex-

vivo imaging. Quantitative ex-vivo image analysis (n=3) was done based on the region of interest 

75 using the MI software. Fluorescence images from the ex-vivo harvested organs were overlaid 

on respective x-ray images and represented as merged images for enhanced visualization of the 

organ boundaries. 

Assessment of the systemic effect of functionalized NPs on hematological and biochemical 

parameters  

Mice were sacrificed 7 days post intravenous injection of tPA and tPA-NPs. Whole blood and 

serum samples were analyzed by Dr. Charles Wiedmeyer from Comparative Clinical Pathology 

Services (Columbia, MO). Hematological parameters such as Red Blood Cells (RBC) count, 

White Blood Cells (WBCs) count, Differential count, Hemoglobin (Hb), Hematocrit (HCT), 

Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin 541, Mean Corpuscular 

Hemoglobin Concentration (MCHC), RBC Distribution Width 403 and Platelets were determined 

(n=3). Total protein, albumin, albumin/globulin ratio, alanine transaminase (ALT), and aspartate 

transaminase (AST) were evaluated in mice sera to assess liver function (n=3).  
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Determination of immunotoxicity of RBCs bound NPs by splenocyte stimulation assay 

Single cell suspensions were prepared from the spleen (n=3-5) and lymph nodes (LN) (n=3) 

harvested from treated mice 477. Briefly, splenocytes and LN cells were incubated with 5 µg/ml 

(tPA, Bare NPs, ERY1-NPs, Ter119-NPs) for 6-8 hours in the presence of Brefeldin A. The 

stimulated cells were stained with antibodies for 30 min in the dark on ice to assess activated 

CD45+ CD3+ helper CD4+ or cytotoxic CD8+ T cell subsets. For detecting intracellular IFN-γ, 

cells were fixed and permeabilized prior to staining with APC Cy7 anti-IFN-γ antibody. Stained 

cells were run in a LSRII analyzer within 24 h. Datasets were analyzed using FlowJo software 

v.10.2 (Treestar Inc, Ashland, OR, USA).  

Histopathological evaluation of major organs 

Liver, spleen, kidney, lung, and brain tissues from mice (n=3) were fixed in 10% neutral buffered 

formalin, processed, and embedded in paraffin as previously described 419. Histopathological 

examination was made on sections (4 μm) stained with hematoxylin and eosin. The tissues 

sections were screened for any pathological changes using an Olympus BX50 microscope with 

Olympus DP26 digital photography by a veterinary pathologist blinded to treatment groups.  

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 7.0 software (GraphPad Software Inc, 

La Jolla, CA, USA). Data are presented as mean ± SEM unless otherwise indicated. Treatment 

groups were compared for differences in fluorescence intensity using analysis of variance 539 

followed by Tukey’s multiple comparison post-hoc test. P values less than 0.05 were considered 

significant.  

Results 

Characterization of tPA-NPs 
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The encapsulation of tPA into NPs occurred through the electrostatic self-assembly of tPA with 

PLL-g-PEG, which were then cross-linked to provide stability. SDS-PAGE was used to identify 

cross-linking conditions that would result in stable NP complexes.  Compared to non-complexed 

tPA (lane 2), tPA-NPs formed without any cross-linker (lane 3) readily released most of the tPA 

protein, as observed by the protein’s largely unhindered migration which was similar to the free 

protein (Fig. 4.1B). When glutaraldehyde was added to a final concentration of 0.06% (lane 4), no 

free tPA was able to migrate into the gel, indicating that tPA-NPs were effectively cross linked 

with 0.06% glutaraldehyde. Higher concentrations of glutaraldehyde (lanes 6 and 7) resulted in a 

heterogeneous migration of protein into the gel that made protein encapsulation difficult to 

interpret.  

DLS was used to determine the size of the tPA-NPs (Table 1). All NPs ranged in size from 40-60 

nm and had relatively low to moderate polydispersity. Ter119-NPs was relatively smaller (~ 50 

nm) in diameter compared to ERY1-NP (~60nm). All NPs demonstrated a relatively narrow size 

distribution (Fig. 4.1C).  

Ter119 antibody functionalized NPs exhibited prolonged circulation compared to other 

treatments by efficiently binding to RBCs after intravenous delivery 

A single intravenous injection of FITC labeled tPA and tPA-NPs was performed in Balb/c mice 

and blood samples were assessed for RBC binding efficiencies of NPs by flow cytometry (Fig. 

4.2A). Targeting NPs to RBCs using Ter119 ligand significantly prolonged circulation of tPA 

compared to ERY1-NPs, Bare NPs or free tPA (Fig. 4.2B). The Ter119-NPs achieved >98 % of 

RBC binding immediately after injection and labeling efficiencies of >95 % could be seen up to 3 

days post-injection. Also, 85 % of RBC bound Ter119-NPs were observed on day 4, but it 

sharply declined to ~30 % on day 5. In contrast, ERY1-NPs exhibited about 3-5 % binding up to 

an hour post injection and cleared rapidly beyond detection.  Unbound drug (tPA) and Bare NPs 
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showed ~2.5 % binding to RBCs at time 0, however, fluorescence signals were undetected 

afterward. At all-time points, the mean fluorescence intensity (MFI) of Ter119-NP was 

significantly higher than tPA, Bare NPs, and ERY1-NPs until 5 days and dropped close to the 

MFIs of the other cohorts on day 6 (Fig. 4.2C). Additionally, the MFI of FITC positive RBCs 

decreased from days 3 through 5, suggesting that the Ter119-NPs showed enhanced detachment 

from the RBC surface after 72 hours (Fig. 4.2D).  

Ter119-NPs showed high stability and durability of RBC complexation during confocal 

microscopy  

To demonstrate attachment of FITC labeled NPs encapsulated with tPA to RBCs, blood samples 

from mice were imaged under confocal microscope. No detectable FITC emission from the RBCs 

of tPA and Bare NP treated mice was noted (Fig. 4.3A). In contrast, Ter119-NP demonstrated the 

brightest signal from 0 h-5 days after injection (Fig. 4.3B). ERY1-NPs showed moderate 

fluorescence till an hour, but the detectable signal was not evident at later time points. Ter119-NP 

attachment was not associated with morphological deformation and alterations compared to 

control (Fig. 4.3B). Additionally, the RBC count, RBC distribution width 403, and hemoglobin 

content remained unaltered for the 7-day period of observation (Table 4.2). The complete blood 

count parameters were within the range of reference values from Charles River Laboratories 

database for BALB/c mice 32,542.  Fluorescence intensity of Ter119-NPs appeared as scattered, 

green fluorescent spots on RBC membrane after 72h.  

Ter119-NPs demonstrated delayed clearance from blood compared to bare NP  

Mice were injected with FITC labeled tPA and tPA-NPs and blood samples were subjected to 

spectrophotometric analysis. Determination of % injected dose (ID) in the blood samples based 

on normalization of FITC fluorescence intensity to time 0h indicated rapid clearance for (tPA, 

Bare NPs, and ERY1-NPs; >95% of ID in <1h) (Fig. 4.4A; inset). Ter119-NPs exhibited 
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markedly prolonged circulation time (about 85% of ID in circulation up to 48 h) (Fig. 4.4A). The 

clearance kinetics was somewhat rapid after 48h, however ~60% and 25% of ID was evident on 

days 3 and 4 post-injection, respectively. The average time for Ter119-NPs to reach 50% of their 

injected dose was ~3.5 days.  In contrast to Ter119-NPs, ERY1-NPs demonstrate rapid clearance 

kinetics. Overall, the area under curve (AUC) of Ter119-NPs was >150-folds compared to tPA, 

Bare NP and ERY1-NP (Fig. 4.4B). AUC of ERY1-NPs was ~1.2-folds greater than Bare NPs 

and tPA, whereas Bare NPs and tPAs demonstrated similar clearance profile. 

Biodistribution of NPs by non-invasive in vivo imaging 

To assess biodistribution kinetics of RBC bound vs. unbound particles, Balb/c mice were injected 

with NIR tagged tPA and tPA-NPs (Bare NP, ERY1-NP, and Ter119-NP) and imaged 

longitudinally for 5 days post-injection using XtremeII in vivo imaging system (Fig. 4.5A). 

Animals injected with NIR-tPA showed high fluorescence in the bladder at 1h followed by very 

low to no signal from the bladder at 24h post-injection. Fluorescent signals were not observed in 

the liver and the spleen of tPA cohorts suggesting rapid elimination via the urinary route.  In 

contrast, mice infused with NIR labeled tPA-NPs, irrespective of the NP type, showed weak 

fluorescent signal in urinary bladder at 1 hour and a bright fluorescent signal in the liver and 

spleen at 24h post injection (Fig. 4.5B). Subsequent daily imaging of the NP cohorts with the 

same acquisition parameters revealed a gradual decrease in the fluorescence signal from the liver 

with the intensities becoming undetectable at 5 days. For Bare NP, ERY1-NP, and Ter119-NP, 

elimination via hepato-biliary route was predominantly observed. Most importantly, Ter119-NPs 

avoided the liver and spleen accumulation at early time points relative to ERY1-NPs or Bare NPs, 

as evidenced by fluorescence intensities. 

Ex vivo organ imaging suggested lower accumulation of Ter119-NPs than Bare NPs and 

ERY1-NPs in liver and spleen 
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To further define the relative differences in biodistribution and elimination of NIR labelled tPA 

and tPA-NPs, we sacrificed the mice one-week post-injection and performed ex vivo ROI analysis 

of NIR fluorescence in the harvested organs of interest. In tPA cohorts, maximal fluorescence 

intensity was observed in kidney (∼60%) while the liver and spleen accounted for remaining 40% 

of the fluorescence (Fig. 4.6A-C). Organs from all the NP cohorts demonstrated strongest signal 

in the liver followed by spleen, kidneys, lungs, heart and LNs. However, fluorescence intensity in 

livers of Ter119-NP treated mice demonstrated 1.7 folds less intensity than Bare NP and 1.3 folds 

less than that of ERY1-NP (Fig. 4.6B). Though these observations clearly suggested an initial 

uptake of the NPs by the RES system followed by hepatobiliary excretion, Ter119-NPs exhibited 

relatively lower accumulation in the RES system than Bare NPs and ERY1-NPs. 

Systemic targeting of Ter119 conjugated NPs to RBCs did not cause adverse innate and 

adaptive immune responses 

Antigen-specific IFN-γ secreting CD4+ T cells in the spleen and CD8+ T cells in the LN were 

significantly decreased by ~2.5 and 1.5-folds in the tPA, Bare NP, and ERY1-NP groups 

compared to control mice (Fig. 4.7A-D). The percentage of CD4+ T and CD8+ T cells expressing 

IFN-γ was 19.6% ± 1.4 and 2.9% ± 0.4 in the spleen and 54.5% ± 1.2 and 0.7% ± 0.04 in the LNs 

of Ter119-NP cohorts and they were similar to the naïve control mice. Additionally, no obvious 

signs of toxic reactions or inflammatory responses that could be attributed to the systemic 

injection of NPs were found in hematology. The fraction of leukocytes and their subsets in blood 

was within the normal reference range suggesting that Ter119-NPs bound to RBCs did not 

provoke systemic innate and adaptive immune responses in spite of an intravenous route of 

administration (Table 4.2). 

Intravenous administration of Ter119-NPs was biocompatible and safe to major organs 
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To assess the effect of RBC targeting Ter119-NPs on major organs, histological examination of 

liver, spleen, kidney, lung, and brain was performed 7 days post intravenous administration of the 

NPs. Liver and spleen sections from all the treated groups did not reveal any inflammation or 

fibrosis and their microscopic architecture was comparable to control (Fig. 4.8A). Similarly, 

kidney, lung, and brain in tPA and NP groups did not show any evidence of pathologic changes 

compared to control. Further evaluation of liver function tests indicated normal levels of total 

protein, albumin, albumin to globulin ratio, ALT, and AST in serum from treated mice (Fig. 

4.8B). 

Discussion  

Prior research has shown that encapsulation of therapeutic agents in NPs can enhance targeted 

therapy in a region of interest compared to conventional approaches 543,544. Although beneficial, 

less than 5-10% of NP injectable dose is typically retained in circulation over 24h after 

intravenous injection, thereby underscoring a need for additional innovations in formulation 

chemistry to improve NP retention in body 379,545,546 547,548. One approach to address this can be by 

attaching therapeutics to harvested RBCs via adsorption or ligand-receptor interaction, and their 

re-injection into the donor subjects 379,529-531,549. Several recent studies have shown the feasibility 

of this approach against a variety of chronic diseases 531,550-552,379,385,543,553. We have shown that ex-

vivo attachment of NPs to RBCs especially via the GPA membrane receptor do not induce 

oxidative stress or impact the oxygen carrying capacities 540,554. Although ex-vivo loading of 

RBCs with drugs and NPs has merits, the need of donor or autologous blood restricts the 

treatment option to blood transfusion settings, preventing widespread clinical use 527,555.  To 

overcome this barrier, in this study, we investigated the feasibility of direct and real-time labeling 

of RBCs with NPs in vivo for enhancing circulation kinetics, bio-distribution, and bio-

compatibility of therapeutic agents.   
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As a model therapeutic, we utilized tPA, an FDA approved agent commonly used in clinics to 

dissolve blood clots.  A key current limitation of tPA is its short circulation half-life (<10 min) 

556. Thus, to enhance its half-life, neutrally charged PEG grafted onto a cationic PLL backbone 

nanomaterial was utilized to load tPA and generate core-shell NPs 554. The NPs were also 

equipped with Ter119 antibody and ERY1 peptide for active targeting of RBC membrane 

receptor. Ter119 antibody is an IgG2b class monoclonal antibody. It targets the Ter119 antigen 

associated with GPAs on erythrocyte membrane 557. ERY1 is a 12 amino acid long peptide 

sequence that directly labels the GPAs on RBCs 536,558. We found that ERY1 peptide or Ter119 

antibody functionalization of NPs increased their hydrodynamic diameter slightly (~10 nm) 

compared to unliganded NPs (Table 1). To investigate whether the increase in NP size influenced 

RBC targeting and half-life in vivo, the NPs were injected in mice via intravenous route, and the 

RBC targeting was assessed by flow cytometry and confocal microscopy. In contrast to ERY1-

NP and bare NPs (<3% labeling efficiency), the Ter119-NP remarkably labeled >98% of 

circulating RBCs within a few minutes after intravenous injection (Fig. 4.2). Importantly, the 

Ter119-NPs remained bound to ~95% of RBCs up to 3 days post injection, and retained ~60 % 

injected dose (ID), demonstrating durable binding with RBCs in circulation. In contrast, ERY1-

NP demonstrated weak RBC association and cleared rapidly from the circulation under the shear 

stress (Fig. 4.3). The dramatic increase in the elimination half-life of TER119-NPs (~3.5 days) 

was also a significant improvement from prior reported NPs approaches with polystyrene and 

poly(DL-lactide-co-glycolide (PLGA) NPs that  retained 5-30%  of ID in the circulation over 2 

days 396,559. Based on this premise, we propose that real-time targeting of Ter119 membrane 

protein can be leveraged for dramatically improving circulatory retention of NPs from hours to 

days. 

For clinical translation, it is important that the binding of NPs to RBCs does not induce hemolysis 

or modulate the cellular functions 560 561. As a first step, we evaluated the effect of NPs on blood 
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cell counts, and MCHC (Table 4.2).  We found that the adhesion of Ter119-NP to RBCs did not 

result in adverse effects on RBC morphology and cell counts. This is in contrast to a prior study 

that showed development of anemia in vivo 562. Most likely, the modification of Ter119 antibody  

using DTT before NP formulation enhanced tolerance in vivo, however, this phenomenon will 

require more detailed mechanistic investigations in future 563,564. Also, the NPs exhibited 

predominant accumulation in liver and spleen. In contrast, free tPA was cleared by renal route 

(Fig. 4.5 and 4.6). Larger particles (~20-50 nm) are primarily cleared by the hepatobiliary and 

fecal routes and the  smaller particles typically show clearance by renal mechanisms (3-6 nm), 

thus we believe that the NPs maintained its stability in vivo and altered the biodistribution profile 

of tPA 565,566,567,568. Importantly, amongst all group, Ter119 NPs demonstrated a relatively slower 

accumulation in liver and spleen at early time points without activating the immune system (Fig. 

4.7 and Table 4.2). This indicates that RBC attachment of NPs prevent inflammation and 

cardiovascular stress, while also improving retention in circulation 546,569. This finding was 

supported by the histopathological examination of various organs where NPs did not cause 

intracerebral hemorrhage and major organ toxicities (Fig. 4.8).  

In conclusion, our study shows that the Ter119-NPs are capable of achieving stable and durable 

targeting to RBCs after intravenous injection, and this novel technology can effectively evade the 

RES to prolong NP circulation time. Future studies comparing the therapeutic efficacies of RBC 

targeted NPs with conventional NPs can shed more lights on clinical translation potential in 

various disease models. 
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Table 4.1. NP size and PDI determined by DLS. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Hematological parameters were not altered by intravenous delivery of TNPs. 
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Fig. 4.1. Synthesis, encapsulation and characterization of NPs. (A) Schematic of Ter119-

antibody conjugation to the surface of PLL-PEG-Maleimide NP. (B) SDS-PAGE of tPA NPs 

with glutaraldehyde titration. Lane 1: Ladder; Lane 2: tPA; Lane 3: tPA NPs 0% glutaraldehyde; 

Lane 4: tPA NPs 0.06% glutaraldehyde; Lane 5: tPA NPs 0.08% glutaraldehyde; Lane 6: tPA-

NPs 0.12% glutaraldehyde; Lane 7: tPA-NPs 0.25% glutaraldehyde. (C) Size distribution of Bare 

NPs, ERY1-NPs, and Ter119-NPs determined by DLS. The mean particle size of Ter119-NPs 

was approximately 50 nm and with a PDI of 0.285. 
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Fig. 4.2. Clinically translatable prolonged circulation of polymeric NPs is achieved by 

targeting Ter119-NPs to RBCs. BALB/c mice were randomized into the following groups: tPA, 

Bare NP, ERY1-NP and Ter119-NP. (A) Mice in each cohort received 90 µg of tPA or tPA 

loaded NPs labeled with FITC by tail vein injection as shown by the schematic. Flow cytometric 

analysis of blood (n=3 for each time point) was performed at different time points over a period 
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of 7 days. (B) Percentage of RBCs bound to tPA loaded polymeric NPs. % RBC binding in 

circulation was quantified based on FITC fluorescence as a function of change in time. Data are 

shown as mean ± SEM. (C) Histograms representing relative differences of median fluorescence 

intensity (MFI) between the groups from 0, 1, 6, 16, 24, and 144 hours. (D) Gradual decrease in 

the MFI of Ter119-NP bound to RBCs over a period of 7 days depicted by histograms.  

 

Fig. 4.3. Real-time tracking of Ter119-NP attachment to RBCs by confocal microscopy. 

Blood samples from mice (n=3 per time point) injected intravenously with FITC tPA or tPA-NPs 

were observed under confocal microscope. (A) Merged images of FITC labeled NP/free tPA and 
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bright field optical images. Blood samples from Ter119-NP cohorts showed bright green 

fluorescent spots from 0 to 6 h compared to tPA, Bare NP, and ERY1-NP. (B) Time dependent 

decrease in fluorescence signal from FITC positive RBCs bound to Ter119-NPs over a period of 

5 days post injection. No RBC membrane damage was observed. Scale bar is 20 µm.  

 

Fig. 4.4. RBC targeting Ter119-NPs augmented circulation half-life of the NPs. Mice were 

injected IV with FITC tPA or tPA loaded NPs and blood was collected at different time intervals 

(n=3 per time point). FITC was used as fluorescence probe in tPA or NPs and change in 

fluorescence was measured by spectrophotometer. (A) Time dependent in vivo circulation of tPA-

NPs represented as the percentage of injected dose (%ID). %ID was calculated from the change 

in fluorescence intensity at time ‘t’ h relative to time 0 h. Inset: magnified representation of early 
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time points. (B) The area under curve (AUC) of tPA-NPs versus tPA at 5 days post injection. 

Each data point represents mean ± S.E.M (n = 3). Statistics were determined by ANOVA with 

Tukey’s post-hoc correction (** p<0.01). 

 

Fig. 4.5. Non-invasive real time in vivo fluorescence imaging in mice after IV injection of 

NIR labeled tPA-NPs. (A) Experimental design for evaluation of biodistribution of NPs using in 
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vivo imaging of mice injected with NIR tPA and tPA-NPs. (B) Longitudinal whole body imaging 

of mice in different groups (n=3) was performed to assess the biodistribution and elimination of 

polymeric nanoparticles over time. Mice in Ter119-NP cohorts showed a delay in hepatic 

accumulation as compared to Bare NPs and ERY1-NPs. Same acquisition parameters were 

maintained for all the time points of imaging. 
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Fig. 4.6. Ex-vivo NIR fluorescence imaging of isolated organs on day 7 post injection. Mice 

were injected with 90 µg NIR labelled tPA or tPA-NPs via tail vein and sacrificed on day 7 post 

injection. (A) In each cohort, organs of interest namely liver, spleen, kidneys, heart, lungs, and 

LNs were harvested and imaged ex-vivo on day 7 after injection. Each panel represents merged 



108 

images of fluorescence of NIR emission and X-ray. (B) ROI analysis of the harvested organs in 

ex vivo fluorescence imaging (n=3). Data are represented as mean ± SEM. Statistics were 

determined by ANOVA with Tukey’s post-hoc correction (* p<0.05, ** p<0.01). (C) Average 

percent fluorescent intensity representing the biodistribution of Ter119-NPs and tPA in the 

harvested organs. 
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Fig. 4.7. RBCs-bound Ter119-NPs did not cause adverse immune response. Balb/c mice 

injected with NPs or tPA were sacrificed 7 days post injection. Spleens and superficial lymph 

nodes (LN) were harvested and single cell suspensions were stimulated ex-vivo with antigens in 

the presence of Brefeldin A to assess NP specific immune response in the mice. The following 

were used as the antigens (5 µg/ml) in the respective groups: tPA protein for tPA, Bare NP, 

ERY1-NP, or Ter119-NP for the respective cohorts. The graphs represent percent of IFN—γ 

secreting T cells after ex vivo stimulation, (A,B) CD4+ IFN-γ and CD8+ IFN-γ T cells 

respectively in the LN (n=3) and (C,D) CD4+ IFN-γ and CD8+ IFN-γ T cells in the spleen (n=3-

5). Naive Balb/c mice that did not receive any injection were kept as untreated control for 

baseline value comparison. Data are shown as mean ± SEM, Statistics were determined by 

ANOVA with Tukey’s post-hoc correction. Comparisons were performed between UC and 

treatments. * p < 0.05, ** p < 0.01. 
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Fig. 4.8. Ter119-NP is not toxic to major organs upon intravenous administration. (A) 

Histological sections of mice (n=3) liver, spleen, kidney, lung, and brain 7 days after intravenous 

administration of NPs did not show any pathological lesions compared to untreated control group. 

(B) Biochemical analysis of serum from treated mice (n=3) for total protein, albumin, albumin to 

globulin ratio, ALT and AST suggested that the parameters were in the normal range. 
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SUMMARY AND FUTURE PERSPECTIVES 
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Melanoma is an aggressive form of skin cancer that responds poorly to conventional cancer 

therapies. In the last decade, FDA approved immune checkpoint inhibitor therapy have 

revolutionized the field of cancer immunotherapy. Immune checkpoint therapy is successful only 

in 30-40% of melanoma patients and the rest either respond poorly or do not respond at all. 

Factors responsible for the failure of immunotherapy in advanced melanoma patients are poor 

antigen expression on tumor cells, defective antigen presentation mechanisms, expression of 

immune checkpoints, and poor baseline tumor specific cytotoxic T cell population.  

Novel therapeutics that can reprogram tumor immune microenvironment are needed to treat 

aggressive malignancies. We hypothesized that an increase in immune cell infiltration in tumor 

and their activation by exogenous activators will generate robust melanoma specific immunity. 

We treated clinically relevant poorly immunogenic B16F10 melanoma with focused ultrasound-

based hyperthermia (thermal) or histotripsy (mechanical) with and without local CD40 

stimulation and assessed immune mechanisms. Efficacy of these treatment approaches in 

sensitizing large refractory melanoma to dual anti-CTLA-4 and anti-PD-L1 checkpoint therapy 

was evaluated in bilateral B16F10 model. Both hyperthermia and histotripsy treatments in 

combination with CD40 agonism were successful in reprogramming tumor microenvironment, 

leading to robust melanoma specific immune response. Combined histotripsy and CD40 therapy 

sensitized refractor melanoma tumors to immune checkpoint therapy and significantly prolonged 

survival of mice. Additionally, this dissertation also demonstrates the potential of targeting of 

RBCs using an intravenously injectable polymeric nanoparticles as a cell targeting therapeutic 

approach. Findings from this work are described below. 

Chapter II 

In this chapter, we explored the role of local FUS hyperthermia and in situ anti-CD40 agonist 

antibody treatment in improving melanoma specific systemic immune response in mice. FUS and 
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CD40 alone were able to delay tumor growth but FUS40 was superior in delaying progression of 

both treated and untreated abscopal tumor. The efficacy improvement with FUS40 therapy was 

also reflected in immune cell profiling, whereas the FUS40 treated tumors had a higher 

infiltration of cytotoxic Granzyme B+ CD8+ T cells and anti-tumoral M1 macrophages. We 

found that combined FUS40 therapy was able to preserve functional status of CD8+ T cells in 

tumors and had a high frequency of Granzyme B+ PD-1- CD8+ T cells. Splenocyte stimulation 

assay suggested that FUS40 cohorts had significantly higher percentage of activated IL-2 and 

IFN-γ secreting melanoma specific CD8+ T cells. Generation of melanoma specific systemic 

immune response correlated with better suppression of untreated tumor growth in FUS40 cohorts 

than others. These findings suggest that FUS40 therapy can be a novel approach to improve 

immunogenicity of poorly immunogenic tumors.  

Chapter III 

In this chapter, we assessed the efficiency of non-invasive ultrasound-based histotripsy (HT) 

technique and anti-CD40 agonist antibody in sensitizing large refractory B16F10 melanoma to 

immune checkpoint blockade. Mechanical fragmentation of tumors by HT resulted in an 

upregulation of CCL8, CSFR1, ICAM2 and VCAM1. Upregulation of these chemokines and cell 

adhesion molecules in tumors correlated with an increase in immune cell recruitment. 

Combination of CD40 plus HT (HT40) further enhanced the immune profile of tumors. HT40 

treated tumors had higher infiltration of activated granzyme B secreting CD8+ T cells compared 

to untreated controls and tumor associated macrophage population shifted towards anti-tumoral 

M1 macrophages.  Upregulation of CXCL9 in HT40 tumors was associated with high T cell 

recruitment and homing. HT40 cohorts demonstrated generation of melanoma specific systemic 

immunity and had high number of CD4+ T effector/memory cells. Together with these changes, 

there was an increase in expression of immune checkpoint PD-L1 in the treated tumors. 

Reprogramming of the tumor immune environment in HT40 cohorts resulted in sensitization of 
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tumors to anti-CTLA-4 and anti-PD-L1 therapy and significantly prolonged survival of otherwise 

refractory mice. Our findings suggest that priming of advanced stage melanoma with histotripsy 

and CD40 activator can unlock the full potential of immune checkpoint inhibitors in hard to treat 

cases.  

Chapter IV 

In this chapter, we explored the potential of erythrocyte targeting polymeric nanoparticles in 

improving blood retention time of model thrombolytic drug. Tissue plasminogen activator or tPA 

gets cleared from the circulation in <10 minutes after injection. We encapsulated tPA in 

polymeric NPs to protect it from serum inhibitors and decorated these NPs with RBC targeting 

ligand anti-Ter119 antibody. Ter119-NPs targeted >98% of RBCs immediately after intravenous 

injection. Ter119-NP displayed enhanced blood retention time such that 80% of the injected dose 

was still in circulation after 2 days. These findings suggested formation of a durable RBC-NP 

complex in vivo. In spite, of strong and persistent binding to RBCs, Ter119-NPs did not cause 

detrimental changes in either RBC morphology or function.  In vivo longitudinal imaging showed 

delayed and gradual accumulation of NPs in liver and spleen in Ter119-NP cohorts compare to 

other groups. In vivo imaging data also suggested hepatobiliary route of clearance for NPs while 

renal clearance was the dominant route of excretion for free tPA. Ter119-NPs can be a potent 

drug delivery system to extend the circulation life of drugs used in various vascular ailments. 

Future perspectives 

Findings from our studies suggest that focused ultrasound and CD40 combination reprograms 

tumor immune profile and preserves functional status of CD8+ T cells. However, in spite of 

melanoma specific immunity generation, FUS40 and HT40 therapy did not eradicate the tumors 

completely. Based on gene profile data from HT40 treated tumors, an upregulation of CTLA-4 

and anti-PD-L1 and immunosuppressive checkpoints namely Lag3 and Tim3 was noted. We 



115 
 

would consider testing the efficacy of Lag3 and Tim3 inhibitors in melanoma after priming the 

tumors with FUS40 or HT40. We did not test our FUS40 and HT40 approaches in other more 

immunogenic tumor models or genetically modified tumor models that are close to human 

malignancies. Evaluation of our therapies in different tumor models may shed more light on 

clinical translation potential of our approach. Both FUS40 and HT40 therapy were able to 

generate melanoma specific immunity, supporting effective antigen presentation with these 

therapies but we do not know if CD40 stimulation prior to focused ultrasound will be better than 

the current approach. We had covered 50% of tumor mass with HT therapy, this may not be the 

ideal volume to be covered in large tumors and may need to be further explored. It may be 

valuable to optimize FUS, HT and CD40 sequence to achieve best therapeutic outcome. We saw 

survival improvement when tumors were primed with HT40 prior to systemic checkpoint 

blockade. It may be worth exploring the feasibility of in situ immune checkpoint blockade along 

with local HT40 or FUS40 therapy. In situ checkpoint inhibition approach may reduce the side 

effects associated with systemic administration of immune checkpoint inhibitors. 

Recently new isoforms of CD40 antibody have been developed that are more potent than the 

current CD40 antibody. Validation of new CD40 isoforms with FUS and HT can further improve 

our treatment outcomes. Therapy that works in one type of cancer may not work in other. It may 

be valuable to try other immune adjuvants like CpG, OX40 or FDA approved IL-2 or IFN-α in 

combination with FUS and HT, to develop novel immunotherapy combinations that can cover the 

majority of cancer patients. 

We had attempted delivering tPA loaded Ter119-polymeric NPs to target RBCs in blood 

circulation for extending the circulation half-life of the therapeutic. The results from this work are 

highly exciting with the RBC-NP complex circulating in blood for >3 days. The in vivo drug 

release, activity of the NP loaded drug (tPA), and therapeutic value of the RBC-NP complex need 

to be evaluated in further studies. This work also has the potential to provide insights for 
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delivering NPs loaded with chemotherapeutics, gene, or protein-based anti-cancer agents to target 

RBCs, achieve sustained release of drug, improve drug pharmacokinetics, and enhance its 

efficacy against chronic inflammatory disorders and metastatic cancers. 
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