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ABSTRACT 

The present study presents improved methods for modeling turbulent fluid flow and heat 

transfer within the context of computational fluid dynamics (CFD) simulations. Specifically, the 

study proposes and investigates two novel methods for improved turbulent flow simulation. The 

first is an improved method for blending the Reynolds-averaged Navier-Stokes (RANS) and large-

eddy simulation (LES) components within the dynamic hybrid RANS-LES (DHRL) modeling 

framework. The objective is to improve the performance of the DHRL model for prediction of 

turbulent heat transfer for cases in which the mean velocity and mean temperature gradients are 

not well aligned. Analysis of the current baseline version of DHRL shows that significant error 

can arise in such a situation, and the new method is specifically designed to address this 

shortcoming. The second new contribution is a method for generating synthetic turbulence to 

provide initial and/or boundary conditions in scale-resolving CFD simulations that adopt either an 

LES or hybrid RANS-LES modeling approach. Each of these methods is investigated for canonical 

flow test cases which are intended to highlight their potential strengths and weaknesses. The results 

of these investigations are presented in a series of chapters that correspond to published or 

submitted manuscripts, each of which focuses on one particular aspect of the overall research plan. 

In order to investigate the newly proposed DHRL blending function, simulations are 

performed for an idealized fully-developed planar channel flow case for which the mean velocity 

gradient is non-zero only in the wall-normal direction, and the mean temperature gradient is 

imposed to be uniform and non-zero in the streamwise or spanwise direction. Turbulent heat flux 

predictions are obtained for three different classes of modeling approach: Reynolds-averaged 

Navier-Stokes (RANS), large-eddy simulation (LES), and hybrid RANS-LES. Results are 

compared to available DNS data at Prandtl number of 0.71 and Reynolds number of 180 based on 
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friction velocity and channel half-width. Specific models evaluated are the k- SST RANS model, 

monotonically integrated LES (MILES), delayed detached eddy simulation (DDES), improved 

delayed detached eddy simulation (IDDES), and dynamic hybrid RANS-LES (DHRL). The DHRL 

model includes both the standard formulation that has been previously documented in the literature 

as well as the new modified version developed specifically to improve predictive capability for 

flows in which the primary mean velocity and mean temperature gradients are not closely aligned. 

The modification consists of using separate RANS-to-LES blending parameters in the momentum 

and energy equations. Results are interrogated to evaluate the performance of the three different 

model types and specifically to evaluate the performance of the new modified DHRL variant 

compared with the baseline version. Overall, the modified variant of DHRL, relative to IDDES, 

DDES and baseline DHRL (hybrid RANS-LES models) showed improved performance in 

predicting turbulent heat flux both in streamwise and spanwise directions. 

 The new proposed method for synthetic turbulence generation—denoted as statistically 

targeted forcing (STF)—seeks to introduce a fluctuating velocity field with a distribution of first 

and second moments that match a user-specified target mean velocity and Reynolds stress tensor, 

by incorporating deterministic time-dependent forcing terms into the momentum equation for the 

resolved flow. The  STF method is formulated to extend the applicability of previously 

documented methods and provide flexibility in regions where synthetic turbulence needs to be 

generated or damped, for use in engineering level large-eddy and hybrid large-eddy/Reynolds-

averaged Navier-Stokes CFD simulations. The performance of the proposed STF method is 

evaluated in LES simulations of isotropic and anisotropic homogeneous turbulent flow, spatially-

developing freestream turbulence, and temporally-developing mixing layer test cases. Results are 

interrogated and compared to target statistical velocity and turbulent stress distributions and 
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evaluated in terms of energy spectra. Analysis of the influence of STF model parameters, mesh 

resolution, and LES subgrid stress model on the results is investigated. Overall, results show that 

the new STF method can successfully reproduce desired target statistical distributions, reproduces 

spectral energy distributions consistent with the known characteristics of three-dimensional 

turbulence, and allows control of the characteristic integral length scale via the use of spatial 

filtering.  
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CHAPTER I 

 

INTRODUCTION 

Turbulence is evident in fluid flows as diverse as chaotic flow out of a faucet to natural 

tornadoes in our environment where three-dimensional vorticity, momentum and heat transport 

are apparent. It is a property of fluid flow which is evident at high Reynolds numbers, effective on 

a large range of scales, and is characterized by apparently erratic motion, intermittency, 3-D 

vortices and filaments, irreversibility, chaos, and unpredictability [1–5]. Turbulence is common in 

nature and is readily found, for example, in the ocean [6], the atmosphere [7], geosciences [8], and 

also in climate models [9]. Qualitatively, it exhibits a three-dimensional chaotic nature that results 

in much larger energy dissipation, heat transfer rates, and random mixing, when compared to 

laminar flows. Accurate prediction of turbulent flows using the tools of mathematical analysis is 

therefore critically important to our understanding of both natural and man-made systems.  

Claude-Louis Navier and George Gabriel Stokes derived fundamental equations, commonly 

referred to as the Navier-Stokes (NS) equations, which govern the behavior of fluids [10]. This set 

of differential equations can be used to describe the balance of forces in a fluid, and therefore 

makes it theoretically possible to predict the future behavior of a fluid from a given initial state. 

The Navier-Stokes equations have been validated on several occasions over the last two centuries 

and been found to accurately represent the physical reality of fluid flow systems. Unfortunately, 

at present, the NS equations cannot be solved analytically for most defined fluid flow problems. 

To date, the only way to solve the NS equations for most applications is by applying numerical 

methods. Turbulent flow problems are numerically solved by discretizing the Navier-Stokes 

equations and employing high performance computing (HPC) tools to provide approximate 
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solutions to real-life problems.  The analysis of fluid flows using numerical computation using this 

approach is called Computational Fluid Dynamics (CFD). In practical engineering applications, 

simulation of any real-world turbulence that can successfully impact analysis and design must 

yield effective understanding and/or prediction of turbulent flow statistics. Because the 

computational cost required to accurately solve the Navier-Stokes equations directly using 

numerical methods alone is often beyond the limits of available computational resources, 

turbulence modeling becomes unavoidable for simulations of many real natural and engineered 

systems.   

Turbulence modeling is, generally speaking, the application or use in CFD of a 

mathematical model other than the exact Navier-Stokes equations to yield a statistical description 

of turbulence. Often the equations in this model are formally similar to Navier-Stokes, with the 

key difference being the level of scale that can be resolved by the equation. One characteristic 

feature of turbulent flows is the evidence of a range of scales, where the large scale size is typically 

determined by the geometry of the domain or flow feature of interest, and the small scale size is 

determined by the fluid viscosity. Models can be described based on what portion of this range of 

scales is resolved by solution of the governing equation, and what portion is accounted for using 

statistical or phenomenological model terms.  

In 1877, Joseph Valentin Boussinesq developed one of the earliest mathematical models 

of turbulence when he proposed the “Boussinesq eddy viscosity hypothesis” by relating turbulence 

stresses to the mean velocity gradients in order to close the system of model equations. In 1925, 

Ludwig Prandtl refined the Boussinesq model when he proposed that eddy viscosity can be 

approximated as a function of a “mixing length” in the turbulent boundary layer and the local mean 
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velocity gradient. Since then, research on methods for turbulence modeling have led to the 

development of a wide range of available modeling tools.  

In modern CFD applications, turbulence modeling approaches are broadly classified into 

three different types: Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), 

and Direct Numerical Simulation (DNS). RANS solves only the ensemble- or time-averaged form 

of the NS equations and models all scales of fluctuating turbulent motion. However, for highly 

complex flow problems the assumptions in traditional unsteady RANS modeling approaches are 

substantially limited, often introducing error in the computed solution, most especially in separated 

flows [11]. At the other end of the spectrum, DNS explicitly solves the Navier-Stokes equations 

for all scales of motion, and does not require additional modeling beyond the Navier-Stokes 

equations themselves (indeed it is debated whether DNS should be referred to as a type of 

turbulence modeling). As discussed above, however, this makes it prohibitively expensive for most 

flows of engineering interest due to excessive computational cost. An alternative approach is 

available in Large Eddy Simulation (LES), for which a filtering operation is applied to the Navier-

Stokes equations. LES models only the smallest scales using a statistical description while 

resolving the larger, primary energy containing scales of turbulence directly. Hence, in general, it 

theoretically produces more accurate results than RANS for a wide range of flow configurations 

but is significantly less costly than DNS [12]. The theoretical accuracy of the method is directly 

proportional to the range of resolved scales, as is the computational expense. In the commonly 

viewed modeling hierarchy, LES lies between RANS and DNS in terms of both theoretical 

accuracy and computational cost. 

Recently, an emerging class of models known as hybrid RANS-LES (HRL) models has been 

developed in an effort to provide a tradeoff between effectively balancing cost and accuracy. The 
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HRL modeling approach is theoretically more accurate than RANS and more affordable than LES, 

which potentially creates a competitive advantage in performance and cost compared to RANS or 

LES alone [13]. HRL methods can be broadly classified into 2 categories: zonal and nonzonal. For 

the zonal approach, a RANS model is employed in user-specified regions of the computational 

domain, and an LES model is employed in the remaining regions. The major challenge is the 

selection of interface conditions to provide seamless transition between the two regions [14,15]. 

The non-zonal approach, as the name suggests, is one for which the user is not required to specify 

the RANS and LES regions prior to the simulation, however the Reynolds stress and subgrid stress 

tensors differ both physically and mathematically and bridging the two effectively is still a 

significant research challenge [15]. The computational expense of LES and the inaccuracies of 

RANS for more complex flows motivated the development of hybrid RANS/LES methods. In wall 

bounded flows, much of the expense of LES arises due to a requirement for small cell spacing in 

the boundary layer. Hybrid models are relatively new in the field of turbulence modeling and have 

garnered the interest of many researchers. Some of the most well-known non-zonal HRL models 

are the Detached Eddy Simulation (DES), Delayed Detached Eddy Simulation (DDES), and 

Improved Delayed Detached Eddy Simulation (IDDES). Although these non-zonal HRL models 

have been successfully validated and utilized in the aerospace industry for complex flow 

simulations, most HRL models have strict grid generation requirements and can suffer from non-

physical RANS-to-LES transition resulting in modeled stress depletion (MSD).  

This research study focuses in large part on providing improved methods within the HRL 

and LES modeling framework that improve predictions of turbulent flow and heat transfer 

statistics, to facilitate more accurate and cost effective CFD solutions for complex scientific and 

engineering problems. The research presented in this study attempts to highlight some of the key 
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deficiencies with traditional RANS and hybrid RANS-LES models while analyzing the 

performance of the Dynamic Hybrid RANS-LES (DHRL) model for turbulent flow predictions.  

A separate but related aspect from the formulation of the mathematical models themselves 

are the boundary and initial conditions for the model equations (including the Navier-Stokes 

equations for DNS). For Scale-Resolving Simulations (SRS), which include DNS, LES, and 

Hybrid RANS-LES, accurate simulation requires application of spatially varying initial conditions 

and temporally and spatially varying boundary conditions. In some cases, these conditions can be 

determined from their own separate SRS simulations. For many practical engineering simulations, 

however, it is computationally prohibitive to obtain time-dependent turbulence boundary and/or 

initial (B/I) conditions directly from turbulent flow simulations, and alternatives such as synthetic 

turbulence generation (STG) methods must be used. The goal of B/I condition methods such as 

synthetic turbulence generation (STG) is to replace turbulent content obtained from fully resolved 

simulations with a reasonable approximation of turbulence for a substantially lower computational 

cost. This research study explores synthetic turbulence generation (STG) methods as alternative to 

turbulence modeling since synthetic turbulence is not produced by the computationally expensive 

process of solving of the NS equations, but by statistical algorithms, hence computation time can 

be saved and complex problems can be solved using less resources. Hence, synthetic turbulent 

generation formulations that can effectively prescribe an appropriate level of turbulent energy and 

reproduce time-dependent turbulence boundary and/or initial (B/I) conditions of a turbulent flow 

are important tools for the study of turbulent flows. For CFD industrial applications, they allow 

researchers and designers to reduce the computational effort of numerical simulations of fluid 

flows, and thereby improve the quality of simulations for complex flow problems.  
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Several B/I condition methods have been proposed. One well known method for prescribing 

turbulence boundary conditions is recycling/rescaling. For recycled turbulent content, streamwise 

periodic boundary conditions are imposed on the domain or a portion of the domain such that the 

turbulent flow leaving the outlet is reintroduced at the inlet. This method was used, for example, 

by  Spalart and Watmuff [16]. Several other studies have extended the recycling/rescaling 

approach to simulate complex wall bounded flows [17-20]. Schlüter et al. [21] used the 

recycling/rescaling method to impose fluctuating velocities at the outlet of an LES region of a 

simulation to impose the statistics obtained from a RANS solution in the downstream region.  

Kraichnan [22] proposed one of the first STG methods for isotropic turbulence, by utilizing a 

spectral approach to artificially produce an isotropic turbulent velocity field from random Fourier 

modes. This approach of generating isotropic velocity fields with a specified energy spectrum has 

been used for example to generate initial conditions for DNS of isotropic turbulence [23,24].  

This study presents two novel contributions for the enhancement of scale-resolving turbulent 

CFD flow simulation, a synthetic turbulent generation method and a modified variant of the 

dynamic hybrid RANS-LES (DHRL) model. Both are evaluated using relevant canonical test 

cases. These novel techniques have the potential to provide significant improvement in the 

predictive capabilities for turbulent flow and heat transfer using scale-resolving simulations in 

general and the DHRL model specifically. 
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CHAPTER II 

 

OBJECTIVES AND RESEARCH OUTLINE 

The overall objective of this research study is the development of novel turbulence modeling 

methods for use in Scale-Resolving Simulations of turbulent flow, to include improvements to 

Hybrid RANS-LES modeling as well as development of a novel method for synthetic generation 

of turbulence boundary and initial conditions. The overall research effort was undertaken in the 

form of four separate but integrated research problems. In this section an outline is presented 

summarizing the four specific integrated scientific research papers (published and/or submitted) 

that resulted, and that comprise chapters 3, 4, 5, and 6 of this dissertation.  

 

2.1 Hybrid RANS-LES Simulation of Turbulent Heat Transfer in a Channel Flow (Chapter 

III) 

 
Computational fluid dynamics (CFD) results are presented for turbulent flow and heat 

transfer in a plane channel. This study investigates an idealized fully-developed planar channel 

flow case for which the mean velocity gradient is non-zero only in the wall-normal direction, and 

the mean temperature gradient is imposed to be uniform and non-zero in the streamwise or 

spanwise direction. The objective is to evaluate the accuracy of turbulent heat flux predictions 

using hybrid RANS-LES models in wall bounded flows, and to evaluate a proposed improvement 

to the dynamic hybrid RANS-LES (DHRL) turbulence model. Results are obtained at Prandtl 

number of 0.71 and Reynolds number of 180 based on wall friction velocity and channel half-

height, and are compared to available DNS data and to a well validated RANS model (k- SST). 

The specific hybrid RANS-LES models investigated include delayed detached eddy simulation 
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(DDES), improved delayed detached eddy simulation (IDDES), and dynamic hybrid RANS-LES 

(DHRL). The DHRL model includes both the standard formulation that has been previously 

documented in the literature as well as a modified version specifically developed to improve 

predictive capability for flows in which the mean velocity and mean temperature gradients are not 

closely aligned. The modification consists of using separate RANS-to-LES blending parameters 

in the momentum and energy equations. Results are interrogated to evaluate the performance of 

the three different model types and specifically to evaluate the performance of the new modified 

DHRL variant compared with the baseline version. 

 

2.2 Homogeneous Synthetic Turbulence Generation (Chapter IV) 

 
Computational fluid dynamics (CFD) results are presented for synthetic turbulence 

generation using a novel statistically targeted forcing (STF) method. The new method seeks to 

introduce a fluctuating velocity field with a distribution of first and second moments that match a 

user-specified target mean velocity and Reynolds stress tensor, by incorporating deterministic 

time-dependent forcing terms into the momentum equation for the resolved flow. The STF method 

is formulated to extend the applicability of previously documented methods and provide flexibility 

in regions where synthetic turbulence needs to be generated or sustained, for use in engineering 

level large-eddy and hybrid large-eddy/Reynolds-averaged Navier-Stokes CFD simulations. The 

objective of this study is to evaluate the performance of the proposed STF method in LES 

simulations of isotropic and anisotropic homogeneous turbulent flow test cases. Results are 

interrogated and compared to target statistical velocity and turbulent stress distributions and 

evaluated in terms of energy spectra. Analysis of the influence of STF model parameters, mesh 

resolution, and LES subgrid stress model on the results is investigated. Results show that the new 
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method can successfully reproduce desired statistical distributions in a homogeneous turbulent 

flow. 

 

2.3 Freestream Synthetic Turbulence Generation (Chapter V) 

 
Computational fluid dynamics (CFD) results for synthetic turbulence generation (STG) of 

freestream turbulence by a proposed statistically targeted forcing (STF) method in a prototypical 

channel domain are presented. The STF method was previously documented for homogeneous 

isotropic and anisotropic turbulence (Chapter III) and formulated to introduce a fluctuating 

velocity field with a distribution of first and second moments that match a user-specified target 

mean velocity and Reynolds stress tensor, by incorporating deterministic time-dependent forcing 

terms into the momentum equation for the resolved flow. Previous studies have documented 

synthetic generation of freestream turbulence as a boundary and/or initial (B/I) condition far 

upstream of a computational domain, but limited investigation exists in synthetically generating 

and/or maintaining turbulence within a spatially developing flow-domain. This study extends 

applicability of the STF method to generation of freestream turbulence in scale-resolving 

simulations, where flow is spatially developing. The method provides flexibility in regions where 

synthetic turbulence needs to be generated or damped, for use in engineering level scale-resolving 

simulations such as Reynolds-averaged Navier-Stokes (RANS), large-eddy simulation (LES), and 

hybrid RANS-LES. 
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2.4 Synthetic Generation of Initial Conditions for Temporally-Developing Turbulent 

Mixing Layer (Chapter VI) 

 
Computational fluid dynamics (CFD) results are presented for synthetic turbulence 

generation of initial conditions for the canonical test case of a temporally-developing turbulent 

mixing layer (TTML) flow. This numerical study further investigates the performance of the newly 

proposed Statistically Targeted Forcing (STF) method, and its capability to act as a restoring force 

to match the target mean velocity and turbulent stress distribution of the initial state of a 

temporally-developing flow where highly unsteady destabilizing mechanisms and influence are 

evident. Several previous investigations exist documenting vortex dynamics of the turbulent 

mixing layer, but limited investigations exist on synthetic turbulence generation forcing methods 

to prescribe initial conditions. The objective of this study is to evaluate the performance of the 

newly proposed STF method to capture the vortex dynamics and effectively match target mean 

velocity and resolved turbulent stress predictions using large-eddy simulation. Results are 

interrogated and compared to statistical velocity and turbulent stress distributions obtained from 

DNS simulations available in the literature. Results show that the STF method can successfully 

reproduce desired statistical distributions in a turbulent mixing layer flow. 
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CHAPTER III 

 

A NEW ENERGY BLENDING FORMULATION : 

HYBRID RANS-LES SIMULATION OF TURBULENT HEAT TRANSFER IN A CHANNEL 

FLOW WITH IMPOSED SPANWISE AND STREAMWISE MEAN TEMPERATURE 

GRADIENT 

Work from this chapter has been published in the ASME Journal of Fluids Engineering (JFE). 

 

3.1.  INTRODUCTION 

Heat transfer in turbulent wall bounded flows is important in many engineering applications 

including nuclear reactors, heat exchangers, and gas turbines. Typically heat transfer in the wall-

normal direction is of primary importance since it directly dictates convective heat transfer rate, 

but wall parallel heat transfer may also significantly impact overall system performance. For 

analysis and design purposes, computational fluid dynamics (CFD) prediction of spanwise or 

streamwise turbulent heat transfer in turbulent boundary layer flow remains a challenging problem. 

This is in part due to the fact that Reynolds-averaged Navier-Stokes (RANS) eddy-viscosity 

models are predicated on the assumption that mean temperature and velocity gradients are well 

aligned and that momentum and heat transfer occur almost exclusively in the same (wall-normal) 

direction. Improved  understanding of the flow physics of turbulent heat transfer, and improvement 

in effective prediction methods for modeling of turbulent heat flux for wall-bounded turbulent 
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flows, is therefore of value to the engineering community and a potentially fruitful area of CFD 

research.  

Several experimental studies have been performed on turbulent channel flow and have 

determined that spanwise or circumferential turbulent heat fluxes are often much greater than their 

wall-normal counterparts in the proximity of the walls [25-27]. However, insufficient accuracy of 

the data often limits the investigation of the physics of turbulent flow and heat transfer, as well as 

the effective validation of the predictive performance of turbulence models. 

 Direct numerical simulations (DNS) of turbulent heat transfer have been performed for 

periodic turbulent channel flow and have shed light on the physics of flow relating to wall-normal, 

streamwise, and spanwise turbulent heat transfer [28-35]. Kim and Moin [28] first simulated a 

channel flow with isothermal walls (Reτ = 180; Pr = 0.1, 0.71 and 2.0) and reported in their 

DNS study that the high correlation (0.95) between streamwise velocity and temperature 

fluctuations suggests the possibility of accurately modeling turbulent heat flux using an eddy-

viscosity type model [28]. Kasagi et al. [34] and Lyons et al. [35] also reported that streamwise 

velocity and temperature fluctuations were well correlated. Lu and Hetsroni [30] in their DNS 

study documented detailed streamwise turbulent heat flux statistics with imposed periodic 

boundary conditions in streamwise and spanwise directions. A mean temperature gradient was 

imposed in the streamwise direction at a Reynolds number of 184 based on friction velocity and 

half channel-height. In contrast to previous DNS studies, there was no restriction to temperature 

fluctuation near the walls due to non-physical thermal boundary conditions. Kawamura et al. [29] 

documented the effect of Prandtl and Reynolds number on turbulent heat transfer. In their DNS 

study it was established that streamwise turbulent heat flux does not vary strongly with Prandtl 

number in the range 0.2 to 0.71 [29]. For these DNS studies, most documented data were at Prandtl 
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number of 0.71 and Reynolds number of 180 for both streamwise and wall-normal turbulent heat 

fluxes. DNS studies that documented spanwise turbulent heat flux statistics were performed by 

Kawamoto et al. [32] and Matsubara et al. [31] at the same Prandtl and Reynolds number as 

previous studies investigating wall-normal and streamwise heat flux (0.71 and 180, respectively).  

Despite the availability of DNS studies, there is a distinct lack of CFD simulations in the 

open literature for which RANS and/or hybrid RANS-LES models are evaluated with regard to 

predicting streamwise and spanwise turbulent heat transfer in wall-bounded flow. It is generally 

understood that the computational cost of DNS and even large-eddy simulation (LES) is 

prohibitively high for industrial or engineering level application of CFD, especially at high 

Reynolds numbers. Therefore, it is appropriate to evaluate and validate more cost-effective 

turbulence modeling options for the prediction of turbulent heat transfer. The canonical periodic 

turbulent channel flow test case examined in this study is a simple geometry that can be effectively 

utilized for that purpose.  

While computationally the least expensive turbulence modeling approach, RANS resolves 

only the mean flow variables while modeling the effect of all scales of fluctuating turbulent motion 

on the mean flow. This introduces error in the computed solution, most especially in separated 

flows [11]. In contrast, LES models only the smallest scales while resolving the larger, primary 

energy containing scales of turbulence. Hence, in general, it theoretically produces more accurate 

results than RANS for a wide range of flow configurations but is still often considered 

prohibitively expensive for many industrial applications [12].  

The tradeoff of effectively balancing cost versus accuracy has facilitated interest in the 

development of hybrid RANS-LES (HRL) models. The HRL modeling approach is theoretically 

more accurate than RANS and more affordable than LES, which potentially creates a competitive 
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advantage in performance and cost compared to RANS or LES alone [37]. HRL methods can be 

broadly classified as zonal or non-zonal. For the zonal approach, a RANS model is employed in 

user specified regions of the computational domain, and an LES model is employed in the 

remaining regions. The major challenge is the selection of interface conditions to provide seamless 

transition between the two regions [14,15]. The non-zonal approach, as the name suggests, is one 

for which the user is not required to specify the RANS and LES regions explicitly, however the 

Reynolds stress and subgrid stress tensors differ mathematically and bridging the two effectively 

is still a significant research challenge [15]. 

This study investigates the performance of the dynamic hybrid RANS-LES model (DHRL) 

using both the standard formulation previously documented in the literature [13,37,48-49] and a 

modified formulation with potentially improved blending parameters in the momentum and energy 

equations. The objective is to evaluate the performance of the DHRL model in comparison to an 

eddy-viscosity based RANS model and two conventional HRL models, delayed detached eddy 

simulation (DDES) and improved delayed detached eddy simulation (IDDES), for predicting 

streamwise and spanwise turbulent heat transfer in a wall-bounded flow. A mean temperature 

gradient is imposed in the streamwise or spanwise direction, while the mean velocity gradient is 

non-zero only in the wall-normal direction. The mis-alignment of the mean velocity and 

temperature gradients introduces significant error into traditional eddy-viscosity RANS models, 

but is potentially mitigated using a hybrid RANS-LES approach. The overall objective of this 

paper is to investigate and validate a relatively accurate and cost-effective HRL modeling approach 

with improved predictive capability for wall-parallel heat transfer in wall-bounded turbulent flow. 

 

 



 15 | 
P a g e  

 

3.2.  SIMULATION DETAILS 

The canonical test case considered here is fully developed turbulent plane channel flow that 

is statistically homogeneous in the streamwise and spanwise directions. The domain extends 

2𝜋𝛿 × 2𝛿 × 𝜋𝛿 in the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively, 

where 𝛿 is the half-channel height. Boundary conditions are periodic in both streamwise and 

spanwise directions and a source term analogous to a mean pressure gradient is imposed in the 

streamwise direction to drive the mean flow. The Reynolds number for all simulations is: 

 

 𝑅𝑒𝜏 =
𝑢𝜏𝛿

𝜈
= 180 (1) 

 

where 𝑢𝜏 is the friction velocity and 𝜈 the kinematic viscosity. The fluid Prandtl number is 𝑃𝑟 =

0.71. 

The test case represents a fully-developed wall-bounded turbulent flow with non-zero mean 

velocity gradient in the wall-normal direction only, and provides one of the simplest geometries 

to allow for investigation of the complex flow interaction between a passive scalar field and 

turbulent velocity field, with temperature being the scalar field in this case. A source term is also 

included to represent an imposed mean temperature gradient in either the streamwise or spanwise 

direction, depending on which case is under consideration. Further details of the geometry are 

discussed in the following subsections. In addition, the mathematical formulation of heat flux 

relating to specific models considered in this study, representing the two different classes of 

turbulent modeling approach—RANS and hybrid RANS-LES—are discussed briefly. Details of 

computational grid, boundary conditions, numerical schemes and flow solver are also presented.  
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3.2.1.  Governing Equations 

 The relevant equations are the conservation of mass, momentum, and energy for a single-phase, 

single-species, incompressible fluid with negligible body forces or viscous 

dissipation. General modeled forms of the equations are obtained by applying an 

undefined filtering operation, denoted by the hat overbar symbol (^), which is 

assumed to represent Reynolds averaging for RANS or implicit filtering for LES. 

The resulting governing equations are:  

 

 
𝜕𝑢̂𝑗

𝜕𝑥𝑗
= 0 (2) 

 

 
𝜕𝑢̂𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢̂𝑖𝑢̂𝑗)  = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢̂𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 (3) 

 

 
𝜕𝑇̂

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢̂𝑗𝑇̂)  = 𝜅

𝜕2𝑇̂

𝜕𝑥𝑗𝜕𝑥𝑗
+
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝑔 (4) 

 

 𝜏𝑖𝑗 = −(𝑢𝑖𝑢𝑗̂ − 𝑢̂𝑖𝑢̂𝑗) (5) 

 

 𝑞𝑗 = −(𝑢𝑗𝑇̂ − 𝑢̂𝑗𝑇̂) (6) 

 

In the above, 𝜈 is kinematic viscosity and 𝜅 is thermal diffusivity. The source terms 𝑓𝑖 and 𝑔 are 

used to impose appropriate momentum and energy balance, respectively, in the streamwise-

periodic domain, and are discussed in more detail in subsection 2.6.  
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Equations (2-6) are formally valid for both LES and RANS modeling approaches. In 

practice, the specific modeled form of the equations that is solved during CFD simulation is 

obtained by substitution of model terms for the (kinematic) turbulent stress tensor, 𝜏𝑖𝑗, and 

turbulent heat flux vector, 𝑞𝑗. For LES, these terms are obtained using an explicit or implicit 

subgrid stress model. For RANS, they are obtained using an appropriate Reynolds stress model, 

for example the eddy-viscosity based SST k− model.  

 

3.2.2.  Shear-Stress Transport (SST) Formulation  

A well-known example of the RANS modeling approach is the Shear-Stress Transport (SST 

k-ω) model [40]. It has been widely and successfully used for practical RANS CFD simulation of 

many complex turbulent flows. Assuming that the filtering operation in Eqs. (5,6) denoted by the 

hat overbar (^) represents Reynolds-averaging, the turbulent stress tensor and turbulent heat flux 

vector are modeled using the Boussinesq hypothesis as: 

 

 𝜏𝑖𝑗 = 𝜈𝑡 (
𝜕𝑢̂𝑖

𝜕𝑥𝑗
+
𝜕𝑢̂𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗  (7) 

 

 𝑞𝑗  =
𝜈𝑡

𝑃𝑟𝑡

𝜕𝑇̂

𝜕𝑥𝑗
 (8) 

 

 𝜈𝑡 =
𝑎1𝑘

𝑚𝑎𝑥(𝑎1𝜔,𝐹𝑠𝑠𝑡𝑆)
 (9) 
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where 𝐹𝑠𝑠𝑡 is a blending function, 𝑎1 is a constant, k is turbulent kinetic energy and 𝑆 represents 

an invariant measure of the strain-rate magnitude. 𝐹𝑠𝑠𝑡 obtains a value of unity in a boundary layer 

flow, and a value of zero for free shear layers far from a wall.  

Two transport equations, one for the turbulent kinetic energy (k) and the other for the specific 

turbulence dissipation rate (𝜔), are incorporated into the SST k-ω modeling framework as 

follows:  

 

 
𝐷𝑘

𝐷𝑡
= 𝜏𝑖𝑗 

𝜕𝑢̂𝑖

𝜕𝑥𝑗
− 𝛽∗𝜔𝑘 +

𝜕

𝜕𝑥𝑗
 [(𝜈 +  𝜎𝑘𝜈𝑡 )

𝜕𝑘

𝜕𝑥𝑗
] (10) 

 

 
𝐷𝜔

𝐷𝑡
=  

𝛾

𝜈𝑡
𝜏𝑖𝑗 

𝜕𝑢̂𝑖

𝜕𝑥𝑗
− 𝛽𝜔2 +

𝜕

𝜕𝑥𝑗
 [(𝜈 +  𝜎𝜔𝜈𝑡 )

𝜕𝜔

𝜕𝑥𝑗
] +  2 (1 − 𝐹1)𝜎𝜔2  

1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗
 
𝜕𝜔

𝜕𝑥𝑗
  (11) 

  

The blending function F1 plays a similar role as 𝐹𝑠𝑠𝑡, serving as an indicator function for near-

wall and far field regions of the flow. Near the wall, F1 = 1, and a k-ω model form is recovered. 

Far from the wall, F1 tends to 0. For further details on the model, readers are referred to Ref. [40]. 

For the simulations here, the turbulent heat flux was computed using a constant turbulent Prandtl 

number, 𝑃𝑟𝑡 = 0.85. 

 

3.2.3.  Monotonically Integrated LES (MILES) Model Formulation  

The dynamic hybrid RANS-LES (DHRL) models in this study use monotonically integrated 

LES [41] (MILES) as the blended LES component. In conventional LES, an explicit subgrid 

stress (SGS) model is used for closure of Eq. (3) to provide a mechanism by which transfer of 
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kinetic energy can occur from the resolved to the subgrid (modeled) scales, which manifests 

primarily as dissipation from the resolved flowfield. In contrast, for the MILES model, 𝜏𝑖𝑗 is 

modeled as equal to zero, and solution of Eq. (3) is accomplished using high-resolution upwind 

algorithms for the convective terms. This effectively provides an implicit SGS model, in which 

the numerical dissipation of the convective discretization scheme serves to represent the effect of 

subfilter scales on the resolved variable fields. Therefore, neither explicit SGS modeling nor 

successive explicit filtering is required [41]. Numerical dissipation plays a similar role in the 

energy equation (Eq. 4) to represent subgrid turbulent heat flux. 

 

3.2.4.  Detached Eddy Simulation (DES) Model  

One example of a non-zonal type of hybrid RANS-LES modeling approach is the Spalart-

Allmaras (SA) based detached eddy simulation (DES) model developed by Spalart et al. [12]. 

Successive model variants include delayed DES (DDES) [38] and improved delayed DES 

(IDDES) [39]. The latter is one of the more popular methods used for hybrid RANS-LES 

simulation of high Reynolds number flows with separated shear layers. This model uses the 

distance closest to a bounding wall as the definition for the length scale, which plays a major role 

in determining the level of production and destruction of turbulent viscosity. In this approach, the 

model switches from a RANS mode in the boundary layer to LES mode in the core flow, 

depending on a criterion based on the turbulence length scale. The eddy viscosity in this model is 

a function of the Spalart-Allmaras viscosity-like variable, 𝜈̃, which is computed from a transport 

equation similar to that for turbulent kinetic energy in the SST k- model. The reader is referred 
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to Refs. [12,38-39] for details on the DES, DDES and IDDES models. For the present study, both 

the DDES and IDDES model variants will be considered. 

  

3.2.5.  Dynamic Hybrid RANS-LES (DHRL) Formulation 

 The DHRL modeling methodology was originally presented in Refs. [13,36]. DHRL is 

most appropriately considered as a framework for blending arbitrary RANS and LES model 

variants into a hybrid RANS-LES model, rather than a specific model in itself. The following 

sections briefly present the previously documented baseline RANS-LES blending methodology 

for the DHRL model and discuss the proposed modified blending method.  

 

3.2.5.1.  Baseline DHRL Formulation 

The DHRL modeling methodology seeks to avoid ambiguity in blending the effects of 

ensemble-averaged velocity fields (Reynolds stress) and spatially-filtered velocity fields 

(subgrid stress). This section briefly summarizes only the key aspects. Mean velocity is defined 

as: 

 

 𝑢̅𝑖 = 〈𝑢̂𝑖〉 (12) 

 

The angle brackets in Eq. (12) denote Reynolds averaging. In practice, for stationary flow such 

as that considered in this study, the Reynolds average is computed during the simulation using a 
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running time-averaging operation. The baseline blending method for RANS and SGS stresses in 

DHRL is: 

 

 𝜏𝑖𝑗 = 𝛼𝜏𝑖𝑗
𝑆𝐺𝑆 + (1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆 (13) 

 

 𝛼 =

−(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ −𝑢̅𝑖𝑢̅𝑗) 𝑆𝑖𝑗̅̅ ̅̅⏟             

𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑇𝐾𝐸
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅ ̅̅⏟      

𝑅𝐴𝑁𝑆 𝑇𝐾𝐸 
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 

− 𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ ̅ 𝑆𝑖𝑗̅̅ ̅̅⏟      
𝑆𝐺𝑆 𝑇𝐾𝐸

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 (14) 

 

The terms 𝜏𝑖𝑗
𝑆𝐺𝑆 and 𝜏𝑖𝑗

𝑅𝐴𝑁𝑆 are the subgrid stress predicted by any candidate LES model and the 

turbulent stress predicted by any candidate RANS model, respectively. The numerator in Eq. (14) 

represents the production of turbulent kinetic energy (TKE) due to the resolved turbulent scales 

in the flow. The term in the denominator is the difference of 𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅  , which is the production of 

k predicted by the RANS model, and 𝜏𝑖𝑗𝑆𝐺𝑆̅̅ ̅̅ ̅̅  𝑆𝑖𝑗̅̅̅̅ , which is the mean component of the subgrid scale 

turbulent kinetic energy production (see [13] for further details). Equation (14) indicates that the 

model operates in a pure LES mode only if the resolved scale production is equal to or greater 

than the predicted RANS production, otherwise the model behaves in a transitional mode where 

an additional RANS stress compensates for reduced LES content. In regions with zero LES 

content, i.e. numerically steady flow, the model operates in a pure RANS mode. For the current 

model implementation, the RANS part of DHRL is found using the eddy viscosity computed by 

the k-ω SST model as shown in Eq. (9). As stated above, in the current study MILES is used for 

the LES model component, hence 𝜏𝑖𝑗
𝑆𝐺𝑆 is zero and the modeled turbulent stress is simply 

computed as: 
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 𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 (15) 

 

 𝛼 =
−(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ −𝑢̅𝑖𝑢̅𝑗) 𝑆𝑖𝑗̅̅ ̅̅

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅ ̅̅

 (16) 

 

For flows with heat transfer, the turbulent heat flux vector is similarly expressed as a weighted 

average of the SGS and RANS model predicted values:  

 

 𝑞𝑗 = 𝛼𝑞𝑗
𝑆𝐺𝑆 + (1 − 𝛼)𝑞𝑗

𝑅𝐴𝑁𝑆 (17) 

 

and when using MILES as the LES component: 

 

 𝑞𝑗 = (1 − 𝛼)𝑞𝑗
𝑅𝐴𝑁𝑆  (18) 

 

Importantly, the RANS turbulent stress and heat flux terms are computed using the mean 

velocity and temperature fields, i.e. for eddy-viscosity models: 

 

 𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 = 𝜈𝑡 (

𝜕𝑢̅𝑖

𝜕𝑥𝑗
+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗  (19) 

 

 𝑞𝑗
𝑅𝐴𝑁𝑆 =

𝜈𝑡

𝑃𝑟𝑡

𝜕𝑇̅

𝜕𝑥𝑗
  (20) 
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Similarly, the governing equations for the RANS model (e.g. Eqs. 9-11 in the current DHRL 

implementation) are solved using the mean, rather than the resolved, velocity field.  

Although the baseline DHRL model has been found to successfully improve prediction for 

a wide range of flows relative to conventional HRL closures, potential weaknesses remain. For 

example, the blending function, 𝛼, is determined based on the statistics of the velocity field only 

but is used to blend RANS and LES contributions in the modeled form of the turbulent heat flux. 

This can lead to error for flows in which the mean velocity and temperature gradients are not 

closely aligned. An extreme example would be isotropic turbulence with an imposed mean 

temperature gradient, in which case the blending function in Eq. (16) would be undefined. A more 

practical case is flow in which the mean velocity gradient is non-zero in only one direction (e.g. 

wall-normal) while the temperature gradient is non-zero in more than one coordinate direction or 

in a different direction. The former is true for a channel flow case with an imposed streamwise 

temperature gradient, and the latter is true for an imposed spanwise temperature gradient. In that 

case it is possible that the blending function will inadequately reproduce an appropriate modeled 

heat flux. To address this weakness, it is proposed to adopt separate blending parameters for the 

momentum and energy equations. 

 

3.2.5.2.  Modified DHRL Formulation  

A separate blending function computed from the statistics of the velocity and scalar 

(temperature) field instead of the velocity field alone can be used to compute the turbulent heat 

flux in the modeled energy equation. The turbulent heat flux is decomposed as in Eq. (17), using 

an equation specific blending variable, 𝛼𝑇:  
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 𝑞𝑗 = 𝛼𝑇𝑞𝑗
𝑆𝐺𝑆 + (1 − 𝛼𝑇)𝑞𝑗

𝑅𝐴𝑁𝑆 (21) 

 

The blending function specific to the energy equation is then computed analogous to Eq. (14) as: 

 

 𝛼𝑇 =
−(𝑢𝑗𝑇̅̅ ̅̅ ̅−𝑢̅𝑗𝑇̅)

𝜕𝑇̅

𝜕𝑥𝑗

𝑞𝑗
𝑅𝐴𝑁𝑆 𝜕𝑇̅

𝜕𝑥𝑗
−𝑞𝑗

𝑆𝐺𝑆 𝜕𝑇̅

𝜕𝑥𝑗

  (22) 

 

The numerator in Eq. (22) represents the production of temperature variance due to interactions 

of the resolved velocity and temperature fluctuations with the mean temperature gradient. The 

first term in the denominator represents that production as predicted within a RANS framework, 

and the second term in the denominator represents the mean production of temperature 

fluctuations due to the subgrid stress model. For DHRL simulations using MILES as the LES 

component (as in the present work), the SGS component of the heat flux is assumed zero and the 

above are equivalently expressed: 

 

 𝑞𝑗 = (1 − 𝛼𝑇)𝑞𝑗
𝑅𝐴𝑁𝑆 (23) 

 

 𝛼𝑇 =
−(𝑢𝑗𝑇̅̅ ̅̅ ̅−𝑢̅𝑗𝑇̅)

𝜕𝑇̅

𝜕𝑥𝑗

𝑞𝑗
𝑅𝐴𝑁𝑆 𝜕𝑇̅

𝜕𝑥𝑗

  (24) 

 

It is apparent that Eq. (24) computes a blending function in a similar manner as Eq. (16), 

but critically, the blending depends on the ratio of resolved-to-modeled mean transport of thermal 
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energy (turbulent heat flux) in the direction of the mean temperature gradient, rather than 

resolved-to-modeled transport of mean momentum (turbulent stress) in the direction of mean 

strain rate. It is therefore believed to be more physically appropriate for blending the RANS and 

LES heat flux model forms in the energy equation for the DHRL model. Evaluation of this 

modified version of DHRL is one of the key goals of this study. 

 

3.2.6.  Boundary and Forcing Conditions 

Dirichlet boundary conditions are used for both velocity and temperature on the channel 

walls. For velocity, no-slip conditions are applied on the upper and lower wall surfaces. Wall 

temperature, 𝑇𝑤, is not uniform but varies linearly in the streamwise or spanwise direction. To 

impose periodicity for the energy equation, the temperature field is expressed in terms of excess 

temperature, 𝜃: 

 

 𝜃(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇̂(𝑥, 𝑦, 𝑧, 𝑡) − 𝑇𝑤(𝑥, 𝑧) (25) 

 

and the wall temperature boundary condition on upper and lower walls is then simply: 

 

 𝜃𝑤 = 0. (26) 

 

For all cases the forcing term in the momentum equation (Eq. 3) is specified to enforce the 

correct value of 𝑅𝑒𝜏: 
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 𝑓1 = 
𝑢𝜏
2

𝛿
 (27) 

 

The mean temperature gradient in the streamwise or spanwise direction is imposed using the 

source term in the energy equation. In general, for an imposed mean temperature gradient 
𝜕𝑇𝑚

𝜕𝑥𝑖
, 

the energy equation is expressed as: 

 

 
𝜕𝜃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜃

𝜕𝑥𝑗
 = 𝜅

𝜕2𝜃

𝜕𝑥𝑗𝜕𝑥𝑗
+
𝜕𝑞𝑗

𝜕𝑥𝑗
−
𝜕𝑇𝑚

𝜕𝑥𝑗
𝑢̂𝑗   (28) 

 

For a flow that is hydrodynamically and thermally fully developed: 

 

 
𝜕𝑇𝑚

𝜕𝑥1
 =

〈𝑞𝑤〉

𝜌𝑐𝑝𝑈𝑚𝛿
 (29) 

 

Here 𝑈𝑚 is the bulk (mixing-cup) streamwise velocity, 𝑞𝑤 is wall heat flux, 𝜌 and 𝑐𝑝 are density 

and specific heat, respectively, and the angle brackets denote an ensemble or infinite-time 

average. For imposed streamwise mean temperature gradient, mean heat flux is therefore 

computed from bulk velocity as: 

 

 〈𝑞𝑤〉 =  𝜌𝑐𝑝𝑈𝑚𝛿
𝜕𝑇𝑚

𝜕𝑥1
   (30) 

 

and the bulk velocity can be obtained from the solution as 
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 𝑈𝑚 =
1

𝛿
∫ 𝑢̅1
𝛿

0
 𝑑𝑦   (31) 

 

For imposed streamwise mean temperature gradient, dimensionless temperature results are 

expressed as: 

 

 𝜃+ = 𝜃/𝜃𝑓 (32) 

 

 𝜃𝑓 =
〈𝑞𝑤〉

𝜌𝑐𝑝𝑢𝜏
=
𝜕𝑇𝑚

𝜕𝑥1

𝑈𝑚

𝑢𝜏
𝛿   (33) 

 

Note that this formulation for the energy equation, which is identical to that used in reference 

DNS studies [5,10], enforces a linear wall temperature variation rather than a uniform heat flux, 

and wall temperatures do not vary with time. The instantaneous local heat flux, 𝑞𝑤, therefore 

varies in both space and time, but the mean heat flux 〈𝑞𝑤〉 is spatially uniform.  

Following Refs. [31,32], for cases with imposed spanwise mean temperature gradient, the 

mean wall heat flux is zero, and dimensionless temperature results are defined based on the 

imposed spanwise molecular heat flux, 𝑞0 = 𝑘̃
𝜕𝑇𝑚

𝜕𝑥3
, where 𝑘̃ is the molecular thermal conductivity. 

The reference temperature 𝜃𝑓 is then determined by replacing 〈𝑞𝑤〉 in Eq. (33) with spanwise 

molecular heat flux, 𝑞𝑜: 

 

 𝜃𝑓 =
𝜕𝑇𝑚

𝜕𝑥3

𝜅

𝑢𝜏
  (34) 
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where, as in Eq. (28), 𝜅 denotes thermal diffusivity. 

 

3.2.7.  Computational Grid 

Ansys meshing software was used to generate two structured single-block computational 

grids. A coarse grid of 643 cells was first generated and a refined mesh of 1283 cells was created 

by refining each cell of the coarse mesh in all three coordinate directions. The two meshes were 

used to investigate the effect of mesh size on the different modeling methods. The first cell y+ 

value was less than 1 for both. Fig. 1 provides a planer view illustration of the computational 

grids including topology and resolution levels for the coarse and refined cases. Table 1 shows 

configuration domain size, minimum and maximum cell lengths for each mesh resolution in terms 

of 𝛿, where 𝛿 is the half-channel height. 
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(a) Coarse grid 

 

(b) Refined grid 

Fig 1. Illustration of computational mesh: (a) coarse grid; (b) refined grid. 

 

Table 1. Domain size and mesh resolution cell lengths ( ∆𝒙, ∆𝒚 𝐚𝐧𝐝 ∆𝒛) 

Min. ∆𝒚 Max. ∆𝒚 ∆𝒙 ∆𝒛 Domain size 

Coarse grid 0.0021𝛿 0.127𝛿 0.1𝛿 0.05𝛿 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 

Refined 

grid 
0.0005𝛿 0.0643𝛿 0.05𝛿 0.025𝛿 

6.4𝛿 × 2𝛿

× 3.2𝛿 
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3.2.8. Computational Fluid Dynamics Solver 

All simulations in this study were performed using the open source CFD code FlowPsi, a 

finite-volume density-based solver constructed in C++ using the Loci framework. The code 

utilizes second-order backward difference temporal discretization, second-order implicit flux 

reconstructions, and least-square gradient computations. This code has been previously 

investigated and tested for a backward-facing step case and the results were found to be in good 

agreement with Ansys-FLUENT and Loci-CHEM solvers [36,43]. For the current simulations, 

incompressible flow was simulated by imposing low Mach number (Ma ≈ 0.1 based on bulk 

velocity) and small temperature variation. Results confirm that the maximum variation in density 

throughout the domain was less than 1.8%.  

In its baseline version, convective flux terms are discretized by the Harten-Lax-van Leer-

Contact (HLLC) Riemann-based scheme introduced by Toro [44]. In this study, the SST k-ω 

model simulations use the HLLC scheme since only mean flow is resolved and the effect of 

numerical dissipation error on results is expected to be minimal. For the hybrid RANS-LES cases, 

a low dissipation optimization-based gradient reconstruction (OGRE) scheme is used for 

convective discretization in order to resolve small scale fluctuating flow features. The reader is 

referred to Ref. [45] for further details, in which it is reported that the OGRE scheme provides 

superior resolution of high wavenumber velocity and pressure modes in unsteady turbulent flow 

simulations compared to traditional upwind-biased 2nd order schemes. 
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3.3.   RESULTS AND DISCUSSION 

3.3.1.  Mean and Fluctuating Velocity 

The dimensionless mean streamwise velocity profiles (𝑈 = 𝑢̅1) predicted by each of the 

models on the coarse and refined grids are shown in Fig. 2. Note that for all results the legend for 

the modified variant of the DHRL model is represented by DHRL_MOD, while that for baseline 

variant is DHRL_BAS. Velocity statistics are not affected by the heat transfer condition since 

temperature in the current simulations acts as a passive scalar. Figure 2 indicates that the log-

layer computed by both DDES and IDDES models shows a small mismatch with the DNS data, 

characteristic of many hybrid RANS-LES models. The disagreement with DDES is smaller than 

with IDDES, however, the latter shows 1% improvement in result with increased mesh 

refinement. All models show reasonable but not exact agreement on both coarse and refined grids. 

The two model variants for DHRL show no differences with regard to the predicted velocity field, 

as expected. To illustrate the qualitative flow features, Fig. 3 shows the contours of instantaneous 

and mean velocity for each of the models investigated. It is apparent that all of the hybrid RANS-

LES models show resolved turbulent fluctuations qualitatively, as expected, while the SST k-w 

RANS model yields only the mean flow solution.  
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         (a) Coarse grid                                              (b) Refined grid 

Fig 2. Mean velocity profiles on (a) coarse grid, and (b) refined grid for SST, DHRL, 

DDES, and IDDES models. 

 

                               Coarse grid                                                                  Refined grid 

               

Fig 3. Contours of instantaneous  and mean velocity on coarse grid (left), and refined grid 

(right)  for (a) SST, (b) DHRL (c) DDES, and (d) IDDES models 

𝑉𝑚𝑎𝑥(m/s) 
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Figure 4 shows profiles of the non-dimensional resolved RMS fluctuating velocity 

components 𝑢𝑟𝑚𝑠
+ , 𝑣𝑟𝑚𝑠,

+  and 𝑤𝑟𝑚𝑠
+  for the HRL models in comparison with DNS data [29,34]. 

The RMS velocities are defined as: 

 𝑢𝑟𝑚𝑠 = √𝑢′1𝑢′1̅̅ ̅̅ ̅̅ ̅̅  , 𝑣𝑟𝑚𝑠 = √𝑢′2𝑢′2̅̅ ̅̅ ̅̅ ̅̅  , 𝑤𝑟𝑚𝑠 = √𝑢′3𝑢′3̅̅ ̅̅ ̅̅ ̅̅      (35) 

 

 𝑢𝑖
′ = 𝑢̂𝑖 − 𝑢̅𝑖    (36) 

 

All models successfully predict the quantitative near-wall behavior, including the peak in 

streamwise (𝑢𝑟𝑚𝑠) fluctuations and the damping of wall-normal (𝑣𝑟𝑚𝑠) fluctuations. Only the 

IDDES model shows a significant quantitative disagreement with DNS for the streamwise 

fluctuating velocity, overpredicting the peak value by 11.5% and 13.3% on the coarse and fine 

grids, respectively. Likewise, similar to the mean velocity results above, all models are relatively 

insensitive to mesh refinement level, showing similar results on coarse and fine grids. For the 

refined grid, the DHRL model shows an underprediction of 𝑢𝑟𝑚𝑠 at  𝑦+ = 16 of 1.45%, while 

DDES underpredicts the peak by 5.08%. Furthermore, DDES and IDDES show a consistent 

overprediction in the range of 18 < 𝑦+ < 140 on both coarse and refined grids. As shown in Fig. 

2, the resolution of the fluctuating velocities is apparently sufficient to accurately reproduce the 

correct mean velocity profile for the DHRL model and with only a small log-layer mismatch for 

both DDES and  IDDES models. 
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Fig 4.  Predicted root mean square (RMS) of fluctuating velocity components in the 

streamwise (𝒖′), wall-normal (𝒗′), and spanwise (𝒘′) directions on coarse and refined grids 

for the hybrid RANS-LES models used in this study. 

(a) DHRL- Coarse (b) DHRL- Refined 

(c) DDES - Coarse (d) DDES - Refined 

(e) IDDES - Coarse (f) IDDES - Refined 
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Figure 5 shows that the turbulent kinetic energy (TKE) profiles predicted by the DHRL, 

DDES, and IDDES models are also in quantitative agreement with DNS. Figures 5 (a) and (b) 

clearly show that  results from coarse and refined grids are similar and in good agreement with 

one another. Quantitatively, at around y+ = 16, the DHRL model slightly underpredicts the peak 

TKE by 2% on the coarse grid, and overpredicts the peak TKE by 5% on the refined grid, and 

this small difference highlights the relative insensitivity to mesh resolution. DHRL model results 

are in best agreement with the DNS peak TKE value overall. The SST modeled peak TKE value 

deviates significantly from DNS; this underprediction of the near-wall peak TKE is a well-known 

characteristic of that model. Consistent with previous results, DDES is in better agreement with 

DNS compared to IDDES in the prediction of peak TKE value. On the coarse grid, DDES slightly 

underpredicts the peak TKE by 2.9%, while IDDES overpredicts the peak value by 10.5%, and 

these values are relatively consistent on refined grid. Overall, on both grids, DHRL and DDES 

models show the best qualitative and quantitative agreement with DNS data, while IDDES 

overpredicts the peak TKE value,  and SST modeled peak TKE significantly deviates from DNS. 
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                      (a) Coarse grid                                                          (b) Refined grid 

Figure 5. Turbulent Kinetic Energy (TKE) profiles of (a)coarse grid, and (b)refined grid 

across the channel width for SST and hybrid RANS-LES models 

 

Figure 6 illustrates the effect of mesh refinement on predicted mean velocity for each of the 

models considered. The SST model resolves only the mean flow, therefore it is theoretically 

possible to obtain a grid independent solution as the mesh refinement level is increased. Figure 6 

(a) indicates quantitatively that the solution is nearly grid independent. For the hybrid models, the 

effect of mesh resolution is less straightforward. In this case, the theoretical exact solution is not 

the mean (Reynolds-averaged) field, but rather the (implicitly) spatially-filtered variable field. 

Therefore, as the mesh is refined, the solution itself changes as higher wavenumber portions of 

the spectrum are resolved, and it is not possible to rigorously define grid independence in the 

numerical sense. For practical purposes, however, results from different grids can be compared 

to determine mesh sensitivity, even for LES or hybrid RANS-LES simulations. As seen in Fig. 6, 
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all of the models show relatively low sensitivity to mesh refinement. This is a fundamental feature 

of the hybrid RANS-LES models, for which additional RANS stress is included in the transport 

terms if the LES content of the solution is not sufficient to accurately reproduce the mean flow.  

 

    

      

Figure 6. Mean velocity profiles on coarse and refined grids, highlighting mesh sensitivity 

 for (a) SST, (b) DHRL, (c) DDES, and (d) IDDES models 

                                                               

   (a) SST    (b) DHRL 

   (c) DDES    (d) IDDES 
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  3.3.2.  Streamwise Mean Temperature Gradient Test Case 

Figure 10 shows the mean temperature profile for the case with imposed streamwise mean 

temperature gradient. Figure 7 shows the mean temperature profiles obtained for the case with 

imposed streamwise mean temperature gradient, for each of the models in this study. All five 

models show quantitative agreement with DNS data [29], and the results closely follow the mean 

velocity results shown in Fig. 2. It is apparent that the modified variant of  the DHRL model 

(DHRL_MOD) shows the best quantitative agreement with DNS on both coarse and refined grids. 

In contrast, the IDDES model overpredicts the mean temperature in the log-layer and mid-channel 

regions on both grids, while DDES, the baseline variant of the DHRL model, and SST show 

different trends of slight underprediction of mean temperature. Overall, the models are all in 

quantitative agreement on both coarse and refined grids with DNS data.  

 

                                 (a) Coarse                                                          (b) Refined 

Figure 7. Mean temperature profiles for SST and hybrid RANS-LES models on (a) coarse 

grid, and (b) refined grid 
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Figure 8 provides a qualitative illustration of the instantaneous and mean temperature 

distribution in the domain. The contours are very similar to the velocity contours presented in Fig. 

3. The three hybrid RANS-LES models clearly resolve the unsteady fluctuating temperature field, 

and the level of resolution is qualitatively similar for all of them.  

 

Coarse grid                                                                     Refined grid 

 

Figure 8. Contours of Instantaneous and mean excess temperature (𝜽) on coarse grid 

(left), and refined grid (right) for (a) SST, (b) DHRL, (c) DDES, and (d)IDDES models 

 

Figure 9 shows the fluctuating temperature profile (RMS) for DHRL, DDES, and IDDES 

models for the imposed streamwise mean temperature gradient test case on coarse and refined 

grids. The SST model result is not reported due to negligible resolved temperature fluctuations 

with that model. The root-mean-square temperature fluctuations are compared with the DNS 

results of Kasagi et al. [34], which is also documented to be in very good agreement with the DNS 

data at Reτ = 180 of Kawamura et al. [29]. Interestingly, the fluctuating temperature field shows 

𝜃𝑚𝑎𝑥(K) 
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little difference for the two variants of the DHRL model and both are in good agreement with the 

DNS results for most of the channel domain on coarse and refined grids. The predictions of the 

peak RMS fluctuating temperature value by both  model variants at y+ = 19 are all slightly below 

DNS. The DHRL baseline variant (DHRL_BAS) underpredicts the peak value by 5.1%, and the 

modified variant (DHRL_MOD) underpredicts it by 1.9%. The IDDES model shows a significant 

overprediction throughout the entire channel domain, and overpredicts the peak RMS fluctuating 

temperature value by 9.5%, while DDES model underpredicts it by 4.5%. On the refined grid, all 

models are consistent qualitatively with their predictions on coarse grids, however, differences in 

results for the modified and baseline variants of DHRL  are 0.36%, and 0.64% respectively, while 

IDDES and DDES differ by 0.04% and 0.31% respectively. The differences in the model results 

are due to mesh sensitivity of each, but overall differences in results are relatively small and do 

not produce significant error in the predicted mean velocity as shown in Fig. 2 (b). Most 

importantly for the present study, the results indicate that the modified variant of DHRL model 

does in fact show some improvement for the prediction of the fluctuating temperature field over 

the baseline version on both grids, particularly in the vicinity of the near-wall peak.  
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(a) Coarse                                                              (b) Refined 

Figure 9. Root mean square (RMS) fluctuating temperature profiles on (a)coarse grid, and 

(b)refined grid with imposed streamwise mean temperature gradient for DHRL, DDES, 

and IDDES models compared with DNS data of Kawamura et al. [29] and Kasagi et al. 

[34] 

Figure 10 shows predicted streamwise turbulent heat flux profiles for all models on both 

coarse and refined grids. The heat flux profiles on the coarse grid shown in Fig.11(a) are 

consistent and in good agreement with those on the refined grid in Fig. 11(b). In the streamwise 

direction, the turbulent flow is homogeneous in terms of mean velocity, but the mean temperature 

gradient is finite and produces a streamwise turbulent heat flux. The SST model prediction differs 

both quantitatively and qualitatively from the DNS result. This is due to the fact that it relies on 

a simple isotropic gradient-based diffusion model with a constant turbulent Prandtl number. Since 

the streamwise mean temperature gradient is uniform throughout the channel, the streamwise heat 

flux is simply proportional to the turbulent (eddy) viscosity produced by the model, which 

increases monotonically from the wall to the channel centerline. Consistent with RMS 

temperature fluctuation, the IDDES model shows an overprediction of turbulent heat flux 
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throughout the channel when compared with the DNS result. The two DHRL model variants show 

the best agreement with DNS, though both show an underprediction of the peak value at about 

y+ = 16, which is consistent with the RMS temperature fluctuation shown in Fig. 10. In particular, 

the modified DHRL model shows qualitative and relatively good quantitative agreement with 

DNS in the near wall region, including the location and value of the peak turbulent heat flux. 

Specifically, on coarse and refined grids, the baseline variant of DHRL (DHRL_BAS)  

underpredicts peak value by about 13%, the modified variant  (DHRL_MOD) underpredicts peak 

value by about 6%. The IDDES model overpredicts the peak streamwise turbulent heat flux by 

19% at y+ = 18, while the DDES model underpredicts it on both grids by about 9%. Similar to 

the results shown in Fig. 10, the modified variant of DHRL does show an improvement versus 

the baseline version in terms of turbulent heat flux, as expected. 

    

(a) Coarse                                                                (b) Refined 

Figure 10. Streamwise turbulent heat flux profile on (a)coarse grid, and (b)refined grid 

for SST, DHRL, DDES, and IDDES models 
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For the streamwise temperature gradient simulations, the non-dimensional heat transfer 

coefficient is expressed as the Nusselt number (Nu) which is defined as:     

         𝑁𝑢𝑡𝑜𝑡𝑎𝑙 =
𝑞𝑤2𝛿

𝑘̃(𝑇𝑤 − 𝑇𝑚)
⁄ =

𝑞𝑤2𝛿
𝑘̃𝜃𝑚    
⁄                                     (37) 

where 𝛿 is the half-channel height, 𝑘̃ is the fluid thermal conductivity, and 𝜃𝑚 is the bulk 

effective temperature. Figure 11 shows that all of the models under predict Nusselt number and 

highlights  non-trivial variation in Nu value between them. Table 2 lists the relative error for 

each of the models. Both indicate that the SST model is the most accurate, which reflects the 

fact that RANS eddy-viscosity models are effectively calibrated to accurately reproduce wall 

fluxes in equilibrium wall bounded flow. The DHRL models agree more closely with DNS than 

the two DDES variants. Most relevant to the current study, the modified variant of DHRL 

shows improvement over the baseline version, reducing the relative error by almost half. 

 

 

Fig. 11 Predicted Nusselt number compared to DNS data [50] 
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Table 2. Relative error in predicted Nusselt number for streamwise temperature 

gradient test case 

      DHRL_MOD      DHRL_BAS     DDES      IDDES      SST 

Nu Error -1.2% -2.2% -4.4% -8.8% -0.4% 

 

3.3.3.  Spanwise Mean Temperature Gradient Test Case  

For the case with imposed spanwise temperature gradient, both streamwise and wall-

normal mean temperature gradient are zero, and mean heat flux occurs only in the spanwise 

direction. This case is therefore an even more severe test of the ability to accurately resolve 

turbulent heat transfer using the HRL model. The mean temperature is identically equal to that 

imposed by the mean spanwise gradient, though the fluctuating temperature and turbulent heat 

flux varies according to the details of the simulation and turbulence model used.  

Figure 12 shows the fluctuating temperature profile for both variants of DHRL and DDES 

on coarse and refined grids. Results are not shown for the SST model since the fluctuating 

temperature in the RANS model is negligible. In contrast to the streamwise temperature gradient 

test case above, 𝜃𝑟𝑚𝑠
′  increases monotoniclly from the wall to the channel centerline with no near-

wall peak. This is due to the lack of a steep near-wall mean temperature gradient since heat 

transfer in the wall-normal direction is zero. The figure shows that all models are in qualitative 

agreement and loosely follow the DNS profile. Specifically, they are in excellent quantitative  

agreement with the DNS result within the viscous sublayer region (y+ < 5), but starting from the 

buffer layer (5 < y+ < 30)  to the center of the channel (y+ = 180), the quantitative fluctuating 
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temperature predictions by the five models vary substantially. However, comparing the coarse 

and refined grid results as shown in Figs. 12 (a) and (b), the variation is clearly reduced as mesh 

resolution is increased and the refined grid results tend to be in better overall agreement with DNS 

data.  

Figure 13 shows the spanwise turbulent heat flux profile for all models on coarse and refined 

grids. Similar to the results for the imposed streamwise mean temperature gradient, the SST model 

predicts turbulent heat flux with substantial error since the result is based on a simple eddy 

viscosity model and Reynolds' analogy, which is not appropriate for the conditions in this test 

case. The figure shows that all the model profiles are in qualitative agreement with DNS, and 

specifically, in excellent quantitative  agreement with DNS result for y+ < 10. On the coarse grid, 

for  y+ > 10, both variants of the DHRL model and IDDES underpredict spanwise turbulent heat 

flux, while the DDES model overpredicts it. However, on the refined grid, due to the mesh 

refinement and sensitivity of each model in the resolution of high wave number modes, for y+ > 

70 all models underpredict spanwise turbulent heat flux. It is interesting to note that the DDES 

overprediction of the peak value may be attributed to that model slightly overpredicting RMS of 

𝑤′ by 1.65% as shown in Fig. 4 and overpredicting RMS of fluctuating temperature as shown in 

Fig. 12. On the refined grid, as shown in Fig. 13 (b), all models underpredict the peak value of 

spanwise turbulent heat flux. At y+ = 70, the modified variant of DHRL underpredicts it by 3.8% 

compared to 6.3% for baseline DHRL, 0.49% for DDES, and 8.16% for IDDES. The spanwise 

heat flux decreases towards the centerline due to the decrease in RMS amplitude of both the 

fluctuating spanwise velocity and the fluctuating temperature. All of the models show this 

decrease qualitatively, but all are subject to relatively large error relative to the DNS results. The 

maximum relative error in results comparing both grids is about 12% in the baseline DHRL 
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model. This is nearly an order of magnitude higher than the maximum relative error for the 

streamwise temperature gradient test case, which underscores that the spanwise temperature 

gradient case is a more challenging case to validate the models in the prediction of spanwise 

turbulent heat flux. This is not surprising, since for the imposed streamwise temperature gradient 

case there is still significant mean temperature variation in the wall-normal direction (Fig. 7) and 

the dynamics of the fluctuating temperature field are more similar to the case of simple wall 

heating. For the case shown in Figs. 12 and 13, the dynamics of the fluctuating temperature field 

are primarily driven by the imposed spanwise temperature gradient, but even though this is a more 

challenging test case, the hybrid models all show significant improvement in accuracy compared 

to the SST model. Furthermore, while neither the baseline nor modified version of DHRL show 

excellent quantitative accuracy, it is apparent that the modified version yields improve 

performance, consistent with the case of streamwise mean temperature gradient. 

       

(a) Coarse                                                               (b) Refined 

Fig. 12 Fluctuating temperature profiles on (a)coarse grid, and (b)refined grid with 

imposed spanwise mean temperature gradient for DHRL, DDES, and IDDES models 
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(a) Coarse                                                                  (b) Refined 

Fig. 13 Spanwise turbulent heat flux profile on (a)coarse grid, and (b)refined grid for SST, 

DHRL, DDES, and IDDES models 

 

3.3.4.  Summary of Model Performance and Cost 

Table 3 summarizes the quantitative model accuracy in terms of the predicted location and 

value of peak turbulent heat flux for both of the test cases considered, for all models, on the 

refined grid. As discussed above, while the SST model shows excellent prediction of the wall-

normal heat flux, as indicated by Nu, the eddy-viscosity approach cannot accurately reproduce 

streamwise and spanwise heat transfer characteristics even in a qualitative sense. This should not 

be interpreted as a weakness of that model, but rather as an illustration of the advantages that can 

be provided by a hybrid RANS-LES approach. For the hybrid models, the location of peak heat 

flux was well predicted by all of the models, and the values were predicted within 20% in all 

cases, indicating both qualitative and quantitative improvement over the RANS model regardless 

of which hybrid model was used. The new modified  variant of DHRL shows improved 
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performance for both cases over the baseline variant and overall, the best performance among all 

of the models, with error in peak heat flux less than 5.5% for both cases. 

 

Table 3. Relative error of streamwise and spanwise turbulent heat flux peak-value 

analysis on refined grid 

 

 

In order to quantify the computational cost for each of the models, test simulations were 

performed on one 20 core computational node of the HPC cluster Schooner at the OU 

Supercomputing Center for Education and Research (OSCER). Reference simulations were 

performed using a pure MILES approach, i.e. no turbulence model was used. In terms of net 

CPU time per iteration relative to MILES, the DDES and IDDES models showed an 

approximately 10% increase, and the DHRL model (both variants) showed an approximately 

15% increase. While computational performance is dependent on specific computing 

architecture, parallelization, compiler, etc., the results here are consistent with CPU time 

comparisons for previous simulations using hybrid RANS-LES models in the Loci-CHEM 

code. 
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3.4.  SUMMARY AND CONCLUSION 

RANS and hybrid RANS-LES simulations were performed for fully-developed turbulent 

channel flow at Reτ = 180  and Pr = 0.71, with imposed mean temperature gradient in the 

streamwise or spanwise direction. Quantitative comparison of turbulence statistics, such as the 

mean and fluctuating velocity, mean and fluctuating temperature, and streamwise and spanwise 

turbulent heat flux, were compared to DNS results from the open literature to evaluate the 

performance of several different turbulence models on coarse and refined grids. The models 

investigated included the k- SST RANS model, the DDES and IDDES hybrid RANS-LES 

model, and two variants of the dynamic hybrid RANS-LES model. A new version of DHRL is 

proposed in which a separate RANS-to-LES blending function for turbulent heat flux is computed 

based on the statistics of the fluctuating temperature field. Simulations were performed with the 

FlowPsi finite-volume CFD solver and utilized low-dissipation numerics to facilitate resolution 

of the temporally and spatially varying variable fields in turbulent flow. 

For the mesh sizes and simulation conditions considered here, coarse and refined grid results 

are in relatively good agreement with DNS, although refined grids result tend to show better 

agreement, as expected. The two variants of the DHRL model and the DDES model consistently 

showed the best agreement with DNS data. In particular, for the case of imposed streamwise mean 

temperature gradient, the modified variant of DHRL and DDES produced results that agreed quite 

well with DNS both qualitatively and quantitatively, with less than 9% underprediction of peak 

heat flux. For the case with imposed spanwise turbulent heat flux, the modified variant of DHRL 

and the DDES models showed better quantitative and qualitative agreement compared to the 

baseline version of DHRL and IDDES, respectively. In comparison to streamwise turbulent heat 
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flux, lower accuracy for all models was observed for the spanwise turbulent heat flux test case. 

This is likely due to the fact that for this case, the wall-normal mean temperature gradient is zero, 

and the dynamics of the fluctuating temperature field are quite different than for the case of 

imposed mean streamwise temperature gradient, which includes wall heating or cooling.  

All models except SST predicted the overall trends of the DNS in terms of RMS of 

fluctuating temperature and turbulent heat flux. Improved sensitivity of the modified variant of 

DHRL compared to the baseline variant is evident in the prediction of RMS fluctuating 

temperature profiles for both streamwise and spanwise cases, and this is likely due to the 

improved model sensitivity to temperature fluctuations used in the blending coefficient for 

turbulent heat flux. Overall, the modified variant of DHRL, relative to IDDES, DDES and 

baseline DHRL, showed improved performance in predicting turbulent heat flux both in 

streamwise and spanwise directions.  

For both test cases, the SST RANS model was capable of predicting the mean flow 

accurately, which is not surprising for this relatively simple wall bounded flow, however it proved 

unable to even qualitatively reproduce streamwise or spanwise turbulent heat flux due to the 

incorporation of a simple eddy viscosity diffusion model based on Reynolds' analogy. In this 

regard the accuracy advantages of a hybrid RANS-LES model compared to a pure RANS model 

are quite evident. More specifically, the new modified DHRL variant showed improved 

performance compared with the baseline version, the determination of which was one of the key 

the objectives of this study. Future work will compare the performance of the two model variants 

for more complex flows, but based on the results presented here it is recommended that in general 
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the dynamic hybrid RANS-LES framework be implemented using separate RANS-to-LES 

blending parameters for the momentum and energy equations. 
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CHAPTER IV 

 

A NEW STATISTICALLY TARGETED FORCING (STF) FORMULATION: 

 EVALUATION OF A STATISTICALLY TARGETED FORCING METHOD FOR 

SYNTHETIC TURBULENCE GENERATION IN SCALE-RESOLVING SIMULATIONS 

Work from this chapter has been submitted to the ASME Journal of Fluids Engineering (JFE). 

 

4.1 INTRODUCTION 

 

Computational fluid dynamics (CFD) methods for effectively reproducing time-dependent 

turbulence boundary and/or initial (B/I) conditions have significant potential value for improving 

simulation of many engineering systems. Because advances in computational resources have 

made turbulent scale-resolving simulations such as large-eddy simulation (LES) feasible for some 

industrially relevant flows, accurate and efficient methods for prescribing these complex 

conditions are increasingly needed.  

Research on generation of turbulence B/I conditions has been active over the past two 

decades, ranging from library-based methods to recycling/rescaling to synthetic turbulence 

generation (STG) with controlled forcing. These methods become increasingly important when 

the application of steady state B/I conditions causes development of resolved turbulence 

fluctuating velocities in the simulation that is either delayed, inaccurate, or nonexistent. It is often 

not feasible to include the source of turbulent B/I conditions within a simulation. A simple 

example is simulation of the interaction of an aerodynamic vehicle with a turbulent freestream 

flow. The source of the freestream turbulence is in fact due to the interaction of the atmospheric 

boundary layer (ABL) with the ground, but available resources would typically preclude 
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simulating the ABL flow in addition to the local vehicle aerodynamics. The goal of B/I condition 

methods such as synthetic turbulence generation (STG) is to replace turbulent content obtained 

from fully resolved simulations with a reasonable approximation of turbulence for a substantially 

lower computational cost. In addition, with STG methods turbulent content can be selectively 

located in specific regions of the computational domain or on the boundaries, providing flexibility 

such that turbulence B/I conditions are only used in regions where they are needed. 

One well known method for prescribing turbulence boundary conditions is 

recycling/rescaling. For recycled turbulent content, streamwise periodic boundary conditions are 

imposed on the domain or a portion of the domain such that the turbulent flow leaving the outlet 

is reintroduced at the inlet. Rescaling of the velocity field can be performed to ensure that the 

turbulent statistics remain appropriately spatially developing. This method was used, for example, 

by Spalart et al. [16] to perform large-eddy simulation of a turbulent boundary layer. Lund et al. 

[17] used the recycling/rescaling method to perform an auxiliary simulation of a turbulent 

boundary layer, and then extracted planes of time-dependent velocity data to be mapped to the 

inlet of a simulation with a more complex geometry. Several other studies have extended the 

recycling/rescaling approach to simulate complex wall bounded flows [18-19]. Schlüter et al. [21] 

used the recycling/rescaling method to impose fluctuating velocities at the outlet to an LES region 

of a simulation to impose the statistics obtained from a RANS solution in the downstream region. 

A general class of methods that represent an alternative to recycling/rescaling is synthetic 

turbulence generation (STG). For applications of practical engineering interest on complex 

geometries, STG methods have the potential to reproduce turbulent fluctuations at desired 

locations and with desired statistical distributions, without the need to run an auxiliary simulation. 
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STG methods can be used to specify inflow boundary conditions or as initial conditions for a 

simulation.  

Kraichnan [22] proposed one of the first STG methods for isotropic turbulence, by utilizing 

a spectral approach to artificially produce an isotropic turbulent velocity field from random 

Fourier modes. This approach of generating isotropic velocity fields with a specified energy 

spectrum has been used for example to generate initial conditions for DNS of isotropic turbulence 

[23,24].  Lee et al. [51] similarly proposed a Fourier transform-based STG method to generate 

inflow boundary conditions, however one limitation of this method is that it is not applicable to 

wall-bounded flows due to statistical inhomogeneity in the wall-normal direction. 

Using a similar approach for isotropic turbulence, Lundgren [52] defined a forcing term in 

the momentum equations that is proportional to the fluctuating velocity component. This isotropic 

linear forcing (ILF) term imitates the natural production mechanism in the turbulent kinetic 

energy equation. This ILF forcing can be restricted to low wave number modes when using 

spectral numerical methods. Rosales et al. [53] extended the method in [52] by formulating the 

forcing term in physical space.  

A different algorithmic approach proposed by Jarrin et al. [54,55] is the synthetic eddy 

method (SEM), which is used to generate realistic synthetic eddies at the inflow of an LES 

simulation. Results have shown that the synthetic eddy field can evolve to physically realistic 

turbulent flow after a relatively short distance downstream of the inlet. Some limitations exist in 

the SEM method such as depletion of the smaller scales of turbulence. This has motivated 

modification of the SEM to include momentum source terms that energize the velocity 

fluctuations for some distance downstream. 
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Keating et al. [56] explain how inappropriate modeling of the scale and structure of synthetic 

turbulence can lead to a rapid dissipation of velocity fluctuations and an increase in the 

time/distance required for the flow to recover into a fully turbulent state. Therefore, most recent 

STG methods attempt to introduce some degree of spatial and temporal coherence through 

artificial control forcing techniques. Spille-Kohoff and Kaltenbach [57] proposed an inflow STG 

method based on an added forcing source term in the wall-normal momentum equation. This 

forcing term enhances the velocity fluctuations in that direction, to match a desired target profile 

of Reynolds shear stress. This technique enhances the wall-normal fluctuations at discrete 

locations, with amplitude proportional to the difference between the calculated Reynolds shear 

stress and a provided target profile. This is an example of an STG method with a controlled 

forcing feedback loop to achieve a target statistical distribution. They documented that the method 

reduces the error in the Reynolds shear stress to acceptable values within five channel half heights, 

although the coefficient of friction and the turbulent kinetic energy required longer downstream 

distances to reach their fully developed values. 

More recently, B. de Laage de Meux et al. [58] proposed a method to impose target statistics 

of the flow in terms of mean velocity and resolved turbulent stress, using a method denoted 

anisotropic linear forcing (ALF). The time-dependent forcing function is proportional to the 

instantaneous velocity via a tensor transformation. The method was found to provide accurate 

results for isotropic, anisotropic and spatially developing turbulence test cases for LES and hybrid 

RANS-LES simulations.   

The objective of this study is to investigate a newly proposed statistically targeted forcing 

(STF) method for synthetic turbulence generation. The STF method is a variant of STG with 

controlled forcing within the simulation domain, implemented via added source terms in the 
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momentum and energy equations. The method can be viewed to act as a restoring force toward a 

target statistical state within either a time-averaging or volume-averaging framework. Simulation 

results are presented for homogeneous isotropic and anisotropic turbulent flow, and results are 

evaluated in terms of one-point statistics and spectral characteristics. 

 

4.2.  STATISTICALLY TARGETED FORCING METHOD 

 

 

4.2.1.   General Description of the Method 

Conceptually, the statistically targeted forcing (STF) method proposed here seeks to induce 

a synthetic turbulence field through the addition of a time-dependent, non-stochastic forcing term 

in the momentum equation. The forcing term is constructed to drive the instantaneous, local 

velocity towards a time-dependent target velocity that satisfies the user-specified first- and 

second-order one-point statistics for the turbulence, i.e., the mean velocity vector and Reynolds 

stress tensor. To introduce the method, we consider the general form of the continuity, momentum, 

and energy equations for single-phase, single-species, compressible flow: 

 

 
∂𝜌

∂𝑡
+

∂

∂𝑥𝑗
(𝜌𝑢𝑗)  = 0 (1) 

 

 
∂

∂𝑡
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∂
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𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗) (2) 

 

 
∂

∂𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻) =

𝜕

𝜕𝑥𝑗
(𝑞𝑗 + 𝑢𝑖𝜎𝑖𝑗) (3) 
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In the above, the flow variables 𝜌, 𝑢, 𝑝, 𝐸, and 𝐻 may represent local instantaneous (DNS) 

or filtered (LES) quantities. Likewise, the viscous stress tensor 𝜎𝑖𝑗 and heat flux vector 𝑞𝑗 include 

both molecular and, for LES, subfilter contributions. The STF method is implemented by adding 

a forcing term, 𝑓𝑖, to the momentum and energy equations: 

 

 
∂

∂𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗)  = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗) + 𝑓𝑖 (4) 

 

 
𝜕

𝜕𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻) =

𝜕

𝜕𝑥𝑗
(𝑞𝑗 + 𝑢𝑖𝜎𝑖𝑗) + 𝑢𝑗𝑓𝑗 (5) 

 

The source term is constructed such that during each time step of a simulation, the resolved 

velocity vector is forced toward a target velocity vector that would yield a desired target statistical 

distribution for the time-varying velocity field. The general form of the forcing term is: 

 

 𝑓𝑖 = 
𝜌

𝜏𝑓
(𝑢𝑖
∗ − 𝑢𝑖) (6) 

 

Here 𝑢𝑖
∗ is the target local, instantaneous velocity and 𝜏𝑓 is a characteristic time scale for the 

forcing term. Inputs to the model include prescription of a local target mean velocity, 𝑢̅𝑖
∗, and 

turbulent stress tensor: 

 

 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ = (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢̅𝑖𝑢̅𝑗)
∗
 (7) 
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where the overbar denotes either Reynolds or Favre (mass-weighted) averaging. 

The key aspect of the method is the calculation of the target velocity vector  𝑢𝑖
∗. It is first 

noted that the transformation proposed by Lund et al. [17] can be used to map an ensemble of 

isotropic velocity fluctuations 𝑣′ to an ensemble of fluctuations that satisfy a target statistical 

distribution 𝑇𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ as follows: 

 

 𝑢𝑖
′∗ = 𝐵𝑖𝑗𝑣𝑗

′ (8) 

 

 𝐵𝑖𝑗 = [

√𝑇11 0 0

𝑇21/𝐵11 √𝑇22 − 𝐵21
2 0

𝑇31/𝐵11 (𝑇32 − 𝐵21𝐵31)/𝐵22 √𝑇33 − 𝐵31
2 − 𝐵32

2

] (9) 

 

Similarly, an ensemble of resolved fluctuations satisfying a particular statistical distribution 𝑅𝑖𝑗 =

𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  can be mapped to an isotropic distribution 𝑣′ using the inverse of the Lund coefficient matrix: 

 

 𝑣𝑖
′ = 𝐴𝑖𝑗

−1𝑢𝑗
′ (10) 

 

 𝐴𝑖𝑗
−1 = [

1/𝐴11 0 0
−𝐴21/(𝐴11𝐴22) 1/𝐴22 0

(𝐴21𝐴32 − 𝐴31𝐴22)/(𝐴11𝐴22𝐴33) −𝐴32/(𝐴22𝐴33) 1/𝐴33

] (11) 

 

 𝐴𝑖𝑗 =  [

√𝑅11 0 0

𝑅21/𝐴11 √𝑅22 − 𝐴21
2 0

𝑅31/𝐴11 (𝑅32 − 𝐴21𝐴31)/𝐴22 √𝑅33 − 𝐴31
2 − 𝐴32

2

] (12) 
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It is therefore possible to define a mapping from a distribution of resolved velocity fluctuations 

𝑢𝑖
′ with known statistical second moment tensor (turbulent stress) 𝑅𝑖𝑗 to a distribution 𝑢𝑖

′∗ with 

target turbulent stress 𝑇𝑖𝑗 as: 

 

 𝑢𝑖
′∗ = 𝐶𝑖𝑗𝑢𝑗

′ (13) 

 

 𝐶𝑖𝑗 = 𝐵𝑖𝑘𝐴𝑘𝑗
−1 (14) 

 

The instantaneous target velocity used in the forcing function includes the target fluctuating 

velocity as well as the target mean velocity: 

 

 𝑢𝑖
∗ = 𝑢̅𝑖

∗  + 𝐶𝑖𝑗𝑢𝑗
′ (15) 

 

where the fluctuating velocity is defined relative to the mean: 

 

 𝑢𝑖
′ = 𝑢𝑖 − 𝑢̅𝑖 (16) 

 

In practice the method is implemented as follows. First a target statistical velocity 

distribution is specified prior to the simulation in terms of 𝑢̅𝑖
∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗. As the simulation 

proceeds, the resolved statistics 𝑢̅𝑖 and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  are obtained using an appropriate averaging 

technique. At each time step, the transformation tensor 𝐶𝑖𝑗 is computed at each point in the domain 
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based on  𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ . During each iteration, the fluctuating velocity  𝑢𝑖
′ is computed, and the 

target instantaneous velocity 𝑢𝑖
∗ is found using Eq. (15). The forcing term 𝑓𝑖 is then computed 

using Eq. (6) and included as an additional source term in the momentum and energy equations. 

 

4.2.2.  Ensemble Averaging 

In theory, any appropriate approximation to the Reynolds-averaging operation can be used 

in the CFD simulations. In the current study, two different methods are implemented and tested 

for simulation of statistically stationary, homogeneous turbulence. The first is volume averaging, 

for which the Reynolds-averaged value of any arbitrary variable 𝜑 is defined as: 

 

 𝜑̅(𝑡) =
1

𝑉
∫𝜑(𝑥𝑖 , 𝑡) 𝑑𝑉 (17) 

 

and the integral is performed over the entire simulation domain with volume 𝑉. The second is 

time averaging, defined as: 

 

 𝜑̅(𝑥𝑖 , 𝑡) =
1

𝑡
∫ 𝜑(𝑥𝑖 , 𝜏) 𝑑𝜏
𝑡

0
 (18) 

 

where 𝑡 is the physical simulation time. In practice this is achieved using a discrete running time 

average, for which the averaged value at each point in the domain can be determined by: 

 

 𝜑̅(𝑥𝑖 , 𝑡) =
𝑛−1

𝑛
𝜑̅(𝑥𝑖 , 𝑡 − Δ𝑡) +

1

𝑛
𝜑(𝑥𝑖 , 𝑡) (19) 
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Here Δ𝑡 is the time-step size and 𝑛 is the current number of time steps in the simulation. In the 

limit 𝑛 → ∞, the averaged value becomes constant for statistically stationary flow. 

 

4.2.3.  Spatial Filtering 

Spatial filtering is implemented in the STF method to allow the user to have some measure 

of control of the turbulent length scale. All simulations adopting spatial filtering in this study were 

performed using a second-order differential elliptic filter [63]. In this method, for an isotropic 

filter, the filtered resolved velocity (𝑢̂𝑖) is obtained by solution of Eq. (20), where ∆ is the filter 

width or size: 

 
𝜕

𝜕𝑥𝑗
(∆2

𝜕𝑢̂𝑖

𝜕𝑥𝑗
) = 𝑢̂𝑖 − 𝑢𝑖 (20) 

 

Spatial filtering is implemented in the STF method by first re-defining fluctuating velocity (𝑢𝑖
′) 

in Eq. (16) as filtered fluctuating velocity (𝑢𝑖
′′): 

 

 𝑢𝑖
′′ = (𝑢𝑖 − 𝑢̂𝑖) − (𝑢̅𝑖 − 𝑢̂𝑖̅) (21) 

 

The instantaneous target velocity used in the forcing function includes the target filtered 

fluctuating velocity (𝐶𝑖𝑗𝑢𝑗
′′) as well as the target mean velocity (𝑢̅𝑖

∗): 

 

 𝑢𝑖
∗ = 𝑢̅𝑖

∗ + (𝑢̂𝑖 − 𝑢̅𝑖) + 𝐶𝑖𝑗𝑢𝑗
′′ (22) 
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At every iteration, the filtered transformation tensor 𝐶𝑖𝑗 is computed at each point in the domain 

based on a modified target turbulent stress, 𝑇𝑖𝑗, and resolved turbulent stress, 𝑅𝑖𝑗, where 𝑀𝑖𝑗 is a 

term that represents the contribution to the turbulent stress by the interaction between the filtered 

and instantaneous velocity: 

 

 𝑇𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ −𝑀𝑖𝑗 (23) 

 

 𝑅𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ − 𝑀𝑖𝑗 (24) 

 

 𝑀𝑖𝑗 =
1

2
[(𝑢̂𝑖𝑢𝑗̅̅ ̅̅ ̅ + 𝑢𝑖𝑢̂𝑗̅̅ ̅̅ ̅) − (𝑢̂𝑖̅𝑢̅𝑗 + 𝑢̅𝑖𝑢̂𝑗̅)] (25) 

 

While Eq. (20) represents an isotropic spatial filtering operation, the STF method adopts a 

generalized anisotropic filter defined by: 

 

 
𝜕

𝜕𝑥𝑗
(𝜏𝑇
2 𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅ ∗ 𝜕𝑢̂𝑖
𝜕𝑥𝑘
) = 𝑢̂𝑖 − 𝑢𝑖 (26) 

 

Anisotropic filtering is a relatively simple way to incorporate the fact that turbulence can have 

different length scales in different directions. The method assumes that regardless of their length 

scale, large eddies (i.e. velocity fluctuations) will share the same time scale. The tensorial filter 

width is defined to depend on a characteristic turbulent time scale, 𝜏𝑇, and the target turbulent 

stress tensor, 𝑢𝑗′𝑢𝑘
′̅̅ ̅̅ ̅̅ ∗. For homogeneous anisotropic turbulence, spatial variations and turbulent 

fluctuations are not statistically uniform in all directions and the filtered resolved velocity (𝑢̂𝑖) is 
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obtained by solution of Eq. (26). For isotropic turbulence, the anisotropic filtering operation is 

formally similar to the isotropic filter defined in Eq. (20). For this case, spatial variations and 

turbulent fluctuations are statistically uniform in all directions, hence the anisotropic filter is 

equivalent to a scalar isotropic filter for which the filter size is defined as: 

 

 ∆2=
1

3
𝜏𝑇
2 (𝑢𝑙

′𝑢𝑙
′̅̅ ̅̅ ̅̅ ∗) (27) 

 

4.2.4.  Prescription of the Forcing Time Scale 

The forcing time scale 𝜏𝑓 is arbitrary. In principle, a smaller value will increase the 

magnitude of the forcing term and drive the velocity more rapidly towards its target value, but 

too small a value may result in instability or may constrain the flow from developing naturally 

once resolved turbulence has been introduced. A user can select a relevant time scale based on the 

known flow physics of the problem under investigation, numerical and stability considerations, 

and/or trial and error. It would be advantageous, however, to incorporate a universal time scale 

that takes into account both the physical and numerical aspects of the simulation and simplifies 

the user input requirements. It is proposed, therefore, that an appropriate time scale is of the form: 

 

 𝜏𝑓 ~ 𝜏𝑇 (28) 

 

where 𝜏𝑇 is the characteristic large-eddy turbulent time scale used in the spatial filter defined by 

Eq. (26). Depending on the type of simulation performed, the turbulent time scale can be 

approximated by a characteristic imposed length scale, or from the source of the target statistical 
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distribution. For example, if a precursor Reynolds-averaged Navier-Stokes simulation is used to 

specify the target mean velocity and Reynolds stress tensor, the dissipation time scale 𝑘/𝜀 can be 

used to specify 𝜏𝑇.  

For the simulations presented in this paper that use spatial filtering, the form of the forcing 

term is: 

 

 𝑓𝑖 = 𝜌
𝐶𝑓

𝜏𝑇
(𝑢𝑖
∗ − 𝑢𝑖) (29) 

 

Turbulent time scale, 𝜏𝑇, is specified by the user, and the effect that different values have on the 

simulation is investigated. The coefficient 𝐶𝑓 dictates the overall strength of the forcing term. For 

cases with spatial filtering, 𝜏𝑇 and 𝐶𝑓 must be independently selected. For cases without spatial 

filtering, it is only the ratio 𝐶𝑓/𝜏𝑇 that impacts the simulation by controlling the strength of the 

forcing term by dictating the effective forcing time scale 𝜏𝑓. 

 

 

4.3.   SIMULATION DETAILS 

 

 

The majority of the simulations presented here use the Smagorinsky eddy-viscosity based 

subgrid stress model [61], for which the deviatoric part of the subgrid stress tensor is expressed 

as: 

 

 𝜏𝑖𝑗
𝑆𝐺𝑆 = 2𝜈𝑇𝑆𝑖𝑗 (30) 
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The eddy viscosity is formulated as: 

 

 𝜈𝑇 = (𝐶𝑠 𝛥)
2√2𝑆𝑖𝑗𝑆𝑖𝑗 (31) 

 

where 𝛥 is the characteristic mesh size, equal to the cube root of cell volume in the current 

simulations, and the coefficient 𝐶𝑠 = 0.1.  

One test simulation was run using an implicit LES approach similar to MILES [62], for 

which the subgrid dissipation was assumed to be modeled by the numerical dissipation inherent 

in the blended upwind portion of the SSF inviscid flux formulation. As shown in the results 

section, this led to a build-up of energy at high wavenumbers, and as a consequence all of the 

other simulations used the Smagorinsky model. We note that the implicit LES results could 

perhaps be improved by increasing the upwind contribution to the inviscid flux. 

 

 

4.4.  TEST CASES 

 

The present study consists of two test cases, isotropic and anisotropic homogeneous 

turbulence. The STF method is used to produce and sustain time-dependent, stationary flow in 

the domain. The resulting flowfield is interrogated to evaluate the accuracy of the method for 

producing realistic turbulent flow conditions with the prescribed first- and second-order one-point 

statistics. For the anisotropic turbulence test case, unequal normal stress components and a non-

zero shear stress component was imposed as the target statistical flowfield. Key issues 

investigated include:  
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▪ Effect of mesh resolution 

▪ Capability of the method to accurately reproduce mean velocity and Reynolds 

stresses in isotropic and anisotropic turbulent flow domains 

▪ Effect of averaging techniques and critical parameters such as turbulence time scale, 

𝜏𝑇, and forcing coefficient, 𝐶𝑓 

▪ Spectral characteristics of the turbulence generated by the forcing method 

The domain for the homogeneous isotropic and anisotropic test cases (“turbulence in a box”) 

is a cube with side length L, with all boundaries periodic. Flow was initialized for all cases to zero 

velocity and gage pressure. Target Reynolds stress distributions were selected such that the Mach 

number based on maximum instantaneous velocity was approximately 0.1, which approximates 

incompressible flow conditions. For the isotropic turbulence cases, the Reynolds number based 

on the Taylor microscale, 𝜆, and kinematic viscosity, 𝜈, varied from 471 for the finest grid to 1154 

for the coarsest grid. Four structured, uniform, Cartesian meshes were used for the simulations, 

corresponding to 323, 643, 1283, and 1923 cells, and they are illustrated in Fig. 14. 
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 (a) 323   (b) 643 

 

        

 (c) 1283 (d) 1923 

 

Fig. 14. Planar view of the computational grids for homogeneous turbulence cases showing 

four mesh resolution levels (a) 323, (b) 643, (c) 1283, and (d) 1923. 
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4.5. RESULTS AND DISCUSSION 

 

4.5.1. Homogeneous Isotropic Turbulence 

Homogeneous turbulence simulations were first performed for an isotropic target field 

corresponding to: 

 

 𝑢̅1
∗ = 𝑢̅2

∗ = 𝑢̅3
∗ = 0 (32) 

 

 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗ = 𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑢3

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 𝑣′

2
 (33a) 

 

 𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑢1

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 𝑢2

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 0 (33b) 

 

The target turbulent kinetic energy is therefore 𝑘∗ =
3

2
𝑣′
2
. The characteristic velocity scale for 

the target flowfield is 𝑣′, and a characteristic simulation time scale is defined as: 

 

 𝜏𝑠 = 𝐿/𝑣
′ (34) 

 

Initial simulations employing the STF model were run using volume averaging for turbulence 

statistics, and no spatial filtering. Four different values of the forcing time scale were investigated, 

corresponding to 𝜏𝑓/𝜏𝑠 = 0.45, 0.045, 0.0045, and 0.00033. Forcing was applied during the time 

interval 0 < 𝑡 < 3𝜏𝑠. Simulations were run for an additional interval after forcing was removed 
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in order to observe the behavior of the velocity field during turbulence decay after being 

initialized by the STF method. 

 

 

4.5.1.1.  Baseline Results 

Initial simulations employing the STF model were run using volume averaging for 

turbulence statistics, and no spatial filtering. Four different values of the forcing time scale were 

investigated, corresponding to 𝜏𝑓/𝜏𝑠 = 0.45, 0.045, 0.0045, and 0.00033. Forcing was applied 

during the time interval 0 < 𝑡 < 3𝜏𝑠. Simulations were run for an additional interval after forcing 

was removed in order to observe the behavior of the velocity field during turbulence decay after 

being initialized by the STF method.  

Figure 15 shows contours of velocity magnitude on the periodic bounding surfaces of the 

domain, corresponding to a simulation time of 𝑡 = 2𝜏𝑠, at which point the fluctuating velocity 

field had reached an apparently stationary state. The results are shown for a forcing time scale 

𝜏𝑓/𝜏𝑠 = 0.045. The velocity field exhibits qualitative features of turbulent flow, including a visible 

range of spatial scales that resemble turbulent eddies. As the mesh resolution is increased from 

323 to 1923, the size of the smallest resolved eddies is reduced. The effect of mesh resolution on 

the overall qualitative flow structure, however, appears to be minimal. 

Figure 16  shows contours of velocity magnitude for the 1283 mesh for simulations using 

three different values of the forcing time scale. Results are shown on one bounding surface of the 

domain, at a simulation time of 𝑡 = 2𝜏𝑠. It is apparent that the qualitative flow structure is similar 

for all three cases. The maximum resolved velocity increases as the forcing time scale is reduced. 

This is expected since a smaller time scale yields an overall larger forcing term, in effect driving 
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the local velocity more strongly towards the target velocity vector computed by Eq. (15) at each 

time step. 
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 (a) 323   (b) 643 

 

        

 (c) 1283 (d) 1923 

 

Fig. 15. Contours of instantaneous velocity magnitude for forcing simulation of 

homogeneous isotropic turbulence with forcing time scale 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓, taken at a 

simulation time 𝒕 = 𝟐𝝉𝒔. Four mesh resolution levels are shown: (a) 323, (b) 643, (c) 1283, 

and (d) 1923. 

 

 

Vmax = 34m/s                                                                                    Vmax = 29m/s                                                                                    

Vmax = 26m/s                                                                                    Vmax = 23m/s                                                                                    
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 (a) 𝝉𝒇 = 𝟎. 𝟎𝟎𝟒𝟓 (b) 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓 (c) 𝝉𝒇 = 𝟎. 𝟒𝟓 

 

Fig. 16.  Planar view contours of instantaneous velocity magnitude for forcing simulation 

of homogeneous isotropic turbulence on 1283 mesh, taken at a simulation time 𝒕 = 𝟐𝝉𝒔. 

Results are shown for three different values of the forcing time scale. 

 

Figure 17 shows the time history of the ratio of resolved turbulent kinetic energy, 𝑘 =
1

2
𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ , 

to the target value, 𝑘∗. Figure 17 (a) compares different mesh resolution levels and Fig. 17 (b) 

compares different values of the forcing time scale on the 1283 mesh. The turbulence level can be 

seen to increase relatively rapidly, and on all grids the ratio levels off at an apparently stationary 

state near the target value in under one characteristic simulation time, and the time required to 

reach the stationary state is reduced as the forcing time scale is reduced. The energy level remains 

nearly constant throughout the time when forcing is applied, and once forcing is removed a power 

law decay is apparent. The resolved turbulence level during stationary forcing increases towards 

the target value as the forcing time scale is reduced and the magnitude of the forcing term 

increases, as expected, and the resolved turbulence level during stationary forcing appears to be 

insensitive to the mesh resolution level. As seen in Figure 17 (b), the decay rate once forcing is 
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removed changes as the mesh resolution is increased but appears to be nearly grid independent as 

the mesh size is increased from 1283 to 1923. The decay rate is relatively insensitive to the forcing 

time scale, which is expected since the forcing term has no direct effect on the flow dynamics 

after 𝑡 = 3𝜏𝑠. 

 

 

(a) On four meshes at 𝝉𝒇 = 𝟎. 𝟒𝟓  

 

 

(b) On 1283 mesh at 𝝉𝒇/𝝉𝒔 = 𝟎. 𝟒𝟓, 𝟎. 𝟎𝟒𝟓, 𝟎. 𝟎𝟎𝟒𝟓, 𝐚𝐧𝐝 𝟎. 𝟎𝟎𝟎𝟑𝟑 

 

Fig. 17. Time evolution of turbulent kinetic energy (k/k*) for forcing simulation of 

homogeneous isotropic turbulence with volume averaging and no spatial filtering: (a) 

effect of mesh resolution, (b) effect of forcing time scale. 



 74 | 
P a g e  

 

 

Figure 18. highlights the resolved turbulence level reached in the simulations during the 

forcing time interval, expressed as the ratio 𝑘/𝑘∗, for different mesh resolution levels and forcing 

time scales. As shown previously, as the level of resolved turbulence is strongly dependent on the 

forcing time scale. On the 1283 mesh, the turbulence level ratio increases from 0.85 to 0.999 as 

the time scale, 𝜏𝑓, is reduced from 0.45 to 0.00033. The level of resolved turbulence is weakly 

dependent on the mesh resolution level. For example, for a forcing time scale of 𝜏𝑓 = 0.45, the 

ratio increases from 0.84 to 0.87 as the mesh is refined from 323 to 1923 cells. 

 

 

                                     (a)                                                                                    (b) 

Fig. 18. Ratio of resolved-to-target turbulent kinetic energy, k/k* for (a) different mesh 

sizes and (b) on 1283 mesh at different values of the forcing time scale parameter 𝝉𝒇. 
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To understand the spectral characteristics of the turbulence generated by the synthetic 

forcing method, the fast Fourier transform was applied to the velocity field and integrated over 

spherical shells in wavenumber (𝜅) space to obtain the energy density as a function of 

wavenumber. The results are shown in Fig. 19. Also shown for reference is the Kolmogorov -5/3 

scaling for the inertial subrange. In Fig. 19 (b), the energy containing range is indicated as 𝜅 ≤

𝐸𝐼, the dissipation range is indicated as 𝜅 ≥ 𝐷𝐼, and the inertial range is indicated as 𝐸𝐼 ≤ 𝜅 ≤

𝐷𝐼.  The spectra obtained from all four grids look similar at the lowest wavenumbers while 

significant difference is apparent at the highest wavenumbers (𝜅 ≥ 𝐷𝐼). The two most refined 

grids (1283 and 1923) appear to show an inertial range for which the behavior qualitatively 

matches the -5/3 law, while the 323 and 643 grids do not reproduce this behavior. This may explain 

the decay behavior seen in Fig. 17 (a). Once the synthetic generated turbulence field is sufficiently 

refined to include an inertial range and proper energy cascade dynamics, the decay rate once 

forcing is removed is relatively insensitive to further refinement. On all meshes the energy is 

damped rapidly for wavenumbers larger than 1/N, where N is the number of cells in each of the 

three coordinate directions. 

For the 1283 grid in Fig. 21(b), energy spectra obtained using different forcing time scales 

(𝜏𝑓 = 0.45, 0.045, 0.0045 and 0.00033  are all in good quantitative agreement, with only slight 

differences evident in the low wavenumbers (𝜅 ≤ 𝐸𝐼). Note that the plots are scaled by the 

maximum value of energy density. Since the total resolved energy increases as forcing time scale 

is reduced, the unscaled plots would show a vertical shift for different values of 𝜏𝑓. Overall, the 

figure shows spectral characteristics indicative of three-dimensional turbulent flow for all values 

of forcing time scale and for meshes that are sufficiently refined to yield an inertial scaling range. 
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 (a) 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓 (b) 𝝉𝒇 = 𝟎. 𝟒𝟓, 𝟎. 𝟎𝟒𝟓, 𝟎. 𝟎𝟎𝟒𝟓 𝐚𝐧𝐝 𝟎. 𝟎𝟎𝟎𝟑𝟑 

 

Fig. 19. Normalized energy density spectrum for forcing simulation of homogeneous 

isotropic turbulence with volume averaging on (a) different meshes at 𝑪𝒇 = 𝟏𝟎, 𝝉𝒇 =

𝟎. 𝟒𝟓, (b) 1283 mesh, 𝝉𝒇 = 𝟎. 𝟒𝟓, 𝟎. 𝟎𝟒𝟓, 𝟎. 𝟎𝟎𝟒𝟓 𝐚𝐧𝐝 𝟎. 𝟎𝟎𝟎𝟑𝟑. Similar profiles to that of 

Fig. 18. 

To confirm that the STF method works independently of the specific LES model used, one 

set of simulations was run using no explicit subgrid stress term, for which the numerical 

dissipation inherent in the blended upwind inviscid flux term was used to dissipate energy in the 

small resolved scales. This approach is an informal implementation of the MILES modeling 

1283 mesh 
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methodology. Results are shown in Fig. 21 for simulations on the 1283 grid, using three different 

values of the forcing time scale. For all three cases, the overall level of turbulent kinetic energy 

was comparable to the cases using the Smagorinsky SGS model. Again, it is evident that the level 

of resolved turbulence increases as the forcing time scale is reduced, similar to results with the 

Smagorinsky model shown in Fig. 20. The spectral behavior was also similar for the low 

wavenumber portion, displaying a clearly identifiable region with -5/3 inertial scaling. In the 

higher wavenumber region near the filter cutoff, there is evidence of energy pile up indicating 

that there is insufficient dissipation to effectively represent the forward scatter of energy to the 

subfilter velocity scales. It is likely that increasing the upwind contribution to the inviscid flux 

term would improve the result. The differences between results in Figs. 20 and 21 arise due to the 

SGS model (or lack thereof) rather than the STF method itself, and the results indicate that the 

STF method is agnostic to the details of LES model, as expected. 

 

                                                              

Fig. 20. (a) Contours of instantaneous velocity magnitude and (b) normalized energy 

spectra for implicit LES simulation with no subgrid stress model, on the 1283 grid, using 

three different values of 𝝉𝒇. 

 

(a) 
(b) 
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4.5.1.2. Effect of Averaging Technique 

Figure 21 compares contours of instantaneous velocity magnitude for equivalent 

simulations using volume-averaging (VA) versus time-averaging (TA) to compute turbulence 

statistics on the 1283 grid at 𝜏𝑓 = 4.5, 0.45, and 0.045.  The results show no obvious qualitative 

differences with regard to the flow structure, and regardless of averaging method used, the 

maximum velocity magnitude increases as the forcing time scale is decreased. Figure 22 shows 

the time evolution of turbulent kinetic energy for different values of forcing time scale. Regardless 

of averaging method, as the value of 𝜏𝑓 is decreased, the resolved turbulence level more quickly 

approaches the target value, as shown previously. However, cases using volume averaging show 

a nearly monotonic increase to the final value, while the cases with time averaging show 

oscillatory behavior, with the magnitude of oscillation increasing as 𝜏𝑓 is decreased. This is 

effectively a lag in the statistics that are used to compute the forcing term. It is expected that the 

results will converge to a nearly constant value given a sufficiently long run time, but as shown 

in the figures the time required to reach this is longer than a single characteristic simulation time, 

𝜏𝑠. Figure 23 compares the energy spectra obtained for three different forcing time scales, using 

volume and time averaging. The overall shape of the spectra is similar regardless of which 

averaging method is used. Table 4 compares the quasi-stationary turbulent kinetic energy level 

achieved for each case. The key point is that consistent with results shown previously, a lower 

value for the forcing time scale consistently produces more accurate results, regardless of which 

averaging method is used. 
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                                  (a)  𝝉𝒇 = 𝟒. 𝟓                   (b) 𝝉𝒇 = 𝟎. 𝟒𝟓 (c) 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓 

 

Fig. 21. Contours of instantaneous velocity magnitude for forcing simulation of 

homogeneous isotropic turbulence using volume-averaging (VA, above) and time-

averaging (TA, below) to compute turbulence statistics on 1283 grid at 𝝉𝒇 =

𝟒. 𝟓, 𝟎. 𝟒𝟓 𝐚𝐧𝐝 𝟎. 𝟎𝟒𝟓. 

 

 

VA                                                                                    

TA                                                                                    

Vmax = 18 m/s                                                                                    Vmax = 29.3 m/s                                                                                    Vmax = 32.1 m/s                                                                                    

Vmax = 18.1 m/s                                                                                    Vmax = 28.1 m/s                                                                                    Vmax = 30.7 m/s                                                                                    
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Fig. 22. Time evolution of turbulent kinetic energy, k/k* for forcing simulation of 

homogeneous isotropic turbulence using volume-averaging (VA, black) and time-

averaging (TA, red) to compute turbulence statistics on 1283 grid, at 𝝉𝒇 =

𝟒. 𝟓, 𝟎. 𝟒𝟓 𝐚𝐧𝐝 𝟎. 𝟎𝟒𝟓. 

   (a) 𝝉𝒇 = 𝟒. 𝟓 

   (b) 𝝉𝒇 = 𝟎. 𝟒𝟓 

   (c) 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓 
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Fig. 23. Normalized energy spectra for forcing simulation of homogeneous isotropic 

turbulence using volume-averaging (VA, black) and time-averaging (TA, red) to 

compute turbulence statistics on 1283 grid, at 𝝉𝒇 = 𝟒. 𝟓, 𝟎. 𝟒𝟓 𝐚𝐧𝐝 𝟎. 𝟎𝟒𝟓. 

 

   (a) 𝝉𝒇 = 𝟒. 𝟓 

   (b) 𝝉𝒇 = 𝟎. 𝟒𝟓 

   (c) 𝝉𝒇 = 𝟎. 𝟎𝟒𝟓 
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Table 4. Percentage ratio of resolved-to-target turbulent kinetic energy for different 

averaging techniques and forcing time scales at 𝒕 = 𝟑𝝉𝒔 

 

 𝝉𝒇 = 𝟒.𝟓 𝝉𝒇 = 𝟎. 𝟒𝟓 𝝉𝒇 = 𝟎.𝟎𝟒𝟓 

Time-averaging (TA) 57% 74% 102% 

Volume-averaging (VA) 37% 88% 99% 

 

 

4.5.1.3. Effect of Spatial Filtering 

For all of the results shown in the previous sections, no spatial filtering was used in the 

forcing term and the characteristic large-eddy length scale was effectively imposed by the size of 

the domain. This is apparent in the previous energy spectra plots, which show peak energy density 

at a wavenumber slightly less than 2/L. As discussed in Section 2.3, a spatial filter is applied by 

specifying a characteristic turbulent time scale and the target Reynolds stress tensor. For the 

isotropic turbulence simulations, the characteristic (isotropic) spatial filter size, as indicated in 

Eq. (27), is ∆ = 𝑣′𝜏𝑇. Several simulations were performed on the 1283 grid to demonstrate the 

effect of spatial filtering. 

Figure 24 shows contours of instantaneous velocity magnitude comparing a spatially filtered 

case with the non-spatially filtered case on 1283 grid, with 𝜏𝑇/ 𝜏𝑠 = 0.45, and 𝐶𝑓 = 100. This 

corresponds to a forcing time scale of 𝜏𝑓 = 0.0045, and for the spatially filtered case corresponds 

to a filter size 
∆

𝐿
= 0.45. Volume averaging was used to compute velocity statistics. The figure 

shows that the maximum instantaneous velocity magnitude is approximately equal for both cases, 
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but the turbulent length scales are visibly smaller for the spatially filtered case. The corresponding 

plots of evolution of turbulent kinetic energy are shown in Figure 25. It is apparent that the 

spatially filtered case reaches a stationary state faster than the non-filtered case, and that the 

overall level of resolved turbulence is lower. This is due to the fact that the effective turbulence 

production introduced by the forcing term is balanced in the simulation by the SGS (and to a 

lesser extent numerical) dissipation, and dissipation is greater when the resolved turbulent 

structures are smaller. It is also interesting to note that, once forcing is removed, the spatially-

filtered case shows more rapid decay of turbulent energy due to the fact that the initialized 

flowfield obtained from the STF has a smaller integral length scale. 

 

 

 

Fig. 24. Contours of instantaneous velocity magnitude for forcing simulation of 

homogeneous isotropic turbulence, comparing results of (a) spatially filtered with (b) non-

spatially filtered simulations, on 1283 grid, (𝝉𝑻/ 𝝉𝒔 = 𝟎. 𝟒𝟓 and 𝑪𝒇 = 𝟏𝟎𝟎). 

 

Vmax = 34.9 m/s                                                                                    Vmax = 34.1 m/s                                                                                    

(a) (b) 
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Fig. 25. Time evolution of turbulent kinetic energy, k/k* for forcing simulation of 

homogeneous isotropic turbulence, comparing results of spatially filtered (SF) with non-

spatially filtered (Non_SF) simulations, on 1283 grid (𝝉𝑻/ 𝝉𝒔 = 𝟎. 𝟒𝟓 and 𝑪𝒇 = 𝟏𝟎𝟎). 

 

Figure 26 shows the normalized energy spectra for the simulations with and without spatial 

filtering, for  𝜏𝑇/ 𝜏𝑠 = 0.45 and 𝜏𝑓 = 0.0045.  The effect of spatial filtering is evident, with the 

maximum energy density occurring at 𝜅 ≈ 4/𝐿, which corresponds to 𝜅 ≈ 1.8/Δ. The remainder 

of the spectrum, including the inertial and dissipation ranges, is qualitatively similar for the two 

cases.  
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Fig. 26. Normalized energy spectra for forcing simulation of homogeneous isotropic 

turbulence, comparing results of spatially filtered (SF) with non-spatially filtered 

(Non_SF) simulations, on 1283 grid,  using volume-averaging results at 𝝉𝑻/ 𝝉𝒔 = 𝟎. 𝟒𝟓 

and 𝑪𝒇 = 𝟏𝟎𝟎. 

 

To further highlight the effect of spatial filtering, simulations were run using four different 

values of the characteristic large-eddy timescale (𝜏𝑇), and a constant value of the forcing 

coefficient 𝐶𝑓 = 10.  Figure 27 shows instantaneous velocity magnitude contours for the four 

different cases. It is apparent that the scale of the visible resolved turbulent flow structures 

decreases as the filter timescale is reduced, as expected. The temporal evolution of the resolved 

turbulent energy for the four cases is shown in Fig. 28. It should be noted that, since 𝐶𝑓 is held 

constant, as 𝜏𝑇 is reduced the effective forcing timescale 𝜏𝑓 is correspondingly reduced and the 

magnitude of the forcing term increases. As a consequence, as 𝜏𝑇 is decreased the simulations 

more rapidly reach a quasi-stationary state. Interestingly, the level of turbulence reached is 

apparently insensitive to the imposed time (and length) scale, and the values reached are all 

approximately equal for a given value of the forcing coefficient 𝐶𝑓. For comparison purposes, the 
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simulation with 
𝜏𝑇

𝜏𝑠
= 0.45 and 𝐶𝑓 = 100 is also shown. For that case the resulting turbulence 

level is much closer to the target value. Additionally, once forcing is removed after a simulation 

time 𝑡/𝜏𝑠 = 3, the turbulent energy decay rate increases (i.e. turbulence decays faster) as 𝜏𝑇 is 

reduced.  

 

                                           (a)  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟎𝟓𝟔                      (b)  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟏𝟏𝟐 

 

                (c)  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟐𝟐𝟓               (d)  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟒𝟓            (e)  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟒𝟓, 𝑪𝒇 = 𝟏𝟎𝟎 

 

Fig. 27. Contours of instantaneous velocity magnitude for forcing simulation of 

homogeneous isotropic turbulence, with different time-scale targets (𝝉𝑻), imposing different 

turbulent length scales (𝒍𝒔), on 1283 grid, using volume-averaging results with 𝑪𝒇 = 𝟏𝟎,  and 

𝟏𝟎𝟎. 

Vmax = 25.5 m/s                                                                                    Vmax = 28.4 m/s                                                                                    

Vmax = 27.4 m/s                                                                                    Vmax = 27.9 m/s                                                                                    Vmax = 34.9 m/s                                                                                    
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Fig. 28. Time evolution of turbulent kinetic energy, k/k* for forcing simulation of 

homogeneous isotropic turbulence, with different time-scale targets (𝝉𝑻), imposing different 

turbulent length scales (𝒍𝒔), on 1283 grid, using volume-averaging results with 𝑪𝒇 = 𝟏𝟎, and 

100,  at  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟎𝟓𝟔, 𝟎. 𝟏𝟏𝟐, 𝟎. 𝟐𝟐𝟓 and 𝟎. 𝟒𝟓. 

 

Figure 29 (a) shows normalized energy spectra for the cases with varying characteristic 

large-eddy time scale (𝜏𝑇), and a constant value of the forcing coefficient 𝐶𝑓 = 10. The effect of 

spatial filtering is apparent, as the peak energy density moves toward higher wavenumbers as 𝜏𝑇 

is decreased. The shift in peak wavenumber scales inversely with the effective spatial filter size, 

Δ, suggesting that filtering is an effective means of controlling the large eddy length scale in the 

synthetically generated turbulent velocity field. For all cases except that with the smallest value 

of 𝜏𝑇, there is an evident inertial range that approximately follows Kolmogorov -5/3 scaling. 
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(a) 𝑪𝒇 = 𝟏𝟎,  at  𝝉𝑻/𝝉𝒔 = 𝟎.𝟎𝟓𝟔, 𝟎. 𝟏𝟏𝟐, 𝟎. 𝟐𝟐𝟓 and 𝟎. 𝟒𝟓           (b) 𝑪𝒇 = 𝟏𝟎𝟎, and 𝑪𝒇 = 𝟏𝟎  at  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟒𝟓 

 

Figure 29.  Normalized energy spectra for forcing simulation of homogeneous isotropic 

turbulence, with different time-scale targets (𝝉𝑻), imposing different turbulent length 

scales (𝒍𝒔)  , on 1283 grid, using volume-averaging results with (a) 𝑪𝒇 = 𝟏𝟎,  at  𝝉𝑻/𝝉𝒔 =

𝟎. 𝟎𝟓𝟔, 𝟎. 𝟏𝟏𝟐, 𝟎. 𝟐𝟐𝟓 and 𝟎. 𝟒𝟓 and (b) 𝑪𝒇 = 𝟏𝟎𝟎, and 𝑪𝒇 = 𝟏𝟎  at  𝝉𝑻/𝝉𝒔 = 𝟎. 𝟒𝟓 

 

Results for isotropic turbulence are summarized in Table 5. For all cases the statistically 

targeted forcing method reproduces some level of resolved turbulence that approximates an 

isotropic flow. As seen in the previous results, for sufficiently refined mesh in which sufficient 

separation exists between the largest resolved length scale and the mesh size, a portion of the 
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turbulent energy spectrum arises that approximates Kolmogorov inertial scaling. The degree to 

which the prescribed target Reynolds stress tensor is reproduced depends directly on the 

magnitude of the forcing time scale, which controls the overall strength of the forcing term. As 

seen in Table 5, all of the cases that produced at least 90% of the target turbulent kinetic energy 

had forcing time scale ratios (𝜏𝑓/𝜏𝑠) less than 0.05. It is worth noting that none of the cases studies 

exhibited any numerical instability, which indicates that the STF method can be effectively 

implemented with a judicious choice of forcing time scale that allows both accurate and stable 

solutions for synthetic turbulence generation. 
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Table 5. Summary of turbulence statistics for Homogeneous Isotropic STF cases 

(Green color implies target and over 90% of target statistics) 

 

 

 

 

 

0.6666 0.6666 0.6666

Averaging 

Method

Spatially 

Filtered
Grid

Max % 

Difference

Volume No 0.045 0.6601 0.6560 0.6665 1.59 99.13

Volume No 0.45 0.5725 0.5433 0.5684 18.49 84.21

Volume No 0.045 0.6562 0.6522 0.6495 2.56 97.90

Volume No 0.45 0.5725 0.5505 0.5701 17.41 84.66

Volume No 0.045 0.6567 0.6532 0.6548 2.01 98.23

Volume No 0.45 0.5811 0.5433 0.5776 18.49 85.10

Volume No 4.5 0.2211 0.2359 0.2151 67.73 33.60

Volume Yes 0.45 0.045 0.6211 0.6203 0.6191 7.13 93.03

Volume Yes 0.45 0.45 0.4881 0.5009 0.4996 26.78 74.43

Volume Yes 0.45 4.5 0.2098 0.2238 0.2041 69.39 31.88

Volume No 0.45 0.5778 0.5887 0.5800 13.33 87.32

Volume No 0.00033 0.6665 0.6665 0.6665 0.01 99.98

Volume No 0.0033 0.6655 0.6658 0.6649 0.26 99.81

Volume No 0.0045 0.6651 0.6651 0.6655 0.23 99.78

Volume No 0.045 0.6563 0.6515 0.6539 2.27 98.08

Volume No 0.067 0.6379 0.6501 0.6456 4.31 96.68

Volume Yes 0.45 0.45 0.4881 0.5009 0.4996 26.78 74.43

Volume Yes 0.225 0.225 0.4875 0.4947 0.4913 26.87 73.68

Volume Yes 0.112 0.112 0.4973 0.4969 0.4985 25.45 74.64

Volume Yes 0.056 0.056 0.4912 0.4909 0.4902 26.46 73.62

Time Yes 0.45 0.045 0.6128 0.5968 0.5880 11.80 89.88

Time No 0.045 0.6544 0.6378 0.6363 4.54 96.42

Time No 0.45 0.5464 0.5108 0.4923 26.14 77.47

Time No 4.5 0.3467 0.2871 0.3161 56.93 47.50

Target Reynolds stress

Resolved Reynolds stress
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643

1283

1283

323
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1283

1283

1283

1283

1283
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1283

1283
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𝒖𝟐
′𝒖𝟐
′  ∗⁄
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1283
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4.5.2.  Homogeneous Anisotropic Turbulence 

In principal there is no restriction of the STF method to an isotropic target Reynolds stress. 

To demonstrate the ability of the method to synthetically generate an arbitrary anisotropic 

turbulent velocity field, simulations were run on the 1283 cell grid with 𝜏𝑓/𝜏𝑠 = 4.5, 0.45, and 

0.045. Results were obtained using volume averaging and no spatial filtering. A first case was run 

for unequal normal stresses but zero shear stress (denoted ZSS). The target statistics for the ZSS 

case were prescribed as: 

 

𝑢̅1
∗ = 𝑢̅2

∗ = 𝑢̅3
∗ = 0 (35) 

 

 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗ = 0.5 𝑘∗, 𝑢2

′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑘∗, 𝑢3

′ 𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 1.5 𝑘∗     (36) 

 

 𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑢1

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 𝑢2

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 0 (37) 

 

An additional case was run with the same mesh and simulation conditions, but with finite shear 

stress components (denoted FSS). The target statistics for this case were prescribed as: 

 

 𝑢̅1
∗ = 𝑢̅2

∗ = 𝑢̅3
∗ = 0 (38) 

 

 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗ = 0.5 𝑘∗, 𝑢2

′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑘∗, 𝑢3

′ 𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 1.5 𝑘∗        (39) 

 

 𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 0.36 𝑘∗, 𝑢1

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 0.44 𝑘∗,  𝑢2

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 0.62 𝑘∗ (40) 
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Figure 30 shows the contours of instantaneous velocity magnitude for both anisotropic test 

cases with forcing time scale 𝜏𝑓/𝜏𝑠 = 4.5 and 0.45. Similar to the isotropic turbulence results, the 

maximum velocity magnitude increases with a decrease in the forcing time scale. Likewise, the 

structure of the velocity field is qualitatively similar to the isotropic results shown in Fig. 16. The 

time history of the turbulent kinetic energy for the anisotropic case is shown in Fig. 31. The 

behavior again resembles that of the isotropic test case. It is interesting to note in Fig. 31 (b) that 

the decay of turbulent kinetic energy differs for the two different anisotropic cases, with more 

rapid decay occurring for the case with finite shear stress components. Figure 32 shows the energy 

spectra for the anisotropic cases. Consistent with the other results, the spectra are similar to those 

for the isotropic test cases, with the peak wavenumber determined by the domain size and the 

dissipation cutoff wavenumber corresponding to the characteristic mesh size. As for the isotropic 

cases, a portion of the spectrum is apparent that approximates -5/3 inertial range scaling. 
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                                                        𝒁𝑺𝑺                                               𝑭𝑺𝑺 

 

 
                                                      𝒁𝑺𝑺                                                 𝑭𝑺𝑺 

 

 

Figure 30. Contours of instantaneous velocity magnitude for forcing simulation of 

homogeneous anisotropic turbulence with volume averaging, on 1283 grid, for zero shear 

stress (ZSS) results (left) with 𝝉𝒇/𝝉𝒔 = 4.5 and 0.45 and imposed finite shear stress (FSS) 

results (right) with 𝝉𝒇/𝝉𝒔 = 4.5 and 0.45.  

 

 

 

Vmax = 18.4 m/s                                                                                    Vmax = 18.3 m/s                                                                                    

Vmax = 35.4 m/s                                                                                    
Vmax = 34.9 m/s                                                                                    
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(a) ZSS results, at 𝝉𝒇/𝝉𝒔 = 0.45 and 0.045  

 

 
(b) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 0.45  

 

 
(c) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 4.5 

 

Figure 31. Time evolution of turbulent kinetic energy, k/k* for forcing simulation 

homogeneous anisotropic turbulence with volume averaging, on 1283 grid, (a) zero shear 

stress (ZSS) results, at 𝝉𝒇/𝝉𝒔 = 0.45 and 0.045 , (b) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 0.45 , 

and (c) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 4.5. 
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     (a) ZSS results, at 𝝉𝒇/𝝉𝒔 = 0.45 and 0.045             (b) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 

0.45  

 

(c) ZSS and FSS results, at 𝝉𝒇/𝝉𝒔 = 4.5 

 

Figure 32. Normalized energy spectra for forcing simulation of homogeneous anisotropic 

turbulence with volume averaging, on 1283 grid, (a) zero shear stress (ZSS) at 𝝉𝒇/𝝉𝒔 = 0.45 

and 0.045, (b) ZSS and finite shear stress (FSS) results, at 𝝉𝒇/𝝉𝒔 = 0.45 , and (c) ZSS and 

FSS results, at 𝝉𝒇/𝝉𝒔 = 4.5  
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Table 6 summarizes the results in terms of the resolved turbulence statistics. The maximum 

difference between the target and resolved Reynolds stress components for each case is shown 

next to the far-right column. As the strength of the forcing term is increased by decreasing the 

value of the forcing time scale 𝜏𝑓, the resolved stress components agree more closely with their 

target values. For the ZSS case at 𝜏𝑓 = 0.045, the maximum difference is 2.18%. For both 

isotropic (Table 5) and anisotropic (Table 6) cases, the results indicate that selection of 

coefficients to provide a sufficiently large forcing term can successfully be used to reproduce the 

desired target statistics.  

 

6. Summary of turbulence statistics for Homogeneous Anisotropic  STF cases 

(Green color implies target and over 90% of target statistics) 

 

 

4.6. SUMMARY AND CONCLUSION 

 A new method for synthetic turbulence generation in scale-resolving turbulent flow CFD 

simulations is presented. The new method, denoted Statistically Targeted Forcing (STF), 

incorporates a source term in the momentum equation to drive the local, instantaneous velocity 

vector towards a target value. The target value is computed at each instant and location in the 

0.3333 0.2400 0.6666 0.2933 0.9999 0.4133

Averaging 

Method

Finite Shear 

Stress (FSS)
Grid

Max % 

Difference

Volume No (ZSS) 0.045 0.3354 0.6520 0.9849 2.18 98.61

Volume No (ZSS) 0.45 0.3368 0.5214 0.8291 21.79 84.36

Volume No (ZSS) 4.5 0.1964 0.2336 0.2993 70.07 36.46

Volume Yes (FSS) 0.45 0.3940 0.1795 0.5618 0.1972 0.7906 0.2780 32.77 87.32

Volume Yes (FSS) 4.5 0.0931 0.0220 0.1180 0.0334 0.1678 0.0405 90.84 18.95
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Resolved Reynolds Stress
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simulation based on a mapping of the resolved first- and second-order statistics to the desired, 

target single-point statistics.  The resolved statistics can be computed during the simulation using 

either volume averaging for homogeneous turbulence or time averaging for stationary turbulence. 

 The method was evaluated by performing several test simulations of homogeneous 

turbulence, using LES with the Smagorinsky subgrid stress model and or the MILES (implicit 

LES) modeling approach. Qualitative and quantitative results were presented which showed that 

the method was able to reproduce the target Reynolds stress components after a relatively short 

period of simulation time. The simulations using volume averaging responded more quickly than 

those using time averaging since there is no inherent lag in statistical calculations. It was 

demonstrated that the forcing time scale can be varied to control the strength of the forcing term, 

and reducing the time scale was found to be an effective means of reducing the time required for 

evolution to a quasi-stationary turbulent state, and for improving the accuracy of the forced 

simulation. 

Energy spectra showed that the simulations reproduced the characteristic inertial range 

scaling when a sufficiently fine mesh was used, although energy pile up occurred near the cutoff 

wavenumber when an appropriate dissipative subgrid stress model was not employed. It was also 

demonstrated that spatial filtering can be used to control the effective large-eddy length scale. In 

sum, the results indicate that the STF method is capable of reproducing a synthetic homogeneous 

turbulence field with prescribed first- and second-order statistics and appropriate spectral content, 

which can be used to specify initial and/or boundary conditions for LES simulations. The method 

is relatively simple to implement, non-stochastic, stable, and computationally efficient. The STF 

method may therefore offer an attractive alternative for synthetic turbulence generation in three-

dimensional Navier-Stokes CFD codes. Future work will investigate extension of the method for 
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generation of inlet freestream and boundary layer conditions for LES of wall bounded turbulent 

flows. 
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CHAPTER V 

 

SCALE-RESOLVING SIMULATIONS OF A STATISTICALLY TARGETED FORCING 

METHOD FOR SYNTHETIC TURBULENCE GENERATION IN A FREESTREAM 

TURBULENCE  

Work from this chapter has been submitted to the ASME Journal of Fluids Engineering (JFE). 

 

5.1.  INTRODUCTION 

 

Freestream turbulence is increasingly important in many engineering applications especially 

for engineering design and analysis, it has been specified on several occasions as time-dependent 

turbulence boundary and/or initial (B/I) conditions far upstream of computational domain. It 

occurs in atmospheric turbulence surrounding aircrafts, resultant wake turbulence from an object, 

flow turbulence in ducts as well as in unbounded flows and other significant cases in industrial 

engineering applications. Computational fluid dynamics (CFD) methods for effectively 

reproducing time-dependent inflow freestream turbulence (FST) boundary conditions in scale-

resolving simulations within a spatially developing domain is therefore increasingly needed and 

is of significant value in many engineering applications. Most importantly, FST is usually 

specified as a boundary and/or initial (B/I) conditions far upstream of a computational domain, 

therefore, reproduction or generation of freestream turbulence boundary layer in a spatially 

developing flow domain is relatively challenging and of particular interest in this study. 

Simulations with high fidelity methods such as Direct Numerical Simulations (DNS) and Large-

Eddy Simulations (LES) are relatively accurate and expensive for industrial applications while 
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Reynolds-averaged Navier-Stokes (RANS) simulations is less accurate but industrially 

affordable. Hybrid RANS-LES (HRL) modeling framework has been previously documented in 

literature to provide a competitive advantage in terms of accuracy and cost compared to either 

LES or RANS model alone. Therefore, efficient methods for prescribing or reproducing  complex 

conditions such as FST far upstream or within a computational domain is increasingly needed.  

The feasibility of resolving freestream turbulence is narrow for most researchers without 

synthetic turbulence generation (STG), this is because FST is usually located far upstream of the 

computational domain. Most times, it is not feasible to include the source of turbulent B/I 

condition within a simulation. For instance, the interaction of an aerodynamic vehicle with a 

turbulent freestream flow. The source of the freestream turbulence is in fact due to the interaction 

of the atmospheric boundary layer (ABL) with the ground, but available resources would typically 

prevent simulating the ABL flow in addition to the local vehicle aerodynamics. Therefore, 

utilizing STG methods in generating or specifying such a turbulent B/I condition instead of  

simulating the actual process of natural or bypass laminar-to-turbulent transition via high fidelity 

methods of DNS or LES, is more appropriate for large Reynolds number. Hence, the purpose of 

STG methods is to replace turbulent content obtained from fully resolved simulations with a 

reasonable approximation of turbulence for a substantially lower computational cost. In addition, 

the methods usually provide the flexibility of selectively locating turbulent content ( as turbulence 

B/I conditions) in specific regions of the computational domain where they are needed. 

 Research interest on generation of turbulence B/I conditions has been progressive over the 

past two decades, ranging from library-based methods to recycling/rescaling to synthetic 

turbulence generation (STG) with controlled forcing. Recycling/rescaling is one of the renowned 

methods for prescribing turbulence boundary conditions.  To produce a recycled turbulent content, 
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streamwise periodic boundary conditions are imposed on the computational domain or a portion 

of the domain to ensure that the turbulent flow leaving the outlet is reintroduced at the inlet. 

Rescaling of the velocity field can be performed to ensure that the turbulent statistics remain 

appropriately spatially developing. Dhamankar et al. [81], Morgan et al. [80], and Wu [79], 

previously published that recycling/rescaling facilitate the development of equilibrium turbulence 

by introducing fluctuations on the inflow boundary. This method was used, for example, by 

Spalart et al. [78] to perform large-eddy simulation of a turbulent boundary layer. Lund et al. [17] 

used the recycling/rescaling method to perform an auxiliary simulation of a turbulent boundary 

layer, and then extracted planes of time-dependent velocity data to be mapped to the inlet of a 

simulation with a more complex geometry. Several other studies have extended the 

recycling/rescaling approach to simulate complex wall bounded flows [18-20]. Schlüter et al. [21] 

used the recycling/rescaling method to impose fluctuating velocities at the outlet to an LES region 

of a simulation to impose the statistics obtained from a RANS solution in the downstream region.  

A different class of methods to recycling/rescaling is synthetic turbulence generation (STG). 

For applications of practical engineering interest on complex geometries, STG methods have the 

potential to reproduce turbulent fluctuations at desired locations and with desired statistical 

distributions, without the need to run an auxiliary simulation. STG methods can also be used to 

specify inflow boundary conditions as well as initial conditions for a simulation.  

Kraichnan [22] proposed one of the first STG methods for isotropic turbulence, by utilizing 

a spectral approach to artificially produce an isotropic turbulent velocity field from random 

Fourier modes. This approach of generating isotropic velocity fields with a specified energy 

spectrum has been used for example to generate initial conditions for DNS of isotropic turbulence 

[23,24].  Lee et al. [51] similarly proposed a Fourier transform-based STG method to generate 
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inflow boundary conditions, however one limitation of this method is that it is not applicable to 

wall-bounded flows due to statistical inhomogeneity in the wall-normal direction. 

Using a similar approach for isotropic turbulence, Lundgren [52] defined a forcing term in the 

momentum equations that is proportional to the fluctuating velocity component. This isotropic 

linear forcing (ILF) term imitates the natural production mechanism in the turbulent kinetic 

energy equation. This ILF forcing can be restricted to low wave number modes when using 

spectral numerical methods. Rosales et al. [53] extended the method in [52] by formulating the 

forcing term in physical space. In order to control the length scales, it has been suggested in Klein 

et al. [77] to make the forcing proportional to a high pass filtered velocity fluctuation. However, 

implementation of a high pass filter on an arbitrary unstructured grid is not straightforward. 

A different algorithmic approach proposed by Jarrin et al. [54,55] is the synthetic eddy 

method (SEM), which is used to generate realistic synthetic eddies at the inflow of an LES 

simulation. Results have shown that the synthetic eddy field can evolve to physically realistic 

turbulent flow after a relatively short distance downstream of the inlet. Some limitations exist in 

the SEM method such as depletion of the smaller scales of turbulence. This has motivated 

modification of the SEM to include momentum source terms that energize the velocity 

fluctuations for some distance downstream. 

Keating et al. [56] explain how inappropriate modeling of the scale and structure of synthetic 

turbulence can lead to a rapid dissipation of velocity fluctuations and an increase in the 

time/distance required for the flow to recover into a fully turbulent state. Therefore, most recent 

STG methods attempt to introduce some degree of spatial and temporal coherence through 

artificial control forcing techniques.   
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Spille-Kohoff and Kaltenbach [57] proposed an inflow STG method based on an added 

forcing source term in the wall-normal momentum equation. This forcing term enhances the 

velocity fluctuations in that direction, to match a desired “target” profile of Reynolds shear stress. 

This technique enhances the wall-normal fluctuations at discrete locations, with amplitude 

proportional to the difference between the calculated Reynolds shear stress and a provided target 

profile. This is an example of an STG method with a controlled forcing feedback loop to achieve 

a target statistical distribution. They documented that the method reduces the error in the 

Reynolds shear stress to acceptable values within five channel half heights, although the 

coefficient of friction and the turbulent kinetic energy required longer downstream distances to 

reach their fully developed values. Similarly, Schmidt and Breuer [76] documented a method that 

depends on applying a local volume force to superimpose synthetic turbulence at user-specified 

locations of the computational domain, which can easily be implemented by  adding a source term 

into a Navier–Stokes momentum equation. 

Recently, B. de Laage de Meux et al. [58] proposed a method to impose target statistics of 

the flow in terms of mean velocity and resolved turbulent stress, using a method denoted 

anisotropic linear forcing (ALF). The time-dependent forcing function is proportional to the 

instantaneous velocity via a tensor transformation. The method was found to provide accurate 

results for isotropic, anisotropic, and spatially developing turbulence test cases for LES and 

hybrid RANS-LES simulations. More recently, Tangermann et al. [64] implemented a STG 

method that controlled a freestream turbulent intensity based on applying local volume forces has 

been adapted and supplemented with a control loop in order to compensate for alterations of the 

turbulence structure resulting from the numerical treatment and physical reasons. The method 

showed that turbulence length scale and intensity agree with the prescribed target values. 
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Therefore, formulation of a STG method based on an added forcing source term that is 

proportional to instantaneous velocity via tensorial transformation can be implemented within a 

computational domain to match desired target statistics. 

This study introduces a recently published statistical targeted forcing (STF) method based 

on the latter methods. A variant of STG method with controlled forcing within the simulation 

domain, implemented via added source terms (controller mechanism) in the momentum and 

energy equations. Recently, Shobayo and Walters [65] validated the STF method for 

homogeneous isotropic and anisotropic turbulent flow, where results showed that the method can 

accurately match the desired target statistics. The objective of this study is to investigate the STF 

method for a freestream turbulent flow using three different classes of modeling approach: RANS, 

LES, and hybrid RANS-LES. Specifically, this study investigates the capability of STF method 

to act as a restoring force towards a target statistical state within a time-averaging framework. 

Furthermore, dynamic hybrid RANS-LES model (DHRL), a type of HRL simulation 

methodology, has been documented in the literature [36-37,66] as HRL model that provides 

competitive advantage in terms of accuracy and cost compared to k- SST (RANS) [40] or  

MILES (LES) alone [36]. In general, we seek to investigate and validate STF method’s 

performance, analysis of the influence of STF method parameters, effect of mesh resolution, and 

effect of choice of modeling frameworks in a freestream turbulent flow.  

 

5.2. SIMULATION DETAILS 

This study extends the application of the STF method to reproducing freestream turbulence 

in a spatially developing turbulent freestream flow domain using k- SST (RANS), MILES 



 105 | 
P a g e  

 

(LES), and DHRL models. The STF method is evaluated within the modeling framework of k- 

SST, MILES, Smagorinsky (SMAG), and DHRL models. 

The test case considered here is fully developed inflow freestream turbulence in a 

prototypical hexahedral flow channel that is statistically homogeneous normal to the mean flow 

direction. The domain extends 10𝛿 × 2𝛿 × 2𝛿 in the streamwise (x), and normal (y and z) 

directions, respectively, where 𝛿 denotes the half-channel extent in either of the normal directions. 

Boundary conditions are periodic in the normal directions, and inflow and outflow boundary 

conditions are specified in streamwise direction.  

Simulation results showed that the effective pressure gradient throughout the domain is 

relatively small and constant, with a total pressure variation of ~ 46𝑃𝑎 (<0.05% of 1atm) and is 

therefore has negligible effect on fluid properties. The remainder of this section briefly reviews 

the mathematical formulation of the STF method, SST, MILES, SMAG, DHRL models, and other 

simulation details such as FST channel flow test case geometry, boundary and initial conditions, 

computational grid, numerical schemes and CFD flow solver.  

 

 

5.2.1.  STF Method Formulation 

Shobayo and Walters [65] previously documented that the statistically targeted forcing 

(STF) method seeks to induce a synthetic turbulence field through the addition of a time-

dependent, non-stochastic forcing term in the momentum equation. The forcing term is 

formulated to drive the instantaneous, local velocity towards a “target” user-specified first- and 

second-order single-point turbulent statistics i.e., the mean velocity vector and Reynolds stress 

tensor. The STF method is implemented by adding a forcing term, 𝑓𝑖, to the momentum and 
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energy equations. The momentum and energy equations, with the forcing term included for single-

phase, single-species, compressible flow are briefly reviewed here: 

 

 
∂

∂𝑡
(𝜌𝑢𝑖) +

∂

∂xj
(𝜌𝑢𝑖𝑢𝑗)  = −

∂𝑝

∂x𝑖
+

∂

∂xj
(𝜎𝑖𝑗) + 𝑓𝑖  (1) 

 

 
∂

∂𝑡
(𝜌𝐸) +

∂

∂xj
(𝜌𝑢𝑗𝐻) =

∂

∂xj
(𝑞𝑗 + 𝑢𝑖𝜎𝑖𝑗) + 𝑢𝑖𝑓𝑖 (2) 

 

where 𝑓𝑖 is defined as: 

 

 𝑓𝑖 = 
𝜌

𝜏𝑓
(𝑢𝑖
∗ − 𝑢𝑖) (3) 

 

In the above, the flow variables 𝜌, 𝑢, 𝑝, 𝐸, and 𝐻 may represent local instantaneous (DNS) 

or filtered (LES) quantities. Likewise, the viscous stress tensor 𝜎𝑖𝑗 and heat flux vector 𝑞𝑗 include 

both molecular and, for LES, subfilter contributions. Here 𝑢𝑖
∗ is a target local, instantaneous 

velocity and 𝜏𝑓 is a characteristic time scale for the forcing term. The STF method is implemented 

by adding a forcing term, 𝑓𝑖, to the momentum and energy equations.The source term is 

constructed such that during each time step of a simulation, the resolved velocity vector is forced 

toward a target velocity vector that would in principle yield a desired target statistical distribution 

for the time-varying velocity field. Inputs to the model include prescription of a local target mean 

velocity, 𝑢̅𝑖
∗, and turbulent stress tensor 
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 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ = (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢̅𝑖𝑢̅𝑗)
∗
 (4) 

 

where the overbar denotes either Reynolds or Favre (mass-weighted) averaging. 

The key aspect of the forcing method is the calculation of the target velocity vector  𝑢𝑖
∗. It 

is first noted that the transformation proposed by can be used to map an ensemble of isotropic 

velocity fluctuations 𝑣′ to an ensemble of fluctuations that satisfy a target statistical distribution 

𝑇𝑖𝑗 = 𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ ∗ as follows: 

 

 𝑢𝑖
′∗ = 𝐵𝑖𝑗𝑣𝑗

′ (5) 

 

 𝐵𝑖𝑗 = [

√𝑇11 0 0

𝑇21/𝐵11 √𝑇22 − 𝐵21
2 0

𝑇31/𝐵11 (𝑇32 − 𝐵21𝐵31)/𝐵22 √𝑇33 − 𝐵31
2 − 𝐵32

2

] (6) 

 

Similarly, an ensemble of resolved fluctuations satisfying a particular statistical distribution 

𝑅𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  can be mapped to an isotropic distribution 𝑣′ using the inverse of the Lund coefficient 

matrix: 

 

 𝑣𝑖
′ = 𝐴𝑖𝑗

−1𝑢𝑗
′ (7) 

 

 𝐴𝑖𝑗
−1 = [

1/𝐴11 0 0
−𝐴21/(𝐴11𝐴22) 1/𝐴22 0

(𝐴21𝐴32 − 𝐴31𝐴22)/(𝐴11𝐴22𝐴33) −𝐴32/(𝐴22𝐴33) 1/𝐴33

] (8) 
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 𝐴𝑖𝑗 =  [

√𝑅11 0 0

𝑅21/𝐴11 √𝑅22 − 𝐴21
2 0

𝑅31/𝐴11 (𝑅32 − 𝐴21𝐴31)/𝐴22 √𝑅33 − 𝐴31
2 − 𝐴32

2

] (9) 

 

It is therefore possible to define a mapping from a distribution of resolved velocity fluctuations 

𝑢𝑖
′ with known statistical second moment tensor (turbulent stress) 𝑅𝑖𝑗 to a distribution 𝑢𝑖

′∗ with 

target turbulent stress 𝑇𝑖𝑗 as: 

 

 𝑢𝑖
′∗ = 𝐶𝑖𝑗𝑢𝑗

′ (10) 

 

 𝐶𝑖𝑗 = 𝐵𝑖𝑘𝐴𝑘𝑗
−1 (11) 

 

The instantaneous target velocity used in the forcing function includes the target fluctuating 

velocity as well as the target mean velocity: 

 

 𝑢𝑖
∗ = 𝑢̅𝑖

∗  + 𝐶𝑖𝑗𝑢𝑗
′ (12) 

 

Where the fluctuating velocity is defined relative to the mean: 

 

 𝑢𝑖
′ = 𝑢𝑖 − 𝑢̅𝑖 (13) 
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In practice STF method is implemented as follows. First a target statistical velocity 

distribution is specified prior to the simulation in terms of 𝑢̅𝑖
∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗. As the simulation 

proceeds, the resolved statistics 𝑢̅𝑖 and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  are obtained using an appropriate averaging 

technique. At each time step, the transformation tensor 𝐶𝑖𝑗 is computed at each point in the domain 

based on  𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ . During each iteration, the fluctuating velocity  𝑢𝑖
′ is computed, and the 

target instantaneous velocity 𝑢𝑖
∗ is found using Eq. (12). The forcing term 𝑓𝑖 defined in Eq. (14) 

is then computed using Eq. (3) and included as an additional source term in the momentum and 

energy equations. Shobayo and Walters [65] concluded that the forcing term can be defined as a 

function of the characteristic large-eddy turbulent timescale, 𝜏𝑇, forcing coefficient, 𝑓𝑐 ( 𝐶𝑓 [65]), 

and target fluctuating velocity, 𝑢𝑖
∗. Type of spatial filtering and averaging method used for the 

simulations in this study are anisotropic spatial filtering and time averaging respectively. For 

further details on the STF method, readers are referred to Ref. [65].  

  

 𝑓𝑖 = 𝜌 
𝑓𝑐

𝜏𝑇
(𝑢𝑖
∗ − 𝑢𝑖) (14) 

 

5.2.2.  Spatial Filtering 

Spatial filtering is implemented in the STF method to allow the user to have some measure of 

control of the turbulent length scale. All simulations adopting spatial filtering in this study were 

performed using a second-order differential elliptic filter [27]. In this method, for anisotropic 

filter, the filtered resolved velocity (𝑢̂𝑖) is obtained by solution of Eq. (15), where 𝜙𝑗𝑘 is the 

tensorial filter width or size: 
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𝜕

𝜕𝑥𝑗
(𝜙𝑗𝑘

𝜕𝑢̂𝑖

𝜕𝑥𝑗
) = 𝑢̂𝑖 − 𝑢𝑖 (15) 

 

Spatial filtering is implemented in the STF method by first re-defining fluctuating velocity (𝑢𝑖
′) 

in Eq. (16) as filtered fluctuating velocity (𝑢𝑖
′′): 

 

 𝑢𝑖
′′ = (𝑢𝑖 − 𝑢̂𝑖) − (𝑢̅𝑖 − 𝑢̂𝑖̅) (16) 

 

The instantaneous target velocity used in the forcing function includes the target filtered 

fluctuating velocity (𝐶𝑖𝑗𝑢𝑗
′′) as well as the target mean velocity (𝑢̅𝑖

∗): 

 

 𝑢𝑖
∗ = 𝑢̅𝑖

∗ + (𝑢̂𝑖 − 𝑢̅𝑖) + 𝐶𝑖𝑗𝑢𝑗
′′ (17)  

 

At every iteration, the filtered transformation tensor 𝐶𝑖𝑗 is computed at each point in the domain 

based on a modified target turbulent stress, 𝑇𝑖𝑗, and resolved turbulent stress, 𝑅𝑖𝑗, where 𝑀𝑖𝑗 is a 

term that represents the contribution to the turbulent stress by the interaction between the 

filtered and instantaneous velocity: 

 

 𝑇𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ −𝑀𝑖𝑗 (18)  
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 𝑅𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ − 𝑀𝑖𝑗 (19)  

 

 𝑀𝑖𝑗 =
1

2
[(𝑢̂𝑖𝑢𝑗̅̅ ̅̅ ̅ + 𝑢𝑖𝑢̂𝑗̅̅ ̅̅ ̅) − (𝑢̂𝑖̅𝑢̅𝑗 + 𝑢̅𝑖𝑢̂𝑗̅)] (20)  

 

Equation (15) represents an isotropic spatial filtering operation. In practice, the STF method 

adopts a generalized anisotropic filter defined by: 

 

 
𝜕

𝜕𝑥𝑗
(𝜏𝑇
2 𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅ ∗ 𝜕𝑢̂𝑖
𝜕𝑥𝑘
) = 𝑢̂𝑖 − 𝑢𝑖 (21)  

 

Anisotropic filtering is a relatively simple way to incorporate the fact that turbulence can have 

different length scales in different directions. The method assumes that regardless of their length 

scale, large eddies (i.e. velocity fluctuations) will share the same time scale. The tensorial filter 

width is defined to depend on a characteristic turbulent time scale, 𝜏𝑇, and the target turbulent 

stress tensor, 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗. For freestream turbulence, spatial variations and turbulent fluctuations are 

not statistically uniform in all directions and the filtered resolved velocity (𝑢̂𝑖) is obtained by 

solution of Eq. (21). For isotropic turbulence, the anisotropic filtering operation is formally 

similar to the isotropic filter defined in Eq. (15). For this case, spatial variations and turbulent 

fluctuations are statistically uniform in orthogonal and spanwise directions only, hence the 

tensorial filter width is defined as: 
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 𝜙𝑗𝑘 = 𝜏𝑇
2  (𝑢𝑗′𝑢𝑘

′̅̅ ̅̅ ̅̅ ∗) (22)  

 

5.2.3.  Shear-Stress Transport (SST) Model 

A commonly used example of the RANS modeling approach is the Shear-Stress Transport 

(SST k-ω) model [40]. It has been widely and successfully used for practical RANS CFD 

simulation of complex turbulent flows. Recall the overbar in Eq. (4) represents Reynolds-

averaging (for this model), the turbulent stress tensor and eddy viscosity is modeled using the 

Boussinesq hypothesis as: 

                                                           

 𝜏𝑖𝑗
𝑅𝐴𝑁𝑆 = 𝜈𝑡 (

𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+
𝜕𝑢𝑗̅̅ ̅

𝜕𝑥𝑖
) −

2

3
𝑘̅𝛿𝑖𝑗   (23) 

 

 𝜈𝑡 =
𝑎1𝑘

𝑚𝑎𝑥(𝑎1𝜔 ,𝑆𝐹𝑠𝑠𝑡)
 (24) 

 

where 𝐹𝑠𝑠𝑡 is a blending function, 𝑎1 is a constant, and 𝑆 represents an invariant measure of the 

strain-rate magnitude. 𝐹𝑠𝑠𝑡 obtains a value of unity for boundary-layer flows, and a value of zero 

for free shear layers far from a wall.  

Two transport equations, one for the turbulent kinetic energy (𝑘) and the other for the 

specific turbulence dissipation rate (𝜔), are incorporated into the SST k-ω modeling framework 

as follows:  
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𝐷𝜌𝑘

𝐷𝑡
=  𝜏𝑖𝑗 

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗
 [(𝜇 + 𝜎𝑘𝜇𝑡 )

𝜕𝑘

𝜕𝑥𝑗
] (25) 

 

 
𝐷𝜌𝜔

𝐷𝑡
= 

𝛾

𝜈𝑡
𝜏𝑖𝑗 

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
 [(𝜇 +  𝜎𝜔𝜇𝑡 )

𝜕𝜔

𝜕𝑥𝑗
] +  2 (1 − 𝐹1)𝜌𝜎𝜔2  

1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗
 
𝜕𝜔

𝜕𝑥𝑗
(26) 

 

The blending function F1 plays a similar role as 𝐹𝑠𝑠𝑡, serving as an indicator function for near-

wall and far field regions of the flow. Near the wall, F1 = 1, and a k-ω model form is recovered. 

Far from the wall, F1 tends to 0. For further details on the model, readers are referred to Ref. [40]. 

Some simulations in this study used the STF method with SST k-ω model to compare the model’s 

performance with MILES and DHRL in reproducing synthetic freestream turbulence. Particularly, 

the modeled “turbulent kinetic energy” (𝑘) for this model is compared with “target” 𝑘, and hybrid 

or resolved 𝑘  of other models. 

 

5.2.4  Monotonically Integrated LES (MILES) and LES Subgrid Stress Model 

Some simulations presented here use both the Smagorinsky eddy-viscosity based subgrid 

stress model [61], and Monotonically Integrated LES (MILES) [62]. Three reasons are apparent 

for the two choices of LES models, first, to investigate effect of explicit LES modeling compared 

to Implicit LES, second, to examine effect of spatial filtering on STF method for both cases, and 

third, to evaluate DHRL model, when the LES component is MILES and/or Smagorinsky model. 

The Smagorinsky (SMAG) eddy-viscosity based subgrid stress model, deviatoric part of subgrid 

stress tensor and eddy-viscosity are expressed as: 
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𝜏𝑖𝑗
𝑆𝐺𝑆 = 2𝜈𝑇𝑆𝑖𝑗    (27)   

The eddy viscosity is formulated as: 

𝜈𝑇 = (𝐶𝑠 𝛥)
2√2𝑆𝑖𝑗𝑆𝑖𝑗       (28) 

   

where 𝛥 is the characteristic mesh size, equal to the cube root of cell volume in the current 

simulations, and the coefficient 𝐶𝑠 = 0.1 is used for related simulations. For MILES model – 

Implicit LES model [62], which has been widely and successfully used for practical LES 

simulation of complex turbulent flows. For clarity, the fundamental differences between 

conventional LES modelling and MILES. The conventional LES approach such as that of 

Smagorinsky [61], uses an explicit model for the deviatoric part of the subgrid stress tensor based 

on a (subgrid) eddy viscosity as shown in Eqs. (23-24). In contrast, for the MILES model, 𝜏𝑖𝑗
𝑆𝐺𝑆 is 

modeled as zero (𝜏𝑖𝑗
𝑆𝐺𝑆 = 0 ), and the turbulent stress tensor (𝜏𝑖𝑗

𝑀𝐼𝐿𝐸𝑆),  is implemented using high-

resolution upwind algorithms for the convective terms, such as the Monotonic Upwind Scheme 

for Conservation Laws (MUSCL). Nonlinear high-frequency filters built into the numerical 

algorithms effectively provide implicit SGS models, in which the numerical dissipation serves to 

represent the effect of subfilter scales on the resolved variable fields.  

 

5.2.5  Dynamic Hybrid RANS-LES (DHRL) Formulation 

A detailed formulation of the DHRL modeling methodology is available in Walters et al. 

[36]. DHRL is most appropriately considered as a framework for blending arbitrary RANS and 

LES model variants into a hybrid RANS-LES model, rather than a specific model in itself. The 

following sections briefly present the previously documented baseline RANS-LES blending 
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methodology for the DHRL model. For further details on DHRL and variants, interested readers 

are referred to Refs. [36-37,66]. The hybrid turbulent stress tensor (𝜏𝑖𝑗), and the blending function 

(𝛼) are expressed as: 

 

 𝜏𝑖𝑗 = 𝛼𝜏𝑖𝑗
𝑆𝐺𝑆 + (1 − 𝛼)𝜏𝑖𝑗

𝑅𝐴𝑁𝑆 (29) 

 

 𝛼 =

𝑢𝑖
′′𝑢𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑆𝑖𝑗̅̅ ̅̅⏟       

𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅ ̅̅⏟      
𝑅𝐴𝑁𝑆 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 

− 𝜏𝑖𝑗
𝑆𝐺𝑆̅̅ ̅̅ ̅̅ ̅ 𝑆𝑖𝑗̅̅ ̅̅⏟      

𝐼𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠
𝑆𝐺𝑆 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 (30) 

 

The terms 𝜏𝑖𝑗
𝑆𝐺𝑆 and 𝜏𝑖𝑗

𝑅𝐴𝑁𝑆 are the subgrid stress predicted by any candidate LES model and the 

turbulent stress predicted by any candidate RANS model, respectively. The numerator in Eq. (26) 

represents the production of turbulent kinetic energy (𝑘) due to the resolved turbulent scales in 

the flow. The term in the denominator is the difference of 𝜏𝑖𝑗
𝑅𝐴𝑁𝑆𝑆𝑖𝑗̅̅̅̅  , which is the production of 𝑘 

predicted by the RANS model, and 𝜏𝑖𝑗𝑆𝐺𝑆̅̅ ̅̅ ̅̅  𝑆𝑖𝑗̅̅̅̅ , which is the mean component of the subgrid scale 

turbulent kinetic energy production. Eq. (25) indicates that the model operates in a pure LES 

mode only if the resolved scale production is equal to or greater than the predicted RANS 

production; otherwise, the model behaves in a transitional mode where an additional RANS stress 

compensates for reduced LES content. This leads to a smooth variation of turbulent production 

across the transition region. In regions with zero LES content, i.e. numerically steady flow, the 

model operates in a pure RANS mode. For the current model implementation, the RANS part of 

DHRL is found using the eddy viscosity computed by the k-ω SST model as shown in Eqs. (11-
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12). MILES is used for the LES model component, hence 𝜏𝑖𝑗
𝑆𝐺𝑆 is zero. Application of the STF 

method within hybrid RANS-LES framework is tested with this model, and its performance is 

compared with other models. 

 

5.2.6. FST Channel Flow (FST-CF) Test Case  

The FST-CF test case represents a prototypical flow with uniform mean velocity in the 

streamwise direction and periodic boundary conditions in the normal directions. The mean 

velocity is non-zero in streamwise direction only. The FST-CF implies a nearly homogeneous 

turbulence domain except that turbulence varies only in the streamwise direction. It provides a 

simple geometry that allows for investigation of spatial development of turbulence statistics 

particularly when the STF method forcing is active and when turbulent kinetic energy (k) decay 

is apparent downstream of the forcing region. The FST-CF domain had dimensions of 

𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 10π × 2𝜋 × 2π, half-channel height, 𝛿 is π, and all boundaries were periodic 

except the inflow and outflow boundaries. For all the simulations in this study, both inlet 

conditions and initial conditions are specified to be: 𝑢1 = 35.22 m/s, 𝑢2 = 𝑢3 = 0, and  and T 

some constant values chosen to yield the appropriate Mach number (Ma =0.1) and Reynolds 

number ( Re = 7000). The freestream velocity (𝑈∞),  freestream temperature (𝑇∞) and density 

(𝜌∞) are specified as inlet boundary and initial conditions. The freestream Mach number was 

close to 0.1, which approximates incompressible flow conditions Inflow and outflow boundary 

conditions (BC) are specified in streamwise directions, periodic BC is imposed in orthogonal and 

spanwise directions. Two structured, uniform, Cartesian meshes were used for the simulations, 

corresponding to a coarse mesh of 1,310,720 (320 × 64 × 64) cells, and a refined mesh of 
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10,485,760 (640 × 128 × 128) cells. The FST-CF geometry is illustrated in Fig. 1, showing the 

coordinates, channel half-height (𝛿), and location of the inflow and outflow boundary conditions.  

 

                     

Figure 33. FST-CF Computational domain 

 

The study focuses on investigating the complex flow physics in the spatial development of 

freestream turbulence along the streamwise distance due to varying intensities of STF forcing 

particularly from region of turbulent kinetic energy (k) production to when turbulent kinetic 

energy (k) decay is apparent. Hence, key issues investigated included:  

▪ Effect of mesh resolution on STF Method and different modeling approaches 

▪ Effect of critical parameters such as turbulence time scale, length scale, and forcing 

coefficient on the method 

▪ Spectral characteristics of the turbulence generated by the forcing method at 

different streamwise distances 

▪ Method performance when turbulent kinetic energy (k) level is constant and when k 

decay is apparent 
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▪ Comparison of STF method prediction of resolved turbulent statistics with target 

turbulent statistics using k- SST, MILES, Smagorinsky, and DHRL models 

 

 

5.2.7. STF Forcing Region with Boundary and Initial (B/I) Conditions 

For the FST-CF domain, the target statistics in the STF method forcing region (0 ≤ 𝑥 ≤

2𝜋), the inflow and outflow boundary conditions (BCs), and other freestream inflow turbulence 

conditions, the target statistics, are illustrated in Fig. 34, where periodic boundary conditions (BC) 

are imposed in both orthogonal and spanwise directions. Periodic BCs are applied on the normal 

directions. Freestream temperature and density are relatively constant throughout the domain, the 

flow domain is within incompressibility conditions with Mach number of approximately 0.1. The 

imposed mean pressure gradient is relatively small and less than 1.5Pa/m, this initiates the flow 

and relatively retain the fluid properties. 

 

 𝑢̅1
∗ = 𝑈∞ = 35.22 𝑚/𝑠  and  𝑢1

′𝑢1
′̅̅ ̅̅ ̅̅ ∗ = 𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑢3

′ 𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 50 𝑚2/𝑠2 (31) 

 

 𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = 𝑢1

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 𝑢2

′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = 0                 (32) 

 

5.2.8. Computational Fluid Dynamics Solver 

All simulations in this study were performed using the open source CFD code FlowPsi [59], 

a finite-volume density-based solver constructed in C++ using the Loci framework. FlowPsi uses 

high-resolution approximate Riemann solvers and implicit numerical methods. For the present 
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study, all simulations were run with a Mach number close to 0.1, based on inflow freestream 

velocity, 𝑈∞  to simulate incompressible flow conditions. Inviscid fluxes are reconstructed using 

a modified skew symmetric flux (SSF) scheme. The SSF scheme is a generalization of the kinetic 

energy consistent (KEC) central difference scheme of Subbareddy and Candler [60], blended with 

a small second-order upwind flux contribution. For all simulations in this paper, the blending 

distribution was 95% central difference and 5% upwind. The SSF scheme has been shown to 

provide low numerical dissipation and effective resolution of high wavenumber velocity and 

pressure modes in unsteady turbulent flow simulations.  

 

Figure 34. Illustration of initial and boundary conditions, STF forcing and development 

regions.  

5.2.9 Computational Grid 

Ansys meshing software was used to generating two structured single-block computational 

grids. Five uniform coarse grids of 643 (262,144) cells were merged along the streamwise 

direction to generate a single-block coarse grid of 1,310,720 cells, and similarly, five uniform 

refined grids of 1283 (2.0972 million) cells were merged to a single-block refined grid of 

10,485,760 cells. The characteristic mesh size (𝛥) for coarse and refined grids  are  
2𝛿

64
 𝑎𝑛𝑑 

2𝛿

128
 . 
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The two meshes were used to investigate the effect of mesh size on the STF method using different 

modeling methods. Fig. 35 provides an illustration of the two-dimensional views of the 

computational grids including topology and resolution levels for the coarse and refined cases. 

 

 

(a) Coarse grid 

 

(b) Refined grid 

 

Figure 35. 2D-view computational (a) coarse grid, and (b) refined grid 

 

 

 

5.3. RESULTS AND DISCUSSION 

Table 7 summarizes the results of freestream turbulence (FST) statistics for STF cases at 

x/𝛿 =2, which corresponds to the downstream extent of the forcing region. Results are shown for 
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both MILES and DHRL models, on coarse and refined grid, with and without spatial filtering, 

and with varying values of 𝜏𝑓 and 𝜏𝑇. The Table highlights ratios of resolved-to-target mean 

velocity, resolved-to-target Reynolds stress components, and maximum percentage difference 

between resolved Reynolds stress components for each case. As the strength of the forcing term 

is increased by reducing the value of 𝜏𝑓, the resolved stress components agree more closely with 

their target values. Data highlighted in green denotes resolved turbulent kinetic energy of over 

90% of the target value, indicating that the STF produces well resolved turbulence statistics in 

terms of one-point correlations. The remainder of this section discusses the results in more detail, 

including the effects of turbulence model, mesh size, spatial filtering, and STF method parameter 

values. 
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Table 7. Summary of Freestream turbulence (FST) statistics for STF cases at x/𝜹 =2 

(Target values are highlighted in yellow. Green color indicates simulation that resolves 

over 90% of target turbulent kinetic energy.) 

 

 
 

 

 

 

5.3.1 Instantaneous and Mean velocity 

In order to normalize presented results, a freestream characteristic time scale is defined as 

𝜏∞ = 𝛿 𝑈∞.  ⁄ Figure 36 shows the contours of streamwise instantaneous (𝑢1/𝑈∞) and mean 

velocity (𝑢̅1/𝑈∞) for forcing simulation of freestream turbulence at a turbulent time 

scale 𝜏𝑓 𝜏∞⁄ = 0.045, using both the MILES and DHRL modeling approaches on the coarse grid. 

1 0.6666 0.6666 0.6666

Velocity tke_ratio

FST Cases
 Spatial 

Filtering
Grid

Max % 

Difference

DHRL No 0.045 0.9990 0.6342 0.6073 0.6071 8.92 92.43

MILES No 0.045 0.9983 0.6373 0.6087 0.6087 8.69 92.74

DHRL No 0.045 0.9949 0.5971 0.5838 0.5794 13.08 88.01

MILES No 0.045 0.9949 0.5961 0.5839 0.5799 13.01 87.99

DHRL No 0.45 1.0017 0.4255 0.3337 0.3336 49.95 54.64

MILES No 0.45 1.0005 0.4363 0.3349 0.3351 49.76 55.32

DHRL No 4.5 1.0029 0.0692 0.0296 0.0298 95.55 6.43

MILES No 4.5 1.0029 0.0698 0.0298 0.0297 95.54 6.46

DHRL Yes 0.045 0.9992 0.6311 0.6013 0.6009 9.85 91.66

MILES Yes 4.5 0.045 0.9993 0.6299 0.6006 0.6004 9.92 91.55

SMAG No 0.045 1.0001 0.6259 0.6296 0.6292 6.11 94.23

SMAG Yes 4.5 0.045 0.9993 0.6299 0.6006 0.6004 9.92 91.55

MILES Yes 2.25 0.045 0.9999 0.6464 0.6232 0.6232 6.52 94.64

MILES Yes 1.12 0.045 1.0008 0.6491 0.6322 0.6315 5.27 95.64

MILES Yes 0.56 0.045 1.0006 0.6459 0.6292 0.6288 5.67 95.19

Target Mean Velocity and Reynolds Stress at x/δ =2

Resolved Reynolds stress

5 x 643

𝒖𝟐
′𝒖𝟐
′  ∗⁄

(k/k*)
ratio%

5 x643

 ∞  𝑢1
∗⁄

𝒖𝟏  𝑢1
∗⁄

5 x 643

5 x1283

5 x1283

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

5 x 643

𝝉𝑻  𝝉∞⁄ 𝝉𝒇  𝝉∞⁄



 123 | 
P a g e  

 

Specifically, Fig. 36(a) shows a three-dimensional view of the flow domain, and it is apparent 

that the magnitude of resolved turbulent fluctuations is higher in the forcing region, 0 ≤ 𝑥/𝛿 <

2 than in the downstream development region, 2 ≤ 𝑥/𝛿 ≤ 10, where forcing is zero. 

Downstream of the forcing region, the turbulence level decays in the streamwise direction as 

expected. Both DHRL and MILES results show resolved turbulent velocity fluctuations at all 

streamwise locations. Though not shown, results using the SST k- RANS model yielded only 

the mean flow solution as expected, with constant velocity (𝑢1) throughout the domain.  

In the forcing region, the STF method enforces a relatively constant mean flow for the scale-

resolving models, as expected. For each of the models investigated, the mean velocity at all points 

in the domain was within 0.3% of the prescribed target value, 𝑈∞. Small observed differences 

can be attributed to uncertainty in statistical averaging, which necessarily occurred over a finite 

time interval. Figure 36(b) shows contours of streamwise instantaneous velocity (𝑢1/𝑈∞) on 

planar slices at different streamwise locations. The contours show qualitative reproduction of 

turbulent flow structures, and decay of turbulent kinetic energy downstream of the forcing region. 
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(a) 3D view 

 

 

 
 

(b) 2D view 

 

 

Figure 36. Contours of streamwise instantaneous velocity for forcing simulation of 

freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 using MILES, and DHRL models: (a) 3D 

view; (b) 2D yz-plane view at different streamwise locations. 

 

 

MILES 

 

DHRL 
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5.3.2 Streamwise Normal Reynold Stress  

Figure 37 shows contours of the streamwise normal Reynolds stress (𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ) for forcing 

simulation of freestream turbulence with forcing time scale 𝜏𝑓 𝜏∞⁄ = 0.045, for MILES and 

DHRL models on the coarse grid. An initial spike in the turbulent stress is apparent 

immediately downstream of the inlet, followed by a region in which it remains relatively 

constant over the remainder of the forcing region. Downstream of the forcing region (2 ≤

𝑥/𝛿 ≤ 10), the stress decays in the streamwise direction as expected.  

 

 

 

Figure 37. Contours of streamwise normal Reynolds stress (𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅) for forcing simulation 

of freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓, using MILES and DHRL models. 

 

Fig. 38 shows a plot of the spatial evolution of normalized resolved normal stress 

(𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ̅/(𝑢1

′𝑢1
′̅̅ ̅̅ ̅̅ ̅∗) for STF forcing simulations of freestream turbulence with 𝜏𝑓 𝜏∞⁄ = 0.045 using 

SST, MILES, and DHRL models on the coarse grid. Results shown are planar-averaged over the 

y and z directions, but as seen in Fig. 5 the turbulent stress is relatively uniform over cross-sections 

normal to the streamwise direction. Simulations with the SST model predicted a peak value at the 
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inlet (𝑥/𝛿 = 0), and monotonic decay in the streamwise direction since no forcing of turbulent 

velocity fluctuations was applied for that model. Near the outlet of the forcing region at 𝑥/𝛿 =

2, both the DHRL and MILES results underpredict 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗ by 5%. Downsteam of the forcing 

region, spatial decay of  𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅  is more rapid with DHRL and MILES results compared to the SST 

model. This is likely due to the fact that the large-eddy length scales in the scale-resolved 

simulations are relatively small (this can be seen qualitatively for example in Fig. 38), while the 

effective length scale for the SST model is significantly larger. Increasing the inlet boundary 

condition value for specific dissipation rate () in the SST simulations would result in a more 

rapid decay of TKE and closer agreement with the MILES and DHRL results. Both qualitative 

and quantitative results in Figs. 36-38 indicate that the results obtained with the MILES and 

DHRL models are in very close agreement. This is to be expected since the mean flow gradient 

for this freestream flow case is zero everywhere, and observing Eqs. (29,30) it is apparent that the 

DHRL model should operate in a pure LES mode. The results presented here (and other results 

though not shown) confirm that the use of the STF forcing method does not negatively impact the 

ability of the DHRL model to effectively resolve turbulence in LES mode for freestream flow. 

For the remainder of the paper, only pure LES results using MILES or the Smagorinsky model 

will be shown as representative of scale-resolving simulations. 
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Figure 38. Spatial evolution of normalized resolved normal stress (𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅̅ /(𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅̅ ∗) for 

forcing simulation of freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 using SST, MILES, and 

DHRL models to compute turbulence statistics 

 

5.3.3 Turbulent Kinetic Energy  

Figure 39 shows contours of resolved turbulent kinetic energy (𝑘) for forcing simulations 

of freestream turbulence with 𝜏𝑓 𝜏∞⁄ = 0.045 on the coarse grid. Similar to Fig. 37, higher 

values of 𝑘 are apparent at 0 ≤ 𝑥/𝛿 < 2, while a decay is evident downstream of the forcing 

region at 2 ≤ 𝑥/𝛿 ≤ 10. Each of the normal Reynolds stress components behaves similarly to 

the streamwise component, with a relatively rapid increase to near the target value just 

downstream of the inlet, followed by a nearly constant distribution in the forcing region, and 

decay downstream of the forcing region. As a consequence k follows a similar pattern. The 
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distribution of turbulent kinetic energy is shown quantitatively in Fig. 40, with looks similar to 

the MILES result shown in Fig. 38 for normalized streamwise Reynolds stress.  

 

 

 

Figure 39. Contours of resolved turbulent kinetic energy ( ) for forcing simulation of 

freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓  using SST, MILES, and DHRL models to 

compute turbulence statistics. 
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Figure 40. Spatial evolution of normalized turbulent kinetic energy ( / ∗) for forcing 

simulation of freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 using SST, MILES, and DHRL 

models. 

 

    Figure 41  shows the time evolution of normalized turbulent kinetic energy (𝑘/𝑘∗) during 

the first 0.5 seconds of simulation time for forcing simulation of freestream turbulence with 

𝜏𝑓 𝜏∞⁄ = 0.045 on the coarse grid. The value shown is volume-averaged over the entire flow 

domain. There is an initial spike in resolved TKE as the model rapidly inputs energy due to the 

initially low value of resolved TKE obtained from statistical averaging. As the simulation 

proceeds, there is an initial transient period followed by an asymptotic evolution to the final, 

stationary value.  
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Figure 41. Time evolution of normalized turbulent kinetic energy ( / ∗) for forcing 

simulation of freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 during the first 0.5 second of the 

simulation time.  

 

To investigate the spectral characteristics of the turbulence generated by the synthetic 

forcing method at different streamwise locations, a single-point temporal fast Fourier transform 

was applied to the velocity field at different probe locations corresponding to  x/𝛿 =1, 2, and 6.4 

and integrated over a time period in frequency (𝑓) space to obtain the energy spectrum density as 

a function of frequency for forcing simulation of freestream turbulence with 𝜏𝑓/𝜏∞ = 0.045. The 

result is shown in Fig. 42. The SST model is not considered due to that model’s negligible velocity 

fluctuations. Also shown for reference is the Kolmogorov -5/3 law denoted as “5/3 line” in the 

figure. At x/𝛿 =1, the energy density appears to be nearly unform up to the cut off frequency 

imposed by the mesh size and the mean velocity. Farther downstream in the forcing region, at 

x/𝛿 =2, the spectrum has shifted to reflect a shape more indicative of Kolmogorov inertial range 
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scaling. Downstream of the forcing region at x/𝛿 =6.4, energy decay is apparent, and the 

spectrum even more closely approximates the correct shape and shows evidence of an inertial 

subrange.  

 

      

                               (a) x/𝜹 =1                                                             (b) x/𝜹 =2  
 

 
 

(c) x/𝜹 =6.4 

                                                                             

Figure 42. Energy density spectra for forcing simulation of freestream turbulence with 

𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓,  using MILES at different streamwise locations corresponding to the 

middle of the forcing region (a), the downstream edge of the forcing region (b) and the 

downstream decay region (c). 
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5.3.4.  Effect of Mesh Resolution 

Figure 43 shows a comparison of contours of streamwise instantaneous velocity (𝑢1) for 

forcing simulations of freestream turbulence with 𝜏𝑓 𝜏∞⁄ = 0.045 on coarse and refined grids. 

On both grids, qualitative features of resolved turbulent scales are apparent, but the smallest 

visible scales are noticeably smaller on the refined grid as expected. As a consequence, the 

effective dissipation rate is higher on the refined mesh and the stationary values of the normal 

Reynolds stresses and turbulent kinetic energy are lower than on the coarse mesh. The effect of 

mesh size on resolved scales is also reflected in the one-dimensional energy spectra shown in Fig. 

44. First, it is apparent that regardless of the streamwise location, spectral energy dissipates more 

rapidly on the refined mesh compared to coarse mesh. Second, the spectrum on coarse grid reflect 

a shape more indicative of Kolmogorov inertial range scaling. Specifically, at x/𝛿 =1, 2 and 6.4 

spectral characteristics of the turbulence generated by the STF method apparently shows that the 

coarse grid spectrum reflects a shape more indicative of Kolmogorov inertial range scaling. At 

energy dissipation range for all streamwise locations, evidence of slight energy pile up is apparent 

on refined grid energy spectra near the highest frequency value, this slightly deviates from the 

correct spectral behavior. In sum, the total spectral energy is higher on the coarse mesh than on 

refined mesh at different streamwise locations and the maximum difference in their spectral 

energy is less than 8% which is relatively negligible.  
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(a) Coarse grid 

 

(b) Refined grid 

 

Figure 43. Contours of streamwise instantaneous (𝒖𝟏) and mean velocity (𝒖̅𝟏) for forcing 

simulation of freestream turbulence with 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 using MILES to compute 

turbulence statistics on (a) coarse, and (b) refined grids. 
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                           (a) x/𝜹 =1                                                                  (b) x/𝜹 =2 

 

(c) x/𝜹 =6.4 

 

Figure 44. Energy density spectra for forcing simulation of freestream turbulence with 

𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓, using MILES on both coarse and refined grids at different streamwise 

locations corresponding to the middle of the forcing region (a), the downstream edge of the 

forcing region (b) and the downstream decay region (c). 
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5.3.5  Effect of Forcing Coefficient  

Figure 45 shows contours of instantaneous (𝑢1) velocity for three forcing simulations of 

freestream turbulence using different values of the forcing coefficient, 𝐶𝑓, such that the effective 

forcing time scale is 𝜏𝑓 𝜏∞⁄ = 4.5, 0.45, and 0.045, respectively. For the highest value of 𝜏𝑓, 

turbulent structures are only apparent as relatively low amplitude streaks, indicating that the 

strength of the forcing term is not sufficient to produce realistic turbulent flow structures. As the 

value of 𝐶𝑓 is increased, consequently the value of 𝜏𝑓 is reduced and the resolved turbulence level 

increases, as indicated by the increased value of 𝑉𝑚𝑎𝑥. Similarly, the structure of the fluctuations 

becomes more indicative of isotropic freestream turbulence. The results suggest that the value of 

the forcing time scale should be on the order of the length of time required for the mean flow to 

traverse the forcing region. When the forcing time scale is significantly smaller, the STF forcing 

method apparently does not have sufficient time to act on the velocity field and produce a realistic 

turbulent freestream flow. 
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(a) 𝝉𝒇 𝝉∞⁄ = 𝟒. 𝟓 

 

(b) 𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟒𝟓 

 

(c)  𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 

 

Figure 45. Contours of instantaneous (𝒖𝟏) and mean velocity (𝒖̅𝟏) for forcing 

simulation of freestream turbulence using MILES at (a)  𝝉𝒇 𝝉∞⁄ = 𝟒. 𝟓, (b)  𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟒𝟓, 

and  (c)  𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓. 

 

The spatial evolution of the ratio of target-to-resolved turbulent kinetic energy (𝑘/𝑘∗) for 

forcing simulations with effective forcing time scales of 𝜏𝑓 𝜏∞⁄ = 4.5 , 0.45, and 0.045 are shown 

in Fig. 46. As the value of 𝜏𝑓 is reduced, the resolved turbulence level more rapidly approaches 

𝑽𝒎𝒂𝒙 = 𝟒𝟎.𝟑𝟑𝟕 𝒎/𝒔  

𝑽𝒎𝒂𝒙 = 𝟒𝟖. 𝟑𝟓𝟑 𝒎/𝒔 

𝑽𝒎𝒂𝒙 = 𝟓𝟓. 𝟔𝟑𝟓 𝒎/𝒔 
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the target value, consistent with the results shown in Fig. 45. For the two largest time scales, there 

is insufficient strength of the forcing term to drive the turbulence statistics close to the target 

values. As seen for the largest value of 𝜏𝑓 𝜏∞⁄ = 4.5, the resulting turbulent kinetic energy level 

in the forcing region is only approximately 5% of the desired level.  

 

 

Figure 46. Spatial evolution of normalized turbulent kinetic energy ( / ∗) for forcing 

simulation of freestream turbulence using MILES at forcing time scales of 𝝉𝒇 𝝉∞⁄ = 𝟒. 𝟓, 

𝟎. 𝟒𝟓, and 𝟎. 𝟎𝟒𝟓. 
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Figure 47 shows energy spectra for forcing simulations of freestream turbulence 

at 𝜏𝑓 𝜏∞⁄ = 4.5, 0.45, and 0.045, at three downstream locations corresponding to x/𝛿 =1, 2, 

and 6.4. Interestingly, at each location the spectrum shape with highest forcing coefficient 

which implies the lowest forcing time scale,  𝜏𝑓 𝜏∞⁄ = 0.045 more closely matches the 

Kolmogorov inertial subrange represented by the -5/3 law. At x/𝛿 =1, the frequency spectra of 

lower forcing coefficients consequently higher forcing time scales,  𝜏𝑓 𝜏∞⁄ = 0.45 and 4.5 do 

not reproduce the correct spectra behavior, indicating that the strength of the forcing term is not 

sufficient to reproduce realistic Kolmogorov spectral behavior. Farther downstream in the 

forcing region, at x/𝛿 =2, the frequency spectrum of  𝜏𝑓 𝜏∞⁄ = 0.45  has shifted to reflect a 

shape more indicative of Kolmogorov inertial range scaling, while that of  𝜏𝑓 𝜏∞⁄ = 4.5 do not 

reproduce correct behavior. Downstream of the forcing region at x/𝛿 =6.4, energy decay is 

apparent, and the frequency spectra even more closely approximate the correct shape at lower 

energy level with the three different values of the forcing coefficient. The key point is that 

consistent with results shown previously, a higher value for the forcing coefficient produces 

more accurate results, regardless of the streamwise location in a freestream turbulence. 
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                                   (a) x/𝜹 =1                                                               (b) x/𝜹 =2         

 

 

                                                                               (c) x/𝜹 =6.4          

 

Figure 47. Energy density spectra for forcing simulations of freestream turbulence with 

three different values of the forcing coefficient using MILES at downstream locations 

corresponding to the middle of the forcing region (a), the downstream edge of the forcing 

region (b), and the downstream decay region (c). 
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5.3.6.  Effect of Explicit LES modelling and Spatial filtering  

Previously documented results for homogeneous turbulence showed that the subgrid stress 

model used in the LES had a non-trivial effect on the resulting velocity field when using the STF 

method [65]. Specifically, use of MILES led to so-called energy pile up in the high wavenumber 

portion of the energy spectrum, whereas use of the Smagorinsky model provided sufficient 

dissipation in the small scales to prevent this from occurring. The low wavenumber portion was 

relatively unaffected. Results in this section compare analogous results from the MILES and 

Smagorinsky models for the freestream turbulence test case. 

Ref. [65] also presented results obtained using spatial filtering, the purpose of which is to allow 

the control of turbulent length scale in addition to turbulent stress distribution. In that paper an 

anisotropic filtering method was introduced based on the assumption that energy containing 

turbulent velocity fluctuations share a nearly equal large-eddy time scale even when length and 

velocity scales are different for different directions. Briefly, the tensorial filter width is defined 

to depend on the characteristic turbulent time scale, 𝜏𝑇, and the target turbulent stress 

tensor, 𝑢𝑗
′𝑢𝑘
′̅̅ ̅̅ ̅̅ ∗as shown in Eq. (21). This equation is solved simultaneously with the instantaneous 

resolved velocity to yield a filtered velocity component, 𝑢̂𝑖. The filtered velocity is then used to 

model the forcing term as shown in Eqs. (15-22). Results using spatial filtering are also presented 

and discussed in this section.  

Recall, Eq. (15) below (*previously shown) is the key anisotropic filtering equation used for this 

study, where the tensorial filter width, 𝜙𝑗𝑘 = 𝜏𝑇
2 (𝑢𝑗′𝑢𝑘

′̅̅ ̅̅ ̅̅ ∗). 

          

                                                                 
𝜕

𝜕𝑥𝑗
(𝜙𝑗𝑘

𝜕𝑢̂𝑖

𝜕𝑥𝑘
) = 𝑢̂𝑖 − 𝑢𝑖      *(15) 
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Figure 48 shows contours of instantaneous streamwise velocity for forcing simulation of 

freestream turbulence using two different SGS models, and both with and without spatial filtering. 

The filter time scale for this case is 𝜏𝑇 𝜏∞⁄ = 4.5 and the forcing coefficient is 𝐶𝑓 = 100, which 

yields a forcing time scale of 𝜏𝑓 𝜏∞⁄ = 0.045. The fluctuating velocity field is qualitatively 

similar for all cases with some key differences apparent. First, for both spatially filtered and non-

spatially filtered cases, the decay of turbulence downstream of the forcing region is apparently 

more rapid for the MILES simulation. This is likely due to the increased energy in the small scales 

which more rapidly extract energy from the larger scales once the turbulent forcing is removed. 

This difference is evident from Fig. 48 (a), in which the visible scales of turbulence are smaller 

in the forcing region for MILES versus the Smagorinsky model. Second, observing both MILES 

and Smagorinsky model results, the scale of resolved turbulence appears to be smaller for the 

spatially filtered cases. This result is consistent with the homogeneous turbulence results 

presented in Ref. [65]. 
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MILES                                                            SMAG 

 

(a) Spatially filtered velocity 

  

 

(b) Non-spatially filtered velocity 

 

Figure 48. Contours of instantaneous velocity for forcing simulation of freestream 

turbulence with forcing time scale  𝝉𝒇 𝝉∞⁄ = 𝟎. 𝟎𝟒𝟓 and two different LES SGS methods: 

(a) spatially filtered, and (b) non-spatially filtered. 

 

Figure 49. presents the energy spectra for forcing simulations of freestream turbulence for 

the same conditions shown in Fig. 48. The spectra are presented at streamwise locations 

corresponding to the middle of the forcing region (x/𝛿 = 1), the outlet of the forcing region (x/𝛿 

=2), and in the downstream decay region (x/𝛿 = 6.4).  Differences between the curves are 

somewhat difficult to distinguish due to the noisy characteristics of the finite time window over 

the statistics were gathered. Nevertheless, it is apparent that for both spatially filtered and non-

spatially filtered results, the energy in the low wavenumber portion of the spectrum is greater for 

the simulations with the Smagorinsky model versus MILES. This is consistent with the contours 

shown in Fig. 48. In all other aspects the spectra are similar regardless of SGS model or spatial 
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filtering, energy decay and a development towards a correct inertial range spectrum as the flow 

moves downstream.  

 

      

                      (i)Spatially filtered                                          (ii) Non-spatially filtered                                      

Figure 49(a) x/𝜹 =1 

 

       

                        (i)Spatially filtered                                        (ii) Non-spatially filtered                                      

Figure 49(b) x/𝜹 = 2 
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    (i)Spatially filtered                          (ii) Non-spatially filtered                                      

Figure 49(c) x/𝜹 = 6.4 

 

Figure 49. Energy density spectra for forcing simulation of freestream turbulence with 

spatially (SF) and non-spatially (NS) filtered velocity using MILES and Smagorinsky 

models at: (a) x/𝜹 = 1, (b) x/𝜹 = 2, and (c) x/𝜹 = 6.4. 

 

Spatial evolution of normalized turbulent kinetic energy (𝑘/𝑘∗) for simulations matching 

conditions in Figs. 48 and 49 is shown in Fig. 50. The development of turbulent energy within 

the forcing region shows differences for all four combinations shown, but the overall energy level 

at the outlet of the forcing region is within 3% of each other, and within 10% of the target value. 

The effect of spatial filtering and SGS model is most apparent in the downstream decay region 

𝑥/𝛿 > 2. The smaller resolved scales of the MILES model result in a more rapid decay compared 

to Smagorinsky model results, for both spatially filtered and non-spatially filtered simulations. 

Similarly, regardless of SGS model, spatial filtering results in more rapid energy decay, due to 

the smaller scale of the resolved turbulent eddies in the forced simulation. 
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Figure 50. Spatial evolution of normalized turbulent kinetic energy (
 

 ∗
) for forcing 

simulation of freestream turbulence with spatially (SF) and non-spatially (NS) filtered 

velocity using MILES and Smagorinsky models. 

 

 

5.3.7.  Effect of Time-scale Coefficient  

 

The effect of spatial filtering was further investigated by running additional simulations 

using different filter time scales, corresponding to 𝜏𝑇 𝜏∞⁄ = 1.12, 2.25, and 4.5, with MILES as 

the SGS model and forcing coefficient 𝐶𝑓 = 100.  Figure 51 shows contours of instantaneous 

streamwise velocity for the three cases. Figures 52 and 53 show the spatial evolution of the 

resolved turbulent kinetic energy and energy density spectrum at the outlet of the forcing region, 

respectively. Within the forcing region, as the filter time scale is reduced, the forcing time scale 

is likewise reduced since 𝐶𝑓 is held constant. As a consequence, the turbulence energy level in 
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the forcing region increases. As 𝜏𝑇 is reduced, the spatial filter width is similarly reduced and the 

size of the largest resolved turbulent fluctuations decreased. This is apparent in Fig. 52, which 

shows that the downstream decay rate becomes larger as 𝜏𝑇 becomes smaller. All three of the 

figures indicate that decreasing the filter time effectively changes the scale of the forced 

turbulence.  

 

 

(a) 𝝉𝑻 𝝉∞⁄ = 𝟏. 𝟏𝟐 

 

(b) 𝝉𝑻 𝝉∞⁄ = 𝟐. 𝟐𝟓 

 

(c) 𝝉𝑻 𝝉∞⁄ = 𝟒. 𝟓 

 

Figure 51. Contours of instantaneous streamwise velocity for forcing simulation of 

freestream turbulence using MILES, 𝑪𝒇 = 𝟏𝟎𝟎, and three different filter time scales: (a) 

 𝝉𝑻 𝝉∞⁄ = 𝟏. 𝟏𝟐 , (b)  𝝉𝑻 𝝉∞⁄ = 𝟐. 𝟐𝟓, and (c)  𝝉𝑻 𝝉∞⁄ = 𝟒. 𝟓. 
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Figure 52. Spatial evolution of normalized turbulent kinetic energy ( / ∗) for forcing 

simulation of freestream turbulence using MILES, 𝑪𝒇 = 𝟏𝟎𝟎, and three different filter time 

scales. 

 

 

 

Figure 53. Energy density spectra for forcing simulation of freestream turbulence using 

MILES, 𝑪𝒇 = 𝟏𝟎𝟎, and three different filter time scales. 
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Table 8 summarizes the results in terms of resolved turbulent kinetic energy level in the STF 

simulations. The ratio of resolved-to-target energy (𝑘 𝑘∗⁄ ) is shown for LES (MILES and SMAG) 

cases at the core and outlet of the forcing region (𝑥/𝛿 = 1, 2), and when energy decay is apparent 

(𝑥/𝛿 = 6.4) . It is apparent that all of the cases with the smallest investigated forcing time scale 

(𝜏𝑓 𝜏∞⁄ = 0.045) resolve at least 90% of the target energy, while none of the cases with a larger 

time scale resolved a sufficient amount of energy to be representative of the desired statistics. 

This is consistent with results in [65]. Overall, the results indicate that the STF method can be 

used to generate synthetic freestream content for LES simulations provided that appropriate mesh, 

spatial filtering, and model coefficients are used. 

 

Table 8. Summary of turbulent kinetic energy results for STF cases on coarse grid at x/𝜹 = 

1, 2,and 6.4. (Target values are highlighted in yellow. Green color indicates value within 

10% of target value at outlet of forcing region.) 
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5.4. SUMMARY AND CONCLUSION 

 

A relatively new method for synthetic turbulence generation, Statistically Targeted Forcing 

(STF), method is investigated to reproduce  freestream turbulent inflow statistics at Mach number 

of 0.1 and 𝑅𝑒𝑏 of 7000 (based on bulk velocity and half-channel height) in a prototypical channel 

flow with periodic-walls in wall-normal and spanwise directions only. The method incorporates 

a source term in the momentum equation to drive the local, instantaneous velocity vector towards 

a target value. The target value is computed at each instant and location in the simulation based 

on a mapping of the resolved first- and second-order statistics to the desired, target single-point 

statistics. Also, three different classes of modeling approach: RANS, LES, and hybrid RANS-

LES. Specifically, k- SST RANS, MILES, Smagorinsky (SMAG) LES subgrid stress model, 

and DHRL (resolved and hybrid results) models were investigated. Analysis of the influence of 

STF method critical parameters, effect of mesh resolution, and effect of choice of modeling 

frameworks in a freestream turbulent flow were performed. All simulations used time averaging 

technique to compute mean statistics. 

The method was evaluated by performing several test simulations of  freestream turbulence, 

using SST, MILES, SMAG, and DHRL with the FlowPsi finite volume CFD solver, and SSF 

numerical  scheme - a low-dissipation numerics to facilitate resolution of the temporally and 

spatially varying variable fields in turbulent flow. Qualitative and quantitative comparison of 

turbulence statistics such as  instantaneous and mean velocity, Reynold stress, turbulent kinetic 

energy, resolved energy spectrum, and  effects of mesh sensitivity, forcing coefficients, time-

scale coefficients, spatial filtering and explicit LES modelling were compared to target statistics 
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were presented.  Results showed that the method was able to reproduce the inflow freestream 

turbulence target mean velocity at over 99% accuracy for SST, MILES, and DHRL models. 

However, for turbulent kinetic energy and Reynold stress, STF method with SST model deviated 

grossly from target statistics while  DHRL and MILES results showed improved performance. 

The hybrid results of DHRL model reproduced over 66% of target statistics. For the mesh 

sensitivity analysis, SST is near grid independence while DHRL and MILES are less sensitive to 

mesh refinement for mean velocity statistics. Effect of forcing coefficient, 𝑓𝑐  or effective 

turbulent time scale,  𝜏𝑓 𝜏∞⁄  on the method was investigated and result were provided which 

showed that effect of forcing coefficient, 𝑓𝑐 on SST model is negligible. For other models 

considered, as the value of 𝑓𝑐 is increased (which implies  τf τ∞⁄  is reduced) , the resolved 

turbulence level more rapidly approaches the target value and energy decay is rapid and apparent 

with lower values of 𝑓𝑐. Comparison between explicit and implicit LES modeling showed that 

Smagorinsky (SMAG) explicit subgrid stress LES model evidently showed improved results in 

comparison to MILES result. Effect of spatial filtering on the method was investigated and the 

result showed that non-spatially filtered velocity simulation reproduced higher level of accuracy 

in forcing region, however, in the development region, spatially filtered velocity simulation 

apparently dissipates more rapidly than the non-spatially filtered cases except for hybrid results 

of DHRL. The energy spectral analysis showed that STF method is capable of reproducing 

appropriate spectral content for all models considered with correct inertial range behavior that 

relatively matches the -5/3 law. Spectral analysis results are in quantitative agreement with 

physical space results. 
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In sum, the results indicate that the STF method is capable of reproducing a synthetic 

freestream turbulence field with prescribed first- and second-order statistics and appropriate 

spectral content, which can be used to specify initial and/or boundary conditions for LES 

simulations. The method is relatively simple to implement, non-stochastic, stable, and 

computationally efficient. The STF method may therefore offer an attractive alternative for 

synthetic turbulence generation in three-dimensional Navier-Stokes CFD codes and it is relatively 

applicable to LES and hybrid RANS-LES simulations. Future work will investigate improvement 

of the method with RANS models by modeling mean flow statistics instead of fluctuating velocity 

statistics for synthetic generation of turbulent statistics. 
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CHAPTER VI 

 

STATISTICALLY TARGETED FORCING (STF) METHOD FOR SYNTHETIC 

TURBULENCE GENERATION OF INITIAL CONDITIONS IN TEMPORALLY-

DEVELOPING TURBULENT MIXING LAYER  

Work from this chapter was presented at and will be published in the proceedings of the ASME 

Fluids Engineering Division Summer Conference 2021 

 

6.1  INTRODUCTION 

 Turbulent free shear flows play an important role in many engineering applications, 

including external aerodynamics, combustion furnaces, oceanic flows, chemical lasers, internal 

combustion engines, and gas turbines. The planar mixing layer is an idealization of these types of 

flows that has been well studied to better understand the key physical features of free shear flows. 

The majority of studies are of mixing layers that evolve spatially, for example the flow 

downstream of two fluid streams of different velocity separated by a splitter plate. An alternative 

is the temporally-developing turbulent mixing layer (TTML), which is statistically homogeneous 

in two (streamwise and spanwise) directions and includes a mean velocity gradient in the third 

direction that evolves with respect to time. While some experimental, large eddy simulation 

(LES), and direct numerical simulation (DNS) studies of TTML are available in the literature, a 

key outstanding issue for scale-resolving simulations is the specification of appropriate initial 

conditions. Indeed, methods for cost-effectively reproducing time-dependent turbulence 

boundary and/or initial (B/I) conditions is of significant potential value for simulation in many 

engineering applications. In particular, the use of synthetic turbulence generation methods may 
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reduce computational expense by obviating the need for precursor simulations or 

recycling/rescaling methods that are often used in spatially-developing flows. 

Previous experimental measurements of the statistics of high-Reynolds-number self-similar 

turbulent mixing layers are available in the literature [1-6]. However, a large variation in 

experimental results is evident in even the most basic statistical quantities, such as the normalized 

growth rate (𝑟𝑤) and the turbulent stress (𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) distribution. For example, in Liepmann et al. [67] 

the recorded experimental value of 𝑟𝑤 is 0.081, while in Wygnanski et al. [68] it is 0.098. These 

results suggest that initial conditions play a role even in flows that exhibit nominally self-similar 

behaviors.  

Several direct numerical simulations (DNS) of turbulent mixing layers have been 

performed. To investigate variations in previous experimental studies, the DNS of Rogers and 

Moser [73] specifically examined the three-dimensional time-dependent incompressible flow of 

a temporally evolving mixing layer. They concluded that the self-similarity of the flow is 

demonstrated by the evolution of the momentum thickness, the evolution of the total dissipation 

rate of kinetic energy, the collapse of the mean velocity profiles, and the collapse of the Reynolds 

stress profiles and the vorticity statistics. The values of statistical quantities computed from the 

simulations were within the range of experimental observations.  

More recently, the DNS of Pantano et al. [74] highlighted the effect of different freestream 

densities in compressible flow and quasi-incompressible flow with a convective Mach number, 

𝑀𝑐 = 0.3, 0.7, and 1.1. The DNS results were compared with experimental results obtained by 

Bell and Mehta [71] and Spencer and Jones [69] for incompressible shear layers. For 

incompressible flow, 𝑀𝑐 = 0.3, they documented peak turbulence intensities in the DNS as: 
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streamwise, √𝑢′1𝑢′1̅̅ ̅̅ ̅̅ ̅̅ ∆𝑢⁄  = 0.17, vertical, √𝑢′2𝑢′2̅̅ ̅̅ ̅̅ ̅̅ ∆𝑢⁄  = 0.134, spanwise, √𝑢′3𝑢′3̅̅ ̅̅ ̅̅ ̅̅ ∆𝑢 ⁄ = 0.145, 

and Reynolds shear stress, √𝑢′1𝑢′2̅̅ ̅̅ ̅̅ ̅̅ ∆𝑢⁄  = 0.103, where ∆𝑢 is the mean velocity difference 

between upper and lower fluid streams. The peak intensities and the self-similar profiles of these 

turbulent statistics agree well with both experiments and the previous DNS by Rogers and Moser 

[73]. Although previous temporarily evolving mixing layer DNS by Rogers and Moser [73], and 

Pantano et al. [74] are in good agreement. It has also been previously documented that temporally 

and spatially evolving mixing layers are qualitatively and quantitatively similar [75].  

Methods for boundary/initial (B/I) conditions in scale-resolving turbulent flow simulations 

range from library-based methods to recycling/rescaling to synthetic turbulence generation (STG) 

with controlled forcing methods. The goal of B/I condition methods such as synthetic turbulence 

generation (STG) is to replace turbulent content obtained from fully resolved simulations with a 

reasonable approximation of turbulence for a substantially lower computational cost. 

Additionally, with STG methods, turbulent content can be selectively prescribed in specific 

regions of the computational domain or on the boundaries, providing flexibility such that 

turbulence B/I conditions are only used in regions where they are needed.  

For recycling/rescaling methods, turbulent content is recycled by imposing streamwise 

periodic boundary conditions on a portion of the domain such that the turbulent flow leaving the 

outlet is reintroduced at the inlet. As an example, Spalart and Watmuff [16] used this method to 

perform large-eddy simulation of a turbulent boundary layer. Rescaling of the velocity field can 

be performed to ensure that the turbulent statistics remain appropriately spatially developing. 

Lund et al. [17] used the recycling/rescaling method to perform an auxiliary simulation of a 
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turbulent boundary layer, then extracted planes of time-dependent velocity data to be mapped to 

the inlet of a simulation with a more complex geometry. Several other studies have extended the 

recycling/rescaling approach to simulate complex wall bounded flows [18-20]. Schlüter et al. [21] 

used the recycling/rescaling method to impose fluctuating velocities at the outlet to an LES region 

of a simulation to impose the statistics obtained from a Reynolds-averaged Navier-Stokes 

(RANS) solution in the downstream region. 

For applications of more practical engineering interest on complex geometries, STG 

methods are a suitable alternative to recycling/rescaling methods. They have the potential to 

reproduce turbulent fluctuations at desired locations and with desired statistical distributions, 

without the need to run a full auxiliary simulation. STG methods can be used to specify inflow 

boundary conditions or as initial conditions for a simulation. For example, for isotropic 

turbulence, a spectral approach can be used to artificially produce an isotropic turbulent velocity 

field from random Fourier modes [22-24]. Other researchers have highlighted different STG 

methods and their formulations [51-57]. For example, Lundgren [52] defined a forcing term in 

the momentum equations that is proportional to the fluctuating velocity component. This isotropic 

linear forcing (ILF) term imitates the natural production mechanism in the turbulent kinetic 

energy equation, which is restricted to low wavenumber modes when a spectral approach is used. 

Rosales et al. [53] extended this method by formulating the forcing term in physical space.  

De Laage de Meux et al. [58] proposed a method to impose target statistics of the flow in 

terms of mean velocity and resolved turbulent stress, using a method denoted anisotropic linear 

forcing (ALF). The time-dependent forcing function is proportional to the instantaneous velocity 

via a tensor transformation. The method was found to provide accurate results for isotropic, 
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anisotropic, and spatially developing turbulence test cases for LES and hybrid RANS-LES 

simulations.  More recently, Shobayo and Walters [27] validated a proposed Statistically Targeted 

Forcing (STF) method for homogeneous isotropic and anisotropic turbulent flow, where results 

showed that the method can accurately match the desired target statistics.   

The objective of this study is to evaluate the performance of the newly proposed STF 

method to capture the vortex dynamics of the temporally-evolving turbulent mixing layer and 

effectively match target mean velocity and resolved turbulent stress predictions for a large-eddy 

simulation. The STF method is a variant of STG with controlled forcing within the simulation 

domain, implemented via added source terms in the momentum and energy equations. The 

method can be viewed to act as a time-dependent restoring force to enforce a target statistical 

state within a time-averaging framework. Simulation results are presented for a temporally-

developing turbulent mixing layer (TTML) and results are compared to target statistical velocity 

and turbulent stress distributions obtained from DNS simulations of Pantano et al [74] and 

interrogated to evaluate the effect of different aspects of the forcing method and simulation 

details. 

 

6.2. STATISTICALLY TARGETED FORCING (STF) METHOD FORMULATION 

6.2.1.   General Description of the Method 

This section briefly reviews the statistically targeted forcing (STF) method. The STF 

method seeks to induce a synthetic turbulence field through the addition of a time-dependent, 

non-stochastic forcing term in the momentum equation. The forcing term is constructed to drive 

the instantaneous, local velocity towards a “target” velocity that satisfies the user-specified first- 
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and second-order one-point statistics for the turbulence, i.e., the mean velocity vector and 

Reynolds stress tensor. To introduce the method, we consider the general form of the continuity, 

momentum, and energy equations for single-phase, single-species, compressible flow: 
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∂
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(𝑞𝑗 + 𝑢𝑖𝜎𝑖𝑗) (3) 

 

In the above, the flow variables 𝜌, 𝑢, 𝑝, 𝐸, and 𝐻 may represent local instantaneous (DNS) 

or filtered (LES) quantities. Likewise, the viscous stress tensor 𝜎𝑖𝑗 and heat flux vector 𝑞𝑗 include 

both molecular and, for LES, subfilter contributions. 

The STF method is implemented by adding a forcing term, 𝑓𝑖, to the momentum and energy 

equations: 
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𝜕

𝜕𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻) =

𝜕

𝜕𝑥𝑗
(𝑞𝑗 + 𝑢𝑖𝜎𝑖𝑗) + 𝑢𝑖𝑓𝑖 (5) 

 

The source term is constructed such that during each time step of a simulation, the resolved 

velocity vector is forced toward a target velocity vector that would in principle yield a desired 

target statistical distribution for the time-varying velocity field. The general form of the forcing 

term is: 

 

 𝑓𝑖 = 
𝜌

𝜏𝑓
(𝑢𝑖
∗ − 𝑢𝑖) (6) 

 

Here 𝑢𝑖
∗ is a target local, instantaneous velocity and 𝜏𝑓 and is a characteristic time scale for 

the forcing term. Inputs to the model include prescription of a local target mean velocity, 𝑢̅𝑖
∗, and 

turbulent stress tensor, 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗: 

 

 𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ ∗ = (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢̅𝑖𝑢̅𝑗)

∗
 (7) 

 

where the overbar denotes either Reynolds or Favre (mass-weighted) averaging. 

The key aspect of the forcing method is the calculation of the target velocity vector 𝑢𝑖
∗. It is 

first noted that the transformation proposed by Lund et al. [17] can be used to map an ensemble 
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of isotropic velocity fluctuations 𝑣′ to an ensemble of fluctuations that satisfy a target statistical 

distribution 𝑇𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ as follows: 

 

 𝑢𝑖
′∗ = 𝐵𝑖𝑗𝑣𝑗

′ (8) 

 

 𝐵𝑖𝑗 = [

√𝑇11 0 0

𝑇21/𝐵11 √𝑇22 − 𝐵21
2 0

𝑇31/𝐵11 (𝑇32 − 𝐵21𝐵31)/𝐵22 √𝑇33 − 𝐵31
2 − 𝐵32

2

] (9) 

 

Similarly, an ensemble of resolved fluctuations satisfying a particular statistical distribution 

𝑅𝑖𝑗 = 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  can be mapped to an isotropic distribution 𝑣′ using the inverse of the Lund coefficient 

matrix: 

 

 𝑣𝑖
′ = 𝐴𝑖𝑗

−1𝑢𝑗
′ (10) 

 

 𝐴𝑖𝑗
−1 = [

1/𝐴11 0 0
−𝐴21/(𝐴11𝐴22) 1/𝐴22 0

(𝐴21𝐴32 − 𝐴31𝐴22)/(𝐴11𝐴22𝐴33) −𝐴32/(𝐴22𝐴33) 1/𝐴33

] (11) 
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                            𝐴𝑖𝑗 =  [

√𝑅11 0 0

𝑅21/𝐴11 √𝑅22 − 𝐴21
2 0

𝑅31/𝐴11 (𝑅32 − 𝐴21𝐴31)/𝐴22 √𝑅33 − 𝐴31
2 − 𝐴32

2

] (12) 

 

It is therefore possible to define a mapping from a distribution of resolved velocity 

fluctuations 𝑢𝑖
′ with known statistical second moment tensor (turbulent stress) 𝑅𝑖𝑗 to a distribution 

𝑢𝑖
′∗ with target turbulent stress 𝑇𝑖𝑗 as: 

 

 𝑢𝑖
′∗ = 𝐶𝑖𝑗𝑢𝑗

′ (13) 

 

 𝐶𝑖𝑗 = 𝐵𝑖𝑘𝐴𝑘𝑗
−1 (14) 

 

The instantaneous target velocity used in the forcing function includes the target fluctuating 

velocity as well as the target mean velocity: 

 

 𝑢𝑖
∗ = 𝑢̅𝑖

∗  + 𝐶𝑖𝑗𝑢𝑗
′ (15) 

 

where the fluctuating velocity is defined relative to the mean: 
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 𝑢𝑖
′ = 𝑢𝑖 − 𝑢̅𝑖  (16) 

 

In practice the method is implemented as follows. First a target statistical velocity 

distribution is specified prior to the simulation in terms of 𝑢̅𝑖
∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗. As the simulation 

proceeds, the resolved statistics 𝑢̅𝑖 and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  are obtained using an appropriate averaging 

technique. At each time step, the transformation tensor 𝐶𝑖𝑗 is computed at each point in the domain 

based on  𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ∗ and 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ . During each iteration, the fluctuating velocity  𝑢𝑖
′ is computed, and the 

target instantaneous velocity 𝑢𝑖
∗ is found using Eq. (15). The forcing term 𝑓𝑖 is then computed 

using Eq. (6) and included as an additional source term in the momentum and energy equations. 

 

6.2.2.  Prescription of the Forcing Time Scale 

The forcing time scale 𝜏𝑓 in Eq. (6) is arbitrary. In principle, a smaller value will cause a 

more rapid transition toward the target statistical velocity field, but too small a value may result 

in instability or may constrain the flow from developing naturally once resolved turbulence has 

been introduced. In practice, a user can select a relevant time scale based on the known flow 

physics of the problem under investigation, numerical and stability considerations, and/or trial 

and error. It would be advantageous, however, to incorporate a universal time scale that considers 

both the physical and numerical aspects of the simulation and simplifies the user input 

requirements. It is proposed, therefore, that an appropriate time scale is of the form: 

 𝜏𝑓 ~ 𝜏𝑇 (17) 
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where 𝜏𝑇 is the characteristic large-eddy turbulent time scale. Depending on the type of simulation 

performed, the turbulent time scale can be approximated by a characteristic imposed length scale, 

or from the source of the target statistical distribution. For example, if a precursor Reynolds-

averaged Navier-Stokes simulation is used to specify the target mean velocity and Reynolds stress 

tensor, the dissipation time scale 𝑘/𝜀 can be used to specify 𝜏𝑓. The form of the forcing term 

becomes: 

 

 𝑓𝑖 = 𝜌 
𝐶𝑓

𝜏𝑇
(𝑢𝑖
∗ − 𝑢𝑖) (18) 

 

and the coefficient 𝐶𝑓 is a user-specified constant that dictates the overall strength of the forcing 

term. For the current simulations, an arbitrary global turbulent time scale of 𝜏𝑇 = 0.002𝛿𝑚,0/∆𝑢 

is used for all simulations, and the effective forcing time scale is varied by selecting different 

values of 𝐶𝑓. 

 

6.2.3.   Ensemble Averaging 

To approximate the Reynolds-averaging operation used in the prescription of the forcing 

term, time-averaging is used, where the averaged quantity is defined as: 
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 𝜑̅(𝑥𝑖 , 𝑡) =
1

𝑡
∫ 𝜑(𝑥𝑖 , 𝜏) 𝑑𝜏
𝑡

0
 (19) 

 

Here 𝑡 is the physical simulation time. In practice this is achieved using a discrete running time 

average, for which the averaged value at each point in the domain can be determined by: 

 

 𝜑̅(𝑥𝑖 , 𝑡) =
𝑛−1

𝑛
𝜑̅(𝑥𝑖 , 𝑡 − Δ𝑡) +

1

𝑛
𝜑(𝑥𝑖 , 𝑡) (20) 

 

where Δ𝑡 is the time-step size and 𝑛 is the current number of time steps in the simulation. In the 

limit 𝑛 → ∞, the averaged value becomes constant for statistically stationary flow. 

For the cases in the current study, the initial part of the simulation is for a turbulence field 

that is statistically “frozen”, and so may be modeled as a stationary flow, and running time 

averaging used to represent the Reynolds average. Once the simulation has reproduced an 

appropriate initial condition, the forcing can be removed, and the flow allowed to evolve 

temporally as the mixing layer grows from the initial state. 

 

6.3.  SIMULATION DETAILS 

All simulations in this study used the STF method with the Smagorinsky (SMAG) eddy-

viscosity based subgrid stress model [61] or implicit monotonically-integrated LES (MILES) 

[62]. The deviatoric part of the subgrid stress tensor for SMAG is expressed as: 
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 𝜏𝑖𝑗
𝑆𝐺𝑆 = 2𝜈𝑇𝑆𝑖𝑗 (21) 

 

and the eddy viscosity is formulated as: 

  

 𝜈𝑇 = (𝐶𝑠 𝛥)
2√2𝑆𝑖𝑗𝑆𝑖𝑗 (22) 

 

where 𝑆𝑖𝑗 is the resolved rate-of-strain tensor, 𝛥 is the characteristic mesh size, equal to the 

cube root of cell volume in the current simulations, and the coefficient 𝐶𝑠 = 0.1. The subgrid stress 

term 𝜏𝑖𝑗
𝑆𝐺𝑆 = 0 for MILES but is implicitly implemented using nonlinear high-frequency filters of 

high-resolution upwind algorithms for the convective terms. The MILES test case is included to 

investigate effect of implicit and explicit LES modeling on STF method. 

6.3.1.   Computational Fluid Dynamics Solver 

All simulations in this study were performed using the open source CFD code flowPsi [59], 

a finite-volume density-based solver constructed in C++ using the Loci framework. FlowPsi uses 

high-resolution approximate Riemann solvers and implicit numerical methods. For the present 

study, all simulations were run with sufficiently low Mach number to simulate incompressible 

flow conditions. Inviscid fluxes are reconstructed using a modified skew symmetric flux (SSF) 

scheme. The SSF scheme is a generalization of the kinetic energy consistent (KEC) central 

difference scheme of Subbareddy and Candler [60], blended with a small second-order upwind 
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flux contribution. For all simulations in this paper, the blending distribution was 95% central 

difference and 5% upwind. The SSF scheme has been shown to provide low numerical dissipation 

and effective resolution of high wavenumber velocity and pressure modes in unsteady turbulent 

flow simulations.  

6.3.2.  Temporally-Developing TML Test Case 

The domain represents a hexahedral box that is statistically homogeneous in the streamwise 

(x) and spanwise (z) directions but non-periodic in the normal (y) direction to capture the 

turbulence dynamics. The domain is shown in Fig. 58. The domain dimensions are 

 3 .6𝛿𝑚,0 × 1 .8𝛿𝑚,0 × 1 .8𝛿𝑚,0, where 𝛿𝑚,0 is the initial momentum thickness of the mixing 

layer. The boundaries in the normal (vertical) direction have a zero-flux symmetry boundary 

condition while the streamwise and spanwise boundaries are periodic. Flow was initialized for all 

cases with a hyperbolic tangent velocity profile for the mean streamwise velocity while all other 

velocity components were set to zero. Additionally, three dimensional random perturbations of 

10% turbulent intensity were imposed. The upper-stream mean velocity is 𝑈𝑙 = −1 2⁄ ∆𝑢, and 

the lower-stream mean velocity is 𝑈ℎ = 1 2⁄ ∆𝑢, where ∆𝑢 is the velocity difference between the 

two fluid streams. Target velocity distributions were selected such that the Mach number based 

on maximum instantaneous velocity was approximately 0.3, which approximates incompressible 

flow conditions. For the thermodynamic state of the fluid, the same constant density was imposed 

for the higher and lower free-stream velocities, the flow was isothermal, and the top and bottom 

boundary conditions were adiabatic. Hence density ratio 𝑠 = 𝜌ℎ 𝜌𝑙⁄ = 𝜌1 𝜌2⁄  is 1. The mean 

pressure was set to a uniform value, 𝑝0 = 101000 Pa, temperature was initialized to 293K, and 

the Prandtl number of air was 0.71.  
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The momentum and vorticity thickness (𝛿𝑚 and 𝛿𝑤) of the mixing layer are defined as :  

 

 𝛿𝑚 =
1

𝜌∆𝑢2
∫ 𝜌(

1

2
∆𝑢 − 𝑢1̃)(

1

2
∆𝑢 + 𝑢1̃)

∞

−∞
𝑑𝑦                     (23) 

 

 𝛿𝑤 = ∆𝑢/ 〈
𝜕𝑢1

𝜕𝑦
〉𝑚𝑎𝑥 (24) 

where 𝑢1̃ and 〈
𝜕𝑢1

𝜕𝑦
〉 represent planar-averaged streamwise velocity and velocity gradient 

respectively. The initial values of momentum and vorticity thickness are denoted as 𝛿𝑚,0 and 𝛿𝑤,0, 

respectively. The initial Reynolds number, 𝑅𝑒𝜆, based on the Taylor microscale, 𝜆, is:  

 

 𝑅𝑒𝜆 = 〈𝑣′〉𝑅𝑀𝑆𝜆 𝜈⁄  (25) 

 

 〈𝑣′〉𝑅𝑀𝑆 = (𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅ 3⁄ )0.5 (26) 

 

where 〈𝑣′〉𝑅𝑀𝑆 is the root mean square (RMS) velocity magnitude. The momentum thickness 

Reynolds number, 𝑅𝑒𝑚, based on ∆𝑢 and 𝛿𝑚,0 is 134, and the vorticity Reynolds number, 𝑅𝑒𝑤, 

based on ∆𝑢 and 𝛿𝑤,0 is 638. The initial vorticity thickness 𝛿𝑤,0 ≈ 4. 75 𝛿𝑚,0, which is consistent 

with the DNS simulation parameters in [74]. The convective Mach number, 𝑀𝑐 is 0.3 and defined 

as 𝑀𝑐 =
∆𝑢

𝑐
, where c is the speed of sound in air.  
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Pointwise and Ansys meshing software were used to generate two structured single-block 

computational grids, in order to evaluate the effect of mesh resolution on the STF method. The  

coarse and refined grids are about 131,072 and 1.049 million cells respectively. The number of 

grid cells for both grids are 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 , that is 64 × 64 × 32 for coarse grid, and 128 ×

128 × 64 for refined grid, where  𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 denotes the number of grid points uniformly 

distributed in the streamwise, normal, and spanwise directions, respectively. The meshes are 

illustrated in Fig. 59. Recently, Shobayo and Walters [65] documented that the STF method is 

relatively mesh insensitive for homogeneous turbulence. In this study we seek to investigate the 

sensitivity of STF method to mesh resolution particularly in a temporally-developing turbulent 

mixing layer (TTML) for which the mean velocity gradient is non-zero. 

 

 

Fig. 54. Computational domain for the temporally-developing turbulent mixing layer 

(TTML) [8]. 
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(a) Coarse grid (𝟔𝟒 × 𝟔𝟒 × 𝟑𝟐 cells)                   (b) Refined grid (𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟔𝟒 cells) 

 

 Fig. 55. Front view of the computational grids used for TTML simulations: (a) coarse, 

and (b) refined. 

 

 

 

6.4. RESULTS AND DISCUSSION 

For all simulations in this study, the forcing terms shown in Eqs. (4,5) are applied 

throughout the entire domain. The target statistics used in the STF method were defined as mean 

velocity and Reynolds stress profiles in the vertical direction, and approximately matched the 

self-similar velocity profiles obtained from DNS in [74]: 

 

 ∆𝑢 =  100
𝑚

𝑠
 (27) 

 

 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗ = ∆𝑢2(0.16𝑒−2𝑦

2
)2 (28) 



 169 | 
P a g e  

 

 

 𝑢2
′ 𝑢2
′̅̅ ̅̅ ̅̅ ∗ = ∆𝑢2(0.135𝑒−2.2𝑦

2
)2 (29) 

 

 𝑢3
′𝑢3
′̅̅ ̅̅ ̅̅ ∗ = ∆𝑢2(0.145𝑒−3.5𝑦

2
)2 (30) 

 

 𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ = ∆𝑢2(0.105𝑒−2.8𝑦

2
)2 (31) 

 

 𝑢̅1(𝑦) =
∆𝑢

2
tanh (

−𝑦

2𝛿𝑚,0
) , 𝑢̅2 = 𝑢̅3 = 0. (32) 

 

Note that throughout the paper 𝜙∗ and 𝜙∗∗  denote target and peak target statistics, 

respectively. Hence, the peak target turbulent kinetic energy is equal to 𝑘∗∗ = 323.84
𝑚2

𝑠2
  , and 

the peak characteristic fluctuating velocity scale for the target flowfield is 𝑢1
′ = 16

𝑚

𝑠
, 𝑢2

′ =

13.5
𝑚

𝑠
, and 𝑢3

′ = 14.5
𝑚

𝑠
. The average peak characteristic fluctuating velocity is 𝑣′ = 14.7

𝑚

𝑠
. 

Initial or baseline simulations employing the STF model were run using time averaging for 

turbulence statistics, time-scale parameter values of 𝜏𝑇 = 1𝐸 − 06 𝑠 and 𝐶𝑓 = 1, and the 

Smagorinsky subgrid stress model. Additional cases were run to investigate effects of mesh 

sensitivity, forcing coefficient, and implicit LES modeling.  
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Results from all cases are summarized in Table 9 in terms of peak values of the non-zero 

Reynolds stress components. All of the model combinations yielded a maximum error of less than 

about 15%. In general, as the strength of the forcing term was increased, the agreement with target 

statistics and DNS data improved. The results showed little sensitivity to mesh refinement level 

or subgrid stress model. The remainder of this section will examine the results in more detail. 
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Table 9. Summary of target peak turbulence statistics for temporally-developing turbulent 

mixing layer (green color indicates difference of less than 6% compared to DNS target 

statistics) 
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6.4.1.    Instantaneous and Mean Velocity 

Figure 60 shows contours of instantaneous and mean velocity, highlighting the qualitative 

features of the upper (𝑈𝑙) and lower (𝑈ℎ) streams at different dimensionless simulation times, 𝜏𝑠. 

Here 𝜏𝑠 = 𝑡∆𝑢 𝛿𝑚,0⁄  is normalized by initial momentum thickness 𝛿𝑚,0, and velocity difference 

∆𝑢. Figure 60 shows the spatial variation in mean velocity indicative of fluctuating, apparently 

turbulent behavior. It is also apparent that the mean velocity reaches a state that indicates a clearly 

defined mean shear layer by 𝜏𝑠 = 1140, and that the mean velocity remains relatively unchanged 

beyond that time. 

Figure 61 shows contours of streamwise instantaneous velocity (𝑢1) with forcing term 

values of 𝐶𝑓 = 1 and 𝜏𝑇 = 1E − 06 𝑠 at different simulation times 𝜏𝑠. An increase in resolution 

of velocity scales in the simulation are more evident at higher values of 𝜏𝑠. Figs. 61 (b, c, and d) 

are qualitatively similar in showing features of resolved streamwise instantaneous velocity.  
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Fig. 56. Contours of instantaneous velocity magnitude with maximum value (Vmax) 

indicated, and streamwise mean velocity (𝒖̅𝟏) for forcing simulation of TTML for 𝑪𝒇 =

𝟏, 𝝉𝒔 = 𝟏𝟏𝟒𝟎, 1480, 1700, 2040, 2400 on refined grid. 
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Fig. 57. Contours of streamwise instantaneous velocity (𝒖𝟏) for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟏, 𝝉𝒔 = 1480, 1700, 2040, 2400. 

 

Figure 58 illustrates the temporal evolution of the mean streamwise velocity profile of the 

TTML for 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 − 06 𝑠. The result shows that all profiles qualitatively agree with the 

DNS data profile [74] in the region −1 ≤ 𝑦 𝛿𝑤 ≤ 1⁄ . The maximum relative integral error over 

the entire velocity profile is less than 1%, which implies that all profiles have statistically 

converged. Overall, all profiles are in quantitative agreement with DNS [73,74] and experimental 

data [69,71,73]. It is apparent that the STF method closely matches the DNS target statistics at 

1700 ≤ 𝜏𝑠  ≤ 2520 in comparison to the self-similar state of Rogers and Moser [73] DNS result 

at 105 < 𝜏𝑠  < 150, and that of Pantano and Sarkar [74] at 261 < 𝜏𝑠  < 518. This comparison 

is not exact, since the previous studies tracked the evolution of the growing mixing layer towards 

a self-similar state while the current study seeks to artificially impose a desired statistical state. 

However, the result does demonstrate that the STF method can potentially be used to relatively 
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quickly achieve an approximate initial condition for the mean velocity in the self-similar mixing 

layer.  

 

Fig. 58. Mean streamwise velocity for forcing simulation of temporally-developing 

turbulent mixing layer at 𝑪𝒇 = 𝟏, 𝝉𝒔 = 𝟏𝟏𝟒𝟎, 1480, 1700, 2040, 2400, 2520 and target state 

on refined grid. 

 

6.4.2. Resolved Turbulent Stress 

Figure 59 shows the contours of resolved turbulent stress for forcing simulation of 

temporally evolving turbulent mixing shear layer at 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 − 06 𝑠, and 𝜏𝑠 = 2040. 

The result shows that the statistical profiles are approximately homogeneous in the streamwise 

direction (though not shown, the contours are similarly distributed in the spanwise direction), and 

a clear variation is present in the vertical direction. The peak values for all components lie 

approximately at the center of the mixing layer, as expected. 
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Fig. 59. Contours of (a) streamwise 𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅, (b) vertical 𝒖𝟐
′ 𝒖𝟐

′̅̅ ̅̅ ̅̅ ̅, and (c) spanwise 𝒖𝟑
′ 𝒖𝟑

′̅̅ ̅̅ ̅̅ ̅ 

normal stress, and (d) Reynolds shear stress 𝒖𝟏
′ 𝒖𝟐

′̅̅ ̅̅ ̅̅ ̅ for forcing simulation of temporally-

developing turbulent mixing layer at 𝑪𝒇 = 𝟏, 𝝉𝒔 = 𝟐𝟎𝟒𝟎 on refined grid. 

 

Figure 60 shows the predicted plane-averaged normal and shear Reynolds stress 

components for the forcing simulation of TTML at 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 − 06 𝑠, and different 

simulation times. Two points are apparent. First, the peak turbulence values are located in the 

center of the domain in agreement with the imposed target distributions. Second, at simulation 

times of 1700 ≤ 𝜏𝑠  ≤ 2520, the resolved turbulent stress profiles are all statistically converged. 

Table 9 shows that 101% of 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗∗, 89% of 𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ ∗∗, 96.8% of 𝑢3

′𝑢3
′̅̅ ̅̅ ̅̅ ∗∗, and 105% of 𝑢1

′𝑢2
′̅̅ ̅̅ ̅̅ ∗∗are 

reproduced by the STF method at 𝜏𝑠 = 2040.  
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Fig. 60. (a) Streamwise (b) vertical and (c) spanwise root mean square (RMS) velocity, 

and (d) Reynolds shear stress for forcing simulation of temporally-developing turbulent 

mixing layer at 𝑪𝒇 = 𝟏, 𝝉𝒔 = 𝟏𝟏𝟒𝟎, 1480, 1700, 2040, 2400, 2520 and target state on refined 

grid, compared to DNS[74]. 

 

 

6.4.3.  Energy Spectrum 

To investigate the spectral characteristics of the turbulence generated by the STF method, 

the fast Fourier transform was applied to the streamwise fluctuating velocity field at different 

dimensionless simulation times, 𝜏𝑠, to obtain the one-dimensional energy density as a function of 

(a) (b) 

(c) (d) 
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wavenumber magnitude (𝜅) at the mixing layer centerplane. Figure 61 shows one dimensional 

energy spectra for 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 − 06 𝑠, and different values of simulation time, 𝜏𝑠. Two 

interesting points are apparent from the energy spectra. First, qualitative energy spectra profiles 

effectively reproduce the correct behavior and match the Kolmogorov -5/3 law in the inertial 

region of the spectrum. Second, energy spectra obtained at different simulation times (𝜏𝑠) are 

slightly different near the low- and high-wavenumber portions, consequently with only very small 

differences in 1D energy spectra at different values of 𝜏𝑠.  

 

Fig. 61. One dimensional energy spectra for forcing simulation of temporally-devolving 

turbulent mixing layer at 𝑪𝒇 = 𝟏, 𝝉𝒔 = 𝟏𝟏𝟒𝟎, 1480, 1700, 2040, 2400, and 2520 on refined 

grid. 

 

6.4.4.   Effect of Mesh Resolution  

Figures 58 and 60 show that STF target data is in very good agreement with DNS data [8] 

but slightly different, hence both DNS data and target statistics will be used to benchmark results 
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for the remaining sections of this study. Figure 62 illustrates qualitative features by showing 

contours of instantaneous velocity magnitude for forcing simulation of TTML at 𝐶𝑓 = 1, 𝜏𝑇 =

1𝐸 − 06 𝑠, and 𝜏𝑠 =  2040 on coarse (131,072 cells) and refined (1.049 million cells) grids. 

Finer grained features of the resolved velocity are more apparent on the refined grid compared to 

the coarse grid as shown in Fig. 62, which implies more resolution of small-scale flow features 

as the mesh resolution is increased, as expected. 

 

 

Fig. 62. Contours of instantaneous velocity magnitude for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟏, and 𝝉𝒔 = 2040 on coarse and 

refined grids. 
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Fig. 63. Mean streamwise velocity for forcing simulation of temporally-developing 

turbulent mixing layer at 𝑪𝒇 = 𝟏, and 𝝉𝒔 = 2040 on coarse and refined grid, compared to 

DNS[74]. 

 

Figure 63 illustrates the effect of mesh refinement on predicted mean streamwise velocity 

profiles for forcing simulation of TTML at 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 − 06 𝑠, and 𝜏𝑠 =  2040. The 

profiles are in good qualitative and quantitative agreement with DNS data [74]. It is also clear 

that the mean velocity distribution is insensitive to mesh refinement. This is expected since the 

forcing terms in the STF method include a component specifically designed to drive the mean 

flow towards the target distribution, and the forcing is independent of mesh resolution level.  
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Figure 64 shows the contours of streamwise resolved turbulent stress at 𝐶𝑓 = 1, 𝜏𝑇 = 1𝐸 −

06 𝑠, and 𝜏𝑠 =  2040 on coarse and refined grids. The distribution of turbulent stress is 

qualitatively similar on both grids. 

 

Fig. 64. Contours of streamwise normal stress , 𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅ for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟏, and 𝝉𝒔 = 2040 on coarse and 

refined grids. 

Additionally, Fig. 65 quantitatively shows the predicted turbulence intensities (RMS 

velocities) in the streamwise, wall-normal, and spanwise directions and the Reynolds shear stress. 

All profiles are in close agreement with DNS [74] and/or STF target data, similar to Fig. 60. 

Likewise, the results from the coarse and refined grids are close to one another, indicating the 

insensitivity of STF to mesh resolution in terms of one-point statistical quantities.  
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Figure 66 highlights the differences in the spectral characteristics of one-dimensional 

energy spectra on coarse and refined grids. While the energy spectra profiles are in qualitative 

agreement and approximately match the -5/3 law in the inertial range, differences are apparent at 

regions of low and high wavenumber. As expected, the maximum resolved wavenumber increases 

by a factor of two on the refined grid. Interestingly, the location of peak energy density, 

corresponding to the energy containing large-scale eddies, also corresponds to a higher 

wavenumber on the refined mesh.  

 

    

    

Fig. 65. (a) Streamwise (b) vertical and (c) spanwise root mean square (RMS) velocity, 

and (d) RMS  velocity of Reynolds shear stress for forcing simulation of temporally-

developing turbulent mixing layer at 𝑪𝒇 = 𝟏 and 𝝉𝒔 = 2040 on coarse and refined grids, 

compared to DNS[74]. 

(a) 
(b) 

(c) 
(d) 
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Fig. 66. One dimensional energy spectra (𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅) for forcing simulation of temporally-

developing turbulent mixing layer at 𝑪𝒇 = 𝟏𝟎, and 𝝉𝒔 = 2040 on coarse and refined grids . 

 

6.4.5.   Effect of Forcing Coefficient 

Figure 67 illustrates the effect of varying the forcing coefficient, 𝐶𝑓, on contours of 

instantaneous velocity magnitude for forcing simulation of TTML at 𝜏𝑠 = 2040 on coarse and 

refined grids. It is evident that the structure of the instantaneous flowfield is qualitatively similar 

for the two highest values of 𝐶𝑓, but shows greater vertical extent of turbulent fluctuations for the 

lowest value 𝐶𝑓 = 0.1. In addition, the maximum resolved velocity magnitude increases as 𝐶𝑓 

increases, which is expected since the greater the value of  𝐶𝑓 the more strongly the instantaneous 

velocity is forced toward the instantaneous target value.  
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Fig. 67. Contours of instantaneous velocity magnitude with maximum value (Vmax) 

indicated, for forcing simulation of temporally-developing turbulent mixing layer at 𝑪𝒇 =

𝟎. 𝟏, 𝟏, 𝟏𝟎, and 𝝉𝒔 = 2040 on coarse and refined grids. 

 

 

Fig. 68. Mean streamwise velocity for forcing simulation for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟎. 𝟏, 𝟏, 𝟏𝟎, and 𝝉𝒔 = 2040 on coarse 

and refined grids. 
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Figure 69 shows the predicted mean streamwise velocity profiles at 𝐶𝑓 = 0.1, 1, 10 at 𝜏𝑠 =

2040 on coarse and refined grids. Regardless of mesh resolution, the profile deviates 

significantly from DNS data [74] at 𝐶𝑓 = 0.1, while other profiles are in relatively good 

agreement with DNS data [74]. This indicates that higher accuracy of results is attained with 

higher values of  𝐶𝑓, as expected. As shown in Table 9, the most improved prediction of 𝑢̅1
∗ is at 

𝐶𝑓 = 10 with relative integral error of -0.15% and -0.09% on coarse and refined grids 

respectively. 

 

 

Fig. 69. Contours of streamwise normal stress , 𝒖𝟏
′ 𝒖𝟏

′̅̅ ̅̅ ̅̅ ̅ for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟎. 𝟏, 𝟏, 𝟏𝟎, and 𝝉𝒔 = 2040 on coarse 

and refined grids. 



186 | 
P a g e  

 
 

Figure 69 shows contours of the streamwise normal turbulent stress at 𝜏𝑠 = 2040 on the 

coarse and refined grids, for three different values of 𝐶𝑓. For comparison purposes the target 

distribution is also shown. It is clear that at 𝐶𝑓 = 0.1, the width of the turbulent layer is 

overpredicted relative to the target and the flow shows strong inhomogeneity in the spanwise 

direction. For the highest value of 𝐶𝑓 = 10, the distribution is more homogeneous and agrees best 

with the target distribution. Figure 73 further illustrates that at 𝐶𝑓 = 0.1, the forcing coefficient is 

inadequate to reproduce the target turbulent statistics. Errors in peak predicted values range from 

a maximum of +22.4% with 𝐶𝑓 = 0.1 to a minimum of -2.9% at 𝐶𝑓 = 10. Interestingly, 

differences in results between coarse and refined meshes are also reduced as the value of 𝐶𝑓 is 

increased from 0.1 to 10. Overall, regardless of mesh resolution, it is apparent that an increase in 

the value of 𝐶𝑓 over the range investigated increases the accuracy of the STF method results.     

Table 9 further quantitatively highlights the predicted ratio of peak resolved-to-target 

turbulence statistics at 𝜏𝑠 = 2040.  The STF method results at 𝐶𝑓 = 10, 𝜏𝑇 = 1𝐸 − 06 𝑠  show 

the best quantitative agreement with DNS while the results for 𝐶𝑓 = 0.1 deviate from the target 

and/or DNS data significantly. It is concluded that the capability of the STF method to reproduce 

turbulence statistics synthetically is validated provided the value of the forcing coefficient is 

sufficiently high. Specifically, on the refined grid with 𝐶𝑓 = 10, and 𝜏𝑇 = 1𝐸 − 06 𝑠, the 

method can reproduce approximately 100% of 𝑢1
′𝑢1
′̅̅ ̅̅ ̅̅ ∗, 97% of 𝑢2

′ 𝑢2
′̅̅ ̅̅ ̅̅ ∗, 96% of 𝑢3

′ 𝑢3
′̅̅ ̅̅ ̅̅ ∗, and 99% of 

𝑢1
′𝑢2
′̅̅ ̅̅ ̅̅ ∗ at a dimensionless simulation time (𝜏𝑠) of 2040.  
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Fig. 70. Streamwise root mean square (RMS) velocity for forcing simulation of 

temporally-developing turbulent mixing layer at 𝑪𝒇 = 𝟎. 𝟏, 𝟏, 𝟏𝟎, and 𝝉𝒔 = 2040 on coarse 

and refined grids, compared to DNS[74]. 

To understand the spectral characteristics of the TTML turbulence generated by STF 

method with different values of 𝐶𝑓, Fig. 71 shows the one-dimensional normalized energy spectra 

for forcing simulation of the temporally-developing turbulent mixing shear layer at 𝐶𝑓 = 0.1, 1, 

and 10, 𝜏𝑇 = 1𝐸 − 06 𝑠 and 𝜏𝑠 = 2040. Slight differences in the energy spectra profiles are 

evident but peak values and overall behavior of the spectra are almost identical for the cases with 

𝐶𝑓 = 1 and 10. Once again the energy spectra profiles qualitatively match the -5/3 law in the 

inertial range.  
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Fig. 71. One dimensional energy spectra for forcing simulation of temporally-

developing turbulent mixing layer at 𝑪𝒇 = 𝟎. 𝟏, 𝟏, 𝟏𝟎, and 𝝉𝒔 = 2040. 

 

6.4.6. Effect of Subgrid Stress Modeling 

To investigate effect of implicit and/or explicit LES modeling, simulations were run using 

Monotonically Integrated LES (MILES) and compared to the simulations run using the 

Smagorinsky model. Both simulations were run on the refined grid with a value of the forcing 

coefficient 𝐶𝑓 = 1. Table 9 and Figures 72-74 illustrate the similarities and differences using the 

different subgrid stress models. There is a negligible difference in results of the STF method 

obtained with the MILES or Smagorinsky model. The maximum relative difference in the 

prediction of peak values of the Reynolds stress components was less than 1.5%. These results 

suggest that the STF method is capable of accurately reproducing turbulent one-point statistics 

regardless of the details of the LES modeling methodology. 
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Fig. 72. Contours of instantaneous velocity magnitude with maximum value (Vmax) 

indicated for forcing simulation of temporally-developing turbulent mixing layer at 𝝉𝒔 =

𝟐𝟎𝟒𝟎, and 𝑪𝒇 = 𝟏 using MILES and Smagorinsky (SMAG) model on refined grid. 

 

Fig. 73. Mean streamwise velocity for forcing simulation of temporally-developing 

turbulent mixing layer at 𝝉𝒔 = 𝟐𝟎𝟒𝟎, and 𝑪𝒇 = 𝟏 using MILES and Smagorinsky (SMAG) 

model on refined grid, compared to DNS[74]. 

 

(𝐛) 𝐒𝐌𝐀𝐆, 𝐕𝐦𝐚𝐱 = 𝟔𝟏. 𝟑𝟑𝐦/𝐬 (𝐚) 𝐌𝐈𝐋𝐄𝐒,𝐕𝐦𝐚𝐱 = 𝟕𝟏. 𝟐𝟎𝐦/𝐬 
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Fig. 74. Streamwise RMS velocity for forcing simulation of temporally-developing 

turbulent mixing layer at 𝝉𝒔 = 𝟐𝟎𝟒𝟎, and 𝑪𝒇 = 𝟏 using MILES and Smagorinsky (SMAG) 

model on refined grid, compared to DNS[74]. 

 

6.5. SUMMARY AND CONCLUSION 

A new forcing method for synthetic turbulence generation of initial conditions was applied 

to the test case of large-eddy simulation (LES) of a temporally-developing turbulent mixing layer 

(TTML). The new method, denoted Statistically Targeted Forcing (STF), incorporates a source 

term in the momentum equation to drive the local, instantaneous velocity vector towards a target 

value. Simulation results in this study are compared to DNS studies of  Pantano et al. [74].  

 The method was evaluated for different values of model coefficients and mesh resolution 

using LES with the Smagorinsky subgrid stress model. An additional test case was run using 

MILES. Qualitative and quantitative results were presented which showed that the method was 

able to reproduce DNS target statistical quantities as initial conditions for the temporally evolving 
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mixing layer. Specifically, the method reproduced a relatively stable and accurate self-similar 

state at 1700 ≤ 𝜏𝑠  ≤ 2600 on both coarse and refined grids. This state is similar to the DNS 

result of Rogers and Moser [73] with self-similar state attained at 105 < 𝜏𝑠  < 150, and that of 

Pantano and Sarkar [74] attained at 261 < 𝜏𝑠  < 518. Effect of mesh resolution on the method 

was also investigated and results showed that the method is relatively insensitive to mesh 

resolution with  coarse-to-refined grids maximum relative error of about 0.2%. The effect of 

forcing coefficient on the method was also evaluated, and the results presented showed that the 

STF method agrees more closely with target statistical values as the value of the forcing 

coefficient is increased. Results using different LES subgrid stress models showed little 

difference, indicating that the model is relatively agnostic to details of the model or mesh. 

 In sum, the method can effectively reproduce target/DNS mean velocity and resolved 

turbulent stress predictions for use as initial conditions of temporally developing mixing layers. 

Future work will investigate the evolution of the mixing layer once the STF generated initial 

conditions are applied. We will also seek to extend the method capability to higher Mach number 

flows. 
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CHAPTER VII 

 

CONCLUSIONS & FUTURE WORK 

7.1. SUMMARY 

 This dissertation presents improved methods for turbulence modeling in computational 

fluid dynamics simulations. The focus is on scale-resolving methods, in which some portion of 

the fluctuating variable field is resolved in the simulation, in contrast to Reynolds-averaged 

Navier-Stokes (RANS) simulations, which only solve directly for the mean (ensemble- or time-

averaged) portion of the variable field. This work addresses issues relevant to large-eddy 

simulation (LES) and hybrid RANS-LES models. Two novel contributions have been included. 

First is a modified dynamic hybrid RANS-LES (DHRL) model for improved turbulent heat 

transfer prediction. Second is a new method for synthetic turbulence generation in CFD 

simulations, denoted the statistically targeted forcing (STF) method. The formulation and 

implementation of these methods for different test cases are investigated and discussed in 

Chapters III, IV, V, and VI. The key highlights of those chapters are summarized here. 

In Chapter III, a new version of DHRL was proposed in which a separate RANS-to-LES 

blending function for turbulent heat flux is computed based on the statistics of the resolved 

fluctuating temperature field. The performance of the modified variant of the DHRL model was 

comprehensively investigated and results were compared to other currently used turbulence 

models including a Reynolds-averaged Navier Stokes (RANS) model (SST k-), popular hybrid 

RANS-LES models (DDES and DDES), and the baseline DHRL model. The test case used for 

model evaluation was turbulent channel flow with imposed mean streamwise or spanwise 
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temperature gradient. This case was chosen because it represents a canonical representative case 

for more general wall-bounded flows with non-negligible wall-parallel heat transfer, and because 

high-fidelity direct numerical simulation (DNS) results are available for validation purpose. 

Simulation results highlight the inability the SST k- model, and eddy-viscosity RANS models 

more generally, to accurately predict turbulent heat transfer for cases in which the mean velocity 

and temperature gradients are not well-aligned. All of the hybrid RANS-LES models were 

significantly more accurate than the RANS models. The new modified version of the DHRL 

model showed improved accuracy versus the baseline DHRL variant for cases with both 

streamwise and spanwise imposed temperature gradient. For the streamwise case the modified 

DHRL model was the most accurate of all models tested, and was comparable to the DDES model 

for the spanwise case, both of which outperformed the baseline DHRL and IDDES models. The 

contents of Chapter III have been published in the Journal of Fluids Engineering in a paper titled 

“Hybrid RANS–LES Simulation of Turbulent Heat Transfer in a Channel Flow With Imposed 

Streamwise or Spanwise Mean Temperature Gradient.” 

In Chapter IV, a newly proposed statistically targeted forcing (STF) method for synthetic 

turbulence generation (STG) was presented. The STF method is a variant of STG with controlled 

forcing within the simulation domain, implemented via added source terms in the momentum and 

energy equations to drive the local, instantaneous velocity vector towards a target value. The 

performance of the STF method was evaluated by performing several test simulations of 

homogeneous turbulence, using LES with the Smagorinsky subgrid stress model and or the 

MILES (implicit LES) modeling approach. The resulting flowfield was interrogated to evaluate 

the accuracy of the method for reproducing target and/or realistic turbulent flow conditions for 
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the isotropic and anisotropic turbulence test cases. Comprehensive results were presented 

including Reynolds stress distributions and flowfield energy spectra, highlighting the effect of 

critical parameters such as averaging technique, mesh resolution, spatially-filtering, and STF 

model parameters. In sum, the results indicate that the STF method is capable of reproducing a 

synthetic homogeneous turbulence field with prescribed first- and second-order statistics (over 

98% accuracy was documented) and appropriate spectral content, which can be used to specify 

initial and/or boundary conditions for LES simulations. The method is relatively simple to 

implement, non-stochastic, stable, and computationally efficient. The contents of Chapter IV have 

been submitted to the Journal of Fluids Engineering in a paper titled “Evaluation of a Statistically 

Targeted Forcing Method for Synthetic Turbulence Generation in Scale-Resolving Simulations.” 

In Chapter V, the statistically targeted forcing (STF) method was extended to the case of 

spatially-developing freestream turbulence. The capability of STF method to accurately 

reproduce freestream turbulent inflow statistics in a prototypical channel flow domain was 

evaluated. Three different classes of modeling approach were investigated, including RANS, 

LES, and hybrid RANS-LES. All simulations used a running time-averaging technique to 

compute mean statistics, approximating Reynolds-averaging for stationary flow. Results were 

presented showing the effects of mesh sensitivity, model parameters, spatial filtering, and explicit 

LES modeling. Results were compared to target turbulent statistics to evaluate the efficacy of the 

STF method. It was determined that the STF method is capable of reproducing a synthetic 

freestream turbulence field with prescribed first- and second-order statistics and appropriate 

spectral content, which can be used to specify inflow boundary conditions for different classes of 

modeling approach for scale-resolving simulations. It was found that an appropriate choice of 
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model parameters made it possible to produce turbulent kinetic energy levels within the 

Smagorinsky, MILES, and DHRL modeling framework that were within 95%, 91% and 90%, 

respectively, of the target turbulence levels. Results suggest that the STF method may therefore 

offer an attractive alternative for synthetic turbulence generation in three-dimensional Navier-

Stokes CFD for both LES and hybrid RANS-LES simulations. The contents of Chapter V have 

been submitted to the Journal of Fluids Engineering in a paper titled “Statistically Targeted 

Forcing Method for Synthetic Generation of Freestream Turbulence in Scale-Resolving 

Simulations.” 

In Chapter VI, the application of the STF method within the LES framework to a 

temporally-developing turbulent mixing layer (TTML) flow was investigated. The objective was 

to investigate the capability of the method to accurately reproduce an initial condition velocity 

and pressure field for the simulation of mixing layer evolution. The performance of the STF 

method was evaluated by performing several test simulations of the TTML, using LES with the 

Smagorinsky subgrid stress model and the MILES (implicit LES) modeling approach. Simulation 

results were compared to DNS results available in the literature. Qualitative and quantitative 

results were presented which showed that the method was able to effectively reproduce DNS 

target statistical quantities as initial conditions for the temporally-devolving mixing layer. 

Specifically, the method reproduced a relatively stable and accurate self-similar state at on both 

coarse and refined grids. The effect of mesh resolution was also investigated and results showed 

that the STF method produced the correct initial state for a range of grid sizes. Overall, the results 

are significant because they show that the STF concept may be extended beyond freestream 

turbulence to cases in which mean velocity gradients are non-zero. The contents of Chapter V 
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were presented and published at the 2021 ASME Fluids Engineering Division Summer Meeting 

in a paper titled “Statistically Targeted Forcing (STF) Method for Synthetic Turbulence 

Generation of Initial Conditions in Three-Dimensional Turbulent Mixing Layer Flow.” 

 

7.2.   CONCLUSIONS 

The most significant conclusions of this research effort are the following. 

Chapter III: 

• For wall-bounded turbulent flow, traditional eddy-viscosity models cannot accurately 

resolve turbulent heat transfer in the wall-parallel (streamwise or spanwise) directions, 

due to the mis-alignment of the mean velocity and temperature gradients. Eddy-

viscosity models can accurately resolve the wall-normal heat transfer component, 

which is expected since these models have been well calibrated to reproduce wall 

shear stress and convection heat transfer rates in attached boundary layer flows. 

• All of the hybrid RANS-LES models investigated were able to predict heat transfer in 

all three directions (normal, streamwise, and spanwise) with reasonable accuracy, 

showing the correct trends and approximately reproducing the DNS validation data. 

The DHRL model showed the most consistently accurate results among the models 

tested. 

• The new variant of the DHRL model proposed in this study, in which separate RANS-

to-LES blending functions are implemented for the momentum and energy equations, 

showed improvement over the baseline DHRL model for prediction of turbulent heat 

transfer in all three directions. Since the model variant is based on a straightforward 
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application of the DHRL concept to the energy equation, it is suggested that the new 

variant should be in place of the baseline variant for simulations involving turbulent 

heat transfer. 

 

 

Chapter IV: 

• The STF method was demonstrated to produce a temporally and spatially varying 

velocity field for homogeneous flow with qualitative features indicative of three-

dimensional turbulence, and with turbulent kinetic energy and Reynolds stress 

components close to target, user-specified values. 

• As mesh refinement level increased, the overall energy levels and large-scale flow 

features produced by the STF method showed little change, but spectral analysis 

showed that higher wavenumber velocity modes were resolved 

• Both volume and time averaging techniques for ensemble averaging were successfully 

demonstrated for the STF method. However, cases using volume averaging showed 

more rapid convergence to a statistically stationary state, while cases using time 

averaging showed a clear lag in the development of turbulent statistics, as expected. 

• The simulation results are critically dependent on the value of the forcing time scale. 

A smaller time scale results in a stronger forcing term and increases the accuracy of 

the STF method in terms of agreement with target Reynolds stress values. 

• Spatial filtering was shown to be an effective means of controlling the large-eddy 

length scale of the synthetically generated turbulent flow. A decrease in the filter time 
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scale resulted in a corresponding decrease in the integral length scale, as indicated by 

visualized velocity contours and by energy spectra. 

Chapter V: 

• The STF method can be straightforwardly extended to the case of spatially-developing 

freestream flow. Results showed that an appropriate choice of model parameters 

produced Reynolds stress and turbulent kinetic energy levels within 5% of user-

defined target values in the forcing region. Downstream of the forcing region, the 

turbulent energy showed streamwise decay indicative of freestream turbulence. 

• The effects of mesh refinement, varying forcing time scale, and spatial filtering for the 

freestream turbulence test case were consistent with results for the homogeneous 

turbulence case examined in Chapter IV. 

Chapter VI: 

• The STF method can be effectively extended to provide initial conditions for 

simulation of temporally developing shear layer flows. Results showed that mean 

velocity and Reynolds stress profiles were well predicted when an appropriate set of 

model parameters was employed. 

• Mean velocity and Reynolds stress distributions obtained using the STF method were 

found to be relatively insensitive to mesh refinement, although the range of resolved 

turbulent scales increased as the characteristic mesh size was reduced. 

• Consistent with results from Chapters IV and V, the accuracy of the STF method 

increased as the forcing time scale was reduced. 
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7.3.  FUTURE WORK 

This study presented one method for improving the performance of the dynamic hybrid 

RANS-LES (DHRL) model by more effectively prescribing the blending function between RANS 

and LES terms in the energy equation. Further improvements to the DHRL model are currently 

under consideration. These include implementation of a new blending function that identifies 

regions of the flow that should be resolved using a pure LES model, based on the level of resolved 

fluctuating strain rate. This form of DHRL allows wall-bounded regions to be addressed using 

the existing DHRL model formulation while separated and freestream regions are resolved using 

LES. Initial tests with this version have been documented and submitted for presentation and 

publication at the ASME 2021 IMECE Conference. 

Further improvement to DHRL can potentially be obtained by adopting more advanced 

RANS models within the DHRL framework, for example by incorporating non-linear eddy 

viscosity models for the turbulent stress and heat flux terms. As currently implemented,  the  

performance of  the DHRL model depends on the inherent RANS model with a simple isotropic 

gradient-based diffusion model as shown in Chapter III, Eqs. (8, 23, and 24). Future work will 

investigate quadratic, cubic, or even explicit algebraic Reynolds stress models for the RANS 

component. 

The STF method has successfully been tested and documented for homogeneous turbulent 

flow, freestream turbulent flow, and temporally-developing turbulent mixing layer flow. Future 

work will investigate the application to evolution of the mixing layer once the STF generated 

initial conditions are applied in a more complex domain. Extension of the method’s capability to 

higher Mach number flows will also be considered. Additionally, application of the STF method 
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to wall-bounded turbulent channel flows is presently being investigated. For this application, the 

target Reynolds stress tensor components can be obtained from a precursor RANS simulation or 

prescribed based on planar averaging of available DNS results. Eventually, the STF method will 

be adopted directly in hybrid RANS-LES simulations to investigate the ability of the method to 

facilitate transition from RANS to LES resolution in critical areas of the simulation domain. For 

such an implementation, the RANS solution obtained as part of the DHRL simulation will be used 

to determine a target Reynolds stress distribution, rather than being prescribed prior to the 

simulation.  

The development of improved DHRL capability coupled with the use of the STF method to 

enable rapid and accurate transition between modeling modes, will potentially yield a flexible and 

powerful modeling approach that can be used to tailor simulations that seamlessly blend RANS 

and LES type solutions based on the needs of the user.  
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