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PURIFICATION AND ACTIVE SITE CHARACTERIZATION OF L-PHENYLALANINE 

AMMONIA-LYASE FROM SPOROBOLOMYCES PARAROSEUS

CHAPTER I 

INTRODUCTION

There are two categories  of amino acids known to  undergo 

enzymatic deamination to the corresponding alkene compounds. In one 

category are  the d icarb o xy lic  ac ids , L -asp art ic  ac id  and L-P-m ethyl-  

asp a rt ic  acid  and in the other a re  L -phenyla lan ine, L -ty ro s in e ,  and 

L -h is t id in e  which possess aromatic rings.

The mechanisms of these enzym atically  cata lyzed  deaminations 

may a lso  be categorized in to  two types, one fo r  d ic a rb o x y lic  and one 

fo r  the aromatic ac ids . The mechanism fo r  enzymatic deamination of 

P-m ethylaspartate  and a sp a rta te  probably involves p-carbanion (a 

n egative ly  charged carbon) form ation, followed by the ra te  l im it in g  

expulsion of ammonia from the substrate  ( 4 , 5 , 6 , 1 0 ) .  The mechanism fo r  

deamination of h is t id in e  (3 ,8 ,4 3 )  and phenyla lanine (1 8 ,5 4 )  apparently  

involves: (a) the formation of an enzyme ammonia in term edia te ,

(b) e l im in a t io n  of a p-proton, (c) expulsion of the deaminated product, 

and (d) expulsion of ammonia. At present the sequence o f these events 

is not known conc lus ive ly , or i f  these are  a l l  o f the reaction  steps 

involved. In the case of the d icarb o xy lic  ac ids , the deamination

1



reac tio n  is re a d i ly  re v e rs ib le .  For the aromatic amino acids phenylalanine  

and ty ro s in e  the eq u il ib r iu m  l ie s  fa r  in favor of the deaminated product, 

but these reactions are  re v e rs ib le  (5 4 ) .  In co n trast h is t id in e ,  a lso  

an aromatic amino ac id ,  is  apparently  i r r e v e r s ib ly  deaminated (4 5 ) .

The f i r s t  enzyme discovered contain ing a c a t a ly t i c a l l y  essentia l  

non-pyridoxa1 phosphate carbonyl group was D -p ro lin e  reductase which 

red u ct iv e ly  deaminates D -p ro lin e  to  5-ami novalera te  and ammonia (2 2 ,2 3 ,2 5 ) .  

Further in ves tig a tio n  of D -p ro lin e  reductase has provided a new enzymatic 

func tion  fo r  non-pyridoxa1 phosphate carbonyl groups, th a t of combining 

w ith  the amino group of substrate ; thereby making i t  a b e t te r  leaving  

group due to  e lec tron  w ithdraw al. Other important non-pyridoxa1 carbonyl 

type enzymes are  S-adenosylmethionine decarboxylase, h is t id in e  decarboxylase  

and urocanase. S im i la r ly ,  the aromatic amino acid  ammonia lyases have 

in common a non-pyridoxal phosphate c a rb o n y l- l ik e  group which is  

c a t a l y t i c a l l y  essen tia l dehydroalanine, whose s tru c tu re  is seen below:

H_C = C -  COOH 
I
NH*

dehydroalanine

P-M ethv lasparta te  Ammonia-Lyase 

P -M ethylasparta te  ammonia-lyase (E.C. 4 .3 . 1 .2 )  cata lyzes  the 

r e v e rs ib le  conversion of m ethylaspartate  to  mesaconate and ammonia 

(equation 1 ) .  Bright and co-workers have done extensive studies on the 

enzyme from C lostrid ium  tetranomorphum and i t s  c a t a ly t ic  p ro p e rt ies  

( 4 - 7 ,1 3 ) .  They have concluded th a t the mechanism most consistent with
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th e ir  data involves e x tra c t io n  of the P-proton to  form a carbanion  

in term ediate , fo llowed by the ra te  determining e l im in a t io n  of ammonia 

(equation 2 ) .

H -  C -  CH,

H3N
I
C -  H 
I —
CO,

m ethylaspartate

A
CO,
I ®
C -  CH.
II
C -  H 
I _ 
CO,

mesaconate

+ NH. ( 1 )

Mg —  
0"  0

I
H,C -  C -  H 

® I 
H -  C -  NH 

I _
CO,

A
+  V

m ethylaspartate

C
/

H-C C -  H 
° I _

CO3

mesaconate

Mg

Mg

I
Hg C -  C -  H

H -  C -  NH,
I
CO,

-  Mg

c h f

HS \
CO,

(2 )

HS

I t  was observed th a t  both proton exchange in to  the P-carbon of  

substrate  and the o v e ra l l  deamination reaction  were s im i la r ly  dependent 

on the nature of the d iv a le n t  metal present. During the i n i t i a l  stages 

of a m ethylaspartate  deamination reac tio n , n e ith e r  ammonia nor mesaconate 

were converted in to  m ethylaspartate . Under these same co nd itions ,  

solvent protons were incorporated in to  the m ethylaspartate. This  e lim in a tes  

the p o s s ib i l i t y  of a ra te  determining breakdown of an enzyme-ammonia or



enzyme-mesaconate interm ediate  since reversal of the reaction  a t  such a 

po in t would cause P-proton exchange and would be para l ied  by simultaneous 

ammonia or mesaconate incorporation in to  m ethylaspartate. This same data  

makes u n l ik e ly  a concerted e lim in a t io n  of a proton and ammonia (6 ) .

Evidence has been o ffe re d  (5 ,1 3 ,5 3 )  fo r  the p a r t ic ip a t io n  of a 

th io l  a t  the a c t iv e  s i te  of P-m ethylaspartate  ammonia-lyase which could 

a c t  as the base necessary fo r  proton a b s trac t io n .  Furthermore, F ie lds  

(13) has suggested th a t a c y c l ic  in term ediate  is formed in the process 

of c a ta ly s is  (equation 3 ) :
Mn

(3)

where E is enzyme, Mn is manganese, and S is substrate. From e lec tron  

paramagnetic resonance measurements i t  has been concluded th a t  a random- 

order a d d it io n  of P-m ethylaspartate  and M n ^  to  the enzyme seems most 

l i k e l y  (1 3 ) .

L -A spartate  Ammonia-Lyase 

L-Aspartate ammonia-lyase, (E.C. 4 .3 . 1 .1 )  an enzyme c a ta lyz in g  

an analogous deamination of asparta te  to  fumarate and ammonia (equation  

4) has been p a r t i a l l y  p u r i f ie d  (10 ,52 ) and studied (1 0 ,1 2 ) .

The enzyme requires d iv a le n t  metals and th io ls  fo r  maximal 

a c t i v i t y  (1 0 ) .  The s im i la r i t y  of a c t iv a to rs  and substrates, along w ith  

the ready r e v e r s ib i l i t y  of both reactions , makes i t  l i k e ly  tha t asparta te  

ammonia-lyase and P-m ethylaspartate  ammonia-lyase u t i l i z e  a s im ila r  

mechanistic pathway.



0 0 "  0 0 "  

c c
H -  C -  H  H -  C +  ( if)

C02"

asparta te  fumarate

L -H is t id în e  Ammonia-Lyase

L -H is t id in e  ammonia-lyase (E.C. 4 .3 . 1 .3 )  ca ta lyzes  the

apparently i r r e v e r s ib le  (40) deamination of h is t id in e  to  urocanic acid

and ammonia (equation 5)-

H H H H
1 1 .   ̂ I I +

Im -  C -  C -  CO, ----------^ Im -  C = C -  CO. +  NH.
I I +  ® 2 4

 ̂ urocanate

h is t id in e

Im = imidazole

(5)

The elegant studies o f Peterkofsky (40) have o ffe red  evidence 

fo r  the formation of an enzyme-ammonia in term edia te , whose breakdown is 

the rate  l im it in g  step in the h is t id in e  ammonia-lyase reac tio n . He has 

postulated the reaction  scheme on the fo llow ing  page (equation 6 ) .

When deamination of h is t id in e  was allowed to  proceed in the presence of  

i^C-urocanate, r a d io a c t iv i t y  was incorporated in to  the unreacted h is t id in e .  

This is consistent w ith  a reversal of Step (A) in equation (6 ) .  Urocanate 

and ammonia, incubated in the presence of h is t id in e  ammonia-lyase produced 

no h is t id in e .  This is consistent with an i r r e v e r s ib le  nature fo r  Step (B),  

the breakdown of the enzyme-ammonia in term ediate , and a lso  w ith  the  

postulated mode of urocanate exchange.



I m

OH 

H)
H

/ I \
N H , COOH

ENZYME 

Im = imidazole

( A )
A H^O +

Im H
\  /

0 = 0

H ^  ^ O O O H

+  NH

( B )

2 
I
ENZYME

HgO

( 6 )

NHg +  ENZYME +  OH

Also, when deamination of h is t id in e  was allowed to  proceed in  

t r i t iu m  oxide, unreacted h is t id in e  incorporated a t r i t iu m  atom a t  the  

p-carbon [cons isten t w ith  a reversal of Step (A ) ] .  Both t r i t iu m  incor­

p ora tion  and the o vera ll  deamination reaction  was dependent on the  

presence of mercaptoethanol. When the deamination reaction proceeded 

in the  presence of t r i t iu m  oxide and ^®NH^; t r i t iu m ,  but no ^®NH  ̂ was 

incorporated in to  h is t id in e  [again consis tent w ith  the i r re v e rs ib le  

nature  of Step (B ) ] .  Furthermore when the reaction  proceeded in the  

presence of both t r i t iu m  oxide and i *0 -u ro c a n a te ,  incorporation of both 

ra d io ac t iv e  labels  in to  h is t id in e  occurred a t  approximately the same 

r a te .  This would be the case i f  the exc lus ive  path of proton exchange 

was a reversal of Step (A ) .

These observations are  a l l  consis tent w ith  the concerted  

e lim in a t io n  of ammonia and a proton from h is t id in e  as an e a r ly  step in 

the reaction  sequence. ( I f  a c a r b a n io n -h is t id ine interm ediate were 

e x ta n t ,  urocanate exchange would be slower than proton exchange.) The O- 

amino group of substrate  is presumably bound to  the enzyme p r io r  to the 

e l im in a t io n  step. A f te r  the form ation and d isso c ia t io n  of urocanate.
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the enzyme-ammoni a in term ediate  must e i th e r  react w ith  urocanate or be 

degraded to  n a t iv e  enzyme and ammonia.

Further evidence as to  the l ik e l ih o o d  o f  th is  mechanism was 

provided by Smith ej  ̂ aj.* (43) and Givot e t a i .  (16) who investiga ted  

the possible nature of the ammonia-enzyme bond. They noted th a t  

h is t id in e  ammonia-lyase was i r r e v e r s ib ly  in a c t iv a te d  by compounds 

known to  react w ith  carbonyl groups ( e .g . ,  phenyl hydrazine, hydroxylamine 

and sodium borohydride). When h is t id in e  ammonia-lyase was tre a te d  with  

®H-NaBH^, r a d io a c t iv i t y  was non-exchangeably incorporated in to  the  

enzyme. This would be consistent w ith  the reduction of an e le c t r o p h i1ic 

center. Further work by Givot e_t aj_. (16) showed a loss of c a t a ly t ic  

a c t iv i t y  upon exposure of h is t id in e  ammonia-lyase to  n i tromethane. The 

in a c t iv a t io n  produced by n i tromethane could be reduced by a d d it io n  of a 

s u f f ic ie n t  level of substrate  analogs, suggesting th a t  n i tromethane 

reacts a t  the a c t iv e  s i t e  o f h is t id in e  ammonia-lyase. Chemical reduction  

and acid hydro lys is  o f ^^C-nitromethane in ac tiva ted  enzyme fo llowed by 

high voltage paper e lec trophores is  (pH 3»5) revealed ra d io a c t iv e  2 ,4 -  

diaminobutyric a c id ,  4-am ino-2-hydroxybutyric  a c id ,  and p -a la n in e .

From these re s u lts  they concluded th a t  a dehydroalanine moiety was 

probably located a t  the a c t iv e  s i t e  of the enzyme.

At present, i t  is not understood i f  the enzyme-ammonia 

intermediate postu la ted  by Peterkofsky (40) is associated w ith  the 

dehydroalanine moiety, but i t  appears most probably th a t  th is  is the case.

G ivot aJL* (16) a ls o  characterized  the a c t iv e  s i t e  of 

h is t id in e  ammonia-lyase suggesting th a t  maximal binding occurs when 

the im idazole, carboxy l,  and amino groups of substrate  a l l  in te ra c t
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w ith enzyme. Some of the in h ib i to rs  reported by these in v es t ig a to rs  

(16) were: L -h is t id in e  (Km = 7*0  mM), D -h is t id in e  (Ki = 15.6 mM),

g lyc ine  (Ki = 6 .0  mM), L -a lan ine  (Ki = o û ) ,  imidazole (Ki = 26 .7  mM), 

histamine (Ki = 75 mM), urocanic ac id  (Ki = 9*7 mM), and dihydrourocanic  

acid  (Ki = 130 mM). The most e f f e c t iv e  in h ib i to rs  contained three  

groups corresponding to  those of the su b stra te , (D and L h i s t i d in e ) ,  

w hile  those having two binding s ite s  were bound less t i g h t l y .  G lycine  

was an exception to  th is  observed fa c t  ( l 6 ) .

Phenylalanine Ammonia-Lvase 

L-Phenylalanine ammonia-lyase (E.C. 4 .3 . 1 .5 )  c a ta lyzes  the  

deamination of L -p heny la lan ire  to  trans-c innam ic acid and ammonia 

(equation 7 )*

+
COg COg

C -  H C -  H
II

^  .. Ç +  nh/  (7 )

0 0
phenyla lanine cinnamic acid

This enzyme has been found in a wide v a r ie ty  of p lants and fungi (8 ,1 1 ,  

1 9 ,2 0 ,2 4 ,3 0 ,3 1 ,3 3 -3 7 ,4 4 ,5 4 ) .  Some examples of the d is t r ib u t io n  of th is  

enzyme a re :  tobacco leaves, sweet po ta to  roo t, potato tubers , maize

seedlings, barley and several s tra in s  o f  yeast most notably Rhodotorula 

q lu tin u s  and Sporobolomvces pararoseus. and one b a c te r ia l  species  

Streptomvces v e r t i c i l l a t u s . In p lan ts  the product of phenyla lan ine  

deamination, cinnamic a c id , is used to  make c e l l  wall s tru c tu re s .  

B r ie f ly  the scheme is as fo l lo w s: L-phenyla lan ine  —---------->  cinnamic



acid  -------->  p-coumaric acid -------- >  p-hydroxy-cinnamy1 alcohol --------- >

3-methoxy-p-hydroxy cinnamyl a lco h o l.  A polymer formation resu lts  when 

a bond is formed between the hydroxyl group in the para p o s it io n  of 

3-methoxy-p-hydroxy cinnamyl alcohol and e i th e r  the a  or P carbon of 

3-methoxy-p-hydroxy cinnamyl alcohol (1 4 ) ;  th is  scheme is generally  

re fe rred  to  as l ig n in  form ation. Whereas, the fa t e  of cinnamic acid  

in the Rhodotorula yeast s tra in s  fo llows a d i f f e r e n t  course as is 

depicted in F ig .  1 a f t e r  Uchiyama e^ aj_. (4? ).  Protocatechuate is 

thought to  undergo ring f is s io n  leading to  the formation of acetyl-CoA.

Phenylalanine ammonia-lyase from potato tubers (1 8 -2 0 ) ,

Rhodotorula g lu tin u s  (2 4 ,2 6 ,27 )  and Sporobolomyces pararoseus (39) has 

been p u r i f ie d  to  near homogeneity and c harac te r ized  as to i t s  physical 

and a c t iv e  s i t e  p ro p e rt ies .  Havir and Hanson (19) have p u r i f ie d  the 

enzyme more than 3 00 -fo ld  from e x tra c ts  of potato tubers. Using the  

techniques of sucrose density grad ient c e n tr ifu g a t io n  and molecular  

sieve chromatography the molecular weight of the enzyme was estimated  

as 330,000 (1 9 ) .  They found th a t  su lfhydry l reagents f a i l e d  to  in h ib i t  

the enzyme whereas carbonyl reagents ( e . g . ,  NaBH*) were potent in h ib i to rs ,  

whose ac t io n  could be blocked by cinnamate. Also a carbonyl-ammonia 

in term ediate  was postulated from ra d io ac t iv e  exchange experiments (2 0 ) .

S im i l a r i l y ,  Hodgins (26) showed phenylalanine ammonia-lyase 

from Rhodotorula q lu tinus to  be an enzyme of approximately 275,000  

molecular weight as estimated by G-200 Sephadex chromatography and sucrose 

density g rad ien t c en tr ifu g a t io n  (2 6 ) .  This  yeast ammonia-lyase was 

a lso  s e n s it iv e  to  carbonyl reagents such as NaCN, NaBH*, and NaHSOg (2 4 ) .

Both Hodgins (26) and Hanson (18) have demonstrated a c a t a ly t ic a l ly
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Figure 1. Proposed metabolic pathway of L-phenylalanine  

and L -ty ro s in e  metabolism in Rhodotorula. (1) L-phenylalanine; (2 )  

cinnamic ac id ; (3 ) benzoic ac id ; (4 )  L -tyros ine; (5 ) p-coumaric ac id ;

(6 ) p-hydroxybenzoic acid ; (7) 3 ,4-dihydroxybenzoic acid  (protocatechuic  

a c id ) (Uchiyama e_t aj_., 47 ) .
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ess ent ia l  dehydroalanine moiety as the a c t iv e  s i t e  of phenyla lan ine  

ammonia-lyase. Hodgins ina c t iv a te d  the yeast enzyme with  ^^C-NaCN.

This  in a c t iv a t io n  could be prevented w i th  cinnamic acid in d ica t ing  

p a r t i c i p a t i o n  of the a c t i v e  s i t e .  In a c t iv e  ^^C-CN-enzyme was 

hydrolyzed a t  110° f o r  24 hr in 6 M HCl, a f t e r  which time the acid  

was removed by rotary  evaporation under p a r t i a l  vacuum. The rad ioact ive  

hydrolysate  was subjected to high voltage e lectrophores is  a t  pH 1.9 and 

8 .9  with  appropr iate  standards. A f t e r  dry ing,  the high vo l tage  

e lec trophores is  s t r ip s  were scanned fo r  r a d io a c t i v i t y .  The m a jo r i ty  of  

the r a d io a c t i v i t y  observed corresponded wi th  the migrat ion of  the 

standard L-aspar t ic  a c id .  These observations by Hodgins (26) are in 

accord with  the presence of c a t a l y t i c a l l y  essentia l  dehydroalanine a t  

the a c t iv e  s i t e  of the yeast q lu t in u s . S im i la r ly ,  Hanson (18) using 

t r i t i a t e d  NaBH  ̂ ina c t iv a ted  oota to  tuber phenylalanine ammonia-lyase and 

a f t e r  acid hydrolysis  and high voltage e lec trophores is  a t  various pH's 

i d e n t i f i e d  the ra d io a c t iv e  product as t r i t i a t e d  a lanine .  This  a lso  is 

in accord with  a dehydroalanyl  residue a t  the a c t iv e  s i t e  o f  potato  

tuber phenylalanine ammonia-lyase.

Table 1 a f t e r  Hodgins (27) shows the wide s p e c i f i c i t y  of the 

Rhodotorula qlut inus enzyme f o r  several  substrate  analogs.  Of the 

compounds tested by Hodgins (27)  15 o f  20 were deaminated by the enzyme. 

Thus, the yeast enzyme appears to deaminate a wide range of compounds.

I t  is worthy to note th a t  n e i th e r  L - h i s t i d i n e  nor DL-tryptophane were 

deaminated but L - ty ro s in e  was. This indicates  that al though there  is a 

wide deaminating s p e c i f i c i t y  fo r  th is  enzyme i t  does not include a l l  of  

the aromatic amino ac id s .  Table 2 compares several  of the proper t ies  of
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TABLE

Rhodotorula PHENYLALANINE AMMONIA-LYASE AND SUBSTRATE ANALOGS^

Compound Concentrat ion mM Substrate
A c t i v i t y

L -T y ro s ine 0.83 +

DL-3-Hydroxyphenylalani  ne 0.83 +

L - 3 -N i t  roty ros i ne 0.83 +

DL-4-Nitropheny1 a 1 an i ne 0.166 +

L - 3 , 5 - D i n i t r o t y  ros i ne 0.83 +

L -3 “ lodotyros i ne 0.83 +

L-3-Ami notyros i ne 0.83 +

L-3-Methoxytyros i ne 0.83 +

DL-4-Aminophenylalanine 0.166 +

DL-4-Methylphenylalanine 0.83 +

L-4 - lodopheny la lan ine 0.83 +

L-2-p-Th ienyla lan i ne 0.83 +

DL-4-Fl'Jorophenyl a lan ine 1.6 +

DL-3-F1uorophenylalani  ne 1.6 +

DL-2-Fluorophenyl a lan ine 1.6 +

L -H is t  id i ne 0.83 -

DL-p-Phenyllact ic  Acid 1.76 -

DL-T ryptophane 1.7 -

DL-cc-Methy 1 -3-hyd roxypheny I a 1 an i ne 1.71 -

DL-2-Hydroxvphenylalani  ne 1.76 -

^Hodgins (27)



TABLE 2

COMPARISON OF L-PHENYLALANINE AMMON!A-LYASE. FROM 
POTATO TUBERS^AND Rhodotorula q lu t in u s

Molecular In a c t iv a te d 1nact i vated Contains a
weight by su l fhydry l by carbonyl dehydroalanine

reagents reagents moi ety

Potato  tuber 330,000 no yes yes

Rh. q lu t inus 275,000 yes yes yes

^Havir /and Hanson (1 8 ,1 9 ,2 0 )  

^Hodgins (24 ,26 )
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the potato tuber and qlut inus enzymes from Havir  and Hanson (18-20)  

and Hodgins (2 4 ,2 6 ) .

Tyrosine Ammon I a -Lvase 

Tyrosine ammonia-lyase catalyzes the deamination o f  L - tyros ine  

to p-coumaric acid and ammonia (equation 8 ) .

H -  C -  NHg H -  C

" " I " "  .  I " " +  Nh/  (8)

0 '  0 
I I
OH OH

tyrosine  p-coumaric acid

Thus fa r  no tyros ine  ammonia-lyase has been p u r i f i e d  separate from

phenylalanine ammonia-lyase a c t i v i t y .  I t  is fo r  th is  reason that a t  

present there is no enzyme c la s s i f i c a t i o n  number fo r  th is  enzyme.

Although most phenylalanine ammonia-1yases have b isubstra te  a c t i v i t y  

fo r  L-phenylalanine and L- tyros ine  not a l l  do as is exempl if ied  by the 

potato tuber enzyme, which deaminates only phenylalanine.

Spec i f ic  Aims

The aim of t h is  research endeavor was to iso la te ,  p u r i f y ,  and 

charac te r ize  phenylalanine ammonia-lyase from S_. pararoseus. More 

s p e c i f i c a l l y ,  the aim was to ascer ta in  c e r t a in  propert ies  of  the enzyme 

such as: substrate s p e c i f i c i t y ,  molecular weight,  subunit composition,

c a t a l y t i c a l l y  essent ia l  residues,  whether the enzyme was regulato ry  or 

non-regula tory ,  and i f  the enzymic deamination of phenylalanine proceeded 

via an enzyme-ammonia intermediate.  Several  other proper t ies  of  the
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enzyme were a lso investiga ted  during the course of  th is  research such 

as: requirements fo r  the enzyme assay, spectrum of the enzyme, and

s t a b i l i t y  of the enzyme a f t e r  p u r i f i c a t i o n .  Furthermore, the existance  

of separate ty ros ine  and phenylalanine ammonia-lyases has been postulated  

to  e x is t  in the re la ted  organism S . roseus. An i n i t i a l  o b je c t iv e  of  th is  

research was to asc er ta in  i f  two such enzymes were present in S_. para roseus.



CHAPTER 1 I 

MATERIALS AND METHODS 

Organism

The primary organism used in these studies was Sporebelomyces 

parareseus (ATCC 11386) ;  e ther organisms were as fe l lows:

1. Saccharomyces rosei (ATCC 10664)

2. Rhodotorula rubra (ATCC 9449)

3 . Rhodotorula q lu t inus  rubescens (ATCC 6495)

4.  Rhodotorula q lu t inus  (ATCC 15385)

5» Rhodotorula f la v a  (ATCC 14551)

6.  S e r r a t ia  marcesens

A l l  o f  the above mentioned organisms were obtained from the 

American Type Cul ture  except fo r  S e r r a t i a  marcesens which was obtained 

from the Department o f  Microbiology o f  the U n iv ers i ty  o f  Oklahoma 

Health Sciences Center.

Sporobolomyces pararoseus was maintained a t  4 °  on agar slants  

conta in ing 0.3% yeast e x t r a c t ,  1.0% malt e x t r a c t ,  and 3*0% agar.

Media

Three types of  media were employed in the growth o f  the above 

organisms. Medium 1, a s a l ts  medium, was modified a f t e r  the medium 

proposed by Vogel (48) and contained per l i t e r :

MgSO^........................................................ 0 .2 g

17
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KgHPO^  10.0 g

g l u c o s e .............................................. 1 .0  g

L-tyros  i n e   1 .0  g

(NH^)sSO^  1 .0  g

Na C i t r a t e ..................................... 2 . 0  g

Medium I I  contained per l i t e r :

Mal t  e x t r a c t .....................................  7*0 g

Yeast e x t r a c t ................................  0 .5  g

L- tyros ine  or ................................
1 .0  g

L-phenylalanine ...........................

The medium used most o ften  for  growth of  Sporobolomyces 

pararoseus was Medium I I I  and contained per l i t e r :

Malt  e x t r a c t ..................................... 7*0 g

Yeast e x t r a c t ................................  1 .0  g

D,L-phenylalanine .......................  1 .0  g

Al l  solut ions  were s t e r i l i z e d  by autoclaving.

Enzyme Assay

The deamination of  L-phenylalanine was measured by fol lowing  

the increase in op t ica l  density  a t  290 nm (56) where the molar e x t in c t io n  

c o e f f i c i e n t  is 10,000 fo r  cinnamic acid .  The standard assay mixture  

contained 5 mM L-phenylalanine,  0.1 M Tr is  HCl, pH 8 .5 ,  and enzyme a t  

30°.  Tyrosine deamination was measured s im i la r ly ,  except tha t a wave­

length of  310 nm was used (a molar ex t in c t io n  c o e f f i c i e n t  o f  12,400 was 

u t i l i z e d  in a c t i v i t y  c a l c u la t io n s ) .  In th is  l a t t e r  assay L-tyros ine  

replaced L-phenylalanine in the standard system. An enzyme uni t  is
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defined as that  amount of  prote in  c a ta ly z ing  the appearance of  1 pmole 

of product per min at 30°* For p u r i f i e d  enzyme prote in  concentrations  

were measured by the modified Lowry method of Zak and Cohen ( 5 5 ) « For 

crude prote in  determinations the Warburg-Christ ian spectrophotometric  

method was employed (49) .

Q u a n t i ta t ive  Phenylalanine Determinations  

L-phenylalanine standards (0 .0  to 45 pM) were incubated at  

25° fo r  4 hr in a volume of 2 .2  ml containing 0.025 units o f  enzyme. 

L-phenylalanine unknowns were incubated under the same condit ions.  At 

the end of the incubation period the opt ica l  densi ty  (OO) a t  290 nm was 

measured fo r  standard and unknown L-phenylalanine samples. A l in e a r  

re la t io n s h ip  was found to e x is t  between the 00 a t  290 nm and the L- 

pheny la lan ine concentrat ions.  Unknown L-phenylalanine concentrations  

were determined gra p h ic a l ly .  Under these condit ions greater  than 90% 

of  the L-phenylalanine standards were deaminated to trans-cinnamic acid  

and ammonia.

Polyacrylamide Disc Gel Electrophoresis  

Disc gel e lectrophoresis  was performed by the method of Davis 

(9) w i th  apparatus and reagents purchased from Canalco. Samples were 

applied to the stacking gel in 50% sucrose. Gels (7.5% crosslinked  

polyacrylamide) were subjected to 3 m amp/tube fo r  3 hr at 4 ° .  A f t e r  

removal, the prote in  in the gels was stained fo r  1 hr with  1% amido 

black in 7.5% a ce t ic  acid and then were e le c t r o p h o r e t i c a l l y  freed of  

unbound dye in 7.5% acetic  acid .
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Molecular Weight Estimation by Gel F i l t r a t i o n  

The molecular weight of  the enzyme was determined by gel f i l t r a ­

t io n  using Sephadex G-200 (40-200 |a) from which the f in e  p a r t i c le s  in 

suspension had been decanted. The Sephadex G-200 was e q u i l ib r a te d  in 

50 mM sodium pyrophosphate (pH 8 .0 )  and 10 mM 2-mercaptoethanol and 

packed to give a column dimension o f  3 x 100 cm. The column was c a l i ­

brated with the fo l lowing standards: blue dextran (Sigma; molecular

weight (MW) = 2 ,0 0 0 ,0 0 0 ) ,  urease (Sigma -  Type IV; MW = 4 03 ,0 0 0 ) ,  g lu ta ­

mate dehydrogenase (Sigma -  Type I ;  MW = 340,000),  xanthine oxidase  

(Boehringer; MW = 270,000),  catalase  (Sigma -  2x; MW = 2 40 ,00 0 ) ,  fumarase 

(Sigma -  c r y s t a l l i n e ;  MW = 194,000),  and la c t i c  dehydrogenase (Sigma -  

Type IX; MW = 140,0 00 ) .  Urease was assayed by the method o f  Gorin and 

Chin ( 17) .  Bovine l i v e r  glutamate dehydrogenase was assayed by the method 

of  Fr idovitch ( I 5 ) ,  bovine l i v e r  ca ta lase  by the method o f  Beers and 

Sizer  (2 ) ,  pig hear t  fumarase by the method of Racker ( 4 l ) ,  and beef heart  

l ac ta te  dehydrogenase by the method of  Kaloustian (2 9 ) .  A l l  o f  the stan­

dards l is te d  above plus phenylalanine ammonia-lyase, in a t o t a l  volume of

1.0 ml, were layered on the gel column which was eluted in 1 .9  ml f ra c ­

t ions .

Molecular Weight Estimation by Sucrose Density Gradient C e n tr i fu g a t io n

A 4 .6  ml l i n e a r  sucrose densi ty  gradient was prepared in a grav­

i t y  flow mixing chamber using two so lu t ions:  f i r s t  2 .2  ml o f  20% ('^/w)

sucrose in 50 mM T r is  HCl, pH 8 .5 ,  and bromphenol blue (O.3  mg/ml) and 

second, 2 .4  ml o f  5% sucrose in the same buf fer  without bromphenol blue.  

The gradients were stored fo r  4 hr a t  4 °  before use. A mixture o f  e i t h e r
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cata lase ,  xanthine oxidase,  or fumarase and phenylalanine ammonia-lyase 

was layered on the sucrose gradient,  and the tubes centr i fuged at  

9 9 , 9 7 2  X  g for  10 hr a t  4 °  in a SW 50L ro tor  with a Beckman-Spinco 

L - 265-B u l t r a c e n t r i f u g e .  Fractions o f  0 .1 3  ml were co l lec ted  from the 

gradient tubes, and bromphenol blue concentrat ions were measured in 

samples d i lu te d  1 to 10 with 50 mM T r is  HCl, pH 8 . 5 ,  a t  an optica l  

densi ty  o f  590 nm. The enzyme a c t i v i t i e s  were measured employing the 

assay methods previously  described.

The mathematical assumptions o f  Mart in  and Ames (32) were 

employed for  the determination of  the molecular weight o f  phenylalanine  

ammonia-lyase. Mart in  and Ames (32)  demonstrated that the migrat ion o f  

prote ins through a sucrose gradient was l in e a r  with t ime. This observa­

t io n  allows one to est imate the sedimentat ion c o e f f i c i e n t  of  an unknown 

substance i f  a s im i l a r  standard of  known sedimentation c o e f f i c i e n t  is 

a lso  in the grad ient ,  according to  the fo l lowing p ro p o r t io n a l i ty

Sx dx

Sy dy

where dx and dy represent the migrated distances from the top of  the 

gradient  and Sx and Sy represent the sedimentation c o e f f i c i e n t s .  Once 

the sedimentat ion c o e f f i c ie n t  is known fo r  the experimental  molecule 

i ts  molecular weight can be estimated by comparison w i th  a standard o f  

known molecular weight and sedimentation c o e f f i c i e n t  by the fol lowing  

equation

Sj (MWj ^/3

S3 (MW3 ) ^ /3
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where and Sg represent the sedimentat ion c o e f f i c i e n t s  of  the stan­

dard and experimental  compounds and MŴ  and MWg represent the molecular  

weights of  the standard and unknown compounds. I t  is a lso  assumed that  

the standard has the same shape as the unknown compound and that the 

reported sedimentat ion c o e f f i c i e n t  and molecular weight  o f  the stan­

dard are accurate.

Subuni ts

The method o f  Weber and Osborn (50) was fol lowed fo r  poly­

acrylamide disc gel e lec trophores is  of  proteins in sodium dodecyl 

s u l fa te  (SDS). The separation o f  n a t ive  proteins on polyacrylamide

gels was shown by Davis (9) to be dependent on the charge and s ize  o f

the molecules. The binding of dodecyl s u l fa te  ions to  proteins confers

a large net negative  charge to these molecules which al lows a l l  SDS-

proteins to migrate as anions (42,  5 0 ) .  Shapiro, jet (42) reported 

tha t  because o f  the large net an ion ic  charge the m igrat ion  of  SDS-pro- 

t e in  complexes is s o le ly  a function of  t h e i r  molecular weight.  In 

experiments using SDS to determine the subunit molecular weight o f  

phenylalanine ammonia-lyase, standards of  known subunit  molecular  

weight and the experimental molecules were trea ted  as described below. 

The subunit molecular  weights o f  the standards were p lo t ted  lo g a r i t h ­

m ica l ly  versus t h e i r  m o b i l i ty  towards the anode a f t e r  disc gel e le c t r o ­

phoresis. The re s u l ta n t  graph described a l in e a r  re la t io n s h ip  which 

was used to in t e r p r e t  the m o b i l i ty  o f  phenylalanine ammonia-lyase 

subunits in terms o f  t h e i r  molecular weight .
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Preparat ion of  Prote in  Solutions  

The prote ins  were incubated a t  37° fo r  2-3 hr in 50 mM NaPO* 

b u f f e r ,  pH 7*0,  1% in SDS and ] %  in mercaptoethanol. Prote in  concen­

t ra t io n s  were between 0 .4  and 0 .6  mg per ml. A f t e r  incubation the 

prote in  solut ions  were dialyzed fo r  several  hours against 500 ml of  

10 mM NaPO  ̂ b u f f e r ,  pH 7 -0  containing 0.1% SDS and 0.1% mercaptoethanol.

Preparat ion and Electrophoresis  of Gels 

The gel b u f f e r  contained 7.8 g NaHgPO^'HgO, 38.6 g of NOgHPO '̂ 

7HgO, 2 .0  g of  SDS per l i t e r .  Gels contained 10% acrylamide.  A l l  

other steps in the preparat ion of  the gels were performed as described 

by Weber and Osborn (50 ) .

E lectrophoresis  was performed f o r  6 hr a t  a constant current  

of 8 mi l l iampere  per gel w ith  the p o s i t i v e  e lectrode in the lower 

chamber.

Sta in ing and Destain ing  

Gels were stained fo r  6 hr in a 1% Amido-black so lu t io n ,  and 

destained in a 7>5% g la c ia l  a c e t ic  acid so lu t ion .

I n h ib i t io n  Studies  

Michael is constants (K^) and in h i b i t i o n  constants (K . )  were 

determined by performing dup l ica te  assays a t  a l l  concentrat ions of  

e i t h e r  L-phenylalanine or L- tyros ine  te s ted .  This data was p lo t te d  on 

a Lineweaver-Burk p lo t  (51 ) .  Figure 2 i l l u s t r a t e s  a typ ica l  Lineweaver- 

Burk p lo t  fo r  L-phenylalanine  and L-phenyla lanine  plus two leve ls  o f  a 

compet it ive  i n h i b i t o r ,  cinnamic acid .  From th is  type of  p lo t  was



Figure 2.  Lineweaver-Burk p lo t  o f  L-phenyla1anine ammonia- 

lyase.  Phenylalanine contro l  ( • )  and two leve ls  o f  cinnamic acid  

(m,o),  a com pet it ive  i n h i b i t o r .
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obtained: (a) the Michael is constant (K^), (b) the maximal v e lo c i ty

(Vmax) of  the enzyme reaction ,  and (c) the in h ib i t io n  constant (K.)  

fo r  the in h ib i to r  tested (51)*

Chemicals

A l l  chemicals used in th is  research pro ject  were o f  reagent 

grade.  U-^^C-cinnamic acid was purchased from Schwartz/Mann. Urease, 

glutamate dehydrogenase, cata lase ,  fumarase and l a c t i c  dehydrogenase 

were purchased from Sigma Chemical Company. Xanthine oxidase was 

obtained from Boehringer.  Disc e lectrophoresis  chemicals were 

purchased from Canalco.

Instruments and Equipment 

Spectrophometric measurements were made on e i t h e r  an automated 

G i l fo rd  240 recording spectrophotometer or a Beckman DU-2. Other 

instruments or equipment used in the process of  th is  research were;

1. Sorva l l  RC2-B re f r ig e r a te d  c en t r i fu g e

2. Beckman-Spinco L-265-B u l t r a c e n t r i fu g e  w i th  a SW 
50 L ro tor

3.  M e t t l e r  H 20 balance

4 .  Corning pH meter model 12

5« Son i f  1er Cel l  D isrupter  model W 185 D Heat Systems

6. Radioactive s t r i p  scanner by Atomic Accessories 
model RSC310

7- High voltage e lectrophoresis  by Savant

8.  Liquid s c i n t i l l a t i o n  spectrometer by Packard

9- Sharpies continuous f low centr i fuge  

10. Canalco disc gel e lectrophoresis  apparatus



CHAPTER I I I  

RESULTS

Presence of Phenylalanine Ammonia-Lyase in Several Yeast S tra ins

Six  s t ra ins  of yeasts and one of ba cter ia  were cu l tu red  on two 

d i f f e r e n t  media (Medium I and I I )  to determine i f  any of these organisms 

contained L-phenylalanine  ammonia-lyase. The organisms were grown for  

2 k ,  48 and 72 hours. At the end of these times the c e l l s  were co l lec ted  

and washed twice with  0.5% KOI and 0.5% NaCl a f t e r  which they were 

disrupted by sonic o s c i l l a t i o n .  This so lu t ion  was centr i fuged and the  

supernatant solut ion was assayed fo r  ty ro s in e  and phenylalanine ammonia- 

lyase a c t i v i t y .  Table 3 shows the r e s u l ts  obtained.  Four of the seven 

organisms cul tured had both pheny la lanine  and tyros ine  ammonia-lyase 

a c t i v i t y .  Two of these four yeasts contained more enzyme a c t i v i t y  than 

the others ,  namely q lu t inus  and Ŝ . pa ra roseus. Because Camm and 

Towers (8 )  reported the existence of  two separate ammonia-lyases fo r  

phenylalanine and ty ro s in e  in the organism S_. roseus, the author 's  

i n i t i a l  o b jec t ive  was to ascer ta in  i f  the yeast S_. para roseus contained  

two separate ammonia-lyases f o r  these amino acids.

Yeast C u l tu re

Phenylalanine ammonia-lyase was obtained from pararoseus 

grown in batch c u l tu re  a t  30° with  a medium of 0.7% Difco malt  e x t r a c t ,  

0.1% Difco yeast e x t r a c t ,  and 0.1% D,L-phenyla lanine  (Medium I I I ) .  The

27
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TABLE 3

TYROSINE AND PHENYLALANINE AMMONIA-LYASE ACTIVITY 
OF VARIOUS ORGANISMS

Organism TAL^
A c t i v i t y

PAL*^
A c t i v i t y

1. Saccharomyces rose) 
(ATCC 10664)

- -

2. Rhodotorula rubra 
(ATCC 9449)

+ +

3. Rhodotorula q lu t inus  rubescens 
(ATCC 6495)

+ +

4.  Sporobolomyces pararoseus 
(ATCC 11386)

+ +

5.  Rhodotorula qlut inus  
(ATCC 15385)

+ +

6. Rhodotorula f lava  
(ATCC 14551)

- -

7. S e r r a t ia  marcesens 
(B acter ia )

^TAL is Tyrosine ammonia-lyase

^PAL is Phenylalanine ammonia-lyase
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organism was i n i t i a l l y  inoculated in 125 ml f l asks  containing approximately  

40-50 ml of medium. A f t e r  18 hr of growth on a rotary shaker, the cu l ture  

was t rans fe rred  to a 1 l i t e r  f l a s k  having 500 ml of the above media.  

Approximately 18 hr l a t e r  th is  f l a s k  was used to inoculate a 20 l i t e r  

carboy containing 15 l i t e r s  of  media with  Antifoam A (Dow-Corning) to 

prevent excess foaming. The carboys were aerated with compressed a i r .

Under these conditions maximum phenylalanine ammonia-lyase a c t i v i t y  

occurred during the la t e  logarithmic phase of  growth which corresponded 

to  29 hr a f t e r  inocula t ion .  The yeast c e l l s  (336 g from 5 carboys) were 

c o l le c te d  wi th a Sharpies continuous f low cen t r i fu g e ,  washed w i th  1.5 1 

of 0.5% NaCl-0.5% KOI and frozen.

P u r i f i c a t io n  of  Phenylalanine Ammonia-lyase

Step 1. Crude Enzyme 

Table 4 summarizes a typ ica l  enzyme p u r i f i c a t io n .  AM operations  

were performed a t  0 -5 °  except where otherwise s t ip u la ted .  The washed 

c e l l s  were suspended with  600 ml of 50 mM T r i s  HCl, pH 8 .5 .  Th is  mixture 

was divided into  two 450 ml a l iq u o ts  and each was sonicated w i th  a 

Branson model W-185-w s o n i f i e r  fo r  one and one-ha l f  hours a t  maximum 

power, generating a temperature of  12"\ The solut ions were then 

centr i fuged  a t  19,600 x g f o r  10 min, and the supernatant solut ions  

(900 ml ) reta i ned.

Step 2. Treatment with  Protamine Su l fa te  

One ml of 5% protamine s u l fa te  suspension (Calbiochem) pH 8,5  

(adjusted with  NHJOH) was added to the Step 1 supernatant so lu t ion  fo r  

every 200 mg of prote in  present as measured spectrophotometrical ly (49 ) .



TABLE 4

PURIFICATION PROCEDURE FOR PHENYLALANINE AMMONIA-LYASE
FROM Ŝ . pa ra roseus

P u r i f i c a t i o n  Step Volume ml Tota l  mg 
pro te in

Tota l  enzyme 
uni ts

Spec i f i c  Act i v i t y  
(Enzyme units/mg prote in]

1. Crude enzyme
sonicate  900

2. Protamine s u l f a t e  
supernatant 920

3- Ammon>um s u l f a t e
f r a c t i o n a t io n  45

4 .  Sodium c i t r a t e
f r a c t i o n a t io n  20

5* 30% ammonium
s u l f a t e  s a tu ra t io n  8

6. G-200 Sephadex 80

7" Third  ammonium
s u l f a t e  f r a c t io n a t io n  10

46, 700

17,450

2,923

892

328

61

45

126

227

134

92

70

72

59

0.003

0.013

0.046

0.103

0.213  

1 . 180

1 . 3 1 0

VjJo
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The p r o t e i n-protamîne s u l fa t e  mixture was s t i r r e d  fo r  1 hr and then 

centr i fuged a t  19,600 x g fo r  10 min. The p e l l e t  was discarded.

Step 3* Ammonium S u l fa te  Fract ionat ion  

Ammonium s u l fa t e  (46 g, 7% (NH^Ïg SO  ̂ s a tu ra t io n )  was added to 

the prote in  so lut ion  (920 ml) and s t i r r e d  f o r  20 min. The mixture was 

then centr i fuged a t  19,600 x g f o r  10 min. The p r e c i p i t a t e  was dissolved  

in a minimum amount of 50 mM T r i s  HCl, pH 8.5« The supernatant solut ion  

was brought to 14% saturat ion  w i th  46 g (NH^)gS04 . S im i la r  (NH^)gSO^ 

addi t ions were continued u n t i l  a l l  the enzyme a c t i v i t y  was present in 

the redissolved p re c ip i ta te s .  Phenylalanine ammonia-lyase p re c ip i ta te d  

between 21 and 28% (NH^)gSO^ s a t u ra t io n .  The most a c t iv e  f ra c t io n s  were 

pooled (45 ml) .

Step 4o Sodium C i t r a t e  Fract ionat ion  

The same procedure was employed fo r  sodium c i t r a t e  f r a c t io n a t io n  

as described fo r  the (NH*)gS04 f r a c t io n a t io n .  With sodium c i t r a t e  

phenylalanine ammonia-lyase p r e c ip i t a t e d  when 25-35  g o f  s a l t  per 100 ml 

of solut ion had been added.

Step 5» Second Ammonium S u l fa te  P r e c ip i t a t io n  

A second ammonium s u l f a t e  f ra c t io n a t io n  a t  30% sa tura t ion  (35 g 

s a l t / 1 0 0  ml so lu t ion )  served to concentrate  phenyla lanine ammonia-lyase 

p r io r  to G-200 Sephadex chromatography.

Step 6. G-200 Sephadex Chromatography

The a c t iv e  phenylalanine ammonia-lyase (8 .0  ml) was applied to  

a column (3 x 100 cm) of G-200 Sephadex which was e q u i l ib r a te d  wi th  

50 mM T r is  HCl, pH 8 .5 .  Fract ions (8 ml) were c o l le c te d  every 16 min.
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The enzyme was associated with the f i r s t  major prote in  peak to be e lu ted .  

Those f ra c t ions  which contained a s p e c i f ic  a c t i v i t y  greater  than 0.5  

units/mg were combined (80 ml) .

Step 7 . Thi rd  Ammonium S u l f a t e  P re c ip i ta t io n  

Phenylalanine ammonia-lyase p r e c ip i ta te d  between I 8 and 22% 

s a tu ra t io n  with  ammonium s u l fa te  during a t h i r d  ammonium s u l f a t e  f r a c ­

t io n a t io n .  The most a c t iv e  f rac t ions  were dialyzed against 50 mM T r is  

HCl, pH 8.5  and stored a t  -1 5 ° .

Polyacrylamide Disc Gel Electrophoresis  

Gel e lec trophores is  was performed as described in " M a te r ia ls  

and Methods" chapter.  The polyacrylamide gels were subjected to  3 .0  

mamp/tube u n t i l  the bromphenol blue dye marker reached the terminal  

port ion  of  the ge l .  Figure 3 shows the e le c t ro p h o re t ic  pa t te rns  of  

p u r i f i e d  phenyla lanine ammonia-lyase. The polyacrylamide gels were 

run in d up l ica te ,  one gel being s l ic e d  and eluted in O.5  ml of  50 mM 

T r i s  HCl, pH 8 .5  b u f f e r  and the other s ta ined with  1% Amido black .  

Phenylalanine ammonia-lyase a c t i v i t y  corresponded wi th  the intense  

sta ined prote in  band and with a smaller band a t  the top of the ge l .

The smaller band may be an aggregate form of phenylalanine ammonia-lyase.

Tyrosine Ammonia-Lvase A c t i v i t y  in S. pararoseus 

Camm and Towers (8)  have postu la ted that roseus contains  

two ammonia-lyases, one deaminating phenyla lanine and the other  ty ros ine .  

An experiment was performed in which a l l  but the las t  step in the p u r i f ­

ica t io n  procedure ou t l ined  fo r  phenyla lanine ammonia-lyase was carr ied  

out .  During the p u r i f i c a t i o n  the a c t i v i t y  o f  phenylalanine ammonia-
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Figure 3- Disc gel e lectrophores is  o f  L-phenylalanine  

ammonia-lyase. Gel (A) contains 93ng and Gel (B) 46pg of p u r i f i e d  

enzyme having a s p e c i f ic  a c t i v i t y  of  I . 3 I units/mg. The gels were run 

a t  3 -0  mamp/tube fo r  3*0 hr,  a t  which time the bromphenol blue marker 

had reached the bottom.
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lyase and tyros ine  ammonia-lyase was monitored spectrophotometrical ly .

The r a t i o  o f  enzyme a c t i v i t i e s  was recorded fo r  each of these steps.

Table 5 l i s t s  the data from th is  experiment.

As shows in Table 5 there  is a large t rans ien t  increase of  

phenyla lanine  and tyrosine  ammonia-lyase a c t i v i t y  fo l lowing protamine 

s u l f a t e  treatment.  This increased a c t i v i t y ,  which invar iab ly  occurs 

during th is  step is lost  during the subsequent p u r i f i c a t i o n .  Tyrosine  

ammonia-lyase a c t i v i t y  appears to  be increased more than the phenylalanine  

ammonia-lyase a c t i v i t y  re su l t ing  in a decrease in the phenylalanine to  

ty ros ine  ammonia-lyase r a t io .  Both enzyme a c t i v i t i e s ,  however, p re c ip ­

i t a t e d  in the same f ra c t io n s  during ammonium s u l fa te  and sodium c i t r a t e  

f r a c t io n a t io n s .  The enzyme u n i t  ra t ios  of phenylalanine to  tyros ine  

ammonia-lyase were approximately the same fo r  the major and minor 

f r a c t io n s .  This indicated th a t  both enzymes p r e c ip i t a t e  a t  the same 

poin t  during these s a l t  f r a c t io n a t io n s .

Figure 4 shows the e lu t io n  patterns  of phenylalanine and 

ty ros ine  ammonia-lyase from G-200 Sephadex (3 x 100 cm). A f t e r  chroma­

tography the deaminating a c t i v i t y  peaks f o r  tyros ine  ammonia-lyase and 

phenyla lanine  ammonia-lyase coinc ided,  66.7% of the phenylalanine  

ammonia-lyase a c t i v i t y  and 4g.0% of the ty ros ine  ammonia-lyase was 

recovered.  The s pec i f ic  enzyme a c t i v i t y  fo r  phenylalanine ammonia-lyase 

a f t e r  the G-200 Sephadex f ra c t io n s  were pooled was 0.934 units/mg p ro te in .  

The r a t i o  o f  phenylalanine to  ty ros ine  ammonia-lyase units  again was of  

a magnitude which indicated that  there  was l i t t l e  i f  any separation of  

these a c t i v i t i e s .  To fu r th e r  a sce r ta in  whether ty ros ine ammonia-lyase 

a c t i v i t y  could be separated from phenylalanine ammonia-lyase a c t i v i t y
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TABLE 5

PURIFICATION OF PHENYLALANINE AND TYROSINE 
AMMONlA-LYASES FROM S. pararoseus

Step Total Total Rat io  uni ts

enzyme enzyme phe /  t y r

un its  PAL^ units TAL^ ammonia-lyase

1. Crude enzyme 
sonicate

12.4 2.95 4 .2 0

2. Protamine s u l fa t e  
(1 ml 5%/200 mg 

prote i n)

16.95 8.11 2 .09

3 . Ammonium s u l fa te  
f ra c t io n a t io n

22% saturat ion 10.70 2.10 5 .10

26% saturat ion 1.48 0.30 4 .9 7

k .  Sodium c i t r a t e  
f ra c t io n a t io n

15-0% saturat ion 0.594 0.139 4 .27

18. 7% saturat ion 5.98 1.29 4 .64

5 . G-200 Sephadex 
chromatography

Tube 35 0.077 0.012 6 .40

40 0.179 0.030 5 .96

45 0.265 0.043 6 .19

46 0.276 0.044 6.21

47 0.270 0.041 6.61

50 0.214 0.034 6 .36

55 0.088 0.014 6.08

Total  combined 
above f ract ions 3 .99 0.632 6.31

PAL is phenylalanine ammonia-lyase

TAL^ is tyrosine ammonia-lyase



Figure k .  E lu t io n  p r o f i l e  f o r  phenyla lan ine and tyros ine  

ammonia-lyase in 50 mM T r is  HCl b u f f e r ,  pH 8 .5 ,  on G-200 Sephadex 

(3 X 100 cm) (o-o phenyla lanine ammonia- lyase),  (a-A ty ros ine  ammonia- 

lyase X  5 ) .



RELATIVE ENZYME ACTIVITY

ro O i

a
o

2£



3 9

the p u r i f i e d  enzymes was subjected to disc gel e lec trophores is .  Figure 5 

shows the resul ts  obtained when dupl ica te  gels were run, one gel being 

cut in to  1 mm s l ic es  and e luted with  0.5 ml o f  50 mM T r is  HCl b u f fe r ,  

pH 8 .5 ,  w h i le  the other gel was stained wi th 1% Ami do black .  Enzyme 

assays w i th  both substrates revealed only one a c t i v i t y  peak fo r  each 

and these peaks were again super imposable. The stained gel revealed  

one major prote in  band which corresponded in migrat ion to the enzyme 

a c t i v i t i e s .  Several media were subst i tuted fo r  the one described e a r l i e r ,  

in an attempt to induce ty ros ine  ammonia-lyase. In two cases 1% L- 

ty ros ine  replaced 1% D,L-phenylalanine and in one of these, s a l ts  (48)  

replaced malt and yeast e x t r a c t .  When tyrosine  and s a l ts  were used as 

the growth medium the re su l tan t  enzyme, p u r i f i e d  as before ,  gave a r a t i o  

of phenylalanine to  tyros ine ammonia-lyase units  o f  6 . 2 .  Under no 

condit ions could a tyros ine  s p ec i f ic  ammonia-lyase be detected in th is  

yeast.

Spectrum of Pur i f ied  Enzyme 

A spectrum of p u r i f i e d  phenylalanine ammonia-lyase was obtained 

from 240 nm to  500 nm a t  an enzyme concentration of  4 .75  mg/ml (s p e c i f ic  

a c t i v i t y  1.18)  in 50 mM T r is  HCl, pH 8 .5 .  No s ig n i f ic a n t  spectra l  char­

a c t e r i s t i c s  were observed other than an absorption peak a t  280 nm 

c h a r a c t e r is t i c  of  c e r ta in  aromatic amino acids .  Tay lo r  and Jenkins (46)  

have shown that protein-bound pyridoxal  phosphate has s ig n i f ic a n t  

absorption in the u l t r a v i o l e t  region (300-400 nm). Phenylalanine ammonia- 

lyase exh ib i ted  no s ig n i f ic a n t  absorption in the 300-400 nm region 

making the presence of protein-bound pyridoxal  phosphate u n l ik e ly .



Figure 5» Disc gel e lec t rophore s is  o f  4 2 .5  pg of  p u r i f i e d  

phenylalanine ammonia-lyase, s p e c i f i c  a c t i v i t y  0 .934 .  E lectrophoresis  

was a t  pH 8 . 9 ,  3 hr and 3 mamp/tube. One gel was s l ic e d  in to  1mm
-P-

pieces,  e lu ted  w i th  b u f f e r  and assayed fo r  ammonia-lyase a c t i v i t y .  A 

du p l ica te  gel was s ta ined w i th  1% Amido b lack  (a t  bottom) (0 -0  phenyl­

a lan ine  ammonia-lyase) (a -A ty ros ine  ammonia-lyase x 5 ) .
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Molecular Weight Determination  

The molecular weight of phenylalanine ammonia-lyase was estimated  

by both gel f i l t r a t i o n  with  c a l ib r a t e d  Sephadex G-200 columns and 

sedimentat ion on sucrose gradients  using enzymes of known molecular  

weights as standards.  When Sephadex e lu t io n  volumes of the major 

a c t i v i t y  peaks were p lo t te d  versus molecular weights by the method of 

Andrews (1)  (F ig .  6 ) ,  the molecular weight of  phenylalanine ammonia-lyase 

was estimated to be 300,000,  th is  being the average of resul ts  obtained  

from three  such experiments.  Three sucrose density  gradient c e n t r i f u g a t io n  

experiments were performed where the ra te  of sedimentation of phenylalanine  

ammonia-lyase was compared to tha t  of ca ta la se ,  fumarase, or xanthine  

oxidase.  Based on the r e l a t i v e  enzyme sedimentat ion rates and applying  

the assumptions of Mart in  and Ames (3 2 ) ,  [described in "Mater ia l  and 

Methods" Chapter]  the molecular weight of  phenyla lanine ammonia-lyase 

was estimated to be 275,000 w i th  a sedimentat ion c o e f f i c i e n t  of  11.70S,  

these f igures  being the average of th ree  such experiments.  (F igure  7 

shows the enzyme p r o f i l e s  f o r  a typ ica l  c e n t r i fu g a l  run. )

Subuni ts

Two experiments were performed to determine the number and size

of subunits present in L-phenylalanine ammonia-lyase from Ŝ . pararoseus.

In the f i r s t  experiment the methods of Weber and Osborn (50) and Shapiro

e t £]_. (42)  were fo l lowed.  B r i e f l y  they consisted of:

1. Incubation of  p ro te in  samples f o r  2-3 hr in
1% sodium dodecyl s u l f a t e  (SDS) and 1% mercapto-  
ethanol in 50 mM sodium phosphate b u f fe r ,  pH 7 .0 .

2. D ia ly s is  of  p ro te in  samples in 500 ml of 10 mM 
NaPO^ b u f f e r ,  pH 7*0 conta in ing 0.1% SDS and 0.1% 
mercaptoethanol.



Figure 6.  Logarithmic p lo t  by the method of Andrews (1)  

of  Sephadex e lu t i o n  volumes against molecular weight f o r  l a c t i c  

dehydrogenase (LDH), fumarase (Fum), c a ta lase  (C a t ) ,  phenyla lanine  

ammonia-lyase (PAL), glutamate dehydrogenase (GDH), and urease (U).
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Figure 7* Sucrose dens i ty  grad ien t  p r o f i l e  a f t e r  

f r a c t i o n a t io n  showing L-phenyla lanine ammonia-lyase a c t i v i t y  (PAL,o),
vjn

c ata la se  a c t i v i t y  ( C a t , # ) ,  and o p t ic a l  densi ty  a t  590 nm (measuring 

bromphenol blue,  • ) .
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3- Disc e lectrophoresis  a t  8 mamp/tube fo r  6 hr on 
10% crossl inked polyacrylamide gels.

4 .  Gel s ta in ing  in 1% Amido-Schwartz fo r  6 hr -  
destain ing wi th 7*5% g la c ia l  ace t ic  acid .

In th is  p a r t i c u l a r  experiment four  prote ins  were subjected to  

electrophores is  on separate ge ls .  Table 6 shows the prote ins u t i l i z e d  

and the distance o f  migrat ion f o r  these SDS-protein complexes. Unlike  

the resul ts  of  published procedures more than one band was observed fo r  

each prote in  a f t e r  e lec trophores is  in SDS. I t  is not c le a r  a t  th is  time  

why m ul t ip le  bands were observed, although dimer formation or other  

m u l t ip le  forms of enzyme were most probably present.  Fig.  8 shows a 

semi- logar i thmic  p lo t  of  molecular weight versus the distance of  

migrat ion fo r  the SDS-subunits. The standards used and t h e i r  nominal 

molecular weights were: carbonic anhydrase (3 0 ,0 0 0 ) ,  bovine serum

albumin (68 ,0 0 0 ) ,  and bovine serum albumin dimer (136 ,000 ) .  The 

experimental  data,  when p lo t ted  as described above, produced a s t r a ig h t  

l in e  which is consis tent  with published f ind ings (4 2 ,5 0 ) .  Four SDS- 

prote in  bands were observed fo r  phenylalanine ammonia-lyase (Table 6 ) .  

When these distances were compared to  the standard curve four molecular  

weight values were determined. They were: (A) 7 2 ,0 0 0 - /4 ,0 0 0 ,  (B) 83,500 ,

(C) 92 , 500 , and (D) 142,000.  The 72 ,000-74 ,000  molecular weight species  

( the  most predominant form present)  probably represents the monomeric 

species of th is  enzyme and the 142,000 species,  a dimer. The 83,500  

and 82,500  species a re  not i d e n t i f i a b l e .  They could be a r t i f a c t s  or 

im pur i t ies .  Thus, there  may be more than one type of  enzyme subunit ,  

the most abundant has a molecular weight of  72,000 to 74,000.  Four

72,000 to 74,000  subunits would give a molecular weight of  288,000 to
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TABLE 6

DISC ELECTROPHORESI
AND

IS OF PHENYLALANINE 
STANDARDS IN SDS

AMMONIA-LYASE

Protei  n Pg of  
ProteIn

distance of  migrat ion cm: 
major band minor band

1. PAL^ 200 2.15  -  2 .20 1.92,  1.72,  0.89

2. BSA^ 200 2 .3  -  2 .4 0 .9  -  1.1

3. CA'^ 110 3.85 -  3 -90 1.75 -  1.90

^PAL is phenylalanine ammonia-lyase 

^BSA is bovine serum albumin 

^CA is carbonic anhydrase
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Figure 8. Migrat ion o f  sodium dodecyl s u l fa t e - p r o te in s  as 

a function  of  t h e i r  molecular weight.  A semi- logar i thmic  p lo t  o f  

molecular weight versus the distance of  migrat ion  in cm fo r  SDS- 

subuni ts was constructed from data obtained from three  standards:  

carbonic anhydrase (MW = 30,000 ,  CA); bovine serum albumin (MW = 68,000,  

BSA); and bovine serum albumin dimer (MW = 136,000,  BSA Dimer) a f t e r  

polyacrylamide disc gel e lectrophoresis  a t  8 mamp/tube fo r  6 h r ,  a f t e r  

which the gels were stained in 1% Amido b lack  fo r  6 hr and destained  

in 7.5% g la c ia l  a c e t ic  ac id .  The d is tance  o f  migrat ion from the  

top o f  the gel was determined for  each sta ined prote in  band.
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296,000,  which is consistent  wi th the native enzyme's molecular weight.

The second type of experiment employed to determine the 

molecular weight of L-phenylalanine ammonia-lyase subunits was sucrose 

density gradient c e n t r i fu g a t io n .  Gradients were prepared as they were 

f o r  the molecular weight determination of na t ive  enzyme and also with  

the addi t ion  of 0.1% SDS and 0.1% mercaptoethanol. A quant i ty  of enzyme 

was inactiva ted  wi th ^'^C-NaCN. An a l iquot  of ^“̂ C-enzyme was trea ted  as 

mentioned before fo r  a p p l ic a t io n  to disc e lec trophores is  gels.  Two 

5-20% l in e a r  sucrose gradients  were prepared, the f i r s t  containing  

n a t ive  enzyme plus an a l iq u o t  of inactivated ^^C-enzyme. The second 

gradient contained 0.1% SDS and 0.1% mercaptoethanol plus ^^C-enzyme 

t rea ted  wi th SDS. The gradients  were cent r i fuged in a SW50L rotor  

with  a Beckman-Spinco L-265-B u l t ra c e n t r i fu g e  fo r  15*5 hr a t  5 °  and 

90,972  X g. A f t e r  c e n t r i fu g a t io n  the gradients were f rac t iona ted  and 

analyzed fo r  r a d io a c t i v i t y  and enzyme a c t i v i t y .  In the gradient containing  

no SDS or mercaptoethanol a s ingle  symmetrical enzyme a c t i v i t y  peak was 

observed which was super imposable upon the peak of  r a d io a c t i v i t y .  The 

gradient containing 0.1% SDS and 0.1% mercaptoethanol contained no L- 

phenylalanine ammonia-lyase a c t i v i t y  due to d issoc ia t ion  of the enzyme 

in to  subunits,  but did contain a single symmetrical ra d io a c t i v i t y  peak. 

Using the assumptions of  Mart in  and Ames (32) the molecular weight of  

the species in SDS was estimated using L-phenylalanine ammonia-lyase a t

275,000 as the standard.  The ^^C-SDS species was found to have an 

estimated molecular weight of 70,000.  Four of these subunits would 

give a molecular weight of approximately 280,000.

The second technique employed for  the determination of  subunit
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molecular weight has several  advantages over the polyacrylamide disc 

gel e lectrophores is  method. F i r s t ,  the only subunits detected by the  

sucrose density gradient technique would be those containing the a c t iv e  

s i t e  o f  phenylalanine ammonia-lyase. This is t ru e  because ^^C-NaCN 

reacts exc lus ive ly  with the a c t iv e  s i t e  located dehydroalanine moiety 

(described in d e ta i l  in th is  Chapter under E f fec ts  of  Carbonyl In a c t i v a t in g  

Reagents) . Second, impur i t ies  reduced to monomeric form by SDS would 

not enter  in to  the resul ts  obtained as they would not contain a ra d io ac t iv e  

l ab e l .  The obvious question posed by th is  experiment is whether or not 

a l l  subunits of  phenylalanine ammonia-lyase conta in an ac t iv e  s i t e ,  since  

only those containing an a c t i v e  s i t e  would contain r a d io a c t i v i t y .  I t  

seems most l i k e l y  that phenyla lan ine ammonia-lyase from S_. pa raroseus 

is not an a l l o s t e r i c  enzyme due to the fa c t  tha t  the enzyme contains  

only one s ize  o f  subunit and has a H i l l  c o e f f i c i e n t  of  1.0 which is 

in d ic a t i v e  of an enzyme having non- in te rac t in g  a c t iv e  s i tes .

Substrate  S p e c i f i c i t y  of  L-Phenvlalanine Ammonia-Lvase 

Phenylalanine and ty ros ine  are  deaminated by L-phenylalanine  

ammonia-lyase. Table 7 shows a comparison of the Rhodotorula g lu t inus  

enzyme and the Sporobolomvces pararoseus enzyme as regards t h e i r  Michael  is 

constants (K^) fo r  these two substrates.  The Vmax fo r  L-phenylalanine  

and L - ty ro s in e  are  1.17 and 0.33 nmoles/min/unit  respect ive ly .

I n h i b i t i o n  Studies  

In an attempt to de f in e  the substrate binding c h a ra c te r is t ic s  

of phenyla lanine  ammonia-lyase, several  substrate  analogs were tested  

an in h ib i to r s  of L-phenylalanine deamination and t h e i r  inh ib i to ry  

constants were g raph ica l ly  est imated (Table 8 ) .  Of the compounds tested
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TABLE 7

SUBSTRATE SPECIFICITY OF PHENYLALANINE AMMONIA-LYASE 
FROM Rh. glut inus AND S. pararoseus

Substrate glut inus^ S_. pararoseus
Km (|j,M) Km (fiM)

1. L-pheny1-
a lan i  ne 250 300

2. L- tyros ine 150 85

^Hodgins (26),
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TABLE 8

INHIBITORY CHARACTERISTICS OF VARIOUS 
SUBSTRATE ANALOGS

Inh ib i tory
Rh. g lu t inus '  

KÎ (mM)
pararoseus Type of
Ki (mM) In h ib i t i o n

2-OH-Cinnamic acid 0.027 0.0046 Competi t i v e

Cinnamic acid 0.026 0.018 Compet i t i v e

L -P -Pheny i lac t ic  
ac i d 1.02 0.953 Compet i t i v e

Glycine -  ——— 2.12 Compet i t i v e

Benzyl Alcohol 25.5 Competit ive

Phenyl p ro p io l ic  
aci  d - - - - 0.56

Non-
Competi t i v e

Phenol 2.79 Non-
Compet i t i v e

G lyco l ic  ac id - - - - 242.0 Non-
Competit ive

Alanine o O None

Phenethylamine o a None

Leucine - - - - O O None

! sol sue:ne 0£> None

Val ine - - - - None

Hodgins (2 6 ) .
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f i v e  were found to be e f f e c t i v e  competit ive in h ib i t o r s ,  three exhib ited  

non-competit ive patterns and f i v e  had no e f f e c t .  Also shown on th is  

table  are three compet it ive  inh ib i to rs  of the Rhodotorula glut inus  

enzyme with  t h e i r  respective in h ib i to ry  values.  In comparison, the 

in h ib i to rs  have the same r e l a t i v e  e ffec t iveness  wi th e i t h e r  enzyme 

but,  of  the three in h ib i to rs  c i t e d ,  a l l  appear to have more a f f i n i t y  

fo r  the Sporobolomvces pararoseus enzyme than f o r  tha t  from Rhodotorula 

q lu t in u s . Two add i t iona l  competit ive  i n h ib i t o r s ,  benzyl alcohol and 

glycine ,  demonstrate the wide s p e c i f i c i t y  o f  binding exhib i ted by 

phenylalanine ammonia-lyase. Benzyl alcohol presumably mimics the 

aromatic side chain of phenyla lanine and g lyc ine  the a l i p h a t i c  port ion  

of the substrate molecule.  Alanine ,  leucine,  iso leucine,  va l in e  and 

phenethylamine a t  a l l  concentrat ions tested (5 -40 mM) did not i n h i b i t  

the enzyme.

In te r a c t in g  Active S ites  

For enzymes obeying Michael is k in et ics  the saturat ion  o f  any 

a c t iv e  s i t e  does not a f f e c t  the saturat ion of other a c t iv e  s i te s  on 

the same molecule.  On the other hand, regulato ry  enzymes show a 

changing strength of  in te r a c t io n  between a c t iv e  s i tes  as the saturat ion  

of the enzyme is var ied .  A s im p l i f i e d  procedure has been devised to  

q u a l i t a t i v e l y  determine whether or not one is deal ing with a regulatory  

or non-regula tory  enzyme. I t  employs the H i l l  equation which is derived  

from the Michael is-Menten equation (equation 1) by a rearrangement and 

converting to the logar ithmic  form (equation 2 ) :

K = [S l" vmax-l (1 )
V
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V m lx^ i r  = " [S ]  -  log Km (2)

where n is the number of  substrate binding s i tes  and is a measure of  

in te rac t io n  of c a t a l y t i c  s i t e s ,  V is the observed i n i t i a l  v e lo c i t y  of 

the enzyme reaction.  Km is the concentrat ion of substrate giv ing h a l f  

maximal v e lo c i ty ,  S is the substrate concentrat ion,  and Vmax is the 

v e lo c i t y  obtained when a l l  a c t iv e  s i tes  are saturated.  When log [V /

(Vmax -  V ) ]  is p lo t ted  versus log [S] a slope of  1.0 is obtained fo r  

non-regulatory  enzymes; whereas fo r  regulato ry  enzymes the slope is 

greater  than 1.0. When a H i l l  P lot  (51) was constructed from k in e t ic  

data a slope of 0.962 was obtained fo r  the L-phenylalanine ammonia-lyase 

enzyme. This suggests tha t  there is probably no coopérâti v i t y  present  

and the a c t iv e  s i tes  do not in te ra c t .

Effects  o f  Carbonyl in a c t iv a t in g  Reagents

I t  has been previously  shown that phenylalanine ammonia-lyase 

can be inact ivated by borohydride,  b i s u l f i t e ,  and cyanide (2 0 ,2 4 ) .  

Experiments s im i la r  to those of Hodgins (26) were performed to determine  

the s i t e  of a t tack  of  cyanide on th is  phenylalanine ammonia-lyase.  

Approximately 1.7 moles of bound i*C-NaCN were required to t o t a l l y  

in a c t iv a te  one mole of  the enzyme. P r io r  incubation of the enzyme with  

the substrate analog DL-2-hydroxyphenylalanine prevented loss of a c t i v i t y  

due to NaCN treatment.

A quanti ty  of  ^'^CN-inactivated enzyme was prepared. The 

incubation mixture (1 .8  ml) containing 1.5 mg prote in  (1 .8 4  un i ts  of  

enzyme), 0.565 itiM '̂^C-NaCN ( 52.6 mCi per mmole), and 50 mM T r i s  HCl, 

pH 8 .5  was prepared. A f t e r  45 min a t  25° ,  the mixture was extens ive ly
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dia lyzed.  The enzyme had los t 90% of i t s  c a t a l y t i c  a c t i v i t y  and had 

incorporated 1.62 moles of  ^'^C-cyanide per mole of  enzyme.

The ^^C-CN-enzyme was subjected to acid hydrolys is  (6 M HCl 

a t  110° f o r  18 hr ,  in vacuo) and the acid was removed by evaporation  

under p a r t i a l  vacuum. Al iquots  of the hydrolysate  were subjected to  

high vol tage paper e lec trophores is  at  pH 1.9 and 8 . 9  with  appropriate  

standards. Scanning of the high voltage e lectrophoresis  s t r ip s  fo r  

r a d io a c t i v i t y  indicated tha t  70 - 90% of the r a d io a c t i v i t y  present  

comigrated with  L -a spar t ic  a c id .  This f ind ing  is consistent  wi th e a r l i e r  

reports (18 ,26 )  in d ic a t iv e  of  cyanide addi t ion  to an essentia l  dehydro­

a lan ine  moiety a t  the a c t iv e  s i t e  of phenyla lanine ammonia-lyase.

In an attempt to determine the r e l a t i v e  locat ion  of the dehydro­

a lan ine  moiety w i th  respect to  substrate binding,  th ree  compet it ive  

in h ib i to rs  (cinnamic acid ,  benzyl a lcohol ,  and g lyc ine )  were evaluated  

fo r  t h e i r  a b i l i t y  to protect  the enzyme against in a c t iv a t io n  by cyanide.  

Benzyl alcohol and g lycine  presumably mimic the aromat ic and a l i p h a t i c  

port ions of the substrate molecule L-phenylalanine.  F ig .  9 shows the  

resu l ts  obtained when various concentrations of cyanide ranging from 

0 .0  to 3 .2  mM were incubated a t  30° f o r  15 min w i th  and without 5-1 mM 

(2 .4  X K i )  g lyc ine  or 61.25 mM (2 .4  x Ki )  benzyl a lc o h o l .  I n a c t iv a t io n  

by cyanide alone represents the control  which is a l i n e a r  logarithmic  

in a c t iv a t io n  under these condi t ions.  Glycine protected the enzyme 

whereas benzyl alcohol appears to have increased the ra te  of in a c t iv a t io n  

s l i g h t l y .  Cinnamic acid was a lso  capable of  p ro tec t in g  against  

in a c t iv a t io n  by cyanide,  a t  100 pM (5 x K i )  cinnamic ac id  protection  

was 95% complete.
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Figure 9. P ro tection  from NaCN in a c t iv a t io n  by substrate  

analogs. Benzyl a lcohol (61.25 mM, BA, o) o r g lyc ine  (5.1 mM, G ly ,# )  

both a t  2 .4  X Ki were incubated w ith  enzyme and various concentrations  

o f NaCN a t 30° fo r  15 min and assayed fo r  a c t i v i t y .  The NaCN contro l  

( ■ )  lacked substrate  analogs.
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E ffec ts  of Amino A ttack ing  Reagents 

Phenylalanine ammonia-lyase was in ac tiva ted  by t r in it ro b e n z e n e  

s u lfo n ic  acid (TNBS), a reagent capable of a ttack in g  amino groups (1 8 ) .

TNBS was studied as to  i t s  a b i l i t y  to  in a c t iv a te  phenylalanine ammonia- 

lyase in the presence of benzyl alcohol and cinnamic ac id ,  two 

com petit ive  in h ib i to rs .  I t  was not possib le  to  use g lycine  fo r  th is  

eva lu a tio n  because i t  contains an Q-amino group which reacted w ith  TNBS. 

F ig . 10 shows the resu lts  obtained when TNBS and enzyme were incubated 

both w ith  and without e i t h e r  100 pM (5 x K i)  cinnamic acid  or 61.25  mM 

(2 .4  X K i)  benzyl a lco h o l.  Cinnamic ac id  a ffo rded  66% p ro te c t io n  of  

a c t i v i t y  a t  60 min whereas benzyl a lcohol had no e f fe c t .

E ffec ts  of Su lfhydryl A ttack ing  Reagents 

Total in a c t iv a t io n  o f phenyla lanine ammonia-lyase was a t ta in a b le  

w ith  5 ,5 ' - d i t h io b is  (2 -n itro b e n zo ic  a c id )  (DTNB). No level of com petit ive  

in h ib i to r  tested [2 .12  mM (1 x K i)  g lyc in e ; 360 pM (20 x K i)  cinnamic 

a c id ,  or 900 pM (200 x K i)  DL-2-hydroxyphenylalanine] was capable of 

a f fo rd in g  complete p ro tec tio n  from DTNB in a c t iv a t io n  even a t  the minimum 

leve l of DTNB necessary fo r  enzyme in a c t iv a t io n .  DL-2-hydroxyphenyla la n in e  

a t  200 X  Ki gave 25% p ro te c tio n  which was the highest observed.

Enzyme-Ammonia Interm ediate  in Phenylalanine Ammonia-Lvase

i t  has previously  been postu la ted  th a t  the reaction cata lyzed  

by h is t id in e  ammonia-lyase and potato  tuber phenylalanine ammonia-lyase 

proceeds v ia  an enzyme-ammonia interm ediate  (1 8 ,4 0 ) .  Evidence is 

presented ind ica ting  th a t  the yeast phenyla lanine ammonia-lyase catalyzed  

reac tion  may a lso involve an enzyme-ammonia interm ediate . A postulated  

c a t a l y t i c  scheme fo r  the deamination of L-phenylalanine by phenylalanine
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Figure 10. Protection from TNBS in a c t iv a t io n  by substrate  

analogs. Cinnamic acid  (100 |iM, 5 x Ki, • )  and benzyl alcohol (61.25 mM, 

2 .4  X Ki, o) plus 125 iiM TNBS and enzyme were incubated a t  30° in

0 .10  M potassium phosphate, pH 8 .0 ,  fo r  0 to 60 min in a to ta l  volume 

o f 0 .20  ml. The TNBS control ( ■ )  lacked any substrate  analogs. The 

reaction  was stopped by a d i lu t io n  o f 1:14 followed by an assay fo r  

enzyme a c t iv i t y .
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ammonia-lyase is :

(1) E +  P \  [EP — \  ENC]

(2) [EP ^  ENC ]  EN +  C

(3) EN — -  ^ E +  N

where E is enzyme, P is phenyla lan ine , C is cinnamic a c id  and N is

ammonia.

I f  th is  scheme is c o rrec t then any increase in the level of  

phenylalanine up to  a sa tu ra t in g  leve l fo r  the enzyme, would re s u lt  in 

an increase in the  amount of the enzyme-ammonia complex. I t  is  w ith  

these assumptions th a t  the fo l lo w in g  experiment was designed. Three 

lev e ls  of phenyla lan ine  1 /2 , 1 and 2 x Km (0 .4 5 ,  O.90  and 1.8 mM) 

were incubated w ith  0 .10  potassium phosphate b u f fe r ,  pH 6 .8  and 98 pM

cinnamic acid (0 .0 9  mCi/mM) and 0.05 u n its  of enzyme in a volume of 2 .0  ml

fo r  0, 15, 30 , 45 or 60 min a t  30° . At the times ind ica ted  0 .40  ml 

a liq u o ts  o f the incubation were removed and placed in an 80° bath fo r  

10 min, ( s u f f ic i e n t  time to  denature the enzyme). O ptica l density  

readings were made a t  290 nm to  assess the amount o f cinnamic acid formed. 

In a l l  cases less than 10% of the o r ig in a l  phenyla lanine was converted  

to  cinnamic a c id .  High voltage e lec tro p h o res is  (pH 1-9 fo r  3 hr and 

2 ,500  v o l ts )  separated the ^^C-phenylalanine formed from the ^^C-cinnamic 

a c id . The -pheny la lan ine  was e lu te d  from the paper assayed fo r  ra d io ­

a c t i v i t y  and a q u a n t i ta t iv e  phenyla lan ine  determ ination performed. F ig .  11 

shows the ^'^C-phenylalanine formed as a fu nc tion  o f time and phenyla lanine  

concentra tion . F ig .  12 shows the re la t io n s h ip  of ^^C-phenylalanine  

production to  cinnamic acid form ation . We have no exp lanation  a t  th is  

time why the data in F ig . 12 does not e x tra p o la te  through the o r ig in .
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Figure 11. Formation of ^^C-phenylalanine from ^^C-cinnamic 

acid a t  three phenylalanine concentrations; 0.45 mM (1 /2  x Km, • ) ;

0 .9 0  mM (1 X Km, o ) ; and 1.8 mM (2 x Km, g , ) .  The above value fo r  Km 

(0 .9 0  mM) was obtained a t  pH 6 .8  in phosphate b u f fe r .  Incubations  

were a t 30° fo r  0 to 60 min w ith  50 m un its  o f  enzyme, 98 MM cinnamic 

acid (90 pCi/mMole), and phenylalanine in 0 .10  M potassium phosphate 

b u ffe r ,  pH 6 .8  and a volume o f  2 .0  ml.

Deviations from zero were c a lc u la ted  fo r  the three zero  

time points , which averaged about 0.1 nMoles ^^C-phenylalanine. This  

d e v ia t io n  was also expressed in the subsequent time points to estim ate  

the l im its  of d e v ia t io n  in experimental re s u lts .
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Figure 12. The ra te  o f i^C-phenylalanine production as a 

function  of the ra te  o f  cinnamic acid form ation. The rate  o f  

phenylalanine formation was computed from the slopes o f the l in es  in 

Fig . 11. Cinnamic acid concentrations were determined a f t e r  0, 15, 30, 

45 and 60 min o f incubation and the rate o f  formation assessed.
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CHAPTER IV

DISCUSSION

Phenylalanine ammonia-lyase was p u r i f ie d  h S O  fo ld  using the  

described procedure which resu lted  in a s p e c if ic  enzyme a c t i v i t y  o f  1.3  

units/mg p ro te in .  A f te r  p u r i f ic a t io n  the enzyme showed one major p ro te in  

band on disc gel e lec tro p h o res is , a minor slower moving band and tra c e  

im p u r it ies .  When a large  amount of enzyme (100 pg) was used fo r  e le c t r o ­

phoresis, deaminating a c t iv i t y  was a lso  found to  correspond to the l ig h t  

slower moving band seen in F igure 3* This l ig h t e r  band represented only  

a small percentage of the to ta l  phenyla lanine ammonia-lyase a c t i v i t y .

Due to  the consis tent appearance of th is  band and the fa c t  th a t  i t  

apparently  has some phenylalanine ammonia-lyase a c t i v i t y  i t  is possib le  

th a t i t  is an aggregate form of the enzyme as seem w ith  potato  tuber  

phenyla lanine ammonia-lyase ( 19) .

Phenylalanine and ty ro s in e  ammonia-lyase a c t i v i t i e s  in S_. 

pararoseus were not separable by any o f the steps in the p u r i f ic a t io n  

procedure. They gave super imposable a c t i v i t y  peaks during Sephadex 

chromatography and polyacrylamide disc gel e lec tro p h o res is .  Because of  

the in s e p a ra b i l i ty  of these a c t i v i t i e s  i t  is very l i k e ly  tha t a s in g le  

enzyme from Ŝ . pararoseus has b is u b s tra te  a c t i v i t y  fo r  ty ro s in e  and 

phenyla lan ine. Whether phenylalanine or ty ro s in e  was used during yeast  

c u ltu re ,  e s s e n t ia l ly  the same deamination a c t i v i t i e s  were observed.

6 8
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There appears to  be no independent phenyla lanine or ty ros ine  ammonia- 

lyase in th is  yeast when c u ltu red  under our cond itions.

Camm and Towers (8 )  postu la ted  o n  the basis of experiments 

with  a crude enzyme preparation  th a t the enzymes responsible fo r  the 

deamination of tyros ine  and phenyla lanine in S_. roseus were d i f f e r e n t  

p ro te in s .  The data in d ica te  a contrasting  s i tu a t io n  w ith  S_. pararoseus 

in th a t  our purest enzyme deaminates both substra tes . I t  is possib le ,  

however, but u n l ik e ly  th a t  a minor species c a ta ly z in g  so le ly  ty ros ine  

deamination could have been deactivated  during the p u r i f ic a t io n  procedure.

P u r i f ie d  enzyme exh ib ite d  a molecular weight of 300,000 as 

estimated by gel f i l t r a t i o n  w ith  several standards, and 275,000  by 

sucrose density  gradient c e n t r i fu g a t io n .

Disc gel e lec trophores is  of phenyla lanine ammonia-lyase in 0.1% 

SOS and 0.1% mercaptoethanol indicated tha t p u r i f ie d  phenylalanine  

ammonia-lyase contains subunits having a monomer molecular weight between

72,000  and 74 , 000 . S im i la r ly ,  experiments using i *C - in a c t iv a te d  enzyme 

on 5 to  20% sucrose gradients  conta in ing 0.1% mercaptoethanol and 0.1%

SDS resu lted  in a s in g le  monomer of 70,000. Results from the disc gel 

e lec tro p h o res is  experiments suggest tha t there  may be more than one s ize  

of subunit, whereas those from sucrose density  grad ient c e n tr ifu g a t io n  

suggest only a s in g le  s iz e  o f subunit. I f  i t  is assumed th a t aggregation  

in the disc e lec trophores is  is responsible fo r  the m u lt ip le  bands found 

fo r  both standards and phenyla lanine ammonia-lyase and that the monomer 

m olecular weight is 72,000  to  74,000 , four monomers would give a n a t iv e  

enzyme molecular weight o f  286,000 to 296,000. Comparatively, four  

subunits of molecular weight 70,000  would re s u l t  in a n a tive  enzyme
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molecular weight o f 280,000. Both of these figures  a re  consis tent with  

the estimated n a t ive  enzyme molecular weight of 275,000  to 300,000.

Hence phenylalanine ammonia-lyase probably contains four subunits of 

equal molecular weight th is  being from 70,000 to 7^ ,000. S im i la r ly  

Havir and Hanson (21) have reported th a t  phenylalanine ammonia-lyase 

from maize (MW = 306,000) and pota to  tuber (MW = 330,000) contains 4 

id e n t ic a l  subunits of molecular weight of 82,800 and 83,900 re s p ec tive ly .  

Due to  the s im i l a r i t i e s  between these enzymes and the yeast phenylalanine  

ammonia-lyase enzyme i t  is reasonable to te n ta t iv e ly  conclude th a t  the 

analogous resu lts  obtained fo r  the  yeast enzyme are accurate .

The discrepancy between the postulated number of subunits fo r  

phenylalanine ammonia-lyase ( i . e . ,  4) and the amount of ^^C-NaCN necessary 

to  t o t a l l y  in a c t iv a te  the enzyme ( i . e . ,  1.7 moles/mole of enzyme) suggests 

tha t e i t h e r  a l l  the a c t iv e  s i te s  a re  not c a t a ly t i c a l l y  a c t iv e  or that  

there are  not four c a t a ly t ic  subunits . The H i l l  p lo t  in te ra c t iv e  

c o e f f ic ie n t  of 0.962 obtained fo r  the enzyme suggests a non-regulatory  

enzyme w ith  n o n - in te ra c t iv e  a c t iv e  s ite s  and thus, most probably one 

type of subunit. I t  is possib le  th a t  there ex is ts  an in v ivo  mechanism 

fo r  a c t iv a t io n  or in a c t iv a t io n  o f the snzyme via  an a l t e r a t io n  of dehydro­

a la n in e  to  a lan in e  or s er in e . I f  th is  were the case, the number of 

subunits would remain constant, whereas the c a t a ly t ic  a c t i v i t y  might vary. 

In v i t r o  in a c t iv a t io n  of the enzyme a lso  occurs w ithout changes in the 

e lec trophores is  patterns  on polyacrylamide disc ge ls; thus, th is  in a c t i ­

vation  may a lso  be a c t iv e  s i t e  d irec te d . I t  is the b e l ie f  o f  the author 

tha t the enzyme probably contains four subunits of equal s ize  any 

number o f which may e i t h e r  be c a t a ly t i c a l l y  a c t iv e  or in a c t iv e .
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The observation that phenylalanine ammonia-lyase from para­

roseus does not have s ig n i f ic a n t  absorption between 300 nm and 400 nm 

makes the presence of pyridoxal phosphate seem u n l ik e ly .

As w ith  the Rhodotorula q lu tinus enzyme the in a c t iv a t io n  of 

phenylalanine ammonia-lyase from Sporobolomvces pararoseus w ith ra d io ­

a c t iv e  cyanide resu lts  in the formation a f t e r  ac id  hydrolysis of i^C -  

a sp a rt ic  acid which is in d ic a t iv e  of a c a t a ly t i c a 1ly essentia l dehydro­

a lan ine  moiety. Cinnamic acid  and DL-2-hydroxyphenylalanine provided 

p ro tec tion  from cyanide in a c t iv a t io n ,  consistent w ith  the location of 

dehydroalanine a t  the a c t iv e  s i t e  of the enzyme. Borohydride or 

b i s u l f i t e ,  two other carbonyl a tta c k in g  reagents, were a lso found to  be 

capable of in a c t iv a t in g  the enzyme.

Phenylalanine ammonia-lyase was a lso  tots  1 1y nactivated  by 

reagents other than those c ite d  above. TNBS, a r< t which p r im a r i ly  

reacts w ith  amino groups, and DTNB, a reagent which reacts w ith  s u l f -  

hydryl groups, are  both potent in a c t iv a to rs  of the enzyme. In the case 

of both the carbonyl and amino a tta c k in g  reagents, in a c t iv a t io n  was 

prevented by cinnamic ac id . However, no compound tested could a f fo rd  

complete pro tec tion  from DTNB although p a r t ia l  p ro tec tion  was possib le  

w ith  high concentrations of DL-2-hydroxyphenyl a l a n i ne. Experiments 

using cyanide, TNBS or DTNB, as in a c t iv a t in g  reagents and benzyl a lc o h o l,  

glyc ine , cinnamic ac id  or DL-2-hydroxyphenyla l a n i ne as p ro tec ting  agents 

have revealed information as to  the possib le  location  of several esse n tia l  

functional groups a t  the a c t iv e  s i t e .  Two of the com petitive  in h ib i to r s ,  

benzyl a lcohol and g ly c in e , resemble re sp e c tive ly  the aromatic and 

a l ip h a t ic  portions of the substrate  molecule L-phenylalanine; and hence.
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provide information concerning the functiona l groups which they can 

p h y s ic a lly  mask. For instance, p ro tec tion  from cyanide in a c t iv a t io n  

by g lyc in e  but not by benzyl alcohol ind icates  th a t  the c a t a ly t ic a l  ly  

essen tia l  dehydroalanine moiety may be p h y s ic a lly  masked by g lyc in e  and 

thus located adjacent to  the a l ip h a t ic  p o rt io n  o f the bound substrate  

molecule. The s l ig h t  a c c e le ra t io n  of in a c t iv a t io n  produced by benzyl 

alcohol is not understood a t  th is  time. A p o s s ib i l i t y  is that the 

binding of benzyl a lcohol a l t e r s  the conformational arrangement o f the  

enzyme making the dehydroalanine more s e n s it iv e  to  cyanide a t ta c k .

Cinnamic a c id , in a s im i la r  experiment, was found to  prevent cyanide  

in a c t iv a t io n .  Results s im i la r  to  those obtained w ith  Na ON were 

observed fo r  TNBS in the presence of benzyl alcohol and cinnamic a c id ;  

again leading to the te n ta t iv e  conclusion th a t  the c a t a l y t i c a l l y  

essen tia l amino group is  p h y s ic a lly  masked by the binding of the a l ip h a t ic  

p ortion  of the substrate  molecule. However, i t  is a lso  conceivable tha t  

glyc ine  and cinnamic a c id  do not p h y s ic a lly  mask these e ss e n tia l  groups, 

but instead bring about a conformation change in the enzyme which a ffo rds  

p ro tec tio n  from cyanide or TNBS. Because no substrate  analog could com­

p le te ly  p ro tec t against in a c t iv a t io n  by DTNB, i t  is doubtful th a t the  

essen tia l  sulfhydryl group or groups are located such th a t they are  

masked by substrate  analog b inding.

Results analogous to  those of G ivot, e t  a]_. (16) w ith  h is t id in e  

ammonia-lyase have been obtained concerning the in h ib i t io n  of phenyl­

a la n in e  deamination of g lyc in e  and a la n in e . G lycine was a co m p etit ive  

in h ib i to r  (Ki = 2 .12  mM) w h ile  a lan in e  f a i l e d  to in h ib i t  the reaction  

a t  any concentrations te s te d  (< 40 mM). I t  has prev ious ly  been proposed
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fo r  h is t id in e  ammonia-lyase that the conversion of substrate to product 

involves the transform ation of an SP  ̂ to  an SP^ carbon atom and that  

the enzyme f a c i l i t a t e s  th is  reaction  by d is to r t in g  the P-carbon of 

substrate  toward the SPf. geometry. Energy fo r  th is  d is to r t io n  would be 

provided by enzyme-substrate in te ra c t io n  invo lv ing  three binding s i t e s ,  

namely fo r  the carboxyl, amino and aromatic residues. A lan ine, having 

a p-carbon, must be d is to r te d  to bind, but does not have the aromatic  

residue necessary fo r  the c o n tr ib u tio n  of s u f f i c i e n t  binding energy and 

th e re fo re  f a i l s  to  in te ra c t  successfu lly  w ith  the enzyme. G lycine, on 

the other hand, has no P-carbon and th e re fo re  can bind to the enzyme 

without d is to r t io n  (1 6 ,2 8 ) .  In a d d it io n ,  phenyla lanine deamination is  

not in h ib ited  by iso leuc in e , leucine or v a l in e ,  re a f f irm in g  the data 

obtained w ith  a la n in e  and fu r th e r in g  the above hypothesis w ith  phenyl­

a la n in e  ammonia-lyase. Analogous observations were made u t i l i z i n g  

compounds s im i la r  to  the aromatic end of the substrate  molecule. Benzyl 

alcohol (Ki = 25.5  mM) co m p etit ive ly  in h ib i te d  phenylalanine deamination  

w h ile  phenethylamine (< 40 mM) f a i le d  to  have any e f f e c t .  These obser­

vations thus strengthen the hypotheses o f G ivo t , e t  aj_. (16) concerning 

the nature of enzyme substrate  in te ra c t io n s  fo r  h is t id in e  ammonia- 

lyase and extend them to  include phenyla lan ine  ammonia-lyase.

Peterkofsky (40) has postu la ted  the  existence of an enzyme- 

ammonia interm ediate  fo r  h is t id in e  ammonia-lyase based upon the incorp­

o ra t io n  of t r i t iu m  and urocanate in to  h is t id in e  during the deamination 

process. S im i la r ly ,  Havir and Hanson (20) presented evidence to  support 

the enzyme-ammonia interm ediate hypothesis in potato  tuber phenyla lanine  

ammonia-lyase by performing exchange experiments. Results from our
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cinnamate exchange experiments using a constant concentration  o f  ^ *0 -  

cinnamic acid  and three lev e ls  of L-phenylalanine (1 /2 ,  1, and 2 x Km) 

have confirmed the hypotheses tha t phenylalanine ammonia-lyase from 

Sporobolomvces pararoseus a ls o  co n ta ines an enzyme-ammonia in term ediate .  

Based on the assumption th a t  the level of the enzyme-ammonia interm ediate  

increases as the enzyme is sa tura ted , experiments were performed to  

determine i f  the ra te  o f  ra d io a c t iv e  phenylalanine formation from 

i^C-cinnamic acid  was dependent on the r e la t iv e  s a tu ra t io n  o f the enzyme 

w ith  unlabeled pheny la lan ine . Our resu lts  in d ica te  an increase in 

the ra te  of ^^C-phenylalanine formation proportional to  the ra te  of  

substrate  deamination. The breakdown of an enzyme-ammonia interm ediate  

however does not appear to  be a ra te  l im i t in g  step in the reaction  

sequence as cinnamic acid  in h ib i t io n  is s t r i c t l y  com petit ive  thus 

suggesting only one predominate form of enzyme (2 6 ) .  A lso the  

d if fe re n c e  in Vmax fo r  ty ro s in e  and phenylalanine suggest th a t  the 

breadkown of a common enzyme-ammonia interm ediate  is not a r a t e - l im i t in g  

step in the reaction  sequence. Thus, although there  does appear to  

be an enzyme-ammonia in te rm ed ia te  in the phenyla lanine ammonia-lyase 

cata lyzed reaction  which is dependent on the extent of enzyme s a tu ra t io n  

w ith  substra te , th is  in te rm ed ia te  is not a r e la t iv e ly  s ta b le  form of 

enzyme.

As y e t  the exact ro le  of the c a t a ly t i c a l l y  essen tia l  dehydro­

a la n in e ,  amino, and s u lfh y d ry l  groups are  not known. As suggested 

e a r l i e r  fo r  potato  tuber and Rhodotorula q lu tinus phenyla lan ine  ammonia- 

lyase (1 8 ,2 6 ) ,  and fo r  h is t id in e  ammonia-lyase (16) the p-carbon of  

dehydroalanine could be linked  to  the amino group of substrate  thus
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increasing the leaving a b i l i t y  of th is  Q-amino group. The re s u lta n t  

complex formed a f t e r  cinnamate d isso c ia t io n  would be the enzyme- 

ammonia form of enzyme, which would e i t h e r  expel ammonia or form L-  

phenyla lan ine  a f t e r  cinnamic acid  a d d it io n .  The masking of the dehydro­

a lan in e  by g lyc ine  but not benzyl alcohol is a lso  consistent w ith  th is  

hypothesi s.

The suggestion th a t the essen tia l amino group may f a c i l i t a t e  

the binding of substrate (27 ) appears to  be a l i k e ly  function  of th is  

group. I t  is possib le  tha t the binding of g lyc ine  and cinnamic acid  

to  enzyme may be in p a rt  through a charge-charge in te rac t io n  of th e i r  

carboxyl groups and the essentia l amino group a t  the a c t iv e  s i t e  of 

phenyla lan ine  ammonia-lyase. Furthermore, an in tr ig u in g  p o s s ib i l i t y  

is th a t  the essentia l amino group is the cc-amino group of dehydroalanine. 

I f  th is  were the case then the p o s s ib i l i t y  of e i th e r  hydrogen bond 

form ation or a charge-charge in te ra c t io n  could e x is t  between the carboxyl 

o f substra te  and the amino group of dehydroalanine. This in te ra c t io n ,  

in a d d it io n  to th a t  of the substrate  Q-amino group and the P-carbon of 

dehydroalanine, may re s u lt  in a c y c l ic  in term ediate  which could ac t  

as a s t a b i l i z in g  force  fo r  a t ra n s i t io n  s ta te  by r e s t r ic t in g  bond 

ro ta t io n  thus making c a ta ly s is  more probable. As y e t ,  the ro le  of the  

essen tia l  su lfhydry l group or groups has not been estab lished, possib ly  

they a id  in the abstrac tion  o f a proton or protons from the substrate  

molecule, as previously  hypothesized fo r  the Rhodotorula enzyme (2 7 ) .



CHAPTER V 

SUMMARY

L-Phenylalanine ammonia-lyase from Sporobolomvces pararoseus was 

p u r if ie d  more than 4 5 0 - fo ld .  Polyacrylamide disc gel e lectrophores is  of  

th is  p u r i f ie d  enzyme gave a s ing le  major p ro te in  band. Tyrosine ammonia- 

lyase a c t iv i t y  was monitored during the p u r i f ic a t io n  o f phenylalanine  

ammonia-lyase. Deaminating a c t iv i t i e s  s p e c if ic  fo r  phenylalanine and 

tyros ine  were not resolved during the p u r i f ic a t io n  process. I t  was 

concluded th a t phenylalanine ammonia-lyase contains b isubstrate  a c t i v i t y .

The p u r i f ie d  enzyme has a molecular weight between 275,000 and

300,000 as judged by sucrose density  grad ient c e n tr ifu g a t io n  and G-200 

Sephadex chromatography, resp ec tive ly .  Disc gel e lectrophoresis  and 

sucrose density  g rad ien t c e n tr ifu g a t io n  o f  standards and p u r i f ie d  phenyl­

a lan ine ammonia-lyase in sodium dodecyl s u l fa te  and mercaptoethanol 

indicated th a t the enzyme contains four subunits o f  equal molecular weight 

between 70 ,000 -74 ,000 . The enzyme is inactiva ted  by carbonyl, amino, 

and sulfhydryl a t ta c k in g  reagents. Dehydroalanine has been shown to  be 

present a t  the a c t iv e  s i t e  and essentia l fo r  c a ta ly s is .  Protection  

against in a c t iv a t io n  by substrate analogs has revealed the possible a c t ive  

s i t e  lo c a l iz a t io n  o f  the essentia l dehydroalanine and amino group w ith  

respect to  the substrate  molecule.
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