
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

GEOCHEMISTRY OF THE STACK AND SCOOP OIL PLAYS,  

ANADARKO BASIN, OKLAHOMA 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

 Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

By 

 

CARL SYMCOX 

Norman, Oklahoma 

2021 



 

 

GEOCHEMISTRY OF THE STACK AND SCOOP OIL PLAYS,  

ANADARKO BASIN, OKLAHOMA 

 

 

 

 

 

 

A THESIS APPROVED FOR THE 

SCHOOL OF GEOSCIENCES 

 

 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

 

 

Dr. Mike Engel, Chair 

 

 

 

Dr. R. Paul Philp 

 

 

 

Dr. Richard Elmore 

 

 

 

Dr. Matt Pranter 

 

 

 

Dr. Deepak Devegowda 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by CARL SYMCOX 2021 

All Rights Reserved.



 

iv 

 

Acknowledgements 

This research was made possible because of the excellent facilities, staff, support, and 

mentorship of the Organic Geochemistry Group at the University of Oklahoma headed by Dr. 

Philp. A special thanks to Alta Mesa Resources, Casillas Petroleum Company, Continental 

Resources, Devon Energy, Echo Energy, Gastar Exploration, Marathon Oil, Newfield Exploration, 

Tapstone Energy, Vitruvian Exploration, and Warwick Energy Group for generously donating 

samples, support, and permission to present this work. Additional core data were provided from 

the Oklahoma Petroleum Information Center.  

  



 

v 

 

Table of Contents 
Acknowledgements ............................................................................................................................................................... iv 

Table of Contents ................................................................................................................................................................... v 

List of Figures ....................................................................................................................................................................... vi 

List of Tables....................................................................................................................................................................... xvi 

Abstract ............................................................................................................................................................................... xix 

List of Acronyms ............................................................................................................................................................... xviii 

I. Introduction ......................................................................................................................................................................... 1 

The STACK and SCOOP Plays .................................................................................................................................... 1 

Organic Geochemistry in Hydrocarbon Exploration and Development ........................................................................ 4 

II. Geologic Background ........................................................................................................................................................ 9 

The Anadarko Basin ...................................................................................................................................................... 9 

STACK and SCOOP Petroleum Systems .................................................................................................................... 12 

III. Dataset and Methods ...................................................................................................................................................... 23 

Oil Samples ................................................................................................................................................................. 23 

Core Samples .............................................................................................................................................................. 31 

Internal Standards and Calculating Absolute Concentrations ..................................................................................... 34 

Production Data ........................................................................................................................................................... 37 

Principal Component Analysis .................................................................................................................................... 38 

Mapping Software ....................................................................................................................................................... 38 

IV. Thermal Maturity Model ................................................................................................................................................ 39 

Bulk Composition Maturity Parameters ...................................................................................................................... 42 

Biomarker Maturity Parameters .................................................................................................................................. 54 

Light Hydrocarbon Maturity Parameters ..................................................................................................................... 68 

Aromatic Maturity Parameters .................................................................................................................................... 77 

Principal Component Model ....................................................................................................................................... 84 

Thermal Maturity Maps .............................................................................................................................................. 86 

Maturity and Oil Composition .................................................................................................................................... 92 

Summary of Findings ................................................................................................................................................ 100 

V. Organic Facies Determination ....................................................................................................................................... 102 

Previous Geochemical Studies of Source Rocks in STACK and SCOOP................................................................. 102 

Outline for Determining Organic Facies ................................................................................................................... 106 

Characteristics of the STACK Petroleum System ..................................................................................................... 109 

Characteristics of the SCOOP Petroleum System ..................................................................................................... 176 

This Study in Relation to Previous Geochemical Findings ....................................................................................... 193 

Summary of Findings ................................................................................................................................................ 201 

VI. Secondary Processes .................................................................................................................................................... 203 

Elevated Sulfur Trend in STACK West .................................................................................................................... 203 

Predicting Overpressure ............................................................................................................................................ 226 

Spatial Heterogeneity in Oil Charge and Accumulation ........................................................................................... 230 

Summary of Findings ................................................................................................................................................ 238 

VII. Conclusions ................................................................................................................................................................ 240 

References .......................................................................................................................................................................... 241 

Appendix: Compound Structures ....................................................................................................................................... 260 

 



 

vi 

 

List of Figures 

Figure 1. Map of the three Play Regions examined in this study and their producing counties. .................. 3 

Figure 2. Outline of the Anadarko Basin and its major structural boundaries. The STACK/SCOOP study 

area is highlighted. Modified from Pranter et al. (2016). .............................................................................. 9 

Figure 3. Cross section of the Anadarko Basin from southwest to northeast. From Johnson (2008). ........ 12 

Figure 4. Generalized stratigraphic column with major source rocks and reservoirs are shown in red and 

green, respectively. Height of formation boxes is not related to thickness of unit. Constructed based on the 

works of Harris (1975), Johnson (1989), Johnson and Cardott (1992), Henry and Hester (1995), Higley 

(2013), and Cardott (2017). ........................................................................................................................ 13 

Figure 5. Approximate regional distribution of Upper Devonian and Lower Mississippian black shales in 

the United States, shown in blue. From Conant and Swanson (1961). ....................................................... 14 

Figure 6. Thickness of the three Woodford Shale members as well as total Woodford isopach based on well 

logs; contour interval 25 ft. Areas where Woodford Shale is absent is hachured. Dots show well locations. 

The syndepositional structural axis is depicted as bold arrow. The Woodford Shale thins substantially 

towards STACK West, and the Upper and Lower members are absent in some cases. Modified from Hester 

et al. (1990). ................................................................................................................................................ 16 

Figure 7. Histogram of Osage facies in STACK measured from cores of four complete Mississippian 

intervals located in Blaine, Kingfisher, and Canadian counties. At least 37% of the Osage has been 

bioturbated by benthic organisms suggesting well-oxygenated bottom waters. From Bynum and 

Wethington (2020). ..................................................................................................................................... 17 

Figure 8. Histogram of Meramec facies in STACK. There is a notable increase in siltstone facies concurrent 

with a decrease in chert facies making the Meramec a preferred drilling target. From Bynum and 

Wethington (2020). ..................................................................................................................................... 18 

Figure 9. Isopach of the Meramec Fm. in STACK with subsea structure depths. From Price et al. (2020).

 .................................................................................................................................................................... 19 

Figure 10. Histogram of Chester facies in STACK. Note the substantial increase in siliciclastic relative to 

carbonate facies as well as the absence of spicular chert facies. From Bynum and Wethington (2020). ... 20 

Figure 11. Block diagram depositional model for the Mississippian Group showing the transition from a 

carbonate-dominated system to a siliciclastic-dominated system. The carbonate system ranges from 

grainstone dominated inner-ramp deposits to calcareous siltstone dominated outer- ramp deposits. The 

siliciclastic system ranges from arkosic sandstone dominated upper shoreface deposits to siltstone 

dominated offshore deposits. FWWB=fair weather wave base; SWB=storm wave base. From Bynum and 

Wethington (2020). ..................................................................................................................................... 21 

Figure 12. A gamma-ray cross section of STACK East along depositional trend and flattened on the 

Woodford Shale. The Meramec clinoform sets A-I can be seen prograding over the top of the Osage Fm 

and capped by the shaley Chester Fm. Gamma-ray scale 0-100 API. FSST=Falling Stage Systems Tract; 

LST=Lowstand Systems Tract; TST=Transgressive Systems Tract; HST=Highstand Systems Tract; 

SB=Sequence Boundary. Modified from Price et al. (2020) ...................................................................... 22 

Figure 13. Wellhead locations of the 172 study oil samples by producing formation and organized into 

separate panels corresponding to the STACK West, STACK East, and SCOOP Play Regions. Sample labels 

correspond to the sample key in Table 1. The square grid corresponds to township lines which are 6 miles 

on a side. ..................................................................................................................................................... 24 

file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421891
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421892
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421892
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421893
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421894
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421894
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421894
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421894
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421895
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421895
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421897
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421897
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421897
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421897
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421898
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421898
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421898
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421899
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421899
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421900
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421900
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421901


 

vii 

 

Figure 14. Map of oil samples in this study (upper) colored by producing formation as indicated by the 

adjoining cross section cartoon (lower). Woodford vitrinite isoreflectance contours (Ro%) provided 

(Cardott, 2012). ........................................................................................................................................... 28 

Figure 15. Map of cored wells incorporated into this study. ...................................................................... 32 

Figure 16. Examples of core sampling locations by stratigraphic interval and lithofacies for the ABCDS 1-

6H core. The Chester facies are dominated by laminated siltstones, bioturbated siltstones, and calcareous 

sandstones and contain a slightly organic base in this core. The Meramec ranges from clean silt, silty shales, 

to shaley interbeds. The Osage ranges from crinoidal carbonate packstones and wackestones to cherty 

carbonates with stylolite dissolution features. The dark Kinderhook Shale is generally organic lean, while 

the Woodford Shale is organic rich. Not Shown: Hunton Fm or Springer Group. ..................................... 33 

Figure 17. An example relative response factor between the internal standard used in this study (5α-

cholestane-2,2,3,3,4,4-D6) and adamantane. Adamantane has a larger machine response by nearly a factor 

of four. ........................................................................................................................................................ 36 

Figure 18. Initially producing gas-oil ratio (IP GOR) is chosen from the first month after the well has 

finished cleaning up. The IP GOR for the well shown is 12,655 scf/STB. ................................................. 37 

Figure 19. Map of the 172 studied oil samples by producing reservoir and colored by total vertical depth 

(TVD) as shown in Table 1. Oklahoma Geological Society recognized faults are shown in light grey. Two 

notable north-south trending faults in Dewey and Woodward counties are highlighted which are referenced 

in the text. ................................................................................................................................................... 40 

Figure 20. a) Contour map of Woodford oil API gravity. A “flower-shaped zone” in a heavily faulted 

portion of eastern Dewey County bends the contours indicating an updip incursion of higher maturity oils. 

b) Map of the flower-shaped zone with study oils (labeled by 1002A API gravity) showing major shift in 

API gravity across notable N-S trending faults, marked red. Faulted lithology may contribute to updip 

migration of higher maturities from deeper in the basin. ............................................................................ 46 

Figure 21. Initial production API Gravity values for study wells (from OCC form 1002A). STACK oils 

generally increase with depth while SCOOP oils show little correlation with depth. A broad range of 

STACK West values around ~11,000 ft correspond to a flower-shaped zone of higher API gravity in Dewey 

County (see Figure 20). ............................................................................................................................... 47 

Figure 22. Cross-plot of whole oil δ13C isotope values versus TVD. A cluster of STACK East oils is circled 

as possible evidence of updip migration and are not included in regression trendline (see text). The STACK 

West oils at ~11,000- ft mirror the variable maturities observed in Woodward and Dewey counties which 

include the flower-shaped zone................................................................................................................... 48 

Figure 23. Map of STACK indicating the circled samples marked “Updip Migration” in Figure 22. These 

samples are produced from Mississippian reservoirs above immature Woodford, and plot approximately 

1,000-2,000 ft TVD above the TVD-δ13C trendline indicating that may be the extend of updip migration.

 .................................................................................................................................................................... 49 

Figure 24. The IP GOR in this dataset generally increases with TVD but exhibits a very weak correlation.

 .................................................................................................................................................................... 50 

Figure 25. The sum of SARA values for oils in this study plotted by depth and Play Region. Volatiles lost 

during sample preparation and fractionation account for the remaining weight up to 100%. Oils become 

more volatile with increased depth, but also show an increase in the relative abundance of saturates 

compared to aromatics, NSOs, and asphaltenes. Asphaltenes are only observed in meaningful quantities in 

shallow STACK West oils. ......................................................................................................................... 52 

Figure 26. Colloidal Instability Index (CII) versus TVD for study oils. There is a strong relationship in 

STACK than in SCOOP which again plots below the main STACK trend. The flower shaped zone in 

STACK West is also present. ...................................................................................................................... 53 

file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421907
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421907
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421907
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421908
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421908
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421912
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421912
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421912
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421912
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421913
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421913
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421913
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421913
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421914
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421914
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421916
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421916
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421916


 

viii 

 

Figure 27. Kinetic precursor-product relationship of C29 sterane (I) stereoisomers common in mature 

geologic samples. Each structure has an implied 5α(H) configuration. Recreated from Seifert and 

Moldowan (1981). ....................................................................................................................................... 55 

Figure 28. Two GC-MS fragmentograms showing peak distribution of C27-30 regular steranes (I) and C27-30 

diasteranes (II). Diasteranes can be measured using m/z 259 which are more specific for diasteranes than 

m/z 217. An example carbon skeleton of a regular sterane and diasterane show rearrangement of the methyl 

groups C-18 and C-19. ................................................................................................................................ 59 

Figure 29. Two maturity parameters based on the isomerization of the C29 regular sterane (I). Upper: the 

ratio of C29 5α(H),14α(H),17α(H) 20S/(S+R) sterane versus TVD. By 8,000 ft, the ratio 20S/(S+R) has 

reached equilibrium and shows no correlation with depth. Lower: the ratio C29 sterane ββ/(ββ+αα) using 

both 20S and 20R epimers shows a good correlation with TVD in STACK East and weak correlation in 

STACK West and SCOOP. ......................................................................................................................... 61 

Figure 30. The ratio of diasteranes/steranes generally increases with TVD in STACK until 10,000-11,000 

ft beyond which the ratio reaches unity. No correlation with depth is observed in SCOOP. ..................... 62 

Figure 31. Detailed m/z 231 fragmentogram showing C20-C28 triaromatic steroids and their common 

groupings TA[I] (III) and TA[II] (IV). Peak identification based on Mackenzie et al. (1981). ................. 63 

Figure 32. The triaromatic sterane maturity ratio TA[I]/TA[I+II] increases with TVD until ~0.85 beyond 

which no additional information is gained. ................................................................................................. 64 

Figure 33. Detailed m/z 191 fragmentogram of a black oil B/C fraction. Labeled peaks are identified in 

Table 6. ....................................................................................................................................................... 65 

Figure 34. Ratio of all C19-C39 tricyclic terpanes (3R) over C19-C39 tricyclic terpanes plus C27-C35 hopanes 

(5R) versus TVD. In STACK, the ratio increases with depth until it reaches equilibrium around 9,000 ft. In 

SCOOP, the ratio increases with depth until reaching equilibrium around 12,000 ft. ................................ 67 

Figure 35. Light hydrocarbon peaks labeled based on comparison to Walters and Hellyer (1998). .......... 68 

Figure 36. Maturity parameters for the isoheptane ratio, heptane ratio, normality, and paraffinicity versus 

depth based on Thompson (1979 and 1983). The isoheptane ratio plotted in semi-log displays the best 

correlation with depth, while the heptane ratio and paraffinicity show little correlation. The previously 

identified flower-shaped zone in STACK West of variable oil maturities at ~11,000 ft can also be observed, 

especially in the isoheptane ratio. HC=hydrocarbons. ................................................................................ 74 

Figure 37. Maturity parameters for Mango parameters 2-/3-methylhexane (upper) and expulsion 

temperature (lower) versus depth based on Mango (1997). Good correlations are observed in STACK East 

and SCOOP, but STACK West shows significant scatter especially in the previously identified flower-

shaped zone at ~11,000 ft. .......................................................................................................................... 76 

Figure 38. Peak identification for phenanthrene (P) and the methylphenanthrene isomers (x-MP) from the 

m/z 178+192 fragmentogram. Peak identification based on Radke et al. (1982). ...................................... 77 

Figure 39. Vitrinite reflectance equivalent (Rc%) values from the methylphenanthrene index (MPI-1) 

versus TVD. ................................................................................................................................................ 81 

Figure 40. Peak identification for dibenzothiophene (DBT) and the four methyldibenzothiophenes isomers 

(x-MDBT). Peak identification based on Radke et al. (1982) and Fang et al. (2016). ............................... 82 

Figure 41. a) The MDR maturity parameter for this dataset whereby only STACK West shows a good 

correlation versus TVD. b) STACK West oils are enriched in 4- and 1-methyldibenzothiophene compared 

to STACK East and SCOOP and may contribute the higher signal-to-noise and less scatter of the MDR 

thermal maturity parameter. ........................................................................................................................ 83 

Figure 42. Principal component analysis (PCA) model for each Play Region correlating maturity parameters 

to TVD where good correlations are circled and bold. All Play Regions are then aggregated into a single 

file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421917
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421917
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421917
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421918
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421918
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421918
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421918
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421920
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421920
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421921
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421921
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421922
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421922
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421923
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421923
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421924
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421924
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421924
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421925
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421926
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421926
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421926
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421926
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421926
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421928
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421928
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421929
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421929
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421930
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421930
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421931
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421931
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421931
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421931


 

ix 

 

PCA model (bottom right) to determine consensus between the most successful maturity parameters without 

consideration of TVD. The most successful maturity parameters in this dataset were colloidal instability, 

expulsion temperature, and Rc% (from MPI-1). ......................................................................................... 85 

Figure 43. Map of Rc% (from MPI-1) which was found to be the most successful maturity parameter in this 

dataset and is the principal maturity parameter used in the remainder of this study. ................................. 87 

Figure 44. The Expulsion Temperature (°C) maturity parameter makes apparent the effects of high maturity 

fluids invading the flower-shaped zone in eastern Dewey County compared to similar TVD reservoirs in 

Woodward and western Dewey counties. ................................................................................................... 88 

Figure 45. Maps of the colloidal instability index (CII) and tricyclic terpanes/tricyclic terpanes plus 

hopanes, or 3R/(3R+5R) terpanes, maturity parameters which exhibit good correlation with TVD and other 

maturity parameters in PCA. The thermal maturity anomaly in eastern Dewey County is not readily 

apparent in these maturity parameters. ....................................................................................................... 89 

Figure 46. Maps of the isoheptane ratio and 2-MH/3-MH light hydrocarbon maturity parameters which 

exhibit good correlation with TVD and with other maturity parameters in PCA. Both the Isoheptane Ratio 

and 2-MH/3-MH maturity parameters highlight the flower-shaped zone thermal maturity anomaly 

previously identified in eastern Dewey County. ......................................................................................... 90 

Figure 47. Maps of TA[I]/TA[I+II] and 4-/(4-+1-MDBT), also known as MDR, which have limited 

correlation with depth and other parameters in PCA. ................................................................................. 91 
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parenthesis and which corresponds to concentration data in Table 10. Hopanes are generated at lower 

maturities and almost completely absent by Rc=0.94%, while tricyclic terpanes are generated at higher 

maturities and are present until Rc=1.05%. The absolute concentration of hopanes and tricyclic terpanes in 

ppm of whole oil is provided in the adjoining bar graph (bottom right). .................................................... 93 

Figure 49. Rate decline exponent calculations for bicyclic sesquiterpanes, tricyclic terpanes, steranes, and 

hopanes. ...................................................................................................................................................... 98 

Figure 50. Rate decline exponent calculations for triaromatic steranes TA[I+II], phenanthrene, and 

dibenzothiophene. The dibenzothiophene in STACK West strongly deviates from the aggregate trend 

observed for STACK East and SCOOP and expresses a rate decline exponent approximately half. ......... 99 

Figure 51. Map of oil samples by Play Region and producing reservoir which will serve as preliminary 

guides for determining organic facies. ...................................................................................................... 108 

Figure 52. Typical light hydrocarbon fingerprint of oils from Springer (green), Mississippian (blue), and 

Woodford (red) reservoirs. Peaks for n-C7 (n-heptane), MCH (methylcyclohexane), and Tol (Toluene) are 

highlighted. ............................................................................................................................................... 109 

Figure 53. Ternary diagram showing the percent abundances of n-C7, MCH, Tol as a percentage of the sum 

of the three. STACK West oils are comparably enriched in Tol while SCOOP has two distinct clusters 

separating Springer production from Mississippian/Woodford production based on the relative abundances 

of n-C7 and MCH. ..................................................................................................................................... 115 

Figure 54. Map of aromaticity values across STACK and SCOOP. STACK West oils contain elevated 

aromaticity compared to the other Play Regions with the approximate transition occurring in central Blaine 

and northwest Kingfisher counties. Aromaticity=Tol/(n-C7+MCH) which is modified from B-Aromaticity 

(Thompson, 1983). .................................................................................................................................... 116 

Figure 55. A schematic representation of the light hydrocarbon kinetic model at C7 by the number of carbon 

ring in the intermediate structure. The connecting lines represent two-way reactions controlled by steady 

state catalysis rather than thermolysis. At steady state, the abundance of each grouping is controlled by 

temperature, pressure, and catalyzing agents. Groups “P” indicate parent compounds or are formed by 

file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421942
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421942
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421942
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421943
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421943
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421943
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421943
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421945
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421945
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421945
file:///C:/Users/Carl/Desktop/Dissertation%20Revisisions/Carl's%20thesis%2010.26.docx%23_Toc86421945


 

x 

 

opening three-ring closure. Group “N” are cyclic compounds where the superscript gives the believed 
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Figure 68. Crossplot of DBT/P and Pr/Ph used to determine depositional environments (Hughes et al. 1995). 

A small number of STACK West samples are elevated in DBT/P despite originating from a marine shale.
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Figure 69. Typical bicyclic sesquiterpane (BS) signature for STACK and SCOOP oils by producing 

formation. Peaks BS-1 through BS-8 and structures were identified from literature review (Philp et al., 

1981; Alexander et al., 1983, 1984; Noble et al., 1987; Weston et al., 1989; Oung and Philp, 1994; Wang 
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Figure 70. Ternary diagram of three closely eluting C15 sesquiterpanes include a rearranged drimane (BS-

4), drimane (BS-5), and a third sesquiterpane (BS-6) as a fraction of the sum of the three. STACK East 

samples have higher relative abundances of rearranged drimane BS-4 compared to STACK West. This 

mirrors the higher abundances of rearranged diasteranes (II) also observed in STACK East and could 

indicate a higher abundance of acid clay sites. ......................................................................................... 140 

Figure 71. Individual axes of the ternary diagram shown in Figure 70 and normalized to maturity. Lines of 

best fit are provided as a visual aid to guide interpretation and not meant to suggest a strong relationship 

with maturity. ............................................................................................................................................ 141 

Figure 72. Bicyclic sesquiterpane (BS) signature for six Woodford Shale extracts from STACK. Peaks BS-

1 through BS-8 correspond to the peaks and structures identified in Figure 69. The Woodford Shale in 

STACK West has a higher relative abundance of BS-4 relative to BS-5 and BS-6 compared to the Woodford 
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Figure 73. Identification of the tricyclic and tetracyclic terpane series between C19-C39. Chiral centers at C-

22, C-27, and every five carbons thereafter form S and R couplets in C25TT and higher homologues. 

Pentacyclic terpanes (hopanes) also share a dominant m/z 191 fraction in low maturity oils (Rc<0.9%).
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Figure 74. Abundance of the C19 through C31 tricyclic terpanes for all STACK oils relative to total tricyclic 
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Figure 75. Crossplot of the C22/C21 TT versus C24/C23 TT showing all STACK oils plot in the zone attributed 
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Figure 76. Upper: Example rate decline exponent calculation for the C19 tricyclic terpane (STACK West=-

0.79; STACK East=-2.61). Lower: Combination plot showing rate decline exponents for the tricyclic 

terpane series in STACK Play Regions (lines) as well as the difference in values between STACK East and 
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Figure 77. Two semi-log cross plots showing both enrichment of C24TET in STACK West samples both in 

terms of absolute concentrate (upper) and relative to a nearby eluting tricyclic terpane (lower). ............ 156 

Figure 78. Examples of m/z 191 mass chromatograms from two oils in STACK West and STACK East of 

similar maturity. Peaks for C29 17α(H),21β(H)-30-norhopane (C29H), C30 17α(H),21β(H)-hopane (C30H), 

and the C31 through C35 17α(H),21β(H)-homohopanes (C31H through C35H, respectively) are shown. 

STACK West oils have more C29H and C31-C35H relative to C30H which may indicate a more carbonate-

style or reducing depositional environment. ............................................................................................. 157 

Figure 79. Crossplot of the ratios C29H/C30H versus C31-35H/C30H. Higher values in both ratios have been 

linked to depositional environment. Oils from the STACK West Play Region have higher values indicating 

a restricted marine or carbonate-style conditions when the source rock was deposited. Data in Table 17.
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Figure 80. Map of the ratio of homohopanes (C31-35H/C30H) as expressed in Table 17. The transition 

between low values observed in STACK East and SCOOP mirrors the transition observed in aromaticity 
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Figure 81. Homohopane distributions for each of the three Play Regions from data in Table 17. In general, 

STACK West exhibits a higher abundance of C35/C34 homohopanes indicative of more reducing 

environments. STACK East shows a wide range of values indicative of the previously indicated transition 

zone which appears to occur in northern Kingfisher and central Blaine counties. Some SCOOP samples 

contain anomalous C33 homohopanes abundances.................................................................................... 163 

Figure 82. Example m/z 191 mass chromatograms taken from Woodford Shale core extracts from three 

cores in STACK. The Woodford Shale in STACK West contains higher C24TET/C26TT(S) values than 

STACK East, but also higher values in the Upper Woodford than in the Lower/Middle Woodford. Large 

Ts and C30DH peaks observed in the Woodford core extracts were not observed in any STACK oils, but are 

more pronounced in the Upper Woodford than the Lower/Middle Woodford. ........................................ 165 

Figure 83. Maps showing the values for Mango’s K1 and N2
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Figure 86. Upper: Delineation of two organic facies based on Figure 54, Figure 80, Figure 82, Figure 83, 

and Figure 84. Lower: The transition corresponds with the thinning edge of Osage Platform and clinoformal 

deposition of the Meramec. Isopach from (Price, 2020) ........................................................................... 171 

Figure 87. Box and whisker plots detailing the geochemical parameters for two organic facies identified in 

Figure 85 and organized by Maturity/Isotopes, Redox/Lithology, Light Hydrocarbons, and Biomarkers. The 

West Facies (red) has 58 oil samples primarily in the STACK West Play Region while the East Facies 
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nutrient rich upwelling currents and low input of terrestrial sediments. Light hydrocarbons ratios based on 

kinetic equilibrium show differences in catalytic activity between the source rocks containing the two 

organic facies. The West Facies also contains a different tricyclic terpane fingerprint with lower % extended 

TT and higher amounts of C20TT/C23TT. Finally, the West Facies has higher %C29 sterane and lower C30 

Sterane Index, indicating a more restricted marine and coastal waters with abundant green algae. ........ 173 

Figure 88. Stratigraphic type well log from SCOOP. This study includes oils produced from the Springer 

Group, Mississippian Group, and Woodford Shale denoted in green, blue, and red , respectively. Modified 
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Figure 89. Map of SCOOP oil samples in this dataset by producing formation. The SCOOP dataset includes 

a total of 53 oils from Woodford (26), Mississippian (8), and Springer (19) reservoirs. ......................... 177 

Figure 90. Characteristic whole oil GC fingerprint for the three SCOOP reservoirs. Springer-produced oils 

have a distinct and different character than Woodford- and Mississippian-produced oils at the same level 
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Figure 91. The heptane ratio versus maturity forms separate trends for Woodford/Mississippian- and 

Springer-produced oils. Samples in map view and colored by heptane ratio values. Heptane ratio=100*n-
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Abstract 

This project documents a large dataset of 172 produced oils and 59 core plugs from the 

across thirteen counties of the STACK and SCOOP petroleum systems with respect to their 

maturity, composition, distribution, source rocks, and producibility. Studied intervals include the 

Woodford Shale, the Mississippian Group, and the Springer Group of the Anadarko Basin, 

Oklahoma.  

A principal component analysis (PCA) thermal maturity model was developed from sixteen 

maturity parameter inputs. The methylphenanthrene index was the best measure of thermal 

maturity across all plays and showed a strong covariance with depth with calculated vitrinite 

reflectance equivalent (Rc%) ranged from 0.74-1.43%. With increasing Rc%, the absolute 

concentration of biomarkers in the oils samples were observed to decline exponentially, and the 

rate of exponential decline was related to the biomarker complexity and stability. 

Geochemical variations in produced oils were found to correspond to four organic facies 

which were mapped across STACK and SCOOP. Oils produced from Woodford and Mississippian 

Group reservoirs were generated from three organic facies across the large-scale Woodford 

depositional system ranging from sediment starved restricted marine in the Northwest Extension 

of STACK (STACK West), shallow open marine in the core of STACK (STACK East), and clay-

rich open marine in SCOOP. In contrast, SCOOP oils produced from Springer Group reservoirs 

were generated from a single organic facies deposited in a clay-rich open marine depositional 

environment, probably the Caney or Goddard shales. 
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Three additional novel findings were made regarding the secondary subsurface mechanics 

and processes. First, a narrow zone of deep, volatile oil production in STACK West associated 

with H2S production contained high concentrations of thiophenic sulfur characteristic of 

thermochemical sulfate reduction (TSR) reactions. The same oils also contain high concentrations 

of methyldiamantanes only observed in high maturity condensates suggesting that deep TSR-

affected fluids have migrated updip and mixed with lower maturity oils. Second, two separate 

trends were identified between Rc% and initial producing gas-oil ratios (IP GOR) for 

overpressured and normally pressured wells. Normally pressured wells exhibited IP GOR upwards 

of an order of magnitude higher than overpressured wells at any given Rc%, possibly due to mixing 

with methane sourced from deeper in the basin. Third, residual oil extracted from the Meramec 

and Osage core within the overpressured portion of the basin show that the oil is heterogeneous 

and not well-mixed within a vertical profile. The maturity of the fluid was found to be inversely 

proportional to the amount of extractable organic matter (EOM) per gram of rock, believed to be 

an approximation for porosity in an oil saturated reservoir. This new and exciting finding may 

provide a quick an effective way to predict reservoir quality and gain new insight into its charge 

history.
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I. Introduction 

The Devonian-Mississippian age reservoirs in the STACK/SCOOP resource plays of the 

Anadarko Basin in Oklahoma are a complex succession of very low permeability shale, mixed 

carbonate, and siliciclastic strata. In the last decade, prolific horizontal drilling and unconventional 

completion practices have demonstrated significant heterogeneity in the composition of oils 

produced from STACK/SCOOP reservoirs. This study explores some aspects of this heterogeneity 

and offers geoscientific explanations of these observations. While the analytical methods are well-

documented in the peer reviewed literature, this study aims to characterize the STACK and 

SCOOP petroleum system not from the source rock perspective, but from a detailed geochemical 

analysis of the generated petroleum. This study will also explore new applications to well-

established geochemical workflows to determine how source, maturity, and migration affect the 

composition and producibility of petroleum liquids across the basin. 

The STACK and SCOOP Plays 

In August of 1940, Champlin Oil & Refining successfully drilled the Kunkle #1 to its 

bottom hole depth of 6,939 ft in Sec. 23, T23N, R6W in what would later become the Enid field 

of Garfield County. Although the Missourian-aged Cottage Grove was the primary target at 5,015 

ft, the operator drilled an additional 1,100 ft to explore deeper pay in the Mississippian strata 

below. An initial production test of the Mississippian flowed 25 BO and 2 BW over the following 

24 hours, but the reservoir was considered uneconomic and not pursued. Although the well was 

unsuccessful, the Kunkle #1 would be among the first oils reported in the Meramec-Osage of the 
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Anadarko Basin. Two decades later, more discoveries near the towns of Dover and Hennessey in 

the Meramec-Osage triggered a surge of new drilling between 1960-1965. Development slowed 

when operators realized that most of the oil was produced from fractures which caused high initial 

production rates but rapid declines to uneconomic levels. The numerous Meramec-Osage fracture 

“pools” were eventually connected by later drilling and consolidated into what is now the Sooner 

Trend field—an area nearly 20 miles wide and extending northwest approximately 60 miles. By 

1971, the cumulative production in the Sooner Trend field from Meramec-Osage production alone 

was 47 MMBO oil and 270 BCF of gas. With continued exploration came further understanding 

of its petroleum system elements, and Harris (1975) published an exhaustive review of the 

Meramec-Osage fracture play in the Sooner Trend field. 

Thirty-six years after Harris published his landmark study in the AAPG Bulletin, a 

Newfield Exploration wildcat rig discovered an unconventional prospect in the Meramec 

formation offsetting old conventional production in the Sooner Trend field. The play was publicly 

announced two years later in 2013 and named the Sooner Trend Anadarko Basin, Canadian and 

Kingfisher Counties (STACK). In 2017, Devon completed the Privott 17-1HX, a 2-mile lateral in 

the Meramec offsetting the 1 Privott “8,” drilled by The Rodman Corp in Sec.8, T16N, R9W of 

Kingfisher County. The 1 Privott “8” completion report filed in 1973 (OCC Form 1002A) reported 

“Mississippi Lime, shaly to silty, slightly oil stained” with an initial flow rate of 117 BOEPD (40° 

API gravity). Over its 16-year life, the 1 Privott “8” produced a cumulative 19.6 MBO and 

176MMCFG. Forty-four years after the 1 Privott “8” was drilled, the Privott 17-1HX reported a 

world-class initial flow rate of 6,000 BOEPD and has produced a cumulative 595 MBO and 3.8 

BCFG as of July, 2020 (Eucker and Ashby, 2020). Despite the recent downturn, drilling of the 

STACK has continued with development focused in Kingfisher, Canadian, Garfield, and Blaine 
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counties, but new operators have expanded a drilling corridor to the northwest towards Woodward, 

Dewey, and Major counties. Drilling and completion costs have steadily declined over the life of 

the play. The cost of a one-mile lateral in 2014 was $7MM with a breakeven cost of $76/bbl, and 

a similar well in 2016 cost $5MM with a breakeven cost of $43/bbl (Yee et al., 2017). 

In 2012, Continental Resources announced a separate unconventional Mississippian-aged 

play in Grady and Stephens counties which would later become named the South-Central 

Oklahoma Oil Province (SCOOP) with the core of drilling focused in Carter, Garvin, Grady, and 

Stephens counties. In addition to the Meramec-Osage equivalent targets, drilling in the SCOOP 

also has focused on oily over-pressured sandstones within the Chesterian-aged Springer Group. 

Furthermore, the Mississippian-aged Caney Shale in SCOOP contains up to 9.79 wt.% TOC and 

serves as a substantial secondary source to the Woodford Shale (Cardott, 2017). This study 

differentiates production from three Play Regions based on broad regional changes in geology, 

operational development, and geochemical character: 1) STACK West, 2) STACK East, and 3) 

SCOOP. The counties that represent each of these Play Regions are shown in Figure 1.  

Figure 1. Map of the three Play Regions examined in this study and their producing counties. 
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Tight oil Mississippian reservoirs in STACK and SCOOP can be broadly characterized as 

“pervasive tight,” a subset of tight oil reservoirs characterized by their lateral continuity and 

contact against a major source rock. Pervasive tight oil petroleum systems are distinguished by 

several specific criteria: 1) a close proximity to mature source rocks; 2) low porosity generally 

between 6-9% and permeability between 0.001-0.1 millidarcies (conventional porosity range 10-

25% and permeability 10-1,000 millidarcies); 3) an inverted oil column with no down-dip water 

contact; and 4) near irreducible water saturation (Swirr) due to super-charging and dewatering by 

the nearby over-pressured source rock (Meckel and Thomasson, 2005). This type of tight oil 

reservoir is not charged by the traditional forces of buoyancy but instead from the expulsion forces 

and over-pressuring created by hydrocarbon generation in a nearby source rock. To maintain an 

inverted oil column, capillary action and surface tension must be stronger than the forces of 

buoyancy that drives conventional trapping mechanisms. Other examples of pervasive tight 

unconventional plays include the Austin Chalk (Gulf Coast), Middle Bakken/Three Forks 

(Williston Basin), Spraberry trend (Midland Basin), Altamont field (Uinta Basin), Cardium 

Pembina trend (Alberta Basin), and Chicontepec Field (Mexico) (Meckel and Thomasson, 2005).  

Organic Geochemistry in Hydrocarbon Exploration and Development 

Organic geochemistry has been integrated into the workflows of successful petroleum 

exploration and development programs for almost a century. For clarity, the following overview 

is divided into two subsections to discuss the separate advances made in non-biomarker and 

biomarker analyses. In this study, biomarkers refer specifically to organic compounds in a geologic 

sample that are structurally related to their precursor molecules occurring as a natural product in 

plants, animals, bacteria, fungi, or other living organisms (Philp and Lewis, 1987). Many of the 

analyses described below are incorporated into this work in later chapters. 
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Advances in Non-Biomarker Geochemistry 

The first successful source rock-oil correlation was performed in the Uinta Basin of Utah 

in 1954 by integrating chromatography, infrared spectra, refractive indices, elemental analysis, 

and physical properties to identify four major source rocks and correlate them with liquid 

hydrocarbons in the basin (Hunt et al., 1954). The specific mechanisms of petroleum formation 

remained unknown at the time, but over the next decade it was demonstrated that hydrocarbons 

could not be spontaneously generated from sedimentary organic matter during burial (Forsman 

and Hunt, 1958; Bray and Evans, 1961), but instead must undergo a diagenetic transformation into 

kerogen prior to hydrocarbon generation (Abelson, 1963; McIver, 1967).  

To better understand coal deposits, van Krevelen (1961) developed the van Krevelen 

diagram for rapidly determining the quality of coals by crossplotting the ratios of atomic H/C 

versus O/C as well as mapping maturation processes as the ratios change with coalification. The 

van Krevelen diagram was later expanded from coal research to petroleum exploration by 

cataloging sedimentary systems of different ages and depositional environments resulting in the 

popular distinction of organic matter into types I-IV (Tissot et al., 1974). Despite its success, the 

widespread use of the van Krevelen diagram was challenged because it required isolating organic 

matter and running an assay for hydrogen, carbon, and oxygen, so a more accessible “modified” 

van Krevelen diagram was developed following the development of the Rock-Eval pyrolyzer 

(Espitalié et al., 1977). Within a decade, the “modified” van Krevelen diagram had become a 

standardized best practice in source rock characterization by offering quick and cheap 

measurement of the quantity, quality, maturity, and producibility of sedimentary organic matter. 

Several other breakthroughs in petroleum systems analysis were also occurring in parallel 

at this time. The first efforts to catalog the carbon isotopic composition of crude oils and other 
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source-related sedimentary organic matter was published (Silverman and Epstein, 1958) paving 

the way for landmark work linking carbon isotopes to thermal maturity (Fuex, 1977; Stahl, 1977), 

source-oil correlations (Stahl, 1978), depositional environments (Sofer, 1984), geologic age 

(Andrusevich et al., 1998), and even depositional paleolatitude (Andrusevich et al., 2000). 

Meanwhile, significant advances in capillary column technology opened a new field of study of 

the volatile gasoline range components of crude oil without prior distillation. Presenting at the 6th 

World Petroleum Congress, Martin et al. (1963) demonstrated a striking regularity in the ratios 

between certain isomeric groups of light hydrocarbons from unrelated oils and provided the first 

evidence that the composition of some light hydrocarbons is primarily controlled by 

thermodynamics. Over two decades later, Mango (1987) confirmed Martin’s findings by deriving 

the equation for steady state kinetics between branched isomers of heptane and later showed that 

many heptane isomers are daughter products of n-heptane in steady state (Mango, 1990a). 

Thompson (1979) derived ratios of light hydrocarbons to describe the paraffinicity, aromaticity, 

and paraffin branching of oils and demonstrated their viability for describing both thermal maturity 

and source. Thompson’s work was later expanded to include oil-source rock correlation 

(Thompson, 1983) and reservoir seal leakage (Thompson, 1987 and 1988). Through detailed 

measurements of light hydrocarbon ratios within an alternating organic shale-siltstone sequence, 

Leythaeuser et al. (1982 and 1983) first recognized and quantified the role of diffusion and 

expulsion efficiency during primary migration. His work would later lay the groundwork for 

modeling the diffusion of methane and ethane-rich gas caps through reservoir cap rock seals 

(Krooss and Leythaeuser, 1997). 
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Advances in Biomarker Geochemistry 

The study of biological fossils made its first major impact on the earth sciences in 1936 

when German chemist Alfred Treibs showed the link between chlorophyll-a in living 

photosynthetic organisms and metal-containing porphyrins from numerous crude oils and shales 

(Treibs, 1936). Treibs deduced that the oils were of biologic origin, thus providing the first strong 

evidence for an organic origin of petroleum. Despite Treibs insight, the widespread study of 

biological fossils would not begin until the 1960s after major breakthroughs interfacing gas 

chromatographs and mass spectrometer systems and the development of capillary gas 

chromatography columns. In the 1964, a team led by Geoffrey Eglinton from University of 

Glasgow published a paper in Science describing biological markers, or biomarkers, as classes of 

organic compounds that are stable for long periods of time under geologic conditions (Eglinton et 

al., 1964). In their search for Precambrian life, Eglinton and his team found certain molecular 

families (i.e. alkanes, long-chain fatty acids, and porphyrins) to be promising biomarker candidates 

if it could be demonstrated they were not synthesized by abiogenic means in significant quantities.  

Early paleobiogeochemists continued to find notable biochemical similarities between 

modern and ancient sediments. Although organisms do synthesize unique compounds, different 

organisms may also produce many of the same compounds just in different proportions. This 

discovery paved the way for the new discipline of chemotaxonomic classification of ancient 

organisms (Eglinton and Calvin, 1967). Perhaps taking inspiration from James Hutton’s 

Uniformitarianism (Hutton, 1788), paleobiogeochemists soon began comparing biomarkers in 

modern and ancient sediments to draw inferences about ancient organisms, depositional 

environments, and diagenetic history (Whitehead, 1973; Philp et al., 1976; Brassell et al., 1978).  
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A biomarker can be described as an organic compound in a geological sample that can be 

structurally related to its precursor molecule which occurs as a natural product in a plant, animal, 

bacteria, spore, fungi, or any other potential source material (Philp and Lewis, 1987). Biomarkers 

are distinguished from other organic compounds in several ways. First, biomarker structures are 

often composed of repeating subunits which indicates their precursors were components of a living 

organism; second, biomarker precursors are common in certain organisms which can be abundant 

or widespread; and third, biomarkers are stable during sedimentation and early burial (Peters et al., 

2005a). In hydrocarbon exploration and development, biomarker studies have been successfully 

implemented to correlate oils with each other or suspected source rocks, quantify thermal maturity 

and/or biodegradation, detect regional variations in depositional environment and organic input, 

and derive petroleum generation kinetics in a basin history (Tissot and Welte, 1984; Hunt et al., 

2002; Peters and Fowler, 2002; Peters et al., 2005a; Philp, 2014; Curiale and Curtis, 2016; 

Dembick, 2016).  
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II. Geologic Background 

The Anadarko Basin 

The following section attempts to summarize the history of the Anadarko Basin and relies 

heavily on the works of Huffman (1959), Ham et al. (1964), Ham and Wilson (1967), Rascoe and 

Adler (1983), Johnson et al. (1988), Johnson (1989), and Johnson and Cardott, (1992). 

The Anadarko Basin is strongly asymmetric basin elongated west-northwest with the 

deepest sediments adjacent to the Amarillo-Wichita Uplift to the southwest. The basin is bounded 

to the southwest by the Amarillo-Wichita Uplift, to the southeast by the Arbuckle uplift and 

Marietta-Ardmore Basin, to the east by the Nemaha Ridge, and the north by the Anadarko shelf, 

and the west by the Cimarron Arch (Figure 2). The Anadarko Basin of western Oklahoma is the 

Figure 2. Outline of the Anadarko Basin and its major structural boundaries. The STACK/SCOOP study area is 

highlighted. Modified from Pranter et al. (2016). 
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deepest sedimentary basin in the cratonic interior of North America with as much as 40,000 feet 

of Paleozoic sediments. The history and formation of the Anadarko Basin can be divided into four 

distinct phases, described below.  

The first stage of the development of the Anadarko Basin began during the Precambrian-

aged Midcontinental Rifting when a triple junction rifting event failed during the separation of 

Rodinia and the opening of the Iapetus Ocean. The northwest extending limb of the failed triple 

junction created an isostatic depression of the crust, decompression melting, and formation of a 

large igneous province known as the Southern Oklahoma Aulacogen. The regional depression 

became the Oklahoma Basin and precursor to the modern-day Anadarko Basin (Johnson, 1989). 

The second stage occurred from the Late Cambrian through Mississippian time as the 

newly formed Oklahoma Basin was covered in an epeiric sea which deposited thick sequences of 

sandstone, shale, and carbonates. Two major epeirogenic uplifts and unconformities occurred 

during the Early Devonian and pre-Woodford Late Devonian as the result of regional upwarpings. 

Despite regionally correlative unconformities, the epeirogenic uplifts during the Devonian created 

very little faulting and folding except near the edges of the basin, notably the faulting and uplift of 

the Nemaha Ridge. During the Late Devonian and Early Mississippian, the shallow marine 

environment over the Oklahoma Basin became highly productive with euxinic bottom water 

conditions, depositing of the organic-rich, black Woodford Shale source rock which covers much 

of Oklahoma. By the Osagean series, the euxinic inland sea was replaced by a shallow, well-

oxygenated marine environment warmed by subtropical latitude (Curtis and Champlin, 1959) and 

allowing the formation of a wide carbonate ramp/shelf complex along the northern edge of the 

basin due to low clastic input. Mississippian deposits are mostly fossiliferous (often crinoidal) 

limestones with interbedded shales and carbonate cemented siltstones. As much as 15,000 ft of 
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sediments were deposited into the Oklahoma Basin between the Cambrian and Mississippian time 

(Johnson, 1989). 

The third stage began in the Early Pennsylvanian when dormant extensional faults from 

the failed Precambrian rifting were reactivated in a new compressional system. The Wichita-

Amarillo block was uplifted along a series of west-northwest trending reverse faults up to 40,000 

ft at a steep angle creating a deep asymmetric foreland basin and forming the modern Anadarko 

Basin (McConnell, 1989). Proximal deposits to the Amarillo-Wichita uplift are coarse alluvial 

clastics known as “granite wash,” while the rest of the basin was filled with mostly marine shales, 

sandstones, and limestones. The syndepositional wedge of sediment thickens southwards towards 

the modern-day Wichita Mountains and accounts for as much as 18,000 ft of Pennsylvanian 

sediment in the foredeep. Despite major tectonic activity, no major igneous or metamorphic 

activity occurred in or near the Anadarko Basin during this stage. Beginning in the Desmoinesian, 

the Anadarko Basin experienced three other orogenic events which affected regional stresses and 

sedimentation, including the Apishapa Uplift in southeastern Colorado, the Arbuckle Uplift in 

south-central Oklahoma, and the Ouachita Uplift in southeastern Oklahoma (Johnson, 1989).  

The fourth and final stage began in the Permian when the major tectonism of the 

Pennsylvanian was replaced with epeirogenic subsidence and basin filling. The sediments of this 

period are characterized by Permian carbonates, red beds, evaporites, and thin post-Permian strata. 

Through Permian to the Jurassic, the Wichita-Amarillo block had ceased uplift and began to 

subside and become buried under its own clastic debris losing upwards of 7,000 ft in relief. 

Subsidence in the Anadarko Basin continued until the Cretaceous when the Farallon Plate began 

subducting under the North American Craton creating a major east-west compressional regime 

resulting in the Sevier and Laramide orogenies and the formation of the North American 
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Cordillera. The Laramide Orogeny uplifted the entire Anadarko Basin as well as tilting it east-

southeast and causing the Cretaceous Inland Seaway to retreat from the basin (Johnson, 1989). A 

structural cross section of the Anadarko Basin is shown in Figure 3.  

STACK and SCOOP Petroleum Systems 

The Devonian-Mississippian STACK/SCOOP plays have the components in place for a 

prolific petroleum system, including porous facies and natural fractures, stratigraphic proximity to 

a mature and world class source rock, low water saturations, a competent and regionally extensive 

top seal, varying degrees of over-pressure, and a range of fluids spanning the entire oil and gas 

maturity window. The most common drilling targets include the Early Mississippian limestones 

and siltstones and Chesterian-age Springer Group sandstones (SCOOP only) but can also include 

the Woodford Shale source itself. Porous reservoir facies in the Mississippian generally have 5-

10% porosity and approximately 40% water saturation of entirely bound water (Jefferies, 2016). 

Most drilling operations target the volatile oil window where reservoirs are solution gas drive, 

below bubble point pressure, and where produced oil averages 40-50° API. Conventional field 

analysis of the Sooner Trend suggests that oil was emplaced before the deposition of the Cherokee 

Figure 3. Cross section of the Anadarko Basin from southwest to northeast. From Johnson (2008). 
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Group on the pre-Pennsylvanian regional unconformity (Harris, 1975). The Devonian-aged 

Woodford Shale is believed to be the lower seal as well as the primary hydrocarbon source for 

Mississippian-aged reservoirs in the Anadarko Basin (Engel et al., 1988; Burruss and Hatch, 1989; 

Wavrek, 1992; Rahman et al., 2017; Symcox and Philp, 2019a). The Chesterian-aged Springer 

Group shales are believed to act as an upper seal in STACK East and SCOOP, however there is 

significant thinning of the sealing shales towards STACK West due to post-Chesterian subaerial 

exposure and erosion (Harris, 1975). In fact, the truncated erosional edge of the Springer Group 

coincides with the updip limit of conventional fractured Meramec-Osage production in the Sooner 

Trend field beyond which water production increases significantly. A generalized stratigraphic 

column for the STACK and SCOOP play regions discussed in this study is provided in Figure 4. 

Figure 4. Generalized stratigraphic column with major source rocks and reservoirs are shown in red and green, 

respectively. Height of formation boxes is not related to thickness of unit. Constructed based on the works of Harris 

(1975), Johnson (1989), Johnson and Cardott (1992), Henry and Hester (1995), Higley (2013), and Cardott (2017). 
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The Late Devonian/Early Mississippian Woodford Shale is unquestionably the most 

prolific and well-studied oil and gas source rock in Oklahoma (e.g. Burruss and Hatch, 1989; 

Higley et al., 2014). The Woodford Shale occurs in Oklahoma, Texas, Arkansas, and New Mexico 

and is laterally equivalent to several other North American black shales including the Chattanooga, 

New Albany, Bakken, Antrim, and Ohio shales as shown in Figure 5 (Conant and Swanson, 1961; 

Ettensohn and Barron, 1981). The unconformable base of the Woodford Shale marks the bottom 

of the Kaskaskia sequence in the Midcontinent (Sloss, 1963). The Woodford is primarily a dark-

grey to black fissile shale that also contains chert, siliceous and dolomitic mudstone, and siliceous 

shale (Portilla, 2017). Anaerobic sea floor conditions during Woodford deposition prohibited most 

benthic life but in turn facilitated excellent preservation of pelagic organic matter, commonly 

observed between 1-14% TOC by weight of primarily Type II kerogen (Burruss and Hatch, 1989; 

Figure 5. Approximate regional distribution of Upper Devonian and Lower Mississippian black shales in the United 

States, shown in blue. From Conant and Swanson (1961). 
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Cardott, 2012). The Woodford is present throughout most of the Oklahoma Basin (precursor to the 

modern Anadarko Basin) and ranges from 200-900 ft thick in the Southern Oklahoma Aulacogen 

but is 50-100 ft thick on the shelf areas which comprise the STACK and SCOOP (Johnson et al., 

1988; Johnson and Cardott, 1992; Higley et al., 2014). 

Excluding the basal Misener Sandstone, the Woodford Shale is divided into Upper, Middle, 

and Lower members based on well-log signatures, palynomorphs, geochemical proxies, and 

lithofacies associations (Sullivan, 1985; Hester et al., 1990; Lambert, 1993; Miceli Romero and 

Philp, 2012). Three maps provided in Figure 6 show a total Woodford isopach as well as the 

regional extent and thickness of its Upper, Middle, Lower, members across STACK. A period of 

regional subaerial exposure and erosion prior to the deposition of the Woodford resulted in the 

incision of stream channels in the underlying Hunton Group which were first flooded during the 

marine transgression advancing onto the craton from the south (Bunker et al., 1988; Zhang and 

Slatt, 2019). As a result, the thickness of the Lower Woodford is often inversely proportional to 

the thickness of the Hunton as eroded valleys and karsts provide isolated paleo-lows that provide 

accommodation space for thicker accumulations (Torres-Parada, 2020). The Woodford Shale thins 

considerably towards STACK West, especially the Upper and Lower members, due to reduced 

accommodation space approaching the basin margin. The pyritic Middle Woodford generally has 

the highest gamma ray and total organic carbon (TOC) values, likely the result of the Late 

Devonian oceanic anoxic event (OAE) which coincided with maximum flooding event, as is 

evident in map view of Figure 6 (Lambert, 1993). The Upper Woodford member contains cherty 

beds interbedded with fissile shale beds which contain abundant clays and carbonate minerals 

(Portilla, 2017), as well as numerous phosphate nodules indicative of deep marine conditions close 

to the oxygen minimum zone (Miceli Romero and Philp, 2012).
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Figure 6. Thickness of the three Woodford Shale members as well as total Woodford isopach based on well logs; contour interval 25 ft. Areas where Woodford 

Shale is absent is hachured. Dots show well locations. The syndepositional structural axis is depicted as bold arrow. The Woodford Shale thins substantially towards 

STACK West, and the Upper and Lower members are absent in some cases. Modified from Hester et al. (1990). 
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The Mississippian system is a series of shallow-marine limestones, cherty limestones, silty 

mudrocks, and carbonate cemented siltstones deposited in shallow, well-oxygenated marine 

waters. During the Osagean, a widespread carbonate and sponge bank formed and began to aggrade 

along the shallow marine rim of the basin depositing predominantly bioturbated siltstones, 

bioturbated wackestones, grainstones, and spicular chert (Figure 7). The Osagean section is not 

typically a drilling target due to low intergranular porosity and abundant cherts which can damage 

drilling equipment, however the Osagean limestones likely contributed to the overlying reservoirs 

by providing migration pathways from the underlying Woodford through a fractured carbonate 

network (Bynum and Wethington, 2020). Drilling in the Osage is most common in STACK West 

where thicker accumulations of carbonate are deposited, however there is some production along 

the northeastern margins of STACK East. To the south in SCOOP, the Osage-equivalent Sycamore 

Limestone is primarily silty peloidal packstones to peloidal siltstones and shale and is believed to 

Figure 7. Histogram of Osage facies in STACK measured from cores of four complete Mississippian intervals located 

in Blaine, Kingfisher, and Canadian counties. At least 37% of the Osage has been bioturbated by benthic organisms 

suggesting well-oxygenated bottom waters. From Bynum and Wethington (2020). 



 

18 

 

 

represent deposits of transported terrigenous clastic rocks and reworked carbonate material, 

possibly as a result of strong marine storms (Cole, 1989). 

Depositional facies changed dramatically during the Meramecian in response to the onset 

of the Acadian Orogeny along the eastern edge of Laurentia. The Meramec represents a transition 

period between the carbonate-dominated Osage section and siliciclastic-dominated Chester section 

and contains the most facies variability in the Mississippian System (Figure 8). The Meramec Fm. 

represents a period of progradation of the carbonate shelf in response to the first observable influx 

of siliciclastic mixing (Bynum and Wethington, 2020). The significant increase in siltstone facies 

and decrease in chert makes the Meramec a superior drilling target with higher intergranular 

porosity and lower drilling hazards. The Meramec parasequences comprise a stacked lenticular 

geometry associated with a progradational system ranging from 0 to 600 ft with an average 

thickness of 360 ft. over the play interval and thickening toward the basin-depocenter to the 

Figure 8. Histogram of Meramec facies in STACK. There is a notable increase in siltstone facies concurrent with a 

decrease in chert facies making the Meramec a preferred drilling target. From Bynum and Wethington (2020). 
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southwest, shown in Figure 9 (Price, 2020). The Meramec thins considerably towards SCOOP 

where it is comprised of the fine-grained distal toe deposits of the STACK progradational system. 

 After the carbonate-siliciclastic transitional period observed in the Meramecian, the 

Chesterian represents the transition to a siliciclastic-dominated system that choked out the 

carbonate biocommunities living along the shelf margins. In STACK, Chester facies are dominated 

by laminated siltstones, bioturbated siltstones, and calcareous sandstones while containing less 

than half the volume of carbonate facies observed in the underlying Meramec and Osage sections 

Figure 9. Isopach of the Meramec Fm. in STACK with subsea structure depths. From Price et al. (2020). 
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(Figure 10). The increase in siliciclastic facies and lower facies variability likely contribute to 

higher reservoir quality (Bynum and Wethington, 2020); however, the Chester is rarely targeted 

for drilling because of the risk of lower pressure and oil saturation due to its stratigraphic distance 

from the Woodford source. Further exploration of the Chester may prove successful south towards 

the SCOOP areas but at the expense of increased shale content deposited in deeper water.  

Chesterian-aged Caney Shale found in SCOOP represents the deep-water organic-rich 

facies deposited distal to the dominant sedimentary inputs to the north. The Caney Shale is a series 

of mudrocks, limestones, and siltstones, as well as bituminous shales containing between 1-9% 

TOC of dominantly Type II kerogen (Cardott, 2017) and age equivalent to the Barnett Shale of 

Texas and the Fayetteville Shale of Arkansas. The Caney interval shows strong development of 

organic-rich mudrocks towards the south into the Ardmore basin (Miller and Cullen, 2018), but 

Figure 10. Histogram of Chester facies in STACK. Note the substantial increase in siliciclastic relative to carbonate 

facies as well as the absence of spicular chert facies. From Bynum and Wethington (2020). 
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due to high levels of clay and more ductile framework, commercial production from the Caney in 

the Anadarko is challenged.  

The Mississippian system over STACK and SCOOP illustrates the transition from a 

carbonate-dominated shelf system to a siliciclastic-dominated system. The facies stacking patterns 

in conjunction with depositional geometries have facilitated stratigraphers in developing a robust 

depositional model for the Mississippian in the Anadarko Basin (Figure 11). A well-log gamma-

ray cross section (Figure 12) shows the silty Meramec clinoforms which form a progradational 

wedge over the top of the Osage shelf. After the Meramec was deposited, the oceans transgressed 

depositing the siliciclastic Chester across the top of the entire system.

Figure 11. Block diagram depositional model for the Mississippian Group showing the transition from a carbonate-

dominated system to a siliciclastic-dominated system. The carbonate system ranges from grainstone dominated inner-

ramp deposits to calcareous siltstone dominated outer- ramp deposits. The siliciclastic system ranges from arkosic 

sandstone dominated upper shoreface deposits to siltstone dominated offshore deposits. FWWB=fair weather wave 

base; SWB=storm wave base. From Bynum and Wethington (2020). 
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Figure 12. A gamma-ray cross section of STACK East along depositional trend and flattened on the Woodford Shale. The Meramec clinoform sets A-I can be seen 

prograding over the top of the Osage Fm and capped by the shaley Chester Fm. Gamma-ray scale 0-100 API. FSST=Falling Stage Systems Tract; LST=Lowstand 

Systems Tract; TST=Transgressive Systems Tract; HST=Highstand Systems Tract; SB=Sequence Boundary. Modified from Price et al. (2020)
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III. Dataset and Methods 

This study is based on a combined dataset of oils and core extracts from the Hunton 

Limestone, Woodford Shale, Mississippian Group, and Springer Group from 13 counties across 

the Anadarko Basin. Samples were separated into three geographically distinct Play Regions: 

1) STACK West, 2) STACK East, and 3) SCOOP.  

Oil Samples 

Oils from 172 producing oil wells were collected from the separators of producing 

wellheads in 250mL or 500mL amber glass bottles with Teflon lids and immediately transferred 

to a refrigerated space for preservation of volatile components. For each oil, the well identification, 

wellhead location, producing formation, and total vertical depth (TVD) is summarized in Table 1, 

and wellhead locations are mapped by Play Region in Figure 13. All oil samples are mapped in 

Figure 14 accompanied by a north-south cross section spanning from STACK to SCOOP. 

Whole Oil GC Analysis 

Whole oil samples were analyzed by gas chromatography (GC) by using an Agilent 

Technologies 6890 gas chromatograph equipped with a split/splitless injector, a J&W Scientific 

DB-Petro 122-10A6 fused silica capillary column (100m length, 0.25mm inner diameter, and 

0.50µm film thickness), helium as the carrier gas, and a flame ionization detector. Approximately 

0.1µL of whole oil was injected using split injector mode and a carrier gas flow rate of 1.4mL/min. 

The GC program initialized at 40°C and was held for 1.5 minutes, increased by 2°C/min until 

130°C, and increased by 4°C/min until a final temperature of 300°C and held for 26 minutes.  
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Figure 13. Wellhead locations of the 172 study oil samples by producing formation and organized into separate panels 

corresponding to the STACK West, STACK East, and SCOOP Play Regions. Sample labels correspond to the sample 

key in Table 1. The square grid corresponds to township lines which are 6 miles on a side.  
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Key API Number Well Name Latitude Longitude County Play Region TVD Producing Formation 

1 3515124530 Rich 4-32H 36.5054 -98.6082 Woods STACK West 7,130 Mississippian 

2 3515124512 Burson 1-33H 36.5055 -98.5897 Woods STACK West 6,791 Mississippian 

3 3515124062 Shawna 3-34HL 36.5072 -98.5715 Woods STACK West 7,179 Mississippian 

4 3515124064 Dietz 4-3H 36.5072 -98.5716 Woods STACK West 6,917 Mississippian 

5 3515124523 Reihm 3-9H 36.4928 -98.6030 Woods STACK West 6,980 Mississippian 

6 3509325107 Newton 1-31H 36.4358 -98.5327 Major STACK West 7,132 Mississippian 

7 3509325158 Cornelson 2-3H 36.4056 -98.4788 Major STACK West 6,934 Mississippian 

8 3509324990 Regier 6-2HL 36.4061 -98.4610 Major STACK West 7,444 Mississippian 

9 3509324996 Phillips 3-27H 36.3626 -98.6821 Major STACK West 7,690 Mississippian 

10 3509324995 Phillips 4-27HL 36.3626 -98.6820 Major STACK West 8,068 Mississippian 

11 3509325130 Byfield 1-31H 36.3487 -98.6243 Major STACK West 7,563 Mississippian 

12 3509325139 Sutter 3-30H 36.3467 -98.6243 Major STACK West 7,443 Mississippian 

13 3509325069 Jordan 1-3H 36.3339 -98.6779 Major STACK West 7,887 Mississippian 

14 3509325114 Sunderman 1-7H 36.3196 -98.6258 Major STACK West 7,792 Mississippian 

15 3509325022 ABCDS 1H-6 36.3192 -98.5164 Major STACK West 7,412 Mississippian 

16 3509325121 Nickel 1-26H 36.3625 -98.4595 Major STACK West 7,172 Mississippian 

17 3515323569 Shaw Trust 30-22-19 1H 36.3477 -99.2676 Woodward STACK West 9,068 Mississippian 

18 3515323578 Story 23-21-20 1H 36.2764 -99.3111 Woodward STACK West 11,096 Mississippian 

19 3515323571 Young 6-20-18 1H 36.2319 -99.1617 Woodward STACK West 10,024 Mississippian 

20 3515323572 White 8-20-19 1H 36.2176 -99.2473 Woodward STACK West 11,173 Mississippian 

21 3515323574 Randall 15-20-20 1H 36.2024 -99.3229 Woodward STACK West 11,729 Mississippian 

22 3515323582 Linda 19-20-19 1H 36.1889 -99.2729 Woodward STACK West 11,799 Mississippian 

23 3504323457 Salisbury 27-19-20 1H 36.0869 -99.3266 Dewey STACK West 13,107 Mississippian 

24 3504323470 Mcalary 25-19-20 1H 36.0861 -99.2856 Dewey STACK West 13,047 Mississippian 

25 3504323452 Seidel 5-19-18 1H 36.1435 -99.1432 Dewey STACK West 11,303 Mississippian 

26 3515323573 Cara 28-20-18 1H 36.1740 -99.1227 Woodward STACK West 10,909 Mississippian 

27 3515323586 Breckenridge 27-20N-17W 1H 36.1739 -98.9994 Woodward STACK West 9,687 Mississippian 

28 3509325015 Ward 21-1H 36.2015 -98.7996 Major STACK West 9,171 Mississippian 

29 3509325035 Walters 13-1H 36.2029 -98.7487 Major STACK West 8,883 Mississippian 

30 3504323426 Branstetter 2-19-18 1H 36.1435 -99.0908 Dewey STACK West 11,344 Mississippian 

31 3504323431 Howard 5-19-17 1H 36.1433 -99.0328 Dewey STACK West 11,440 Mississippian 

32 3504323477 Russell 17-19-17 1H 36.1142 -99.0365 Dewey STACK West 10,743 Mississippian 

33 3504323480 Krows 19-19-17 1H 36.0998 -99.0506 Dewey STACK West 11,583 Mississippian 

34 3504323489 Merle 32-19-17 1H 36.0874 -99.0393 Dewey STACK West 11,162 Mississippian 

35 3504323437 Carter 29-19-17 1H 36.0855 -99.0319 Dewey STACK West 11,609 Mississippian 

36 3504323459 Drinnon 32-18-17 1H 35.9861 -99.0306 Dewey STACK West 12,693 Mississippian 

37 3504323441 Irving 19-19-16 1H 36.1015 -98.9452 Dewey STACK West 11,311 Mississippian 

38 3504323405 Dennis 28-19-16 1H 36.0852 -98.9074 Dewey STACK West 11,229 Mississippian 

39 3504323406 Wilson 35-19-16 1H 36.0858 -98.8807 Dewey STACK West 11,353 Mississippian 

40 3504323413 Bozarth 33-19-16 1H 36.0727 -98.9079 Dewey STACK West 10,655 Mississippian 

41 3504323447 Randy 9-18-16 1H 36.0583 -98.9207 Dewey STACK West 11,693 Mississippian 

42 3504323432 Seifried Trust 4-18-16 1H 36.0584 -98.9092 Dewey STACK West 11,435 Mississippian 

43 3504323464 Sportsman 3-18-16 1H 36.0583 -98.8954 Dewey STACK West 11,065 Mississippian 

44 3504323157 Wion 1-29H 35.9994 -98.8222 Dewey STACK West 11,487 Woodford 

45 3503922510 Yoder 1-13-12XH 35.6897 -98.7548 Custer STACK West 14,085 Mississippian 

46 3501123458 Crystal 1-28H 35.9140 -98.5912 Blaine STACK West 11,227 Woodford 

47 3501123747 Tres C FIU 1-35-2XH 35.7390 -98.5446 Blaine STACK East 12,523 Mississippian 

48 3501123570 Angus Trust 1-4-33XH 35.7122 -98.4758 Blaine STACK East 12,208 Mississippian 

49 3501123784 Holstein 2-27H 35.7407 -98.4562 Blaine STACK East 12,298 Mississippian 

50 3501123431 Boeckman 1-13H 36.0288 -98.4276 Canadian STACK East 8,968 Mississippian 

51 3501123467 Shortys Place 1-2XH 35.7983 -98.3354 Blaine STACK East 11,605 Woodford 

52 3501123669 Mowery 1-36H 35.7389 -98.3271 Blaine STACK East 11,439 Mississippian 

53 3501123551 Three Sisters 31 1H 35.8975 -98.3159 Blaine STACK East 10,045 Mississippian 

54 3501123528 Blurton 1-7-6XH 35.8707 -98.3075 Blaine STACK East 9,892 Mississippian 

55 3501123564 Olive June 1-27XH 35.9265 -98.2621 Blaine STACK East 9,112 Mississippian 

56 3501123459 York 1-2H 35.7984 -98.2345 Blaine STACK East 10,573 Woodford 

57 3501123547 Sonoyta 2623 3AH 35.9124 -98.2333 Blaine STACK East 9,135 Mississippian 

58 3501123568 Lloyd 1-25XH 35.9205 -98.2271 Blaine STACK East 9,267 Mississippian 

59 3507325117 Winters 1H-6X 35.9572 -98.2086 Kingfisher STACK East 8,652 Mississippian 
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Key API Number Well Name Latitude Longitude County Play Region TVD Producing Formation 

60 3507324806 Edra 1H 35.7692 -98.2058 Kingfisher STACK East 10,677 Woodford 

61 3507325922 Biggio 1909 7-1LOH 36.1299 -98.2009 Kingfisher STACK East 8,207 Mississippian 

62 3507325139 Born Free 30 2AH 35.8273 -98.1990 Kingfisher STACK East 9,489 Mississippian 

63 3507325141 Born Free 30 2H 35.8273 -98.1990 Kingfisher STACK East 9,642 Mississippian 

64 3507326156 Luke 1909 21-1LOH 36.1019 -98.1643 Kingfisher STACK East 8,213 Mississippian 

65 3507324923 Murray 1-33H 35.8130 -98.1567 Kingfisher STACK East 9,343 Mississippian 

66 3507325509 Pedlik 10-1H 36.1305 -98.1540 Kingfisher STACK East 8,120 Mississippian 

67 3507325121 Showboat 1003 1AH 35.8710 -98.1522 Kingfisher STACK East 8,787 Mississippian 

68 3507324989 The River 1-22H 36.1018 -98.1494 Kingfisher STACK East 7,783 Hunton 

69 3507325221 Pope 1H-26X 35.9862 -98.1381 Kingfisher STACK East 8,297 Mississippian 

70 3507325071 Alan 1H-13X 35.8420 -98.1159 Kingfisher STACK East 8,813 Mississippian 

71 3501724271 Lingo 1-13H 35.5070 -98.1040 Canadian STACK East 11,932 Woodford 

72 3504725112 Gary Hajek 2008 180LOH 36.2017 -98.1012 Garfield STACK East 7,814 Mississippian 

73 3501724302 Dougherty Bros 1-18H 35.6957 -98.0994 Canadian STACK East 10,785 Woodford 

74 3507324854 Yost 1H-18X 35.8404 -98.0982 Kingfisher STACK East 9,915 Mississippian 

75 3507325363 Geis 31-1H 35.9847 -98.0974 Kingfisher STACK East 8,282 Mississippian 

76 3507325784 Dr J 1808 7-1UOH 36.0584 -98.0953 Kingfisher STACK East 8,307 Mississippian 

77 3507325541 Richard 1H-32 35.7405 -98.0822 Kingfisher STACK East 9,626 Mississippian 

78 3501724659 Rother 1H-5X 35.6972 -98.0813 Canadian STACK East 10,842 Mississippian 

79 3507325219 Mike 1H-17X 35.9270 -98.0686 Kingfisher STACK East 8,275 Mississippian 

80 3507325513 Bennie Racer 14 1H 36.1170 -98.0180 Kingfisher STACK East 7,897 Mississippian 

81 3507325119 James 1H-2X 35.7839 -98.0137 Kingfisher STACK East 8,540 Mississippian 

82 3501724889 Simba 12-14N-8W 1H 35.6974 -98.0117 Canadian STACK East 9,217 Mississippian 

83 3507324895 Mueggenborg 1H-25X 35.8969 -97.9974 Kingfisher STACK East 8,161 Mississippian 

84 3501724901 Wehmuller 1307 2-19MH 35.5807 -97.9910 Canadian STACK East 9,960 Mississippian 

85 3507325270 Russell 1H-17X 35.9270 -97.9781 Kingfisher STACK East 7,984 Mississippian 

86 3507325196 Cow's Face 0805 1H 35.8120 -97.9756 Kingfisher STACK East 8,402 Mississippian 

87 3507325453 Best 20-1H 36.0135 -97.9710 Kingfisher STACK East 7,552 Mississippian 

88 3507325013 Laura 1H-17X 35.7556 -97.9658 Kingfisher STACK East 8,857 Woodford 

89 3507325480 Jolee 1H-5 35.8990 -97.9577 Kingfisher STACK East 7,945 Mississippian 

90 3504725097 Pribil 2007 27 21-1H 36.2023 -97.9516 Garfield STACK East 7,630 Mississippian 

91 3507325322 Firestone 1-16MH 35.8593 -97.9466 Kingfisher STACK East 7,862 Mississippian 

92 3507325034 Ralph 1H-15X 35.7557 -97.9397 Kingfisher STACK East 7,970 Mississippian 

93 3507325950 Cakes 1907 22-1LOH 36.1028 -97.9391 Kingfisher STACK East 7,500 Mississippian 

94 3501724671 Bohlman 1H-34X 35.6247 -97.9273 Canadian STACK East 9,291 Mississippian 

95 3501724793 Whistle Pig 10 3H 35.6101 -97.9243 Canadian STACK East 9,033 Mississippian 

96 3501724921 HRDY 1-11MH 35.6235 -97.9152 Canadian STACK East 8,991 Mississippian 

97 3501724916 Scott 1H-23 35.6813 -97.9066 Canadian STACK East 8,848 Woodford 

98 3501725190 Okarche 1407 6H-12X 35.7118 -97.9036 Canadian STACK East 8,334 Mississippian 

99 3501724564 Okarche 1H-12X 35.6813 -97.8895 Canadian STACK East 8,586 Woodford 

100 3507325266 Shimanek 1906 2-6MH 36.1592 -97.8875 Kingfisher STACK East 7,452 Mississippian 

101 3507325728 Towne 1806 1-31MH 35.9852 -97.8765 Kingfisher STACK East 7,601 Mississippian 

102 3507325243 Post 1706 1-30MH 35.9133 -97.8741 Kingfisher STACK East 7,325 Mississippian 

103 3507325124 McCarthy 1H-30X 35.7279 -97.8705 Kingfisher STACK East 8,258 Woodford 

104 3501724906 Wittrock 1406 1-30MH 35.6671 -97.8699 Canadian STACK East 8,484 Mississippian 

105 3507325170 Eve 1506 1-20MH 35.7691 -97.8535 Kingfisher STACK East 7,887 Mississippian 

106 3507325197 Alphons 1H-29X 35.7558 -97.8500 Kingfisher STACK East 8,861 Mississippian 

107 3501724834 Meyer 1406 2-4MH 35.7117 -97.8442 Canadian STACK East 7,965 Mississippian 

108 3501724768 Anderson 1206 1-33WH 35.4639 -97.8437 Canadian STACK East 9,249 Woodford 

109 3501724678 Wilds 1206 1-4H 35.5505 -97.8379 Canadian STACK East 9,017 Woodford 

110 3501724708 Meyer 1106 1-21WH 35.4201 -97.8362 Canadian STACK East 9,532 Woodford 

111 3501724836 VOGT 1H-9X 35.6831 -97.8357 Canadian STACK East 8,392 Woodford 

112 3507325441 Peat 1606 1-26MH 35.8425 -97.8067 Kingfisher STACK East 7,533 Mississippian 

113 3507325608 Meritt 12-1H 36.0440 -97.7972 Kingfisher STACK East 7,292 Mississippian 

114 3507325707 Jacob 1605 1-8MH 35.8713 -97.7581 Kingfisher STACK East 7,162 Mississippian 

115 3507325566 Buttercup 1905 1-5MH 36.1454 -97.7550 Kingfisher STACK East 6,714 Mississippian 

116 3507325148 Power 1705 2-16MH 35.9566 -97.7328 Kingfisher STACK East 7,048 Mississippian 

117 3507325316 Edwin 1805 4-22MH 36.0154 -97.7248 Kingfisher STACK East 6,779 Mississippian 

118 3507325252 Cronkite 1505 4-14MH 35.7832 -97.7003 Kingfisher STACK East 7,004 Mississippian 
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Key API Number Well Name Latitude Longitude County Play Region TVD Producing Formation 

119 3507325299 Garrett 1605 6A-36MH 35.8270 -97.6794 Kingfisher STACK East 6,921 Mississippian 

120 3508722065 Curry 21X 1VH 35.1472 -97.6320 McClain SCOOP 10,105 Woodford 

121 3505123703 Meadors 1-28H 35.1318 -97.9562 Grady SCOOP 14,171 Woodford 

122 3505124235 Kashmir 2-13WH 35.0735 -97.8904 Grady SCOOP 14,504 Woodford 

123 3505124236 Kashmir 1-13H 35.0735 -97.8902 Grady SCOOP 14,150 Mississippian 

124 3505124059 Strassle 1-28-33XH 35.0603 -97.7378 Grady SCOOP 11,387 Springer 

125 3505123947 Sawyer 1-23H 35.0585 -97.8080 Grady SCOOP 11,901 Springer 

126 3508722043 Allen 1H-29X 35.0577 -97.6542 McClain SCOOP 10,950 Woodford 

127 3508722045 McCorn 1H-18X 35.0577 -97.6541 McClain SCOOP 10,555 Woodford 

128 3505124226 Lillian 1-23-14XH 35.0574 -97.6957 Grady SCOOP 10,844 Woodford 

129 3505124076 Romanoff 1-25-24-13XH 35.0451 -97.6816 Grady SCOOP 10,762 Woodford 

130 3505123782 Ratliff 1H-22X 35.0432 -97.7194 Grady SCOOP 11,363 Woodford 

131 3505124152 Bridwell 1H-22X 35.0432 -97.7193 Grady SCOOP 11,591 Mississippian 

132 3504925028 Omer 1-17H 35.0430 -97.8284 Grady SCOOP 12,989 Springer 

133 3505123741 Triple Rimer 1-35-26XH 35.0303 -97.6936 Grady SCOOP 11,179 Woodford 

134 3505123937 Chester 1-32H 35.0288 -97.8492 Grady SCOOP 12,939 Springer 

135 3508722060 Wendling 1H-30XR 35.0260 -97.6627 McClain SCOOP 10,671 Mississippian 

136 3508722032 Harmon 1H-31XR 35.0160 -97.6695 McClain SCOOP 10,922 Woodford 

137 3508721847 Hayhurst 1H 35.0155 -97.6376 McClain SCOOP 10,881 Woodford 

138 3505123912 Shaw 1-12H 35.0010 -97.6813 Grady SCOOP 11,421 Woodford 

139 3505123902 May 7-21-16XH 34.9794 -97.7248 Grady SCOOP 12,317 Woodford 

140 3505123929 May 6-21-16XN 34.9778 -97.7299 Grady SCOOP 12,303 Woodford 

141 3505123931 Cooley 1-24H 34.9708 -97.6768 Grady SCOOP 11,698 Woodford 

142 3505123869 McBryde 1-26-23XH 34.9573 -97.6902 Grady SCOOP 11,777 Woodford 

143 3505123737 Bridwell 1-25H 34.9573 -97.6766 Grady SCOOP 11,706 Woodford 

144 3508722098 Tecate 1-34-3WXH 34.9565 -97.6172 McClain SCOOP 11,004 Woodford 

145 3508722073 Indultado 1-28-21-MXH 34.9565 -97.6345 McClain SCOOP 11,104 Mississippian 

146 3505124221 Dogfish 1-31-30MXHR 34.9437 -97.6715 Grady SCOOP 11,522 Mississippian 

147 3505124185 Dogfish 1-31-30MXH 34.9436 -97.6715 Grady SCOOP 11,755 Mississippian 

148 3505123780 Copeland 1-36H 34.9430 -97.6854 Grady SCOOP 12,112 Woodford 

149 3508722070 Maximus 1-19-18WXH 34.8835 -97.6628 McClain SCOOP 9,642 Woodford 

150 3505124073 Lynda 26-23-1XH 34.8701 -97.8045 Grady SCOOP 14,766 Mississippian 

151 3505123772 Leda Spark 1-33H 34.8561 -97.7285 Grady SCOOP 12,832 Woodford 

152 3504925065 Lori Ann 1-6-7XH 34.8543 -97.6570 Garvin SCOOP 11,100 Woodford 

153 3505124096 Cuadrilla 1-3-10 WXH 34.8538 -97.7041 Grady SCOOP 12,053 Woodford 

154 3504925102 Castle 1-8SH 34.8276 -97.6715 Garvin SCOOP 9,812 Mississippian 

155 3504925103 Muleta 1-16GH 34.8276 -97.6341 Garvin SCOOP 9,460 Springer 

156 3505123934 Prince 1-17X8H 34.8112 -97.7531 Grady SCOOP 12,753 Springer 

157 3505122860 Nix 1-20 34.8080 -97.8484 Grady SCOOP 13,412 Springer 

158 3505123131 Williamson 1-20 34.8076 -97.8568 Grady SCOOP 14,125 Springer 

159 3504925058 Wertz Trust 1-26-23XH 34.7834 -97.5817 Garvin SCOOP 9,920 Woodford 

160 3505123894 Auld 1H-3 34.7548 -97.7179 Grady SCOOP 13,284 Springer 

161 3505123808 Nancy J 1-28H 34.7257 -97.6495 Garvin SCOOP 12,359 Springer 

162 3505123941 Tannenbaum 1-23H 34.7122 -97.6904 Grady SCOOP 13,398 Springer 

163 3505124050 Murdock 4-30X31H 34.7040 -97.7659 Grady SCOOP 15,760 Springer 

164 3513727476 Orin 2-9H 34.6677 -97.7377 Stephens SCOOP 14,235 Springer 

165 3513727383 Celesta 1-5-32XH 34.6672 -97.6486 Stephens SCOOP 13,521 Springer 

166 3513727413 Hatchett 1H-33XR 34.6651 -97.6298 Stephens SCOOP 13,130 Springer 

167 3513727191 Robert Jo 1-8H 34.6525 -97.6482 Stephens SCOOP 13,860 Springer 

168 3513727414 Virginia 1H-4X 34.6516 -97.6197 Stephens SCOOP 12,874 Springer 

169 3504925038 Kessinger 1-11-2XH 34.6504 -97.4798 Garvin SCOOP 8,507 Woodford 

170 3513727241 Jarred 1H-9X 34.6350 -97.6205 Stephens SCOOP 13,274 Springer 

171 3513727409 Clarence 1H-14X 34.6239 -97.5854 Stephens SCOOP 12,517 Springer 

172 3513727276 Wilbern 1-15H 34.5515 -97.7204 Stephens SCOOP 14,183 Woodford 

Table 1. List of study oils by its 10-digit API number, well name, latitude, longitude, county, Play Region, total vertical 

depth (TVD) and producing formation. Each sample is given a unique numerical key between 1-172 which correspond 

to marker labels in Figure 13.  
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Figure 14. Map of oil samples in this study (upper) colored by producing formation as indicated by the adjoining cross 

section cartoon (lower). Woodford vitrinite isoreflectance contours (Ro%) provided (Cardott, 2012).  
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Oil Fractionation 

Whole oil samples were separated according to their polarity and polarizability into their 

SARA fractions, an acronym representing the saturate, aromatic, resin (i.e. nitrogen, sulfur, and 

oxygen [NSO] compounds), and asphaltene components. Because many of the oils in this study 

are light or condensate oils, approximately 500mg of whole oil was added to a 4mL glass vial and 

placed under a stream of nitrogen for 2-3 hours to volatilize lighter compounds and concentrate 

heavier compounds, and the volatile weight lost was recorded. The remaining liquid was added to 

a 50mL centrifuge tube and filled with excess pentane and stored in a freezer (-2°C) overnight to 

precipitate the asphaltene fraction. The sample was centrifuged and the supernatant fluid 

containing the maltene fraction was removed and dried under a stream of nitrogen. The residual 

asphaltene fraction was collected and weighed. 

The dried maltenes were collected and weighed, and a known amount of 5α-cholestane-

2,2,3,3,4,4-D6 dissolved in hexane was added as an internal standard. Between 30-35mg of 

prepared maltenes was fractionated on an activated alumina column into saturate, aromatic, and 

NSO components using 15mL of n-hexane, and 25mL of a mixture of n-hexane:dichloromethane 

(DCM) (v/v=7:3), and 25mL of a mixture of DCM:methanol (v/v=1:1), respectively. Each fraction 

was dried and weighed. A pipette was packed with pre-extracted glass wool and approximately 2g 

of activated UOP brand S-115 powdered molecular sieve using pentane and water-free air to 

tightly pack the column. Approximately 10mg of saturate fraction was dissolved in 1mL of pentane 

and applied to the column and pushed through the molecular sieve with 2mL of n-pentane to isolate 

the branched and cyclic (B/C) fraction after the method described by West et al., (1990). Because 

the internal standard partitions into the saturate fraction, another aliquot of internal standard was 

added to the dried aromatic fraction.  
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GC-MS Analysis 

The B/C and aromatic fractions were diluted in DCM to 4mg/mL and 2mg/mL, 

respectively, and analyzed by gas chromatography-mass spectrometry (GC-MS) using an Agilent 

Technologies 7890A gas chromatograph equipped with a split/splitless injector, a J&W Scientific 

DB-5MS 122-5562 fused silica capillary column (60m length, 0.25mm inner diameter, and 

0.25µm film thickness), helium as the carrier gas, and interfaced with an Agilent Technologies 

5975 XL Mass Selective Detector. Approximately 1.0µL of diluted B/C or aromatic fraction was 

injected using splitless injector mode and a carrier gas flow rate of 1.4mL/min. The GC 

temperature program initialized at 40°C and held for 1.5 minutes followed by a 4°C/min 

temperature ramp to 300°C which was held for 34 minutes. The GC-MS data were analyzed and 

integrated on MassHunter Qualitative Navigator by Agilent Technologies. 

Stable Carbon Isotope Analysis 

Stable carbon isotopes were measured on 69 whole oils. Approximately 200-300µg of 

sample was loaded into tin capsules, crimped, and analyzed by flash combustion in a Costech 4010 

elemental analyzer connected by a Thermo Conflo III interfaced to a Thermo Delta V Plus isotope 

ratio mass spectrometer. The quartz combustion column was set to 1,000°C, the copper reduction 

column was set to 650°C, and the GC column oven was set to 55°C. The helium flow rate remained 

constant at 100ml/min. The 13C was calculated using the VPDB scale using Equation 1:  

 

The raw C values were corrected for 17O contribution (Craig, 1957) and normalized by single-

point linear normalization (Paul et al., 2007) with NBS22 oil standard (C = -30.03 per mil). 

Equation 1 
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Gas Chromatography Isotope-Ratio Mass Spectrometry (GC-IRMS) 

Individual compounds of the saturate fractions were analyzed for compound specific 

isotopes using an Agilent 7890 gas chromatograph with a Isolink and Carbon combustion reactor 

interfaced to an Conflo IV and a Thermo MAT 253 isotope-ratio mass spectrometer. The GC used 

a 60m x 0.25mm x 0.25µm film Agilent/J&W Scientific DB-1MS capillary column. The injection 

volume of sample was 1uL. The temperature program was initially set at 40ºC and held isothermal 

for 1.5 minutes. Then it was increased at a rate of 4ºC per minute to 300ºC and held constant for 

24 minutes for a total run time of 90 minutes. Samples were analyzed in splitless mode injection 

using helium as the carrier gas. The method pulsed a CO2 gas standard according to the time events. 

The samples were run with deuterated n-nonane (C9D20), n-decane (C10D22), n-hexadecane 

(C16D34), n-nonadecane (C19D40), n-tetracosane (C24D50), and n-dotriacontane (C32D66) as external 

standards. 

Core Samples 

The study also includes 59 core plug depths from 9 cores (seven new cores and two legacy 

cores) predominantly in STACK (Figure 15). Core plugs from the Hunton, Woodford, Meramec, 

Osage, and Chester formations are represented in this study (Table 2) with examples of each 

formation taken from the ABCDS 1-6 core are shown in Figure 16. Core plugs were crushed in a 

tungsten ball mill to 40 mesh and added to a Soxhlet extraction system and run overnight with a 

solvent mixture of DCM:methanol (v/v=1:1). The rock extract was deasphaltened, fractionated, 

and analyzed by GC-MS as described previously. Total extractable organic matter was calculated 

per gram of rock added to the Soxhlet extraction (EOM/g). Extra care was made to ensure all 

residual water was removed from the organic extract before calculating EOM/g.  
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Figure 15. Map of cored wells incorporated into this study. 

 

 

Cored Well Latitude Longitude Hunton Woodford Osage Meramec Chester Total Depths 

ABCDS 1-6H 36.3193 -98.5164 1 4 5 3 1 14 

Caffey 32-16N-9W 1H 35.8148 -98.1768    3  3 

Capps Unit 1 36.0055 -98.2574   13   13 

Gulf Shaffer 1-23 35.8429 -98.2363    5  5 

Ivan Ward 3-4 36.1545 -98.8110     8 8 

John 1H-5X 35.9573 -98.1916  3    3 

KC 1-36 36.1597 -98.3339  4    4 

Lloyd Hawkins 1 35.7858 -97.8630    6  6 

State 1H-16 35.7835 -97.9443    3  3 

Total   1 11 18 20 9 59 

Table 2. Core samples by formation in this study. Capps Unit 1 and Ivan Ward 3-4 are legacy cores. 
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Figure 16. Examples of core sampling locations by stratigraphic interval and lithofacies for the ABCDS 1-6H core. The Chester facies are dominated by laminated 

siltstones, bioturbated siltstones, and calcareous sandstones and contain a slightly organic base in this core. The Meramec ranges from clean silt, silty shales, to 

shaley interbeds. The Osage ranges from crinoidal carbonate packstones and wackestones to cherty carbonates with stylolite dissolution features. The dark 

Kinderhook Shale is generally organic lean, while the Woodford Shale is organic rich. Not Shown: Hunton Fm or Springer Group.
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Internal Standards and Calculating Absolute Concentrations 

Absolute concentrations of compounds can provide critical insight into thermal maturity, 

organic facies, biodegradation, and oil mixing. To quantify biomarker concentrations, a known 

amount of 5α-cholestane-2,2,3,3,4,4-D6 was selected to be added to each sample as an internal 

standard because it does not occur naturally and does not coelute with any monitored compounds. 

The concentration of the internal standard is calculated using the mass of the standard divided by 

the mass of the sample (Equation 2): 

  

   Where [CISTD] = Concentration of internal standard in whole oil in ppm (w/w) 

  [CSTD] = Concentration of internal standard solution in ppm (w/v) 

  VSTD = Volume of internal standard added to whole oil in µL 

  MSample = Mass of whole oil aliquot before fractionation in mg 

The ratio between the machine response produced by an analyte and the quantity of that analyte is 

called the response factor (RF) and can vary by instrumentation and run parameters. When sample 

dilution or injection volumes are not tightly controlled, it is more appropriate to use a relative 

response factor (RRF) between an internal standard and an analyte, defined as the ratio of their RF 

(Equation 3): 

  

   Where RRF = Relative response factor between internal standard and analyte of interest 

  RFX = Response factor of analyte of interest 

  RFISTD = Response factor of internal standard 

Simply, the RRF defines the difference in machine response between an internal standard and an 

unknown analyte. Therefore, the concentration of an analyte compound is the concentration of the 

internal standard multiplied by the ratio of areas between the analyte and the internal standard and 

multiplied by their RRF (Equation 4): 

Equation 2 

Equation 3 
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   Where [CX] = Concentration of unknown compound in ppm (w/w) 

  [CISTD] = Concentration internal standard in ppm (w/w) 

  AX = Area of analyte of interest peak 

  AISTD = Area of internal standard peak 

  RRF = Relative response factor between internal standard and analyte of interest 

Deriving the RRF between an analyte and internal standard requires a series of controlled 

experiments of known concentrations for both the internal standard and the analyte of interest to 

measure their respective RFs. In chromatography, however, the area of a peak is proportional to 

the number moles injected into the GC, but the number of moles is the product of two variables—

molarity and volume—making it difficult to rigorously control for (Equation 5): 

  

   Where A = Area of analyte peak 

  RF = Response factor of analyte 

  [C] = Concentration of analyte mixture 

  V = Volume of mixture injected onto GC-MS 

By injecting a mixture of both the analyte and the internal standard together, the volume terms 

cancel out when the equations are divided. The remaining equation is in slope-intercept form where 

the Y-axis is the ratio of peak areas, the slope of the line is given by RRF, and the X-axis is the 

ratio of concentrations in the mixture (Equation 6). 

  

   Where AX = Area of analyte of interest 

  AISTD = Area of internal standard 

  RRF = Relative response factor between internal standard and analyte of interest 

  [CX] = Concentration of analyte of interest 

  [CISTD] = Concentration of internal standard 

The RRF can be derived from the slope of the line when the experiment has been repeated a 

sufficient number of times to calculate a slope of the line by linear regression. An example RRF 

Equation 4 

Equation 5 

Equation 6 
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derivation between adamantane and the internal standard 5α-cholestane-2,2,3,3,4,4-D6 is shown 

in Figure 17. In this example, the machine response for the internal standard is only 27% of the 

response measured for adamantane. Without this correction, the absolute concentration of 

adamantane may be over-estimated by nearly a factor of four. 

Except where indicated in subsequent chapters, the relative response factor between 5α-

cholestane-2,2,3,3,4,4-D6 and other biomarkers is assumed to be 1. Although this is certainly not 

correct, the error introduced does not influence any conclusions drawn from the comparison of 

quantitative biomarker data of separate samples when compared to each other. It is unreasonable 

to derive RRF for each class of biomarker, and because RRF is a constant, any enrichment or 

depletion between samples will be proportional across all samples (Rullkötter et al., 1984). All 

compound concentrations reported in this study are given in terms of ppm weight/weight (w/w) 

relative to its pristine whole oil as it was received or collected. Confidence intervals, marked using 

the ± symbol, are calculated using a “Z” factor of 1.960 which achieves a 95% confidence level.  

Figure 17. An example relative response factor between the internal standard used in this study (5α-cholestane-

2,2,3,3,4,4-D6) and adamantane. Adamantane has a larger machine response by nearly a factor of four. 
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Production Data 

The initial producing gas to oil ratio (IP GOR) for all 172 producing oil wells, measured in 

standard cubic feet per stock tank barrel (scf/STB), was determined from production data collected 

from the DrillingInfo web application by Enverus which collects monthly oil and gas volumes 

reported to the Oklahoma Corporation Commission. The GOR of a producing well often increases 

naturally over its lifetime even when the reservoir pressure remains above the oil bubble point 

pressure, and other operating factors like production interference from offset wells (“well 

bashing”), shut ins, and recompletions can affect the GOR over the life of a well. Consequently, 

the IP GOR was selected to most closely reflect the oil in the pristine reservoir. An example IP 

GOR selection is shown in Figure 18. In all cases, IP GOR values were selected at peak monthly 

oil and gas volumes within the first six months to account for a “clean up” period where flowback 

water used during completion is recaptured.  

Figure 18. Initially producing gas-oil ratio (IP GOR) is chosen from the first month after the well has finished cleaning 

up. The IP GOR for the well shown is 12,655 scf/STB. 
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The specific gravity of an oil sample provides insight into the overall composition of a 

petroleum fluid. The American Petroleum Institute gravity, or API gravity, is an inverse measure 

of petroleum liquid’s density compared to water (Equation 7): 

 

   Where γ = specific gravity of the oil sample at 60°F 

The specific gravity of water is 1 which corresponds to an API gravity of 10, so oils with API 

gravity values above 10 will float on water and those less than 10 will sink. The API gravity of 

produced oils are regularly measured directly from the stock tanks during collection but also during 

initial flowback tests which are reported to the Oklahoma Corporation Commission. The initial 

flowback API gravity values for all 172 wells study wells were taken from their respective 

completion reports (Oklahoma Corporation Commission form 1002A). 

Principal Component Analysis 

The variations between maturity parameters were summarized using principal component 

analysis (PCA). Broken stick models were used to assess the number of informative principal 

component axes (Legendre and Legendre, 2012). All ordination analyses were conducted using 

the R package Vegan in program R ver. 3.6.0 (Oksanen et al., 2015). 

Mapping Software 

Maps were generated using TIBCO Spotfire version 7.8.0. Shape files for Woodford 

vitrinite reflectance contours were made available by Brian Cardott of the Oklahoma Geological 

Survey, and the shape files for faults were taken from the Oklahoma Geological Survey Fault 

Database.  

Equation 7 
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IV. Thermal Maturity Model 

It is well understood that nearly all petroleum originates from the decomposition of organic 

matter in marine and lacustrine sediments of the earth’s crust (McNab et al., 1952; Forsman and 

Hunt, 1958; Bray and Evans, 1961; Abelson, 1963; Eglinton and Calvin, 1967; McIver, 1967; 

Whitehead, 1973). Diagenetic processes during early burial convert preserved biomass into 

kerogen (insoluble, particulate organic matter) and bitumen (soluble organic matter), and 

continued burial and heating in turn converts part of this organic matter into petroleum and natural 

gas. In petroleum chemistry, thermal maturity describes the extent to which mostly heat-driven 

reactions have converted sedimentary organic matter or metastable petroleum compounds into 

other products with greater thermodynamic stability (Philippi, 1965; Dow, 1977). The systematic 

changes that occur to petroleum during thermal maturation can in turn be used to interpret the 

thermal history of sedimentary rocks. In hydrocarbon exploration and production, thermal maturity 

directly affects oil phase behavior, pressure, specific gravity, viscosity, and gas-oil ratio and often 

establishes the economic viability of a drilling prospect.  

This study was presented with the challenge of modeling thermal maturity across a large 

unconventional petroleum system spanning 13 counties where fluid maturities range from black 

oils to retrograde condensate produced from reservoirs with total vertical depths (TVD) between 

6,714–15,760 ft (Figure 19). Changes in oil chemistry from thermal maturity are primarily first-

order thermodynamic reactions which are time/temperature dependent, but over geologic time, 

maximum temperature is the only determinant variable (Philippi, 1965; Connan, 1974; Pepper and 

Corvi, 1995; Pepper and Dodd, 1995). 
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Figure 19. Map of the 172 studied oil samples by producing reservoir and colored by total vertical depth (TVD) as 

shown in Table 1. Oklahoma Geological Society recognized faults are shown in light grey. Two notable north-south 

trending faults in Dewey and Woodward counties are highlighted which are referenced in the text.  
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The thermal stress on an oil is expected to relate both to its maximum burial depth and the 

local geothermal gradient. In modeling thermal maturity, tight unconventional reservoirs benefit 

in that oils are captured near their organic source with limited updip migration (Meckel and 

Thomasson, 2005). In theory, the relative changes in maturity of unconventional reservoirs with 

depth should then mirror the geothermal gradient at the time of maximum burial. Moreover, the 

STACK/SCOOP provinces in the Anadarko Basin also benefit from a regular geothermal gradient 

common in foreland basins (Harrison et al., 1983; Carter et al., 1998). Compared to extensional 

basins, foreland basins form by flexure of thermally mature lithosphere and experience no 

significant change in basement heat flux because the lithosphere remains thermally stable except 

for the effect thermal blanketing by sediments (Beaumont, 1981; Jordan, 1981).  

It is proposed here that for tight unconventional reservoirs with regular geothermal 

gradients, the efficacy of a geochemical maturity parameter can be approximated by its positive 

correlation with reservoir depth. Although the shallow dipping limb of the Anadarko Basin is 

mostly structurally inactive, some differences in the structural and burial history are expected 

between disparate portions of the basin which comprise the large STACK/SCOOP province. To 

account for this, the dataset is divided into three geographically coherent Play Regions which are 

modelled separately: STACK West, STACK East, and SCOOP.  

The first portion of this chapter will catalogue several thermal maturity parameters based 

on bulk composition, biomarkers, light hydrocarbons, and aromatic compounds which will serve 

as inputs into a PCA model along with reservoir TVD. No attempt will be made to interpret the 

efficacy of individual maturity parameters based on its own merits, but rather by consensus 

between maturity parameters quantified by PCA. Finally, the results of each Play Region are 

aggregated into a single model predictive of oil maturity independent of organic facies or TVD. 
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Bulk Composition Maturity Parameters 

The bulk composition of an oil systematically changes with maturity. This section 

discusses physical parameters of the oil that change with maturity including API gravity, whole 

oil δ13C, initially producing gas oil ratio (IP GOR), and oil SARA fraction (Table 3). 

API Gravity 

The API gravity measures the inverse of specific gravity of oil and describes the overall 

composition of a petroleum fluid. A contour map of Woodford-produced oil API gravity is shown 

in Figure 20 made by Warwick Energy using data from IHS Markit. In STACK East, Figure 20a 

depicts a broad plateau of 40-50° API gravity oils in Blaine, Kingfisher, and Canadian counties 

increases rapidly to 60° near the tricounty border. In STACK West, a heavily faulted portion of 

eastern Dewey County correspond to higher API gravity contours bending to the north creating a 

“flower-shaped zone.” A map of just STACK West overlain with study oils in Figure 20b shows 

the flower-shaped zone is associated with several notable faults which are highlighted in red. In 

some cases, there are major shifts in API gravity values in oils across or along the faults, indicating 

that these faults may serve as migration pathways for higher maturity fluids into shallower 

reservoirs. Critically, the API gravity contours are not expected to exactly match the oil API 

gravity values collected from completion reports because they sample from different reservoirs at 

possibly different stages of the life of the well. However, the trends observed in the contour map 

mirrors those observed in the study oils. The API gravity for all study oils generally increases with 

TVD across all Play Regions, but there is a stronger correlation in STACK than in SCOOP (Figure 

21). In STACK West, the flower-shaped zone corresponds to a wide range of API gravities (38-

60°) at ~11,000 ft which could result from the mixing of higher maturity fluids. The flower-shaped 

zone oils will be tracked through other maturity parameters in this chapter to test this hypothesis.   
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Key Play Region TVD API Gravity Oil δ13C13C IP GOR % Volatile % Sat % Aro % NSO % Asph Coll. Inst. Index 

1 STACK West 7,130 35 
 

1,710 20.7% 52.5% 18.1% 5.4% 3.3% 2.37 

2 STACK West 6,791 32 
 

2,066 24.0% 47.9% 18.0% 7.1% 3.0% 2.03 

3 STACK West 7,179 34 
 

1,121 24.6% 46.1% 19.3% 6.9% 3.1% 1.88 

4 STACK West 6,917 33 
 

1,563 26.7% 47.8% 16.9% 6.0% 2.6% 2.20 

5 STACK West 6,980 29 
 

4,005 27.6% 45.7% 16.3% 6.6% 3.8% 2.16 

6 STACK West 7,132 37 
 

2,842 34.0% 50.9% 11.1% 3.4% 0.7% 3.56 

7 STACK West 6,934 34 
 

870 28.2% 47.5% 16.3% 5.7% 2.4% 2.28 

8 STACK West 7,444 36 
 

4,272 27.6% 51.1% 14.4% 4.4% 2.4% 2.85 

9 STACK West 7,690 36 
 

3,662 25.9% 56.5% 12.9% 3.7% 1.0% 3.48 

10 STACK West 8,068 40 
 

9,528 23.7% 58.3% 13.3% 3.3% 1.4% 3.61 

11 STACK West 7,563 30 
 

2,885 27.6% 49.0% 16.0% 5.2% 2.1% 2.41 

12 STACK West 7,443 37 
 

4,718 32.3% 48.4% 13.2% 4.2% 1.9% 2.89 

13 STACK West 7,887 31 
 

2,556 27.2% 51.5% 15.3% 4.5% 1.4% 2.68 

14 STACK West 7,792 32 
 

2,943 33.7% 52.3% 10.1% 2.8% 1.1% 4.14 

15 STACK West 7,412 37 
 

3,742 38.5% 44.6% 11.2% 3.9% 1.8% 3.08 

16 STACK West 7,172 35 
 

2,985 32.1% 47.3% 14.5% 4.1% 2.0% 2.65 

17 STACK West 9,068 38 -29.84 4,545 35.7% 59.7% 3.7% 0.6% 0.3% 13.85 

18 STACK West 11,096 
 

-29.93 26,543 59.0% 39.2% 0.9% 0.7% 0.2% 24.69 

19 STACK West 10,024 
 

-29.73 217,628 53.1% 42.9% 3.3% 0.6% 0.1% 11.05 

20 STACK West 11,173 51 -30.16 20,130 47.2% 46.8% 4.8% 0.9% 0.3% 8.28 

21 STACK West 11,729 50 -30.02 9,393 75.0% 23.8% 1.0% 0.1% 0.1% 21.15 

22 STACK West 11,799 50 -30.16 26,078 63.5% 34.8% 0.7% 0.7% 0.3% 25.28 

23 STACK West 13,107 
 

-28.81 64,563 74.0% 25.1% 0.6% 0.4% 0.0% 25.81 

24 STACK West 13,047 49 -29.33 78,210 60.8% 38.4% 0.3% 0.5% 0.0% 48.52 

25 STACK West 11,303 
 

-29.71 23,480 63.3% 34.9% 1.4% 0.3% 0.1% 20.60 

26 STACK West 10,909 42 -30.16 12,052 51.7% 44.2% 3.4% 0.6% 0.1% 11.09 

27 STACK West 9,687 39 -29.81 12,645 28.3% 57.4% 9.5% 2.0% 2.8% 5.21 

28 STACK West 9,171 39 -30.12 1,798 24.5% 54.2% 13.9% 3.9% 3.5% 3.24 

29 STACK West 8,883 35 -29.81 3,311 27.6% 53.3% 13.3% 3.2% 2.7% 3.41 

30 STACK West 11,344 45 -30.23 9,817 54.0% 41.5% 3.7% 0.6% 0.1% 9.51 

31 STACK West 11,440 38 -30.2 3,604 56.7% 39.2% 3.2% 0.7% 0.1% 9.90 

32 STACK West 10,743 42 -30.23 5,763 43.9% 49.8% 5.5% 0.6% 0.3% 8.32 

33 STACK West 11,583 47 -29.94 12,092 62.4% 35.0% 2.4% 0.2% 0.1% 13.92 

34 STACK West 11,162 44 -29.59 6,840 44.0% 51.7% 3.5% 0.6% 0.2% 12.62 

35 STACK West 11,609 53 -29.91 17,317 70.6% 27.9% 1.0% 0.4% 0.0% 19.25 

36 STACK West 12,693 60 -27.44 627,107 62.4% 37.3% 0.2% 0.0% 0.1% 173.50 

37 STACK West 11,311 48 -29.61 16,191 74.0% 23.1% 1.9% 0.9% 0.1% 8.29 

38 STACK West 11,229 57 -29.03 34,472 81.5% 16.7% 1.3% 0.5% 0.1% 9.62 

39 STACK West 11,353 46 -29.48 24,489 61.3% 35.8% 2.2% 0.5% 0.2% 13.50 

40 STACK West 10,655 50 -29.48 25,738 63.6% 33.5% 2.0% 0.7% 0.2% 12.21 

41 STACK West 11,693 54 -28.96 26,963 78.2% 21.1% 0.5% 0.1% 0.1% 36.87 

42 STACK West 11,435 54 -29.12 36,585 74.8% 24.2% 0.5% 0.5% 0.0% 25.58 

43 STACK West 11,065 49 -29.45 19,568 58.1% 38.6% 2.8% 0.4% 0.1% 12.12 

44 STACK West 11,487 55 -28.34 80,617 89.4% 9.6% 0.4% 0.5% 0.0% 10.66 

45 STACK West 14,085 
  

477,929 62.8% 36.4% 0.4% 0.4% 0.0% 45.91 

46 STACK West 11,227 49 -29.31 27,500 70.5% 25.4% 3.1% 1.0% 0.1% 6.25 

47 STACK East 12,523 54 
 

32,755 69.4% 29.6% 0.3% 0.6% 0.0% 32.36 

48 STACK East 12,208 55 
 

7,753 54.1% 45.5% 0.3% 0.1% 0.0% 101.73 

49 STACK East 12,298 49 
 

8,657 53.4% 45.6% 0.7% 0.3% 0.0% 47.48 

50 STACK East 8,968 
 

-29.98 15,889 59.8% 35.5% 4.0% 0.5% 0.2% 7.85 

51 STACK East 11,605 46 
 

4,762 58.5% 38.5% 2.2% 0.8% 0.0% 12.92 

52 STACK East 11,439 49 
 

5,542 52.8% 45.7% 0.9% 0.5% 0.0% 32.32 

53 STACK East 10,045 41 -30.48 2,116 43.4% 50.8% 2.7% 3.1% 0.0% 8.75 

54 STACK East 9,892 46 -30.66 1,613 44.4% 49.5% 5.0% 1.0% 0.2% 8.34 

55 STACK East 9,112 
 

-30.85 1,288 44.8% 48.8% 5.5% 0.8% 0.1% 7.79 

56 STACK East 10,573 43 -29.86 4,867 47.5% 46.8% 3.8% 1.9% 0.1% 8.22 

57 STACK East 9,135 41 -30.95 2,399 44.3% 48.3% 6.2% 1.2% 0.0% 6.54 

58 STACK East 9,267 
 

-30.67 1,531 44.5% 49.6% 4.0% 1.8% 0.1% 8.58 

59 STACK East 8,652 43 
 

3,652 32.4% 59.8% 6.2% 1.1% 0.5% 8.27 
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Key Play Region TVD API Gravity Oil δ13C13C IP GOR % Volatile % Sat % Aro % NSO % Asph Coll. Inst. Index 

60 STACK East 10,677 52 -29.48 11,783 46.0% 50.1% 3.1% 0.8% 0.0% 12.77 

61 STACK East 8,207 46 
 

13,238 45.2% 44.0% 8.1% 2.4% 0.3% 4.22 

62 STACK East 9,489 48 -30.87 3,298 51.7% 44.1% 3.4% 0.7% 0.0% 10.56 

63 STACK East 9,642 48 -31.02 5,996 52.7% 43.6% 2.6% 1.1% 0.0% 11.76 

64 STACK East 8,213 44 
 

3,506 39.8% 49.3% 8.5% 2.2% 0.1% 4.60 

65 STACK East 9,343 
 

-31.73 2,129 47.5% 45.6% 5.8% 1.1% 0.1% 6.69 

66 STACK East 8,120 40 -30.38 7,390 43.5% 43.1% 9.0% 3.9% 0.5% 3.39 

67 STACK East 8,787 42 -31.14 1,352 42.3% 51.2% 5.0% 1.5% 0.0% 7.88 

68 STACK East 7,783 
  

9,480 56.6% 35.4% 6.1% 1.8% 0.2% 4.54 

69 STACK East 8,297 42 
 

2,959 40.7% 49.3% 8.0% 1.7% 0.3% 5.09 

70 STACK East 8,813 42 
 

2,256 31.3% 58.1% 8.3% 2.0% 0.4% 5.72 

71 STACK East 11,932 58 -27.64 12,221 73.0% 26.6% 0.2% 0.2% 0.0% 74.02 

72 STACK East 7,814 40 
 

4,245 32.1% 51.2% 12.8% 2.7% 1.1% 3.36 

73 STACK East 10,785 53 -29.72 15,996 58.6% 36.8% 3.0% 1.6% 0.0% 8.11 

74 STACK East 9,915 43 
 

1,764 42.7% 50.3% 5.8% 0.8% 0.5% 7.73 

75 STACK East 8,282 41 
 

2,164 33.0% 51.9% 10.9% 3.8% 0.5% 3.57 

76 STACK East 8,307 40 
 

3,423 41.0% 46.3% 9.0% 3.5% 0.2% 3.73 

77 STACK East 9,626 40 
 

4,536 41.1% 52.0% 4.8% 1.9% 0.2% 7.74 

78 STACK East 10,842 48 
 

2,799 48.5% 47.9% 3.1% 0.5% 0.0% 13.30 

79 STACK East 8,275 44 
 

4,756 32.1% 54.6% 11.5% 1.6% 0.2% 4.19 

80 STACK East 7,897 40 -30.77 1,281 51.4% 38.8% 8.7% 0.4% 0.6% 4.31 

81 STACK East 8,540 45 
 

4,068 37.7% 51.8% 8.1% 2.1% 0.3% 5.11 

82 STACK East 9,217 44 -31.4 1,852 44.5% 48.6% 5.4% 1.5% 0.0% 7.07 

83 STACK East 8,161 41 
 

3,786 43.9% 46.5% 7.7% 1.7% 0.2% 4.99 

84 STACK East 9,960 
 

-30.32 7,717 41.3% 55.6% 2.3% 0.8% 0.1% 17.93 

85 STACK East 7,984 40 
 

3,579 36.0% 53.7% 8.5% 1.6% 0.2% 5.33 

86 STACK East 8,402 43 -31.49 2,359 38.9% 46.7% 10.5% 3.9% 0.0% 3.25 

87 STACK East 7,552 41 
 

2,160 35.7% 45.3% 10.0% 4.7% 4.4% 3.38 

88 STACK East 8,857 44 
 

5,288 36.4% 52.8% 9.4% 1.2% 0.3% 5.03 

89 STACK East 7,945 40 
 

3,080 43.1% 47.6% 7.5% 1.6% 0.2% 5.24 

90 STACK East 7,630 40 -30.35 1,581 41.0% 44.2% 11.3% 3.0% 0.5% 3.11 

91 STACK East 7,862 
 

-30.99 9,777 44.5% 45.6% 8.0% 1.6% 0.2% 4.75 

92 STACK East 7,970 42 
 

2,890 37.6% 49.4% 10.4% 2.5% 0.2% 3.87 

93 STACK East 7,500 42 
 

4,480 29.1% 51.2% 14.2% 4.7% 0.9% 2.76 

94 STACK East 9,291 45 
 

1,954 39.2% 50.3% 8.0% 2.3% 0.2% 4.89 

95 STACK East 9,033 42 -31.02 8,238 52.5% 40.8% 4.3% 2.4% 0.0% 6.07 

96 STACK East 8,991 
 

-30.85 9,218 49.7% 42.1% 6.9% 1.2% 0.1% 5.21 

97 STACK East 8,848 43 
 

3,894 37.3% 51.1% 9.3% 2.1% 0.2% 4.51 

98 STACK East 8,334 40 
 

4,106 30.4% 53.5% 10.1% 5.7% 0.3% 3.41 

99 STACK East 8,586 43 
 

2,983 35.8% 50.9% 10.5% 2.6% 0.2% 3.92 

100 STACK East 7,452 39 -30.90 497 29.7% 48.8% 16.3% 4.0% 1.2% 2.46 

101 STACK East 7,601 39 -31.16 2,484 31.1% 52.9% 12.2% 2.9% 0.8% 3.56 

102 STACK East 7,325 42 -31.22 10,609 33.3% 52.8% 10.9% 2.8% 0.2% 3.89 

103 STACK East 8,258 39 
 

2,425 42.7% 44.7% 10.1% 2.3% 0.2% 3.62 

104 STACK East 8,484 
 

-31.62 7,649 41.0% 49.0% 8.2% 1.7% 0.1% 4.93 

105 STACK East 7,887 44 -31.94 3,441 38.5% 48.6% 10.6% 2.1% 0.2% 3.87 

106 STACK East 8,861 43 
 

1,111 32.4% 52.5% 11.9% 2.9% 0.3% 3.56 

107 STACK East 7,965 41 -31.8 1,708 34.3% 48.1% 12.4% 5.0% 0.1% 2.76 

108 STACK East 9,249 45 -30.39 3,068 44.7% 45.4% 8.3% 1.6% 0.1% 4.61 

109 STACK East 9,017 45 -30.96 10,940 46.9% 44.1% 7.1% 1.7% 0.1% 5.00 

110 STACK East 9,532 45 -30.24 12,775 54.8% 38.6% 5.6% 0.9% 0.1% 5.97 

111 STACK East 8,392 40 
 

2,279 40.6% 46.4% 9.6% 3.0% 0.3% 3.70 

112 STACK East 7,533 39 -31.33 3,892 33.3% 51.8% 12.1% 2.6% 0.2% 3.53 

113 STACK East 7,292 40 -31.12 1,132 33.2% 49.5% 13.7% 2.7% 0.9% 3.08 

114 STACK East 7,162 39 -31.00 2,279 36.1% 50.3% 10.2% 3.1% 0.4% 3.81 

115 STACK East 6,714 39 -30.87 674 32.0% 50.5% 13.9% 3.4% 0.3% 2.94 

116 STACK East 7,048 39 -31.31 6,642 35.0% 49.4% 11.8% 3.5% 0.3% 3.25 

117 STACK East 6,779 39 -31.24 2,761 31.9% 51.1% 14.4% 2.2% 0.4% 3.10 

118 STACK East 7,004 39 -31.15 3,491 28.2% 53.5% 14.1% 3.4% 0.8% 3.09 
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Key Play Region TVD API Gravity Oil δ13C13C IP GOR % Volatile % Sat % Aro % NSO % Asph Coll. Inst. Index 

119 STACK East 6,921 39 -31.12 5,953 34.5% 51.4% 10.7% 3.1% 0.3% 3.76 

120 SCOOP 10,105 39 
 

379 38.0% 45.8% 12.4% 3.6% 0.3% 2.88 

121 SCOOP 14,171 57 
 

83,170 82.9% 16.1% 0.8% 0.2% 0.0% 16.26 

122 SCOOP 14,504 49 
 

32,689 74.2% 25.1% 0.7% 0.0% 0.0% 36.22 

123 SCOOP 14,150 49 
 

17,294 65.2% 33.2% 0.6% 1.0% 0.0% 20.24 

124 SCOOP 11,387 44 
 

730 43.8% 50.5% 4.9% 0.9% 0.0% 8.78 

125 SCOOP 11,901 45 
 

1,208 38.2% 48.5% 9.7% 3.7% 0.0% 3.62 

126 SCOOP 10,950 47 
 

1,226 37.4% 52.9% 8.6% 1.1% 0.0% 5.45 

127 SCOOP 10,555 48 
 

2,025 31.7% 59.7% 6.1% 2.5% 0.0% 6.93 

128 SCOOP 10,844 46 
 

2,086 36.9% 53.4% 6.8% 2.9% 0.0% 5.48 

129 SCOOP 10,762 44 
 

1,955 39.4% 43.8% 15.3% 1.6% 0.0% 2.60 

130 SCOOP 11,363 47 
 

1,171 42.0% 45.7% 11.2% 1.1% 0.0% 3.72 

131 SCOOP 11,591 40 
 

723 39.9% 48.9% 7.9% 3.2% 0.0% 4.39 

132 SCOOP 12,989 46 
 

1,235 41.4% 53.9% 3.7% 1.0% 0.0% 11.59 

133 SCOOP 11,179 46 
 

1,501 43.9% 44.1% 10.7% 1.3% 0.0% 3.67 

134 SCOOP 12,939 47 
 

2,421 48.6% 49.1% 2.3% 0.1% 0.0% 21.18 

135 SCOOP 10,671 44 
 

865 38.1% 49.5% 9.3% 3.1% 0.0% 3.99 

136 SCOOP 10,922 45 
 

992 39.2% 50.7% 9.1% 1.0% 0.0% 5.01 

137 SCOOP 10,881 45 
 

4,371 36.9% 54.8% 7.3% 0.9% 0.0% 6.62 

138 SCOOP 11,421 43 
 

1,767 32.4% 54.1% 8.3% 5.1% 0.1% 4.04 

139 SCOOP 12,317 49 
 

1,710 38.4% 48.6% 11.7% 1.4% 0.0% 3.73 

140 SCOOP 12,303 43 
 

1,845 37.8% 48.8% 11.8% 1.5% 0.0% 3.65 

141 SCOOP 11,698 46 
 

1,665 38.1% 54.4% 6.1% 1.4% 0.0% 7.27 

142 SCOOP 11,777 44 
 

3,156 38.8% 57.4% 2.8% 1.0% 0.0% 15.08 

143 SCOOP 11,706 45 
 

2,578 42.4% 48.5% 7.1% 2.0% 0.0% 5.34 

144 SCOOP 11,004 45 
 

4,801 41.8% 46.9% 9.9% 1.5% 0.0% 4.12 

145 SCOOP 11,104 46 
 

1,617 38.0% 45.8% 10.1% 6.2% 0.0% 2.81 

146 SCOOP 11,522 44 
 

993 46.0% 45.7% 6.7% 1.6% 0.0% 5.50 

147 SCOOP 11,755 47 
 

993 40.5% 52.8% 6.1% 0.6% 0.0% 7.86 

148 SCOOP 12,112 46 
 

4,921 44.3% 49.6% 5.4% 0.6% 0.0% 8.22 

149 SCOOP 9,642 48 
 

123,839 59.3% 34.4% 6.0% 0.3% 0.0% 5.43 

150 SCOOP 14,766 53 
 

20,060 73.8% 25.7% 0.5% 0.0% 0.0% 49.05 

151 SCOOP 12,832 58 
 

52,347 78.8% 20.2% 0.8% 0.2% 0.0% 21.10 

152 SCOOP 11,100 
  

22,185 54.2% 41.2% 4.0% 0.6% 0.0% 8.81 

153 SCOOP 12,053 60 
 

31,782 75.0% 24.3% 0.7% 0.1% 0.0% 33.82 

154 SCOOP 9,812 46 
 

8,405 42.5% 51.3% 6.1% 0.1% 0.0% 8.18 

155 SCOOP 9,460 
  

2,028 47.2% 44.9% 7.3% 0.6% 0.0% 5.65 

156 SCOOP 12,753 45 
 

1,210 35.0% 50.2% 9.8% 4.9% 0.1% 3.42 

157 SCOOP 13,412 40 
 

82,110 55.8% 41.1% 1.9% 1.3% 0.0% 13.07 

158 SCOOP 14,125 50 
 

212,505 45.0% 52.9% 2.0% 0.2% 0.0% 24.50 

159 SCOOP 9,920 
  

22,720 37.5% 51.2% 9.1% 2.2% 0.0% 4.53 

160 SCOOP 13,284 45 
 

910 40.0% 54.5% 4.6% 0.9% 0.0% 9.89 

161 SCOOP 12,359 46 
 

2,309 45.7% 50.5% 3.4% 0.4% 0.0% 13.43 

162 SCOOP 13,398 47 
 

2,140 48.2% 49.8% 1.8% 0.2% 0.0% 25.39 

163 SCOOP 15,760 51 
 

1,255,433 60.5% 35.6% 2.1% 1.8% 0.0% 9.34 

164 SCOOP 14,235 51 
 

15,120 62.6% 34.4% 1.7% 1.2% 0.0% 11.70 

165 SCOOP 13,521 47 
 

54 41.9% 54.2% 2.5% 1.4% 0.0% 14.02 

166 SCOOP 13,130 45 
 

999 37.1% 58.2% 2.0% 2.7% 0.0% 12.52 

167 SCOOP 13,860 46 
 

2,152 43.3% 53.6% 2.1% 1.0% 0.0% 17.64 

168 SCOOP 12,874 43 
 

819 34.7% 59.4% 3.5% 2.5% 0.0% 10.03 

169 SCOOP 8,507 43 
 

863 28.0% 52.3% 14.4% 5.2% 0.1% 2.68 

170 SCOOP 13,274 43 
 

962 40.3% 56.3% 2.9% 0.5% 0.0% 16.63 

171 SCOOP 12,517 45 
 

531 34.3% 60.1% 3.9% 1.6% 0.2% 10.97 

172 SCOOP 14,183 52 
 

172,826 76.4% 22.4% 0.7% 0.5% 0.0% 17.89 

Table 3. Bulk composition parameter metrics utilized in determining thermal maturity in this chapter. The key refers 

to oil samples defined in Table 1. Missing API gravity values were not reported to OCC. %Volatile, %Sat, %Aro, 

%NSO, and %Asph correspond to percent volatile, saturate, aromatic, NSO, and asphaltene components measured 

during fractionation. Coll. Inst. Index=Colloidal Instability Index defined as (%Sat+%Asph)/(%Aro+%NSO).   
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Figure 20. a) Contour map of Woodford oil API gravity. A “flower-shaped zone” in a heavily faulted portion of eastern 

Dewey County bends the contours indicating an updip incursion of higher maturity oils. b) Map of the flower-shaped 

zone with study oils (labeled by 1002A API gravity) showing major shift in API gravity across notable N-S trending 

faults, marked red. Faulted lithology may contribute to updip migration of higher maturities from deeper in the basin.  
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Figure 21. Initial production API Gravity values for study wells (from OCC form 1002A). STACK oils generally 

increase with depth while SCOOP oils show little correlation with depth. A broad range of STACK West values 

around ~11,000 ft correspond to a flower-shaped zone of higher API gravity in Dewey County (see Figure 20). 

 

Stable Carbon Isotopes 

Isotopes are atoms whose nuclei contain the same number of protons but different numbers 

of neutrons. Carbon has two isotopes which are stable over geologic time—a light isotope carbon-

12 (12C) which has six neutrons and a heavy isotope carbon-13 (13C) which has seven. Covalent 

bonds containing isotopically heavy carbon (i.e. 13C-12C bonds) are slightly more stable than bonds 

which only contain isotopically light carbon (12C-12C bonds) (Urey, 1947). During maturation, 

hydrocarbons bound to kerogen by 12C-12C bonds are more readily broken which in turn generates 

isotopically lighter hydrocarbons than the remaining hydrocarbons (Fuex, 1977).  
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The δ13C notation is a measure of the isotopic ratio 13C/12C relative to a reference standard 

and given in parts per thousand, or per mil (‰). More positive δ13C values indicate a higher 

abundance of isotopically heavy 13C in the sample material. The δ13C for the 69 whole oil samples 

monitored in this study demonstrate an increase in isotopically heavy carbon with increased TVD 

(Figure 22). It has been argued that isotopic deviations greater than 2-3‰ are usually associated 

with different sources (Stahl, 1977, 1978; Sofer, 1984); however, other publications have 

documented broader ranges of isotopic carbon associated with changes in maturity and 

biodegradation (e.g. Chung et al., 1981). In this dataset, δ13C values span over approximately a 

~4‰ range between the shallowest and deepest samples, and the systematic increase in δ13C with 

increased TVD suggestive of strong correlation with thermal maturity.  

Figure 22. Cross-plot of whole oil δ13C isotope values versus TVD. A cluster of STACK East oils is circled as possible 

evidence of updip migration and are not included in regression trendline (see text). The STACK West oils at ~11,000 

ft mirror the variable maturities observed in Woodward and Dewey counties which include the flower-shaped zone. 
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The highly variable maturity oils in Woodward and Dewey counties in STACK West which 

include the higher maturity “flower-shaped zone” is also observed and spans a δ13C range of ~2‰, 

but the high degree of variability is less apparent compared to other maturity parameters. One 

explanation is that if oil mixing is occurring the flower-shaped zone, the isotopically enriched 

mature fluid will be more abundant in lighter, more volatile hydrocarbons that may be lost during 

oil-water separation and routine handling. Furthermore, several oils—marked “Updip Migration” 

and circled in Figure 22—plot approximately 1,000-2,000 ft above the main trend. When plotted 

in map view, these oils were produced from shallow Mississippian reservoirs in STACK East 

above immature Woodford (Ro<0.6%), shown in Figure 23. Based on the trendline correlating 

δ13C with TVD in STACK, these oils might have retained a pre-migration isotopic signature 

consistent with generation from a source rock at depths between 8,500-10,000 ft before migrating 

approximately 1,000-2,000 ft up section into its current, shallower Mississippian reservoir.   

Figure 23. Map of STACK indicating the circled samples marked “Updip Migration” in Figure 22. These samples are 

produced from Mississippian reservoirs above immature Woodford, and plot approximately 1,000-2,000 ft TVD 

above the TVD-δ13C trendline indicating that may be the extend of updip migration.  
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Gas-Oil Ratio 

 With increasing maturity, kerogen generates lower molecular weight and more volatile 

hydrocarbons which in turn increases the gas-oil ratio (GOR) of its generated oil (Tissot and Welte, 

1984; Moses, 1986; McCain, 1990). Over the life of a well, the GOR generally increases as 

reservoir pressure drops approaching the oil bubble point pressure; therefore, the initially 

producing GOR (IP GOR) most closely represents an oil composition in a pristine reservoir. The 

IP GOR for all wells in this study is provided in Figure 24, showing general increases with depth 

in STACK, but the relationship is weak and has substantial scatter. Oils from SCOOP show no 

meaningful correlation between IP GOR and depth but, similar to API gravity, plot below the 

STACK Play Regions by several thousand feet which continue to suggest that SCOOP is either a 

cooler portion of the basin or has experienced less regional uplift since entering the oil window. 

Figure 24. The IP GOR in this dataset generally increases with TVD but exhibits a very weak correlation. 
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Bulk Composition (SARA) 

Mature oil samples can be subdivided into its SARA chemical classes, where the first letter 

refers to saturate, aromatic, resin (NSO), and asphaltene fractions. The saturate fraction consists 

of nonpolar compounds with only single bonds and includes linear, branched, and cyclic 

compounds. The aromatic fraction consists of slightly polar compounds containing one or more 

aromatic ring as well as some non-polar sulfur-containing compounds (e.g. benzothiophenes) and 

non-basic nitrogen compounds (e.g. benzocarbazoles). The NSO fraction consists of polar 

constituents often containing nitrogen, sulfur, or oxygen bearing non-hydrocarbons (Peters et al., 

2005a). The asphaltene fraction is defined as the portion of crude oil precipitated by dilution in n-

pentane and is comprised high molecular weight condensed aromatic macromolecules colloidally 

dispersed in oil (Pfeiffer and Saal, 1940). Asphaltenes are stabilized and remain in solution by 

adsorbing to aromatic and resin components which serve as peptizers forming the outer layer of a 

micelle with lower surface tension (Pfeiffer and Saal, 1940; Dickie and Yen, 1967; Mullins, 2011). 

The weight percent of oil SARA fractions in this study are provided in Figure 25 whereby 

weight lost to volatilization during sample preparation accounts for the remaining percent up to 

100%. Oils become more volatile with increased depth, but also show an increase in the relative 

abundance of saturates compared to aromatics, NSOs, and asphaltenes. Two modes of oils can be 

observed in STACK West oils. Oils produced at TVD shallower than 9,687 ft have relatively low 

volatile loss (~30% loss) and contain the only consistently measurable amounts of asphaltenes in 

the dataset. Deeper oils in STACK West are collectively the most volatile with samples losing up 

to 89% weight during processing. These deep samples are also dominated by saturates with almost 

no other fractions present. The relationship between depth, increased volatility, and saturate 

enrichment is stronger in STACK than SCOOP.  



 

52 

 

 

 

 

 

Figure 25. The sum of SARA values for oils in this study plotted by depth and Play Region. Volatiles lost during 

sample preparation and fractionation account for the remaining weight up to 100%. Oils become more volatile with 

increased depth, but also show an increase in the relative abundance of saturates compared to aromatics, NSOs, and 

asphaltenes. Asphaltenes are only observed in meaningful quantities in shallow STACK West oils.  
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The systematic decrease in aromatic and resin components relative to saturates with depth 

may provide a novel measure of maturity. Since resins and aromatics both contribute to asphaltene 

stability, it may be possible to quantify maturity as a mass ratio of the sum of asphaltenes and its 

flocculants (saturates) to the sum of its peptizers (resins and aromatics), also known as the colloidal 

instability index (CII) as defined in Equation 8 (Asomaning and Watkinson, 2000). 

 

Values for CII are plotted in Figure 26 and do show a strong correlation with TVD in STACK 

(R2=0.80, 0.81); however, the study oils generally have low asphaltene concentrations therefore 

CII as a maturity parameter primarily reflects changes in saturates abundances relative to aromatics 

and resins. The oils comprising the flower-shaped zone in STACK West also show a wider range 

of CII values. SCOOP samples show a modest correlation with TVD and again plot below the 

STACK trends either as a cooler portion of the basin or having undergone less regional uplift. 

Equation 8 

Figure 26. Colloidal Instability Index (CII) versus TVD for study oils. There is a strong relationship in STACK than 

in SCOOP which again plots below the main STACK trend. The flower shaped zone in STACK West is also present. 
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In summary, the bulk composition of oil samples STACK and SCOOP systematically 

change with increased depth and thermal stress. The SARA fractions show that most samples in 

this dataset have little or no asphaltene fraction, and oils contain a larger volatile and saturate 

fraction with increased burial. The CII ratio shows the best correlation with TVD in any given Play 

Region and is a promising maturity parameter, while IP GOR and API gravity show little 

correlation with TVD. Stable carbon isotope data from a limited number of whole oil samples 

show a promising correlation with depth in this dataset, but more testing is required to confirm the 

trend. Finally, a contour map of Woodford Shale API gravity across the Anadarko Basin in 

conjunction with known fault lines provided key insight into a flower-shaped zone of highly 

variable oil composition in eastern Dewey County that may be mixing with higher maturity oils 

migrating up from deeper in the basin.  

Biomarker Maturity Parameters 

The ratios of select biomarkers have been found to systematically change with oil maturity. 

Compound structures which are denoted by bold Roman numerals are shown in the Appendix. 

This section discusses several of these ratios related to the stereoisomerization of regular steranes 

(I), the relative abundance of rearranged steranes (II), the relative thermal stability of two groups 

of triaromatic steroids (III and IV), and the relative generation of tricyclic terpanes (V) and 

hopanes (VI). The data used in this section are summarized in Table 4.  

Regular Steranes 

Most steranes (I) in petroleum originate from sterols in the lipid membranes of eukaryotic 

organisms (Huang and Meinschein, 1979; Volkman, 1986, 2003). In general, living organisms will 

synthesize only one stereoisomer, but the configuration at asymmetric centers in sterols are 
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imposed by enzymes and are not necessarily the most thermodynamically stable orientation 

(Mackenzie et al., 1982). A kinetic precursor-product relationship is shown in Figure 27 

illustrating how an example C29 sterol in a living organism is converted during diagenesis into C29 

sterane and can undergo additional stereoisomerization during continued burial, heating, and 

catalysis. The isomerization at C-20 proceeds from all 20R to a near-equal mixture 20S and 20R 

until a kinetic equilibrium is reached whereby the ratio of C29 5α(H),14α(H),17α(H) 20S/(S+R) is 

approximately 0.55 (Seifert and Moldowan, 1981). The asymmetric centers at C-14 and C-17 

isomerize during burial and heating from the biologic α-configuration to the more stable β-

configuration due to steric forces imposed by the rigid cyclic structure and reach equilibrium at 

approximately 0.7.   

Figure 27. Kinetic precursor-product relationship of C29 sterane (I) stereoisomers common in mature geologic 

samples. Each structure has an implied 5α(H) configuration. Recreated from Seifert and Moldowan (1981). 
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Key Play Region TVD C29 S/(S+R)1 C29 ββ/(αα+ββ)2 Diasteranes/Total Steranes3 TA[I]/(TA[I]+TA[II])4 3R/(3R+5R) Terpanes5 

1 STACK West 7,130 0.41 0.60 0.41 0.22 0.47 

2 STACK West 6,791 0.42 0.61 0.40 0.21 0.46 

3 STACK West 7,179 0.41 0.60 0.49 0.33 0.44 

4 STACK West 6,917 0.43 0.60 0.44 0.22 0.47 

5 STACK West 6,980 0.41 0.61 0.43 0.21 0.46 

6 STACK West 7,132 0.42 0.62 0.49 0.42 0.58 

7 STACK West 6,934 0.43 0.62 0.37 0.28 0.49 

8 STACK West 7,444 0.42 0.62 0.46 0.31 0.49 

9 STACK West 7,690 0.40 0.61 0.45 0.39 0.59 

10 STACK West 8,068 0.43 0.63 0.39 0.39 0.57 

11 STACK West 7,563 0.41 0.62 0.39 0.31 0.51 

12 STACK West 7,443 0.44 0.62 0.42 0.31 0.51 

13 STACK West 7,887 0.41 0.61 0.40 0.42 0.60 

14 STACK West 7,792 0.43 0.62 0.42 0.41 0.54 

15 STACK West 7,412 0.42 0.64 0.45 0.49 0.60 

16 STACK West 7,172 0.42 0.62 0.35 0.33 0.52 

17 STACK West 9,068 0.39 0.63 0.50 0.87 0.91 

18 STACK West 11,096 0.40 0.63 0.63 0.92 0.97 

19 STACK West 10,024 0.42 0.63 0.47 0.81 0.88 

20 STACK West 11,173 0.42 0.66 1.00 0.86 0.95 

21 STACK West 11,729 0.37 0.61 0.87 0.90 NA 

22 STACK West 11,799 0.40 0.63 0.99 0.88 0.97 

23 STACK West 13,107 NA NA NA 0.91 NA 

24 STACK West 13,047 NA NA 0.99 0.91 NA 

25 STACK West 11,303 0.42 0.64 0.88 0.85 0.95 

26 STACK West 10,909 0.47 0.67 0.95 0.87 0.94 

27 STACK West 9,687 0.42 0.61 0.50 0.74 0.80 

28 STACK West 9,171 0.42 0.63 0.46 0.71 0.70 

29 STACK West 8,883 0.43 0.63 0.41 0.69 0.78 

30 STACK West 11,344 0.43 0.64 0.79 0.83 0.96 

31 STACK West 11,440 0.40 0.64 0.84 0.81 0.97 

32 STACK West 10,743 0.55 0.70 0.62 0.86 0.96 

33 STACK West 11,583 0.41 0.66 0.94 0.87 0.96 

34 STACK West 11,162 0.43 0.67 0.99 0.83 0.97 

35 STACK West 11,609 0.21 0.54 0.99 0.87 0.87 

36 STACK West 12,693 NA NA NA 0.65 NA 

37 STACK West 11,311 0.42 0.64 0.62 0.80 0.96 

38 STACK West 11,229 0.40 0.63 0.74 0.78 0.97 

39 STACK West 11,353 0.41 0.66 0.86 0.81 0.98 

40 STACK West 10,655 0.47 0.68 0.78 0.82 0.96 

41 STACK West 11,693 0.31 0.61 0.55 0.84 NA 

42 STACK West 11,435 0.29 0.59 0.99 0.85 0.96 

43 STACK West 11,065 0.39 0.66 0.77 0.78 0.97 

44 STACK West 11,487 0.30 0.42 0.63 0.77 NA 

45 STACK West 14,085 NA NA NA 0.89 NA 

46 STACK West 11,227 0.35 0.58 0.83 0.76 NA 

47 STACK East 12,523 NA NA NA 0.85 NA 

48 STACK East 12,208 NA NA NA 0.86 NA 

49 STACK East 12,298 NA NA NA 0.87 NA 

50 STACK East 8,968 0.41 0.62 0.66 0.72 0.94 

51 STACK East 11,605 0.39 0.70 0.98 0.88 0.92 

52 STACK East 11,439 NA NA NA 0.86 NA 

53 STACK East 10,045 0.43 0.71 0.99 0.81 0.97 

54 STACK East 9,892 0.44 0.71 0.99 0.82 0.96 

55 STACK East 9,112 0.44 0.71 0.99 0.81 0.96 

56 STACK East 10,573 0.80 0.85 0.89 0.80 NA 

57 STACK East 9,135 0.37 0.68 0.99 0.85 0.96 

58 STACK East 9,267 0.44 0.68 0.99 0.79 0.96 

59 STACK East 8,652 0.44 0.69 0.86 0.66 0.95 
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Key Play Region TVD C29 S/(S+R)1 C29 ββ/(αα+ββ)2 Diasteranes/Total Steranes3 TA[I]/(TA[I]+TA[II])4 3R/(3R+5R) Terpanes5 

60 STACK East 10,677 NA NA 0.99 0.89 0.86 

61 STACK East 8,207 0.42 0.63 0.62 0.69 0.81 

62 STACK East 9,489 0.44 0.73 0.99 0.82 0.96 

63 STACK East 9,642 0.40 0.71 0.99 0.82 0.96 

64 STACK East 8,213 0.41 0.63 0.71 0.71 0.82 

65 STACK East 9,343 0.44 0.73 0.99 0.78 0.95 

66 STACK East 8,120 0.42 0.63 0.53 0.72 0.72 

67 STACK East 8,787 0.40 0.69 0.99 0.73 0.95 

68 STACK East 7,783 0.40 0.63 0.74 0.71 0.83 

69 STACK East 8,297 0.41 0.66 0.68 0.55 0.82 

70 STACK East 8,813 0.43 0.67 0.99 0.68 0.95 

71 STACK East 11,932 NA NA NA 0.90 NA 

72 STACK East 7,814 0.41 0.64 0.63 0.57 0.77 

73 STACK East 10,785 NA NA 0.86 0.84 NA 

74 STACK East 9,915 0.47 0.71 0.79 0.66 0.95 

75 STACK East 8,282 0.45 0.67 0.68 0.53 0.85 

76 STACK East 8,307 0.42 0.64 0.66 0.61 0.77 

77 STACK East 9,626 0.38 0.72 0.91 0.79 0.94 

78 STACK East 10,842 0.54 0.75 0.84 0.80 0.95 

79 STACK East 8,275 0.41 0.67 0.57 0.53 0.83 

80 STACK East 7,897 0.43 0.65 0.58 0.83 0.72 

81 STACK East 8,540 0.47 0.69 0.74 0.59 0.87 

82 STACK East 9,217 0.46 0.68 0.92 0.76 0.94 

83 STACK East 8,161 0.45 0.67 0.60 0.56 0.85 

84 STACK East 9,960 0.39 0.65 0.94 0.88 0.94 

85 STACK East 7,984 0.38 0.66 0.89 0.50 0.84 

86 STACK East 8,402 0.43 0.69 0.78 0.57 0.82 

87 STACK East 7,552 0.42 0.66 0.69 0.45 0.78 

88 STACK East 8,857 0.42 0.65 0.75 0.58 0.81 

89 STACK East 7,945 0.46 0.66 0.62 0.59 0.85 

90 STACK East 7,630 0.46 0.65 0.39 0.56 0.63 

91 STACK East 7,862 0.43 0.66 0.66 0.54 0.82 

92 STACK East 7,970 0.49 0.71 0.71 0.53 0.80 

93 STACK East 7,500 0.44 0.64 0.53 0.47 0.66 

94 STACK East 9,291 0.41 0.69 0.99 0.63 0.81 

95 STACK East 9,033 0.41 0.67 0.90 0.69 0.90 

96 STACK East 8,991 0.43 0.67 0.80 0.61 0.83 

97 STACK East 8,848 0.38 0.68 0.71 0.55 0.76 

98 STACK East 8,334 0.41 0.69 0.74 0.50 0.76 

99 STACK East 8,586 0.42 0.66 0.74 0.50 0.73 

100 STACK East 7,452 0.45 0.64 0.35 0.40 0.61 

101 STACK East 7,601 0.45 0.64 0.44 0.38 0.73 

102 STACK East 7,325 0.43 0.65 0.65 0.44 0.76 

103 STACK East 8,258 0.43 0.66 0.68 0.37 0.71 

104 STACK East 8,484 0.44 0.71 0.72 0.47 0.72 

105 STACK East 7,887 0.44 0.65 0.63 0.33 0.72 

106 STACK East 8,861 0.43 0.65 0.69 0.35 0.71 

107 STACK East 7,965 0.44 0.66 0.58 0.34 0.71 

108 STACK East 9,249 0.43 0.63 0.79 0.70 0.88 

109 STACK East 9,017 0.50 0.72 0.87 0.60 0.80 

110 STACK East 9,532 0.41 0.64 0.76 0.74 0.91 

111 STACK East 8,392 0.44 0.66 0.61 0.34 0.69 

112 STACK East 7,533 0.44 0.62 0.55 0.29 0.73 

113 STACK East 7,292 0.44 0.64 0.47 0.31 0.67 

114 STACK East 7,162 0.44 0.60 0.43 0.24 0.71 

115 STACK East 6,714 0.41 0.62 0.54 0.39 0.67 

116 STACK East 7,048 0.44 0.63 0.56 0.30 0.74 

117 STACK East 6,779 0.41 0.65 0.51 0.31 0.70 

118 STACK East 7,004 0.44 0.60 0.55 0.21 0.65 
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Key Play Region TVD C29 S/(S+R)1 C29 ββ/(αα+ββ)2 Diasteranes/Total Steranes3 TA[I]/(TA[I]+TA[II])4 3R/(3R+5R) Terpanes5 

119 STACK East 6,921 0.45 0.60 0.45 0.21 0.67 

120 SCOOP 10,105 0.43 0.63 0.57 0.54 0.75 

121 SCOOP 14,171 NA NA NA 0.85 NA 

122 SCOOP 14,504 NA NA NA 0.93 NA 

123 SCOOP 14,150 NA NA NA 0.97 NA 

124 SCOOP 11,387 0.43 0.70 0.69 0.63 0.94 

125 SCOOP 11,901 0.42 0.70 0.81 0.64 0.96 

126 SCOOP 10,950 0.36 0.67 0.92 0.62 0.92 

127 SCOOP 10,555 0.38 0.66 0.70 0.62 0.88 

128 SCOOP 10,844 0.28 0.66 0.98 0.66 0.90 

129 SCOOP 10,762 0.43 0.68 0.81 0.62 0.90 

130 SCOOP 11,363 0.45 0.66 0.72 0.72 0.92 

131 SCOOP 11,591 0.37 0.70 0.87 0.69 0.93 

132 SCOOP 12,989 0.49 0.73 0.83 0.68 0.96 

133 SCOOP 11,179 0.43 0.67 0.75 0.71 0.92 

134 SCOOP 12,939 0.59 0.72 0.99 0.80 0.96 

135 SCOOP 10,671 0.42 0.71 0.74 0.63 0.91 

136 SCOOP 10,922 0.43 0.66 0.81 0.68 0.91 

137 SCOOP 10,881 0.40 0.69 0.77 0.72 0.85 

138 SCOOP 11,421 0.47 0.74 0.67 0.72 0.90 

139 SCOOP 12,317 0.51 0.68 0.66 0.82 0.84 

140 SCOOP 12,303 0.44 0.65 0.68 0.84 0.84 

141 SCOOP 11,698 0.48 0.66 0.71 0.71 0.89 

142 SCOOP 11,777 0.52 0.72 0.82 0.90 0.90 

143 SCOOP 11,706 0.31 0.75 0.83 0.72 0.88 

144 SCOOP 11,004 0.47 0.70 0.73 0.61 0.91 

145 SCOOP 11,104 0.40 0.69 0.73 0.66 0.93 

146 SCOOP 11,522 0.43 0.65 0.99 0.72 0.94 

147 SCOOP 11,755 0.52 0.74 0.99 0.73 0.94 

148 SCOOP 12,112 0.52 0.63 0.65 0.74 0.88 

149 SCOOP 9,642 0.37 0.65 0.66 0.49 0.73 

150 SCOOP 14,766 NA NA 1.00 0.94 1.00 

151 SCOOP 12,832 0.42 0.68 0.82 0.64 0.75 

152 SCOOP 11,100 0.36 0.65 0.79 0.58 0.80 

153 SCOOP 12,053 0.51 0.64 0.82 0.83 0.92 

154 SCOOP 9,812 0.39 0.66 0.86 0.54 0.75 

155 SCOOP 9,460 0.46 0.62 0.59 0.17 0.60 

156 SCOOP 12,753 0.42 0.75 0.99 0.61 0.94 

157 SCOOP 13,412 0.40 0.58 0.78 0.89 0.93 

158 SCOOP 14,125 NA NA 0.90 0.91 0.94 

159 SCOOP 9,920 0.40 0.65 0.48 0.52 0.72 

160 SCOOP 13,284 0.41 0.63 0.93 0.72 0.97 

161 SCOOP 12,359 0.43 0.67 0.82 0.74 0.97 

162 SCOOP 13,398 0.44 0.68 0.82 0.79 0.96 

163 SCOOP 15,760 NA NA NA 0.90 NA 

164 SCOOP 14,235 NA NA 0.64 0.84 0.94 

165 SCOOP 13,521 0.41 0.70 0.99 0.72 0.97 

166 SCOOP 13,130 0.38 0.71 0.99 0.77 0.97 

167 SCOOP 13,860 NA NA 0.83 0.79 0.97 

168 SCOOP 12,874 0.41 0.73 0.94 0.65 0.96 

169 SCOOP 8,507 0.44 0.58 0.46 0.13 0.47 

170 SCOOP 13,274 0.59 0.78 0.99 0.77 0.96 

171 SCOOP 12,517 0.48 0.70 0.88 0.55 0.90 

172 SCOOP 14,183 0.35 0.68 0.35 0.71 0.82 

Table 4. Values for sterane and terpane maturity parameters. (1) C29 sterane 5α(H),14α(H),17α(H) 20S/(S+R);  

(2) C29 sterane 14β(H),17β(H)/(14β,17β(H)+14α(H),17α(H)) using both 20S and 20R epimers; (3) m/z 259/m/z 217 

over the range of C27-C30 steranes; (4) C20-21 triaromatic steroids/C20-28 triaromatic steroids; (5) C19-39 tricyclic 

terpanes/(C19-39 tricyclic terpanes + C27-35 hopanes).  
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The identification of C27-C30 regular steranes (I) and diasteranes (II) are shown in Figure 

28 and labeled peaks are color coded by compound family and defined in Table 5. Two maturity 

parameters shown in Figure 29 are based on the ratio of C29 sterane stereoisomers (Seifert and 

Moldowan, 1981). The first is defined as the peak area ratio of epimers at C-20 and defined as C29 

5α(H),14α(H),17α(H) 20S/(S+R). The second is the peak area ratio of epimers at C-14 and C-17 

and defined as C29 sterane ββ/(ββ+αα) using both the 20S and 20R configuration. No correlation 

was observed between C29 ααα sterane 20S/(S+R) and TVD, and a weak correlation can be 

observed in the C29 sterane ββ/(ββ+αα) with TVD. In both cases, the ratios may have reached 

equilibrium because sterane isomerization occurs at low maturation levels (Mackenzie and 

Maxwell, 1981). In fact, the significant data scatter may result from the rapidly decreasing 

concentrations of most biomarkers with maturity (Rullkötter et al., 1984; van Graas, 1990).   

Figure 28. Two GC-MS fragmentograms showing peak distribution of C27-30 regular steranes (I) and C27-30 diasteranes 

(II). Diasteranes can be measured using m/z 259 which are more specific for diasteranes than m/z 217. An example 

carbon skeleton of a regular sterane and diasterane show rearrangement of the methyl groups C-18 and C-19. 
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N° Compound Identification 
1 13β(H),17α(H),20(S) Diacholestane 

2 13β(H),17α(H),20(R) Diacholestane 

3 13α(H),17β(H),20(S) Diacholestane 

4 13α(H),17β(H),20(R) Diacholestane 

5 24-Methyl-13β(H),17α(H),20(S) diacholestane 24(S) 

6 24-Methyl-13β(H),17α(H),20(S) diacholestane 24(R) 

7 24-Methyl-13β(H),17α(H),20(R) diacholestane 24(S) 

8 24-Methyl-13β(H),17α(H),20(R) diacholestane 24(R) 

9 24-Methyl-13α(H),17β(H),20(S)-diacholestane 

10 14α(H),17α(H),20(S)-Cholestane 

11 
24-Ethyl-13β(H),17α(H),20(S)-diacholestane / 
14β(H),17β(H),20(R)-Cholestane 

12 
14β(H),17β(H),20(S)-Cholestane / 24-Methyl-
13α(H),17β(H),20(R)-diacholestane  

13 14α(H),17α(H),20(R)-Cholestane 

14 24-Ethyl-13β(H),17α(H),20(R)-diacholestane 

15 24-Ethyl-13α(H),17ß(H),20(R)-diacholestane 

16 24-Methyl-14α(H),17α(H),20(S)-cholestane 

17 24-Ethyl-13α(H),17β(H),20(S)-diacholestane 

18 24-Methyl-14β(H),17β(H),20(R)-cholestane 

19 24-Methyl-14β(H),17β(H),20(S)-cholestane 

20 24-Methyl-14α(H),17α(H),20(R)-cholestane 

21 24-Ethyl-14α(H),17α(H),20(S)-cholestane 

22 24-Ethyl-14β(H),17β(H),20(R)-cholestane 

23 24-Ethyl-14β(H),17β(H),20(S)-cholestane 

24 24-Ethyl-14α(H),17α(H),20(R)-cholestane 

25 24-Propyl-14α(H),17α(H),20(S)-cholestane 

26 24-Propyl-14β(H),17β(H),20(R)-cholestane 

27 24-Propyl-14β(H),17β(H),20(S)-cholestane 

28 24-Propyl-14α(H),17α(H),20(R)-cholestane 

Table 5. Identification of numbered sterane peaks as illustrated in Figure 28. Peak identification based on comparison 

to Lillis et al. (1999). 
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Figure 29. Two maturity parameters based on the isomerization of the C29 regular sterane (I). Upper: the ratio of C29 

5α(H),14α(H),17α(H) 20S/(S+R) sterane versus TVD. By 8,000 ft, the ratio 20S/(S+R) has reached equilibrium and 

shows no correlation with depth. Lower: the ratio C29 sterane ββ/(ββ+αα) using both 20S and 20R epimers shows a 

good correlation with TVD in STACK East and weak correlation in STACK West and SCOOP.   
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Diasteranes/Steranes 

Diasteranes (II) are formed as the result of catalytic rearrangement of sterenes in the 

presence of active acid sites found on some clays during diagenesis (Rubinstein et al., 1975; 

Sieskind et al., 1979). Once formed, diasteranes are more stable than regular steranes (I), and 

hydrous pyrolysis experiments have shown that the ratio of diasteranes/steranes increases with 

maturity (Lewan et al., 1986; Peters et al., 1990). The ratio of diasteranes/total steranes shows a 

general increase with TVD in STACK until approximately ~10,000 ft after which the ratio reaches 

unity (Figure 30). The flower-shaped zone observable in STACK West oils around ~11,000 ft can 

also be observed. No correlation is observed in SCOOP although values range mostly between 

0.5-1.0. The formation of diasteranes is strongly influenced by the presence of acidic clays so the 

diasterane/sterane ratio may be heavily affected by lithologic differences of the source rocks.  

Figure 30. The ratio of diasteranes/steranes generally increases with TVD in STACK until 10,000-11,000 ft beyond 

which the ratio reaches unity. No correlation with depth is observed in SCOOP. 
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Triaromatic Steroid Hydrocarbons 

Triaromatic steroid hydrocarbons are formed from the further aromatization of C-ring 

monoaromatic steroid hydrocarbons through the loss of a methyl group at the A/B ring junction 

and aromatization of the A and B rings (Mackenzie et al., 1981). Triaromatic steroid hydrocarbons 

can be divided into two groups, TA[I] (III) and TA[II] (IV), based on the length of the side chain 

(Figure 31). The group TA[I] includes the short-chained C20-C21 members while TA[II] includes 

the long-chained C26-C28 (S+R) members. The peak area ratio of TA[I]/TA[I+II] increases with 

thermal stress and has been used for several decades as a maturity parameter (e.g. Mackenzie et 

al., 1981; Riolo et al., 1986; Abbott and Maxwell, 1988; Clark and Philp, 1989; Lillis and Selby, 

2013). Interestingly, artificial heating experiments of triaromatic steroid hydrocarbon standards 

indicate that TA[I]/TA[I+II] increases due to preferential degradation of the long-chained 

homologues rather than the conversion of long- to short-chained homologues (Beach et al., 1989). 

Figure 31. Detailed m/z 231 fragmentogram showing C20-C28 triaromatic steroids and their common groupings TA[I] 

(III) and TA[II] (IV). Peak identification based on Mackenzie et al. (1981). 
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The TA[I]/TA[I+II] maturity parameter is plotted in Figure 32 and shows a modest 

correlation with TVD across all Play Regions. The ratio TA[I]/TA[I+II] appears to reach the end 

of its dynamic range at an equilibrium value (~0.85) beyond which no additional information is 

gained. The STACK West flower-shaped zone oils at ~11,000 ft do not exhibit a wide range of 

maturities, possibly because they have already reached equilibrium. The SCOOP oils plot below 

STACK oils by between 2,000-4,000 ft depending on producing reservoir. This suggests either 

that SCOOP is a cooler portion of the basin or that STACK has been uplifted and the maturity of 

its oils reflect a period of maximum thermal stress when the reservoir was buried deeper.  

In summary, maturity parameters for regular steranes, diasteranes, and triaromatic steroid 

hydrocarbons generally show weak correlations with TVD or only have dynamic range over a 

limited portion of the dataset. The most successful sterane parameters, the TA[I]/TA[I+II] and 

diasterane/sterane ratios, are based on preferential thermal degradation rather than isomerization.  

Figure 32. The triaromatic sterane maturity ratio TA[I]/TA[I+II] increases with TVD until ~0.85 beyond which no 

additional information is gained. 
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Terpanes (m/z 191) 

Two major families of terpane biomarkers are the tricyclic (V; cheilanthanes) and 

pentacyclic (VI; hopanes) terpanes which share a dominant m/z 191 fragment (Budzikiewicz et 

al., 1963; Anders and Robinson, 1971). A m/z 191 fingerprint from the B/C fraction of a black oil 

sample is shown in Figure 33 with peaks colored red and blue as tricyclic terpanes and pentacyclic 

hopanes, respectively. With increasing maturity, the absolute concentration of both tricyclic 

terpanes and hopanes decrease, but the relative amount of tricyclic terpanes increases compared to 

hopanes (Seifert and Moldowan, 1978; van Graas, 1990). The abundance of tricyclic terpanes 

relative to hopanes increases because proportionally more tricyclic terpanes are released from the 

kerogen at higher levels of maturity (Aquino Neto et al., 1983; Kruge et al., 1990; Peters et al., 

1990; Philp et al., 2021). Tricyclic terpanes and hopanes originate from different biological 

precursors (Ourisson et al., 1982, 1984), so care should be taken when comparing the abundances 

of tricyclic terpanes and hopanes from different organic facies.   

Figure 33. Detailed m/z 191 fragmentogram of a black oil B/C fraction. Labeled peaks are identified in Table 6. 
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Peak N° Compound Name 

1 C19 Tricyclic terpane 
2 C20 Tricyclic terpane 
3 C21 Tricyclic terpane 
4 C22 Tricyclic terpane 
5 C23 Tricyclic terpane 
6 C24 Tricyclic terpane 
7 C25 Tricyclic terpane (22S+22R) 
8 C26 Tricyclic terpane (22S+22R) 

9 C24 Tetracyclic terpane 
10 C28 Tricyclic terpane (22S+22R) 
11 C29 Tricyclic terpane (22S+22R) 
12 18α(H)-22,29,30-Trisnorhopane (Ts) 
13 C30 Tricyclic terpane (22S) 
14 C30 Tricyclic terpane (22R) / 17α(H)-22,29,30-Trisnorhopane (Tm) 
15 C31 Tricyclic terpane (22S+22R) 
16 17α(H),21β(H)-28,30-Bisnorhopane 
17 17α(H),21β(H)-30-Norhopane 
18 18β(H)-30-Norneohopane 
19 15α(H)-Methyl-17α(H)-27-norhopane (diahopane) 

20 17α(H),21β(H)-Hopane 
21 C33 Tricyclic terpane (22S+22R) 
22 17α(H),21β(H)-Homohopane (22S) 
23 C34 Tricyclic terpane (22S) / 17α(H),21β(H)-Homohopane (22R) 
24 C34 Tricyclic terpane (22R) / Gammacerane 
25 17α(H),21β(H)-Bishomohopane (22S+22R) 
26 C35 Tricyclic terpane (22S+22R) 
27 17α(H),21β(H)-Trishomohopane (22S+22R) 
28 C36 Tricyclic terpane (22S+22R) 
29 17α(H),21β(H)-Tetrakishomohopane (22S+22R) 
30 17α(H),21β(H)-Pentakishomohopane (22S+22R) 

31 C38 Tricyclic terpane (22S+22R) 
32 C39 Tricyclic terpane (22S+22R) 

Table 6. Identification of numbered terpane peaks as illustrated in Figure 33. Peak identification based on comparison 

to Lillis et al. (1999).  
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The tricyclic/(tricyclic+pentacyclic) terpanes maturity parameter, or 3R/(3R+5R) terpanes 

where R is ring count, shows a modest correlation with TVD in STACK and poor correlation in 

SCOOP (Figure 34). Similar to the diasteranes/steranes and TA[I]/TA[I+II] maturity parameters, 

the 3R/(3R+5R) terpanes ratio reaches the end of its dynamic range at approximately 10,000-

11,000 ft in STACK beyond which no additional information is gained. The variable oils maturities 

in Dewey County which includes the flower-shaped zone are not observed in the 3R/(3R+5R) 

terpane ratio, possibly because the high- and low maturity oils have both reached equilibrium. The 

STACK East trends slightly above STACK West at any given depth and could result from 

differences in geothermal gradients, structural uplift, or other factors controlling thermal maturity. 

The SCOOP oils again plot below the main trend for STACK oils, but by a smaller margin (~1,000 

ft TVD difference) than is observed in other maturity parameters in this chapter.   

Figure 34. Ratio of all C19-C39 tricyclic terpanes (3R) over C19-C39 tricyclic terpanes plus C27-C35 hopanes (5R) versus 

TVD. In STACK, the ratio increases with depth until it reaches equilibrium around 9,000 ft. In SCOOP, the ratio 

increases with depth until reaching equilibrium around 12,000 ft. 
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Light Hydrocarbon Maturity Parameters 

Light hydrocarbons (C4-C9 compounds) are a major component of most petroleum liquids 

and composed of straight, branched, cyclic, and aromatic hydrocarbons. In general, light 

hydrocarbons are believed to form from the catagenic breakdown of larger molecular precursors 

and can contain significant information about the thermal maturity of its source (Philippi, 1975; 

Leythaeuser et al., 1979; Hunt, 1984; Mango, 1997). Although some isomers may have direct 

biological precursors (i.e. Philippi, 1977), light hydrocarbons are not considered biomarkers 

because their carbon skeletons are too small to preserve evidence of a unique biological origin. 

The identification of the light hydrocarbons used in the Thompson and Mango parameters are 

shown in Figure 35 and Table 7 (Walters and Hellyer 1998). This section describes two families 

of light hydrocarbon maturity parameters referred to as Thompson Parameters and Mango 

Parameters after their respective authors and which primarily utilize isomers of heptane (Table 8).   

Figure 35. Light hydrocarbon peaks labeled based on comparison to Walters and Hellyer (1998). 
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Peak N° Compound Name Abbreviation 
1 2,2-Dimethylpentane 2,2-DMP 
2 2,4-Dimethylpentane 2,4-DMP 
3 Benzene Benz 

4 3,3-Dimethylpentane 3,3-DMP 
5 Cyclohexane CC6 
6 2-Methylhexane 2-MH 
7 2,3-Dimethylpentane 2,3-DMP 
8 1,1-Dimethylcyclopentane 1,1-DMCP 
9 3-Methylhexane 3-MH 

10 cis-1,3-Dimethylcyclopentane 1c3-DMCP 
11 3-Ethylpentane 3-EP 
12 trans-1,3-Dimethylcyclopentane 1t3-DMCP 
13 trans-1,2-Dimethylcyclopentane 1t2-DMCP 
14 n-Heptane n-C7 
15 cis-1,2-Dimethylcyclopentane 1c2-DMCP 

16 Methylcyclohexane MCH 
17A Ethylcyclopentane ECP 
17B 2,5-Dimethylcyclohexane 2,5-DMCH 
18 Toluene Tol 

Table 7. Identification of numbered light hydrocarbon peaks as illustrated in Figure 35. Peak identification based on 

comparison to Walters and Hellyer (1998).  
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Key Play Region TVD Isoheptane Ratio1 Heptane Ratio2 Normality3 Paraffinicity4 2-/3-methylhexane5 Expulsion Temperature6 

1 STACK West 7,130 1.0 23 3.7 0.82 0.78 112 

2 STACK West 6,791 1.1 23 3.6 0.87 0.79 120 

3 STACK West 7,179 0.9 23 3.9 0.84 0.75 107 

4 STACK West 6,917 0.9 24 3.9 0.94 0.77 116 

5 STACK West 6,980 1.0 24 3.6 0.93 0.79 111 

6 STACK West 7,132 0.7 21 3.7 0.88 0.71 112 

7 STACK West 6,934 0.8 21 3.6 0.85 0.72 115 

8 STACK West 7,444 0.8 24 3.9 0.97 0.71 111 

9 STACK West 7,690 1.3 23 3.4 0.79 0.82 118 

10 STACK West 8,068 1.3 24 3.6 0.81 0.82 118 

11 STACK West 7,563 1.2 22 3.3 0.79 0.79 121 

12 STACK West 7,443 1.2 23 3.4 0.85 0.81 107 

13 STACK West 7,887 1.4 23 3.2 0.78 0.82 121 

14 STACK West 7,792 1.2 23 3.4 0.85 0.80 118 

15 STACK West 7,412 1.1 25 3.6 1.00 0.77 117 

16 STACK West 7,172 0.9 22 3.6 0.89 0.71 117 

17 STACK West 9,068 2.3 32 3.9 1.20 0.93 123 

18 STACK West 11,096 1.5 26 3.9 0.90 0.83 120 

19 STACK West 10,024 1.7 27 4.3 0.86 0.79 116 

20 STACK West 11,173 1.3 28 4.1 1.05 0.84 119 

21 STACK West 11,729 1.5 27 3.5 1.02 0.86 121 

22 STACK West 11,799 1.5 29 3.9 1.09 0.86 118 

23 STACK West 13,107 1.4 29 4.0 1.10 0.86 118 

24 STACK West 13,047 2.0 30 3.7 1.03 0.95 121 

25 STACK West 11,303 2.1 29 3.7 1.04 0.85 119 

26 STACK West 10,909 1.2 27 3.9 1.05 0.75 114 

27 STACK West 9,687 1.4 24 3.5 0.89 0.78 119 

28 STACK West 9,171 1.2 24 3.3 0.97 0.80 116 

29 STACK West 8,883 1.2 23 3.3 0.85 0.77 116 

30 STACK West 11,344 1.0 26 3.8 1.08 0.75 110 

31 STACK West 11,440 1.1 26 3.8 1.22 0.74 115 

32 STACK West 10,743 1.2 25 3.6 0.98 0.76 115 

33 STACK West 11,583 1.6 26 3.5 0.95 0.83 120 

34 STACK West 11,162 1.8 25 2.9 0.95 0.84 123 

35 STACK West 11,609 1.9 29 3.4 1.23 0.87 121 

36 STACK West 12,693 10.9 35 2.3 2.00 1.05 132 

37 STACK West 11,311 2.7 28 3.1 1.06 0.91 123 

38 STACK West 11,229 3.7 31 2.9 1.22 0.97 127 

39 STACK West 11,353 3.2 30 2.9 1.26 0.94 127 

40 STACK West 10,655 2.1 28 3.1 1.13 0.87 123 

41 STACK West 11,693 3.6 30 2.8 1.23 0.96 129 

42 STACK West 11,435 3.6 30 2.9 1.21 0.95 126 

43 STACK West 11,065 3.4 29 2.8 1.16 0.94 127 

44 STACK West 11,487 5.8 31 2.4 1.42 1.02 131 

45 STACK West 14,085 10.8 28 2.0 1.08 0.98 129 

46 STACK West 11,227 4.2 31 2.8 1.20 0.95 127 

47 STACK East 12,523 6.8 31 2.2 1.28 1.01 131 

48 STACK East 12,208 5.8 32 2.2 1.42 1.01 131 

49 STACK East 12,298 4.3 31 2.6 1.22 0.97 131 

50 STACK East 8,968 2.0 28 3.2 1.13 0.87 123 

51 STACK East 11,605 3.1 33 3.0 1.51 0.92 128 

52 STACK East 11,439 3.0 28 2.6 1.04 0.93 129 

53 STACK East 10,045 1.8 28 3.3 1.14 0.84 121 

54 STACK East 9,892 1.7 27 3.1 1.17 0.85 124 

55 STACK East 9,112 1.2 27 3.6 1.14 0.77 116 

56 STACK East 10,573 3.0 32 3.0 1.31 0.91 129 

57 STACK East 9,135 1.3 26 3.3 1.06 0.81 125 

58 STACK East 9,267 1.3 26 3.3 1.07 0.81 121 

59 STACK East 8,652 1.1 26 3.8 0.97 0.74 116 
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Key Play Region TVD Isoheptane Ratio1 Heptane Ratio2 Normality3 Paraffinicity4 2-/3-methylhexane5 Expulsion Temperature6 

60 STACK East 10,677 3.2 33 3.0 1.45 0.90 125 

61 STACK East 8,207 2.2 29 3.2 1.10 0.87 123 

62 STACK East 9,489 1.7 26 2.9 1.04 0.85 125 

63 STACK East 9,642 1.9 27 2.9 1.04 0.87 125 

64 STACK East 8,213 1.5 29 3.8 1.23 0.83 117 

65 STACK East 9,343 1.2 24 3.0 0.99 0.78 124 

66 STACK East 8,120 1.2 26 3.4 1.13 0.79 126 

67 STACK East 8,787 1.2 25 3.3 0.98 0.78 121 

68 STACK East 7,783 1.8 31 3.4 1.39 0.88 122 

69 STACK East 8,297 1.1 24 3.3 1.01 0.78 122 

70 STACK East 8,813 1.0 24 3.6 0.89 0.76 120 

71 STACK East 11,932 7.3 35 2.4 1.94 0.92 128 

72 STACK East 7,814 1.3 26 3.8 1.11 0.72 117 

73 STACK East 10,785 3.2 33 3.1 1.70 0.86 117 

74 STACK East 9,915 1.0 24 3.3 0.93 0.78 121 

75 STACK East 8,282 0.9 23 3.6 1.00 0.70 115 

76 STACK East 8,307 1.4 27 3.2 1.19 0.83 120 

77 STACK East 9,626 1.4 26 3.2 1.00 0.83 122 

78 STACK East 10,842 1.5 25 3.0 0.97 0.84 128 

79 STACK East 8,275 1.1 27 3.8 1.03 0.74 119 

80 STACK East 7,897 0.7 27 4.5 1.44 0.67 113 

81 STACK East 8,540 1.0 24 3.4 0.96 0.74 119 

82 STACK East 9,217 1.3 26 3.4 1.09 0.79 123 

83 STACK East 8,161 1.1 25 3.3 1.07 0.78 117 

84 STACK East 9,960 2.1 29 3.1 1.11 0.88 123 

85 STACK East 7,984 0.9 25 3.6 0.99 0.74 118 

86 STACK East 8,402 0.9 24 3.5 1.01 0.70 119 

87 STACK East 7,552 0.8 22 3.5 0.96 0.69 111 

88 STACK East 8,857 1.2 28 3.8 1.20 0.73 119 

89 STACK East 7,945 0.9 24 3.5 0.98 0.78 121 

90 STACK East 7,630 0.6 18 3.7 0.81 0.64 101 

91 STACK East 7,862 1.0 25 3.5 1.02 0.76 114 

92 STACK East 7,970 0.9 24 3.5 1.02 0.71 120 

93 STACK East 7,500 0.6 22 3.8 0.96 0.67 109 

94 STACK East 9,291 1.0 25 3.4 1.10 0.74 122 

95 STACK East 9,033 1.3 28 3.3 1.23 0.80 121 

96 STACK East 8,991 1.2 27 3.4 1.15 0.78 119 

97 STACK East 8,848 1.0 26 3.6 1.18 0.71 115 

98 STACK East 8,334 0.9 24 3.4 1.07 0.73 118 

99 STACK East 8,586 1.0 26 3.5 1.22 0.72 121 

100 STACK East 7,452 0.8 22 3.7 0.99 0.66 108 

101 STACK East 7,601 0.6 23 3.8 1.06 0.66 111 

102 STACK East 7,325 0.8 24 3.6 0.98 0.73 118 

103 STACK East 8,258 0.9 24 3.2 1.24 0.72 124 

104 STACK East 8,484 0.7 23 3.4 1.10 0.72 118 

105 STACK East 7,887 0.7 23 3.6 1.12 0.67 118 

106 STACK East 8,861 0.7 21 3.5 1.01 0.66 120 

107 STACK East 7,965 0.8 23 3.5 1.11 0.67 110 

108 STACK East 9,249 1.4 30 3.5 1.48 0.76 118 

109 STACK East 9,017 1.3 30 3.6 1.53 0.74 120 

110 STACK East 9,532 2.3 34 3.4 1.61 0.82 125 

111 STACK East 8,392 0.9 26 3.7 1.24 0.70 119 

112 STACK East 7,533 0.8 25 3.7 1.18 0.71 117 

113 STACK East 7,292 0.7 24 3.7 1.23 0.66 112 

114 STACK East 7,162 0.9 26 3.6 1.19 0.74 117 

115 STACK East 6,714 0.8 27 4.0 1.39 0.68 113 

116 STACK East 7,048 0.8 25 3.6 1.14 0.72 119 

117 STACK East 6,779 0.8 26 3.8 1.35 0.66 106 

118 STACK East 7,004 0.8 25 3.7 1.19 0.71 118 
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Key Play Region TVD Isoheptane Ratio1 Heptane Ratio2 Normality3 Paraffinicity4 2-/3-methylhexane5 Expulsion Temperature6 

119 STACK East 6,921 0.8 27 3.7 1.38 0.71 114 

120 SCOOP 10,105 1.5 34 3.7 2.23 0.68 114 

121 SCOOP 14,171 11.2 31 2.0 1.60 0.93 128 

122 SCOOP 14,504 8.9 33 2.3 1.65 0.89 127 

123 SCOOP 14,150 6.8 30 2.2 1.29 0.92 129 

124 SCOOP 11,387 1.0 20 2.6 0.74 0.77 123 

125 SCOOP 11,901 1.4 23 2.6 0.89 0.80 122 

126 SCOOP 10,950 1.9 33 3.4 1.90 0.72 121 

127 SCOOP 10,555 2.0 34 3.4 1.98 0.73 120 

128 SCOOP 10,844 2.2 32 3.1 1.74 0.77 122 

129 SCOOP 10,762 2.2 33 3.2 1.87 0.76 123 

130 SCOOP 11,363 4.4 35 3.1 1.84 0.78 122 

131 SCOOP 11,591 2.0 32 3.1 1.65 0.78 122 

132 SCOOP 12,989 1.1 21 2.2 0.79 0.93 123 

133 SCOOP 11,179 2.2 33 3.2 1.84 0.76 119 

134 SCOOP 12,939 1.7 23 2.4 0.83 0.86 127 

135 SCOOP 10,671 1.8 32 3.3 1.87 0.73 120 

136 SCOOP 10,922 2.0 34 3.4 2.03 0.72 120 

137 SCOOP 10,881 2.0 34 3.6 1.97 0.72 119 

138 SCOOP 11,421 2.2 34 3.4 2.06 0.73 119 

139 SCOOP 12,317 2.7 35 3.3 1.98 0.78 121 

140 SCOOP 12,303 2.9 35 3.3 2.12 0.77 122 

141 SCOOP 11,698 2.3 35 3.4 2.16 0.73 121 

142 SCOOP 11,777 2.4 35 3.3 2.12 0.73 120 

143 SCOOP 11,706 2.3 35 3.4 2.20 0.72 121 

144 SCOOP 11,004 1.8 33 3.6 2.09 0.68 118 

145 SCOOP 11,104 1.6 32 3.5 1.81 0.70 120 

146 SCOOP 11,522 1.8 32 3.3 1.80 0.74 119 

147 SCOOP 11,755 1.7 31 3.3 1.57 0.77 120 

148 SCOOP 12,112 2.4 35 3.3 2.03 0.74 121 

149 SCOOP 9,642 2.4 36 3.5 2.14 0.75 118 

150 SCOOP 14,766 4.5 34 2.8 1.71 0.89 127 

151 SCOOP 12,832 3.6 39 3.8 2.00 0.80 121 

152 SCOOP 11,100 2.4 37 3.6 2.35 0.73 120 

153 SCOOP 12,053 4.2 39 3.3 2.49 0.80 123 

154 SCOOP 9,812 2.0 33 3.5 1.79 0.75 121 

155 SCOOP 9,460 0.5 17 2.8 1.01 0.57 103 

156 SCOOP 12,753 1.0 18 2.4 0.65 0.77 122 

157 SCOOP 13,412 2.1 18 2.8 0.39 0.90 125 

158 SCOOP 14,125 2.2 17 2.5 0.38 0.90 125 

159 SCOOP 9,920 1.7 35 3.9 2.20 0.67 117 

160 SCOOP 13,284 1.3 19 2.1 0.62 0.89 126 

161 SCOOP 12,359 1.7 23 2.4 0.87 0.82 124 

162 SCOOP 13,398 1.5 21 2.2 0.67 0.90 128 

163 SCOOP 15,760 5.2 18 1.4 0.47 1.04 133 

164 SCOOP 14,235 2.2 22 2.1 0.76 0.97 132 

165 SCOOP 13,521 1.4 21 2.4 0.73 0.89 125 

166 SCOOP 13,130 1.1 21 2.6 0.73 0.80 127 

167 SCOOP 13,860 1.7 21 2.2 0.70 0.94 131 

168 SCOOP 12,874 1.0 20 2.7 0.75 0.77 122 

169 SCOOP 8,507 0.9 30 3.9 2.06 0.61 111 

170 SCOOP 13,274 1.2 21 2.7 0.76 0.80 124 

171 SCOOP 12,517 0.8 20 3.0 0.74 0.70 122 

172 SCOOP 14,183 5.0 34 2.9 1.42 0.91 127 

Table 8. Light hydrocarbon ratios tested as maturity parameters in this study. (1) (2-MH+3-MH)/(1c3-DMCP+1t3-

DMCP+1t2-DMCP); (2) 100*n-C7/(CC6+2-MH+2,3-DMP+1,1-DMCP+3-MH+1c3-DMCP+3-EP+1t3-DMCP+1t2-

DMCP+n-C7+1c2-DMCP+MCH); (3) n-C7/2-MH; (4) n-C7/MCH; (5) 2-MH/3-MH; (6) 140+15(ln[2,4-DMP/2,3-

DMP]).  
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Thompson Parameters 

Thompson (1979 and 1983) proposed two empirical indices of paraffinicity based on ratios 

of C6-C7 hydrocarbons as indicators of thermal maturity, later known as the isoheptane and heptane 

ratios, which are also strongly affected by source, kerogen type, and biodegradation. The 

isoheptane ratio is defined as the peak area ratio of the sum of 2-MH and 3-MH to the sum of 1c3-

DMCP, 1t3-DMCP, and 1t2-DMCP and generally increases exponentially from 0.1 to 10 during 

maturation (Thompson, 1979). The heptane ratio is defined as the percentage of n-C7 to the sum 

of all other compounds eluting CC6 through MCH (CC6, 2-MH, 2,3-DMP, 1,1-DMCP, 3-MH, 1c3-

DMCP, 3-EP, 1t3-DMCP, 1t2-DMCP, n-C7, 1c2-DMCP, and MCH) and has been shown to 

increase with maturity such that values of 18 to 22, 22 to 30, and >30 have been called normal, 

mature, and supermature, respectively (Thompson, 1983). 

Two additional ratios proposed by (Thompson, 1983) which change systematically with 

maturity are designated normality (R) and paraffinicity (F). Normality (R) is defined as the peak 

area ratio of n-C7 to 2-MH and is an approximation of paraffin branching which can increase with 

maturity and biodegradation. Furthermore, in a two phase solution, branched alkanes more readily 

partitions into the gas phase than n-C7, so increased normality can sometimes be an indicator of 

migrational fractionation (Thompson, 1987). Paraffinicity (F) is the ratio of n-C7 to MCH and has 

been used to determine the extent of biodegradation and maturity (Thompson, 1987). 

The four Thompson maturity parameters discussed above are shown in Figure 36 and 

indicate a general increase with depth except for normality which shows a decrease. The 

isoheptane ratio is plotted in semi-log and is the only ratio which exhibits a good correlation 

coefficient in STACK East (R2=0.76) and, to a lesser extent, STACK West (R2=0.47). By 

comparison, the heptane ratio and paraffinicity show little or no correlation with depth and have 
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significant scatter, most notably between Woodford and Mississippian oils which cluster 

separately from Springer oils. Similar to other maturity parameters, SCOOP oils again plot below 

STACK on a parallel trend suggesting that the SCOOP Play Region is a colder portion of the 

Anadarko Basin or have undergone less structural uplift than STACK. The variable oil maturities 

previously identified in in Dewey and Woodward counties, which includes the flower-shaped 

zone, is also observed in the Thompson parameters, especially in the isoheptane ratio.   

Figure 36. Maturity parameters for the isoheptane ratio, heptane ratio, normality, and paraffinicity versus depth based 

on Thompson (1979 and 1983). The isoheptane ratio plotted in semi-log displays the best correlation with depth, while 

the heptane ratio and paraffinicity show little correlation. The previously identified flower-shaped zone in STACK 

West of variable oil maturities at ~11,000 ft can also be observed, especially in the isoheptane ratio. HC=hydrocarbons. 
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Mango Parameters 

Soon after the isoheptane and heptane ratios were defined, Koblava et al. (1980) noted that 

the ratio 2-MH/3-MH exhibited a strong relationship with temperature and proposed the ratio as a 

thermal maturity parameter. Mango (1987) observed a strong invariance between the ratio of the 

sum of 2-MH and 2,3-DMP to the sum of 3-MH and 2,3-DMP and proposed a kinetic model of 

isoheptane proportionality in steady-state equilibrium rather than specific biological origin. Based 

on Mango’s model, 2,3-DMP and 2,4-DMP are daughter products of 2-MH formed catalytically 

through a cyclopropyl intermediate. The steady-state ratio of 2,4-/2,3-DMP is therefore a function 

of temperature, and the maximum temperature of burial (expulsion temperature) was calibrated 

empirically by Equation 9 (BeMent et al., 1995; Mango, 1997).  

 

The ratios of 2-MH/3-MH and expulsion temperature are provided in Figure 37 and show good 

correlation with depth, especially in and SCOOP (R2=0.79 and 0.73, respectively). Similar to other 

maturity trends, SCOOP oils form a parallel relationship several thousand feet below the STACK 

trends. STACK West oils shows a very poor correlation with depth and the wide variability in 

maturities can be observed in the flower-shaped zone at ~11,000 ft.  

Overall, the Mango parameters exhibit better correlations with TVD with less data scatter 

than the Thompson parameters possibly indicative of more effective maturity parameters. Notably, 

the heptane ratio and paraffinicity have distinct and disparate clusters between oils produced from 

Woodford and Mississippian reservoirs and those produced from Springer reservoirs that will be 

explored more fully in Chapter V.  

Equation 9 
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Figure 37. Maturity parameters for Mango parameters 2-/3-methylhexane (upper) and expulsion temperature (lower) 

versus depth based on Mango (1997). Good correlations are observed in STACK East and SCOOP, but STACK West 

shows significant scatter especially in the previously identified flower-shaped zone at ~11,000 ft.  
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Aromatic Maturity Parameters 

The aromatic ratio and concentration data used in this section are summarized in Table 9. 

Methylphenanthrene Index (MPI-1) 

Radke (1988) developed the methylphenanthrene index (MPI-1) based on the observation 

that isomers of methylphenanthrene (VII) shift towards more thermally stable configurations with 

increasing thermal stress. The MPI-1 has been calibrated against vitrinite reflectance in Type III 

source rocks to provide a vitrinite reflectance equivalent value (Rc%) given by Equation 10:  

 

The MPI-1 relies on the shift in the methylphenanthrene (VII) distribution towards the 

thermodynamically favorable β-Type Isomers (Figure 38) with increasing thermal stress and gives 

weight to the presumed parent compound (phenanthrene), thus compensating for facies-dependent 

variations in the degree of phenanthrene alkylation (Radke et al., 1982; Radke, 1988). No separate 

calibration of Ro% to Rc% for Anadarko Basin source rocks was performed for this dataset. 

Equation 10 

Figure 38. Peak identification for phenanthrene (P) and the methylphenanthrene isomers (x-MP) from the m/z 

178+192 fragmentogram. Peak identification based on Radke et al. (1982). 
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Key Play TVD Rc% (from MPI-1)1 MDR2 4-+1-MDBT ppm (WO)3 

1 STACK West 7130 0.81 0.83 514 

2 STACK West 6791 0.80 0.82 499 

3 STACK West 7179 0.81 0.81 579 

4 STACK West 6917 0.82 0.82 408 

5 STACK West 6980 0.81 0.82 407 

6 STACK West 7132 0.81 0.84 272 

7 STACK West 6934 0.79 0.79 471 

8 STACK West 7444 0.78 0.82 431 

9 STACK West 7690 0.80 0.85 462 

10 STACK West 8068 0.83 0.84 461 

11 STACK West 7563 0.79 0.83 460 

12 STACK West 7443 0.82 0.82 382 

13 STACK West 7887 0.80 0.84 593 

14 STACK West 7792 0.82 0.85 423 

15 STACK West 7412 0.80 0.86 291 

16 STACK West 7172 0.78 0.79 433 

17 STACK West 9068 0.91 0.95 357 

18 STACK West 11096 1.05 0.98 9 

19 STACK West 10024 0.91 0.94 221 

20 STACK West 11173 1.01 0.98 118 

21 STACK West 11729 1.05 0.99 46 

22 STACK West 11799 1.32 0.98 90 

23 STACK West 13107 1.41 0.98 68 

24 STACK West 13047 1.18 0.98 41 

25 STACK West 11303 1.01 0.94 280 

26 STACK West 10909 0.96 0.95 810 

27 STACK West 9687 0.83 0.91 856 

28 STACK West 9171 0.83 0.88 1364 

29 STACK West 8883 0.83 0.90 1342 

30 STACK West 11344 1.00 0.97 305 

31 STACK West 11440 0.97 0.99 131 

32 STACK West 10743 0.98 0.97 271 

33 STACK West 11583 1.01 0.99 139 

34 STACK West 11162 0.99 0.99 258 

35 STACK West 11609 1.02 0.98 31 

36 STACK West 12693 1.43 0.97 70 

37 STACK West 11311 0.86 0.96 58 

38 STACK West 11229 0.92 0.97 75 

39 STACK West 11353 0.96 0.97 119 

40 STACK West 10655 0.87 0.97 161 

41 STACK West 11693 0.95 0.97 28 

42 STACK West 11435 0.98 0.97 42 

43 STACK West 11065 0.90 0.97 134 

44 STACK West 11487 1.32 0.96 14 

45 STACK West 14085 1.28 0.99 10 

46 STACK West 11227 1.33 0.96 40 

47 STACK East 12523 1.11 0.98 2 

48 STACK East 12208 1.03 0.86 3 

49 STACK East 12298 1.12 0.92 4 

50 STACK East 8968 0.89 0.96 62 

51 STACK East 11605 1.03 0.99 3 

52 STACK East 11439 1.03 0.98 3 

53 STACK East 10045 0.96 0.99 21 

54 STACK East 9892 0.89 0.98 40 

55 STACK East 9112 0.90 0.98 81 

56 STACK East 10573 1.09 0.98 5 

57 STACK East 9135 0.93 0.98 39 

58 STACK East 9267 0.94 0.98 42 

59 STACK East 8652 0.91 0.97 67 
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Key Play TVD Rc% (from MPI-1)1 MDR2 4-+1-MDBT ppm (WO)3 

60 STACK East 10677 1.05 0.97 3 

61 STACK East 8207 0.84 0.91 182 

62 STACK East 9489 0.98 0.96 17 

63 STACK East 9642 0.98 0.98 15 

64 STACK East 8213 0.83 0.94 186 

65 STACK East 9343 0.94 0.97 27 

66 STACK East 8120 0.83 0.92 257 

67 STACK East 8787 0.87 0.97 28 

68 STACK East 7783 0.82 0.94 131 

69 STACK East 8297 0.84 0.96 66 

70 STACK East 8813 0.88 0.97 37 

71 STACK East 11932 1.21 0.97 0 

72 STACK East 7814 0.79 0.88 317 

73 STACK East 10785 1.12 0.91 3 

74 STACK East 9915 0.90 0.95 35 

75 STACK East 8282 0.81 0.96 98 

76 STACK East 8307 0.79 0.93 179 

77 STACK East 9626 0.99 0.97 15 

78 STACK East 10842 0.97 0.98 12 

79 STACK East 8275 0.84 0.95 58 

80 STACK East 7897 0.84 0.90 426 

81 STACK East 8540 0.85 0.93 39 

82 STACK East 9217 0.89 0.95 23 

83 STACK East 8161 0.85 0.95 52 

84 STACK East 9960 1.03 0.98 124 

85 STACK East 7984 0.86 0.95 63 

86 STACK East 8402 0.87 0.91 43 

87 STACK East 7552 0.83 0.95 118 

88 STACK East 8857 0.87 0.93 46 

89 STACK East 7945 0.85 0.95 64 

90 STACK East 7630 0.78 0.91 422 

91 STACK East 7862 0.85 0.92 70 

92 STACK East 7970 0.83 0.92 39 

93 STACK East 7500 0.76 0.89 243 

94 STACK East 9291 0.85 0.93 37 

95 STACK East 9033 0.87 0.94 28 

96 STACK East 8991 0.89 0.93 48 

97 STACK East 8848 0.85 0.90 33 

98 STACK East 8334 0.85 0.91 42 

99 STACK East 8586 0.84 0.91 37 

100 STACK East 7452 0.76 0.88 276 

101 STACK East 7601 0.78 0.94 206 

102 STACK East 7325 0.83 0.92 144 

103 STACK East 8258 0.83 0.89 53 

104 STACK East 8484 0.86 0.90 45 

105 STACK East 7887 0.81 0.89 73 

106 STACK East 8861 0.83 0.88 50 

107 STACK East 7965 0.82 0.87 76 

108 STACK East 9249 0.85 0.94 83 

109 STACK East 9017 0.86 0.92 49 

110 STACK East 9532 0.92 0.94 56 

111 STACK East 8392 0.83 0.86 51 

112 STACK East 7533 0.80 0.87 188 

113 STACK East 7292 0.79 0.92 161 

114 STACK East 7162 0.82 0.87 172 

115 STACK East 6714 0.77 0.89 202 

116 STACK East 7048 0.80 0.89 183 

117 STACK East 6779 0.76 0.90 130 

118 STACK East 7004 0.82 0.83 311 
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Key Play TVD Rc% (from MPI-1)1 MDR2 4-+1-MDBT ppm (WO)3 

119 STACK East 6921 0.79 0.82 195 

120 SCOOP 10105 0.74 0.88 55 

121 SCOOP 14171 1.11 0.97 1 

122 SCOOP 14504 1.13 0.98 2 

123 SCOOP 14150 1.05 0.97 2 

124 SCOOP 11387 0.84 0.92 66 

125 SCOOP 11901 0.92 0.94 52 

126 SCOOP 10950 0.81 0.97 63 

127 SCOOP 10555 0.80 0.92 73 

128 SCOOP 10844 0.84 0.95 49 

129 SCOOP 10762 0.84 0.94 54 

130 SCOOP 11363 0.88 0.96 36 

131 SCOOP 11591 0.85 0.96 45 

132 SCOOP 12989 0.90 0.96 33 

133 SCOOP 11179 0.88 0.95 42 

134 SCOOP 12939 0.96 0.97 20 

135 SCOOP 10671 0.80 0.94 73 

136 SCOOP 10922 0.80 0.95 60 

137 SCOOP 10881 0.85 0.94 71 

138 SCOOP 11421 0.81 0.96 44 

139 SCOOP 12317 0.89 0.95 23 

140 SCOOP 12303 0.91 0.96 21 

141 SCOOP 11698 0.85 0.96 34 

142 SCOOP 11777 0.89 0.97 11 

143 SCOOP 11706 0.86 0.96 33 

144 SCOOP 11004 0.81 0.94 61 

145 SCOOP 11104 0.81 0.94 63 

146 SCOOP 11522 0.86 0.96 39 

147 SCOOP 11755 0.86 0.96 40 

148 SCOOP 12112 0.88 0.96 29 

149 SCOOP 9642 0.82 0.91 78 

150 SCOOP 14766 0.99 0.97 4 

151 SCOOP 12832 0.91 0.97 15 

152 SCOOP 11100 0.82 0.93 101 

153 SCOOP 12053 0.94 0.97 17 

154 SCOOP 9812 0.83 0.92 133 

155 SCOOP 9460 0.84 0.65 58 

156 SCOOP 12753 0.87 0.95 22 

157 SCOOP 13412 0.92 0.93 20 

158 SCOOP 14125 0.94 0.94 25 

159 SCOOP 9920 0.81 0.90 148 

160 SCOOP 13284 0.92 0.92 13 

161 SCOOP 12359 0.92 0.97 41 

162 SCOOP 13398 0.96 0.95 12 

163 SCOOP 15760 1.10 0.99 11 

164 SCOOP 14235 1.00 0.98 3 

165 SCOOP 13521 0.89 0.97 10 

166 SCOOP 13130 0.92 0.97 14 

167 SCOOP 13860 1.02 0.95 9 

168 SCOOP 12874 0.93 0.96 26 

169 SCOOP 8507 0.84 0.75 177 

170 SCOOP 13274 0.94 0.97 18 

171 SCOOP 12517 0.87 0.92 27 

172 SCOOP 14183 0.91 0.97 13 

Table 9. Aromatic ratios tested as maturity parameters in this study. (1) 0.825 x (2-+3-methylphenanthrene)/ 

(1-+9-methylphenanthrene+phenanthrene) + 0.44; (2) 4-methyldibenzothiophene/(4-+1-methyldibenzothiophene);  

(3) 4-+1-methyldibenzothiophene in ppm of whole oil without a relative response factor. 
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Values of Rc% from MPI-1 are provided in Figure 39 showing a range of 0.74-1.43%. 

There is an excellent correlation between Rc% and TVD in both STACK East and SCOOP with 

correlation coefficients of 0.84 and 0.71, respectively, and may indicate that Rc% calculated from 

MPI-1 may be one of the most effective maturity parameters in this dataset. STACK West values 

cluster tightly together but form a non-linear trend with TVD, and the flower-shaped zone of 

variable oil maturities in STACK West at ~11,000 can also be observed with values ranging from 

~0.85-1.3 Rc%. Oils from all three producing reservoirs in SCOOP cluster together in a single 

trend approximately ~3,000 ft below the main trend in STACK East. From Rc% alone it remains 

uncertain if the separation of trendlines between STACK and SCOOP is the result of structural 

uplift in STACK or a cooler portion of the Anadarko Basin in SCOOP.  

Figure 39. Vitrinite reflectance equivalent (Rc%) values from the methylphenanthrene index (MPI-1) versus TVD. 
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Methyldibenzothiophene Ratio (MDR) 

Aromatic sulfur compounds, including benzo- and dibenzothiophene compounds and their 

alkyl homologues, elute with the aromatic fraction during column fractionation. In a dataset of oils 

from the Western Canada Basin, Radke et al. (1982) measured variations in the concentration of 

individual methyldibenzothiophene (VIII) isomers with depth and thermal stress. Of the four 

methyldibenzothiophene isomers (Figure 40), 1-methyldibenzothiophene (1-MDBT) is the least 

stable while 4-methyldibenzothiophene (4-MDBT) is the most stable. The ratio of 4-MDBT to the 

sum of 1-MDBT and 4-MDBT was proposed as the methyldibenzothiophene ratio (MDR) (Radke 

et al., 1986). The MDR could be directly related to vitrinite reflectance for Type III kerogen, but 

significantly different trends were observed for Type I and Type II kerogens. There is some 

evidence that the MDR-Ro% trends for different kerogen types converge beyond Ro>0.8% (Radke 

et al., 1986; Radke, 1988), but a separate calibration was not performed for this dataset.  

Figure 40. Peak identification for dibenzothiophene (DBT) and the four methyldibenzothiophenes isomers (x-MDBT). 

Peak identification based on Radke et al. (1982) and Fang et al. (2016). 
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The MDR for all study oils is shown in Figure 41a. Of the three Play Regions, only STACK 

West exhibits a good correlation with increased TVD. One possibility is that STACK West 

contains notably higher concentrations of 4- and 1-MDBT compared to the other Play Regions and 

may contribute to higher signal-to-noise ratio and lower scatter compared to STACK East and 

SCOOP (Figure 41b). The MDR for STACK East and SCOOP oils generally increase with TVD 

but with notable scatter. SCOOP oils continue to plot below the trends in STACK which continues 

to reinforce that it may be a cooler portion of the basin or has undergone less structural uplift. 

Curiously, the flower-shaped zone that is observed in most maturity parameters described in this 

chapter is not observed, but the MDR may reach unity (MDR=1) at depths as shallow as 7,000 ft 

in some datasets (Radke et al., 1986; Radke, 1988). In fact, there are several STACK oils in this 

dataset with near unity values by 9,000 ft TVD.   

Figure 41. a) The MDR maturity parameter for this dataset whereby only STACK West shows a good correlation 

versus TVD. b) STACK West oils are enriched in 4- and 1-methyldibenzothiophene compared to STACK East and 

SCOOP and may contribute the higher signal-to-noise and less scatter of the MDR thermal maturity parameter. 
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Principal Component Model 

Sixteen metrics have been presented which describe the thermal stress of the 

STACK/SCOOP. Taken individually, each parameter tells an incomplete story of thermal maturity 

across the study area because chemical reactions may not proceed at the same rate or chemical 

ratios may not be dynamic over the same range of maturities. No attempt has been made to interpret 

the efficacy of any individual parameter based on its own merits; instead, a consensus between 

maturity parameters can be quantified through statistical methods. Principal component analysis 

(PCA) is a statistical workflow which attempts to reduce a multidimensional data matrix (i.e. 

sixteen maturity parameters) to its first two principal components which can be plotted within an 

ellipsoid where each maturity parameter is represented by a single vector projection (Legendre and 

Legendre, 2012). Parallel vectors show either positive or negative correlation depending on the 

direction of the arrow, and orthogonal vectors have little or no agreement correlation.  

Four PCA vector profiles are shown on Figure 42 for each Play Region and the entire 

dataset in aggregate. Within each individual Play Region, the efficacy of maturity parameters is 

determined by its correlation with TVD in order to reflect the local geothermal gradient and 

increasing thermal stress with depth. In STACK East, there is only one significant principal 

component (PC) axis which accounts 55.7% of the variation in the dataset, and the maturity 

parameters CII, expulsion temperature °C, and Rc% exhibit the best correlation with TVD. In 

STACK West, there is one significant PC axis which accounts for 60.0% of the variation in the 

dataset, and the maturity parameters CII, 3R/(3R+5R) terpanes, Rc%, and MDR exhibit the best 

correlation with TVD. In SCOOP, there are three significant PC axes accounting for 44.2%, 

16.2%, and 11.0% of the variation in the data, and the maturity parameters 2-/3-methylhexane, 

expulsion temperature °C, and Rc% exhibited the best correlation with TVD.
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Figure 42. Principal component analysis (PCA) model for each Play Region correlating maturity parameters to TVD where good correlations are circled and bold. 

All Play Regions are then aggregated into a single PCA model (bottom right) to determine consensus between the most successful maturity parameters without 

consideration of TVD. The most successful maturity parameters in this dataset were colloidal instability, expulsion temperature, and Rc% (from MPI-1).
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The three Play Regions are not expected to share a common geothermal gradient or burial 

history. As a result, the PCA model for the aggregate dataset seeks consensus between the most 

successful individual parameters from each Play Region without consideration of TVD as a whole. 

Only Rc% (from MPI-1) exhibited a high degree of correlation across all three Play Regions, and 

the aggregate PCA model indicates colloidal instability index and expulsion temperature °C 

exhibited good correlation with Rc% (from MPI-1) and are also good maturity parameters. For the 

remainder of this study, Rc% will be the principal index to measure the thermal maturity of oils. 

Thermal Maturity Maps 

Several maturity parameters have been discussed in this chapter which cover bulk physical 

characteristics, biomarkers, light hydrocarbons, and aromatics. Many parameters correlate well 

with TVD while others had little or no correlation, low precision due to significant scatter, a 

dynamic range smaller than the variability in the dataset, or were only effective in certain Play 

Regions. Not all areas of the basin are expected to have the same geothermal gradients or have 

regular increase in thermal stress with increased depth, but in unconventional reservoirs where the 

reorganization of oils by buoyancy is limited by permeability, TVD can provide an initial 

qualitative assessment of each maturity parameter. As discussed above, many trends have a strong 

covariance and add confidence that they are effective maturity parameters and not strongly affected 

by local changes in organic facies.  

Thermal maturity maps of Rc% (from MPI-1) and Expulsion Temperature (°C) are shown 

on Figure 43 and Figure 44, respectively, accompanied with Woodford Shale Ro% contour lines 

from Cardott (2012). Although Rc% (from MPI-1) is the most precise metric of oil maturity in this 

dataset, it may fail to capture the potential effects of subsurface mixing between high maturity oils 



 

87 

 

 

relatively depleted in alkyl aromatic compounds which comprise the Rc% parameter and lower 

maturity fluids comparably enriched in alkyl aromatics. The Expulsion Temperature (°C) 

parameter, however, is calculated from a ratio of light hydrocarbons and exhibits a strong anomaly 

in the flower-shaped zone in eastern Dewey County. Moreover, the flower-shaped zone is not a 

vitrinite reflectance anomaly in the Woodford Shale which further supports the hypothesis of 

extensive subsurface mixing between high- and low-maturity oils in the brittle Osage Fm.  

 

Figure 43. Map of Rc% (from MPI-1) which was found to be the most successful maturity parameter in this dataset 

and is the principal maturity parameter used in the remainder of this study.  
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Six additional thermal maturity maps are shown in Figure 45, Figure 46, and Figure 47 

with maturity values of the colloidal instability index, 3R/(3R+5R) terpanes, triaromatic steroids 

TA[I]/TA[I+II], isoheptane ratio, 2-MH/3-MH, and MDR. The maturity anomaly associated with 

the flower-shaped zone is again best resolved in the light hydrocarbon maturity parameters because 

high maturity oils are relatively enriched in these compounds relative to lower maturity oils. 

 

Figure 44. The Expulsion Temperature (°C) maturity parameter makes apparent the effects of high maturity fluids 

invading the flower-shaped zone in eastern Dewey County compared to similar TVD reservoirs in Woodward and 

western Dewey counties.   



 

 

 

 

8
9
 

 

 

 

 

Figure 45. Maps of the colloidal instability index (CII) and tricyclic terpanes/tricyclic terpanes plus hopanes, or 3R/(3R+5R) terpanes, maturity parameters which 

exhibit good correlation with TVD and other maturity parameters in PCA. The thermal maturity anomaly in eastern Dewey County is not readily apparent in these 

maturity parameters.  
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Figure 46. Maps of the isoheptane ratio and 2-MH/3-MH light hydrocarbon maturity parameters which exhibit good correlation with TVD and with other maturity 

parameters in PCA. Both the Isoheptane Ratio and 2-MH/3-MH maturity parameters highlight the flower-shaped zone thermal maturity anomaly previously 

identified in eastern Dewey County.



 

 

 

 

9
1
 

 

 

 

 

Figure 47. Maps of TA[I]/TA[I+II] and 4-/(4-+1-MDBT), also known as MDR, which have limited correlation with depth and other parameters in PCA.  
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Maturity and Oil Composition 

The thermal maturity parameters discussed in this chapter rely on several time-temperature 

transformation reactions, including stereochemical reactions around a chiral center which leave 

the main structure unchanged, kinetic steady-state rearrangement of compounds sometimes 

through unstable intermediaries (i.e. cyclopropane), and the thermal degradation of compounds. 

With increased maturity, many compound classes will experience a substantial decrease in 

concentration as they undergo dilution from non-specific compounds generated from kerogen (e.g. 

n-alkanes) or undergo cracking at very high maturities (van Graas, 1990). Other compounds, like 

tricyclic terpanes and hopanes, are released from kerogen at different maturities (Philp et al., 2021). 

The effect of maturity on oil composition has been well-studied in controlled heating and 

pyrolysis experiments (Aquino Neto et al., 1983; Lewan, 1985; Lewan et al., 1986; Eglinton et al., 

1988; Peters et al., 1990), but is challenged in real world examples, often conventional petroleum 

systems, which might contain oils from different organic facies, maturities, or charging events 

within a single well-mixed reservoir. In contrast, unconventional reservoirs with very low 

permeability are expected to be poorly mixed with respect to multiple charge events, so oils 

produced from a single well could possibly reflect the oil composition from a single source and 

charge event (England et al., 1987; England and Mackenzie, 1989; Leythaeuser and Rückheim, 

1989; Philp et al., 2021). In theory, produced oils from tight unconventional reservoirs could 

provide the opportunity to observe compositional changes in oil generated from single charge 

events with increasing maturity. An example of changing terpane (m/z 191) fingerprint and terpane 

concentration is shown in Figure 48 across a four well transect in southern Kingfisher County with 

depths and thermal maturity ranging from 7,000ft-11,000 ft and Rc=0.79%-1.04%, respectively.  
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Figure 48. A transect of wells in Kingfisher Country showing changes in the m/z 191 terpane fingerprint with increasing Rc%. Oils produced from wells labeled 

A-D also have the associated numerical key in parenthesis and which corresponds to concentration data in Table 10. Hopanes are generated at lower maturities and 

almost completely absent by Rc=0.94%, while tricyclic terpanes are generated at higher maturities and are present until Rc=1.05%. The absolute concentration of 

hopanes and tricyclic terpanes in ppm of whole oil is provided in the adjoining bar graph (bottom right).
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In this example, approximately half of the concentration of hopanes is lost between Well 

A (Rc=0.79%) and Well B (Rc=0.85%), and hopanes are almost completely absent by Well C 

(Rc%=0.94). There is almost no decrease in tricyclic terpane concentration between Well A and 

Well B, but approximately half of the tricyclic terpane concentration is lost by Well C and are 

essentially absent by Well D (Rc%=1.04). This exemplifies why caution should be used when 

determining organic facies to differentiate maturity- and source-related compositional changes in 

oils produced across a broad range of maturities and where sufficient core is not available.  

The aggregate concentrations of biomarker classes bicyclic sesquiterpanes (XI), tricyclic 

terpanes (V), steranes (I), hopanes (VI), triaromatic steroids (II and III), phenanthrene (VII), and 

dibenzothiophene (VIII) are shown in Table 10 along with Rc% maturity. The change in 

concentration of the saturate biomarkers with Rc% is shown in Figure 49, and the concentration 

of aromatic compounds is shown in Figure 50. Each compound class exhibits an exponential 

decrease in concentration with increasing thermal stress which resembles a first order kinetic 

relationship. A line can be fit to the concentration of each compound class in semi-log space hereby 

called the rate decline exponent. The rate decline exponent represents the negative slope of a best 

fit line where the y-axis is given in log10(ppm), and the x-axis is given by Rc%. All rate decline 

exponents in this study are negative, so for clarity a “larger” rate decline exponent refers to the 

absolute value of a more negative slope indicating the concentration of a particular compound class 

declines more rapidly with increased maturity. For example, a rate decline exponent of -5 would 

consequently be termed larger than -3. For saturate biomarkers, the rate decline exponents is 

observed to be larger corresponding to the number of carbon rings comprising its structure. In this 

case, the rate decline exponents -0.64, -3.88, -4.34, and -9.06 correspond to sesquiterpanes, 

tricyclic terpanes, steranes, and hopanes, respectively.   
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Key Play Rc% Sesquiterpanes1 Tricyclic Terpanes2 Steranes3 Hopanes4 Triaromatic Steroids5 Phenanthrene6 Dibenzothiophene7 

1 STACK West 0.81 396 1127 2136 1194 654 556 259 

2 STACK West 0.80 491 1093 1968 1197 720 522 271 

3 STACK West 0.81 401 1021 1921 1210 485 682 331 

4 STACK West 0.82 429 941 1626 1010 630 510 228 

5 STACK West 0.81 385 1110 2007 1215 738 535 250 

6 STACK West 0.81 282 623 1020 447 245 562 102 

7 STACK West 0.79 377 823 1544 809 421 541 206 

8 STACK West 0.78 271 662 1241 655 359 551 184 

9 STACK West 0.80 311 757 1267 515 276 599 171 

10 STACK West 0.83 301 796 1335 589 274 610 178 

11 STACK West 0.79 471 1087 1913 993 380 491 183 

12 STACK West 0.82 330 900 1648 837 366 518 164 

13 STACK West 0.80 396 967 1668 629 250 545 222 

14 STACK West 0.82 356 873 1564 704 250 524 150 

15 STACK West 0.80 307 574 1052 374 161 500 91 

16 STACK West 0.78 337 885 1570 784 326 514 175 

17 STACK West 0.91 407 398 825 41 25 55 39 

18 STACK West 1.05 202 101 202 3 5 60 0 

19 STACK West 0.91 262 118 219 16 10 36 103 

20 STACK West 1.01 256 101 151 5 14 97 29 

21 STACK West 1.05 149 ND 25 ND 3 107 11 

22 STACK West 1.32 196 14 38 ND 6 186 33 

23 STACK West 1.41 159 ND ND ND ND 48 46 

24 STACK West 1.18 102 ND 2 ND 1 129 9 

25 STACK West 1.01 181 36 81 2 5 129 150 

26 STACK West 0.96 455 146 279 9 28 546 370 

27 STACK West 0.83 595 595 1013 146 128 829 169 

28 STACK West 0.83 827 852 1739 361 196 1039 319 

29 STACK West 0.83 977 1197 2107 340 225 1054 280 

30 STACK West 1.00 416 302 380 11 25 436 88 

31 STACK West 0.97 218 228 240 8 19 284 16 

32 STACK West 0.98 433 275 447 12 22 449 53 

33 STACK West 1.01 260 69 100 3 11 348 31 

34 STACK West 0.99 385 196 262 7 25 308 24 

35 STACK West 1.02 532 44 78 6 4 129 13 

36 STACK West 1.43 66 ND ND ND ND 65 72 

37 STACK West 0.86 111 70 111 3 5 92 17 

38 STACK West 0.92 139 50 67 2 5 99 28 

39 STACK West 0.96 231 76 112 2 9 20 35 

40 STACK West 0.87 327 111 140 4 13 189 51 

41 STACK West 0.95 72 ND 10 ND 1 51 16 

42 STACK West 0.98 72 15 21 1 2 61 13 

43 STACK West 0.90 230 80 148 2 10 121 45 

44 STACK West 1.32 190 ND 15 53 ND 12 6 

45 STACK West 1.28 ND ND ND ND ND 125 6 

46 STACK West 1.33 ND ND ND ND 3 58 19 

47 STACK East 1.11 ND ND ND ND 1 52 2 

48 STACK East 1.03 ND ND ND ND 2 73 4 

49 STACK East 1.12 119 ND ND ND 2 77 4 

50 STACK East 0.89 288 142 144 9 18 233 20 

51 STACK East 1.03 154 35 33 3 4 75 3 

52 STACK East 1.03 125 ND ND ND 3 98 4 

53 STACK East 0.96 212 190 139 6 121 93 4 

54 STACK East 0.89 314 228 179 9 19 162 7 

55 STACK East 0.90 228 247 221 11 28 197 10 

56 STACK East 1.09 429 ND 70 ND 5 99 3 

57 STACK East 0.93 186 183 126 7 275 142 7 

58 STACK East 0.94 188 239 173 10 23 165 7 

59 STACK East 0.91 325 427 255 23 48 237 10 
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Key Play Rc% Sesquiterpanes1 Tricyclic Terpanes2 Steranes3 Hopanes4 Triaromatic Steroids5 Phenanthrene6 Dibenzothiophene7 

60 STACK East 1.05 80 11 11 2 38 63 2 

61 STACK East 0.84 226 372 484 87 63 427 44 

62 STACK East 0.98 143 116 78 5 157 88 6 

63 STACK East 0.98 139 106 80 4 144 93 5 

64 STACK East 0.83 290 426 483 92 73 444 29 

65 STACK East 0.94 151 177 132 10 25 141 7 

66 STACK East 0.83 255 248 438 93 66 510 60 

67 STACK East 0.87 176 243 143 14 231 123 7 

68 STACK East 0.82 210 253 301 52 50 328 24 

69 STACK East 0.84 294 461 448 103 62 168 8 

70 STACK East 0.88 322 434 221 22 44 175 9 

71 STACK East 1.21 134 ND ND ND 1 26 1 

72 STACK East 0.79 315 386 477 112 100 329 136 

73 STACK East 1.12 77 ND 11 ND 3 58 3 

74 STACK East 0.90 258 475 197 27 43 165 7 

75 STACK East 0.81 296 786 673 140 125 300 12 

76 STACK East 0.79 262 589 656 170 105 443 24 

77 STACK East 0.99 236 151 91 9 14 97 5 

78 STACK East 0.97 210 116 75 6 11 76 4 

79 STACK East 0.84 232 338 304 70 61 185 12 

80 STACK East 0.84 166 258 486 97 135 999 62 

81 STACK East 0.85 248 432 263 63 50 184 11 

82 STACK East 0.89 173 201 131 13 267 126 7 

83 STACK East 0.85 262 510 347 88 59 211 9 

84 STACK East 1.03 128 35 44 2 10 294 11 

85 STACK East 0.86 213 479 301 94 80 208 8 

86 STACK East 0.87 190 437 289 98 675 167 10 

87 STACK East 0.83 150 667 714 187 155 358 16 

88 STACK East 0.87 247 381 297 92 47 213 11 

89 STACK East 0.85 276 559 380 101 66 247 11 

90 STACK East 0.78 601 1233 1229 714 246 1180 96 

91 STACK East 0.85 197 675 415 144 69 283 13 

92 STACK East 0.83 232 467 272 117 61 168 9 

93 STACK East 0.76 364 866 1222 440 236 561 41 

94 STACK East 0.85 232 237 227 54 41 172 10 

95 STACK East 0.87 142 156 125 17 226 122 7 

96 STACK East 0.89 110 273 244 58 40 198 11 

97 STACK East 0.85 214 324 304 101 44 123 7 

98 STACK East 0.85 232 371 278 116 69 205 12 

99 STACK East 0.84 212 287 233 103 59 156 9 

100 STACK East 0.76 477 847 1297 530 286 684 58 

101 STACK East 0.78 456 1207 1258 442 279 610 24 

102 STACK East 0.83 344 821 576 262 165 480 24 

103 STACK East 0.83 244 431 343 177 106 197 13 

104 STACK East 0.86 189 351 306 136 80 513 12 

105 STACK East 0.81 208 675 437 261 186 276 17 

106 STACK East 0.83 287 639 455 254 155 203 13 

107 STACK East 0.82 199 681 570 273 186 283 19 

108 STACK East 0.85 226 193 157 26 39 352 23 

109 STACK East 0.86 113 237 193 58 42 203 11 

110 STACK East 0.92 103 124 132 12 38 102 11 

111 STACK East 0.83 196 363 310 160 128 123 9 

112 STACK East 0.80 420 807 621 291 275 507 46 

113 STACK East 0.79 197 970 1221 467 332 554 27 

114 STACK East 0.82 311 875 834 354 330 419 40 

115 STACK East 0.77 348 702 745 346 218 508 41 

116 STACK East 0.80 358 887 723 306 283 498 42 

117 STACK East 0.76 287 832 752 348 256 357 24 

118 STACK East 0.82 328 989 926 529 530 704 101 
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Key Play Rc% Sesquiterpanes1 Tricyclic Terpanes2 Steranes3 Hopanes4 Triaromatic Steroids5 Phenanthrene6 Dibenzothiophene7 

119 STACK East 0.79 315 769 739 377 369 378 57 

120 SCOOP 0.74 131 145 168 48 20 101 13 

121 SCOOP 1.11 ND ND ND ND ND 18 1 

122 SCOOP 1.13 25 ND ND ND 1 46 2 

123 SCOOP 1.05 35 ND ND ND 1 60 3 

124 SCOOP 0.84 434 449 177 30 42 213 12 

125 SCOOP 0.92 237 271 109 11 22 112 10 

126 SCOOP 0.81 101 80 104 7 27 125 12 

127 SCOOP 0.80 100 78 104 11 27 125 9 

128 SCOOP 0.84 101 89 86 10 22 121 9 

129 SCOOP 0.84 85 73 77 8 24 115 10 

130 SCOOP 0.88 99 68 74 6 16 110 9 

131 SCOOP 0.85 107 92 95 6 21 127 10 

132 SCOOP 0.90 548 447 109 17 19 145 12 

133 SCOOP 0.88 86 70 83 6 18 108 9 

134 SCOOP 0.96 298 90 38 3 7 96 8 

135 SCOOP 0.80 106 92 111 10 32 130 13 

136 SCOOP 0.80 81 68 69 7 21 124 11 

137 SCOOP 0.85 68 91 94 16 22 157 14 

138 SCOOP 0.81 74 52 62 6 14 107 8 

139 SCOOP 0.89 71 18 35 3 8 104 8 

140 SCOOP 0.91 61 13 26 2 7 91 7 

141 SCOOP 0.85 83 39 60 5 13 97 8 

142 SCOOP 0.89 76 46 62 5 6 81 0 

143 SCOOP 0.86 65 40 56 5 13 92 8 

144 SCOOP 0.81 91 86 102 9 26 120 11 

145 SCOOP 0.81 109 140 126 11 29 125 12 

146 SCOOP 0.86 101 102 78 7 20 119 10 

147 SCOOP 0.86 145 112 95 7 21 144 10 

148 SCOOP 0.88 90 41 54 6 12 113 9 

149 SCOOP 0.82 75 111 96 40 30 141 15 

150 SCOOP 0.99 57 ND 3 ND 1 56 3 

151 SCOOP 0.91 48 35 24 12 5 53 3 

152 SCOOP 0.82 55 95 93 24 29 174 16 

153 SCOOP 0.94 33 10 9 1 2 49 2 

154 SCOOP 0.83 108 225 206 76 54 246 25 

155 SCOOP 0.84 133 1418 681 933 291 115 25 

156 SCOOP 0.87 322 417 158 26 27 111 8 

157 SCOOP 0.92 245 24 16 2 1 228 16 

158 SCOOP 0.94 276 44 21 3 2 282 21 

159 SCOOP 0.81 105 162 215 62 49 183 31 

160 SCOOP 0.92 295 235 96 8 10 79 8 

161 SCOOP 0.92 315 165 64 6 12 127 12 

162 SCOOP 0.96 391 191 55 8 7 96 8 

163 SCOOP 1.10 107 ND ND ND ND 162 6 

164 SCOOP 1.00 235 29 14 2 1 39 1 

165 SCOOP 0.89 289 237 68 7 8 64 5 

166 SCOOP 0.92 344 426 105 14 11 77 1 

167 SCOOP 1.02 430 153 40 5 6 87 8 

168 SCOOP 0.93 376 512 117 21 20 117 4 

169 SCOOP 0.84 133 366 763 393 433 136 94 

170 SCOOP 0.94 338 386 97 15 12 97 1 

171 SCOOP 0.87 432 850 232 94 37 103 5 

172 SCOOP 0.91 82 5 8 1 ND 12 5 

Table 10. Concentration of several biomarker classes by maturity as defined by Rc%. (1) ∑(BS-1 through BS-8) as 

defined in Figure 69; (2) ∑(C19-39 tricyclic terpanes); (3) ∑(m/z 217) over range of C27-30 steranes; (4) ∑(C27-35 

hopanes); (5) ∑(C20-28 triaromatic steroids); (6) phenanthrene; (7) dibenzothiophene. 
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Figure 49. Rate decline exponent calculations for bicyclic sesquiterpanes, tricyclic terpanes, steranes, and hopanes.  
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Figure 50. Rate decline exponent calculations for triaromatic steranes TA[I+II], phenanthrene, and dibenzothiophene. 

The dibenzothiophene in STACK West strongly deviates from the aggregate trend observed for STACK East and 

SCOOP and expresses a rate decline exponent approximately half.  
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In the aromatic fraction, triaromatic steroid hydrocarbons (II and III) have a rate decline 

exponent of -4.43, almost equal to the rate decline exponent of saturate steranes at -4.48. 

Phenanthrenes (VII) are polycyclic aromatic hydrocarbons composed of three fused benzene rings 

that are formed either during diagenesis or incomplete combustion reactions during forest fires at 

the time of deposition (Marynowski and Filipiak, 2007; Marynowski et al., 2014). Phenanthrenes 

and its methyl homologues exhibit a small rate decline exponent of -0.9. Dibenzothiophenes (VIII) 

are non-polar organosulfur compounds consisting of two benzene rings fused to a central thiophene 

ring. The main STACK East and SCOOP trend shows a rapid decrease in thiophenes with 

increasing maturity with a decline rate exponent of -3.98. Curiously, STACK West oils exhibit a 

much shallower DBT rate decline exponent of -1.39. This result is unexpected because similar 

compounds might be expected to exhibit equivalent rate decline exponents given equivalent 

catalyzing agents, kerogen type, and maturity. Some possible explanation, for example, could be 

novel generation of dibenzothiophene as a byproduct of thermochemical sulfate reduction or 

continued catagenesis in the presence of free sulfur (Orr, 1974, 1977; Sinninghe Damsté and de 

Leeuw, 1990). These and other possible explanations are explored more fully in Chapter VI. 

Summary of Findings 

This study surveyed sixteen thermal maturity parameters ranging from physical 

characteristics (e.g. API gravity, GOR, colloidal instability index), light hydrocarbons (e.g. 

Thompson parameters, Mango parameters), aliphatic biomarkers (e.g. C29 sterane S/(S+R)), and 

non-biomarker aromatics (e.g. methylphenanthrene index). It was discovered that by modeling 

each parameter for covariance with reservoir depth using principal component analysis (PCA), the 

major principal component axes would best describe thermal maturity independent of extant 

factors like organic source, reservoir lithology, or pressure. Modeling maturity in this way benefits 
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from added confidence by seeking an unbiased consensus between several parameters across 

several biomarker classes and maturity metrics while discounting parameters which may be 

heavily affected by source input. Based on this workflow, the colloidal instability index (CII), 

expulsion temperature, and the methylphenanthrene index (MPI-1) most successfully described 

the thermal maturity of STACK and SCOOP oils, and MPI-1 was selected as the representative 

measure of thermal maturity for this study. Additionally, SCOOP oils exhibited similar thermal 

maturities to STACK oils in reservoirs several thousand feet shallower which could result from 

regional uplifting in STACK or that SCOOP is a cooler portion of the basin. 

Critically, the quantitative MPI-1 maturity model allowed for monitoring the concentration 

of source-related compounds with increasing thermal stress. It was discovered that the 

concentrations of compound families decreased exponentially with increased Rc% forming a linear 

fit in semi-log space. The slope of line was termed the rate decline exponent and was observed to 

become more negative with increasing ring count and molecular complexity. The novel 

calculations of rate decline exponents will serve as an independent variable when determining the 

relationship between oils of similar organic facies from different thermal regimes.  

Finally, while this workflow successfully modeled thermal maturity in the STACK and 

SCOOP, it relied on several assumptions regarding limited oil migration, a small variety of source 

depositional environments, and a regular geothermal gradient common in foreland basins. Due to 

the nature of Anadarko Basin and what is known about the STACK/SCOOP unconventional 

resource play, these conditions were met; however, the workflow described in this chapter may 

not be appropriate for small datasets, basins with irregular geothermal gradients, areas of active 

geothermal activity, or datasets representing vastly different depositional environments.  
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V. Organic Facies Determination 

Previous Geochemical Studies of Source Rocks in STACK and SCOOP 

It is widely believed that the principal source rock for the Devonian-Mississippian STACK 

and SCOOP play is the Woodford Shale with the exception of production from the Springer Group 

which may be sourced by a combination of organic-rich intervals in the Caney Shale and Springer 

Group (Goddard) shales (Pearson, 2016; Pearson and Philp, 2019; Symcox and Philp, 2019a and 

b; Abrams and Thomas, 2020). Although there is some evidence of a unique Mississippian 

biomarker signature found in extracts and some oils (Wang and Philp, 1997, 2019; Kim and Philp, 

2001; Atwah, 2015; Atwah et al., 2019, 2020), it is still uncertain if thin, sparse organic-rich shales 

reported in Mississippian strata can meaningfully contribute to reservoir self-sourcing.  

Moreover, the Woodford Shale is comprised of varied depositional environments across 

the Anadarko basin which results in significant regional and vertical heterogeneity in the chemical 

composition and thickness of its constituent members (Miceli Romero and Philp, 2012). For 

example, paleogeographic studies show drastically reduced accommodation space in STACK 

West during Woodford time due to local highs in Hunton topography and proximity to the basin 

margin (Hester et al., 1990; Zhang and Slatt, 2019). This led to nondeposition of the transgressive 

Lower Woodford member and a thinner Middle and Upper Woodford deposited in shallower water 

depths and restricted marine circulation (Logsdon and Brown, 1967; Higley et al., 2014). As a 

result, oil/oil and oil/source-correlation efforts should be cautious when comparing oils to some 

unambiguous, universal Woodford Shale geochemical signature. The following sections review 

the published literature related to the geochemistry of the Woodford and Goddard-Caney shales. 
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Woodford Shale as a Source Rock 

Anoxic sea floor conditions during Woodford deposition prohibited most benthic life but, 

in turn, facilitated excellent preservation of pelagic organic matter, commonly observed between 

1-14% TOC by weight of primarily Type II kerogen (Burruss and Hatch, 1989; Cardott, 2012). 

The Woodford Shale is often divided into Upper, Middle, and Lower members based on well-log 

signatures, palynomorphs, geochemical proxies, and lithofacies associations (Sullivan, 1985; 

Hester et al., 1990; Lambert, 1993; Miceli Romero and Philp, 2012). The Lower Woodford was 

deposited during the initial phase of the Kaskaskia transgression and can contain evidence of 

oxidized or reworked organic matter within a shallow oxygenated water such as Type IV kerogen, 

siliceous logs, rip up clasts, and glauconite (Lambert, 1993; Slatt et al., 2012). The Middle 

Woodford was deposited during the period of maximum flooding and therefore is the most 

widespread member and generally contains the highest TOC (Hester et al., 1990; Lambert, 1993). 

The Upper Woodford was deposited during the highstand systems tract when sea level had begun 

to fall and contains a higher proportion of terrestrial derived and oxidized (Type III and IV) organic 

matter compared to the Middle Woodford (Lambert, 1993). 

In the 1988 Anadarko Basin Symposium, Burruss and Hatch (1989) described the organic 

geochemistry of 104 crude oils and 190 source rock organic extracts from the greater Anadarko 

Basin. Of the three source rocks identified, only the Woodford Shale consistently contained >2% 

TOC by weight and extracted organic matter characteristic of oil-generating formations, including 

GC chromatograms with regularly decreasing abundance of n-alkanes with increasing carbon 

number and little or no odd-carbon predominance. They concluded that essentially all oils 

produced from Silurian through Mississippian reservoirs were sourced from the Woodford Shale.  
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In a separate oil-source correlation study of 30 oils and 10 cores, Jones and Philp (1990) 

found that the Woodford Shale sourced 85% of the Ordovician- through Pennsylvanian-aged 

reservoirs in the Paul’s Valley of Oklahoma (in SCOOP). Of the samples analyzed, the most 

successful biomarker parameters which distinguished Woodford-sourced oils from other organic 

source were higher C30 sterane ratio (C30/C29-sterane=0.17±0.06), lower C24 tetracyclic ratio 

(C24TET/C26TT=0.48±0.08), lower C35-homohopane ratio (C35/C34-homohopane=0.89±0.09), and 

elevated extended tricyclic terpane ratio ([C28-30TT]/[Ts+Tm]=2.33±0.21) (Jones and Philp, 1990). 

In a study of the immature Wyche-1 Woodford core in Pontotoc County of south-central 

Oklahoma just outside of the Anadarko Basin, Miceli Romero and Philp (2012) found primarily 

Type II kerogen deposited in mixed marine environment with both marine and terrigenous organic 

input with some degree of elevated salinity and water column stratification. The Lower and Upper 

Woodford members were deposited under dysoxic to suboxic conditions (Pr/Ph=1.94±0.32) with 

periodic episodes of photic zone anoxia (inferred from aryl isoprenoid ratio, AIR=2.73±0.32). By 

contrast, the Middle Woodford appears to have been influenced by more persistent dysoxia 

(Pr/Ph=1.50±0.19), increased water column stratification and salinity (higher gammacerane 

indices), and persistent photic zone anoxia with periodic water column euxinia (AIR=1.06±0.41). 

Connock (2015) found that the maximum flooding surface within the Wyche-1 core Middle 

Woodford interval contained elevated concentrations of acid catalyzed rearranged compounds like 

diasterenes, diahopanes, and neohop-13(18)-enes interpreted as low rates of deposition rather than 

the abundance of clays (Sinninghe Damsté et al., 2014). However, the low maturity of the core 

was responsible for undersaturated compounds. Karsts and eroded valleys in the underlying 

Hunton formed paleo-lows insulated from upwelling currents which formed a strong chemocline 

with periodic photic zone euxinia (Connock, 2015; Connock et al., 2018; Zhang and Slatt, 2019).  
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Caney-Goddard Shales as Source Rocks 

In their survey of source rocks in the Anadarko Basin, Burruss and Hatch (1989 and 1992) 

observed that Pennsylvanian-sourced oils are geochemically distinct from Woodford-sourced oils. 

They observed that Pennsylvanian-type oils were found primarily in central and southern 

Oklahoma often observed with MCH>n-C7, elevated δ13C, and abundant n-alkanes above n-C15 

(Burruss and Hatch, 1989, 1992). One hypothesis this study explores is that these oils are sourced 

from the Caney or Goddard shales of the Mississippian-Pennsylvanian. 

The Goddard Shale is the basal unit of the Chesterian-Morrowan Springer Group 

sandstones and ranges in thickness from a few hundred up to 2,000 ft thick (Hemish and Andrews, 

2001). In a geochemical survey of oils and source rocks in the Anadarko Basin, Wang and Philp 

(1997) found that the black shales within the Upper Mississippian Springer Group of the southern 

Anadarko Basin were deposited in shallow marine, shoreline, and deltaic environments and 

contain primarily Type III, gas prone kerogen. They argued that the Goddard Shale most closely 

resembles the gas-prone Morrow Fm in the northern Anadarko Basin (Wang and Philp, 1997).  

As rates of oil production from the Springer Group sandstones was rising in SCOOP, 

Pearson (2016) performed a geochemical study on new cores of the Goddard Shale to compare 

with oils produced from the Springer Group sandstones. Similar to the findings in this study, core 

plugs and sidewall core from SCOOP exhibited relatively low thermal maturities for their depth. 

The core plugs from Grady County from depths 12,945-13,045 ft measured Rc% (from Tmax) of 

0.89±0.04%, and sidewall cores in Stephens County from depths 13,040-13,104 ft measured Rc% 

of 0.94±0.06%. Both Goddard Shale extracts and Springer Group oils were dominated by tricyclic 

terpanes, but at least one Goddard Shale extract contained aryl isoprenoids which were absent in 

the Springer Group oils. Moreover, Goddard extracts did not necessarily match Springer-produced 
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oils. For example, Goddard extract Pr/Ph=1.1±0.2 compared to Springer oils 1.4±0.1 and Pr/n-C17 

of 0.6±0.1 compared to 1.0±0.1. Although she concluded the Goddard Shale is the likely source 

for oils in the Springer Group sands, there remains substantial uncertainty around maturity, depth, 

and source potential and whether the Goddard Shale is capable of generating liquid hydrocarbons. 

An alternative source rock to the Goddard Shale is the Chesterian-aged Caney Shale found 

primarily in the SCOOP area. The Caney Shale represents the deep-water organic-rich facies 

deposits distal to the dominant sedimentary inputs to the north of the basin and is composed of a 

series of mudrocks, limestones, and siltstones, as well as bituminous shales containing between 1-

9% TOC of dominantly Type II kerogen and age equivalent to the Barnett Shale of Texas and the 

Fayetteville Shale of Arkansas (Cardott, 2017). The Caney interval is highly argillaceous and 

shows strong development of organic-rich mudrocks towards the south approaching the Ardmore 

Basin (Miller and Cullen, 2018). Unfortunately, commercial production from the Caney Shale in 

the Anadarko Basin is challenged due to its high clay content and ductile rock matrix. 

Outline for Determining Organic Facies 

Biologic ecosystem, depositional environment, and diagenetic history can each result in 

variations in the character of preserved organic matter destined for hydrocarbon generation (Philp 

et al., 1976; Tissot and Welte, 1984; Hunt, 1996). For the purposes of this study, an organic facies 

is defined as a mappable rock unit distinguishable by the character of its organic matter without 

regard to the inorganic aspects of the sediment (Jones, 1984, 1987). In this regard, organic facies 

are not only limited to differences between organic rich sedimentary layers, but also lateral or 

vertical changes in organic matter within a continuous stratigraphic interval. Organic facies can 

also be inferred from the oils they generate because their geochemical patterns are inherited from 
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their respective source rocks. This study attempts to identify and define the organic facies within 

the Devonian-Mississippian petroleum system of the Anadarko Basin by analyzing a large dataset 

of produced oils spanning the entire oil window. Inferences made about source rocks directly from 

produced oils inherently carries uncertainty about migration, comingled sources, migrational 

fractionation, reservoir overprinting, and all other secondary reservoir processes. However, the 

STACK/SCOOP petroleum system is mostly comprised of tight unconventional reservoirs in 

which oils are captured close to their source. Most oils in this study are produced from organic 

lean, low permeability Mississippian reservoirs which severely reduces the risk that migration, oil 

mixing, and organic overprinting affect oil composition. Finally, source-specific analyses are 

normalized its thermal maturity to ensure to organic facies determinations are only capturing the 

effects of source rock depositional and diagenetic history.  

The determination of organic facies is divided into four steps. First, oil samples are 

differentiated broadly by geography (Play Region) and producing formation, shown in Figure 51. 

At this stage, Play Regions and producing formation are merely interpretation guidelines and, 

critically, are not presumptive of organic facies. Second, geochemical metrics are analyzed to 

determine if separate clustering is observed potentially forming homologous sets of oils, or oils 

that may be related to a common organic facies at different thermal maturities. Many metrics, 

especially those that rely on polycyclic biomarkers, are normalized to thermal maturity to ensure 

covariance is source related rather than thermal stress. Third, geochemical metrics which form 

homologous sets of oils are plotted in map view to determine if they form mappable regions with 

discrete transitions therein qualifying as an organic facies. Finally, organic facies are interpreted 

within the context of depositional environment, biologic ecosystem, and burial/diagenetic history.   



 

108 

 

 

 

 

 

 

Figure 51. Map of oil samples by Play Region and producing reservoir which will serve as preliminary guides for 

determining organic facies. 
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Characteristics of the STACK Petroleum System 

Light Hydrocarbons 

The distribution of light hydrocarbons have been used extensively in oil-oil and oil-source 

correlation and has been linked to organic matter type, migration, biodegradation, water washing, 

and secondary processes like sulfate reduction (Thompson, 1979, 1983, 1987 and 1988; Hunt, 

1984; Mango, 1987 and 1990b; Halpern, 1995; Jarvie, 2001). Relative percentage abundances of 

light hydrocarbons are provided in Table 11. Representative light hydrocarbon fingerprints are 

provided in Figure 52 showing differences in major constituents n-C7, MCH, and Tol between 

select Play Regions and producing reservoirs. Mississippian-produced oils generally show similar 

amounts of n-C7 and MCH, while Woodford oils contains higher n-C7 than MCH. STACK West 

oils are significantly enriched in Tol compared to all other Play Regions.

Figure 52. Typical light hydrocarbon fingerprint of oils from Springer (green), Mississippian (blue), and Woodford 

(red) reservoirs. Peaks for n-C7 (n-heptane), MCH (methylcyclohexane), and Tol (Toluene) are highlighted.  



 

 

 

 

1
1
0
 

  P1 N1
6 N1

5 P2 N2
5 P3 

Key Play Region n-C7 MCH Tol ECP 1t2-DMCP 1c2-DMCP 2-MH 3-MH 1,1-DMCP 1c3-DMCP 1t3-DMCP 2,3-DMP 2,4-DMP 2,2-DMP 3,3-DMP 3-EP 

1 STACK West 22.5% 27.5% 15.2% 0.8% 6.5% 1.2% 6.2% 7.9% 1.6% 3.5% 3.6% 2.1% 0.3% 0.3% 0.3% 0.5% 

2 STACK West 23.3% 26.8% 13.7% 0.8% 6.5% 1.2% 6.5% 8.3% 1.7% 3.6% 3.5% 2.2% 0.6% 0.4% 0.3% 0.6% 

3 STACK West 23.2% 27.6% 12.6% 0.8% 7.3% 1.4% 6.0% 8.0% 1.6% 4.0% 3.9% 2.3% 0.3% 0.3% 0.2% 0.5% 

4 STACK West 24.0% 25.7% 13.6% 0.8% 7.1% 1.3% 6.2% 8.0% 1.7% 3.9% 4.0% 2.3% 0.5% 0.3% 0.2% 0.4% 

5 STACK West 23.9% 25.7% 12.9% 0.8% 7.1% 1.3% 6.6% 8.3% 1.7% 4.0% 4.0% 2.4% 0.3% 0.3% 0.2% 0.4% 

6 STACK West 22.2% 25.2% 9.8% 0.8% 9.6% 1.6% 6.0% 8.5% 1.8% 5.2% 5.1% 2.7% 0.4% 0.2% 0.2% 0.6% 

7 STACK West 22.3% 26.3% 10.4% 0.8% 8.5% 1.5% 6.3% 8.7% 1.7% 4.6% 4.6% 2.8% 0.5% 0.3% 0.2% 0.5% 

8 STACK West 23.9% 24.8% 10.8% 0.9% 8.3% 1.4% 6.2% 8.6% 1.8% 4.5% 4.7% 2.8% 0.4% 0.2% 0.2% 0.4% 

9 STACK West 23.2% 29.5% 12.7% 0.9% 5.5% 1.2% 6.9% 8.4% 1.6% 3.2% 3.2% 2.1% 0.5% 0.4% 0.4% 0.5% 

10 STACK West 23.2% 28.7% 16.0% 0.9% 5.1% 1.1% 6.4% 7.8% 1.4% 3.0% 3.0% 1.9% 0.4% 0.4% 0.3% 0.4% 

11 STACK West 22.6% 28.6% 11.9% 0.9% 6.2% 1.2% 6.9% 8.7% 1.7% 3.6% 3.5% 2.3% 0.6% 0.4% 0.3% 0.6% 

12 STACK West 23.9% 28.3% 11.1% 0.9% 6.1% 1.2% 7.1% 8.8% 1.7% 3.6% 3.5% 2.2% 0.3% 0.4% 0.3% 0.6% 

13 STACK West 22.7% 28.9% 13.8% 0.9% 5.3% 1.1% 7.0% 8.5% 1.6% 3.1% 3.1% 2.1% 0.6% 0.5% 0.4% 0.4% 

14 STACK West 24.1% 28.2% 11.0% 0.9% 6.1% 1.2% 7.0% 8.8% 1.6% 3.5% 3.4% 2.4% 0.6% 0.4% 0.4% 0.6% 

15 STACK West 25.6% 25.6% 8.5% 0.9% 7.3% 1.3% 7.1% 9.3% 1.8% 4.1% 4.2% 2.7% 0.6% 0.3% 0.3% 0.5% 

16 STACK West 23.4% 26.3% 9.1% 0.8% 8.3% 1.5% 6.5% 9.1% 1.7% 4.5% 4.7% 2.8% 0.6% 0.3% 0.2% 0.5% 

17 STACK West 30.7% 25.5% 13.3% 1.0% 3.1% 0.9% 7.8% 8.4% 1.3% 2.0% 1.9% 1.9% 0.6% 0.6% 0.4% 0.5% 

18 STACK West 25.0% 27.8% 16.2% 1.0% 4.1% 1.0% 6.4% 7.7% 1.9% 2.6% 2.5% 2.0% 0.5% 0.5% 0.4% 0.4% 

19 STACK West 25.9% 30.1% 15.1% 1.2% 3.7% 1.0% 6.1% 7.7% 1.3% 2.2% 2.2% 2.0% 0.4% 0.3% 0.3% 0.4% 

20 STACK West 26.6% 25.3% 14.1% 1.1% 5.1% 1.1% 6.5% 7.8% 2.1% 3.2% 3.2% 2.2% 0.5% 0.4% 0.3% 0.4% 

21 STACK West 26.0% 25.5% 13.0% 1.0% 4.7% 0.9% 7.4% 8.6% 2.4% 3.0% 3.1% 2.4% 0.7% 0.5% 0.4% 0.4% 

22 STACK West 27.7% 25.4% 13.3% 1.1% 4.5% 0.9% 7.1% 8.2% 2.2% 2.9% 2.9% 2.3% 0.5% 0.5% 0.3% 0.4% 

23 STACK West 27.7% 25.3% 13.3% 1.1% 4.6% 0.9% 7.0% 8.1% 2.2% 2.9% 3.1% 2.3% 0.5% 0.4% 0.3% 0.4% 

24 STACK West 25.9% 25.1% 19.9% 1.4% 3.3% 1.0% 7.0% 7.3% 1.7% 2.0% 2.0% 1.7% 0.5% 0.5% 0.4% 0.3% 

25 STACK West 26.5% 25.6% 17.1% 1.3% 3.5% 0.8% 7.3% 8.6% 1.4% 2.0% 2.1% 2.1% 0.5% 0.4% 0.4% 0.4% 

26 STACK West 25.1% 23.9% 15.7% 1.1% 5.6% 1.1% 6.5% 8.6% 1.9% 3.2% 3.3% 2.5% 0.4% 0.3% 0.2% 0.4% 

27 STACK West 22.9% 25.7% 17.5% 1.0% 5.0% 1.0% 6.6% 8.5% 1.5% 3.1% 3.0% 2.5% 0.6% 0.5% 0.3% 0.4% 

28 STACK West 23.4% 24.2% 14.6% 0.9% 6.3% 1.2% 7.1% 8.9% 1.7% 3.5% 3.3% 2.9% 0.6% 0.4% 0.3% 0.5% 

29 STACK West 23.1% 27.0% 11.9% 0.9% 6.3% 1.1% 7.0% 9.1% 1.6% 3.7% 3.6% 2.8% 0.6% 0.4% 0.3% 0.5% 

30 STACK West 25.6% 23.7% 10.9% 1.0% 7.1% 1.3% 6.8% 9.0% 2.2% 4.1% 4.1% 2.8% 0.4% 0.4% 0.3% 0.5% 

31 STACK West 26.9% 22.1% 9.3% 0.9% 7.4% 1.2% 7.1% 9.7% 2.2% 4.2% 3.9% 3.2% 0.6% 0.3% 0.3% 0.6% 

32 STACK West 23.9% 24.5% 15.1% 1.0% 5.9% 1.2% 6.7% 8.7% 2.1% 3.4% 3.6% 2.6% 0.5% 0.4% 0.3% 0.4% 

33 STACK West 24.2% 25.5% 16.6% 1.2% 4.4% 1.1% 7.0% 8.4% 1.9% 2.8% 2.7% 2.3% 0.6% 0.5% 0.4% 0.5% 

34 STACK West 24.0% 25.4% 13.5% 1.1% 4.5% 1.0% 8.3% 9.8% 1.6% 2.7% 2.8% 2.9% 0.9% 0.6% 0.4% 0.4% 

35 STACK West 26.6% 21.7% 17.6% 1.2% 3.8% 0.9% 7.9% 9.1% 1.8% 2.4% 2.5% 2.3% 0.6% 0.6% 0.5% 0.4% 

36 STACK West 26.1% 13.0% 24.6% 3.5% 1.0% 1.6% 11.2% 10.6% 0.5% 0.5% 0.5% 2.2% 1.3% 1.3% 1.3% 0.7% 

37 STACK West 24.2% 22.9% 23.2% 1.2% 2.6% 0.8% 7.7% 8.5% 1.3% 1.6% 1.6% 2.0% 0.7% 0.6% 0.6% 0.5% 

38 STACK West 25.3% 20.7% 23.6% 1.6% 2.1% 0.9% 8.6% 8.8% 1.1% 1.3% 1.3% 1.9% 0.8% 0.8% 0.7% 0.6% 

39 STACK West 26.9% 21.4% 18.5% 1.5% 2.6% 1.0% 9.1% 9.7% 1.2% 1.6% 1.6% 2.1% 0.9% 0.8% 0.6% 0.5% 

40 STACK West 27.3% 24.2% 12.1% 1.1% 4.0% 0.9% 8.7% 10.0% 1.8% 2.6% 2.5% 2.4% 0.8% 0.6% 0.4% 0.5% 
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  P1 N1
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Key Play Region n-C7 MCH Tol ECP 1t2-DMCP 1c2-DMCP 2-MH 3-MH 1,1-DMCP 1c3-DMCP 1t3-DMCP 2,3-DMP 2,4-DMP 2,2-DMP 3,3-DMP 3-EP 

41 STACK West 26.0% 21.2% 20.5% 1.5% 2.3% 0.9% 9.2% 9.5% 1.1% 1.4% 1.5% 2.0% 1.0% 0.8% 0.7% 0.4% 

42 STACK West 22.1% 18.3% 20.3% 14.0% 1.9% 0.8% 7.5% 7.9% 0.9% 1.2% 1.2% 1.6% 0.7% 0.7% 0.6% 0.4% 

43 STACK West 24.8% 21.3% 21.9% 1.5% 2.4% 0.9% 8.8% 9.4% 1.2% 1.4% 1.5% 2.1% 0.9% 0.8% 0.7% 0.5% 

44 STACK West 26.0% 18.4% 21.3% 1.8% 1.7% 0.9% 10.7% 10.5% 0.9% 1.0% 1.0% 2.1% 1.1% 1.0% 0.9% 0.6% 

45 STACK West 23.5% 21.8% 16.2% 3.5% 1.1% 2.0% 11.8% 12.0% 0.5% 0.6% 0.5% 2.4% 1.2% 1.1% 1.2% 0.9% 

46 STACK West 27.2% 22.6% 18.1% 1.4% 2.1% 0.8% 9.6% 10.1% 0.9% 1.3% 1.2% 1.9% 0.8% 0.7% 0.7% 0.6% 

47 STACK East 27.3% 21.3% 13.7% 2.1% 1.6% 1.2% 12.2% 12.0% 0.8% 1.0% 1.0% 2.0% 1.1% 1.1% 0.8% 0.7% 

48 STACK East 28.4% 20.0% 12.4% 1.9% 1.9% 1.1% 12.7% 12.6% 0.8% 1.2% 1.2% 2.2% 1.2% 1.0% 0.6% 0.7% 

49 STACK East 28.5% 23.4% 11.3% 1.6% 2.3% 1.0% 11.1% 11.5% 1.2% 1.4% 1.5% 2.0% 1.1% 0.9% 0.6% 0.6% 

50 STACK East 27.3% 24.1% 12.3% 1.1% 4.1% 0.9% 8.6% 10.0% 1.8% 2.6% 2.4% 2.3% 0.8% 0.7% 0.4% 0.6% 

51 STACK East 33.4% 22.2% 4.2% 1.3% 3.2% 0.9% 11.2% 12.1% 1.5% 2.1% 2.2% 2.7% 1.2% 0.7% 0.4% 0.6% 

52 STACK East 27.2% 26.1% 8.8% 1.4% 3.2% 1.0% 10.5% 11.3% 1.7% 2.1% 2.0% 2.1% 1.0% 0.7% 0.5% 0.5% 

53 STACK East 28.5% 24.9% 8.1% 1.1% 4.7% 1.0% 8.6% 10.3% 2.2% 3.1% 3.0% 2.5% 0.7% 0.5% 0.3% 0.5% 

54 STACK East 27.7% 23.7% 8.1% 1.0% 4.9% 1.1% 8.9% 10.6% 2.3% 3.4% 3.3% 2.5% 0.9% 0.7% 0.3% 0.7% 

55 STACK East 27.7% 24.4% 6.5% 1.0% 6.5% 1.2% 7.7% 10.0% 2.5% 4.2% 4.2% 2.4% 0.5% 0.4% 0.2% 0.5% 

56 STACK East 30.9% 23.6% 8.7% 1.3% 3.1% 0.3% 10.4% 11.4% 1.4% 2.1% 2.1% 2.2% 1.0% 0.7% 0.4% 0.5% 

57 STACK East 27.0% 25.5% 6.0% 1.0% 6.0% 1.2% 8.3% 10.2% 2.5% 4.0% 3.8% 2.4% 0.9% 0.4% 0.3% 0.6% 

58 STACK East 27.2% 25.4% 6.9% 1.0% 5.8% 1.2% 8.1% 10.0% 2.5% 3.9% 3.8% 2.2% 0.6% 0.4% 0.3% 0.5% 

59 STACK East 26.4% 27.3% 6.1% 1.0% 6.5% 1.4% 6.9% 9.3% 2.5% 4.2% 4.4% 2.2% 0.5% 0.3% 0.5% 0.4% 

60 STACK East 32.4% 22.4% 7.5% 1.4% 3.1% 0.9% 10.6% 11.8% 1.4% 1.9% 2.0% 2.3% 0.9% 0.6% 0.4% 0.6% 

61 STACK East 28.2% 25.7% 9.9% 1.3% 3.9% 1.0% 8.9% 10.3% 1.5% 2.4% 2.5% 2.2% 0.7% 0.5% 0.5% 0.5% 

62 STACK East 26.7% 25.7% 7.5% 0.8% 4.9% 1.2% 9.2% 10.8% 2.1% 3.4% 3.2% 2.2% 0.8% 0.5% 0.3% 0.5% 

63 STACK East 27.4% 26.4% 5.9% 1.7% 4.6% 1.1% 9.5% 10.8% 2.0% 3.1% 3.0% 2.2% 0.8% 0.5% 0.4% 0.6% 

64 STACK East 29.3% 23.8% 10.6% 0.9% 5.3% 1.0% 7.7% 9.2% 1.7% 3.2% 3.2% 2.3% 0.5% 0.4% 0.3% 0.5% 

65 STACK East 25.3% 25.5% 4.9% 0.9% 6.5% 1.2% 8.5% 10.9% 2.8% 4.6% 4.5% 2.3% 0.8% 0.4% 0.3% 0.6% 

66 STACK East 26.2% 23.3% 10.0% 0.9% 5.6% 1.0% 7.6% 9.6% 1.8% 3.4% 5.6% 2.6% 1.0% 0.4% 0.3% 0.6% 

67 STACK East 26.3% 26.8% 4.8% 1.0% 6.4% 1.3% 8.0% 10.3% 2.5% 4.4% 4.0% 2.2% 0.6% 0.4% 0.2% 0.7% 

68 STACK East 30.5% 22.0% 9.3% 1.0% 5.0% 1.0% 9.0% 10.3% 1.5% 3.0% 3.0% 2.4% 0.7% 0.5% 0.3% 0.6% 

69 STACK East 25.5% 25.2% 5.3% 0.9% 7.4% 1.3% 7.8% 10.0% 2.5% 4.6% 4.5% 2.5% 0.8% 0.4% 0.5% 0.5% 

70 STACK East 25.8% 29.1% 4.4% 1.0% 6.9% 1.4% 7.1% 9.3% 2.4% 4.5% 4.4% 2.1% 0.6% 0.3% 0.3% 0.5% 

71 STACK East 33.7% 17.4% 6.5% 1.6% 1.8% 0.8% 13.9% 15.0% 0.7% 1.2% 1.1% 2.8% 1.2% 0.7% 0.5% 1.1% 

72 STACK East 26.3% 23.7% 12.0% 0.9% 5.9% 1.1% 7.0% 9.7% 1.8% 3.3% 3.6% 3.1% 0.7% 0.3% 0.2% 0.2% 

73 STACK East 34.0% 20.0% 6.7% 1.2% 3.1% 0.7% 11.0% 12.9% 1.2% 2.2% 2.3% 2.5% 0.5% 0.5% 0.4% 0.8% 

74 STACK East 24.9% 26.9% 5.3% 0.9% 7.1% 1.2% 7.6% 9.8% 2.8% 4.7% 5.0% 2.1% 0.6% 0.4% 0.4% 0.2% 

75 STACK East 24.7% 24.8% 5.3% 1.0% 8.9% 1.7% 6.9% 9.8% 2.4% 5.3% 5.1% 2.6% 0.5% 0.3% 0.2% 0.7% 

76 STACK East 27.6% 23.3% 7.4% 1.0% 6.3% 1.3% 8.5% 10.3% 1.9% 3.7% 3.7% 2.7% 0.7% 0.5% 0.4% 0.5% 

77 STACK East 27.2% 27.1% 5.9% 1.0% 5.4% 1.2% 8.4% 10.1% 2.4% 3.8% 3.9% 2.0% 0.6% 0.4% 0.3% 0.4% 

78 STACK East 26.7% 27.5% 4.1% 1.0% 5.3% 1.1% 8.9% 10.7% 2.7% 3.8% 3.8% 2.0% 0.9% 0.4% 0.5% 0.5% 

79 STACK East 27.4% 26.5% 5.3% 1.1% 6.7% 1.5% 7.3% 9.9% 2.2% 4.2% 4.3% 2.1% 0.5% 0.3% 0.3% 0.4% 

80 STACK East 27.2% 18.8% 8.7% 0.7% 10.8% 1.8% 6.0% 8.9% 1.6% 5.6% 5.1% 3.0% 0.5% 0.2% 0.1% 1.0% 
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Key Play Region n-C7 MCH Tol ECP 1t2-DMCP 1c2-DMCP 2-MH 3-MH 1,1-DMCP 1c3-DMCP 1t3-DMCP 2,3-DMP 2,4-DMP 2,2-DMP 3,3-DMP 3-EP 

81 STACK East 25.3% 26.4% 5.2% 0.9% 7.1% 1.4% 7.5% 10.2% 2.4% 4.9% 4.8% 2.2% 0.5% 0.3% 0.3% 0.7% 

82 STACK East 27.8% 25.4% 4.7% 0.9% 6.4% 1.2% 8.3% 10.5% 2.5% 4.4% 4.0% 2.2% 0.7% 0.4% 0.2% 0.6% 

83 STACK East 26.7% 25.1% 4.1% 1.0% 7.4% 1.3% 8.1% 10.3% 2.4% 4.6% 4.9% 2.4% 0.5% 0.4% 0.4% 0.3% 

84 STACK East 29.1% 26.2% 6.8% 1.1% 4.0% 1.0% 9.5% 10.8% 1.9% 2.8% 2.9% 2.0% 0.7% 0.5% 0.3% 0.5% 

85 STACK East 25.8% 26.2% 4.2% 1.0% 8.4% 1.6% 7.1% 9.6% 2.3% 4.9% 5.0% 2.2% 0.5% 0.3% 0.3% 0.5% 

86 STACK East 25.5% 25.3% 3.6% 0.9% 8.6% 1.6% 7.3% 10.3% 2.5% 5.5% 5.0% 2.2% 0.5% 0.3% 0.2% 0.8% 

87 STACK East 23.1% 24.1% 7.3% 0.8% 9.7% 1.7% 6.5% 9.5% 2.2% 5.5% 5.6% 2.7% 0.4% 0.3% 0.2% 0.4% 

88 STACK East 29.7% 24.6% 2.7% 0.9% 7.2% 1.5% 7.8% 10.7% 2.3% 4.4% 4.4% 2.3% 0.6% 0.3% 0.4% 0.5% 

89 STACK East 25.7% 26.2% 3.4% 0.9% 8.4% 1.6% 7.4% 9.5% 2.4% 5.2% 5.1% 2.3% 0.6% 0.4% 0.4% 0.5% 

90 STACK East 17.6% 21.8% 18.1% 0.6% 10.4% 1.6% 4.8% 7.5% 2.3% 5.7% 5.6% 2.8% 0.2% 0.2% 0.1% 0.6% 

91 STACK East 26.1% 25.6% 5.2% 0.9% 7.7% 1.4% 7.6% 9.9% 2.3% 4.8% 4.6% 2.1% 0.4% 0.4% 0.2% 0.8% 

92 STACK East 25.6% 25.0% 2.6% 0.8% 8.8% 1.6% 7.4% 10.4% 2.7% 5.5% 5.4% 2.2% 0.6% 0.3% 0.3% 0.6% 

93 STACK East 22.4% 23.5% 8.1% 0.7% 11.0% 1.9% 5.8% 8.8% 1.9% 5.9% 6.1% 2.8% 0.3% 0.2% 0.1% 0.4% 

94 STACK East 26.5% 24.1% 2.6% 0.8% 8.1% 1.4% 7.9% 10.7% 2.9% 5.4% 5.6% 2.3% 0.7% 0.3% 0.3% 0.5% 

95 STACK East 29.2% 23.7% 4.0% 0.9% 6.4% 1.2% 8.8% 10.9% 2.4% 4.4% 4.0% 2.3% 0.7% 0.4% 0.2% 0.5% 

96 STACK East 27.8% 24.2% 4.5% 0.9% 6.7% 1.3% 8.3% 10.6% 2.6% 4.6% 4.4% 2.3% 0.6% 0.4% 0.2% 0.7% 

97 STACK East 27.8% 23.6% 2.2% 0.9% 8.4% 1.5% 7.8% 10.9% 2.5% 5.1% 5.4% 2.4% 0.5% 0.3% 0.4% 0.5% 

98 STACK East 25.5% 24.0% 3.8% 0.9% 8.8% 1.5% 7.5% 10.2% 2.8% 5.6% 5.6% 2.3% 0.5% 0.3% 0.3% 0.5% 

99 STACK East 27.8% 22.7% 2.1% 0.8% 8.6% 1.5% 8.0% 11.1% 2.5% 5.2% 5.2% 2.5% 0.7% 0.3% 0.4% 0.5% 

100 STACK East 23.1% 23.4% 8.6% 0.8% 10.1% 1.8% 6.2% 9.4% 1.8% 5.3% 5.2% 2.9% 0.4% 0.2% 0.1% 0.7% 

101 STACK East 23.5% 22.1% 5.9% 0.8% 11.7% 2.0% 6.2% 9.4% 2.0% 6.3% 6.2% 2.6% 0.4% 0.2% 0.1% 0.5% 

102 STACK East 24.8% 25.3% 4.7% 0.9% 9.2% 1.7% 6.9% 9.5% 2.3% 5.4% 5.5% 2.3% 0.5% 0.3% 0.2% 0.5% 

103 STACK East 26.3% 21.2% 2.2% 0.8% 9.5% 1.6% 8.2% 11.4% 2.6% 5.7% 5.8% 2.6% 0.9% 0.3% 0.4% 0.6% 

104 STACK East 24.7% 22.4% 3.3% 0.8% 8.1% 1.5% 7.3% 10.1% 2.6% 10.4% 5.3% 2.1% 0.5% 0.3% 0.2% 0.5% 

105 STACK East 24.3% 21.7% 3.8% 0.7% 11.3% 2.1% 6.8% 10.1% 2.5% 6.5% 6.0% 2.3% 0.5% 0.2% 0.2% 0.9% 

106 STACK East 23.1% 23.0% 1.9% 0.8% 11.9% 2.2% 6.7% 10.2% 2.6% 6.8% 6.8% 2.3% 0.6% 0.2% 0.3% 0.6% 

107 STACK East 24.6% 22.1% 3.1% 0.8% 10.9% 2.0% 7.1% 10.6% 2.5% 6.4% 6.1% 2.4% 0.3% 0.2% 0.1% 0.8% 

108 STACK East 31.1% 21.0% 4.6% 0.9% 6.5% 1.3% 8.8% 11.6% 2.0% 4.2% 3.9% 2.5% 0.6% 0.3% 0.2% 0.7% 

109 STACK East 31.2% 20.3% 3.8% 0.9% 7.2% 1.3% 8.6% 11.6% 1.9% 4.4% 4.3% 2.4% 0.6% 0.4% 0.2% 0.7% 

110 STACK East 33.7% 20.9% 6.2% 1.2% 4.1% 1.0% 9.8% 11.9% 1.3% 2.6% 2.5% 2.3% 0.9% 0.6% 0.3% 0.7% 

111 STACK East 27.3% 21.9% 3.6% 0.8% 9.2% 1.8% 7.4% 10.6% 2.3% 5.5% 5.6% 2.3% 0.6% 0.3% 0.3% 0.6% 

112 STACK East 26.5% 22.5% 3.2% 0.8% 10.2% 1.9% 7.2% 10.2% 2.2% 5.6% 5.7% 2.4% 0.5% 0.3% 0.2% 0.5% 

113 STACK East 24.6% 20.0% 5.8% 0.8% 11.6% 2.0% 6.6% 10.0% 1.8% 6.3% 5.9% 2.9% 0.4% 0.2% 0.3% 0.7% 

114 STACK East 26.6% 22.4% 5.3% 0.9% 9.5% 1.7% 7.3% 9.9% 2.0% 5.3% 5.0% 2.3% 0.5% 0.3% 0.2% 0.7% 

115 STACK East 27.9% 20.1% 5.0% 0.8% 10.3% 1.8% 7.0% 10.4% 1.5% 5.4% 5.3% 2.8% 0.5% 0.3% 0.2% 0.7% 

116 STACK East 26.1% 22.8% 4.2% 0.8% 9.7% 1.8% 7.3% 10.2% 2.0% 5.5% 5.5% 2.4% 0.6% 0.3% 0.2% 0.6% 

117 STACK East 26.9% 19.9% 3.7% 0.8% 11.1% 2.1% 7.1% 10.7% 1.8% 6.0% 5.9% 2.7% 0.3% 0.3% 0.2% 0.7% 

118 STACK East 26.0% 21.7% 4.9% 0.9% 10.5% 1.9% 7.1% 9.9% 1.8% 5.5% 5.4% 2.5% 0.6% 0.3% 0.2% 0.8% 

119 STACK East 27.6% 20.0% 4.5% 0.9% 10.5% 1.9% 7.4% 10.5% 1.7% 5.4% 5.3% 2.5% 0.4% 0.4% 0.2% 0.8% 

120 SCOOP 34.1% 15.3% 4.8% 0.9% 6.9% 1.4% 9.2% 13.5% 1.1% 4.0% 3.9% 2.9% 0.5% 0.3% 0.2% 0.9% 
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Key Play Region n-C7 MCH Tol ECP 1t2-DMCP 1c2-DMCP 2-MH 3-MH 1,1-DMCP 1c3-DMCP 1t3-DMCP 2,3-DMP 2,4-DMP 2,2-DMP 3,3-DMP 3-EP 

121 SCOOP 28.5% 17.8% 9.4% 2.2% 1.3% 0.9% 14.5% 15.6% 0.5% 0.8% 0.6% 3.5% 1.6% 0.8% 0.8% 1.4% 

122 SCOOP 30.4% 18.4% 9.3% 1.8% 1.5% 0.8% 13.4% 15.1% 0.6% 0.9% 0.8% 3.1% 1.4% 0.7% 0.6% 1.3% 

123 SCOOP 28.0% 21.8% 10.6% 1.8% 1.7% 0.9% 12.5% 13.6% 0.7% 1.1% 1.0% 2.6% 1.3% 0.7% 0.7% 1.0% 

124 SCOOP 20.8% 28.2% 3.8% 1.0% 7.8% 1.5% 8.0% 10.5% 3.7% 5.5% 5.4% 2.0% 0.7% 0.4% 0.2% 0.4% 

125 SCOOP 23.2% 26.0% 7.1% 1.2% 5.9% 1.2% 9.0% 11.2% 2.7% 4.1% 4.0% 2.3% 0.7% 0.5% 0.3% 0.6% 

126 SCOOP 33.7% 17.7% 3.1% 1.1% 5.6% 1.2% 10.0% 14.0% 1.4% 3.4% 3.5% 2.9% 0.8% 0.3% 0.3% 0.8% 

127 SCOOP 34.4% 17.4% 3.6% 1.0% 5.7% 1.2% 10.1% 13.8% 1.2% 3.3% 3.2% 2.8% 0.7% 0.3% 0.3% 1.1% 

128 SCOOP 33.3% 19.1% 2.9% 1.1% 5.0% 1.1% 10.7% 13.9% 1.4% 3.1% 2.9% 2.9% 0.9% 0.4% 0.4% 1.0% 

129 SCOOP 34.1% 18.2% 3.2% 1.1% 5.0% 1.1% 10.6% 14.0% 1.4% 3.1% 2.9% 2.8% 0.9% 0.4% 0.3% 1.0% 

130 SCOOP 35.4% 19.2% 4.4% 1.1% 0.1% 1.0% 11.3% 14.5% 1.5% 3.0% 2.9% 2.9% 0.9% 0.4% 0.3% 1.0% 

131 SCOOP 32.6% 19.7% 3.6% 1.1% 5.0% 1.1% 10.4% 13.3% 1.7% 3.3% 3.3% 2.7% 0.8% 0.4% 0.3% 0.8% 

132 SCOOP 20.7% 26.3% 4.8% 1.1% 7.3% 1.4% 9.6% 10.3% 3.6% 5.6% 5.1% 2.2% 0.7% 0.5% 0.3% 0.6% 

133 SCOOP 33.9% 18.4% 3.7% 1.0% 4.8% 1.1% 10.6% 13.9% 1.4% 3.1% 3.1% 2.8% 0.7% 0.3% 0.3% 0.8% 

134 SCOOP 23.5% 28.2% 5.4% 1.2% 5.2% 1.1% 9.8% 11.4% 2.7% 3.6% 3.6% 2.2% 0.9% 0.6% 0.3% 0.3% 

135 SCOOP 33.2% 17.8% 2.9% 1.0% 6.0% 1.2% 10.1% 13.7% 1.5% 3.7% 3.7% 2.9% 0.8% 0.3% 0.3% 1.0% 

136 SCOOP 34.8% 17.1% 2.7% 1.0% 5.4% 1.2% 10.2% 14.2% 1.3% 3.3% 3.5% 2.9% 0.8% 0.3% 0.3% 0.8% 

137 SCOOP 35.0% 17.8% 3.7% 1.0% 5.4% 1.1% 9.8% 13.7% 1.2% 3.2% 3.1% 2.8% 0.7% 0.3% 0.3% 1.0% 

138 SCOOP 35.0% 17.0% 4.6% 0.9% 4.9% 1.2% 10.2% 13.9% 1.2% 3.0% 3.0% 2.8% 0.7% 0.3% 0.2% 0.9% 

139 SCOOP 35.5% 17.9% 4.6% 1.0% 4.0% 0.9% 10.8% 13.8% 1.2% 2.6% 2.6% 2.8% 0.8% 0.3% 0.2% 1.0% 

140 SCOOP 36.2% 17.1% 4.1% 1.0% 3.8% 0.9% 11.1% 14.4% 1.2% 2.5% 2.5% 2.8% 0.9% 0.3% 0.2% 1.1% 

141 SCOOP 35.8% 16.6% 3.1% 0.9% 5.2% 1.1% 10.6% 14.5% 1.1% 2.9% 2.9% 2.8% 0.8% 0.3% 0.3% 1.0% 

142 SCOOP 35.4% 16.7% 4.4% 0.9% 4.6% 1.0% 10.6% 14.4% 1.2% 2.9% 2.8% 2.9% 0.8% 0.3% 0.3% 1.0% 

143 SCOOP 35.5% 16.2% 3.4% 0.9% 4.9% 1.1% 10.6% 14.7% 1.2% 3.0% 3.1% 3.0% 0.9% 0.3% 0.3% 0.9% 

144 SCOOP 34.1% 16.3% 4.0% 0.9% 6.2% 1.3% 9.6% 14.1% 1.3% 3.6% 3.6% 2.9% 0.7% 0.3% 0.3% 1.1% 

145 SCOOP 32.7% 18.0% 3.4% 0.9% 6.4% 1.3% 9.5% 13.4% 1.5% 3.9% 4.1% 2.7% 0.7% 0.3% 0.3% 0.8% 

146 SCOOP 33.2% 18.4% 3.9% 0.9% 5.6% 1.1% 9.9% 13.4% 1.6% 3.6% 3.7% 2.7% 0.6% 0.3% 0.3% 0.7% 

147 SCOOP 32.0% 20.4% 3.7% 0.9% 5.6% 1.1% 9.7% 12.6% 1.9% 3.7% 3.7% 2.6% 0.7% 0.3% 0.3% 0.8% 

148 SCOOP 35.3% 17.4% 3.7% 1.0% 4.6% 1.0% 10.5% 14.2% 1.3% 2.9% 3.0% 2.8% 0.8% 0.3% 0.3% 0.8% 

149 SCOOP 36.2% 16.9% 4.4% 0.9% 4.9% 1.1% 10.4% 13.8% 1.1% 2.7% 2.6% 2.9% 0.7% 0.3% 0.3% 0.9% 

150 SCOOP 33.5% 19.6% 7.2% 1.3% 2.5% 0.8% 11.9% 13.4% 1.0% 1.6% 1.5% 2.7% 1.1% 0.6% 0.4% 0.9% 

151 SCOOP 38.3% 19.2% 6.3% 1.4% 2.9% 0.9% 10.0% 12.4% 0.8% 1.6% 1.7% 2.4% 0.7% 0.3% 0.3% 0.9% 

152 SCOOP 37.2% 15.8% 4.7% 0.9% 4.9% 1.0% 10.2% 14.1% 0.9% 2.7% 2.5% 2.9% 0.7% 0.3% 0.3% 1.1% 

153 SCOOP 38.5% 15.4% 5.2% 1.1% 3.0% 0.8% 11.7% 14.6% 0.7% 1.7% 1.6% 2.8% 0.9% 0.4% 0.3% 1.3% 

154 SCOOP 33.5% 18.7% 5.5% 0.9% 5.3% 1.1% 9.6% 12.9% 1.4% 3.1% 3.1% 2.6% 0.8% 0.3% 0.3% 0.8% 

155 SCOOP 17.6% 17.4% 1.7% 0.9% 16.1% 2.9% 6.3% 11.0% 3.6% 9.6% 9.3% 2.3% 0.2% 0.2% 0.2% 0.8% 

156 SCOOP 19.1% 29.6% 4.5% 1.0% 7.7% 1.6% 7.8% 10.2% 3.8% 5.7% 5.5% 1.9% 0.5% 0.4% 0.3% 0.4% 

157 SCOOP 14.2% 36.1% 27.0% 1.7% 2.3% 1.1% 5.2% 5.8% 0.9% 1.4% 1.5% 1.2% 0.5% 0.4% 0.3% 0.3% 

158 SCOOP 13.8% 36.1% 26.3% 1.6% 2.4% 1.1% 5.5% 6.2% 1.0% 1.5% 1.5% 1.3% 0.5% 0.5% 0.4% 0.3% 

159 SCOOP 35.1% 16.0% 5.2% 0.8% 6.6% 1.3% 9.1% 13.6% 0.9% 3.3% 3.5% 2.8% 0.6% 0.2% 0.2% 0.8% 

160 SCOOP 19.3% 31.0% 6.7% 1.2% 6.0% 1.2% 9.1% 10.2% 3.2% 4.2% 4.2% 1.8% 0.7% 0.6% 0.3% 0.3% 



 

 

 

 

1
1
4
 

  P1 N1
6 N1

5 P2 N2
5 P3 

Key Play Region n-C7 MCH Tol ECP 1t2-DMCP 1c2-DMCP 2-MH 3-MH 1,1-DMCP 1c3-DMCP 1t3-DMCP 2,3-DMP 2,4-DMP 2,2-DMP 3,3-DMP 3-EP 

161 SCOOP 23.2% 26.9% 5.6% 1.2% 5.4% 1.1% 9.7% 11.8% 2.9% 3.8% 3.8% 2.4% 0.8% 0.5% 0.3% 0.5% 

162 SCOOP 20.7% 30.7% 6.3% 1.3% 5.5% 1.2% 9.3% 10.3% 3.0% 3.8% 3.7% 1.9% 0.9% 0.7% 0.3% 0.4% 

163 SCOOP 12.1% 25.5% 33.2% 2.7% 1.4% 1.2% 8.4% 8.1% 0.6% 0.9% 0.9% 1.7% 1.1% 0.9% 0.7% 0.5% 

164 SCOOP 21.6% 28.3% 9.2% 1.5% 4.1% 1.0% 10.5% 10.9% 2.2% 2.8% 2.9% 2.0% 1.2% 0.9% 0.5% 0.4% 

165 SCOOP 21.5% 29.6% 6.4% 1.2% 5.7% 1.2% 9.0% 10.2% 3.1% 4.0% 4.0% 2.0% 0.7% 0.6% 0.4% 0.4% 

166 SCOOP 21.4% 29.2% 4.6% 1.0% 7.0% 1.2% 8.1% 10.2% 3.3% 4.8% 4.9% 2.0% 0.8% 0.5% 0.3% 0.6% 

167 SCOOP 21.3% 30.6% 6.5% 1.3% 5.0% 1.2% 9.7% 10.3% 2.7% 3.5% 3.5% 1.9% 1.0% 0.7% 0.4% 0.4% 

168 SCOOP 20.6% 27.6% 6.8% 1.0% 7.2% 1.4% 7.7% 10.0% 3.6% 5.1% 5.0% 2.2% 0.6% 0.5% 0.3% 0.4% 

169 SCOOP 29.9% 14.6% 4.9% 0.9% 11.2% 2.2% 7.7% 12.7% 0.8% 5.6% 5.3% 2.6% 0.4% 0.2% 0.1% 1.0% 

170 SCOOP 21.8% 28.7% 6.2% 1.0% 6.5% 1.3% 8.1% 10.1% 3.2% 4.7% 4.6% 1.9% 0.7% 0.5% 0.3% 0.4% 

171 SCOOP 20.6% 27.8% 4.5% 0.9% 8.7% 1.6% 6.9% 9.9% 3.9% 6.0% 5.9% 1.9% 0.6% 0.4% 0.2% 0.3% 

172 SCOOP 31.0% 21.9% 10.7% 2.0% 2.1% 1.0% 10.9% 11.9% 0.8% 1.3% 1.2% 2.4% 1.0% 0.5% 0.4% 0.9% 

Table 11. Light hydrocarbon isomers of heptane used in this chapter as a percentage of their sum. Compound identification shown previously in Figure 35 and 

Table 7. Groupings with labels “P” and “N” at top of table refer to light hydrocarbons which share a common parent or formation mechanism within the hydrocarbon 

kinetic scheme as described in Figure 55 and in the adjoining text.
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The relative abundance of n-C7, MCH, and Tol as a percentage of their sum is plotted as a 

ternary diagram in Figure 53. Woodford-produced oils contain slightly more n-C7 than 

Mississippian-produced oils but cluster primarily by Play Region. Oils in STACK West are 

notably enriched in Tol compared to SCOOP and STACK East, sometimes quantified by the 

parameter “aromaticity” and defined in this study as the peak area ratio of Tol to the sum of n-C7 

and MCH. Aromaticity in this study was modified from B-Aromaticity (Tol/n-C7) defined in 

Thompson (1983). In map view, a NE-SW trending transition from low (<0.10) to high (>0.20) 

aromaticity is observed in central Blaine and northwestern Kingfisher counties (Figure 54).  

Figure 53. Ternary diagram showing the percent abundances of n-C7, MCH, Tol as a percentage of the sum of the 

three. STACK West oils are comparably enriched in Tol while SCOOP has two distinct clusters separating Springer 

production from Mississippian/Woodford production based on the relative abundances of n-C7 and MCH. 
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Figure 54. Map of aromaticity values across STACK and SCOOP. STACK West oils contain elevated aromaticity 

compared to the other Play Regions with the approximate transition occurring in central Blaine and northwest 

Kingfisher counties. Aromaticity=Tol/(n-C7+MCH) which is modified from B-Aromaticity (Thompson, 1983). 
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Generally, oils with high aromaticity values have been associated with Type III organic 

matter rich in cellulose and lignin (Connan and Cassou, 1980; Tissot and Welte, 1984). However, 

free sulfur radicals (e.g., HS-, HSx) present during diagenesis and catagenesis have been shown to 

facilitate the dehydrogenation (oxidation) of saturate hydrocarbons which can form Tol and other 

alkyl-benzenes through the cyclization and aromatization of n-alkanes (Orr, 1974; Sinninghe 

Damsté et al., 1991, 1993). In the Williston Basin, oils generated from the sulfur-rich Madison 

Group have much higher aromaticity values (0.60±0.08, n=38) compared to oils produced from 

the Bakken marine shale (0.14±0.01, n=19) despite no evidence of terrigenous organic matter input 

(Jarvie, 2001). By contrast, low aromaticity can be indicative of post-generative processes like 

water washing, migrational fractionation, seal leakage, or long distance migration (Leythaeuser et 

al., 1983; Thompson, 1988; Halpern, 1995; Jarvie, 2001). Woodford-sourced oils in Kansas and 

on the Cherokee Platform often lack observable Tol peaks as a result of long-distance migration 

out of the Anadarko Basin (Burruss and Hatch, 1989; Atwah et al., 2019; Tamborello, 2020). 

Light hydrocarbons can also be grouped by the kinetic mechanisms governing their 

formation. Mango (1990a) observed that several light hydrocarbon groups are always observed in 

proportional amounts similar to what is observed in steady-state kinetic equilibriums between 

parent-daughter pairs. If light hydrocarbons are formed in steady-state, then the ratio of reactants 

to products will be controlled by temperature, pressure, and the presence of catalyzing agents 

(Mango, 1992, 1994, 1997). The ratio between parent-daughter pairs would remain proportional 

for source-related oils, but possibly different from oils from a different source. For these purposes, 

“source-related” refers to oils generated and expelled from the same source rock with similar 

structural kerogens at different stages of maturity. The kinetic scheme for isomers of heptane 

organized by ring closure during intermediate steps of formation is shown in Figure 55. 
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Light hydrocarbons are rarely preserved in source rock extracts, but the kinetic controls on 

light hydrocarbons can still facilitate oil/oil correlation (e.g. ten Haven, 1996; Obermajer et al., 

2000; Jarvie, 2001). For example, an oil enriched in methylhexanes would indicate a kinetic 

preference for three-ring closures since the skeletal isomerization to branched isomers proceeds 

through three-carbon ring intermediates (i.e. cyclopropane; Mango, 1987). Steady-state reactions 

occur in both directions, so the concentration of each parent-daughter pair is controlled both by 

their respective rate of formation but also the rate of conversion to other intermediaries or products.  

Figure 55. A schematic representation of the light hydrocarbon kinetic model at C7 by the number of carbon ring in 

the intermediate structure. The connecting lines represent two-way reactions controlled by steady state catalysis rather 

than thermolysis. At steady state, the abundance of each grouping is controlled by temperature, pressure, and 

catalyzing agents. Groups “P” indicate parent compounds or are formed by opening three-ring closure. Group “N” are 

cyclic compounds where the superscript gives the believed number of carbons in ring closure of the intermediary 

product. Recreated and modified from Mango, 1994. 
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The most striking examples of Mango’s kinetic scheme (see Figure 55) relates 2-MH and 

3-MH and their 2,3-DMP and 2,4-DMP daughter products in along 3-ring closure/opening 

pathway (P2P3), known as K1, which remains constant near unity in Equation 11 (Mango, 1987): 

 

The Mango K1 crossplot formed by plotting the numerator against the denominator for all STACK 

data (Figure 56) shows strong invariance around unity. STACK West oils tend to plot slightly 

above unity while STACK East oils tend to plot below suggesting that K1 may be an effective 

parameter in this dataset for successfully differentiating oils derived from different organic facies. 

In some cases, sets of oils with K1 values above unity have been associated with catalytic 

conditions conducive to thermochemical sulfate reduction (TSR) and the production of H2S gas 

(ten Haven, 1996; Peters and Fowler, 2002). 

Figure 56. Mango K1 crossplot showing general invariance in isoheptanes. STACK West generally plots above the 

line K1=1 and STACK East generally plot below. The term K1 may be effective for oil-oil correlation in this dataset. 

Equation 11 
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Mango (1990a) predicted a second term K2 which would theoretically remain constant 

between source-related oils. In steady-state, the ratio of rate constants from a common parent is 

proportional to the ratio of their products, so if the rate constants for forming rings of the same 

carbon number are proportional then the ratio of their respective products would share the same 

proportionality. If true, then of K2 should reflect the catalytic activity in a source rock and can be 

calculated whereby the methylhexanes in P2, the dimethylpentanes in P3, and the 

dimethylcyclopentanes in N2
5 are dependent variables as shown in Equation 12: 

 

The plot of K2 for all STACK oils is shown in Figure 57 showing two clusters of STACK oils by 

Play Region. Interestingly, proportionality in K2 is not observed, possibly because of catalyzing 

substrates from other geologic materials like clays, metals, and sulfides; however, the ratio does 

appear effective for differentiating between STACK East and West oils.  

Figure 57. Crossplot derivation of the kinetic constant K2 shows two clusters of STACK oils primarily along the X-

axis representing N2
5+P2 as a percentage of light hydrocarbon peak area. The theorized invariance of K2 is not 

observed. P3=2,3-DMP+2,4-DMP+3,3-DMP+3-EP; N2
5=1,1-DMCP+1c3-DMCP+1t3-DMCP; P2=2-MH+3-MH. 

Equation 12 
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Alternatively, it is possible to derive a selectivity ratio between daughter products sourced 

from a common parent as long as their respective rate constants are free to change independently 

with reaction conditions. Mango (1990a) proposed a “Ring Preference” ratio defined as P2 over 

(P3/N2
5) to measure the carbon number preference of the rings formed by intermediary compounds 

as parent methylhexanes (P2) compounds react to form three-ring (P3) and five-ring (N2
5) daughter 

products. Ring Preference has proven useful to discriminate between homologous sets of oils (e.g. 

ten Haven, 1996; Obermajer et al., 2000; Huang et al., 2014). Parent-daughter selectivity for 

methylhexanes (P2) for all STACK oils is shown in Figure 58 and shows two trends which cluster 

according to Play Region and show no separation by producing reservoir. In general, oils from 

STACK West exhibit a preference for the three-ring closure daughter product pathway (P3) 

compared to STACK East. Based on these findings, the measure of P2 daughter selectivity may be 

an effective correlation parameter for discerning homologous sets of oil in STACK. 

Figure 58. Parent-daughter selectivity for 2-MH and 3-MH (P2) based on kinetic scheme in Figure 55. STACK West 

shows a preference for branched isoalkanes in P3, while STACK East exhibits a preference for cyclopentanes in N2
5. 

P2=2-MH+3-MH; P3=2,3-DMP+2,4-DMP+3,3-DMP+3-EP; N2
5=1,1-DMCP+1c3-DMCP+1t3-DMCP. 
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The kinetic model can be summarized more broadly by summing each of the 3-ring, 5-ring, 

and 6-ring closure reaction products into a single ternary diagram (Figure 59). Again, STACK oils 

appear to cluster separately based primarily on Play Region. STACK West oils have a higher 

fractional abundance of 6-ring closure compounds due to its elevated toluene concentration in 

exchange for lower fractional abundance of 5-ring closure compounds. Interestingly, all STACK 

oils have approximately equal 3-ring closure compounds except Woodford-produced oils 

generally have higher amounts compared to Mississippian-produced oils across both Play Regions.  

Figure 59. Ternary diagram showing the fractional abundance of ring preference (RP) products for all STACK oils. 

Oils in STACK West generally exhibit higher Six RP compared to STACK East oils, likely driven by higher 

abundances of Tol. Six RP=MCH+Tol; Five RP=ECP+1t2-DMCP+1c2-DMCP+1,1-DMCP+1c3-DMCP+1t3-

DMCP; Three RP=2-MH+3-MH+2,3-DMP+2,4-DMP+2,2-DMP+3,3-DMP+3-EP. 
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In summary, light hydrocarbon ratios in STACK appear to form clusters representative of 

two separate homologous sets of oils distinguished primarily by Play Region. STACK West oils 

are substantially enriched in toluene compared to STACK East oils by up to a factor of five, and a 

map of aromaticity shows the transition between low- and high-aromaticity oils occurs in central 

Blaine and northwestern Kingfisher counties. The transition to higher toluene concentration in 

STACK West oils may correspond to the presence of non-mineral sulfur which could act as a 

catalyst for dehydrogenation reactions resulting in cyclization and aromatization of paraffins. If 

true, the enrichment of Tol in STACK West may reflect changing sedimentation or depositional 

environments between the two Play Regions, especially in the amount of sedimentary iron which 

is a sulfur sink during early diagenesis. This possibility will be explored more fully in Chapter VI. 

STACK oils also form separate clusters in source-parameters derived from the kinetics of 

light hydrocarbon formation. The catalytic processes which govern carbocyclic ring-closure in 

steady state are strongly affected by the presence of metals, its oxidation state, and the structures 

of the surrounding ligands. Given the mineral complexity of many unconventional petroleum 

systems, it is reasonable to anticipate catalytic activity from a number of transition metals in 

sedimentary rocks, including Ni, V, Ti, Fe, Mo, Cr, and Co. Therefore the kinetic scheme which 

dictates the composition of light hydrocarbons is likely an indicator of lithology. Kerogen structure 

could also play a key role in controlling the light hydrocarbon formation by imposing enzyme-like 

kinetic preferences on them, thereby directing the flow of reaction along a specific carbocyclic 

pathway. Whichever explanation is true, the relative abundance of light hydrocarbons in STACK 

oils are probably controlled by source-specific variables linked directly to depositional 

environment and organic matter type. Light hydrocarbons will be an important variable when 

determining the organic facies in STACK at the end of this section.  
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Steranes 

Sterols are essential components of the 

cell membranes of all eukaryotic life and have 

been studied extensively in microalgae, yeasts, 

fungi, protozoans, and microheterotrophs 

(Mackenzie et al., 1982; Volkman, 1986, 

2003). There are four main families of 4-

desmethyl sterols containing between C27-C30 

carbon skeletons depending on the length of 

the side chain at the C-24 position (Figure 60). 

The remarkable diversity in microalgal classes, genera, and species combined with the long 

evolutionary history of most microalgae has resulted in an equally diverse sterol distribution in the 

biosphere (Huang and Meinschein, 1979; Seifert and Moldowan, 1981; Raederstorff and Rohmer, 

1984; Summons and Capon, 1991; Dahl et al., 1992; Volkman et al., 1994; Volkman, 2003).  

While sterols are ubiquitous among eukaryotes, it can be difficult to assign any particular 

sterol to a single group of organisms because identical hydrocarbon skeletons may be synthesized 

by phylogenetically diverse taxa. In modern biomass, sterols can exhibit taxonomically specific 

patterns of unsaturation and functional groups, but the diagenetic transformation of sterols into 

steranes causes many of these identifying features to be lost. It is generally believed that C27 and 

C28 sterols are derived mainly from algae, while C29 sterols are more typically associated with land 

plants (Huang and Meinschein, 1979; Philp, 1985; Volkman, 1986), but there are numerous 

exceptions to this rule including several microorganisms which produce multiple types of sterols 

(i.e. Volkman, 2003). Intuitively, the prominence of C29 sterols in pre-Silurian oils would suggest 

Figure 60. Generalized carbon skeleton of a C29 sterol. 

Additional methyl groups can be found at positions C-

4, C-14, and C-23. Methyl, ethyl, or propyl groups 

occur at position C24 (denoted by R). Double bonds 

may be found at C-5, C-7, C-8, C-8(14), C-22, C-24, C-

24(28), and C-25(27). From Volkman (2003). 
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other sources have existed long before higher plant life evolved (Grantham and Wakefield, 1988). 

In fact, one of the two main classes of green algae, Prasinophyceae, is a major constituent of marine 

phytoplankton and produces abundant C29 sterols (Volkman, 1986; Volkman et al., 1994), and at 

least one study of modern coastal waters concludes that most present-day C29 sterol is actually of 

marine origin (Pearson and Eglinton, 2000). Given the vast diversity of microorganisms in modern 

and ancient oceans, sterol data should be interpreted as a unique fingerprint of benthic and pelagic 

life within oceanic ecosystems and cautiously applied as a deterministic measure of depositional 

environment, lithology, or the metabolic processes of its living inhabitants. 

Huang and Meinschein (1979) observed that the relative abundances of C27-C29 sterols 

could act as a biodiversity fingerprint for ancient ecosystems, and hypothesized that the 

distribution of C27-C29 steranes might mirror their sterol precursors because the diagenetic changes 

are mostly limited to the hydrogenation of double bonds and defunctionalization of the hydroxyl 

group at C-3. Mackenzie et al. (1983) argued that the relative abundance of C27-C29 steranes when 

measured by high resolution GC-MS would greatly improve efforts to determine organic matter 

type and source rocks. Moldowan et al. (1985) advanced this hypothesis by developing a ternary 

diagram populated by the relative abundance of 5α(H),14α(H),17α(H) 20R C27-C29 steranes with 

interpreted zones for various depositional environments, but there is significant overlap between 

the designated zones which limit its applicability.  

The recreation of the ternary diagram containing the relative abundance of C27-29 regular 

steranes is illustrated in Figure 61 using sterane data in Table 12. Similar to many previously 

reviewed light hydrocarbon parameters, sample oils in STACK cluster primarily by Play Region, 

and producing reservoir is not a determinative factor in regular sterane distribution suggesting oils 

in Woodford and Mississippian reservoirs may share a common source.   
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Key Play Region Rc% %C27 Sterane1 %C28 Sterane2 %C29 Sterane3 C30 Sterane Index4 Diasteranes/Total Steranes5 

1 STACK West 0.81 0.29 0.19 0.52 0.03 0.41 

2 STACK West 0.80 0.30 0.18 0.52 0.03 0.40 

3 STACK West 0.81 0.29 0.19 0.53 0.03 0.49 

4 STACK West 0.82 0.23 0.21 0.57 0.04 0.44 

5 STACK West 0.81 0.29 0.19 0.52 0.03 0.43 

6 STACK West 0.81 0.32 0.18 0.50 0.06 0.49 

7 STACK West 0.79 0.22 0.22 0.56 0.04 0.37 

8 STACK West 0.78 0.32 0.18 0.50 0.04 0.46 

9 STACK West 0.80 0.26 0.21 0.53 0.04 0.45 

10 STACK West 0.83 0.31 0.21 0.48 0.04 0.39 

11 STACK West 0.79 0.24 0.20 0.55 0.04 0.39 

12 STACK West 0.82 0.30 0.20 0.50 0.03 0.42 

13 STACK West 0.80 0.30 0.19 0.52 0.03 0.40 

14 STACK West 0.82 0.30 0.20 0.50 0.04 0.42 

15 STACK West 0.80 0.32 0.19 0.49 0.05 0.45 

16 STACK West 0.78 0.34 0.18 0.47 0.04 0.35 

17 STACK West 0.91 0.28 0.19 0.53 0.03 0.50 

18 STACK West 1.05 0.28 0.19 0.53 0.04 0.63 

19 STACK West 0.91 0.31 0.18 0.51 0.04 0.47 

20 STACK West 1.01 0.38 0.19 0.43 0.05 1.00 

21 STACK West 1.05 0.44 0.15 0.40 0.04 0.87 

22 STACK West 1.32 0.38 0.15 0.47 0.13 0.99 

23 STACK West 1.41 NA NA NA NA NA 

24 STACK West 1.18 NA NA NA NA 0.99 

25 STACK West 1.01 0.40 0.16 0.44 0.07 0.88 

26 STACK West 0.96 0.41 0.16 0.43 0.09 0.95 

27 STACK West 0.83 0.25 0.21 0.54 0.03 0.50 

28 STACK West 0.83 0.25 0.19 0.55 0.05 0.46 

29 STACK West 0.83 0.26 0.20 0.54 0.04 0.41 

30 STACK West 1.00 0.35 0.19 0.46 0.04 0.79 

31 STACK West 0.97 0.33 0.23 0.44 0.06 0.84 

32 STACK West 0.98 0.29 0.23 0.48 0.05 0.62 

33 STACK West 1.01 0.42 0.19 0.39 0.06 0.94 

34 STACK West 0.99 0.35 0.19 0.46 0.05 0.99 

35 STACK West 1.02 0.38 0.22 0.40 0.11 0.99 

36 STACK West 1.43 NA NA NA NA NA 

37 STACK West 0.86 0.29 0.23 0.49 0.04 0.62 

38 STACK West 0.92 0.32 0.22 0.46 0.05 0.74 

39 STACK West 0.96 0.39 0.13 0.48 0.04 0.86 

40 STACK West 0.87 0.38 0.18 0.44 0.05 0.78 

41 STACK West 0.95 0.43 0.12 0.45 0.08 0.55 

42 STACK West 0.98 0.32 0.11 0.57 0.04 0.99 

43 STACK West 0.90 0.38 0.15 0.47 0.06 0.77 

44 STACK West 1.32 0.43 0.25 0.32 0.03 0.63 

45 STACK West 1.28 NA NA NA NA NA 

46 STACK West 1.33 0.35 0.18 0.47 0.10 0.83 

47 STACK East 1.11 NA NA NA NA NA 

48 STACK East 1.03 NA NA NA NA NA 

49 STACK East 1.12 NA NA NA NA NA 

50 STACK East 0.89 0.29 0.22 0.49 0.05 0.66 

51 STACK East 1.03 0.54 0.14 0.32 0.06 0.98 

52 STACK East 1.03 NA NA NA NA NA 

53 STACK East 0.96 0.39 0.19 0.43 0.08 0.99 

54 STACK East 0.89 0.35 0.22 0.43 0.10 0.99 

55 STACK East 0.90 0.35 0.21 0.44 0.05 0.99 

56 STACK East 1.09 0.68 0.24 0.08 0.10 0.89 

57 STACK East 0.93 0.37 0.15 0.48 0.11 0.99 

58 STACK East 0.94 0.34 0.22 0.44 0.09 0.99 

59 STACK East 0.91 0.35 0.25 0.40 0.07 0.86 

60 STACK East 1.05 NA NA NA NA 0.99 

61 STACK East 0.84 0.28 0.23 0.50 0.05 0.62 

62 STACK East 0.98 0.42 0.24 0.34 0.09 0.99 

63 STACK East 0.98 0.40 0.20 0.40 0.12 0.99 

64 STACK East 0.83 0.31 0.21 0.48 0.04 0.71 
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Key Play Region Rc% %C27 Sterane1 %C28 Sterane2 %C29 Sterane3 C30 Sterane Index4 Diasteranes/Total Steranes5 

65 STACK East 0.94 0.36 0.26 0.38 0.11 0.99 

66 STACK East 0.83 0.28 0.21 0.51 0.04 0.53 

67 STACK East 0.87 0.35 0.21 0.44 0.09 0.99 

68 STACK East 0.82 0.31 0.20 0.49 0.05 0.74 

69 STACK East 0.84 0.32 0.23 0.45 0.06 0.68 

70 STACK East 0.88 0.36 0.23 0.41 0.08 0.99 

71 STACK East 1.21 NA NA NA NA NA 

72 STACK East 0.79 0.32 0.22 0.46 0.05 0.63 

73 STACK East 1.12 NA NA NA NA 0.86 

74 STACK East 0.90 0.36 0.25 0.39 0.09 0.79 

75 STACK East 0.81 0.32 0.28 0.41 0.06 0.68 

76 STACK East 0.79 0.27 0.24 0.48 0.05 0.66 

77 STACK East 0.99 0.43 0.22 0.34 0.10 0.91 

78 STACK East 0.97 0.54 0.17 0.29 0.10 0.84 

79 STACK East 0.84 0.35 0.23 0.42 0.06 0.57 

80 STACK East 0.84 0.33 0.20 0.47 0.04 0.58 

81 STACK East 0.85 0.37 0.29 0.34 0.08 0.74 

82 STACK East 0.89 0.35 0.19 0.46 0.12 0.92 

83 STACK East 0.85 0.35 0.26 0.39 0.08 0.60 

84 STACK East 1.03 0.31 0.24 0.46 0.09 0.94 

85 STACK East 0.86 0.39 0.28 0.33 0.07 0.89 

86 STACK East 0.87 0.28 0.26 0.46 0.07 0.78 

87 STACK East 0.83 0.32 0.27 0.41 0.05 0.69 

88 STACK East 0.87 0.31 0.25 0.44 0.06 0.75 

89 STACK East 0.85 0.35 0.27 0.38 0.08 0.62 

90 STACK East 0.78 0.34 0.23 0.43 0.06 0.39 

91 STACK East 0.85 0.29 0.28 0.43 0.07 0.66 

92 STACK East 0.83 0.36 0.24 0.40 0.09 0.71 

93 STACK East 0.76 0.31 0.23 0.46 0.05 0.53 

94 STACK East 0.85 0.32 0.24 0.43 0.07 0.99 

95 STACK East 0.87 0.29 0.18 0.53 0.09 0.90 

96 STACK East 0.89 0.30 0.24 0.46 0.08 0.80 

97 STACK East 0.85 0.28 0.23 0.49 0.07 0.71 

98 STACK East 0.85 0.33 0.21 0.47 0.09 0.74 

99 STACK East 0.84 0.32 0.20 0.48 0.09 0.74 

100 STACK East 0.76 0.29 0.21 0.49 0.06 0.35 

101 STACK East 0.78 0.30 0.23 0.47 0.06 0.44 

102 STACK East 0.83 0.30 0.22 0.48 0.07 0.65 

103 STACK East 0.83 0.33 0.25 0.42 0.07 0.68 

104 STACK East 0.86 0.36 0.23 0.41 0.08 0.72 

105 STACK East 0.81 0.33 0.27 0.40 0.07 0.63 

106 STACK East 0.83 0.35 0.22 0.44 0.07 0.69 

107 STACK East 0.82 0.33 0.24 0.42 0.09 0.58 

108 STACK East 0.85 0.25 0.22 0.53 0.09 0.79 

109 STACK East 0.86 0.37 0.23 0.40 0.13 0.87 

110 STACK East 0.92 0.30 0.19 0.52 0.08 0.76 

111 STACK East 0.83 0.36 0.20 0.44 0.06 0.61 

112 STACK East 0.80 0.31 0.25 0.45 0.06 0.55 

113 STACK East 0.79 0.28 0.25 0.47 0.05 0.47 

114 STACK East 0.82 0.31 0.24 0.44 0.07 0.43 

115 STACK East 0.77 0.27 0.23 0.50 0.05 0.54 

116 STACK East 0.80 0.30 0.24 0.46 0.07 0.56 

117 STACK East 0.76 0.30 0.25 0.45 0.06 0.51 

118 STACK East 0.82 0.30 0.20 0.49 0.07 0.55 

119 STACK East 0.79 0.34 0.23 0.43 0.07 0.45 

120 SCOOP 0.74 0.27 0.22 0.50 0.04 0.57 

121 SCOOP 1.11 NA NA NA NA NA 

122 SCOOP 1.13 NA NA NA NA NA 

123 SCOOP 1.05 NA NA NA NA NA 

124 SCOOP 0.84 0.38 0.25 0.37 0.10 0.69 

125 SCOOP 0.92 0.44 0.24 0.32 0.10 0.81 

126 SCOOP 0.81 0.33 0.15 0.52 0.14 0.92 

127 SCOOP 0.80 0.37 0.22 0.42 0.08 0.70 

128 SCOOP 0.84 0.34 0.24 0.42 0.13 0.98 
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Key Play Region Rc% %C27 Sterane1 %C28 Sterane2 %C29 Sterane3 C30 Sterane Index4 Diasteranes/Total Steranes5 

129 SCOOP 0.84 0.38 0.25 0.37 0.03 0.81 

130 SCOOP 0.88 0.42 0.19 0.39 0.09 0.72 

131 SCOOP 0.85 0.28 0.19 0.53 0.09 0.87 

132 SCOOP 0.90 0.47 0.24 0.29 0.11 0.83 

133 SCOOP 0.88 0.39 0.16 0.46 0.06 0.75 

134 SCOOP 0.96 0.60 0.19 0.21 0.18 0.99 

135 SCOOP 0.80 0.36 0.23 0.41 0.09 0.74 

136 SCOOP 0.80 0.37 0.28 0.35 0.10 0.81 

137 SCOOP 0.85 0.38 0.20 0.42 0.09 0.77 

138 SCOOP 0.81 0.44 0.25 0.31 0.11 0.67 

139 SCOOP 0.89 0.43 0.36 0.21 0.03 0.66 

140 SCOOP 0.91 0.44 0.31 0.25 0.03 0.68 

141 SCOOP 0.85 0.47 0.26 0.27 0.11 0.71 

142 SCOOP 0.89 0.42 0.33 0.25 0.09 0.82 

143 SCOOP 0.86 0.40 0.28 0.32 0.15 0.83 

144 SCOOP 0.81 0.37 0.20 0.43 0.11 0.73 

145 SCOOP 0.81 0.33 0.28 0.39 0.09 0.73 

146 SCOOP 0.86 0.31 0.29 0.40 0.12 0.99 

147 SCOOP 0.86 0.42 0.21 0.36 0.19 0.99 

148 SCOOP 0.88 0.38 0.31 0.31 0.19 0.65 

149 SCOOP 0.82 0.31 0.22 0.47 0.05 0.66 

150 SCOOP 0.99 NA NA NA NA 1.00 

151 SCOOP 0.91 0.43 0.24 0.33 0.10 0.82 

152 SCOOP 0.82 0.33 0.21 0.46 0.05 0.79 

153 SCOOP 0.94 0.56 0.18 0.26 0.10 0.82 

154 SCOOP 0.83 0.29 0.27 0.44 0.06 0.86 

155 SCOOP 0.84 0.40 0.25 0.36 0.10 0.59 

156 SCOOP 0.87 0.49 0.18 0.34 0.12 0.99 

157 SCOOP 0.92 0.54 0.14 0.32 0.11 0.78 

158 SCOOP 0.94 NA NA NA NA 0.90 

159 SCOOP 0.81 0.31 0.15 0.54 0.06 0.48 

160 SCOOP 0.92 0.46 0.16 0.38 0.15 0.93 

161 SCOOP 0.92 0.47 0.20 0.33 0.13 0.82 

162 SCOOP 0.96 0.33 0.27 0.40 0.15 0.82 

163 SCOOP 1.10 NA NA NA NA NA 

164 SCOOP 1.00 NA NA NA NA 0.64 

165 SCOOP 0.89 0.48 0.17 0.35 0.09 0.99 

166 SCOOP 0.92 0.46 0.29 0.26 0.08 0.99 

167 SCOOP 1.02 NA NA NA NA 0.83 

168 SCOOP 0.93 0.45 0.22 0.33 0.10 0.94 

169 SCOOP 0.84 0.33 0.22 0.45 0.06 0.46 

170 SCOOP 0.94 0.46 0.40 0.14 0.08 0.99 

171 SCOOP 0.87 0.37 0.31 0.32 0.15 0.88 

172 SCOOP 0.91 0.38 0.23 0.39 0.04 0.35 

Table 12. Sterane parameters used in this section for STACK and SCOOP oils. (1) C27/C27-29 steranes each of 

5α(H),14α(H),17α(H),20R isomers; (2) C28/C27-29 steranes each of 5α(H),14α(H),17α(H),20R isomers; (3) C29/C27-29 

sterane each of 5α(H),14α(H),17α(H),20R isomers; (4) C30/C27-30 steranes each of 5α(H),14α(H),17α(H),20R isomers; 

(5) [m/z 259]/[m/z 217] over the range of C27-C30 steranes.  
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Thermal maturity, however, also influences the relative abundance of regular steranes 

because higher carbon number steranes have been shown to decrease more rapidly with increasing 

maturity (Moldowan et al., 1989; Dzou et al., 1995). To account for this, the abundances of C27-29 

regular steranes can be normalized to maturity as shown in Figure 62. When normalized for 

thermal maturity, STACK West oils are comparatively enriched in C29 steranes by approximately 

5-15% while proportionally depleted in C28 steranes. Both Play Regions have similar amounts of 

C27 steranes. Furthermore, STACK West oils have the highest absolute concentrations of steranes 

at all levels of maturity which could indicate greater levels of eukaryotic productivity.   

Figure 61. Ternary diagram showing the relative abundance of C27-C295α(H),14α(H),17α(H) 20R steranes in STACK 

oils as a fraction of their sum. STACK West samples are characterized by slightly higher amounts of the C29 sterane. 
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Figure 62. Upper: absolute concentration of regular steranes versus Rc%. The solid black line shows the rate decline 

exponent of -4.34. Lower: Relative abundance of C27-C29 5α(H),14α(H),17α(H),20R steranes by Play Region. 



 

131 

 

 

Another source-specific sterane parameter is the C30 Sterane Index, defined by Moldowan 

et al. (1985) as the ratio C30/(C27-C30) regular steranes using the 5α(H),14α(H),17α(H),20R epimer 

at each C number to calculate the ratio and shown for STACK oils in Figure 63. Once again, two 

trends emerge in STACK oils primarily by Play Region and not producing reservoir. The C30 

sterane has the carbon skeleton 24-n-propylcholestanes, which originate from 24-n-

propylcholesterols primarily synthesized by golden Chrysophyte algae of the order 

Sarcinochrysidales, with trace amounts also reported in some green Chlorophyte algae species, 

and is considered a strong indicator of marine input (Raederstorff and Rohmer, 1984; Peters et al., 

1986; Moldowan et al., 1990; Volkman et al., 1994). Empirical studies worldwide have shown that 

oils sourced from restricted saline or hypersaline lagoonal conditions show lower C30 Sterane 

Index values than those from open marine conditions (Moldowan et al., 1989). Even accounting 

for maturity, C30 Steranes Index values for STACK West oils are generally less than half than 

those in STACK East which may suggest an organic source deposited in a less open marine 

environment such as a restricted marine basin or even lagoonal environment. Based on these 

findings, the C30 Steranes Index could be useful to differentiate between organic facies in STACK.   

Figure 63. The C30 Sterane Index (C30/C27-30 5α(H),14α(H),17α(H),20R steranes) for all STACK oils. STACK West 

samples have consistently lower values at maturities and could indicate a restricted marine depositional environment.  
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Finally, the ratio of diasteranes/steranes, also considered as a maturity parameter in Chapter 

IV, has been used to distinguish oils generated from carbonate versus clastic source rocks. 

Diasteranes (II) are believed to form as the result of catalytic rearrangement of sterenes during 

diagenesis in the presence of active acid sites on certain clays, such as montmorillonite or illite 

(Rubinstein et al., 1975; Sieskind et al., 1979). In fact, only a small amount of clay is necessary to 

catalyze the rearrangement into diasteranes, and the diasterane/sterane ratio more closely 

correlates to the amount of clay relative to TOC rather than clay content alone (Requejo et al., 

1997; van Kaam-Peters et al., 1998). Moreover, high diasterane/sterane ratios have been reported 

in organic lean carbonate rocks, clay poor limestones, and bituminous evaporites (e.g. Clark and 

Philp, 1989), probably because the rearrangement of sterenes into diasterenes is actually facilitated 

by acidic (low pH) and oxic (high Eh) conditions which reactive clays can imitate (Berner et al., 

1970; Moldowan et al., 1986). The diasterane/sterane ratios in STACK show significant 

covariance with maturity (Figure 64). Nevertheless, STACK West has comparably lower values 

which may indicate that the source rock for those oils may have been starved for clay-rich 

sediments or have restricted access to open marine conditions compared to STACK East.  

Figure 64. Plot of the ratio diasteranes/steranes, defined as m/z 259 over m/z 217 over the range C27-30 steranes.  



 

133 

 

 

This study also observed the sterane fingerprint from two Woodford Shale core intervals 

in STACK West from Major (ABCDS 1-6) and Blaine (KC 1-36) counties and one core interval 

in STACK East from Kingfisher County (John 1H-5X). The summary of these findings is shown 

in Table 13 and Figure 65. The C27 and C29 steranes are the dominant regular sterane similar to the 

oils observed in this study. Furthermore, the Woodford in STACK West contains slightly higher 

%C29 sterane (40% ± 2%, n=8) compared to the STACK East (33% ± 1%, n=3) which agrees with 

higher C29 sterane abundances in STACK West oils. There are also slightly lower C30 sterane index 

values in STACK West (0.04 ± 0.01, n=8) compared to STACK East (0.07 ± 0.03, n=3) which 

agrees with the pattern observed between STACK oils that STACK West was deposited in a more 

restricted marine environment with more abundant golden Chrysophyte algae. Finally, the 

diasteranes/total steranes values are lower in STACK West (0.46 ± 0.05, n=8) compared to 

STACK East (0.54 ± 0.06, n=3) which again mirrors the pattern observed between STACK oils. 

No statistically significant differences are observed between the Upper-, Middle-, and Lower 

Woodford intervals from the limited available core. There are substantial similarities between 

STACK oils and Woodford Shale extracts, and it is reasonable to suspect the Woodford Shale has 

sourced some or all oils in the STACK Play. 

Core Depth Formation Play Region Rc% 
%C27 

Sterane1 
%C28 

Sterane2 
%C29 

Sterane3 
C30 Sterane 

Index4 
Dia/Total 
Steranes5 

ABCDS 1-6 8098 Upper Woodford STACK West 0.79 35% 21% 44% 0.04 0.43 

ABCDS 1-6 8099 Upper Woodford STACK West 0.79 38% 19% 43% 0.05 0.41 

ABCDS 1-6 8110 Middle Woodford STACK West 0.79 40% 20% 40% 0.03 0.44 

ABCDS 1-6 8121 Middle Woodford STACK West 0.81 43% 18% 39% 0.04 0.45 

KC 1-36 8538.5 Upper Woodford STACK West 0.82 41% 23% 37% 0.05 0.48 

KC 1-36 8543.5 Upper Woodford STACK West 0.84 39% 25% 36% 0.04 0.57 

KC 1-36 8557 Lower Woodford STACK West 0.83 41% 19% 40% 0.06 0.46 

KC 1-36 8566.5 Lower Woodford STACK West 0.82 40% 22% 38% 0.05 0.42 

John 1H-5X 9165 Upper Woodford STACK East 0.89 42% 25% 33% 0.05 0.50 

John 1H-5X 9180 Middle Woodford STACK East 0.87 40% 26% 34% 0.10 0.61 

John 1H-5X 9202 Lower Woodford STACK East 0.92 46% 21% 33% 0.06 0.50 

Table 13. Sterane parameters used for Woodford Shale Extracts in STACK. (1) C27/C27-29 sterane each of 

5α,14α,17α(H),20R stereoisomerization; (2) C28/C27-29 sterane each of 5α,14α,17α(H),20R stereoisomerization; 

(3) C29/C27-29 sterane each of 5α,14α,17α(H),20R stereoisomerization; (4) C30/C27-30 sterane each of 

5α,14α,17α(H),20R stereoisomerization; (5) [m/z 259]/[m/z 217] over the range of C27-C30 steranes. 
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Figure 65. Example m/z 217 mass chromatograms taken from six Woodford Shale core extracts from across STACK. 

The Woodford Shale in STACK West contain higher amounts of C29 regular sterane compared to C27 and C28 regular 

steranes. The Woodford Shale in STACK West also contains fewer diasteranes and slightly higher C30 sterane index. 

There is significant co-elution between regular steranes and some diasteranes (see Figure 28). 
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Acyclic Terpanes 

Terpenoids are a broad class of compounds 

ubiquitous to nearly all forms of life that are 

biosynthesized by the polymerization and, in some 

cases, cyclization of appropriately functionalized 

isoprene (methylbutadiene) subunits (Eglinton and 

Calvin, 1967; Whitehead, 1973; Bendoraitis, 1974; 

Philp et al., 1976; Simoneit, 1977). Terpenoids are 

often characterized by the number of isoprene 

subunits they contain whereby monoterpanes (C10), 

sesquiterpanes (C15), diterpanes (C20), sesterterpanes 

(C25), and triterpanes (C30) containing two to six 

isoprene subunits, respectively (Figure 66). The most common isoprene linkage is head-to-tail, but 

there are numerous examples of tail-to-tail (e.g. squalene), head-to-head (e.g. bisphytane), and 

irregular linkages (e.g. botryococcane). Unlike other biopolymers, such as proteins and 

polysaccharides, the terpenoid carbon skeleton is relatively stable in the rock record because it is 

comprised of covalent carbon-carbon bonds that are not as readily degraded (Tissot et al., 1974). 

During diagenesis, functionalized terpenoids are converted through a complex series of chemical 

changes into more stable saturated terpane biomarkers preserved in the geological record.  

Most acyclic terpanes (isoprenoids) containing twenty or fewer carbon atoms are derived 

from the ester bound phytol side chain of chlorophyll-a ubiquitous in photosynthetic marine life 

and higher plants (Volkman and Maxwell, 1986); however, chlorophyll-b, chlorophyll-c, 

chlorophyll-d, and bacteriochlorophyll-a contribute small amounts of phytol in certain marine 

Figure 66. Simplified scheme of terpane 

structures. a) carbon skeleton of basic isoprene 

subunit; b) monoterpane skeleton showing 

head-to-tail linkage; c) carbon skeleton of 

hopane, a common polycyclic terpane, and its 

isoprene subunits. 
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environments (Gillan and Johns, 1980; Rontani and Volkman, 2003). The cleavage of the phytol 

side chain results in the formation of the saturate terpanes pristane (IX; 2,6,10,14-

tetramethylpentadecane) and phytane (X; 2,6,10,14-tetramethylhexadecane) depending on the 

redox conditions of the source-rock (Didyk et al., 1978). Shanmugam (1985) proposed a log-log 

crossplot with axes consisting of the peak area ratios of pristane/n-C17 and phytane/n-C18 with 

designated zones used to approximate redox, maturity, biodegradation, and depositional 

environment of a source rock. The recreation of this crossplot is shown in Figure 67 showing that 

the source rock(s) for STACK oils were deposited under reducing conditions of a marine or 

transitional shallow marine environment. Even accounting for thermal maturity, STACK East oils 

are slightly enriched in isoprenoids relative to n-alkanes plotting more to the upper right compared 

to STACK West oils. No evidence of biodegradation has been reported in STACK oils.  

Figure 67. Crossplot of pristane/n-C17 against phytane/n-C18 for all oils in this study showing a predominantly marine 

or transitional marine depositional environment. STACK East oils have slightly higher values for both axes compared 

to STACK West. SCOOP oils form two clusters discussed in the next section. Plot adapted from Shanmugam (1985). 
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Hughes et al. (1995) proposed a cross plot of pristane/phytane (Pr/Ph) versus DBT/P, 

delineated certain predetermined zones corresponding to the lithology and redox conditions that 

could be expected in certain depositional environments. Normally, the ratio of dibenzothiophene 

(VIII; DBT) to phenanthrene (VII; P) is a powerful predictor of source rock depositional 

environment because organosulfur compounds are often formed in the absence of iron derived 

primarily from terrigenous sediments (Berner, 1984; Raiswell and Berner, 1985). The re-creation 

of this crossplot shows most oils in this study plot in Zone 3 (Marine Shale) or Zone 2 

(Marine/Lacustrine) corresponding to Pr/Ph between 0.8-1.8 and DBT/P<1 (Figure 68). Curiously, 

the values for DBT/P are significantly higher and more scattered in STACK West (0.43±0.14, 

n=46) compared to STACK East (0.06±0.01, n=73) and SCOOP (0.09±0.03, n=53), and some 

STACK West oils even plot outside of the lithologic zones with DBT/P values between 1-3.  

Figure 68. Crossplot of DBT/P and Pr/Ph used to determine depositional environments (Hughes et al. 1995). A small 

number of STACK West samples are elevated in DBT/P despite originating from a marine shale. 
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Sesquiterpanes 

Sesquiterpanes are a family of bicyclic polymethyl-substituted decalins comprised of three 

isoprene subunits and are ubiquitous components of crude oils, coals, and ancient sediments 

(Bendoraitis, 1974; Philp et al., 1981). The most common sesquiterpanes in petroleum have the 

drimane (XI) skeleton and contain between 14 and 16 carbons and yield a notable m/z 123 mass 

fragment in GC-MS analysis due to the formation of a C9H15 fragment ion. While some 

sesquiterpanes are associated with higher plants, most notably 4β(H)-eudesmane (XII; Alexander 

et al., 1983), most sesquiterpanes are present across all depositional environments and geologic 

times suggesting they are also synthesized by algae and/or bacteria which are universal in the 

sedimentary record (Alexander et al., 1984). Although there is little evidence that they provide 

high degrees of biological specificity in the geologic record, sesquiterpanes are generally resistant 

to biodegradation (Dimmler et al., 1984; Wang et al., 2005), thermal degradation (Figure 49; 

Alexander et al., 1984), and evaporative weathering (Yang et al., 2009) and are therefore 

compelling candidates for oil-source and oil-oil correlation across a broad maturity spectrum.  

A series of eight C14-C16 bicyclic sesquiterpanes (BS-1 through BS-8) were identified in 

this dataset from the m/z 123 partial mass chromatograms of the B/C fractions (Figure 69). Oils 

from STACK East, STACK West, and SCOOP Woodford were found to have similar 

sesquiterpane signatures, with drimane (XI; BS-5) and homodrimane (XI; BS-8) often dominant 

constituents. This reflects a common sesquiterpane signature found in many oils globally. Like 

rearranged steranes (II; diasteranes), rearranged drimanes (BS-3 and BS-4) are believed to result 

primarily from acid catalyzed rearrangement in the presence of clays during diagenesis, but other 

mechanisms related to low pH and high Eh may also contribute to their formation (Alexander et 

al., 1984). The relative abundances of 8β(H)-drimane (BS-5) and 8β(H)-homodrimane (BS-8) in 
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oils and sediments are strongly maturity dependent (Noble et al., 1987). It has been hypothesized 

that some sesquiterpanes could result from C-ring cleavage in tricyclic or pentacyclic terpanes, 

and therefore the ratio of certain sesquiterpanes may reflect the catalytic nature of the mineral 

matrix related to depositional environment 

(Weston et al., 1989). However, C-ring 

cleavage requires both the breaking of two C-

C bonds and the subsequent rearrangement 

of methyl groups on the B ring and therefore 

is unlikely to be a major contributor to 

sesquiterpane generation or formation. 

Figure 69. Typical bicyclic sesquiterpane (BS) signature for STACK and SCOOP oils by producing formation. Peaks 

BS-1 through BS-8 and structures were identified from literature review (Philp et al., 1981; Alexander et al., 1983, 

1984; Noble et al., 1987; Weston et al., 1989; Oung and Philp, 1994; Wang et al., 2005; Yang et al., 2009). 
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Three sesquiterpanes were selected as axial components of a ternary diagram to determine 

a sesquiterpane fingerprint, shown in Figure 70, including a rearranged drimane (BS-4), drimane 

(XI; BS-5), and a third sesquiterpane (BS-6) from data in Table 14. The axes of the ternary diagram 

(e.g. %BS-4=BS-4/[BS-4+BS-5+BS-6]) are plotted individually in Figure 71 versus maturity. Oils 

from STACK West are generally enriched in 8β(H)-drimane (BS-5) at the expense of other two 

sesquiterpanes, most notably the rearranged drimane (BS-4), when compared to STACK East. The 

source of the relative enrichment of drimane in STACK West remains uncertain, but previous 

studies indicate it could be related to increased input of terrigenous or higher plant organic material 

Figure 70. Ternary diagram of three closely eluting C15 sesquiterpanes include a rearranged drimane (BS-4), drimane 

(BS-5), and a third sesquiterpane (BS-6) as a fraction of the sum of the three. STACK East samples have higher 

relative abundances of rearranged drimane BS-4 compared to STACK West. This mirrors the higher abundances of 

rearranged diasteranes (II) also observed in STACK East and could indicate a higher abundance of acid clay sites. 
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(e.g. Philp et al., 1981; Weston et al., 1989). This hypothesis is supported by the lower C30 Sterane 

Index also observed in STACK West oils. Similarly, the low concentrations of rearranged 

drimanes in STACK West relative to STACK East is significant because it mirrors the similarly 

low diasterane/sterane ratios observed in those same oils, both of which are indicative of acid 

catalyzed rearrangement processes during diagenesis (Alexander et al., 1984).  

Figure 71. Individual axes of the ternary diagram shown in Figure 70 and normalized to maturity. Lines of best fit are 

provided as a visual aid to guide interpretation and not meant to suggest a strong relationship with maturity. 
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Key Play Region %BS-4 %BS-5 %BS-6 

1 STACK West 13.3% 69.4% 17.3% 

2 STACK West 12.9% 68.4% 18.7% 

3 STACK West 13.4% 68.5% 18.2% 

4 STACK West 15.7% 66.3% 18.0% 

5 STACK West 14.0% 68.0% 18.0% 

6 STACK West 22.9% 52.4% 24.7% 

7 STACK West 16.6% 66.1% 17.3% 

8 STACK West 18.3% 63.6% 18.1% 

9 STACK West 17.2% 64.5% 18.3% 

10 STACK West 17.7% 64.4% 17.9% 

11 STACK West 16.5% 67.4% 16.1% 

12 STACK West 15.5% 66.0% 18.5% 

13 STACK West 18.8% 63.9% 17.3% 

14 STACK West 16.3% 66.8% 17.0% 

15 STACK West 21.9% 58.2% 19.9% 

16 STACK West 16.9% 67.2% 15.9% 

17 STACK West 19.9% 62.2% 17.9% 

18 STACK West 32.2% 47.3% 20.5% 

19 STACK West 26.6% 55.1% 18.3% 

20 STACK West 36.8% 41.6% 21.6% 

21 STACK West 45.0% 33.0% 22.0% 

22 STACK West 43.0% 34.9% 22.0% 

23 STACK West 22.7% 42.6% 34.7% 

24 STACK West 39.3% 42.3% 18.3% 

25 STACK West 31.3% 43.6% 25.1% 

26 STACK West 26.3% 50.3% 23.4% 

27 STACK West 19.4% 63.8% 16.8% 

28 STACK West 16.2% 68.6% 15.2% 

29 STACK West 15.6% 69.5% 14.9% 

30 STACK West 27.8% 49.2% 23.0% 

31 STACK West 31.1% 45.0% 23.9% 

32 STACK West 29.2% 47.9% 22.9% 

33 STACK West 37.1% 39.4% 23.5% 

34 STACK West 32.5% 49.4% 18.1% 

35 STACK West 41.0% 34.7% 24.2% 

36 STACK West 21.2% 53.4% 25.4% 

37 STACK West 26.8% 55.4% 17.8% 

38 STACK West 27.8% 50.4% 21.8% 

39 STACK West 30.6% 42.8% 26.5% 

40 STACK West 30.4% 46.5% 23.1% 

41 STACK West 36.5% 37.1% 26.4% 

42 STACK West 33.4% 41.7% 24.9% 

43 STACK West 28.8% 45.0% 26.2% 

44 STACK West 44.3% 32.8% 22.9% 

45 STACK West NA NA NA 

46 STACK West 33.2% 44.8% 22.1% 

47 STACK East NA NA NA 

48 STACK East NA NA NA 

49 STACK East 32.8% 46.3% 20.9% 

50 STACK East 33.4% 43.6% 23.0% 

51 STACK East 43.4% 28.2% 28.4% 

52 STACK East 29.6% 51.6% 18.8% 

53 STACK East 43.2% 31.3% 25.5% 

54 STACK East 42.1% 33.7% 24.2% 

55 STACK East 37.2% 36.5% 26.3% 

56 STACK East 46.4% 36.8% 16.8% 

57 STACK East 37.5% 36.1% 26.3% 

58 STACK East 39.2% 35.3% 25.6% 

59 STACK East 35.5% 40.0% 24.6% 

60 STACK East 30.9% 38.4% 30.7% 

61 STACK East 23.1% 55.5% 21.4% 

62 STACK East 43.3% 28.9% 27.8% 

63 STACK East 39.2% 32.8% 27.9% 

64 STACK East 25.6% 53.5% 20.9% 

Key Play Region %BS-4 %BS-5 %BS-6 

65 STACK East 36.5% 31.3% 32.2% 

66 STACK East 23.2% 49.7% 27.1% 

67 STACK East 36.3% 34.1% 29.6% 

68 STACK East 28.0% 51.9% 20.2% 

69 STACK East 29.8% 49.6% 20.7% 

70 STACK East 36.7% 32.9% 30.4% 

71 STACK East 33.8% 41.0% 25.2% 

72 STACK East 24.9% 51.8% 23.3% 

73 STACK East 42.6% 35.0% 22.4% 

74 STACK East 34.0% 37.5% 28.5% 

75 STACK East 29.7% 46.7% 23.7% 

76 STACK East 26.6% 55.0% 18.3% 

77 STACK East 36.9% 29.8% 33.3% 

78 STACK East 37.9% 28.7% 33.4% 

79 STACK East 31.2% 42.3% 26.5% 

80 STACK East 24.4% 47.3% 28.3% 

81 STACK East 31.8% 38.8% 29.4% 

82 STACK East 34.8% 32.9% 32.4% 

83 STACK East 32.5% 40.2% 27.3% 

84 STACK East 34.2% 30.8% 35.0% 

85 STACK East 29.7% 42.7% 27.6% 

86 STACK East 31.3% 40.9% 27.8% 

87 STACK East 27.4% 51.1% 21.5% 

88 STACK East 30.7% 37.4% 31.9% 

89 STACK East 31.2% 39.8% 29.0% 

90 STACK East 21.4% 59.3% 19.3% 

91 STACK East 31.3% 42.7% 26.0% 

92 STACK East 32.0% 37.4% 30.6% 

93 STACK East 20.7% 61.8% 17.5% 

94 STACK East 31.9% 35.0% 33.1% 

95 STACK East 33.0% 34.2% 32.7% 

96 STACK East 34.6% 33.1% 32.3% 

97 STACK East 34.1% 37.0% 28.8% 

98 STACK East 31.2% 34.0% 34.8% 

99 STACK East 30.1% 37.3% 32.7% 

100 STACK East 19.1% 60.2% 20.6% 

101 STACK East 22.5% 55.3% 22.2% 

102 STACK East 26.3% 48.0% 25.7% 

103 STACK East 28.4% 43.2% 28.4% 

104 STACK East 30.9% 35.8% 33.3% 

105 STACK East 27.2% 44.9% 27.8% 

106 STACK East 28.9% 42.1% 29.1% 

107 STACK East 28.8% 42.1% 29.1% 

108 STACK East 30.6% 40.0% 29.3% 

109 STACK East 27.6% 38.1% 34.3% 

110 STACK East 28.3% 41.0% 30.8% 

111 STACK East 27.9% 40.6% 31.5% 

112 STACK East 26.5% 45.2% 28.3% 

113 STACK East 23.5% 50.9% 25.6% 

114 STACK East 27.9% 49.0% 23.1% 

115 STACK East 22.6% 52.9% 24.6% 

116 STACK East 23.9% 50.3% 25.8% 

117 STACK East 22.9% 50.7% 26.3% 

118 STACK East 21.5% 51.8% 26.7% 

119 STACK East 25.1% 46.7% 28.2% 

120 SCOOP 22.4% 47.9% 29.7% 

121 SCOOP NA NA NA 

122 SCOOP 14.8% 54.6% 30.6% 

123 SCOOP 20.2% 47.2% 32.7% 

124 SCOOP 38.1% 29.4% 32.5% 

125 SCOOP 40.0% 29.6% 30.4% 

126 SCOOP 26.1% 40.9% 33.1% 

127 SCOOP 27.8% 40.3% 31.9% 

128 SCOOP 29.6% 39.0% 31.4% 
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Key Play Region %BS-4 %BS-5 %BS-6 

129 SCOOP 26.8% 38.3% 34.9% 

130 SCOOP 28.8% 36.6% 34.6% 

131 SCOOP 33.8% 31.6% 34.6% 

132 SCOOP 41.5% 24.0% 34.5% 

133 SCOOP 26.9% 34.2% 38.9% 

134 SCOOP 40.8% 24.7% 34.5% 

135 SCOOP 29.0% 37.8% 33.2% 

136 SCOOP 26.6% 37.8% 35.6% 

137 SCOOP 23.5% 44.1% 32.5% 

138 SCOOP 27.5% 35.8% 36.7% 

139 SCOOP 32.5% 32.9% 34.6% 

140 SCOOP 26.9% 39.2% 33.9% 

141 SCOOP 25.9% 39.0% 35.1% 

142 SCOOP 26.9% 36.3% 36.8% 

143 SCOOP 26.1% 38.6% 35.3% 

144 SCOOP 26.1% 42.5% 31.5% 

145 SCOOP 28.0% 37.9% 34.1% 

146 SCOOP 28.2% 36.7% 35.1% 

147 SCOOP 28.7% 35.8% 35.5% 

148 SCOOP 28.1% 36.2% 35.7% 

149 SCOOP 23.7% 45.6% 30.7% 

150 SCOOP 28.9% 37.3% 33.8% 

Key Play Region %BS-4 %BS-5 %BS-6 

151 SCOOP 30.5% 36.5% 33.0% 

152 SCOOP 24.5% 43.8% 31.7% 

153 SCOOP 24.4% 39.7% 35.9% 

154 SCOOP 24.3% 43.9% 31.8% 

155 SCOOP 25.2% 37.8% 37.0% 

156 SCOOP 35.9% 26.8% 37.3% 

157 SCOOP 39.2% 34.1% 26.7% 

158 SCOOP 37.5% 29.2% 33.3% 

159 SCOOP 19.9% 52.2% 27.9% 

160 SCOOP 44.1% 26.0% 29.9% 

161 SCOOP 41.5% 26.0% 32.5% 

162 SCOOP 43.5% 29.2% 27.3% 

163 SCOOP 26.7% 51.8% 21.5% 

164 SCOOP 36.9% 36.5% 26.6% 

165 SCOOP 42.7% 25.8% 31.5% 

166 SCOOP 44.6% 21.1% 34.2% 

167 SCOOP 46.9% 25.6% 27.5% 

168 SCOOP 42.3% 25.0% 32.7% 

169 SCOOP 12.9% 57.9% 29.2% 

170 SCOOP 45.0% 18.8% 36.2% 

171 SCOOP 39.4% 26.3% 34.3% 

172 SCOOP 35.5% 35.7% 28.8% 

Table 14. Relative abundance of three sesquiterpanes from STACK oils labeled BS-4 (rearranged drimane), BS-5 

(drimane), and BS-6 as a percentage of the peak area sum of the three (see Figure 69). Several high maturity oils had 

no discernible sesquiterpane peaks and have values marked NA (not available). 

 

 

 

The sesquiterpane fingerprint for the three Woodford Shale cores in STACK are 

summarized in Figure 72 and Table 15. The %BS-4 (rearranged drimane) in Woodford extracts 

ranges from 22% to 32%, well within the range of values observed in STACK oils. In STACK 

West, the %BS-4 is higher in the Upper Woodford (27%±1%, n=4) compared to the Lower and 

Middle Woodford (23%±1%, n=4) which may indicate higher amounts of acid clay sites or a more 

oxidizing diagenetic environment in the Upper Woodford. The Lower and Middle Woodford more 

closely resembled values observed in STACK West oils. Core extracts from STACK West also 

had more abundant %BS-6 (34%±2%, n=8) than observed in the oils. In STACK East, the one 

Upper Woodford extract also had a higher %BS-4 value (32%) compared to the Lower and Middle 

Woodford (26%-29%) as was observed in STACK West. In general, STACK West contained 

lower amounts of the rearranged drimane compared to STACK East which mirrored the pattern 

observed between STACK oils.  
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Figure 72. Bicyclic sesquiterpane (BS) signature for six Woodford Shale extracts from STACK. Peaks BS-1 through 

BS-8 correspond to the peaks and structures identified in Figure 69. The Woodford Shale in STACK West has a higher 

relative abundance of BS-4 relative to BS-5 and BS-6 compared to the Woodford Shale in STACK East. 

 

Core Depth Formation Play Region %BS-4 %BS-5 %BS-6 

ABCDS 1-6 8098 Upper Woodford STACK West 28% 36% 36% 

ABCDS 1-6 8099 Upper Woodford STACK West 29% 34% 37% 

ABCDS 1-6 8110 Middle Woodford STACK West 24% 39% 36% 

ABCDS 1-6 8121 Middle Woodford STACK West 24% 40% 36% 

KC 1-36 8538.5 Upper Woodford STACK East 26% 40% 34% 

KC 1-36 8543.5 Upper Woodford STACK East 26% 45% 29% 

KC 1-36 8557 Lower Woodford STACK East 22% 44% 33% 

KC 1-36 8566.5 Lower Woodford STACK East 22% 45% 33% 

John 1H-5X 9165 Upper Woodford STACK East 32% 44% 24% 

John 1H-5X 9180 Middle Woodford STACK East 29% 44% 27% 

John 1H-5X 9202 Lower Woodford STACK East 26% 47% 27% 

Table 15. Relative abundance of three sesquiterpanes from Woodford Shale core extracts in STACK labeled BS-4 

(rearranged drimane), BS-5 (drimane), and BS-6 as a percentage of the peak area sum of the three (see Figure 69).  
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Tricyclic Terpanes 

Some of the most widely studied biomarkers are the polycyclic triterpenoids, which include 

the tricyclic terpanes (V; cheilanthanes), tetracyclic terpanes (XIII), and pentacyclic terpanes (VI; 

hopanes). Polycyclic terpenoids in the geologic record are the diagenetic product of polycyclic 

terpenoids such as tricyclohexaprenol, diplopterol, isoarborinol, or bacteriohopanetetrol which are 

synthesized via cyclization of squalene-type (C30) isoprenoidal substrates in microorganisms 

(Rohmer et al., 1979; Ourisson et al., 1982). Much like steroids in eukaryotic organisms, 

polycyclic terpenoids comprise the amphipathic lipid bilayer found in the cell membranes of 

prokaryotic organisms by regulating the osmotic pressure across the cell membrane (Ourisson et 

al., 1984, 1987).  

Cheilanthanes are tricyclic terpanes (V; TT) abundant in many sediments and oils and form 

a homologous series ranging from C19 to at least C54 depending on the length of the isoprenoid 

side chain at the C-14 position (Moldowan et al., 1983; De Grande et al., 1993). Cheilanthanes of 

C30 or less are thought to be derived primarily from the tricyclohexaprenol substrate common in 

many microorganisms and with rarer higher homologues (C31+) forming from tricyclooctaprenol 

or larger precursors (Ourisson et al., 1982; Aquino Neto et al., 1983; Azevedo et al., 1998). The 

origin of cheilanthanes in the geologic record is still uncertain, especially those C30+, but there is 

some evidence they are associated with Tasmanites, a primitive algae of the taxonomic class 

Chlorophyceae (Simoneit et al., 1990; Aquino Neto et al., 1992; Azevedo et al., 1992). While 

tricyclic terpanes have been found to be abundant in Tasmanites rich rocks, some data, including 

stable carbon isotope (Revill et al., 1994), suggest they may also be biosynthesized by certain 

species of algae, bacteria, and higher plant life as well (Philp et al., 1981). 
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Identities of the tricyclic and tetracyclic terpanes from C19-C39 for a Mississippian-

produced oil in STACK West are shown in Figure 73 and show a dominant C23 tricyclic terpane 

common in marine source rocks. Tricyclics above C28TT are defined as the extended tricyclic 

terpanes, and tricyclics starting at C25TT contain S and R peaks due to possible chiral centers 

starting at C-22, C-27, and every five carbons thereafter. Hopanes also share a m/z 191 mass 

fragment and are often abundant in low maturity oils (Rc<0.9%). The concentration of tricyclic 

and tetracyclic terpanes are provided in Table 16, and the percentage abundance of the C19 through 

C31TTs measured from peak areas for all STACK oils is shown in Figure 74. The most striking 

difference between the two Play Regions is the relative enrichment of C19 and C20TT in nearly all 

STACK West oils. Both Play Regions share a most abundant C23 peak, but oils in STACK West 

generally have a lower percentage of extended tricyclic terpanes compared to STACK East. 

Figure 73. Identification of the tricyclic and tetracyclic terpane series between C19-C39. Chiral centers at C-22, C-27, 

and every five carbons thereafter form S and R couplets in C25TT and higher homologues. Pentacyclic terpanes 

(hopanes) also share a dominant m/z 191 fraction in low maturity oils (Rc<0.9%). 
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Figure 74. Abundance of the C19 through C31 tricyclic terpanes for all STACK oils relative to total tricyclic terpanes as determined from peak areas. 
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Key Play Region C19TT C20TT C21TT C22TT C23TT C24TT C25TT C26TT(S) C26TT(R) C28TT(S) C28TT(R) C29TT(S) C29TT(R) C30TT(S) C31TT(S) C31TT(R) C33TT+ C24TET 

1 STACK West 12.8 65.3 83.4 20.9 165.9 117.7 107.6 44.7 42.2 47.0 47.7 58.4 58.2 56.4 37.2 33.7 340.7 36.9 

2 STACK West 13.6 68.8 88.0 23.0 171.0 120.1 110.8 45.8 43.4 49.3 53.7 60.1 53.2 50.7 38.3 29.8 327.8 38.3 

3 STACK West 12.3 62.2 82.7 20.5 161.9 113.8 105.4 43.4 41.8 49.0 52.4 57.4 55.3 42.1 37.8 29.6 303.2 36.1 

4 STACK West 11.5 56.8 76.5 19.2 148.7 104.6 97.2 41.2 38.2 48.1 48.0 51.8 50.5 40.0 35.5 28.2 305.3 31.7 

5 STACK West 12.8 64.4 85.1 21.1 167.7 117.1 110.2 45.5 43.9 51.5 54.2 59.0 59.1 46.2 39.0 31.9 421.9 39.5 

6 STACK West 8.7 33.9 61.2 12.9 109.3 80.5 75.6 30.9 29.5 39.0 42.9 40.4 41.2 36.4 27.5 22.3 229.2 14.5 

7 STACK West 9.9 45.7 66.7 16.1 127.5 91.3 85.2 36.3 33.9 37.9 41.5 48.4 48.1 42.6 29.9 26.5 297.0 27.6 

8 STACK West 8.4 36.5 54.7 13.9 106.9 75.5 72.3 30.1 30.0 32.2 36.3 41.4 42.0 34.5 28.4 20.6 205.9 23.1 

9 STACK West 9.8 41.4 60.5 15.1 118.8 85.6 79.4 34.6 33.9 38.0 40.8 45.0 42.7 39.4 29.2 28.5 243.8 21.3 

10 STACK West 9.0 39.5 57.5 14.9 113.1 83.2 77.5 33.3 33.3 36.7 41.2 46.3 44.9 36.3 32.2 26.6 283.4 21.6 

11 STACK West 12.2 66.4 86.5 22.0 174.4 123.3 112.3 46.2 45.3 51.9 56.0 62.7 62.2 53.2 39.6 35.6 378.1 37.6 

12 STACK West 11.9 59.7 84.9 19.8 156.0 115.8 105.5 44.5 42.1 54.5 58.9 60.3 58.2 48.8 35.3 25.4 284.9 32.1 

13 STACK West 11.9 55.7 73.5 19.8 150.9 108.9 100.4 41.2 41.0 43.9 43.3 53.5 52.5 48.9 33.5 32.5 367.0 32.5 

14 STACK West 12.0 56.1 82.4 21.5 158.8 116.9 105.2 43.7 42.8 47.4 47.8 53.3 50.6 46.0 31.0 28.5 322.2 31.9 

15 STACK West 8.5 34.1 56.3 14.3 108.7 83.2 74.5 31.9 30.4 33.5 36.3 40.0 36.7 29.3 27.4 22.5 238.6 18.3 

16 STACK West 10.8 52.1 77.2 19.1 148.3 111.1 102.6 41.0 41.4 49.5 51.5 55.1 55.3 49.8 40.7 29.7 316.1 32.5 

17 STACK West 12.9 45.6 42.1 13.6 82.5 60.9 51.5 20.4 20.2 21.3 25.0 29.1 26.2 21.9 17.8 16.0 110.7 9.1 

18 STACK West 7.4 18.8 14.2 6.1 29.7 20.1 17.1 8.2 8.7 8.5 9.2 11.4 10.3 9.1 7.5 6.9 56.0 0.9 

19 STACK West 6.2 14.9 17.8 4.4 32.0 25.5 20.0 7.9 7.4 8.3 8.5 10.8 9.4 8.9 6.5 5.4 57.6 3.5 

20 STACK West 6.3 7.7 11.9 3.4 22.1 17.4 14.4 6.4 6.4 6.7 6.8 9.7 7.6 6.9 5.8 5.3 47.2 0.7 

21 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

22 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

23 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

24 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25 STACK West 6.2 7.8 6.6 2.8 13.1 9.3 7.7 3.4 4.2 3.0 3.4 5.0 4.2 3.3 3.7 3.8 11.5 0.6 

26 STACK West 12.5 23.9 23.5 5.3 39.9 29.9 21.9 9.7 10.9 10.0 11.3 14.7 12.0 11.2 7.4 8.2 49.2 2.7 

27 STACK West 12.2 37.7 56.9 14.8 104.7 77.9 64.6 26.6 26.9 28.7 30.5 35.8 33.3 25.0 19.3 16.0 206.3 14.5 

28 STACK West 19.7 69.0 92.4 23.0 178.4 129.9 113.8 46.6 46.2 48.7 52.5 56.5 54.6 40.6 33.7 28.5 72.2 31.4 

29 STACK West 22.7 96.4 118.7 30.7 220.1 159.0 134.1 53.3 52.1 55.7 57.6 68.2 61.4 52.9 42.4 43.7 357.3 33.8 

30 STACK West 15.4 31.0 43.2 11.1 76.6 64.5 50.0 21.0 22.0 24.9 26.7 30.8 27.9 23.0 17.2 15.6 155.7 1.9 

31 STACK West 9.1 16.0 28.7 6.9 57.0 49.3 40.3 18.9 19.0 22.2 22.1 22.9 21.7 19.5 15.3 12.4 146.9 2.2 

32 STACK West 11.9 18.9 31.3 8.2 56.5 46.3 38.5 16.3 17.1 20.5 21.0 24.1 24.1 18.5 14.5 13.6 110.7 2.7 

33 STACK West 6.5 8.3 12.6 3.5 24.3 18.1 14.4 6.6 6.7 7.6 8.1 9.3 8.4 7.3 6.3 5.2 30.4 0.6 

34 STACK West 8.4 18.0 23.1 7.8 46.3 32.1 27.4 12.7 12.8 12.2 13.0 15.3 12.9 13.8 10.1 9.6 75.5 1.0 

35 STACK West 12.1 4.9 9.1 2.9 20.6 13.9 14.6 5.4 7.1 4.0 5.8 12.1 8.3 9.3 7.2 8.9 0.0 1.4 

36 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

37 STACK West 4.9 13.9 17.0 5.6 35.5 26.6 22.3 9.5 9.6 10.5 10.8 11.4 9.9 9.6 7.5 6.6 60.6 2.4 

38 STACK West 9.3 24.1 19.7 5.2 36.2 26.9 21.6 9.5 10.1 7.9 8.3 14.6 8.3 8.6 5.5 6.7 42.8 1.2 

39 STACK West 7.3 12.4 10.5 3.7 21.5 15.6 11.5 6.1 5.4 5.7 6.0 9.4 6.4 7.2 6.1 5.9 57.2 0.3 

40 STACK West 8.0 15.8 17.1 5.9 35.1 26.3 21.6 9.1 9.5 9.6 10.4 13.8 13.6 11.5 9.1 8.3 79.2 0.9 

41 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

42 STACK West 2.3 6.3 2.4 1.2 6.3 5.1 4.7 2.3 2.2 2.4 3.2 2.9 1.9 2.8 3.0 1.5 7.8 0.8 

43 STACK West 8.0 15.8 10.7 4.3 23.1 15.6 13.7 5.6 6.7 6.2 6.7 9.1 7.9 7.9 7.5 7.4 34.9 0.4 

44 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

45 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Key Play Region C19TT C20TT C21TT C22TT C23TT C24TT C25TT C26TT(S) C26TT(R) C28TT(S) C28TT(R) C29TT(S) C29TT(R) C30TT(S) C31TT(S) C31TT(R) C33TT+ C24TET 

46 STACK West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

47 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

48 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

49 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

50 STACK East 5.1 9.8 17.6 5.4 33.5 29.6 26.6 11.7 11.7 12.9 13.8 17.7 16.2 13.3 11.0 10.4 107.0 2.0 

51 STACK East 2.6 1.9 2.6 1.2 6.7 5.7 6.1 2.6 2.7 3.2 3.5 4.1 3.3 4.3 3.8 3.6 26.5 0.1 

52 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

53 STACK East 3.1 3.6 8.5 3.3 22.8 20.4 19.1 10.0 10.4 13.2 15.1 15.5 14.0 15.2 12.8 12.5 137.1 0.6 

54 STACK East 4.6 5.4 13.1 3.8 31.2 25.6 24.0 12.9 12.7 15.9 16.3 18.0 17.1 17.2 13.7 13.1 165.3 0.4 

55 STACK East 4.6 8.0 19.4 4.7 37.8 29.8 28.1 14.7 16.6 18.4 19.7 19.9 20.2 16.9 15.4 13.8 160.3 2.6 

56 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

57 STACK East 3.2 3.5 10.8 3.1 24.3 19.3 18.8 11.1 10.6 12.9 14.9 14.6 13.5 13.1 12.5 12.3 131.3 0.6 

58 STACK East 3.8 5.9 13.5 3.5 34.2 28.7 26.4 15.1 14.9 18.0 19.4 20.6 21.3 18.2 16.1 14.4 156.2 1.1 

59 STACK East 4.6 9.2 24.4 5.2 53.3 43.3 41.2 21.8 21.6 25.2 26.7 28.0 26.9 25.8 22.9 20.2 233.6 2.0 

60 STACK East 0.8 0.9 1.3 0.6 2.3 1.5 1.7 0.7 0.8 1.1 1.8 1.5 1.4 1.5 1.3 1.1 0.0 0.6 

61 STACK East 5.8 19.0 35.6 8.9 69.2 58.1 50.9 23.0 23.0 26.2 28.2 30.2 24.8 23.8 20.3 17.6 210.3 10.2 

62 STACK East 2.5 1.4 4.9 1.5 17.1 12.5 12.7 8.2 8.9 10.4 10.4 10.5 10.1 9.1 10.8 10.0 99.2 0.5 

63 STACK East 3.2 1.4 6.7 1.9 14.8 11.0 11.0 6.5 7.2 8.4 10.7 9.9 9.1 10.2 10.6 9.0 94.3 0.7 

64 STACK East 8.4 19.9 40.4 9.5 74.3 59.3 53.9 25.2 26.7 26.2 29.4 30.9 29.5 26.1 22.9 18.1 206.0 11.4 

65 STACK East 3.1 3.9 12.1 3.8 33.8 26.6 25.3 16.8 17.2 21.1 22.3 18.1 18.8 17.9 18.9 16.9 63.4 0.9 

66 STACK East 7.2 14.5 33.1 6.8 54.8 40.6 34.0 14.0 13.8 14.1 14.8 16.7 16.7 11.7 10.5 8.7 119.0 7.7 

67 STACK East 3.2 4.6 15.5 2.8 36.5 26.2 26.4 14.9 15.4 19.2 22.0 19.0 17.2 16.1 17.2 16.9 148.1 1.0 

68 STACK East 6.1 18.6 36.2 8.0 67.4 54.8 44.5 18.9 19.4 24.4 24.1 27.3 24.3 21.7 18.3 15.9 151.4 7.9 

69 STACK East 6.4 17.2 35.6 8.4 76.2 58.2 54.8 27.2 26.7 32.2 32.2 34.5 33.7 29.9 26.6 23.6 251.0 7.0 

70 STACK East 3.8 7.2 22.9 4.9 53.5 40.4 37.6 23.8 24.0 29.7 30.8 27.5 27.5 24.1 25.2 22.2 227.9 1.6 

71 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

72 STACK East 6.4 17.7 30.3 8.6 61.3 51.6 47.8 17.2 18.2 18.7 20.5 27.3 25.5 22.3 17.1 13.1 163.7 9.9 

73 STACK East 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

74 STACK East 4.5 8.9 28.1 6.7 71.2 52.6 50.8 31.0 30.6 38.0 39.0 34.1 34.1 31.3 30.0 29.0 309.5 1.8 

75 STACK East 5.7 20.3 46.2 10.4 99.1 75.2 75.8 35.8 34.9 47.3 49.2 47.0 46.8 44.5 37.8 31.9 465.4 6.7 

76 STACK East 7.2 23.8 47.0 11.4 94.0 74.0 72.5 31.8 32.7 37.9 36.4 43.5 39.1 37.6 34.0 28.0 338.5 10.1 

77 STACK East 2.6 1.7 6.5 1.9 18.0 14.1 13.7 9.3 9.8 11.8 13.4 11.9 10.3 10.4 10.7 9.7 101.4 0.8 

78 STACK East 2.4 1.7 6.0 2.2 16.4 12.2 11.8 8.3 8.7 11.0 11.6 10.1 9.8 9.5 10.2 9.3 84.7 0.2 

79 STACK East 3.4 8.6 23.7 4.8 49.0 36.5 34.2 18.0 18.3 21.3 22.8 19.9 19.2 18.2 17.8 15.1 165.5 3.7 

80 STACK East 8.6 16.8 40.5 9.5 68.4 50.2 44.3 17.6 18.0 18.3 20.1 21.5 18.6 14.7 12.3 10.3 132.9 9.9 

81 STACK East 4.4 9.6 26.1 6.6 66.6 46.9 45.2 28.1 28.4 32.0 35.7 29.0 27.4 25.4 25.6 24.4 233.6 3.8 

82 STACK East 2.7 3.4 9.7 4.2 29.5 21.8 20.9 14.7 14.7 17.3 19.8 15.7 15.9 14.6 15.9 15.5 128.1 1.3 

83 STACK East 4.2 14.1 34.7 8.1 82.9 60.1 60.6 33.5 34.5 41.6 41.4 37.6 35.8 35.8 34.3 28.6 322.0 5.5 

84 STACK East 1.2 3.5 1.3 0.6 4.6 3.4 3.4 2.0 2.4 2.6 3.3 2.9 2.9 2.6 3.0 3.1 17.6 0.5 

85 STACK East 4.7 13.1 31.2 7.1 69.5 49.9 51.1 25.9 26.2 32.8 33.6 31.1 29.2 28.9 26.2 21.7 265.8 5.1 

86 STACK East 3.3 12.7 25.9 6.1 72.5 45.9 45.0 26.1 26.6 32.9 35.3 28.9 28.3 25.4 29.1 23.5 247.0 3.4 

87 STACK East 5.6 23.8 51.0 11.5 106.6 81.1 82.0 36.1 36.1 44.8 44.6 43.8 42.2 38.1 32.7 29.8 320.2 9.3 

88 STACK East 5.0 9.4 23.2 6.5 57.9 42.1 39.2 22.1 22.3 28.0 29.2 26.2 27.3 22.5 22.9 20.7 190.8 3.2 

89 STACK East 4.8 16.9 39.8 9.6 95.4 66.6 68.3 36.4 36.1 44.2 44.9 41.1 37.9 36.7 34.0 30.1 338.3 5.6 

90 STACK East 20.9 54.8 132.6 28.4 205.2 183.6 177.0 61.7 64.1 72.2 73.2 92.7 86.9 75.7 54.6 47.0 629.3 42.9 
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Key Play Region C19TT C20TT C21TT C22TT C23TT C24TT C25TT C26TT(S) C26TT(R) C28TT(S) C28TT(R) C29TT(S) C29TT(R) C30TT(S) C31TT(S) C31TT(R) C33TT+ C24TET 

91 STACK East 5.2 20.2 48.2 11.2 117.4 81.7 83.1 44.7 45.0 61.9 57.6 48.7 50.9 53.0 44.8 39.4 396.0 7.8 

92 STACK East 3.9 9.2 28.2 7.1 73.2 49.5 48.9 29.4 29.5 35.8 37.8 30.5 30.1 28.4 28.7 25.0 252.1 3.8 

93 STACK East 9.1 35.3 73.5 16.4 129.9 95.9 93.9 40.8 40.4 46.8 50.9 51.6 47.0 43.6 36.0 30.4 356.1 18.5 

94 STACK East 3.3 4.8 14.0 3.7 35.6 25.9 24.4 15.6 15.4 17.9 20.7 17.2 15.7 15.6 15.6 13.5 130.8 2.4 

95 STACK East 3.0 3.4 10.4 3.4 26.8 20.1 19.3 12.2 12.8 14.9 16.6 14.0 14.0 13.1 13.8 11.7 120.9 1.2 

96 STACK East 3.9 6.1 19.0 5.4 46.3 34.6 34.3 21.1 20.5 24.8 27.8 25.0 26.8 21.0 21.4 16.6 190.1 2.5 

97 STACK East 3.1 7.5 18.5 4.9 47.6 34.4 31.6 19.2 19.4 23.4 24.3 20.8 20.4 19.9 18.4 16.4 183.3 3.4 

98 STACK East 3.8 6.4 18.7 5.5 50.9 34.7 36.2 21.6 21.7 25.8 28.0 22.9 21.8 20.7 21.8 18.5 171.8 3.3 

99 STACK East 4.0 7.4 18.7 4.6 46.2 30.0 30.8 17.2 17.4 20.4 20.1 18.7 17.4 16.7 17.2 14.0 145.5 3.4 

100 STACK East 10.3 44.4 75.0 17.8 137.7 98.4 91.6 37.9 38.5 42.7 47.6 42.0 41.1 36.4 34.2 29.1 351.1 23.1 

101 STACK East 10.3 41.9 89.4 20.2 176.2 125.4 127.6 55.2 56.3 65.8 72.5 74.1 73.5 58.5 46.0 40.9 600.5 19.2 

102 STACK East 6.4 25.4 60.4 14.3 128.6 85.5 84.2 43.3 43.3 51.1 56.4 48.1 48.4 46.3 39.8 34.5 403.8 10.0 

103 STACK East 4.0 14.0 32.0 7.9 78.9 50.7 50.8 28.3 28.6 35.6 35.5 31.1 27.6 26.8 27.2 19.4 246.3 6.1 

104 STACK East 3.6 6.8 22.0 5.7 57.2 37.7 40.1 23.5 24.1 29.8 32.8 25.4 23.7 22.7 24.5 21.1 189.9 3.3 

105 STACK East 4.5 24.7 53.0 12.5 124.5 75.8 76.8 41.3 41.6 50.0 54.9 40.2 42.4 36.2 39.8 34.8 335.1 7.7 

106 STACK East 4.2 18.0 42.7 9.3 104.8 62.6 63.5 35.2 35.0 43.1 44.3 37.6 34.6 30.9 33.9 27.8 311.2 6.1 

107 STACK East 3.9 16.8 42.3 9.5 105.4 65.4 69.7 39.9 39.6 49.4 50.8 40.7 42.6 38.7 43.1 37.8 332.5 8.6 

108 STACK East 3.2 5.5 15.1 3.8 33.6 24.0 22.2 12.8 12.6 13.9 15.0 13.3 14.1 10.9 11.2 9.3 124.4 3.1 

109 STACK East 4.6 4.8 16.5 4.3 42.6 30.9 30.2 16.6 17.6 20.8 23.5 19.7 17.7 16.6 18.5 13.0 148.6 3.7 

110 STACK East 3.2 4.8 12.3 3.7 25.3 19.3 17.4 10.0 10.6 12.1 12.4 11.2 10.3 10.4 10.0 8.5 91.9 1.9 

111 STACK East 3.1 9.5 26.6 6.4 64.6 40.6 42.2 24.1 24.0 29.3 30.2 24.1 24.2 22.1 22.1 20.2 193.9 4.8 

112 STACK East 8.0 25.7 56.1 13.0 127.2 78.8 81.2 40.7 40.6 51.9 56.7 50.4 50.0 37.2 37.5 33.0 405.2 9.3 

113 STACK East 6.7 27.6 64.8 15.4 136.9 96.2 104.0 47.5 48.2 57.9 59.7 57.4 58.8 54.9 51.3 43.0 509.1 18.2 

114 STACK East 6.6 31.9 64.9 13.5 143.4 92.6 95.6 45.4 44.6 53.7 57.7 48.6 45.7 41.7 37.0 34.3 492.7 11.8 

115 STACK East 8.8 25.5 54.9 14.4 108.6 75.7 75.9 34.7 34.5 37.3 42.0 39.6 39.5 35.1 26.8 23.4 339.3 15.4 

116 STACK East 6.8 29.1 64.4 14.1 139.6 92.3 96.1 44.4 44.7 56.6 59.7 50.6 50.2 43.9 40.5 36.9 482.0 10.9 

117 STACK East 6.5 23.0 55.3 13.9 120.3 80.7 83.8 40.3 40.1 46.5 50.0 44.7 45.4 37.8 33.1 32.7 454.1 11.8 

118 STACK East 6.9 34.0 64.3 14.4 151.6 90.2 94.6 46.1 46.4 58.3 62.7 51.4 49.9 40.4 44.1 35.8 460.4 14.5 

119 STACK East 6.8 27.7 54.4 12.6 125.6 74.8 78.4 38.2 38.9 47.3 48.4 43.7 43.5 35.4 31.2 28.8 414.1 12.2 

120 SCOOP 2.7 6.1 12.8 3.2 27.0 18.8 17.6 9.2 9.6 9.4 9.6 12.5 13.5 8.4 7.4 7.0 56.7 3.6 

121 SCOOP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

122 SCOOP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

123 SCOOP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

124 SCOOP 4.7 5.0 19.7 8.7 52.3 45.9 43.7 30.2 30.9 41.1 44.7 38.2 37.8 35.3 31.4 28.8 301.8 2.3 

125 SCOOP 2.5 3.0 10.8 2.6 29.9 30.9 29.8 17.6 18.0 21.2 21.6 26.4 26.2 20.5 17.0 16.9 143.4 0.6 

126 SCOOP 1.6 1.7 4.6 2.2 12.7 10.2 8.9 5.6 6.1 7.3 7.2 6.3 6.1 6.1 6.7 6.5 29.1 0.8 

127 SCOOP 2.2 3.6 5.5 2.8 12.1 9.4 8.4 4.5 4.4 6.5 6.6 5.5 5.0 5.6 6.1 4.4 20.8 0.8 

128 SCOOP 2.3 1.5 4.8 1.4 12.2 8.7 8.0 6.6 6.1 6.7 7.3 6.4 5.8 6.4 6.6 6.5 43.8 1.0 

129 SCOOP 1.7 1.1 4.9 1.4 11.7 7.7 8.0 4.9 5.0 6.1 7.0 5.9 6.1 5.6 5.5 5.0 32.6 0.9 

130 SCOOP 1.6 1.0 3.5 0.2 9.8 6.8 6.6 5.0 5.3 5.6 5.8 5.1 4.9 5.6 6.4 4.8 40.0 0.4 

131 SCOOP 1.8 1.2 4.7 1.9 10.8 6.9 6.7 4.7 5.3 6.2 7.2 6.4 6.0 5.2 6.3 6.4 64.7 0.5 

132 SCOOP 3.0 3.0 11.8 7.8 37.3 32.9 33.6 24.7 25.8 35.1 38.0 36.2 36.7 31.6 32.0 30.7 339.6 1.6 

133 SCOOP 2.1 1.6 4.5 2.3 10.4 6.8 7.3 5.0 5.5 6.8 7.4 5.7 6.6 5.5 6.8 6.6 34.2 1.0 

134 SCOOP 3.4 6.3 3.6 2.5 10.4 8.6 9.0 7.6 8.1 9.9 10.2 9.4 9.2 10.0 10.7 7.4 50.1 0.2 

135 SCOOP 1.7 2.0 6.2 1.7 13.2 9.7 9.9 7.2 7.2 7.5 8.5 6.6 6.5 5.5 7.2 6.4 40.6 1.1 



 

 

 

 

1
5
1
 

Key Play Region C19TT C20TT C21TT C22TT C23TT C24TT C25TT C26TT(S) C26TT(R) C28TT(S) C28TT(R) C29TT(S) C29TT(R) C30TT(S) C31TT(S) C31TT(R) C33TT+ C24TET 

136 SCOOP 1.5 1.0 3.6 1.8 11.1 7.2 6.6 4.7 4.8 5.1 5.7 5.6 5.1 4.2 5.4 5.4 32.7 0.4 

137 SCOOP 1.7 2.1 5.0 1.3 11.7 9.1 8.8 5.9 5.8 6.7 7.8 6.8 7.7 5.6 5.7 5.1 46.7 0.8 

138 SCOOP 1.2 1.4 3.1 1.0 6.7 4.8 5.0 3.1 3.0 3.6 3.6 3.9 3.7 3.0 3.6 3.5 21.4 0.8 

139 SCOOP 0.8 0.7 1.5 0.7 3.8 2.6 2.9 1.8 2.0 1.5 2.2 1.3 1.7 1.4 2.5 1.5 0.0 0.6 

140 SCOOP 0.9 1.0 1.2 0.3 2.6 1.9 1.8 0.9 1.2 0.9 1.4 1.6 1.6 1.0 1.4 0.8 0.0 0.7 

141 SCOOP 1.5 1.5 2.6 0.8 7.2 4.6 5.1 3.4 3.5 3.6 4.3 3.6 3.8 3.8 3.0 2.9 7.9 0.5 

142 SCOOP 1.7 2.2 2.1 2.2 6.8 4.7 6.0 3.3 4.0 4.1 5.0 3.3 4.4 3.4 3.8 3.5 15.8 0.6 

143 SCOOP 1.0 1.0 2.5 1.3 6.5 4.9 4.0 3.4 3.3 4.4 3.9 3.0 3.5 3.3 3.9 3.9 14.1 0.3 

144 SCOOP 1.8 2.4 6.3 2.4 14.3 10.1 10.2 5.8 5.8 7.6 7.8 6.0 6.2 7.1 6.7 5.2 43.1 1.1 

145 SCOOP 1.8 4.1 6.3 1.6 17.2 11.8 12.7 8.7 9.2 10.8 11.1 10.0 9.8 9.3 10.1 7.9 84.5 1.7 

146 SCOOP 1.7 1.9 6.2 2.0 15.2 9.2 9.7 7.2 7.8 8.9 10.6 7.8 7.8 6.9 8.3 6.8 72.2 1.7 

147 SCOOP 2.3 1.7 7.1 1.8 14.0 10.5 9.0 7.2 7.5 7.3 8.8 7.6 7.4 6.1 7.9 7.2 73.3 1.5 

148 SCOOP 1.7 1.2 2.2 1.4 6.1 4.7 4.4 4.3 3.5 4.3 4.1 3.8 3.5 2.8 4.0 3.2 18.3 0.5 

149 SCOOP 3.0 6.3 12.4 4.1 28.9 19.8 18.8 10.9 11.1 12.7 14.5 11.8 12.2 10.4 11.4 8.6 72.3 2.7 

150 SCOOP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

151 SCOOP 2.8 3.0 5.8 2.0 14.9 11.3 10.3 6.8 7.0 8.4 9.4 7.8 7.1 6.6 6.5 6.1 47.3 0.9 

152 SCOOP 3.2 4.3 9.0 3.3 21.2 15.5 14.4 9.0 9.0 10.7 9.9 8.6 7.3 8.7 8.3 6.8 59.3 2.2 

153 SCOOP 1.5 3.0 2.6 1.7 4.6 3.8 2.8 1.7 1.9 1.8 1.6 1.5 1.3 2.0 1.4 0.9 6.4 0.7 

154 SCOOP 2.9 7.7 16.6 4.8 40.1 28.9 27.7 16.7 16.6 19.3 21.4 16.7 17.1 14.8 14.0 12.4 112.4 3.5 

155 SCOOP 5.8 23.9 68.5 19.2 247.2 146.0 171.0 94.1 95.2 143.5 149.9 104.4 98.1 104.2 95.7 85.6 998.6 18.8 

156 SCOOP 2.3 2.2 9.3 2.4 29.9 26.1 26.4 20.9 22.1 33.1 36.5 31.8 30.3 28.3 29.9 28.6 282.9 1.7 

157 SCOOP 2.0 1.5 2.7 1.6 5.3 4.7 3.7 3.3 3.1 3.0 3.5 3.3 3.3 3.1 3.5 2.2 5.2 0.5 

158 SCOOP 1.9 1.5 2.2 0.6 6.5 4.9 4.4 3.0 3.6 3.2 3.9 4.2 3.6 3.9 3.7 3.1 25.2 0.9 

159 SCOOP 3.2 7.9 13.4 3.7 29.1 20.0 19.0 10.1 10.2 12.1 12.4 11.3 10.4 9.4 9.3 7.2 68.4 3.1 

160 SCOOP 1.6 1.4 4.7 1.6 14.6 11.7 13.3 10.2 11.7 15.4 17.9 17.8 18.9 16.8 17.6 16.6 198.7 1.0 

161 SCOOP 1.8 5.8 7.0 3.7 20.5 20.2 18.9 12.6 12.6 13.7 13.8 17.0 17.7 14.5 12.1 11.8 101.2 0.5 

162 SCOOP 1.3 1.4 3.0 2.5 10.5 8.4 10.3 7.0 8.7 10.3 13.0 16.9 16.6 13.1 15.2 15.0 214.2 0.7 

163 SCOOP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

164 SCOOP 1.3 2.0 2.4 1.3 5.2 4.2 4.0 2.2 3.1 3.2 4.6 4.4 3.4 4.3 3.8 4.0 24.3 0.4 

165 SCOOP 1.3 1.0 4.5 3.0 12.5 9.3 11.9 9.1 10.3 16.4 18.1 18.9 18.3 17.4 17.8 17.6 221.6 0.2 

166 SCOOP 2.6 3.5 7.8 3.8 23.4 22.2 22.9 18.5 20.2 28.4 32.2 32.5 30.8 29.0 29.8 28.1 344.9 1.2 

167 SCOOP 1.6 1.0 2.7 2.2 6.6 6.3 7.0 4.8 6.3 7.9 9.6 14.3 12.4 8.9 11.1 10.0 155.9 0.2 

168 SCOOP 2.6 4.8 11.5 4.7 36.2 34.3 36.2 25.4 25.8 39.8 43.0 39.8 39.1 35.6 33.7 33.4 341.8 0.7 

169 SCOOP 2.9 12.6 26.8 7.1 65.2 34.1 40.6 19.8 18.8 21.6 24.1 18.6 19.3 15.3 17.5 14.4 128.8 8.7 

170 SCOOP 3.7 3.4 8.9 3.5 23.4 23.2 23.2 19.2 20.3 29.6 31.3 31.7 31.6 30.7 29.1 28.0 310.6 0.4 

171 SCOOP 3.1 6.0 22.0 5.2 69.1 61.8 62.6 41.4 42.7 63.4 68.4 62.0 57.9 54.1 52.6 46.4 577.7 1.6 

172 SCOOP 0.7 1.3 1.5 0.8 2.5 2.0 1.5 1.0 1.1 1.3 1.7 1.3 1.0 1.7 1.4 1.0 0.0 0.3 

Table 16. The concentration in ppm of each member of the tricyclic terpane homologue series ranging from C19TT through C39TT and the C24 tetracyclic terpane 

(C24TET). The extended tricyclic terpanes C33TT through C39TT are grouped into a single column C33TT+. 
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While the exact origin of tricyclic terpanes remains ambiguous, some tricyclic terpanes 

have been shown empirically to correlate well with depositional environment. For example, RQ-

mode factor analysis of global oil databases found that the C19, C20, C24, and C25 TT were useful 

for differentiating oils from paralic and deltaic sources (Zumberge, 1987), and elevated C20/C23 

ratios have been correlated to relative sea level drop and marine regression in the phosphatic 

Galembo member in the La Luna formation of the Magdelena Basin, Colombia (Rangel et al., 

2000). By plotting the tricyclic terpane ratios C22/C21 versus C24/C23, Zumberge et al. (2007) were 

able to successfully differentiate oils generated from carbonate and siliciclastic source rocks. A re-

creation of this cross plot is shown in Figure 75 and demonstrates that all STACK oils cluster 

tightly in the zone attributed to siliciclastic source rock lithology. This is important because while 

there appears to be at least two geochemically distinct organic facies in STACK, both appear to 

broadly share a common siliciclastic source rock lithology.  

Figure 75. Crossplot of the C22/C21 TT versus C24/C23 TT showing all STACK oils plot in the zone attributed to 

siliciclastic source material. Original plot from Zumberge et al., (2007). 
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In heating experiments of immature bitumen, Aquino Neto et al. (1983) observed an overall 

shift towards smaller tricyclic terpanes with increased maturity, especially C19-C21TTs, and 

hypothesized that some tricyclic terpanes may result from thermal cleavage of the isoprenoidal 

side chain attached to the tricyclic ring structure. In a study of tar sands, Ekweozor (1984) 

compared the biomarker fingerprints of maltenes to the solvent extracts of chemically degraded 

asphaltenes and observed that tricyclic terpanes were found in the asphaltene fraction at the near 

complete exclusion of hopanes, and vice versa. It was speculated that asphaltene material possess 

openings of specific dimensions that are capable of including or excluding non-asphaltene material 

depending on molecular size and structure; therefore, both the capture and subsequent release of 

asphaltene-bound material would relate to the size, arrangement, and stability of chemical bonds 

affording molecular porosity to the asphaltenes. In outcrop, Kruge et al. (1990) observed a shift in 

the m/z 191 fingerprint from cheilanthane-dominated to hopane-dominated in extracts moving 

farther from a known mature source rock (~1.1% Ro) and speculated that tricyclic terpanes are 

progressively released at higher maturities by cracking polar compounds. A more detailed 

summary of tricyclic terpane enrichment in oils and extracts can be reviewed in Philp et al. (2021). 

If the release of tricyclic terpanes relative to hopanes reflects the chemical nature of its 

asphaltenes and, by extension, its organic facies, so too might the relative release of different 

members of the tricyclic terpane homologue series. To test this hypothesis, the individual rate 

decline exponents for each of C19-C31TT is plotted in Figure 76 and shows different trends in each 

Play Region. The smaller (less negative) rate decline exponent for C19-C21 TT likely reflects novel 

generation of these compounds by cleavage of the isoprenoidal side chain as predicted by Aquino 

Neto et al. (1983). STACK East oils show large rate decline exponents for smaller cheilanthanes 

(-5.54) which gets smaller with increasing carbon number (-3.42), meaning the efficiency of 
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generating these compounds with maturity depends on the length of the isoprenoidal chain at C-

14. Smaller cheilanthanes are released more efficiently at lower maturities and are rapidly depleted 

with increased maturity. STACK West, however, shows almost no preference for generating 

smaller cheilanthanes and show similar rate decline exponents across the entire series. 

 

Figure 76. Upper: Example rate decline exponent calculation for the C19 tricyclic terpane (STACK West=-0.79; 

STACK East=-2.61). Lower: Combination plot showing rate decline exponents for the tricyclic terpane series in 

STACK Play Regions (lines) as well as the difference in values between STACK East and STACK West (bars).  
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The exact mechanism governing the preferential generation of some cheilanthanes over 

others is still unclear, but it is here hypothesized to result from the chemical nature, molecular 

porosity, and bond stability of macromolecules like kerogen, bitumen, or asphaltene material 

inherited from its organic facies. It is promising that the differences in rate decline exponents 

between Play Regions mirror the distinct clustering observed in numerous other source parameters 

reviewed in this chapter, most notably the light hydrocarbons. One explanation is that the 

macromolecule material in STACK West could contains a higher proportion of labile bonds as 

part of the molecular pore geometry, such as ether and thioether bonds, which are more easily 

degraded resulting in the more efficient release of the occluded components like tricyclic terpanes. 

By comparison, STACK East may contain pores bounded by unreactive bonds that are less easily 

degraded and retain their trapped material until higher stages of thermal cracking. 

C24 Tetracyclic Terpane  

The C24 tetracyclic terpane (XIII; C24TET) has been linked to source rocks deposited in 

shallow marine shelves of semi-closed oceanic basins with limited access to upwelling nutrients 

(Zumberge et al., 2007), epicontinental carbonate or evaporite settings (Palacas, 1988; Clark and 

Philp, 1989), and oxic and/or terrigenous deposition (Philp and Gilbert, 1986). Although its origin 

remain largely inconclusive, C24TET is thought to form through cleavage of the E-ring in precursor 

hopanoids by oxidation or microbial attack (Trendel et al., 1982; Aquino Neto et al., 1983), but 

isotopic evidence suggests it could be independently synthesized (Grice, 2001). 

The abundance of C24TET is often measured by a variety of common ratios, including 

C24TET/C26TT, C24TET/C23TT, and C24TET/hopane; however, these ratios contain compounds of 

different ring counts in the numerator and denominator which may exacerbate the effect of 



 

156 

 

 

maturity on the ratio (see Figure 49). Additional care should be taken when selecting ratios to 

measure C24TET such that the values reflect differences in organic facies rather than maturity. To 

account for this, two plots containing the concentration of C24TET and the ratio of C24TET/C26TT 

(S) are plotted against maturity in semi-log space and shown in Figure 77. When normalized to 

maturity, oils in STACK West exhibit both higher concentrations of C24TET and higher values for 

C24TET/C26TT (S) compared to STACK East. Unfortunately, the strong correlation both of these 

ratios show with maturity limits makes it difficult to utilize in map view without a transformation 

to somehow normalize for maturity. However, while this ratio may not provide a deterministic 

way to observe changes in organic facies in map view, it may provide valuable insight into the 

nature of organic facies that have otherwise been determined.  

Figure 77. Two semi-log cross plots showing both enrichment of C24TET in STACK West samples both in terms of 

absolute concentrate (upper) and relative to a nearby eluting tricyclic terpane (lower). 
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Hopanes  

Hopanes are pentacyclic triterpanes most often associated with lipid cell membranes found 

in aerobic prokaryotic bacteria (Rohmer et al., 1979). The C30 hopane derivatives are formed from 

the direct cyclization of squalene into diploptene and/or diplopterol; however, in the C35 hopane 

derivatives, the C30 hopane skeleton (VI) is linked at C-30 to a C5 n-alkyl polysubstituted chain, 

the most common of which are the bacteriohopane-tetrol and -amino-triol (Rohmer et al., 1979; 

Ourisson et al., 1982, 1984, and 1987). Examples of the m/z 191 mass chromatograms in Figure 

78 show that in oils of similar maturities, STACK West oils have more pronounced peaks for the  

17α(H),21β(H)-30-norhopane (C29H) and C31-C35 homohopanes (C31-35H) compared to STACK 

East. Oils and extracts from organic-rich carbonates and evaporates have been observed containing 

unusually high amounts of C29H (Zumberge, 1984; Connan et al., 1986; Price et al., 1987), and 

Riva et al. (1989) proposed that the ratio C29H/C30H may relate a source rocks “carbonaticity,” or 

to depositional conditions more favorable for anoxic carbonate or marl deposition.   

Figure 78. Examples of m/z 191 mass chromatograms from two oils in STACK West and STACK East of similar 

maturity. Peaks for C29 17α(H),21β(H)-30-norhopane (C29H), C30 17α(H),21β(H)-hopane (C30H), and the C31 through 

C35 17α(H),21β(H)-homohopanes (C31H through C35H, respectively) are shown. STACK West oils have more C29H 

and C31-C35H relative to C30H which may indicate a more carbonate-style or reducing depositional environment. 
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The C31-C35 homohopanes are thought to be derived from the C35 bacteriohopanepolyols 

found in bacteria, such as bacteriohopanetetrol, and often exhibit a regular decrease in peak height 

with increasing carbon number in clastic source rocks (Peters and Moldowan, 1991). The ratio of 

hopanoids derived from C35 precursors over hopanoids derived from C30 precursors, sometimes 

taking the form C31H/C30H, has been used to differentiate between carbonate (high values), marine 

(medium values), and lacustrine (low values) depositional environments (Peters et al., 2005b). In 

this study, a positive correlation was observed when the peak area ratio of C29H/C30H was plotted 

against the peak area ratio of C31-35H/C30H indicating that both parameters are likely responding 

to changes in depositional environment (Figure 79). STACK West oils generally plot with higher 

values for both parameters than STACK East oils. When C31-35H/C30H is plotted in map view 

(Figure 80), a transition zone can be observed that mirrors the transition zone between low- and 

high-aromaticity observed in Figure 54. The oils in STACK West are likely sourced from a more 

restricted marine or carbonate-style source rock.

Figure 79. Crossplot of the ratios C29H/C30H versus C31-35H/C30H. Higher values in both ratios have been linked to 

depositional environment. Oils from the STACK West Play Region have higher values indicating a restricted marine 

or carbonate-style conditions when the source rock was deposited. Data in Table 17. 
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Key Play Region Hopanes ppm1 C31-35/C30H2 C29/C30H3 C31HHI4 C32HHI4 C33HHI4 C34HHI4 C35HHI4 

1 STACK West 1194.1 2.2 0.64 38% 23% 17% 11% 11% 

2 STACK West 1196.6 2.11 0.63 39% 24% 17% 10% 9% 

3 STACK West 1209.9 2.18 0.63 38% 24% 18% 11% 10% 

4 STACK West 1010.4 2.14 0.62 38% 24% 17% 11% 9% 

5 STACK West 1215.2 2.18 0.68 38% 24% 18% 11% 9% 

6 STACK West 446.7 2.18 0.51 30% 22% 17% 15% 16% 

7 STACK West 809.5 2.27 0.6 35% 23% 16% 13% 12% 

8 STACK West 655.5 2.41 0.61 35% 24% 17% 12% 13% 

9 STACK West 515.3 2.19 0.66 37% 25% 18% 11% 10% 

10 STACK West 589.2 2.28 0.62 38% 23% 18% 12% 10% 

11 STACK West 992.9 2.16 0.65 38% 23% 18% 12% 10% 

12 STACK West 836.9 2.29 0.64 38% 23% 17% 10% 11% 

13 STACK West 629.1 2.16 0.64 37% 25% 18% 11% 10% 

14 STACK West 703.6 2.27 0.68 38% 23% 17% 11% 11% 

15 STACK West 374.2 2.07 0.57 37% 22% 17% 12% 11% 

16 STACK West 784.3 2.33 0.63 35% 23% 17% 12% 14% 

17 STACK West 48.2 2.79 1.04 43% 19% 17% 13% 9% 

18 STACK West 3.4 NA NA NA NA NA NA NA 

19 STACK West 16.2 2.51 0.81 37% 22% 19% 11% 11% 

20 STACK West 5.1 NA NA NA NA NA NA NA 

21 STACK West 0 NA NA NA NA NA NA NA 

22 STACK West 0 NA NA NA NA NA NA NA 

23 STACK West 0 NA NA NA NA NA NA NA 

24 STACK West 0 NA NA NA NA NA NA NA 

25 STACK West 2.1 NA NA NA NA NA NA NA 

26 STACK West 8.5 NA NA NA NA NA NA NA 

27 STACK West 145.8 2.23 0.64 36% 24% 18% 14% 9% 

28 STACK West 360.8 2.36 0.68 37% 24% 18% 12% 10% 

29 STACK West 339.5 2.3 0.73 34% 20% 18% 15% 12% 

30 STACK West 11.3 NA NA NA NA NA NA NA 

31 STACK West 8 NA NA NA NA NA NA NA 

32 STACK West 11.7 NA NA NA NA NA NA NA 

33 STACK West 2.9 NA NA NA NA NA NA NA 

34 STACK West 6.8 NA NA NA NA NA NA NA 

35 STACK West 6.3 NA NA NA NA NA NA NA 

36 STACK West 0 NA NA NA NA NA NA NA 

37 STACK West 3 NA NA NA NA NA NA NA 

38 STACK West 1.7 NA NA NA NA NA NA NA 

39 STACK West 1.9 NA NA NA NA NA NA NA 

40 STACK West 4.5 NA NA NA NA NA NA NA 

41 STACK West 0 NA NA NA NA NA NA NA 

42 STACK West 0.6 NA NA NA NA NA NA NA 

43 STACK West 2.3 NA NA NA NA NA NA NA 

44 STACK West 53.4 3.61 1.17 31% 19% 17% 15% 19% 

45 STACK West 0 NA NA NA NA NA NA NA 

46 STACK West 0 NA NA NA NA NA NA NA 

47 STACK East 0 NA NA NA NA NA NA NA 

48 STACK East 0 NA NA NA NA NA NA NA 

49 STACK East 0 NA NA NA NA NA NA NA 

50 STACK East 8.8 NA NA NA NA NA NA NA 

51 STACK East 2.9 NA NA NA NA NA NA NA 

52 STACK East 0 NA NA NA NA NA NA NA 

53 STACK East 6.4 NA NA NA NA NA NA NA 

54 STACK East 9 NA NA NA NA NA NA NA 

55 STACK East 11 NA NA NA NA NA NA NA 

56 STACK East 0 NA NA NA NA NA NA NA 

57 STACK East 7.1 NA NA NA NA NA NA NA 

58 STACK East 10 NA NA NA NA NA NA NA 

59 STACK East 22.7 NA NA NA NA NA NA NA 

60 STACK East 1.8 NA NA NA NA NA NA NA 

61 STACK East 87 1.93 0.57 33% 20% 19% 16% 11% 

62 STACK East 4.8 NA NA NA NA NA NA NA 

63 STACK East 4.5 NA NA NA NA NA NA NA 

64 STACK East 92.2 2.14 0.64 36% 22% 19% 14% 9% 



 

160 

 

 

Key Play Region Hopanes ppm1 C31-35/C30H2 C29/C30H3 C31HHI4 C32HHI4 C33HHI4 C34HHI4 C35HHI4 

65 STACK East 9.7 NA NA NA NA NA NA NA 

66 STACK East 92.9 2.28 0.45 33% 23% 16% 15% 12% 

67 STACK East 13.9 NA NA NA NA NA NA NA 

68 STACK East 51.9 3.06 0.74 30% 22% 19% 13% 15% 

69 STACK East 103 2.34 0.55 34% 21% 19% 14% 11% 

70 STACK East 22.5 NA NA NA NA NA NA NA 

71 STACK East 0 NA NA NA NA NA NA NA 

72 STACK East 112.3 3.1 0.53 31% 22% 18% 16% 12% 

73 STACK East 0 NA NA NA NA NA NA NA 

74 STACK East 27.1 NA NA NA NA NA NA NA 

75 STACK East 139.7 2.5 0.43 35% 21% 17% 14% 13% 

76 STACK East 170.4 2.39 0.55 31% 19% 19% 19% 12% 

77 STACK East 9.4 NA NA NA NA NA NA NA 

78 STACK East 6.1 NA NA NA NA NA NA NA 

79 STACK East 69.7 2.04 0.48 33% 23% 21% 15% 8% 

80 STACK East 97.3 2.37 0.51 31% 22% 18% 14% 14% 

81 STACK East 63.4 1.87 0.46 34% 25% 18% 15% 8% 

82 STACK East 12.8 NA NA NA NA NA NA NA 

83 STACK East 88 2 0.46 32% 25% 21% 13% 9% 

84 STACK East 2.3 NA NA NA NA NA NA NA 

85 STACK East 93.6 1.91 0.48 30% 23% 20% 14% 12% 

86 STACK East 97.5 1.7 0.45 36% 25% 20% 12% 8% 

87 STACK East 187 1.91 0.45 35% 24% 19% 13% 9% 

88 STACK East 91.6 1.99 0.44 34% 25% 22% 13% 7% 

89 STACK East 100.9 1.61 0.43 36% 23% 20% 12% 9% 

90 STACK East 713.7 3.09 0.44 22% 20% 15% 18% 26% 

91 STACK East 144 1.33 0.4 35% 26% 19% 12% 9% 

92 STACK East 117.3 1.78 0.39 36% 24% 20% 11% 10% 

93 STACK East 440.1 2.52 0.53 30% 23% 17% 14% 16% 

94 STACK East 53.9 1.83 0.38 31% 26% 23% 13% 7% 

95 STACK East 16.9 NA NA NA NA NA NA NA 

96 STACK East 55.2 2.05 0.27 29% 24% 23% 14% 10% 

97 STACK East 101.2 1.99 0.39 34% 24% 20% 11% 10% 

98 STACK East 116 1.79 0.32 32% 26% 20% 12% 10% 

99 STACK East 103.5 1.79 0.39 34% 25% 20% 13% 8% 

100 STACK East 530.3 2.4 0.52 30% 23% 17% 14% 17% 

101 STACK East 441.6 2.22 0.44 34% 24% 19% 12% 11% 

102 STACK East 262.5 1.92 0.46 36% 24% 19% 12% 9% 

103 STACK East 177.4 1.61 0.41 36% 26% 20% 11% 7% 

104 STACK East 136 1.68 0.35 32% 25% 20% 14% 9% 

105 STACK East 261.2 1.29 0.42 39% 25% 20% 10% 6% 

106 STACK East 254.1 1.5 0.43 38% 24% 20% 12% 6% 

107 STACK East 264.3 1.4 0.41 37% 25% 20% 11% 7% 

108 STACK East 29.8 1.71 0.62 41% 25% 19% 12% 3% 

109 STACK East 57.7 2.03 0.5 33% 26% 20% 12% 9% 

110 STACK East 15.5 1.81 0.61 36% 19% 21% 15% 9% 

111 STACK East 159.8 1.82 0.4 38% 24% 19% 12% 7% 

112 STACK East 291 1.86 0.5 35% 25% 19% 12% 8% 

113 STACK East 467.4 2.14 0.47 34% 24% 18% 12% 13% 

114 STACK East 354 1.83 0.48 35% 25% 20% 12% 8% 

115 STACK East 345.7 2.29 0.52 31% 23% 17% 14% 14% 

116 STACK East 305.7 1.82 0.46 34% 24% 19% 13% 10% 

117 STACK East 348.1 1.86 0.44 31% 24% 20% 14% 11% 

118 STACK East 529.3 1.76 0.49 36% 23% 20% 13% 8% 

119 STACK East 376.8 1.74 0.5 36% 24% 20% 12% 8% 

120 SCOOP 48.4 1.59 0.52 35% 26% 21% 11% 6% 

121 SCOOP 0 NA NA NA NA NA NA NA 

122 SCOOP 0 NA NA NA NA NA NA NA 

123 SCOOP 0 NA NA NA NA NA NA NA 

124 SCOOP 29.8 NA NA NA NA NA NA NA 

125 SCOOP 11.5 NA NA NA NA NA NA NA 

126 SCOOP 7 NA NA NA NA NA NA NA 

127 SCOOP 13.1 1.63 0.49 NA NA NA NA NA 

128 SCOOP 9.4 1.25 0.38 NA NA NA NA NA 
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Key Play Region Hopanes ppm1 C31-35/C30H2 C29/C30H3 C31HHI4 C32HHI4 C33HHI4 C34HHI4 C35HHI4 

129 SCOOP 7.7 NA NA NA NA NA NA NA 

130 SCOOP 6.3 NA NA NA NA NA NA NA 

131 SCOOP 6.5 NA NA NA NA NA NA NA 

132 SCOOP 17.3 NA NA NA NA NA NA NA 

133 SCOOP 5.9 NA NA NA NA NA NA NA 

134 SCOOP 3.4 NA NA NA NA NA NA NA 

135 SCOOP 9.6 NA NA NA NA NA NA NA 

136 SCOOP 6.7 NA NA NA NA NA NA NA 

137 SCOOP 15.9 1.86 0.4 36% 24% 20% 11% 8% 

138 SCOOP 5.9 NA NA NA NA NA NA NA 

139 SCOOP 3.3 NA NA NA NA NA NA NA 

140 SCOOP 2.4 NA NA NA NA NA NA NA 

141 SCOOP 5 NA NA NA NA NA NA NA 

142 SCOOP 5.4 NA NA NA NA NA NA NA 

143 SCOOP 5.4 NA NA NA NA NA NA NA 

144 SCOOP 8.6 NA NA NA NA NA NA NA 

145 SCOOP 11.3 NA NA NA NA NA NA NA 

146 SCOOP 6.9 NA NA NA NA NA NA NA 

147 SCOOP 6.6 NA NA NA NA NA NA NA 

148 SCOOP 5.6 NA NA NA NA NA NA NA 

149 SCOOP 39.9 1.69 0.44 39% 23% 21% 11% 6% 

150 SCOOP 0 NA NA NA NA NA NA NA 

151 SCOOP 11.7 2 0.35 26% 23% 29% 14% 8% 

152 SCOOP 24.2 1.14 0.38 33% 28% 20% 14% 5% 

153 SCOOP 0.8 NA NA NA NA NA NA NA 

154 SCOOP 76 1.73 0.39 35% 23% 20% 14% 8% 

155 SCOOP 933.1 1.69 0.4 31% 21% 32% 10% 7% 

156 SCOOP 25.9 NA NA NA NA NA NA NA 

157 SCOOP 1.7 NA NA NA NA NA NA NA 

158 SCOOP 2.9 NA NA NA NA NA NA NA 

159 SCOOP 62.1 1.53 0.46 35% 26% 18% 13% 9% 

160 SCOOP 7.6 NA NA NA NA NA NA NA 

161 SCOOP 5.8 NA NA NA NA NA NA NA 

162 SCOOP 8 NA NA NA NA NA NA NA 

163 SCOOP 0 NA NA NA NA NA NA NA 

164 SCOOP 1.9 NA NA NA NA NA NA NA 

165 SCOOP 7.2 NA NA NA NA NA NA NA 

166 SCOOP 13.9 NA NA NA NA NA NA NA 

167 SCOOP 5.1 NA NA NA NA NA NA NA 

168 SCOOP 20.9 NA NA NA NA NA NA NA 

169 SCOOP 392.8 2.09 0.56 39% 23% 19% 12% 6% 

170 SCOOP 14.5 NA NA NA NA NA NA NA 

171 SCOOP 94.5 1.37 0.31 36% 20% 26% 11% 6% 

172 SCOOP 1.1 NA NA NA NA NA NA NA 

Table 17. Select hopane values for oils in this study. (1) concentration of all hopanes in ppm of the whole oil; (2) 

(17α(H),21β(H)-homohopane (22S+22R) + 17α(H),21β(H)-bishomohopane (22S+22R) + 17α(H),21β(H)-

trishomohopane (22S+22R) + 17α(H),21β(H)-tetrakishomohopane (22S+22R) + 17α(H),21β(H)-

pentakishomohopane (22S+22R))/17α(H),21β(H)-hopane; (3) 17α(H),21β(H)-30-norhopane/17α(H), 21β(H)-hopane. 

Samples marked NA indicate where one or both ratios were not available due to insufficient signal to noise. (3) 

Abundance of each C31-C35 homohopane (S+R) as a percentage of the sum of all homohopanes (C31-C35). 
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Figure 80. Map of the ratio of homohopanes (C31-35H/C30H) as expressed in Table 17. The transition between low 

values observed in STACK East and SCOOP mirrors the transition observed in aromaticity (Tol/MCH+n-C7) values 

as shown in Figure 54. The STACK West side of the transition zone has higher values indicative of more reducing 

(low Eh) marine conditions during deposition and early diagenesis.  
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The homohopanes indices from each Play Region show elevated C35/C34 homohopanes  

across all of STACK West and some oils in STACK East, indicating a highly anoxic or reducing 

depositional and diagenetic environment (Figure 81). This supports other findings that suggest a 

transition from restricted- to semi-open marine occurs between STACK East and STACK West. 

 

Figure 81. Homohopane distributions for each of the three Play Regions from data in Table 17. In general, STACK 

West exhibits a higher abundance of C35/C34 homohopanes indicative of more reducing environments. STACK East 

shows a wide range of values indicative of the previously indicated transition zone which appears to occur in northern 

Kingfisher and central Blaine counties. Some SCOOP samples contain anomalous C33 homohopanes abundances.  
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The terpane fingerprint (m/z 191) taken from the extracts from three Woodford Shale cores 

in Kingfisher, Blaine, and Major counties are summarized in Table 18 and Figure 82. In all 

samples, the C24TT/C23TT was between 0.58-0.73 which matches closely the ratios observed in all 

STACK oils and reflects values commonly observed in siliciclastic source rocks. The ratio 

C24TET/C26TT(S) was higher in STACK West (0.35±0.11, n=8) compared to STACK East 

(0.19±0.10, n=8) which mirrors the relationship observed between STACK Oils. Furthermore, a 

significant difference was also observed in C24TET/C26TT(S) between STACK West core extracts 

in the Upper Woodford (0.45±0.07, n=4) compared to Lower/Middle Woodford (0.25±0.02, n=4).  

The Woodford Shale extracts generally show less abundant hopanoids and extended 

tricyclic terpanes compared to the C19-C26 tricyclic terpanes. Extended tricyclic terpanes above C33 

were observed in all samples, but in small amounts in the John 1H-5X core. Curiously, the 

Woodford Shale extracts exhibit large hopanoid peaks for 18α(H)-22,29,30-trisnorhopane (Ts) and 

15α(H)-methyl-17α(H)-27-norhopane (C30DH) which are not observed in produced oils in 

STACK. The abundances of these unexpected peaks is larger in the Upper Woodford than in the 

Lower/Middle Woodford.   

Table 18. Selected ratios from the m/z 191 chromatograms of Woodford Shale extracts taken from three cores in 

STACK. (1) C24 tricyclic terpane/C23 tricyclic terpane; (2) C24 tetracyclic terpane/C26 tricyclic terpane (S); (3) 18α(H)-

22,29,30-trisnorhopane/17α(H),21β(H)-hopane; (4) 5α(H)-methyl-17α(H)-27-norhopane/17α(H),21β(H)-hopane; (5) 

(17α(H),21β(H)-homohopane(22S+22R) + 17α(H),21β(H)-bishomohopane (22S+22R) + 17α(H),21β(H)-

trishomohopane (22S+22R) + 17α(H),21β(H)-tetrakishomohopane (22S+22R) + 17α(H),21β(H)-

pentakishomohopane (22S+22R))/17α(H),21β(H)-hopane. 

Core Depth Formation Play Region C24TT/C23TT1 C24TET/C26TT(S)2 Ts/C30H3 C30DH/C30H4 C31=35H/C30H5 

ABCDS 1-6 8098 Upper Woodford STACK West 0.63 0.50 1.1 1.0 2.3 

ABCDS 1-6 8099 Upper Woodford STACK West 0.60 0.52 1.0 0.8 1.6 

ABCDS 1-6 8110 Middle Woodford STACK West 0.66 0.27 1.1 1.1 2.1 

ABCDS 1-6 8121 Middle Woodford STACK West 0.64 0.22 1.2 1.3 2.8 

KC 1-36 8538.5 Upper Woodford STACK East 0.61 0.38 1.4 1.4 2.1 

KC 1-36 8543.5 Upper Woodford STACK East 0.58 0.38 1.1 1.0 1.8 

KC 1-36 8557 Lower Woodford STACK East 0.71 0.25 1.6 2.1 1.3 

KC 1-36 8566.5 Lower Woodford STACK East 0.73 0.27 0.9 0.7 0.7 

John 1H-5X 9165 Upper Woodford STACK East 0.59 0.23 4.1 4.0 1.4 

John 1H-5X 9180 Middle Woodford STACK East 0.64 0.09 1.9 2.9 0.5 

John 1H-5X 9202 Lower Woodford STACK East 0.60 0.25 0.8 0.8 0.2 
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Figure 82. Example m/z 191 mass chromatograms taken from Woodford Shale core extracts from three cores in 

STACK. The Woodford Shale in STACK West contains higher C24TET/C26TT(S) values than STACK East, but also 

higher values in the Upper Woodford than in the Lower/Middle Woodford. Large Ts and C30DH peaks observed in 

the Woodford core extracts were not observed in any STACK oils, but are more pronounced in the Upper Woodford 

than the Lower/Middle Woodford. 
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Mapping Organic Facies in STACK 

An organic facies has been defined as a mappable rock unit, distinguishable by the 

character of its organic matter without regard to the inorganic aspects of the sediment (Jones, 1984, 

1987). Where the spatial resolution of rock core is limited, it may be possible to approximate the 

distribution and nature of organic facies from the oils they generate if there is reasonable 

confidence that the oils are captured near their organic source. This is accomplished by first 

determining source-related sets of oils, defined as oils generated and expelled from the same 

organic facies at different stages of maturity. Plotting the geochemical parameters in map view 

may provide sufficient spatial resolution to appropriately map the approximate transitions between 

two or more organic facies. 

This chapter reviews several geochemical parameters, including light hydrocarbons, 

steranes, acyclic terpanes, sesquiterpanes, tricyclic terpanes, tetracyclic terpanes, and hopanes in 

order to determine which parameters most successfully formed two or more clusters which may 

indicate the presence of separate organic facies. Two geochemical maps have been shown already 

which illustrate a potential geochemical transition zone occurring in central Blaine and northwest 

Kingfisher counties based on light hydrocarbon aromaticity (Figure 54) and extended hopanes 

(Figure 80). Six additional maps illustrating several additional geochemical parameters in this 

study which successfully formed two or more clusters are provided in Figure 83, Figure 84, and 

Figure 85 with an overlay showing the approximate transition for that parameter. Geochemical 

maps only provide a single dimension in the value axis, therefore in several cases only a single 

axis of a multi-axial plot, such as crossplots or ternary diagram, could be selected. Furthermore, 

parameters which covaried strongly with maturity, such as the C24TET/C26(S), were not considered 

even if they formed two or more trend lines when plotted against maturity. 
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Figure 83. Maps showing the values for Mango’s K1 and N2
5+P2 (denominator in K2) for all STACK oils showing 

slightly different transition zones across northern Kingfisher and central Blaine counties. 
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Figure 84. Maps showing values of %C29 Sterane (C29/C27-29 Sterane) and the C30 Sterane Index (C30/C27-30 Sterane) 

for all STACK oils showing mirroring transition zones across northern Kingfisher and central Blaine counties. 
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Figure 85. Maps showing values of %Extended Tricyclic Terpanes (C28-39TT/C19-39TT) and C20TT/C23TT for all 

STACK oils showing mirroring transition zones across northern Kingfisher and central Blaine counties. 
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Based on the maps in Figure 54, Figure 80, Figure 83, Figure 84, and Figure 85, there is a 

striking southwest-northeast trending transition zone in central Blaine and northwestern Kingfisher 

counties which separate two source-related sets of oils which are geochemically distinct and 

internally consistent. Notably, oils from Woodford and Mississippian reservoirs in STACK are 

geochemically identical within a Play Region suggesting produced oils from these reservoirs share 

a common source, likely the Woodford Shale (Burruss and Hatch, 1989). This is especially clear 

in Canadian and southern Kingfisher counties where Woodford and Mississippian production in 

close proximity show almost no geochemical differences. Any contribution from secondary 

source(s) is volumetrically too small to impress an observable difference in geochemical character. 

Moreover, tight unconventional reservoir rocks with low permeabilities are unlikely to be well-

mixed with respect to different charge events (England et al., 1987; Leythaeuser and Rückheim, 

1989), so it is reasonable that each sample in this study is representative of only one organic facies 

at one moment in its thermal history. 

Based on the transition between geochemically distinct source-related sets of oils, two 

organic facies are proposed which are hereafter referred to as STACK 1 (“West Facies”) and 

STACK 2 (“East Facies”) and shown in Figure 86. The organic facies transition is approximated 

based on changes in geochemical character of oils, but the transition also closely follows the 

Meramec isopach and its depositional pinchout mapped by Price (2020). While it may be tempting 

to argue that the transition between sets of source-related oils results from contribution from a 

separate Mississippian organic source or overprint of autochthonous Mississippian organic matter, 

a more likely explanation is that the ecological and depositional controls during Woodford times 

first affected sediment input, access to upwelling nutrients, oceanic circulation, and paleoecology 

and would later control the extent and growth of Osage carbonate platform millions of years later. 
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Figure 86. Upper: Delineation of two organic facies based on Figure 54, Figure 80, Figure 83, Figure 84, and Figure 

85. Lower: The transition corresponds with the thinning edge of Osage Platform and clinoformal deposition of the 

Meramec. Isopach from (Price, 2020) 
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The range of geochemical parameters for 58 oils found to be sourced from the West Facies 

and 61 oils sourced from the East Facies organic facies are shown as box and whisker plots in 

Figure 87 colored red and blue, respectively. In aggregate, oil samples from both organic facies 

are approximately the same median maturity (0.84% Rc vs. 0.86% Rc), but West Facies samples 

represent a wider range of maturities. Whole oil carbon isotopes show that oils sourced from West 

Facies is on average isotopically heavier, but unfortunately the overall sampling is incomplete (69 

isotope samples vs. 119 total STACK oils) and biased towards deeper, more mature samples (see 

Figure 22). The remaining parameters are source-related and organized into three groupings which 

cover redox/lithology, light hydrocarbons, and other biomarkers. 

In the summary of redox/lithology parameters, oils from both organic facies contain Pr/Ph 

values which plot comfortably between 1-1.5, indicative of marine deposition, but oils sourced 

from the West Facies exhibit a wider range. West Facies oils have lower % diasteranes, mirrored 

by a similarly lower amount of rearranged sesquiterpanes (see Figure 71), which could indicate 

either fewer clays with active acid sites or a shift towards a more basic (high pH) or reducing (low 

Eh) diagenetic condition. These findings are supported by the higher C29H/C30H ratio in the West 

Facies (median 0.63) versus East Facies (0.44) which is consistent with a more restricted marine 

environment with some carbonate or evaporite type depositional systems. These restricted 

environments may have been affected by differences in sediment supply, salinity, water 

temperature, alkalinity, water stratification, or ecosystem (Zumberge, 1984; Connan et al., 1986; 

Price et al., 1987). This is also supported by higher C24TET/C26TT values in the West Facies oils 

(median 0.45) compared to East Facies (median 0.17) oils indicating that its source rock was 

deposited in a more restricted marine environment such as a shallow shelf or semi-closed oceanic 

basin with limited upwelling currents and nutrients (Zumberge et al., 2007). 
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Figure 87. Box and whisker plots detailing the geochemical parameters for two organic facies identified in Figure 86 

and organized by Maturity/Isotopes, Redox/Lithology, Light Hydrocarbons, and Biomarkers. The West Facies (red) 

has 58 oil samples primarily in the STACK West Play Region while the East Facies (blue) has 61 oil samples. By 

comparison, the West Facies samples have a wider range of thermal maturities containing both the highest- and lowest-

maturity oils. The West Facies have lower % Diasteranes, higher C24TET/C26TT, and higher C29H/C30H indicative of 

a restricted marine environment with limited access to nutrient rich upwelling currents and low input of terrestrial 

sediments. Light hydrocarbons ratios based on kinetic equilibrium show differences in catalytic activity between the 

source rocks containing the two organic facies. The West Facies also contains a different tricyclic terpane fingerprint 

with lower % extended TT and higher amounts of C20TT/C23TT. Finally, the West Facies has higher %C29 sterane and 

lower C30 Sterane Index, indicating a more restricted marine and coastal waters with abundant green algae.  
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The light hydrocarbon parameters in Figure 87 show clear separation between the two 

proposed organic facies. The three parameters derived from Mango’s light hydrocarbon model 

(K1, the denominator of K2, and Ring Preference) show a striking dissimilarity in kinetic 

equilibrium variables within their respective source rocks. Critically, the West Facies has K1 values 

consistently above 1 which has been associated with sulfate reduction reactions (ten Haven, 1996; 

Peters and Fowler, 2002) and could support a depositional environment with low amounts of 

terrestrially derived sedimentary iron (Dinur et al., 1980). Additionally, West Facies oils are 

strongly enriched in toluene compared to East Facies oils, often by a factor of 3-5, which is 

reflected in the elevated light hydrocarbon aromaticity value. The elevated aromaticity and K1 

values generally greater than 1 in the West Facies are both indicators of increased free and/or 

organic sulfur compounds present during diagenesis and is explored more fully in Chapter VI. 

Oils generated from the two proposed organic facies also show two geochemically distinct 

tricyclic terpane and sterane biomarker signatures. Oils sourced from the West Facies have 

comparatively lower amounts of extended (>C28) relative to regular tricyclic terpanes and higher 

amounts of the smaller tricyclic terpanes, C19TT and C20TT, relative to C23TT. The difference in 

tricyclic terpane signatures between the East Facies and West Facies oils can be related to the 

calculated rate decline exponents of individual tricyclic terpanes. With increasing maturity, the 

East Facies appears to preferentially release shorter chain tricyclic terpanes which are 

progressively depleted in later generated oils. The rate of depletion, given by the rate decline 

exponent, appears to decrease systematically with increased length of the isoprenoidal chain. It is 

hypothesized that this may relate to the molecular composition, bond stability, or molecular 

porosity found in macromolecules like kerogen, bitumen, or asphaltenes which have been shown 

to be capable of occluding compounds like tricyclic terpanes at the time of generation. In the West 
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Facies, short- and long-chained tricyclic terpanes share a constant rate decline. In the working 

hypothesis, the West Facies may be explained by a higher proportion of weak or labile bonds in 

the macromolecular structure which are more easily degraded resulting in the more efficient 

release of the occluded components.  

Finally, the West Facies oils have comparatively higher C29 steranes and lower C30 sterane 

index than the East Facies, interpreted as evidence of more restricted marine deposition with a 

coastal algal ecosystem dominated by green algae like Prasinophyceae and sparse golden 

Chrysophyte algae. Oils produced from the previously identified flower-shaped zone in eastern 

Dewey County are higher maturity than adjacent production in western Dewey Woodward 

counties with comparable reservoir TVD, but otherwise the high maturity oils are geochemically 

indistinguishable from other similarly mature Stack 1 (“West Facies”) facies derived oils. The 

incursion of higher maturity fluids along the major faults in the flower-shaped zone supports the 

hypothesis that oils generated deeper in the basin may have migrated into shallower reservoirs and 

mixed with locally generated oils, a possibility that will be explored more fully in Chapter VI.  

In summary, the producing reservoir (Woodford, Osage, Meramec, or Chester) appears to 

have little or no control on the geochemical character of the produced oil itself, suggesting a 

common organic source for each of these reservoirs. As a result, all STACK oils in this dataset are 

interpreted as being sourced from two chemically distinct organic facies in Woodford Shale, and 

contributions from Mississippian organic matter is believed to be geochemically negligible. The 

West Facies was deposited in a restricted marine environment with limited access to upwelling 

nutrients and starved of terrestrial sediment. Extracts from the Lower and Middle Woodford, which 

contains the maximum flooding surface and are often the most organic-rich members of the 

Woodford Shale, are geochemically the most similar to oils produced in STACK.  
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Characteristics of the SCOOP Petroleum System 

The South Central Oklahoma Oil Province (SCOOP) is 

a structurally and stratigraphically complex play primarily in 

Grady, McClain, Garvin, and Stephens counties, with 

production from Upper Devonian through Lower 

Pennsylvanian reservoirs. A stratigraphic type log is provided 

in Figure 88. This study contains 53 oil samples from the three 

producing reservoirs: the 26 Woodford Shale samples, 8 

Mississippian Sycamore and Meramec formations samples, and 

19 Springer Group sandstones samples as shown in Figure 89.  

The Springer Group is separated from the Woodford-

Mississippian by the argillaceous Caney Shale which often 

contains TOC between 1-9 wt% (Cardott, 2017). This section 

will attempt to determine if the Springer and Mississippian 

group reservoirs are charged by one or more organic facies and 

if the Woodford or Caney/Goddard shales are responsible for 

charging the Springer and/or Mississippian reservoirs. The 

SCOOP Play Region is smaller than STACK and not broken up 

into separate Play Regions, so geochemical plots in this section 

will be colored by producing reservoir. Additionally, it was 

shown in Chapter IV that oils in SCOOP have lower thermal 

maturities for any given depth compared to STACK oils and 

also have lower concentrations of most observed biomarkers.  

Figure 88. Stratigraphic type well log 

from SCOOP. This study includes oils 

produced from the Springer Group, 

Mississippian Group, and Woodford 

Shale denoted in green, blue, and red , 

respectively. Modified from Abrams 

and Thomas (2020). 
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Figure 89. Map of SCOOP oil samples in this dataset by producing formation. The SCOOP dataset includes a total of 

53 oils from Woodford (26), Mississippian (8), and Springer (19) reservoirs.  
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Studies of Oklahoma source rocks by Burruss and Hatch (1989 and 1992) have previously 

reported geochemical characteristics common in Pennsylvanian-sourced oils which distinguish 

them from Woodford-sourced oils, including MCH more abundant than n-C7, isotopically enriched 

carbon, and abundant alkanes greater than n-C15. To compare to these findings, typical whole oil 

GC chromatograms from the three producing reservoirs in SCOOP are provided in Figure 90 and 

show a strong resemblance between Woodford- and Mississippian-produced oils that is distinct 

from Springer-produced oils. The Caney-Springer formations straddles the Mississippian-

Pennsylvanian boundary and produces oils in this dataset with abundant n-alkanes between n-C10 

and n-C22, n-C7 in lower abundance relative to MCH, and abundant isoprenoids compared to n-

alkanes which closely resemble the chemical signature attributed to Pennsylvanian-type oils. In 

contrast, Woodford- and Mississippian-produced oils are rich in light hydrocarbons below n-C10, 

abundant n-C7 relative to MCH, and low abundance of isoprenoids compared to n-alkanes.  

Figure 90. Characteristic whole oil GC fingerprint for the three SCOOP reservoirs. Springer-produced oils have a 

distinct and different character than Woodford- and Mississippian-produced oils at the same level of thermal maturity.  
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Light Hydrocarbons 

The SCOOP whole oil GC chromatograms show Woodford- and Mississippian-produced 

oils differ from Springer-produced oils by the abundance of n-C7 relative to MCH (see also Figure 

53). In Chapter IV, the heptane ratio developed by Thompson (1979, 1983) was introduced both 

as a potential maturity and/or source parameter, but was found to have little or no relationship to 

maturity in SCOOP oils (Figure 36). The heptane ratio, defined as 100*n-C7/(CC6+2-MH+2,3-

DMP+1,1-DMCP+3-MH+1c3-DMCP+3-EP+1t3-DMCP+1t2-DMCP+n-C7+1c2-DMCP+MCH), 

is shown in Figure 91 for all SCOOP oils where Woodford- and Mississippian- oils cluster 

separately from Springer-produced oils at all Rc%. The heptane ratio for Woodford- and 

Mississippian- produced oils (33.7±0.7, n=34) is approximately 50% larger than for Springer-

produced oils (20.3±0.9, n=19) which reflects the less abundant n-C7 observed in Springer-

produced oils. Higher heptane ratio has been empirically linked to more aliphatic kerogen and 

lower heptane ratio to more aromatic kerogen (Thompson, 1983), so one explanation for higher 

values in Woodford/Mississippian oils is that they may be sourced from a more aliphatic source.  

Figure 91. The heptane ratio versus maturity forms separate trends for Woodford/Mississippian- and Springer-

produced oils. Samples in map view and colored by heptane ratio values. Heptane ratio=100*n-C7/(CC6+2-MH+2,3-

DMP+1,1-DMCP+3-MH+1c3-DMCP+3-EP+1t3-DMCP+1t2-DMCP+n-C7+1c2-DMCP+MCH). 
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The isoheptane ratio, defined as (2-MH+3-MH)/(1c3-DMCP+1t3-DMCP+1t2-DMCP), 

generally increases exponentially with maturity (see Figure 36) but is often observed with different 

trends depending on the aliphatic or aromatic content of its source kerogen (Thompson, 1979, 

1983). The isoheptane ratio values for SCOOP oils are shown in Figure 92 and indicate two parallel 

trends for Woodford/Mississippian and Springer oils with increasing maturity. The separate trends 

for Woodford/Mississippian and Springer oils supports the hypothesis that the Springer Group 

may be charged by a less aliphatic non-Woodford source, most likely the Caney or Goddard shales. 

One or both of these shales may also act as barriers to migration between the Woodford-

Mississippian and the Springer Group reservoirs forming two separate petroleum systems. 

The kinetic model proposed by Mango (1994) (see Figure 55) argues that light 

hydrocarbons exist in steady state equilibrium between parent-daughter pairs with intermediate 

compounds containing three-, five-, or six-carbon rings. The constants which define the kinetic 

equilibrium for each reaction is controlled by temperature, pressure, and the presence of catalysts. 

A ternary diagram which shows the fractional abundance of three-, five-, and six-ring preference 

 

Figure 92. The isoheptane ratio shows separation betweenWoodford/Mississippian and Springer oils. Samples in map 

view and colored by isoheptane ratio values. Isoheptane ratio= (2-MH+3-MH)/(1c3-DMCP+1t3-DMCP+1t2-DMCP) 
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(RP) compounds based on Mango’s kinetic model for SCOOP oils is provided in Figure 93 with 

data from Table 11. Once again, the Woodford- and Mississippian-produced oils cluster separately 

from Springer-produced oil. The different clustering is primarily due to a substantial increase in 

Six RP (N1
6) in Springer oils resulting from higher abundances of methylcyclohexane. Similar to 

STACK, Woodford oils contain slightly higher Three RP (P2 + P3) values compared to 

Mississippian oils. Since carboxylic ring-closure in steady state is affected by the presence of 

metals, oxidation states, and structure of its surrounding ligands, the separate clustering between 

Springer and Woodford/Mississippian is likely an indicator of lithologic differences in the source.  

Figure 93. Ternary diagram showing the fractional abundance of three-, five, and six-ring preference (RP) compounds 

based on Mango’s kinetic model. Six RP=MCH+Tol; Five RP=ECP+1t2-DMCP+1c2-DMCP+1,1-DMCP+1c3-

DMCP+1t3-DMCP; Three RP=2-MH+3-MH+2,3-DMP+2,4-DMP+2,2-DMP+3,3-DMP+3-EP. 
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 Sterane Biomarkers 

Steranes (I) are biomarkers derived from sterols, ubiquitous in eukaryotic life, and were 

reviewed in detail previously in this chapter for STACK. Unfortunately, sterane data in SCOOP 

oils are limited by low signal to noise ratios in GC-MS. Nonetheless, the classic ternary diagram 

showing the fractional abundances of the C27, C28, and C29 regular steranes is provided in Figure 

94 and shows significant data scatter. In general, Springer oils have slightly higher abundances of 

C27 sterane and lower abundance of C29 sterane compared to Woodford and Mississippian oils.  

Figure 94. Ternary diagram of the C27-C29 5α(H),14α(H),17α(H) 20R steranes in SCOOP oils as a fraction of their 

sum. STACK data clusters are outlined. 
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The two additional sterane parameters used to characterize organic source facies in STACK 

were the ratios of the C30 Sterane Index and diasteranes/total steranes, shown in Figure 95, which 

are thought to reflect marine organic matter input and the presence of active acid sites on certain 

clay minerals, respectively (Rubinstein et al., 1975; Sieskind et al., 1979; Moldowan et al., 1985). 

Despite significant scatter, the C30 Sterane Index is higher in Springer oils (0.12±0.01, n=15) 

compared to Woodford/Mississippian oils (0.08±0.02, n=30), suggesting a more open marine 

source with more abundant golden Chrysophyte algae. Additionally, the ratio diasteranes/total 

steranes is also higher in Springer oils (0.86±0.06, n=18) than Woodford/Mississippian oils 

(0.75±0.05, n=31) suggesting a more argillaceous source.  

Figure 95. Two plots generated from the distribution of steranes in SCOOP oils. The C30 Sterane Index=C30/(C27-C30) 

steranes each of the 5α,14α,17α(H),20R isomers; diasteranes/total steranes=[m/z 259]/[m/z 217] over the range of 

C27-C30 steranes 
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Terpenoid Biomarkers 

Earlier in this chapter, the crossplot comprising the ratios pristane (X; Pr) to n-C17 and 

phytane (XI; Ph) to n-C18 was shown for both STACK and SCOOP oils and overlain with common 

interpretations for depositional redox, thermal maturity, and biodegradation (see Figure 67). All 

SCOOP oils plotted as sourced from a transitional or marine depositional environment, and this 

interpretation was also supported by the same finding in the crossplot of Pr/Ph versus DBT/P (see 

Figure 68). The Pr/n-C17 ratio is substantially higher in Springer-produced oils (0.73±0.04, n=19) 

compared to Woodford- and Mississippian-produced oils (0.32±0.02, n=34), and there is no 

observable change in the ratio Pr/n-C17 with maturity (Figure 96). The findings agree with the 

overall observations of whole oil GC chromatograms in Figure 90 that Springer oils have higher 

abundances of isoprenoids relative to n-alkanes compared to Woodford and Mississippian oils. 

Although higher Pr/n-C17 ratios in some oils could result from the preferential biodegradation of 

alkanes relative to isoprenoids (Connan, 1984), there is no evidence of biodegradation in any 

SCOOP oils and instead the difference is believed to be source-related.   

Figure 96. Ratio of Pr/n-C17 normalized to maturity show separate clusters for Woodford/Mississippian- and Springer-

produced oils. Samples are plotted in map view and colored by Pr/n-C17 values. 
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Source related groups of SCOOP oils might also be distinguished by the absolute 

concentrations of polycyclic biomarkers. The concentrations three polycyclic terpenoid classes, 

bicyclic sesquiterpanes (XI), tricyclic terpanes (V), and hopanes (VI), for SCOOP oils are 

provided in Figure 97. Springer-produced oils have higher concentrations for each of the three 

terpenoid biomarkers compared to Woodford- and Mississippian-produced oils.  

Figure 97. Concentration of sesquiterpanes, tricyclic terpanes, and hopanes in ppm (whole oil) for all SCOOP oils. 

Springer oils have higher concentrations than Woodford and Mississippian oils when normalized to maturity. 



 

186 

 

 

This study identified eight sesquiterpanes, shown previously in Figure 69, three of which 

were selected for a source-specific ternary diagram (Table 14) shown for STACK oils in Figure 

70 and re-created for SCOOP oils in Figure 98. Springer oils cluster separately and have higher 

amounts of the rearranged drimane (BS-4) compared to Woodford and Mississippian oils. Like 

diasteranes, the formation of rearranged drimanes is believed to be catalyzed by the presence of 

active acid sites like clay surfaces. The sesquiterpane data in SCOOP continues to support the 

hypothesis that the Springer Group was charged more argillaceous non-Woodford source.  

Figure 98. Ternary diagram of three closely eluting C15 sesquiterpanes include a rearranged drimane (BS-4), drimane 

(BS-5), and a third sesquiterpane (BS-6) as a fraction of the sum of the three. Springer-produced oils plot separately 

from Woodford- and Mississippian-produced oils which cluster together. 
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Cheilanthanes, or tricyclic terpanes (V; TT), were used earlier in this chapter to determine 

that all STACK oils analyzed were generated from a siliciclastic source rock. By plotting the 

tricyclic terpane ratios C22/C21 as a function of C24/C23, Zumberge et al. (2007) created expected 

zones for oils generated from carbonate and siliciclastic source rocks. A re-creation of this cross 

plot is provided in Figure 99 and shows significant data scatter, but all SCOOP oils plot inside or 

near the expected range of values for oils generated from siliciclastic source rocks. Springer oils 

have higher C24TT/C23TT values compared to Woodford and Mississippian oils. 

A summary of terpane fingerprints from Springer, Woodford and Mississippian oils is 

shown in Figure 100, and the relative abundance of the C19TT through C31TT is shown in Figure 

101. Springer oils have more abundant extended tricyclic terpanes (C28-C31) relative to regular 

tricyclic terpanes (C19-C26) compared to Woodford and Mississippian oils. Notably, some extended 

tricyclics (e.g. C29TT(S)) in Springer oils are more abundant than the C23 and C24 tricyclic terpanes 

which are usually the most abundant tricyclic terpanes in oils sourced from marine source rocks.  

Figure 99. Crossplot of the C22/C21 TT as a function of C24/C23 TT showing all STACK oils plot in the zone attributed 

to siliciclastic source material. Original plot from Zumberge et al., (2007). 
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Figure 100. Terpane fingerprints taken from the m/z 191 chromatogram from six oils produced from SCOOP 

reservoirs—three from Springer Group, two from the Woodford Shale, and one from the Mississippian Group. All 

oils are between 0.80-0.87% Rc and were produced from between 10,555-12,753 ft TVD. Oils from all three reservoirs 

show a dominance of tricyclic terpanes over hopanes, but Springer Group oils show dominant extended tricyclic 

terpanes between C28TT up through C39TT compared to Woodford and Mississippian oils. Springer Group oils also 

contain near equal abundances of C23TT and C24TT where the C23TT is dominant in Woodford and Mississippian oils 

in both STACK and SCOOP. The C24TET peak is small in all oil SCOOP oils, suggesting a more open marine 

depositional environment. Finally, a C30DH is observed in Springer Group oils which is not readily observed in 

Mississippian and Woodford oils.  
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Figure 101. Abundance of the C19 through C31 tricyclic terpanes for all SCOOP oils relative to total tricyclic terpanes as determined from peak areas. 
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Earlier in this chapter, it was demonstrated that the nature of chemical bonds and molecular 

porosity in asphaltenes may affect the release of tricyclic terpane homologues into the maltene 

fraction with maturity, and that the efficiency of this process may be related to organic facies. This 

hypothesis was tested in SCOOP by calculating the rate decline exponents for each tricyclic 

terpane carbon number for Springer oils as well as combined Woodford and Mississippian oils as 

shown in Figure 102. Woodford and Mississippian oils exhibit a trend which closely mirrors the 

Woodford-sourced oils in STACK, but Springer oils show larger rate decline exponents at all 

carbon numbers and form a second trend well below the three Woodford-sourced trends. This 

phenomenon needs to be studied more closely, but it is hypothesized that organic sources may be 

successfully differentiated based on the preferential release of terpanes during catagenesis. 

Figure 102. Combination plot showing rate decline exponents for the tricyclic terpane series in SCOOP (lines) as well 

as the difference in values between Woodford/Mississippian and Springer Group oils (bars). 
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C24 Tetracyclic Terpane 

The C24 tetracyclic terpane (XIII; C24TET) has been linked to source rocks deposited in 

shallow or restricted marine environments with limited access to upwelling nutrients (Zumberge 

et al., 2007), epicontinental carbonate or evaporite settings (Palacas, 1988; Clark and Philp, 1989), 

and in some cases high levels of terrigenous input (Philp and Gilbert, 1986). The C24TET/C26TT(S) 

ratio for SCOOP oils is provided in Figure 103 and shows higher values in 

Woodford/Mississippian-produced oils (0.22±0.05, n=30) compared to Springer-produced oils 

(0.09±0.04, n=18). The low values observed in all SCOOP oils are characteristic of source rocks 

deposited in a reducing or anoxic marine depositional environment, and the very low values in 

Springer oils suggests its source contained a more open marine environment compared to the 

source compared to the source for Woodford and Mississippian oils. This finding agrees with the 

higher C30 sterane index values in Springer-produced oils compared to Woodford- and 

Mississippian-produced oils which is a strong indicator of marine input known to source primarily 

from golden Chrysophyte algae.   

Figure 103. Ratio of C24TET/C26TT(S) normalized to maturity show slightly higher values for Woodford/  

Mississippian-produced oils than Springer-produced oils. Mapped sample are colored by C24TET/C26TT(S) values. 
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Summary of SCOOP Geochemistry 

Oils produced from SCOOP were found to belong to one of two source related families of 

oils partitioned entirely by producing reservoir. One family contained all oils produced from 

Woodford and Mississippian Group reservoirs, including the Sycamore and Meramec formations, 

and the second set contained all oils produced from the Springer Group reservoirs. The most 

notable characteristics of Woodford- and Mississippian-produced oils in SCOOP are the unimodal 

distribution of n-alkanes, heptane ratio value <30, n-C7>MCH, three-RP C7 compounds ≥40% (see 

Figure 93), C30 sterane index between 0.06-0.11, Pr/n-C17<0.4, rearranged drimane BS-4/∑(BS-4 

through BS-6) <0.30, sesquiterpane concentrations <200ppm of whole oil, C26-39TT 

(extended)/total TT <60%, and C24TET/C26TT(S) between 0.14-0.25. No significant geochemical 

differences were observed between Woodford- and Mississippian-produced oils, and as such the 

oils are interpreted as sharing a single organic facies with no volumetrically significant 

contribution from secondary sources. The source for these oils was deposited in an argillaceous, 

transitional- or open-marine environment containing high abundances of well-preserved aliphatic 

organic matter and is therefore interpreted as the Woodford Shale. 

By contrast, the Springer Group of oils is characterized by bimodal distribution of n-

alkanes with abundant n-C15 through n-C22 after which there is a steep decline in the abundance of 

higher carbon number n-alkanes, Heptane Ratio value <25, n-C7<MCH, three-RP C7 compounds 

≤30% of light hydrocarbons, C30 Sterane Index between 0.10-0.14, Pr/n-C17>0.7, rearranged 

drimane BS-4/∑(BS-4 through BS-6)>0.35, sesquiterpane concentration <100ppm of whole oil, 

extended/total tricyclic terpanes>70%, C24TET/C26TT(S) between 0.0.-0.10. The source for 

Springer oils was deposited in a very clay rich, argillaceous shale deposited in an open marine 

environment with aliphatic organic matter, most likely the Caney or Goddard Shales. 
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This Study in Relation to Previous Geochemical Findings 

This study has reviewed the geochemistry of 3 cores and 172 oils produced from thirteen 

counties across the STACK and SCOOP plays of the Anadarko Basin, Oklahoma. Based on the 

geochemical fingerprints, four families of source related oils have been identified which each 

correspond to an organic facies (Figure 104). A summary of each organic facies is provided in 

Table 19 detailing its producing reservoirs as well as interpretations of source formation, lithology, 

depositional environment, and notable geochemical characteristics. The range of geochemical 

values are presented as first- and third-quartile range within each homologue set. Three homologue 

sets of oils correspond to the three interpreted organic facies within the Woodford Shale which 

range from restricted, transitional, and transitional/open marine depositional environments. All 

oils produced from Springer Group reservoirs belong to a single homologue set of oils originating 

from an organic facies from a non-Woodford marine source. Without additional core it is unclear 

if Springer oils are sourced from the Goddard or Caney shales. 

This study has found no evidence to support a contribution of volumetrically significant 

Mississippian-sourced oil into Mississippian reservoirs. Critically, no source-specific geochemical 

differences were observed between oils produced from Woodford (41 samples) and Mississippian 

(111 samples) reservoirs in close proximity. Instead, this study concludes that all Woodford- and 

Mississippian-produced oils are sourced from three organic facies in the Woodford Shale which 

correspond to regional differences in accommodation space, ocean circulation, sediment supply, 

biomass, and organic preservation across a single depositional system. Moreover, the transitions 

between different portions of the depositional system might successfully be mapped by the oils 

generated nearby since tight unconventional oils are thought to be generated, trapped, and 

produced very near their organic source (Meckel and Thomasson, 2005).  



 

194 

 

 

 

 

 

 

Figure 104. Map of STACK and SCOOP showing oils generated from each of the four identified organic facies.
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 STACK 1 (West) STACK 2 (East) SCOOP 1 (Lower) SCOOP 2 (Upper) 

Producing Reservoirs 
Woodford, 

Mississippian 
Woodford, 

Mississippian 
Woodford, 

Mississippian 
Springer Group 

Source Fm Woodford Shale Woodford Shale Woodford Shale Caney or Goddard Shale 

Source Lithology 
V. Clay Poor or 

Calcareous Shale 
Clay Rich Shale Clay Rich Shale V. Clay Rich Shale 

Dep. Environment Restricted Marine Transitional Marine 
Transitional/Open 

Marine 
Open Marine 

Number of Samples 58 61 34 19 

n-Alkane Distribution Unimodal Distribution Unimodal Distribution Unimodal Distribution Bimodal Distribution 

1Aromaticity 0.21-0.33 0.08-0.12 0.07-0.10 0.10-0.14 

n-C7/MCH 0.9-1.2 1.0-1.2 1.8-2.1 0.7-0.8 

2Heptane Ratio 23-29 24-28 32-35 19-21 

3Mango K1 1.00-1.06 0.90-0.97 0.88-0.93 0.92-1.02 

4N2
5+P2 (% of Light HC) 0.23-0.26 0.29-0.31 0.31-0.32 0.30-0.32 

5% Three-RP 25% to 30% 29% to 34% 43% to 47% 26% to 31% 

6% Six-RP 48% to 55% 36% to 44% 32% to 35% 42% to 47% 

Pr/Ph 1.1-1.4 1.2-1.3 1.1-1.4 1.0-1.3 

Pr/n-C17 0.39-0.49 0.46-0.58 0.27-0.35 0.70-0.78 

DBT/P 0.09-0.40 0.04-0.06 0.08-0.09 0.04-0.09 

7C29/C27-29 Sterane 0.46-0.52 0.40-0.46 0.32-0.45 0.31-0.35 

8C30 Sterane Index <0.05 0.07-0.09 0.06-0.11 0.10-0.14 

9Diasteranes/Total Steranes 0.44-0.79 0.64-0.92 0.68-0.82 0.82-0.98 

10BS-4/(BS-4 through BS-6) 0.18-0.31 0.29-0.36 0.24-0.29 0.38-0.43 

Sesquiterpane ppm 210-400 150-280 70-100 260-380 

C20TT/C23TT 0.30-0.40 0.10-0.20 0.14-0.23 0.10-0.22 

11% Extended TT 50% to 60% 65% to 69% 59% to 67% 72% to 85% 

C23-31TT Rate Decline Exp. -3.3 to -3.8 -3.4 to -5.0 -3.8 to -4.4 -5.4 to -7.2 

C24TET/C26TT(S) 0.20-0.69 0.10-0.23 0.14-0.25 0.03-0.10 

C35/C34 Homohopane (S+R) 0.85-1.07 0.59-0.81 0.54-0.62 0.58-0.64 

Table 19. Summary of the four identified organic facies indicating the producing reservoirs, source formation, source 

lithology, interpreted depositional environment, and some notable geochemical characteristics described in this 

chapter. Geochemical parameters are given as a range between first- and third-quartile values, meaning at least half 

of the oils sourced from that organic facies fall within the presented range. 

 
1Aromaticity=Tol/(MCH+n-C7) 
2Heptane Ratio=100*n-C7/(CC6+2-MH+2,3-DMP+1,1-DMCP+3-MH+1c3-DMCP+3-EP+1t3-DMCP+1t2-

DMCP+n-C7+1c2-DMCP+MCH) 
3Mango K1=(2-MH+2,3-DMP)/(3-MH+2,4=DMP) 
4N2+P2 (% of Light HC)=1,1-DMCP+1c3-DMCP+1t3-DMCP+2-MH+3-MH 
5%Three-RP=(2-MH+3-MH+2,3-DMP+2,4-DMP+2,2-DMP+3,3-DMP+3-EP)/(2-MH+3-MH+2,3-DMP+2,4-

DMP+2,2-DMP+3,3-DMP+3-EP+ECP+1t2-DMCP+1c2-DMCP+1,1-DMCP+1c3-DMCP+1t3-DMCP+MCH+Tol) 
6%Six-RP=(MCH+Tol)/(2-MH+3-MH+2,3-DMP+2,4-DMP+2,2-DMP+3,3-DMP+3-EP+ECP+1t2-DMCP+1c2-

DMCP+1,1-DMCP+1c3-DMCP+1t3-DMCP+MCH+Tol) 
7C29/C27-29 Sterane=C29/C27-29 sterane each of 5α(H),14α(H),17α(H),20R stereoisomerization  
8C30 Sterane Index=C30/C27-30 steranes each of 5α,14α,17α(H),20R stereoisomerization 
9Diasteranes/Total Steranes=[m/z 259]/[m/z 217] over the range of C27-C30 steranes 
10BS-4/(BS4 through BS-6)=BS-4/(BS-4+BS-5+BS-6) 
11%Extended Tricyclic Terpanes=C28-39TT/C19-39TT 
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Recent studies have proposed a separate Mississippian source independent of the 

Woodford Shale in STACK based on the biomarker signature of some Mississippian-produced 

oils and core extracts (Atwah et al., 2019 and 2021). But the limestones, siltstones, and cherts that 

comprise most of the Mississippian Group in STACK are organic lean and have weight percent 

TOC generally much less than 1%. For example, of the 15 extracts sampled from the Osage Fm. 

in Blaine County by Kim and Philp (2001), only two had at least 0.5% TOC by weight. In this 

study, core intervals were selected to represent the most organic rich intervals, yet Mississippian 

samples averaged only 0.29% ± 0.09% TOC by weight (n=110) and only seven depths had a TOC 

greater than 1% (Figure 105; Table 20). In fact, an organic lean Mississippian interval agrees with 

numerous ichnologic studies which have reported trace fossils indicative of a diverse seafloor 

community (e.g. Planolites, Teichichnus, Zoophycos, Chondrites, Phycosiphon, and Cruiziana) as 

well as the fossil remains of numerous benthic organisms (e.g. crinoids, brachiopods, bryozoans, 

sponges), all of which are evidence of a well-oxygenated seafloor with low organic preservation 

(Harris, 1975; Johnson, 1989; Kim and Philp, 2001; Bynum and Wethington, 2020; Price, 2020). 

Figure 105. LECO TOC measurements taken from 110 core depths across six Mississippian Group cores in STACK 

based on data in Table 20. Mississippian strata average a TOC of only 0.29% by weight in STACK. 
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Core Sample Depth TOC 

ABCDS 1-6H 7390 0.22 

ABCDS 1-6H 7392 0.23 

ABCDS 1-6H 7396 0.23 

ABCDS 1-6H 7398 0.30 

ABCDS 1-6H 7400 0.50 

ABCDS 1-6H 7404 0.52 

ABCDS 1-6H 7406 0.48 

ABCDS 1-6H 7408 0.49 

ABCDS 1-6H 7410 0.13 

ABCDS 1-6H 7412 0.90 

ABCDS 1-6H 7414 0.01 

ABCDS 1-6H 7416 0.05 

ABCDS 1-6H 7418 0.01 

ABCDS 1-6H 7420 0.01 

ABCDS 1-6H 7422.25 0.10 

ABCDS 1-6H 7424 0.13 

ABCDS 1-6H 7426.15 0.01 

ABCDS 1-6H 7428 0.16 

ABCDS 1-6H 7430.4 0.07 

ABCDS 1-6H 7432 0.01 

ABCDS 1-6H 7434 0.06 

ABCDS 1-6H 7436 0.09 

ABCDS 1-6H 7438.3 0.08 

ABCDS 1-6H 7440 0.01 

ABCDS 1-6H 7442.15 0.01 

ABCDS 1-6H 7444 0.04 

ABCDS 1-6H 7446.6 0.11 

ABCDS 1-6H 7448 0.01 

ABCDS 1-6H 7450 0.01 

ABCDS 1-6H 7452 0.08 

ABCDS 1-6H 7454.15 0.01 

ABCDS 1-6H 7456 0.01 

ABCDS 1-6H 7458 0.01 

ABCDS 1-6H 7460 0.01 

ABCDS 1-6H 7462 0.01 

ABCDS 1-6H 7464 0.01 

ABCDS 1-6H 7466.25 0.01 

ABCDS 1-6H 7468 0.01 

Core Sample Depth TOC 

ABCDS 1-6H 7470 0.01 

ABCDS 1-6H 7472 0.03 

ABCDS 1-6H 7474 0.07 

ABCDS 1-6H 7476 0.01 

ABCDS 1-6H 7478 0.01 

ABCDS 1-6H 7480 0.01 

ABCDS 1-6H 7482.25 0.01 

ABCDS 1-6H 7484 0.01 

ABCDS 1-6H 7486 0.01 

ABCDS 1-6H 7488 0.08 

ABCDS 1-6H 7490 0.01 

ABCDS 1-6H 7492 0.08 

ABCDS 1-6H 7494.65 0.03 

ABCDS 1-6H 7496 0.12 

ABCDS 1-6H 7498 0.01 

ABCDS 1-6H 7500 0.01 

ABCDS 1-6H 7502.15 0.01 

ABCDS 1-6H 7504 0.17 

ABCDS 1-6H 7506.05 0.16 

ABCDS 1-6H 7508 0.23 

ABCDS 1-6H 7510 0.13 

ABCDS 1-6H 7512 0.14 

ABCDS 1-6H 7514.05 0.02 

ABCDS 1-6H 7516 0.01 

ABCDS 1-6H 7518 0.01 

ABCDS 1-6H 7520 0.01 

ABCDS 1-6H 7522.2 0.01 

ABCDS 1-6H 7524 0.01 

ABCDS 1-6H 7526 0.10 

ABCDS 1-6H 7528 0.46 

ABCDS 1-6H 7530 0.26 

ABCDS 1-6H 7532 0.46 

ABCDS 1-6H 7534 0.20 

ABCDS 1-6H 7536 0.06 

ABCDS 1-6H 7538.65 0.30 

ABCDS 1-6H 7540 0.15 

ABCDS 1-6H 7542.1 0.40 

ABCDS 1-6H 7544 0.23 

Core Sample Depth TOC 

ABCDS 1-6H 7546.55 0.01 

ABCDS 1-6H 7548 0.01 

ABCDS 1-6H 7550.3 0.01 

ABCDS 1-6H 8069.35 0.01 

Caffey 32-16N-9W 1H 9617.1 2.90 

Caffey 32-16N-9W 1H 9669.1 2.29 

Caffey 32-16N-9W 1H 9863.7 2.62 

Capps Unit 1 8722 0.27 

Capps Unit 1 8724 0.17 

Capps Unit 1 8857 0.38 

Capps Unit 1 8862 0.67 

Capps Unit 1 8869 0.72 

Capps Unit 1 8873 0.47 

Capps Unit 1 8877 0.43 

Capps Unit 1 8880 0.15 

Capps Unit 1 8888 0.20 

Capps Unit 1 8892 0.21 

Capps Unit 1 8897 0.21 

Capps Unit 1 8903 0.26 

Capps Unit 1 8904 0.16 

Gulf Shaffer 1-23 9667.5 0.17 

Gulf Shaffer 1-23 9681.1 0.20 

Gulf Shaffer 1-23 9703 0.28 

Gulf Shaffer 1-23 9798.9 0.48 

Gulf Shaffer 1-23 9848 0.37 

Lloyd Hawkins 1 7741.2 1.52 

Lloyd Hawkins 1 7757.8 0.85 

Lloyd Hawkins 1 7908.8 0.80 

Lloyd Hawkins 1 7918.8 0.21 

Lloyd Hawkins 1 7939.6 0.91 

Lloyd Hawkins 1 7959.3 1.53 

State 1H-16 7938 1.20 

State 1H-16 7953 0.80 

State 1H-16 8110.5 1.15 

 

Table 20. TOC measurements by depth across the six Mississippian cores analyzed in this study.
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An increase in carbonate-type biomarkers in Mississippian extracts and oils has been 

proposed as evidence of a Mississippian source, including elevated C27/C29 regular steranes, 

elevated 28,30-bisnorhopane/hopane, certain light hydrocarbon ratios, and extended tricyclic 

terpanes beyond C31 (Atwah et al., 2019 and 2021). Each of these will be addressed in the following 

paragraphs. These studies fail to capture the broad heterogeneity which can be observed between 

the most restricted and open-marine portions of the Woodford seaway as well as the spatial and 

geochemical heterogeneity of the three Woodford constituent members. More importantly, 

however, is the extent to which those geochemical metrics can be affected by maturity. For 

example, the depletion of C29 regular sterane to its C27-28 homologues in response to increased 

thermal maturity is well-documented both in the published literature (e.g. Moldowan et al., 1989; 

Dzou et al., 1995; Yi et al., 2020) and confirmed by this study (Figure 62).  

Indeed, 28,30-bisnorhopane (XIV) concentrations above 25 ppm are common in oils 

generated from Type IIS source rocks and some anoxic, high-sulfur facies (Seifert et al., 1978; 

Grantham et al., 1980; Rullkötter et al., 1982; Philp, 1983; Volkman et al., 1983), but the abundant 

evidence of benthic life in the Mississippian indicates a well-oxygenated seafloor and would seem 

to preclude the possibility of euxinic or high-sulfur facies. In fact, demethylated hopanes like 

28,30-bisnorhopane are not generated from kerogen but rather stored as free hydrocarbons in 

sediments (Noble et al., 1985; Isaksen et al., 1998). The concentration of 28,30-bisnorhopane in 

oils is instead usually controlled by dilution by other hydrocarbons which can be a function of 

maturity (Gransch and Posthuma, 1974; Grantham et al., 1980), and in this study the concentration 

of 28,30-bisnorhopane is inversely related to maturity for all homologue sets of oils and the highest 

concentration is only 11ppm (Figure 106). Therefore, the small variability observed in 28,30-

bisnorhopane is not a likely indicator of a prolific Mississippian source. 
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Changes in light hydrocarbon fingerprint has also been invoked to differentiate between 

Woodford- and potential Mississippian-sources (Atwah et al., 2019). The study utilized a light 

hydrocarbon analysis developed by Halpern (1995) to correlate oils to each other using a pair of 

star diagrams (multivariate plots in polar coordinates) populated with ratios of C7 isomers by 

leveraging their respective differences in boiling point, solubility, and susceptibility to bacterial 

attack. Although each representative region analyzed by Atwah et al. (2019) exhibited a unique 

geochemical signature which differed from the other two, only one region compared oils produced 

from both Woodford and Mississippian reservoirs and showed no differences in light hydrocarbon 

signatures. The study also showed that oils produced outside of the basin on the Anadarko Shelf 

and Nemaha Ridge show depletion in phenol, toluene, and cresols—strong indicators of long-

distance migration out of the Anadarko or Arkoma basins, respectively, rather than a local organic 

source (Price, 1976). This conclusion is supported by numerous publications which argue that a 

large amount of oil migrated out of the Anadarko Basin and traveled as far north as the Cambridge 

Arch in southwestern Nebraska (Walters, 1958; Burruss and Hatch, 1989; Tamborello, 2020).  

Figure 106. Concentration of 28,30-bisnorhopane (BNH) by organic facies and producing reservoir. The highest 

concentration in this study is 11 ppm. 
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Finally, extended tricyclic terpanes above C31TT have been observed in several extracts of 

Mississippian core and, in some cases, have been invoked as evidence of a unique Mississippian 

organic facies (Wang and Philp, 1997, 2019; Kim and Philp, 2001; Atwah, 2015; Wang, 2016; 

Atwah et al., 2019, 2020, 2021; Symcox and Philp, 2019a; Abrams and Thomas, 2020). Although 

their origin remains unknown, tricyclic terpanes above C31TT are actually not unique to oils or 

extracts of the Mississippian Group. In fact, extended tricyclic terpanes were found in all analyzed 

Woodford-produced oils as well as most rock extracts, with examples shown in Figure 107. This 

study has shown that the occlusion and subsequent release of tricyclic terpanes might directly 

relate to the size, arrangement, and stability of chemical bonds affording molecular porosity to 

macromolecular structures—characteristics inherited from organic facies—and might also be 

intimately related to natural deasphaltene processes during generation, expulsion, and migration.  

Figure 107. Tricyclic terpane fingerprints of Woodford Shale rock extract (upper) and Woodford-producing oil 

(lower) showing that extended tricyclic terpanes above C31TT are present in both samples. 
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Summary of Findings 

An organic facies is defined as “a mappable rock unit distinguishable by the character of 

its organic matter without regard to the inorganic aspects of the sediment” (Jones, 1984). To meet 

this standard, a homologous set of oils must first be identified by a preponderance of source-

specific parameters which consistently cluster separately. When plotted in map view, those same 

source-specific parameters must form a cogent trend distinguishable from other homologous sets. 

Numerous source-specific parameters were surveyed to determine their efficacy at forming two or 

more data clusters. By normalizing source-related parameters to their maturity, oils across the 

maturity spectrum could be compared on organic source alone. Some source-specific parameters 

strongly affected by maturity (e.g. C24TET/C26TT) formed strong trendlines when normalized to 

Rc% which reinforced homologous sets but were not plotted in map view. 

Oils from two organic facies were identified in STACK with the transition occurring in 

northwestern Kingfisher and central Blaine counties. The source for the STACK 1 (West) organic 

facies was deposited in a restricted marine environment comprising a semi-closed oceanic basin 

with limited access to upwelling nutrients or an epicontinental shelf with low accommodation 

space approaching the Cimarron Arch. In contrast, the source for the STACK 2 (East) organic 

facies (which comprise the core of STACK drilling activity) was deposited in a transitional or open 

marine environment. Despite the organic facies boundary corresponding with the leading edge of 

the Osage carbonate platform, no difference was observed between Woodford- and Mississippian-

produced oils in STACK indicating that they originate from a common Woodford source. This 

further establishes that the sediment starved, restricted marine conditions which cultivated the 

growth of a carbonate platform during the Osagean had persisted in some capacity at least as far 

back as the time of Woodford deposition during the Late Devonian. 
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Oils from two organic facies were identified in SCOOP which were observed exclusively 

in different producing reservoirs. The source for the SCOOP 1 (Lower) organic facies was 

deposited in a clay rich deep or open marine environment. Oils comprising the SCOOP 1 organic 

facies were only produced from Woodford and Mississippian reservoirs and were sourced from 

the Woodford Shale. The source for the SCOOP 2 (Upper) organic facies was deposited in a clay 

rich transitional marine environment. Oils comprising the SCOOP 2 organic facies were only 

produced from Springer reservoirs and were generated by a non-Woodford source, likely the 

Goddard or Caney shales. SCOOP 2 oils share many characteristics to the Pennsylvanian-type oils 

first described by Burruss and Hatch (1989), notably being enriched in methylcyclohexane and 

regular isoprenoids relative to n-alkanes in whole oil GC chromatograms. SCOOP oils, especially 

Woodford-type, had low biomarker concentrations compared to STACK oils, an observation also 

made by Jones and Philp (1990), and could result from the high-pressure low-temperature regime 

in SCOOP counties. 
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VI. Secondary Processes 

Elevated Sulfur Trend in STACK West 

The STACK 1 (West) organic facies is identified as a region of geochemically similar 

Woodford Shale deposited in a restricted marine depositional environment with limited access to 

upwelling nutrients and starved of terrestrial sediment. The notable increase in light hydrocarbon 

aromaticity and dibenzothiophene (VIII; DBT) in oils from this organofacies has thus far remained 

unresolved (Figure 108). In Chapter V, the presence of free sulfur radicals (e.g., HS-, HSx) during 

diagenesis was cited as a possible catalyst in the formation of DBT and Tol through the 

dehydrogenation and cyclization of paraffins. This section will explore three possible mechanisms 

by which sulfur might be incorporated into a petroleum system, including high sulfur kerogen, 

bacterial sulfate reduction, and thermochemical sulfate reduction.  

Figure 108. Box and whisker plots of aromaticity and DBT showing notable increases in oils generated from the 

STACK 1 (West) organic facies. DBT concentration includes both DBT and its methyl isomers (MDBT). 
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Hypothesis 1: Elevated Sulfur in Kerogen 

Marine organic matter is mostly composed of proteins, carbohydrates, and lipids (Forsman 

and Hunt, 1958; Abelson, 1963). Although a small fraction organic of sulfur originates from amino 

acids found in proteins, most kerogen-bound sulfur originates from early diagenetic reactions 

between recently deposited organic matter and aqueous sulfide species (S2-), such as hydrogen 

sulfide (H2S) and polysulfides, produced by respiratory sulfate reduction by organisms like 

Desulfovibrio desulfuricans, a species of microaerophilic anaerobe (Davis and Yarbrough, 1966; 

Demaison and Moore, 1980; Francois, 1987). Under normal marine conditions, iron and organic 

matter both act as a sink for free sulfide, but iron competes more successfully to form hydrotroilite, 

troilite, and eventually pyrite (Berner, 1984; Raiswell and Berner, 1985). Most iron deposited in 

marine systems is carried by clastic sediments during continental erosion, so organosulfur 

compounds formed during diagenesis often occurs in non-clastic depositional environments like 

carbonates, siliceous oozes, and evaporites, and high-sulfur kerogens are found in basins where 

biologic production of reduced sulfur exceeds the input of sedimentary iron (Dinur et al., 1980).  

The STACK 1 (West) organic facies is interpreted as being deposited under restricted 

marine conditions with limited access to upwelling nutrients and starved of terrestrial sediment 

because it contained lower amounts of rearranged steranes and sesquiterpanes compared to the 

STACK 2 (East) organic facies. Could this lead to increased sulfur incorporated into the STACK 

1 (West) organic facies? To test this, a crossplot showing the weight percent sulfur and iron oxide 

(Fe2O3) from the ABCDS 1-6 core in Major County is provided in Figure 109. A line labeled 

“Ideal Pyrite Trend” indicates the theoretical ratio whereby iron and sulfur are balanced in the 

formation of pyrite (FeS2) with none left over. The slope can be easily calculated by dividing the 

molecular weight of S2 (64.2 amu) by the molecular weight of Fe2O3 (159.8 amu), and the resulting 
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function takes the slope intercept form [S%]=0.402*[Fe2O3%]. Collectively, the eight Middle 

Woodford samples plot above the Ideal Pyrite Line by between 0.27-1.69 wt% sulfur (average 

0.71%±0.47%) indicating sulfur in excess of what can be accounted for by common sulfide 

minerals. The Middle Woodford also contains the highest TOC values in the ABCDS 1-6 core 

(Table 22) having an average wt% TOC of 4.3%±0.4% (n=7) compared to the Upper Woodford 

containing 2.5%±1.1% (n=13). The Lower Woodford was not present. Elemental assays were not 

performed to determine sulfur content of the kerogen, but it is certainly possible that excess sulfur 

was incorporated into the organic matter of the Middle Woodford in the ABCDS 1-6 core.

Figure 109. Crossplot of weight percent sulfur (from LECO) and Fe2O3 oxide (from XRF) of the ABCDS 1-6 core in 

Major County (map on Figure 110). The Ideal Pyrite Trend is a theoretical ratio whereby all iron and sulfur were 

sequestered in pyrite with none remaining. The Middle Woodford contains more sulfur than can be accounted for by 

pyrite mineralization based on the amount of iron in the sample. Data generated by Weatherford Labs (Table 21). 
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Depth Formation Fe2O3
1 Sulfur2 EGR3 

7390 Chester 4.5 0.4 68.0 

7392 Chester 4.0 0.3 65.5 

7394.1 Chester 4.2 0.4 69.7 

7396 Chester 4.3 0.5 70.4 

7398 Chester 4.5 0.6 67.3 

7402.3 Chester 6.0 1.2 84.2 

7404 Chester 5.4 0.7 80.6 

7406 Chester 6.4 1.8 83.6 

7410 Meramec 1.7 0.5 53.8 

7412 Meramec 3.3 0.6 81.9 

7414 Meramec 1.4 0.3 49.3 

7416 Meramec 2.3 0.3 58.2 

7418 Meramec 2.5 0.3 57.9 

7420 Meramec 2.2 0.2 58.4 

7422.25 Meramec 1.8 0.2 54.4 

7424 Meramec 1.7 0.1 57.6 

7426.15 Meramec 2.5 0.3 65.1 

7428 Meramec 1.5 0.2 53.4 

7430.4 Meramec 1.1 0.2 45.9 

7432 Meramec 0.8 0.1 52.4 

7434 Meramec 1.1 0.3 58.5 

7436 Meramec 0.9 0.2 52.2 

7438.3 Meramec 0.7 0.2 49.7 

7440 Meramec 0.6 0.2 35.7 

7442.15 Meramec 0.9 0.2 50.5 

7444 Meramec 1.3 0.3 42.7 

7446.6 Meramec 0.9 0.4 53.4 

7448 Meramec 0.4 0.1 47.1 

7450 Meramec 0.5 0.2 64.8 

7452 Meramec 0.9 0.3 41.6 

7454.15 Meramec 0.4 0.1 29.2 

7456 Meramec 1.2 0.2 59.3 

7458 Meramec 0.8 0.2 46.3 

7460 Meramec 2.4 0.4 82.6 

7462 Meramec 1.2 0.2 48.5 

7464 Meramec 0.9 0.2 42.1 

7466.25 Meramec 4.2 2.1 65.2 

7468 Meramec 1.4 0.6 47.6 

7470 Meramec 1.5 0.4 55.1 

7472 Meramec 0.8 0.2 42.8 

7474 Meramec 1.3 0.3 47.9 

7476 Meramec 1.5 0.2 57.1 

7478 Meramec 0.7 0.1 55.9 

7480 Meramec 0.3 0.1 28.6 

7482.25 Meramec 0.7 0.2 41.4 

7484 Meramec 0.2 0.1 26.7 

7486 Meramec 1.0 0.2 43.3 

7488 Meramec 0.9 0.2 51.3 

7490 Meramec 1.9 0.8 58.8 

7492 Meramec 1.8 0.6 60.9 

7494.65 Meramec 1.9 0.5 57.4 

7496 Meramec 1.1 0.3 46.3 

7498 Meramec 1.3 0.4 44.9 

7500 Meramec 1.1 0.3 41.4 

7502.15 Meramec 1.0 0.3 50.6 

7504 Meramec 2.3 0.7 68.2 

7506.05 Meramec 2.2 0.7 69.3 

7508 Meramec 2.6 0.8 76.6 

7510 Meramec 2.4 0.8 77.8 

7512 Meramec 1.9 0.6 76.8 

7514.05 Meramec 1.3 0.4 71.9 

7516 Meramec 0.8 0.2 59.5 

7518 Meramec 0.8 0.3 54.8 

7520 Meramec 0.8 0.4 78.7 

7522.2 Meramec 0.7 0.3 46.2 

7524 Meramec 0.6 0.2 43.2 

7526 Meramec 1.4 0.6 50.7 

7528 Meramec 1.6 0.6 52.1 

7530 Meramec 2.0 0.8 54.2 

Depth Formation Fe2O3
1 Sulfur2 EGR3 

7532 Meramec 2.6 1.1 62.1 

7534 Meramec 1.9 0.7 56.9 

7536 Meramec 0.5 0.2 134.5 

7538.65 Meramec 1.1 0.4 89.8 

7540 Meramec 0.6 0.2 63.8 

7542.1 Meramec 1.3 0.6 94.0 

7544 Osage 0.4 0.1 62.4 

7546.55 Osage 0.3 0.1 29.7 

7548 Osage 0.3 0.1 27.6 

7550.3 Osage 0.2 0.1 25.0 

7552 Osage 0.1 0.0 28.1 

7554.25 Osage 0.3 0.1 40.0 

7556 Osage 1.1 0.3 101.1 

7558.85 Osage 0.1 0.0 26.8 

7560 Osage 0.2 0.1 29.4 

7562.25 Osage 0.1 0.0 23.7 

7564 Osage 0.4 0.2 39.5 

7566.05 Osage 0.1 0.1 23.9 

7568 Osage 0.5 0.2 58.1 

7570.65 Osage 0.4 0.1 40.1 

7572 Osage 0.1 0.1 30.6 

7574 Osage 0.3 0.2 24.9 

7576 Osage 0.1 0.0 33.2 

7578.15 Osage 0.7 0.1 41.7 

7580 Osage 0.4 0.2 65.5 

7582.25 Osage 0.2 0.1 35.8 

7584 Osage 0.0 0.0 4.2 

7586.6 Osage 0.4 0.2 33.5 

7588 Osage 0.4 0.1 30.8 

7590.15 Osage 0.5 0.2 41.4 

7592 Osage 0.5 0.2 38.5 

7594.15 Osage 0.2 0.1 26.6 

7596 Osage 0.3 0.1 31.0 

7598 Osage 0.2 0.1 27.5 

7600 Osage 0.6 0.3 43.7 

7602 Osage 0.3 0.2 34.8 

7604 Osage 0.3 0.1 37.6 

7606.8 Osage 0.3 0.1 39.5 

7608 Osage 0.2 0.1 34.8 

7610 Osage 0.3 0.1 37.3 

7612 Osage 0.3 0.1 33.4 

7614.75 Osage 0.3 0.1 40.1 

7616 Osage 0.2 0.1 30.8 

7618.1 Osage 0.2 0.1 28.4 

7620 Osage 0.2 0.1 40.4 

7622.1 Osage 0.1 0.1 29.9 

7624 Osage 0.1 0.0 30.8 

7626.3 Osage 0.1 0.0 33.7 

7628 Osage 0.1 0.1 33.9 

7630.45 Osage 0.2 0.1 29.4 

7632 Osage 0.6 0.4 23.6 

7634 Osage 0.1 0.0 26.7 

7636 Osage 0.1 0.1 27.6 

7638.55 Osage 0.3 0.1 37.4 

7640 Osage 0.4 0.2 42.5 

7642 Osage 0.2 0.1 27.4 

7644 Osage 0.2 0.1 22.6 

7646.45 Osage 0.4 0.2 28.5 

7648 Osage 0.4 0.2 29.6 

7650.5 Osage 0.4 0.2 28.1 

7652 Osage 0.3 0.1 24.2 

7654.8 Osage 0.3 0.2 24.1 

7656 Osage 0.6 0.2 34.2 

7658.35 Osage 0.4 0.1 26.2 

7660 Osage 0.4 0.2 27.3 

7662.05 Osage 0.4 0.2 30.3 

7664 Osage 0.4 0.1 31.1 

7666.15 Osage 0.6 0.2 36.9 

7668 Osage 1.6 0.7 73.3 
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Depth Formation Fe2O3
1 Sulfur2 EGR3 

7670.15 Osage 0.6 0.2 37.6 

7672 Osage 0.5 0.2 30.4 

7674.95 Osage 0.6 0.3 36.7 

7676 Osage 0.4 0.1 29.3 

7678.4 Osage 0.4 0.2 28.7 

7680 Osage 0.5 0.2 33.9 

7682.5 Osage 0.4 0.2 28.3 

7684 Osage 1.0 0.4 46.2 

7686.45 Osage 0.5 0.2 25.8 

7688 Osage 1.4 0.6 60.6 

7690.7 Osage 0.5 0.2 28.9 

7692 Osage 0.9 0.4 39.2 

7694 Osage 0.7 0.3 37.1 

7696 Osage 0.6 0.3 35.8 

7698.8 Osage 0.5 0.3 28.3 

7700 Osage 0.5 0.2 26.2 

7702 Osage 0.4 0.1 26.2 

7704 Osage 0.5 0.2 32.6 

7706.1 Osage 0.4 0.2 28.7 

7708 Osage 0.5 0.2 27.6 

7710.2 Osage 1.1 0.5 45.3 

7712 Osage 0.5 0.2 32.4 

7714.2 Osage 0.7 0.3 43.6 

7716 Osage 0.4 0.2 40.5 

7718.05 Osage 0.3 0.1 32.8 

7720 Osage 0.1 0.1 29.9 

7722.9 Osage 0.1 0.1 5.7 

7724 Osage 0.1 0.1 32.0 

7726 Osage 0.4 0.2 51.1 

7728 Osage 0.6 0.3 62.3 

7730.1 Osage 0.3 0.1 42.3 

7732 Osage 0.2 0.1 30.9 

7734.35 Osage 0.1 0.1 24.1 

7736 Osage 0.3 0.2 26.0 

7738.5 Osage 0.1 0.1 32.3 

7740 Osage 0.3 0.1 52.7 

7742.25 Osage 0.1 0.0 24.9 

7744 Osage 0.4 0.2 53.6 

7746.3 Osage 0.2 0.1 41.3 

7748 Osage 0.1 0.1 29.9 

7750.8 Osage 0.1 0.1 26.2 

7752 Osage 0.8 0.4 86.2 

7754.1 Osage 0.1 0.1 22.6 

7756 Osage 0.2 0.1 26.6 

7758.55 Osage 0.1 0.1 22.5 

7760 Osage 0.2 0.1 26.6 

7762 Osage 0.1 0.1 26.0 

7764 Osage 0.1 0.1 22.9 

7766.3 Osage 0.2 0.1 29.0 

7768 Osage 0.3 0.2 37.6 

7770.05 Osage 1.0 0.5 50.7 

7772 Osage 0.4 0.2 28.3 

7774.15 Osage 0.3 0.1 26.0 

7776 Osage 0.3 0.2 30.5 

7778.5 Osage 0.2 0.1 24.2 

7780 Osage 0.4 0.2 27.8 

7782.1 Osage 0.3 0.2 21.7 

7851.5 Osage 0.1 0.1 26.1 

7853.15 Osage 0.2 0.1 31.5 

7855.5 Osage 0.5 0.3 40.9 

7857.5 Osage 0.7 0.4 45.4 

7859.5 Osage 0.5 0.3 41.7 

7861.15 Osage 0.5 0.3 39.5 

7863.5 Osage 0.6 0.3 40.2 

7865.5 Osage 0.5 0.3 36.8 

7867.5 Osage 0.9 0.5 44.3 

7869.35 Osage 0.4 0.2 31.9 

7871.5 Osage 1.7 0.9 67.1 

7873.05 Osage 0.4 0.2 31.6 

Depth Formation Fe2O3
1 Sulfur2 EGR3 

7875.5 Osage 0.7 0.4 36.4 

7877.3 Osage 0.3 0.2 26.4 

7879.5 Osage 0.4 0.2 28.3 

7881.3 Osage 0.4 0.2 25.4 

7883.5 Osage 0.4 0.2 26.9 

7885.3 Osage 0.3 0.2 24.6 

7887.5 Osage 0.3 0.2 25.0 

7889.55 Osage 0.3 0.2 23.8 

7891.5 Osage 0.4 0.2 27.6 

7893.2 Osage 0.3 0.2 26.0 

7895.5 Osage 0.6 0.3 34.4 

7897.75 Osage 0.2 0.1 24.0 

7899.5 Osage 0.6 0.3 33.9 

7901.75 Osage 0.5 0.3 34.8 

7903.5 Osage 0.7 0.4 35.1 

7905.7 Osage 0.3 0.2 25.8 

7907.5 Osage 0.7 0.4 34.0 

7909.2 Osage 0.4 0.2 27.9 

7911.5 Osage 0.3 0.2 25.8 

7913.7 Osage 0.6 0.3 36.1 

7915.5 Osage 0.7 0.4 35.4 

7917.65 Osage 0.3 0.2 26.6 

7919.5 Osage 0.5 0.3 30.7 

7921.75 Osage 0.3 0.2 29.2 

7923.5 Osage 0.4 0.2 27.1 

7925.85 Osage 0.4 0.2 27.7 

7927.5 Osage 0.5 0.3 29.6 

7929.65 Osage 0.4 0.2 27.8 

7931.5 Osage 0.6 0.3 30.8 

7933.5 Osage 0.5 0.3 30.8 

7935.5 Osage 0.5 0.3 30.0 

7937.7 Osage 0.5 0.2 30.3 

7939.5 Osage 0.4 0.2 27.7 

7941.65 Osage 0.5 0.3 31.8 

7943.52 Osage 0.6 0.3 37.0 

7945.7 Osage 0.5 0.3 31.5 

7947.5 Osage 0.4 0.2 27.6 

7949.75 Osage 0.3 0.2 27.2 

7951.5 Osage 0.3 0.1 32.7 

7953.55 Osage 0.3 0.2 27.9 

7955.5 Osage 0.5 0.2 39.1 

7957.85 Osage 1.1 0.4 69.1 

7959.5 Osage 1.9 0.6 107.2 

7961.45 Osage 0.4 0.2 31.0 

7963.5 Osage 0.5 0.3 27.3 

7965.3 Osage 0.4 0.2 29.2 

7967.5 Osage 0.3 0.2 28.2 

7969.6 Osage 0.8 0.4 34.4 

7971.5 Osage 0.7 0.3 34.2 

7973.5 Osage 0.5 0.3 42.5 

7975.5 Osage 0.3 0.2 27.3 

7977.5 Osage 0.5 0.3 34.5 

7979.5 Osage 1.0 0.5 45.1 

7981.65 Osage 0.4 0.2 27.2 

7983.5 Osage 0.6 0.3 28.9 

7985.55 Osage 1.1 0.5 46.2 

7987.5 Osage 1.2 0.6 46.5 

7989.5 Osage 0.5 0.2 26.9 

7991.5 Osage 0.8 0.4 32.0 

7993.45 Osage 0.4 0.2 28.3 

7995.5 Osage 0.6 0.3 33.5 

7997.5 Osage 0.4 0.2 32.8 

7999.5 Osage 1.0 0.4 47.0 

8001.55 Osage 0.4 0.2 28.1 

8003.5 Osage 0.8 0.3 37.4 

8005.35 Osage 0.6 0.3 29.7 

8007.5 Osage 1.1 0.5 35.7 

8009.5 Osage 0.5 0.3 27.5 

8011.5 Osage 0.9 0.4 40.9 
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Depth Formation Fe2O3
1 Sulfur2 EGR3 

8013.5 Osage 1.0 0.4 40.8 

8015.5 Osage 1.3 0.6 43.5 

8017.15 Osage 0.9 0.4 41.2 

8019.5 Osage 0.5 0.2 30.5 

8021.5 Osage 0.4 0.2 28.3 

8023.5 Osage 1.2 0.5 41.3 

8025.55 Osage 0.6 0.2 28.6 

8027.5 Osage 0.7 0.2 30.7 

8029.55 Osage 1.0 0.3 33.4 

8031.5 Osage 1.1 0.4 34.0 

8033.45 Osage 1.7 0.6 46.7 

8035.5 Osage 0.8 0.3 32.2 

8037.5 Osage 1.0 0.3 32.5 

8039.5 Kinderhook 1.6 0.6 39.3 

8041.4 Kinderhook 2.4 0.9 47.8 

8043.5 Kinderhook 2.4 0.8 50.9 

8045.55 Kinderhook 3.2 1.0 63.2 

8047.5 Kinderhook 3.0 0.9 57.3 

8049.4 Kinderhook 3.7 1.1 68.4 

8051.5 Kinderhook 4.3 1.3 68.3 

8053.5 Kinderhook 4.7 1.5 77.9 

8055.5 Kinderhook 5.1 0.9 91.5 

8057.5 Kinderhook 6.5 2.0 86.4 

8059.5 Kinderhook 4.7 0.4 83.8 

8061.5 Kinderhook 1.2 0.2 34.3 

8063.5 Kinderhook 2.2 0.5 45.7 

8065.7 Kinderhook 1.5 0.5 25.9 

8067.5 Kinderhook 1.0 0.1 25.4 

8069.35 Kinderhook 1.1 0.1 27.4 

8071.5 Upper Woodford 5.4 1.7 232.0 

8073.4 Upper Woodford 4.9 1.3 285.3 

8075.5 Upper Woodford 4.6 0.7 104.5 

8077.5 Upper Woodford 4.4 0.6 88.1 

8079.55 Upper Woodford 4.3 0.5 106.5 

8081.4 Upper Woodford 7.0 2.9 103.6 

Depth Formation Fe2O3
1 Sulfur2 EGR3 

8083.5 Upper Woodford 4.2 1.2 176.8 

8085.3 Upper Woodford 4.1 1.2 170.0 

8087.5 Upper Woodford 3.8 0.9 157.0 

8089.55 Upper Woodford 3.7 0.9 133.0 

8091.5 Upper Woodford 3.8 1.0 211.1 

8093.4 Upper Woodford 5.0 1.9 135.2 

8097.75 Upper Woodford 2.4 0.8 104.8 

8099.5 Upper Woodford 3.5 1.0 232.3 

8101.3 Upper Woodford 4.1 1.4 92.5 

8103.5 Upper Woodford 4.0 1.3 93.3 

8105.5 Upper Woodford 2.9 0.9 213.6 

8107.5 Middle Woodford 3.8 1.8 351.7 

8109.4 Middle Woodford 2.9 1.5 262.1 

8111.5 Middle Woodford 2.9 1.5 264.1 

8113.5 Middle Woodford 4.2 2.3 391.1 

8117.4 Middle Woodford 8.2 5.0 269.9 

8119.5 Middle Woodford 7.1 3.9 286.2 

8121.45 Middle Woodford 6.9 3.5 333.6 

8123.5 Middle Woodford 7.0 3.5 372.0 

8125.5 Hunton 0.3 0.0 28.9 

8127.5 Hunton 0.4 0.1 30.5 

8129.6 Hunton 0.3 0.0 28.5 

8131.5 Hunton 0.5 0.0 25.4 

8133.85 Hunton 0.5 0.0 25.3 

8135.5 Hunton 0.4 0.0 28.6 

8137.85 Hunton 0.6 0.1 28.6 

8139.5 Hunton 0.5 0.1 30.2 

8141.65 Hunton 0.8 0.2 42.9 

8143.5 Hunton 0.9 0.1 44.0 

8145.5 Hunton 0.6 0.1 32.3 

8147.5 Hunton 0.4 0.1 27.1 

8149.5 Hunton 0.5 0.1 35.2 

8151.5 Hunton 0.7 0.2 38.9 

8153.5 Hunton 0.7 0.1 34.4 

8155.5 Hunton 0.6 0.1 34.5 

Table 21. Elemental data from the ABCDS 1-6 core in Major County by core depth and formation. Data was generated 

by Weatherford Labs. (1) Weight percent of Fe2O3 as measured by x-ray fluorescence. (2) Weight percent elemental 

sulfur as measured by LECO analysis. (3) Estimated Gamma Ray (EGR) measured from elemental composition of 

uranium, thorium, and potassium in the sample. 

 

 
Core Depth Formation TOC 

8071.5 Upper Woodford 2.8 

8075.5 Upper Woodford 0.9 

8077.5 Upper Woodford 0.5 

8079.55 Upper Woodford 0.5 

8083.5 Upper Woodford 2.3 

8085.3 Upper Woodford 1.9 

8087.5 Upper Woodford 2.1 

8091.5 Upper Woodford 2.8 

8093.4 Upper Woodford 2.3 

8095.5 Upper Woodford 7.6 

Core Depth Formation TOC 

8099.5 Upper Woodford 5.3 

8101.3 Upper Woodford 2.1 

8103.5 Upper Woodford 1.3 

8107.5 Middle Woodford 4.0 

8109.4 Middle Woodford 4.0 

8111.5 Middle Woodford 5.2 

8115.5 Middle Woodford 4.8 

8117.4 Middle Woodford 4.0 

8119.5 Middle Woodford 4.2 

8123.5 Middle Woodford 4.0 

Table 22. Total organic carbon (TOC) data from the ABCDS 1-6 core in Major County by core depth and formation. 

TOC data was generated from LECO by Weatherford Labs.
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Another key observation is that at least sixteen deep wells drilled in STACK West have 

encountered H2S with fourteen containing critically high concentrations above 20 ppm (Eucker 

and Ashby, 2020), and H2S has even been measured as high as 900 ppm in some wells (Tapstone, 

personal communication). A map of townships with at least one incident of H2S gas is provided in 

Figure 110. Most incidences occurred in wells producing from the volatile oil and wet gas window 

(1.0-1.3 Ro%) near the flower-shaped zone in the Woodward, Dewey, Ellis tricounty region with 

the shallowest occurring at 9,242 ft. Cracking sulfur compounds in high sulfur petroleum can form 

small amounts of H2S gas (Le Tran et al., 1974; Orr, 1977; Machel et al., 1995), but STACK 1 

(West) oils consistently contain low sulfur <0.2 wt% (Tapstone, personal communication), and 

therefore cracking organosulfur compounds is unlikely to source the H2S gas in STACK West.  

Figure 110. Map of STACK showing townships with reported incidents of H2S gas. Most incidences occurred in deep 

wells producing from the volatile oil and wet gas window (1.0-1.3 Ro%) in the Woodward, Dewey, Ellis tricounty 

region with the shallowest instance occurring at 9,242 ft. 
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Hypothesis 2: Bacterial Sulfate Reduction Reactions 

Most H2S gas is formed by the reduction of inorganic sulfate by either bacterial respiration 

or thermochemical reactions occurring in two mutually exclusive thermal regimes, illustrated in 

Figure 111. Bacterial sulfate reduction (BSR) is a process of dissimilatory sulfate reduction at low-

temperatures (<80°C) by anaerobic microbial respiration utilizing dissolved sulfate and 

hydrocarbons as electron acceptors and donors, respectively (Davis and Yarbrough, 1966). 

Initiating BSR requires a viable population of sulfate reducing bacteria which are highly sensitive 

to formation water salinity, organic substrate, reservoir temperature, and even the concentration of 

H2S which is toxic to sulfate reducing bacteria in high concentrations necessitating its removal 

from sites of active sulfate reduction for BSR to continue (Orr, 1977). Moreover, BSR ceases 

above 60-80°C, which corresponds to a vitrinite reflectance values of about 0.6 and depths of less 

than 6,000 ft in normal geothermal gradients (Machel, 2001). Based on these factors, H2S gas 

production in STACK West occurs at higher temperatures and in amounts in excess of what is 

expected from BSR and is not considered a viable source of the H2S observed in STACK West.  

Figure 111. Kerogen generation products with increasing maturation. Small amounts of H2S gas can be formed by 

BSR at low maturities (<0.5 Ro%). Most H2S is formed by TSR between 1.0 and 2.0 Ro%. From (Machel, 2001). 
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Hypothesis 3: Thermochemical Sulfate Reduction Reactions 

Above the BSR temperature threshold, sulfur can be incorporated into organic matter in 

contact with sedimentary anhydrite or gypsum by a process called thermochemical sulfate 

reduction (TSR). The temperature required for the onset of TSR is controversial, but most studies 

have suggested that TSR minimum temperatures range between 100-140°C depending on the 

hydrocarbons present in the reservoir, corresponding to 1.0-2.0 Ro%, with higher temperatures 

(between 160-180°C) required to initiate TSR for methane (Krouse et al., 1988; Goldhaber and 

Orr, 1995; Machel et al., 1995; Worden et al., 1995; Machel, 2001). A simplified TSR net reaction 

scheme is provided in Equation 13 (Orr, 1974):  

 

In the above equation, H2S is both a reactant and product and must be present at the onset of TSR 

to form intermediate oxidation state sulfur species like polysulfides, thiosulfates, or elemental 

sulfur. The intermediate reduced sulfur species (So) can then react with hydrocarbons to form 

organic acids which in turn may undergo decarboxylation reactions to yield H2S and CO2 (Toland 

et al., 1958; Toland, 1960; Orr, 1977; Goldhaber and Orr, 1995; Zhang et al., 2008). Intermediate 

sulfur species can also facilitate other reactions such as dehydrogenation (oxidation) or even 

become incorporated into the formation of new organosulfur compounds. The formation of So 

species, therefore, offers a mechanism for the conversion of saturate hydrocarbons to naphthenic 

acids, aromatic hydrocarbons, and inorganic and organic sulfur compounds. High concentrations 

of H2S gas in some deep STACK West wells all but confirms the influence of TSR in the deep 

basin. Additional circumstantial evidence that supports this hypothesis is discussed below.  

Equation 13 
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First, Mango (1987 and 1990b) argues light hydrocarbon speciation is controlled by steady-

state isomerization involving metal catalysts which control preferential ring openings of 

cyclopropane intermediaries to form isoheptanes. The value K1, defined as the area sum ratio of 2-

MH and 2,3-DMP over 3-MH and 2,4-DMP, remains proportional such that the value K1≅1. 

Contaminants like H2S, even at low levels, can substantially reduce the level of catalytic activity 

in a source rock from transition metals (Mango, 1992). As a result, TSR-affected oils have been 

observed to have higher values of K1 and plot above the line K1≅1 (ten Haven, 1996; Peters and 

Fowler, 2002). The plot expressing K1 for all Woodford-sourced organofacies shows that STACK 

1 organofacies oils generally plot above K1=1 while STACK 2 and SCOOP 1 organofacies oils 

plot almost exclusively below K1=1 except some of the highest maturity samples (Figure 112). 

However, there are more oils generated from the STACK 1 organofacies which plot above K1=1 

than are produced from the known areas of H2S production, so higher K1 values may be related to 

depositional/diagenetic conditions associated with TSR but not TSR reactions directly. 

Figure 112. Mango K1 plot for oils sourced from each Woodford organofacies (after Figure 56). STACK 1 (West) oils 

consistently plot above unity which is characteristic in TSR-affected oils (ten Haven, 1996; Peters and Fowler, 2002). 
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Second, several oils near the reported incidences of H2S gas and the flower-shaped zone 

(see Figure 20) have anomalously high values for DBT/P. During maturation, the ratio DBT/P is 

expected to decrease because the rate decline exponent of DBT (-3.41) in the numerator is larger 

than phenanthrene (-1.76) in the denominator (see Figure 50). However, TSR can greatly increase 

the ratio DBT/P in oils because aromatic sulfur compounds (i.e. DBT) are formed alongside H2S 

during sulfate reduction (Equation 13). A cross plot of DBT and phenanthrene concentration in 

log-log space shows a linear main trend corresponding to oils with similar DBT/P ratios at different 

stages of maturity (Figure 113). Several oils (marked red) contain DBT concentrations far in excess 

of what is expected from similarly sourced oils, even within samples sourced from the same 

STACK 1 (West) organofacies. The highlighted oils may contain significantly elevated DBT as 

the result post-generative TSR reactions. 

Figure 113. Log-log plot of DBT and phenanthrene concentration (see Table 10). Most samples follow the main trend 

corresponding to changing DBT/P values with maturity. Samples which deviate from this trend are highlighted red. 



 

214 

 

 

Third, the oils produced in the heavily faulted area associated with H2S and the flower-

shaped zone in STACK West show evidence of mixing with high maturity condensates which 

could have entrained H2S formed deeper in the basin. Dahl et al. (1999) observed that the 

concentration of thermally resistant methyldiamantanes (MDA; XV) are only found enriched in 

highly mature oils that have undergone severe thermal cracking where most biomarkers are absent. 

Using the concentration of the C29 5α(H),14α(H),17α(H),20R sterane as a reference for the degree 

of cracking, Dahl et al. (1999) argues that an oil which contains both abundant steranes and MDA 

isomers must therefore be a mixture of highly-mature cracked oils with low-maturity uncracked 

oils. Figure 114 below shows example low- and high-maturity unmixed oils, and a potentially 

mixed oil which contains both. MDA and C29 sterane data for all oils in Table 23. 

Figure 114. Partial fragmentograms monitoring the C29 5α(H),14α(H),17α(H),20R sterane in m/z 217 and the 4-, 1-, 

and 3-methyldiamantanes (x-MDA) in m/z 187 which are abundant in oils in mutually exclusive maturity ranges. In 

unmixed oils (blue), the low-maturity oil (Ward 21-1H) contains abundant steranes but low methyldiamantanes, and 

the high-maturity cracked oil (Mcalary 25-19-20 1H) contains abundant methyldiamantanes and no steranes. The 

mixed oil (Shaw Trust 30-22-19 1H) contains abundant steranes and methyldiamantanes indicating a likely mixture 

of low- and high-maturity oils. Methyldiamantane picks based off comparison to Grice et al. (2000). 
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Key Play C29 Sterane 4-+3-MDA 

1 STACK West 104.7 13.8 

2 STACK West 109.1 14.7 

3 STACK West 106.5 14.3 

4 STACK West 93.8 14.2 

5 STACK West 110.8 13.4 

6 STACK West 50.0 11.3 

7 STACK West 79.4 14.5 

8 STACK West 64.3 10.6 

9 STACK West 59.5 13.0 

10 STACK West 61.1 12.7 

11 STACK West 101.8 16.2 

12 STACK West 91.8 15.6 

13 STACK West 85.1 15.5 

14 STACK West 88.3 15.1 

15 STACK West 50.7 13.2 

16 STACK West 86.0 13.1 

17 STACK West 32.7 32.7 

18 STACK West 10.1 30.7 

19 STACK West 12.2 35.2 

20 STACK West 4.7 16.5 

21 STACK West 0.9 24.7 

22 STACK West 1.0 19.3 

23 STACK West 0.0 66.0 

24 STACK West 0.0 38.2 

25 STACK West 2.7 32.9 

26 STACK West 8.9 27.5 

27 STACK West 44.8 20.6 

28 STACK West 73.1 14.3 

29 STACK West 91.2 16.1 

30 STACK West 15.6 24.8 

31 STACK West 10.2 11.5 

32 STACK West 21.7 13.8 

33 STACK West 2.8 19.7 

34 STACK West 5.9 8.6 

35 STACK West 1.5 91.7 

36 STACK West 0.0 101.1 

37 STACK West 12.0 16.1 

38 STACK West 7.8 27.7 

39 STACK West 3.3 13.4 

40 STACK West 5.9 22.0 

41 STACK West 0.5 22.1 

42 STACK West 1.0 15.7 

43 STACK West 4.6 16.3 

44 STACK West 5.4 139.5 

45 STACK West 0.0 176.0 

46 STACK West 0 22.2 

47 STACK East 0.0 35.6 

48 STACK East 0.0 17.1 

49 STACK East 0.0 16.6 

50 STACK East 8.1 13.3 

51 STACK East 0.6 9.7 

52 STACK East 0.0 11.8 

Key Play C29 Sterane 4-+3-MDA 

53 STACK East 2.7 6.2 

54 STACK East 3.3 7.5 

55 STACK East 4.7 6.9 

56 STACK East 1.5 29.1 

57 STACK East 2.7 5.7 

58 STACK East 4.3 6.3 

59 STACK East 7.3 8.1 

60 STACK East 0.0 4.6 

61 STACK East 26.5 8.9 

62 STACK East 1.1 5.3 

63 STACK East 1.1 6.8 

64 STACK East 25.2 10.7 

65 STACK East 2.2 5.9 

66 STACK East 21.4 8.5 

67 STACK East 3.2 5.6 

68 STACK East 21.4 7.5 

69 STACK East 20.7 7.6 

70 STACK East 4.6 7.0 

71 STACK East 0.0 30.9 

72 STACK East 16.5 9.2 

73 STACK East 0.0 6.1 

74 STACK East 6.5 8.2 

75 STACK East 27.3 8.7 

76 STACK East 34.4 9.6 

77 STACK East 1.1 5.9 

78 STACK East 1.3 6.3 

79 STACK East 8.5 6.9 

80 STACK East 26.0 8.6 

81 STACK East 7.2 6.1 

82 STACK East 3.9 5.4 

83 STACK East 13.5 7.9 

84 STACK East 0.7 5.6 

85 STACK East 7.9 7.5 

86 STACK East 10.3 5.6 

87 STACK East 29.8 5.6 

88 STACK East 11.4 7.4 

89 STACK East 15.6 7.8 

90 STACK East 73.4 14.9 

91 STACK East 17.9 8.1 

92 STACK East 9.1 6.6 

93 STACK East 59.5 11.5 

94 STACK East 6.0 5.4 

95 STACK East 4.7 6.3 

96 STACK East 9.2 5.1 

97 STACK East 9.6 6.8 

98 STACK East 7.1 5.9 

99 STACK East 8.0 6.3 

100 STACK East 63.6 14.1 

101 STACK East 56.2 13.2 

102 STACK East 26.1 8.2 

103 STACK East 14.8 7.1 

104 STACK East 8.7 7.7 
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Key Play C29 Sterane 4-+3-MDA 

105 STACK East 17.6 7.1 

106 STACK East 18.0 7.0 

107 STACK East 18.1 7.1 

108 STACK East 6.9 7.6 

109 STACK East 7.4 6.7 

110 STACK East 5.2 7.3 

111 STACK East 12.6 7.4 

112 STACK East 30.3 10.0 

113 STACK East 53.4 6.9 

114 STACK East 44.2 9.3 

115 STACK East 39.0 10.5 

116 STACK East 38.2 11.9 

117 STACK East 33.2 9.4 

118 STACK East 53.9 8.9 

119 STACK East 44.0 10.9 

120 SCOOP 8.0 7.7 

121 SCOOP 0.0 18.5 

122. SCOOP 0.0 12.4 

123 SCOOP 0.0 11.2 

124 SCOOP 4.8 8.3 

125 SCOOP 2.1 4.2 

126 SCOOP 2.5 6.5 

127 SCOOP 2.4 6.1 

128 SCOOP 1.3 6.2 

129 SCOOP 1.9 5.5 

130 SCOOP 1.6 6.4 

131 SCOOP 1.3 5.2 

132 SCOOP 2.0 6.2 

133 SCOOP 1.9 5.7 

134 SCOOP 0.6 6.1 

135 SCOOP 2.1 7.9 

136 SCOOP 2.0 6.9 

137 SCOOP 2.2 5.6 

138 SCOOP 0.9 6.1 

Key Play C29 Sterane 4-+3-MDA 

139 SCOOP 0.6 4.3 

140 SCOOP 0.5 3.8 

141 SCOOP 1.2 7.6 

142 SCOOP 1.3 5.4 

143 SCOOP 0.7 5.8 

144 SCOOP 2.8 9.8 

145 SCOOP 2.6 7.1 

146 SCOOP 2.4 7.3 

147 SCOOP 2.2 7.3 

148 SCOOP 1.6 8.5 

149 SCOOP 5.2 7.7 

150 SCOOP 0.0 7.0 

151 SCOOP 1.8 6.0 

152 SCOOP 4.0 5.4 

153 SCOOP 0.7 6.5 

154 SCOOP 7.7 7.0 

155 SCOOP 34.2 3.7 

156 SCOOP 2.2 3.7 

157 SCOOP 0.4 14.1 

158 SCOOP 0.0 14.4 

159 SCOOP 8.0 6.8 

160 SCOOP 1.2 4.4 

161 SCOOP 1.2 6.2 

162 SCOOP 0.9 6.4 

163 SCOOP 0.0 44.3 

164 SCOOP 0.0 8.2 

165 SCOOP 0.8 4.0 

166 SCOOP 1.2 4.0 

167 SCOOP 0.0 7.1 

168 SCOOP 2.0 4.4 

169 SCOOP 38.1 8.5 

170 SCOOP 1.2 3.3 

171 SCOOP 5.7 3.9 

172 SCOOP 0.5 8.8 

Table 23. Concentration in ppm of the C29 5α(H),14α(H),17α(H),20R sterane and the sum of 4- and 3-methyldiamantae 

(MDA) isomers in all sample oils. Relative response factor of 0.27 was used to calculate absolute concentration 

methyldiamantanes from the deuterated sterane internal standard (see Figure 17).  
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The Dahl crossplot of C29 ααα 20R sterane versus the sum of 4- and 3-MDA shows several 

oils (marked in red) in the zone indicating a mixture of mature cracked oils with low-maturity 

uncracked oils (Figure 115). Two maps in Figure 116 show that the zone of oil mixing and the 

zone of high DBT oils (see Figure 113) both occur in a thin northwest-southeast trending corridor 

in Woodward, Dewey, and Blaine counties near occurrences of H2S gas. The minimum 

temperature required to initiate TSR is between 100-140°C, equivalent to 1.0-2.0 Ro%, but the 

H2S in STACK West has only been reported in a thin band of townships containing Woodford 

Shale between 0.9-1.3 Ro% near the minimum required temperature to initiate TSR. It is very 

possible that TSR could occur at hotter temperatures deeper in the basin and DBT rich oils could 

migrate updip along major faults mapped in Dewey County and be associated with production in 

the brittle Osage carbonates and the flower-shaped zone. 

Figure 115. Crossplot of the concentration of C29 5α(H),14α(H),17α(H),20R sterane versus the sum of 4- and 3-

methyldiamantane to determine mixing of low- and high-maturity oils. Based on Dahl et al. (1999).  
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Figure 116. Composite maps showing oils which indicate oil mixing between low- and high-maturity oils using MDA (see Figure 115), and oils which contain 

elevated DBT above which can be accounted for by changes in thermal maturity (see Figure 113). Both the mixed oils and the high DBT oils occur near the flower-

shaped zone and where H2S is observed in STACK West. There is not exact agreement between these two trends, but they both occur in similar portions of STACK 

West.
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Although they both occur in the same areas in STACK West near the flower-shaped zone 

and H2S occurrences, there is not an exact agreement between the oils which are enriched in DBT 

and the oils containing a mixture of low- and high maturity oils, possibly because of lithologic 

controls on TSR or migration pathways in the Osage. For example, if TSR reactants are rate limited 

by the reservoir lithology (i.e. anhydrite deposits adjoining hydrocarbon bearing facies), then it is 

possible that TSR would be lithology dependent and may occur erratically in map view with 

heterogeneous sulfate deposits. In this case, the degree of sulfate reduction could be mapped as a 

lithologic phenomenon and referenced when predicting drilling hazards and reservoir fluid 

characteristics. To date, there are no known occurrences of anhydrite deposits in the Woodford 

Shale; however, the Osagean Miss “Chat” is a major drilling target in STACK West which contains 

evidence of extensive subaerial exposure, periodic hypersaline events, and even reports of micro-

vugular anhydrite in Woodward and Harper (STACK West) counties (Eucker and Ashby, 2020).  

Without TSR, the main controls on the concentration of aromatic sulfur compounds in oils 

are its source-rock depositional environment (Hughes et al., 1995) and thermal maturity (Ho et al., 

1974). A map of DBT/P values for studied oils is shown in Figure 117. In STACK West at depths 

too shallow for TSR reactions, elevated DBT/P may be sourced from elevated organosulfur 

compounds in the Middle Woodford in STACK West (see Figure 109). This is comparable to the 

Woodford-sourced oils produced from the Hugoton Embayment, Kansas containing DBT/P values 

between 0.05-0.50 (Tamborello, 2020). This also aligns with low maturity extracts of the 

Woodford Shale (Rc=0.59%) in the Arbuckle Uplift in Pottawatomie County with DBT/P of 

0.75±0.15 (n=9) and 1.14±0.14 (n=3) in the Lower and Middle Woodford, respectively (Villalba, 

2016). The higher DBT/P values in the Arbuckle Uplift is expected not only because DBT/P 

decreases with increased maturity, but also because an increase in DBT/P is observed upon exiting 
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the basin towards the Arbuckle Uplift. This is evident by the two extrabasinal Woodford-produced 

oils in this study in Garvin and Stephens counties which contain DBT/P values of 0.69 and 0.40, 

respectively, compared to all other SCOOP 1 (Lower) organic facies Woodford-producing oils 

which average DBT/P=0.08±0.01 (n=24). In the Dewey, Woodward, Ellis tricounty region, high 

DBT/P are likely the result of TSR reactions occurring in situ (at the lowest range of TSR 

temperatures) or deeper in the basin and migrating updip to mix with locally generated oils. 

Figure 117. Map of DBT/P values in this study. Elevated DBT/P in shallow reservoirs likely the result of elevated 

organosulfur in organic source. Elevated DBT/P in deep wells possibly the result of TSR reactions. 
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Finally, the occurrence of TSR can be observed by compound specific isotope analysis 

(CSIA) of the gasoline range hydrocarbons. Claypool and Mancini (1989) noted that oils affected 

by TSR had more positive whole oil δ13C by 2-3‰ and suggested that isotopically lighter carbon 

is more readily oxidized during TSR. Rooney (1995) used CSIA of the gasoline fraction to measure 

isotopic shifts in light isotopic between different speciation. Compounds with fewer carbons also 

show larger shifts in δ13C because a the addition of a single 13C a larger fractional change in the 

overall in the mass of the compound. She observed larger shifts in δ13C from branched and n-

alkanes (up to 22‰) and smaller shifts from cyclic and monoaromatic species (3-6‰). In 

summary, a notable increase in δ13C of branched and n-alkane hydrocarbons in the gasoline range 

(C2-C8) compared to minimal increase in δ13C for cyclic and monoaromatic hydrocarbons is an 

isotopic indicator of TSR reactions in crude oil (Machel, 2001).  

This study performed CSIA on fourteen samples spanning all three Play Regions with the 

majority of samples taken from STACK West (Figure 118). The CSIA δ13C values for branched, 

cyclic, and monoaromatic gasoline range hydrocarbons (C4-C7) is provided in Table 24 and for n-

alkanes in Table 25. Two line plots of the CSIA data show more positive δ13C values in STACK 

West especially over the gasoline range n-alkanes which show a positive isotope excursion of 

between 2-10‰, far more than the 2-3‰ expected from thermal maturity alone (Figure 119). 

Furthermore, STACK West samples also show a positive δ13C trend in the gasoline-range branched 

compounds, marked in red, of approximately 4-6‰ compared to cyclic and monoaromatic 

compounds over the same range. In fact, almost no isotopic shift is observed in cyclic and 

monoaromatic across any of the Play Regions which may indicate that the isotopic effects of 

maturity are small compared to TSR oxidation of hydrocarbons. This evidence supports the 

hypothesis that some or all STACK West oils have been affected by TSR reactions. 
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Furthermore, the whole oil GC chromatograms for several of the oils analyzed by CSIA 

show notable depletion in n-alkanes below n-C15 (Figure 120). This observation supports the 

hypothesis that TSR reactions may have oxidized significant portions of the n-alkane fraction of 

oils and caused an overall isotopic shift observed in CSIA. While the GC signature observed in 

many STACK West oils could certainly be the result of TSR, the depletion of light end components 

can also result from other subsurface processes like migrational fractionation and seal leakage. 

Additional analyses could further support the hypothesis of substantial influence of TSR on some 

STACK West oils, including isotopic analyses of mineral and aqueous sulfate species and 

compared with the δ34S from local H2S production.  

Figure 118. A map of oil samples where CSIA δ13C analysis was performed in this study. 
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Key Oil Name i-C4 i-C5 2-MP 3-MP MCP BENZ CC6 2-MH 2,3-DMP 3-MH c-1,3-DMCP t-1,3-DMCP t-1,2-DMCP MCH TOL 

17 Shaw Trust 30-22-19 1H -31.0 -30.2 -30.1 -30.0 -27.9 -26.4 -29.1 -30.5 -30.1 -30.1 -26.6 -27.4 -27.0 -29.2 -28.4 

19 Young 6-20-18 1H -31.4 -29.4 -29.5 -28.8 -27.9 -29.4 -29.3 -30.1 -29.3 -29.1 -26.9 -26.9 -27.0 -29.6 -30.2 

24 Mcalary 25-19-20 1H -29.8 -28.5 -27.8 -28.0 -26.9 -27.3 -29.6 -29.1 -26.8 -27.9 -26.7 -26.3 -26.5 -29.6 -28.1 

25 Seidel 5-19-18 1H -31.1 -28.8 -28.7 -28.6 -27.3 -27.1 -29.3 -29.8 -28.9 -28.7 -26.0 -26.3 -26.5 -29.6 -28.1 

32 Russell 17-19-17 1H -31.5 -30.1 -30.1 -29.5 -27.7 -29.1 -30.0 -30.7 -29.1 -30.4 -27.1 -27.1 -26.5 -30.0 -29.9 

33 Krows 19-19-17 1H -30.7 -29.7 -29.8 -29.5 -27.8 -28.6 -29.8 -30.5 -29.5 -29.3 -26.8 -26.8 -26.7 -29.5 -29.2 

36 Drinnon 32-18-17 1H -24.3 -23.8 -24.3 -24.1  -21.5 -23.6 -24.8 -24.8 -27.7    -25.5 -23.5 

37 Irving 19-19-16 1H -29.5 -28.1 -28.2 -28.1 -27.3 -26.7 -29.3 -29.0 -27.4 -27.9 -26.4 -26.5 -26.3 -29.9 -28.0 

86 Cow's Face 0805 1H -35.9 -32.1 -32.5 -31.4 -28.8 -31.2 -31.5 -33.1 -32.0 -31.8 -28.0 -27.6 -27.1 -30.6 -31.8 

96 HRDY 1-11MH -34.9 -31.9 -32.1 -31.0 -28.3 -31.1 -32.4 -31.8 -30.5 -31.5 -27.1 -27.3 -26.5 -30.2 -31.7 

102 Post 1706 1-30MH -34.3 -31.8 -32.1 -30.7 -29.0 -32.0 -31.3 -32.3 -31.4 -30.7 -27.9 -27.7 -27.3 -30.4 -32.0 

107 Meyer 1406 2-4MH -36.0 -32.0 -32.9 -31.2 -28.9 -32.4 -31.9 -33.3 -32.2 -31.6 -27.9 -27.7 -26.8 -30.9 -32.8 

120 Curry 21X 1VH -34.4 -31.6 -31.4 -31.1 -26.9 -30.9 -30.4 -32.2 -30.5 -31.1 -25.7 -26.5 -24.3 -29.2 -31.0 

134 Chester 1-32H -34.1 -31.8 -31.3 -31.2 -27.5  -28.3 -32.1 -31.7 -31.4 -25.3 -25.9 -25.4 -28.4 -28.5 

Table 24. Compound specific δ13C of branched and cyclic compounds taken from the gasoline fraction of 14 oils in this study. 

 

Key Oil Name DBT/P n-C4 n-C5 n-C6 n-C7 n-C8 n-C9 n-C10 n-C11 n-C12 n-C13 n-C14 n-C15 n-C16 

17 Shaw Trust 30-22-19 1H 0.70 -30.0 -29.4 -29.4 -29.3 -29.4 -29.7 -29.4 -29.8 -30.7 -30.2 -30.1 -30.0 -30.4 

19 Young 6-20-18 1H 2.87 -29.8 -29.5 -29.9 -30.3 -30.3 -30.6 -30.3 -30.4 -30.2 -30.7 -30.7 -30.7 -31.0 

24 Mcalary 25-19-20 1H 0.07 -27.6 -28.1 -29.0 -29.6 -29.8 -30.2 -30.0 -30.3 -30.7 -31.0 -30.6 -30.6 -30.5 

25 Seidel 5-19-18 1H 1.16 -28.8 -28.9 -29.6 -29.7 -29.9 -30.4 -30.3 -30.5 -30.5 -30.3 -30.4 -30.6 -30.8 

32 Russell 17-19-17 1H 0.12 -30.2 -30.4 -31.1 -31.4 -31.1 -31.2 -31.1 -31.1 -30.6 -30.3 -31.0 -30.4 -30.6 

33 Krows 19-19-17 1H 0.09 -29.2 -30.0 -30.8 -31.1 -30.7 -30.9 -30.8 -30.8 -31.2 -30.9 -31.1 -31.4 -31.3 

36 Drinnon 32-18-17 1H 1.10 -21.8 -22.3 -23.8 -24.9 -25.6 -26.3 -26.8 -27.0 -27.6 -27.7 -27.8 -28.0 -28.2 

37 Irving 19-19-16 1H 0.18 -27.2 -27.5 -28.4 -29.2 -29.0 -29.3 -29.2 -29.6 -30.2 -30.5 -30.7 -30.6 -30.6 

86 Cow's Face 0805 1H 0.06 -33.2 -33.1 -33.5 -33.2 -32.6 -33.2 -32.7 -32.3 -32.9 -32.6 -32.5 -32.3 -32.5 

96 HRDY 1-11MH 0.06 -33.1 -32.5 -32.6 -32.5 -31.9 -32.2 -31.8 -32.1 -32.2 -31.9 -32.3 -32.3 -32.3 

102 Post 1706 1-30MH 0.05 -32.6 -32.5 -33.0 -33.0 -32.1 -32.5 -32.3 -32.3 -32.0 -31.6 -31.5 -31.9 -32.2 

107 Meyer 1406 2-4MH 0.07 -34.0 -33.6 -34.0 -33.8 -32.9 -33.4 -32.7 -33.2 -32.7 -32.5 -32.9 -32.7 -33.3 

120 Curry 21X 1VH 0.13 -34.1 -33.1 -32.7 -31.8 -31.4 -31.6 -31.0 -31.0 -31.2 -30.7 -30.9 -31.1 -31.1 

134 Chester 1-32H 0.08 -33.4 -32.4 -32.4 -32.3 -31.5 -32.0 -31.6 -31.4 -31.5 -31.5 -31.1 -31.3 -31.5 

Table 25. Compound specific δ13C of n-alkane compounds taken from 14 oils in this study. The ratio DBT/P is also provided.
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Figure 119. (Upper) CSIA of gasoline and diesel range n-alkanes. STACK West samples show significant isotope 

excursion in the gasoline range n-alkanes and branched compounds. (Lower) CSIA of all gasoline range light 

hydrocarbons (C4-C8). Little or no isotope excursion is observed in the cyclic and monoaromatic compounds over the 

same range. Samples marked * have GC traces shown in Figure 120. Hydrocarbon abbreviations provided in Table 7 

with the addition of i-C4 (isobutane), i-C5 (isopentane), 2-MP (2-methylpentane), 3-MP (3-methylpentane), and MCP 

(methylcyclopentane). 
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Figure 120. Whole oil GC trace for eight oils depicted in Figure 119. STACK West oils with elevated CSIA δ13C show 

a corresponding depletion in n-alkanes below n-C15. Peaks corresponding to n-C7 and n-C18 are marked with a star 

and circle, respectively. 
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Predicting Overpressure 

This section describes an unproven hypothesis that pristine oils exhibit a predictable 

relationship between geochemical maturity and some physical characteristics like gas-oil-ratio in 

unconventional plays. If true, then identifying oils that deviate from that trend could be predictive 

of subsurface processes or properties which deplete or enrich an oil reservoir of solution gas.  

The geochemical relationship between vitrinite reflectance and reservoir fluid class (black 

oil, volatile oil, wet gas, and dry gas) for Type II kerogens has been well established (Tissot and 

Welte, 1984; Hunt, 1996; McCarthy et al., 2011; Cardott, 2012; Peters et al., 2012; Philp, 2014; 

Hackley and Cardott, 2016; Hackley, 2017). Likewise, production and phase behavior of reservoir 

fluids with respect to Initial Producing Gas-Oil Ratio (IP GOR) has been well-documented by 

reservoir and production engineers (e.g. Clark, 1960; Moses, 1986; McCain, 1990). A summary 

of the geochemical and production definitions for each reservoir fluid class is provided in Table 

26, although exact cutoffs are not universally agreed on. 

In theory, a pristine hydrocarbon fluid (neither enriched nor depleted in gas) might exhibit 

a predictable relationship between its thermal maturity (Rc%) and its IP GOR. A semi-log plot of 

IP GOR and Rc% for all STACK samples is shown in Figure 121. Two production-maturity trends 

emerged, colored in orange and grey, which closely correspond to the boundary of normal- and 

Table 26. Reservoir fluid defined by production and geochemistry. Scf/STB=standard cubic ft per stock tank barrel. 
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Figure 121. Upper: Crossplot of IP GOR and Rc% showing two distinct production trends. Lower: Map of STACK 

colored by production trends overlain with STACK pressure gradients (black arrows) in psi/ft. The production-

maturity trends mirror reservoir overpressure (>0.45psi/ft). Pressure gradient zones from Cullen (2017). Data found 

in Table 3 and Table 9. “East Wells” and “West Wells” refer to wellhead gas isotope samples (see text; Figure 122).  
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overpressure reservoirs (<0.45 psi/ft) in STACK. In areas of over-pressure, a strong relationship 

(R2=0.73) is observed between IP GOR and Rc%, and the over-pressured oil trend (orange) 

overlays the intersection of expected values of IP GOR and Rc% as defined in Table 26. It is 

proposed here that the strong relationship between Rc% and IP GOR in overpressure areas 

comprises near pristine oils trapped in a “closed-system” reservoir. 

Oils produced from normal- and under-pressured reservoirs have thermal maturities that 

correspond with peak oil generation from source rocks (0.75-0.95% Rc). To be clear, Rc% (from 

MPI-1) and vitrinite reflectance (Ro%) rely on different chemical reactions and may not always 

agree, but limited data in this study suggests they closely agree. For example, mean vitrinite 

reflectance measurements of the Woodford Shale in the ABCDS 1-6 core was Ro=0.74%±0.03% 

(n=21), while MPI-1 from extracts measured Rc=0.79%±0.01% (n=4). Some production in 

Kingfisher and Garfield counties is from reservoirs above under-mature Woodford (<0.6% Ro). 

Curiously, normal- and under-mature oils exhibit significantly higher IP GOR at any given Rc% 

compared to over-pressured reservoirs—up to an order of magnitude—and plot well above the 

predicted IP GOR for any Rc%. It is critical to remember that Rc% is an independent measurement 

of thermal stress undergone by an oil and not affected by enrichment or depletion of gas. If over-

pressured oils are interpreted as pristine, then normal- and under-pressured oils have IP GOR 

almost an order of magnitude higher than expected. What might cause this extra gas production?  

One possibility is that the reservoir was inundated with gas either before or after the 

primary oil charge. At least one recent study has argued that a charge of very mature dry gas has 

mixed with locally generated hydrocarbons in some STACK Woodford and Mississippian 

reservoirs based on the enrichment of methane 13C relative to its coproduced natural gas liquids 

(Kornacki and Dahl, 2016). Gas component maturity plots can help determine if deep methane has 
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migrated and mixed with oil in shallow reservoirs. Stahl and Carey (1975) derived an empirical 

relationship between the carbon isotopic composition of methane, ethane, and propane and the 

maturity (Ro%) of its organic source material and proposed a combination of individual gas 

component carbon isotopes as a tool for recognizing gas mixing. Berner and Faber (1988) refined 

the empirical gas-maturity model from a large dataset of sapropelic organic sources and derived a 

mathematical model to quantify gas mixing. Around the same time, Chung et al. (1988) showed 

that the carbon isotopes of co-genetically formed gasses (C1-C5) will form parallel relationships, 

usually as a straight line, when plotted against 1/n where n is the carbon number.  

Data from four wellhead gas isotopes, labeled East Wells and West Wells in Figure 121, 

were made available to this study taken from two sides of a structural graben in Major and Woods 

counties (Fairway Resources, Personal Communication). Two gas maturity-mixing plots based on 

the work of Chung et al. (1988) and Berner and Faber (1988) are shown in Figure 122. The East 

Wells were drilled into a thickened Mississippian interval inside the graben while the West Wells 

Figure 122. Two gas maturity plots for four STACK West wells showing possibly more mature (isotopically heavier) 

methane compared to ethane and propane. Well locations shown in Figure 121. Data generated by GeoMark Research. 
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were drilled outside of the graben. The two East Wells drilled inside the graben show an apparent 

bend towards isotopically heavy methane not observed in the West Wells. It is important to realize 

that this is a small dataset and uncalibrated to the STACK, but this relationship may explain the 

origin of excess gas observed in normal- and under-mature oils compared to overpressured oils.  

While still in its infancy, the excess gas model in Figure 121 provides another means of 

predicting the edge of the internal capillary sealing of continuous unconventional reservoirs from 

two variables independent of pressure. This could aid in unconventional exploration efforts where 

pressure data can be unavailable or prohibitively expensive to obtain. Legacy drill stem tests are 

rarely performed in unconventional reservoirs because the low permeability of the reservoir 

requires the test to remain open for extended periods and can threaten the integrity of the hole, and 

more modern diagnostic fracture injection tests (DFIT) are expensive or difficult to obtain. This 

model is capable of using publicly available production data in combination with routine 

geochemical maturity measurements to possibly predict reservoir pressure regime. 

Spatial Heterogeneity in Oil Charge and Accumulation 

Spatial heterogeneity in bulk or molecular composition of oil in conventional reservoirs 

due to processes like gravity segregation, biodegradation, and water washing have been studied at 

least since the 1970s (Bailey et al., 1973; Milner et al., 1977; Connan, 1984; Tissot and Welte, 

1984). This prompted interest in other forms of compositional heterogeneity in reservoirs, most 

notably the result of low rates of in-reservoir mixing of successive petroleum charges and 

accumulation in conventional reservoirs (England et al., 1987; England and Mackenzie, 1989; 

Leythaeuser and Rückheim, 1989; England, 2007). The question remains whether oil accumulation 

models designed for conventional reservoirs can be adapted to unconventional reservoirs to better 
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understand the production heterogeneity in modern resource plays. This section attempts to 

describe and explain the geochemical heterogeneity observed in extracts from several STACK 

Mississippian cores within the context of an extremely low permeability petroleum system. 

During the rise of unconventional resource plays near the turn of the 21st century, Meckel 

and Thomasson (2005) coined the term “pervasive tight” resource play, which described a regional 

coupling of a thermally mature source rock adjacent to a “Tight Gas Sands” or “Shale” reservoirs 

containing micro- or nano-Darcy permeability (see Figure 123). They argue that these petroleum 

systems differ from conventional systems primarily in the principal forces governing migration 

across pore throats. In conventional systems, petroleum moves along “fluid potential gradients,” 

or the sum of forces comprising excess water pressure from lithologic compaction/dewatering, 

fluid buoyancy forces, and capillary forces (England et al., 1987; England and Mackenzie, 1989). 

At sufficiently low permeabilities, the fluid potential gradient is too low to overcome pore-entry 

capillary pressure and the rock instead acts as a barrier to flow. Bulk or molecular heterogeneity 

of oil in conventional reservoirs, they argue, is the result of incomplete in-reservoir mixing of 

individual oil charging episodes by convection or diffusion. 

Figure 123. A comparison of the permeabilities between conventional and unconventional reservoir (marked by *). 

Note that tight sands and shales reservoirs are more similar to seals than they are to conventional sand and carbonate 

reservoirs. From Dembick (2016). 
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In one notable case study, Leythaeuser and Rückheim (1989) analyzed the bulk and 

molecular heterogeneity of a conventional oil field by comparing solvent extracts of core samples 

taken from impregnated reservoir sands (described as “extracted oils”) to oil produced from drill 

stem tests (DST). They observed pronounced geochemical differences between high- and low-

porosity zones over short distances even within the same vertical cored profile. Extracted oil from 

high porosity zones was more mature and resembled the producible oil captured from DST, and 

extracted oil from low porosity zones was less mature than the DST oil (Figure 124). They argued 

that early hydrocarbon charge(s) carrying a low-maturity chemical signature originally 

accumulated in the high-porosity/high-permeability sand intervals since their pore-entry capillary 

Figure 124. The heterogeneity in a conventional oil field shows a positive relationship between porosity and extracted 

oil maturity in core. High porosity intervals closely resemble DST produced oils. Modified from Leythaeuser and 

Rückheim (1989). 
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pressures are the lowest. Continued burial resulted in the arrival of more, and progressively higher 

maturity, oil in the entrapment area increasing the height of the oil column and the buoyancy 

pressure. In the higher porosity zones, the early-accumulated lower-maturity oil was displaced by 

the higher-maturity oil, forcing the former into progressively lower-porosity intervals. The 

geochemical differences between higher and lower porosity zones is a real world example of the 

inefficient mixing of different petroleum charges predicted by England et al. (1987). 

The question remains if the spatial heterogeneity models designed for conventional 

petroleum migration can be applied to pervasive tight reservoirs. To start, Meckel and Thomasson 

(2005) outlines four criteria which differentiate pervasive tight reservoirs: 1) low porosity 

generally between 6-9% and permeability between 0.001-0.1 millidarcies (conventional porosity 

range 10-25% and permeability 10-1,000 millidarcies); 2) close proximity to a mature source rock 

which provides overpressuring sufficient to overcome high capillary entry pressures; 3) near 

irreducible water saturation (Swirr) due to super-charging and dewatering by the nearby over-

pressured source rock; and 4) an inverted oil column (water above oil above gas) with no down-

dip water contact. The STACK meets each of the criteria of a pervasive tight petroleum system. 

For example, the Meramec production in the core of STACK has an average effective porosity 

0.5-5.8%, permeability 0.05-4.75 millidarcies, and a 30-50% water saturation (Fritz, 2017; Eucker 

and Ashby, 2020). The high capillary pressure in STACK maintains an inverted oil column even 

with large oil column height, and as a result the height of the oil column in STACK East is at least 

~5,800 ft just from oils in this study alone (deepest oil: 12,523 ft; shallowest oil: 6,714 ft).  

This study analyzed solvent extracts (“extracted oils”) from seven oil impregnated 

Mississippian cores for geochemical heterogeneity. Porosity and permeability at sample depths 

were not made available, but because the reservoirs are known to be at or near Swirr, it is proposed 



 

234 

 

 

here that the amount of extractable organic matter per gram of rock (EOM µg/g) might serve as a 

relative approximation for original oil in place (OOIP) and, by extension, sample porosity. 

Unfortunately, due to the age of the cores and prolonged exposure to open air, parameters for light 

hydrocarbons, colloidal instability index, and even alkyl-aromatics were found unreliable or absent 

to determine the maturity of the extracted oil. Instead, an approximate maturity was derived from 

the preferential expulsion of tricyclic terpanes (V) and hopanes (VI) at different stages of maturity 

(Figure 48; Aquino Neto et al., 1983; Kruge et al., 1990; Philp et al., 2021). Higher percent hopanes 

corresponds to lower thermal maturity and vice versa. In several cores, an alternating pattern of 

thermal maturity with depth is observed. For example in the Caffey 32-16N-9W 1H Meramec core 

(Figure 125), depths 9,617 ft and 9,863 contain low-maturity (high % hopanes) extracted oil and 

corresponds to a low-porosity (low EOM µg/g) interval, while the middle sample depth 9,669 ft 

contains high-maturity extracted oil which corresponds to a high-porosity interval.  

Figure 125. Terpane fingerprint of three core depths of the Caffey 32-16N-9W 1H core in STACK East with 

accompanying EOM (μg/g) and percent hopanes (hopanes/hopanes+tricyclic terpanes) values. There is an inverse 

relationship between EOM and percent hopanes over a cored interval of 246 ft. 
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Additionally, the extracted oil from Caffey 32-16N-92 1H core depth 9,669 ft also more 

closely resembles the maturity of nearby producing Meramec oil wells in a nine-township area in 

this dataset, shown in Figure 126. If reproducible, this observation may demonstrate that distinct 

beds containing high EOM are responsible for the largest stimulated rock volume drained by 

horizontal drilling and hydraulic fracturing. Furthermore, it highlights the geochemical character 

of oil most likely to be stored in the most producible (and therefore most porous/permeable) 

Meramec intervals. In the case of the Caffey 32-16N-92 1H core, the most mature oils are stored 

in the most producible rock volume of the Meramec reservoir, while lower maturity oils are not 

significant contributors to oil production when drilled. This mirrors the findings from conventional 

reservoirs predicted by England et al. (1987) and observed by Leythaeuser and Rückheim (1989). 

Figure 126. a) Map showing location of the Caffey 32-16N-9W 1H core (black star). Offsetting wells in a nine-

township region around the cored well are labeled by percent hopanes (hopanes/hopanes+tricyclic terpanes); b) 

Calculated percent hopanes of the three Caffey core depths in addition to the values for offsetting oils. The terpane 

signature of Caffey depth 9,669’ has the highest producibility, as measured by EOM, and most resembles nearby 

produced oils.  
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The positive relationship between porosity and maturity observed in the Caffey 32-16N-

92 1H core is repeatable in other STACK East cores, as shown in Figure 127. Five extracts from 

the nearby Gulf Shaffer 1-23 in Blaine County show four high-porosity intervals across the 180 ft 

sampling depth. Higher sampling resolution in the Capps Unit 1 shows a gradual transition in 

maturity between 8,873-8,904 (6% to 24% hopanes) but an immediate increase in porosity between 

8,873-8,877 ft (355 to 1,127 µg/g EOM).  

Further work is needed to prove the oil migration/accumulation model in pervasive tight 

reservoirs, including higher resolution sampling combined with real measurements of porosity and 

permeability. If proven, this analysis could provide a cheap an effective way to predict porosity 

and permeability in very tight reservoirs where that data is often prohibitively expensive, 

unreliable, or difficult to obtain. Other maturity proxies could also be predictive of porosity and 

Figure 127. Notable geochemical heterogeneity is observed in STACK solvent extracts. Three cores exhibit positive 

relationship between porosity and maturity proxies in core depths. In this model, percent hopanes is used to 

approximate the thermal maturity of the extracted oil at depth and EOM is used to approximate porosity. Porous beds 

(high EOM) correspond to higher maturity oils (low percent hopanes) and closely resemble offset oil production. 
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permeability while drilling, possibly taken from drill cuttings during horizontal drilling to better 

stay in the highest quality reservoir intervals. Further work will also delineate when the model 

does not work, which is equally important. For example, although each of the seven Mississippian 

cores analyzed exhibited significant geochemical heterogeneity, the positive relationship between 

porosity and maturity proxies was only observed in the three wells taken from overpressured 

Mississippian reservoirs, as shown in Figure 128. This seems to indicate that overpressuring is a 

prerequisite to overcome the significant capillary pressures necessary to displace the early charge 

of low-maturity oils from high-porosity intervals into low-porosity intervals.  

  

Figure 128. While all analyzed cores show significant spatial geochemical heterogeneity, the positive relationship 

between porosity and maturity proxies (EOM and % hopanes) was only observed in areas of reservoir overpressure. 

No relationship between EOM and % hopanes was observed in under- or normally pressured reservoirs.  
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Summary of Findings 

Three secondary reservoir processes were identified in this study. First, substantial 

enrichment of toluene and dibenzothiophene (DBT) was observed in STACK West oils 

(DBT=166±74 ppm) compared to STACK East (DBT=17±4 ppm) and SCOOP (DBT=16±5 ppm) 

and may be the result of elevated sulfur in STACK West. In shallow STACK West reservoirs, 

increased DBT and toluene may result from reactions with organosulfur compounds believed to 

be observed in the TOC-rich Middle Woodford. In the volatile oil window, high DBT/P values are 

associated with H2S production as well as migration and mixing from methyldiamantane rich fluids 

produced deeper in the basin before migrating up major fractures in the Osage Limestone and 

mixing with lower-maturity locally generated oils. While DBT enrichment alone could be 

attributed to restricted depositional environments with low terrigenous input (low iron), the 

presence of high concentration H2S gas (<20 ppm) reported in Woodward, Dewey, and Ellis 

counties suggests the presence of thermochemical sulfate reduction (TSR) reactions.  

Second, two trends were observed when gas-oil-ratio (GOR) was crossplotted against Rc% 

which corresponded to areas of reservoir overpressure. Oils from overpressured reservoirs formed 

a highly correlative trend between Rc% and GOR which mirrors the expected physical properties 

for pristine oils at various stages of maturity—black oil, volatile oil, and wet gas. Oils from under- 

and normally pressured reservoirs contained GOR up to an order of magnitude higher than 

comparably mature oils from overpressured reservoirs. Gas data from four wells in Major County 

shows methane consistently isotopically enriched in 13C compared to ethane and propane from the 

same well. While still in its infancy, this exciting hypothesis could supplement an exploration 

strategy by replacing expensive DFIT or downhole pressure tests with a simple fluid extraction 

which measures both GOR and thermal maturity to predict overpressure. 
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Finally, spatial heterogeneity in bulk or molecular composition observed in Mississippian 

cores is the result of incomplete mixing of increasingly mature petroleum charges (e.g. 

Leythaeuser and Rückheim, 1989). In areas of overpressure, a positive relationship was observed 

between proxies used to estimate porosity and maturity in solvent extracted oils. Offset oil 

production closely resembles extracted oils from high porosity intervals. Measuring porosity and 

permeability in tight unconventional reservoirs is often expensive and unreliable; however, the 

observed relationship may help estimate porosity by simply measuring fluid maturity. Using this 

workflow, explorationists may improve well efficiency by rapidly predicting the most porous and 

permeable intervals. 
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VII. Conclusions 

 Oil maturity can be modeled independently of organic source using principal component 

analysis for unconventional resource plays within normally heated basins. 

 Three Woodford Shale organic facies were identified which sourced oil to all Woodford 

and Mississippian Group reservoirs in STACK/SCOOP. A separate Caney/Goddard shale 

organic facies is present in SCOOP which sourced oil to the Springer Group, and which 

closely resembles Pennsylvanian-type oil. 

 High concentration H2S gas produced in STACK West is likely the result of 

thermochemical sulfate reduction (TSR) reactions deeper in the basin. TSR-affected fluids 

migrated updip and mixed with locally generated oils. 

 Under- and normally pressured reservoirs exhibit gas-oil-ratios up to an order of magnitude 

higher than overpressured reservoirs at the same thermal maturity. 

 Cored intervals from overpressured reservoirs exhibit spatial geochemical heterogeneities 

resulting from incomplete mixing of petroleum charges derived from source rocks at 

progressively increasing maturity stages and could be leveraged to model paragenesis, 

porosity, permeability, and pressure.  
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Appendix: Compound Structures 

 

 
I: 24-n-cholestane (reg. sterane) 

C27: R=H 

C28: R=methyl 

C29: R=ethyl 

C30: R=propyl 

 

 

 

 
II: 24-n-diasterane  

C27: R=H 

C28: R=methyl 

C29: R=ethyl 

C30: R=propyl 

 

 

 
III: triaromatic steranes (TA[I]) 

C20: R=H 

C21: R=methyl 

 
IV: triaromatic steranes (TA[II]) 

C26: R=H 

C27: R=methyl 

C28: R=ethyl 

 

 

 

 

 
V: tricyclic terpane 
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VI: C30 hopane 

 

 
VII: phenanthrene 

 

 
VIII: dibenzothiophene 

 

 

 
IX: pristane 

 

 

 
X: phytane 

 

 
XI: (homo)drimane 

C15: R=methyl 

C16: R=ethyl 

 

 
XII: eudesmane 

 

 

 
XIII: C24 tetracyclic terpane 

 

 

 
XIV:28,30-bisnorhopane 

 

 

 
XV: diamantane 


