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The detection of environmental violators is critical to the long-term adoption of sustainability in supply

chain management. However, there exist manufacturing facilities that report false environmental monitoring

data, thereby seriously hampering governments efforts to identify true offenders and to properly intervene.

We integrate waste gas data from the worlds largest Continuous Emission Monitoring System (CEMS) with

a publicly available Violation and Punishment Dataset to build prediction models for the identification of

environmental violators. We utilize and create innovative machine learning approaches to overcome analytical

challenges associated with empirical data. First, we use a feature engineering approach to generate features

from the raw, and possibly fraudulent, reporting data. This overcomes the challenges associated with low

fidelity, irregularity, and the presence of extreme values in the raw dataset. Second, while building prediction

models, we develop new approaches to positive and unlabeled learning to overcome the challenges posed by

sparsity and mislabeled data. Our prediction model achieves satisfactory results in a related field test. Our

study develops new techniques for big data analytics, which greatly improve the efficiency and effectiveness in

detection of environmental violators and enhance operational outcomes of environmental protection agencies.

This research is a joint effort between academia and practitioners, as evidenced by the participation of the

Ministry of Ecology and Environment of Peoples Republic of China. The Ministry kindly granted us direct

data access, as well as opportunities to interview Subject Matter Experts at the Ministry, which led to

research insights incorporated in this manuscript. Our research findings have global implications, as CEMS

devices are universally adopted to monitor waste gas emissions.
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1 Introduction

Environmental violation refers to firms operational activities that violate environmental law or

regulation (Karpoff et al. 2005). Some examples include the improper release of waste gas into the

air and the improper treatment of hazardous water. Environmental violations are severe, global,

and widespread. In the United States, the Environmental Protection Agency (EPA) detected a

large number of violations by businesses in 2017, which led to over $2.9 billion in criminal fines

and restitution (EPA 2019). Similarly, there were an increasing number of violations from 2016 to

2018 in Europe (ECR 2019). Environmental violation is more problematic in developing countries

(Da Silva et al. 2017, Roque et al. 2018).

China, as the worlds factory (Plambeck et al. 2012), suffers severely from environmental prob-

lems (Chen 2018), which led to the mandatory installation of the worlds largest Continuous

Emission Monitoring System (CEMS) by manufacturing facilities. Despite governmental efforts,

inspections by the Chinese government have revealed that some manufacturers have systematically

circumvented the monitoring devices and reported false pollutant data, rendering the monitoring

mechanism useless. This falsification of data poses an additional challenge in identifying environ-

mental violators. There is a dire need to find an efficient and effective approach that can work with

low fidelity in reported data and systematically detect environmental violators.

Although this is an important operational problem, it has not been sufficiently researched in

the operations and supply chain management (O&SCM) literature. Recently, researchers have

advocated the use of data-driven analytics to solve challenging O&SCM issues (Choi et al. 2018,

Cui et al. 2018, Guha and Kumar 2018, Sanders and Ganeshan 2018, Shmueli and Yahav 2018).

In the sustainability research space, various scholars point out the need to use big data analytics

in the investigation of complex environmental issues (Singhal et al. 2018, Wang et al. 2016). In

this paper, we respond to these calls by conducting research on the detection of environmental

violators, based on big CEMS data obtained from China. Because CEMS devices are universally

adopted to monitor waste gas emissions, our research findings have global implications. In addition,

we develop and apply innovative tools to overcome challenges associated with empirical datasets.

As such, we also contribute to research in data analytics.

1.1 Research Motivation

The problem with quality of reported data has been a recurrent one. As early as the 1990s, the US

federal authorities found evidence of tampering with the results of environmental tests and ordered

thousands of environmental safety tests conducted between 1994 and 1997 to be repeated (Oppel Jr

2000). What is disconcerting is that in recent years, the number of exposed cases of inaccuracy in
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reported environmental data seems to be increasing. The emissions test scandal stormed through

the automobile manufacturing industry, and auto giants such as Volkswagen (Rhodes 2016, Siano

et al. 2017) and Nissan (Hermanns et al. 2018, Gale 2018) have been found guilty of altering

auto emissions test data in order to bypass environmental regulations. Similarly, Ford is facing a

criminal probe into emissions testing fraud (AN 2019). The inaccuracy of mandatorily reported

environmental data is not isolated to one industry. In April 2019, researchers from Environment

Canada conducted an independent study and found that a number of major oilsands operations

in northern Alberta seem to be emitting significantly more carbon pollution than companies have

been reporting (Dubinsky 2019, p. 1).

The causes of low quality in reported data vary. They certainly include intentional falsification

of the data for profit-driven reasons, as was the case for both Volkswagen and Nissan. Research

shows that when there is a conflict between the objective of a public policy and the internal

efficiency requirements of a firm, the firm may decouple (Meyer and Rowan 1977) its ceremonial

conformity to a public policy from its actual implementation of such a policy (Boxenbaum and

Jonsson 2017). In our research context, the mandatory reporting of environmental data may not be

aligned with the interests of some manufacturing facilities and decoupling may occur in the form

of falsifying reported data. In general, the falsification of data reduces firms necessary investments

in environmental compliance and reduces the operational costs for the offending firms. Besides

intentional abuse in reporting data, low quality may be caused by unintentional negligence with

regard to data, as was the case with oilsands operations in Canada where firms may have reported

inaccurate environmental monitoring data due to incorrect procedures (Dubinsky 2019).

Regardless of the causes, low quality of reported environmental monitoring data can pose severe

threats to the public. Environmental agencies rely on environmental testing data to monitor and

manage manufacturing facilities, and to intervene when necessary. The reporting of low-quality

data misguides governmental decisions and distorts the efficiency and effectiveness of governmental

operations. Furthermore, the damaging effect goes beyond the distortion of governmental oper-

ations. Low quality in reported data conceals the true identify of environmental violators and

harms the triple bottom line of sustainable operations (Hussain et al. 2018). Environmentally, it

endangers public health and the global ecosystems (Lee and Xiao 2020, Mendelssohn et al. 2012).

Socially, environmental violations can be one of the major causes of tension between businesses and

local residents (Calvano 2008). Economically, environmental violations not only weaken a violating

firms financial health and stability by incurring a significant amount of fines and penalties (Xu

et al. 2012, Zou et al. 2015), they also impede fair competition for non-violating firms (Delmas

and Keller 2005), which incur higher costs in order to abide by environmental regulations. It is
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imperative that these violators be detected and caught. This is critical for the long-term adoption

of environment improvement initiatives (Elkington 1998).

Extant research, though it has recognized the damaging effects associated with environmental

violations (Delmas and Keller 2005, Lee and Xiao 2020, Mendelssohn et al. 2012, Zou et al. 2015),

has largely neglected the important topic of mechanisms for detection of environmental violators.

A very limited number of studies on environmental violations take a legal and/or public adminis-

tration perspective, and these are restricted to the creation of laws and regulations to guide firm

behaviors (Karpoff et al. 2005). There are very few (if any) studies that investigate the actual

implementation of these laws or regulations, including finding powerful detection mechanisms to

discover violations in order to efficiently enforce such laws/regulations. Even more rare is research

that can work with a massive amount of raw environmental reporting data, detect anomalies in

reporting, and discover hidden or concealed environmental violators. As a result, such detection

relies heavily on manual inspections to catch cheaters who intentionally manipulate the environ-

mental monitoring devices and/or alter reporting data. Yet sporadic inspections are expensive and

have a low detection rate. The environmental protection agencies can benefit from a more tar-

geted and systematic mechanism to efficiently catch violators. The focus of this study is to develop

such a mechanism. In doing so, we must overcome considerable challenges associated with the raw

empirical dataset by creating and applying new machine learning methods to enable analysis of

the dataset, and to eventually make accurate predictions based on it.

1.2 Research Questions and Contributions

Researchers in data-driven analytics have recognized both the opportunities and the challenges

brought by big data and business analytics (Choi et al. 2018, Corbett 2018, Lee and Xiao 2020,

Sanders and Ganeshan 2018). In the context of environmental research, scholars call for the use

of big data to support effective and efficient decision-making on sustainability issues (Wang et al.

2016). Our research answers these calls and pioneers a data-driven analytics in the context of detec-

tion of environmental violators. Below we present our key research questions and contributions.

We begin by asking our first set of research questions (RQs). RQ (1): Given that pollutant

reduction often works against firms economic interests, how do we know if the environmental-

monitoring data reported by manufacturing firms are of high quality? Can we create a tool that can

be used to measure the quality of reported data? In our research context, we use the term reporting

data quality to denote the level of fidelity (or lack of fidelity) in reported environmental-monitoring

data. Although we recognize that in the generic sense, data quality could mean many things (Dey

and Kumar 2010, 2013), we adopt a narrow definition here to fit our research context. We develop

a reporting data quality assessment framework that is made up of a set of reporting data quality
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indicators, collectively called a reporting data quality index. This index can work with the massive,

often messy (Ozdemir and Susarla 2018), and unreliable nature of raw environmental pollutant

monitoring data, capture its key features, and measure its quality.

The unique contribution of this reporting data quality index goes beyond the detection of inac-

curacy caused by noise in big data. It is capable of detecting low fidelity caused by deliberate

deceptions (Rubin and Lukoianova 2013). This is a major departure from previous research. Specif-

ically, the conventional research typically operates directly on raw data. This is feasible because

it assumes the underlying trustworthiness of the raw data. Even though incomplete, incorrect,

inaccurate, or irrelevant data may exist (Deepa and Chezian 2014), it does not undermine the

fundamental trustworthiness of the dataset. In this regard, researchers are mostly concerned with

deriving efficient algorithms to prewash raw data (Dey and Kumar 2013) before further decision

analysis, such as preprocessing and filtering to avoid obvious irrelevant information (Yin and Kay-

nak 2015, p. 145), and designing algorithms to compute missing data or replacing inaccurate data

(Kumar and Chadrasekaran 2011). None of these techniques would work without the underlying

assumption of overall trustworthiness of the dataset. However, this assumption does not work in

our research context, or in any other research context where attempts have been made to inten-

tionally distort the reported data, such as in the aforementioned cases of Volkswagen or Nissan.

The question then is how not to trust the raw data, yet be able to detect from it reliable clues that

inform us on the quality of reported data.

We accomplish this tall order by utilizing a feature engineering technique. Feature engineering

allows us to make use of domain knowledge to extract features from the raw data for better busi-

ness decision-making (Brownlee 2014, Kumar et al. 2018, 2019). In essence, the feature engineering

technique helps us to extract features, i.e., metadata from CEMS reporting, to generate a report-

ing data quality index. This data quality index measures the fidelity of the reported data and

provides important clues to possible falsification behavior by dishonest environmental violators.

Thus, it affords us the ability to detect data quality problems associated with deliberate deceptions.

Our reporting data quality index is particularly useful in mandatory reporting situations where

there may be conflict of interest between the public administrative offices and private reporting

firms (Marquis and Qian 2014). While we do not claim a theoretical contribution to decoupling

theory, our research findings provide an effective tool to detect the existence of decoupling in an

environmental reporting context.

Our second research question builds on the reporting data quality index and is predictive in

nature. RQ (2): How can we make use of the reporting data quality index and make predictions on

environmental violators? Which predictive model works best? To answer this question, we integrate

the reporting data quality index derived from CEMS data with a publicly available Violation and
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Punishment Dataset (VPD). VPD contains a list of manufacturing facilities that, through manual

inspection, have been found to have violated environmental regulations. Thus, VPD informs us

on the confirmed status of violations. Linking VPD with the data quality index, we can build

prediction models to catch cheaters, i.e., facilities with a high probability of manipulating the

reporting devices and submitting falsified emission data.

Because only a small number of cheaters have been caught by the manual inspection process,

there are two challenges in building predictive models. First, the matrix denoting the status of

the cheaters is sparse. Due to the high cost and the labor-intensive nature associated with manual

inspections, only a small number of violators exist in VPD. Second and relatedly, there also exist

a large number of unidentified true violators. In this study, we develop two new approaches to

positive and unlabeled learning (i.e., PU learning) to overcome these two challenges and improve

the predictive accuracy of our models.

Answers to our second research question make the following contributions. First, we develop an

efficient and accurate prediction model that can be applied to the detection of environmental viola-

tors from CEMS data. Given that CEMS is a popular device adopted by environmental protection

agencies globally for the monitoring of pollutants (ECCC 2020, EPA 2020, Gupta 2019, Zhang

and Schreifels 2011) with market growth projected to reach $4.44 billion by 2025 (Danigelis 2018),

our findings would benefit current as well as future environmental protection efforts worldwide. As

such, we contribute to sustainable operations research in O&SCM by addressing the implemen-

tation side of sustainability enforcement. Second, methodology-wise, we develop new algorithms

that contribute to the analysis of positive and unlabeled data (Li and Liu 2003). These algorithms

are extremely helpful in detecting patterns in an empirical dataset that contains a large amount

of unlabeled data. Third, our research also has significant managerial implications. Our prediction

of offenders fundamentally improves the monitoring and detection mechanism for environmental

protection agencies. The new detection process can potentially lead to substantial cost reduction

and improved detection efficiency.

2 Literature Review

Here, we briefly discuss the literature in the following streams: (a) sustainable operations,

(b) challenges in deriving business insights from big data, and (c) descriptive, predictive, and

prescriptive data analytics. The goal of this section is to not only review existing literature, but

also to highlight our contributions with respect to existing literature. At the end of the section,

we contrast explanatory models and data-driven predictive models, and explicitly ground our

research in the latter stream.
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2.1 Existing Research on Sustainable Operations

Online Appendix 1 summarizes existing research on sustainability and environmental violations.

As Online Appendix 1 shows, although there are an increasing number of publications on environ-

mental sustainability in the O&SCM field (Bernard et al. 2018, Goebel et al. 2018, Hussain et al.

2018, Porteous et al. 2015, Xia et al. 2018), the key focus has been on answering the question of

how to promote sustainability throughout the supply chain, and limited research has also addressed

the possible negative consequences of non-compliance (Xu et al. 2012, 2016, Zou et al. 2015). With

the damaging effects of non-compliance in mind, research has also shed light on the mechanisms

to contain such behaviors (Gray and Shimshack 2011). Besides empirical research summarized in

Online Appendix 1, there are also important review papers that identify new research opportu-

nities (Lee and Tang 2018, Tang 2018), as well as conceptual papers that explain novel concepts

in sustainability (Arenas and Rodrigo 2016, Joglekar et al. 2016, Murray et al. 2017, Nonet et al.

2016, Sodhi 2015).

A careful examination of the existing literature revealed a serious gap. Although past studies have

gained a preliminary understanding of what drives environmental compliance and the importance

of environmental monitoring and enforcement (Gray and Shimshack 2011), there is very little

research on how to effectively operationalize environmental monitoring and enforcement efforts.

Specific to our research context, we are not aware of any research that focuses on the effective

detection of environmental violators. As a result, environmental violation detection operates largely

on an inefficient inspection basis, which results in a low detection ratio and high monitoring costs.

We believe that public policy enforcement can benefit from tools and principles in operations

management research to improve the efficiency of violation detection. Specific to our research, we

borrow tools from big data analytics to improve efficiency in violation detection.

2.2 Challenges in Deriving Business Insights from Big Data

Big data is commonly characterized by four Vs: volume, variety, velocity (Choi et al. 2018, Mishra

et al. 2018, Rozados and Tjahjono 2014), and a somewhat recent addition, veracity (Guha and

Kumar 2018). Among the four characteristics, the first V, volume, is arguably the most defining

feature of big data (Labrinidis and Jagadish 2012).

Volume refers to the large number of observations available for analysis. While volume of

data presents the potential for deriving useful business insights, the transformation is not auto-

matic (Jagadish et al. 2014). As raw data are accumulating at unprecedented rates, they need to be

organized, prepared, and analyzed before business intelligence can be extracted from the data. In

this regard, researchers have observed a growing gap between data and users (Kepner et al. 2014)
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and call for innovative ways to address this challenge. In our research, we take a massive amount

of raw reporting data on environmental monitoring and apply a feature engineering technique to

derive a set of key features of such data. These key features make up the data quality index. This

index measures the fidelity of reported data and is instrumental in data consumers evaluation of

the credibility of reporting firms. More importantly, this reporting data quality index serves as a

good predictor for the detection of environmental violators. Thus, our research helps transform a

massive amount of raw data into meaningful operations management decision insights.

2.3 Descriptive, Predictive, and Prescriptive Data Analytics

Due to the newness of big data analytics in O&SCM, the definitions for some terms are still

evolving. Yet, a common way to describe and distinguish big data analytics is to divide it into

descriptive, predictive, and prescriptive categories. Deka (2016) provides detailed descriptions of

the three terms.

Descriptive analytics is past-oriented. The objective is to analyze historical data in order to

identify patterns. For example, Foster et al. (2018) perform cluster analysis to identify patterns that

impact emergency room physicians’ performance. Li et al. (2016) use inverse covariance estimation

technique to detect operational patterns associated with high performing manufacturing firms.

Predictive analytics also analyzes past data, with the intention to predict future outcomes. For

example, Cui et al. (2018) mine social media data to make predictions on future sales. Similarly,

Boone et al. (2018) use Google trends information to improve sales forecasts. Finally, prescriptive

analytics provides recommendation for future actions. IBM treats prescriptive analytics as the final

phase of big data analytics as it evaluates and determines new ways to operate (Deka 2016).

Online Appendices 2 and 3 summarize research that utilizes big data analytics to solve O&SCM

challenges. The existing O&SCM research on descriptive, predictive, and prescription analytics

typically focuses on one of the elements (Cui et al. 2018, Lau et al. 2018, Li et al. 2020). Very few

studies have touched on all three aspects. One exception is Swaminathan (2018) who describes,

conceptually, how all three types can be used in humanitarian operations. In this paper, we build

on Swaminathan (2018) and illustrate how we operate descriptive, predictive, and prescriptive ana-

lytics on empirical datasets to solve an important environmental enforcement problem. Specifically,

we first utilize descriptive analysis to describe the features of the reporting data. These features are

critical to the detection of environmental violators, as they serve as the inputs to our prediction

models. Second, we build prediction models utilizing recent machine learning techniques. We also

develop new PU learning models to overcome challenges in our empirical datasets and produce the

best-fitting one for the most accurate and efficient detection of environmental violators. Lastly,
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as a part of the validation efforts of our prediction model, we prescribe a new data-driven busi-

ness process to catch environmental violators. This new process achieved satisfactory results in a

related field test. Although our research centers on the prediction model, we have demonstrated

the complete range of descriptive, predictive, and prescriptive elements of big data analytics. As

far as we know, we are the first to do so in research on sustainable operations management.

2.4 Data-Driven Prediction Models vs. Explanatory Models

We take note here that unlike the traditional research mode with a primary focus on building

explanatory models that identify casual relationships among model constructs, a distinctive feature

of data-driven predictive analytics is its focus on prediction (Boone et al. 2018, Cui et al. 2018)

and its application in decision-making. In this regard, the seminal work of Shmueli and Koppius

(2011) provides a detailed explanation of the differences between explanation models and prediction

models in terms of analysis goal, variables of interest, model building optimized function, model

building constraints, and model evaluation. Similarly, Kitchin (2014) echoes the view of Shmueli

and Koppius (2011). In his influential piece on data-driven analytics, Kitchin (2014) treats big

data analytics as disruptive innovations, and therefore calls for a paradigm shift on how research

is done with big data. In line with Boone et al. (2018), Cui et al. (2018), Shmueli and Koppius

(2011), and various other papers published in the two special issues of Production and Operations

Management on Big Data Analytics, our research focus is prediction and its impacts on decision-

making. We do not intend to build explanatory models or to claim casual relationships between

predictors and outcome variables. Thus, we root our study in the general framework of data-driven

analytics. Below we explain our research context.

3 Research Background and Research Data

3.1 Research Background

China has experienced phenomenal development triggered by the economic reform in the late

1970s (Chow 1993, Holz 2008, Singhal and Singhal 2019). As an emerging economy, China initially

formulated a policy that prioritized economic development, which resulted in rapid deterioration

of the environment (Fang et al. 2009), including massive air and water pollution (Ebenstein 2012,

Ji et al. 2014). In recent years, the central government has made strategic decisions to reduce

pollution and improve the environment (Li et al. 2015).

One of the key resolvents to ongoing environmental deterioration in China is the mandatory

installation of CEMS in polluting facilities, following the lead of the United States (Pan et al.

2005, Zhang and Schreifels 2011). CEMS is employed worldwide (ECCC 2020, EPA 2020, Gupta

2019) to directly and continuously monitor, record, and report the emissions measurement and
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operating parameters for required pollutants, such as concentration of emissions and discharge

flow. By the end of 2016, the total number of CEMS installed in China exceeded 29,000. The

installation of CEMS in China covers various industries such as thermal power, iron and steel,

metallurgical, aluminum, chemical, waste-water treatment, and paper-making industries (Tang

et al. 2019). The Ministry of Ecology and Environment of the Peoples Republic of China (MEEC)

mandates pollutant-producing facilities to continuously report pollutant monitoring data (Karplus

et al. 2018). Under this monitoring system, if the average hourly concentration of a pollutant

exceeds a preset limit five times, an inquiry will be made by the agency. Without a reasonable

explanation, a public investigation will be opened and possibly a penalty will be issued. Over the

years, this CEMS dataset has accumulated a tremendous amount of data.

Even with the worlds largest and most comprehensive monitoring system, there exist many

violations. There are firms that circumvent the monitoring devices and release more pollutants than

the allowance. Some examples include destroying monitoring devices, modifying monitoring data,

and diluting pollutant intake. This type of violation is so severe and prevalent that the Chinese

government had to set up an additional manual inspection mechanism to catch the cheaters. Each

year, employees from MEEC are pulled from their regular posts to conduct inspections at the

provincial level. This prevents them from carrying out their normal job duties. At the same time, it

incurs a high travel-related cost. Due to the high costs and resource drain associated with manual

inspection, it is largely carried out on a random basis with occasional inspections based on tips

received from anonymous phone calls.

Overall, the current inspection mechanism is expensive and has a low detection rate. However,

we note that over the years, these inspections have resulted in the accumulation of a list of com-

panies that seemingly report normal, passing-grade pollutant data, yet are caught violating the

environmental regulations. This dataset of environmental violators is publicly available. Yet we

are not aware of any research that integrates this dataset with the big CEMS data and explores

a possible connection between these two sets of data. Our research makes the first attempt to

take full advantage of the integration of these two datasets and build prediction models to identify

violators. Below we describe these two datasets.

3.2 Data Description

As discussed earlier, we utilized two datasets: The first is the CEMS dataset and the second is the

VPD. Briefly, the first dataset includes all the information on daily gas pollutants emission activity,

reported by manufacturing facilities. The second dataset includes the list of firms that have been

detected as environmental violators through inspections and subsequently penalized by MEEC.
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Table 1 Summary Statistics for Factories and Pollutants Included in CEMS Dataset

Measure Pollutants
Smoke Dust SO2 NOx COD Ammonia-nitrogen

Number of discharge outlets 18,257 18,257 18,257 11,770 11,770
Number of emission records 159,977,477 159,977,477 159,977,477 122,854,626 122,854,626
Average concentration 77.63 21.05 118.87 46.77 3.13
Median concentration 24.29 10.6 70.09 27.59 0.98
Standard Deviation 143.90 59.54 141.80 69.31 10.60

Table 2 A Simplified Example of CEMS Record

Factory ID Outlets ID Nature of Factory Pollutant Time Concentration Flow

10000002 003 Small scale, Private NOx 05/12/2016, 22.80 43.06
enterprise, Non-key-control 11:00

10000001 002 Large II scale, State-owned SO2 05/12/2016, 18.06 26.17
factory, Province-control 11:00

3.2.1 CEMS Dataset The CEMS dataset is provided by MEEC and obtained directly

from the national CEMS monitoring data platform. The dataset includes CEMS hourly pollution

emission data for all industries in 30 province-level regions of mainland China from January 1,

2016 to June 30, 2017. In total, the CEMS dataset includes monitoring data from 7,643 factories.

There are 725,641,683 emission monitoring records for five major pollutants: smoke dust, SO2,

NOx, COD, and Ammonia-nitrogen. The summary statistics of CEMS data are listed in Table 1.

The CEMS records the maximum, minimum, and average value of emissions concentration

(mg/m3 for gaseous pollutants) hourly, and then automatically revises updated concentration and

flow. In addition, the CEMS also measures necessary operating parameters, such as the oxygen

content for boilers, which provide valuable information on the state of the equipment. It is worth

mentioning that the combination of pollutants being constantly monitored by CEMS varies by

industry, but it covers all major pollutants for each industry. The thermal power industry, for

example, is required to report the emissions data for smoke dust, SO2, and NOx, whereas municipal

sewage plants report data for emissions of COD and Ammonia-nitrogen instead. The CEMS assigns

a unique ID number for each discharge outlet. Thus, we are able to match factory information with

its corresponding hourly monitoring records through the ID number. A snapshot of the CEMS

dataset is provided in Table 2. Note that in the actual dataset, billions of records are generated

each year, including both gas and water pollutants. Our study mainly utilizes gas pollutant data.

The nature of the factory column tracks three types of information including scale of the factory

(from small to super large), registration type, and emission control level (state-controlled, province-

controlled, city-controlled, and non-key polluting facilities). Since the reporting of gas pollutant

data is mandatory in China, missing data are at a minimum. We only encountered 8 missing records

in registration type, 7 missing records in the scale of factories, and 64 missing records in control

level. We subsequently removed these missing records.
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3.2.2 VPD To build prediction models, we integrate the CEMS dataset with VPD. The

manual inspection mechanism has helped MEEC to detect a number of violators and subsequently

penalize them. We assemble VPD from the publicly available online data platform hosted by

MEEC. All environmental-related administrative penalties are released on the platform quarterly

(http://www.mee.gov.cn/gkml/?ClassInfoId=119), allowing us to link the CEMS data with fac-

tories actual status of compliance with environmental policies. VPD contains 372 factories with

administrative penalties issued during 2016-2017, which includes 118 factories with waste gas pol-

lution violations.

4 Problem Formulation and Empirical Challenges

Our objective is to create a predictive model for the efficient detection of environmental violators.

This predictive model utilizes each firms CEMS reporting data and matches them against violation

status as stored in VPD. On the surface, this problem can be formulated as a classic binary

classification problem as denoted below.

Suppose that there are n factories in the CEMS database, and the i-th factory has been recorded

ni times as ri = (ri1, ri2, . . . , rini
). According to the VPD, we assume that liti = 1 if the i-th factory

is punished at timestamp ti, where i∈ {1, . . . , n} and ti ∈ {1, . . . , ni}. At first glance, one can assume

this is a supervised classification problem by considering ri as the feature of the i-th factory and

liti as the corresponding label. However, this classic machine learning approach faces the following

challenges posed by the special characteristics of the CEMS dataset.

Irregularity. First, different pollutant-producing factories began to operate the CEMS devices

at different time intervals. This difference in turn leads to a different number of records produced

by different factories. This irregularity presents a challenge for classical models such as Logistics

Regression, AdaBoost, and Random Forest, which all require a regular table as their input (Fried-

man et al. 2001). Therefore, it would be a violation of model assumption to directly apply classic

supervised machine learning models to the raw data.

Outlier. An outlier is an observation point that is distant from other observations, and an

outlier can prevent researchers from obtaining robust results (Huber 2004). Outliers exist in the

CEMS dataset. They can be caused by measurement error, unstable operation, or abnormal pro-

duction process. The frequent existence of outliers also poses a problem for the direct application

of classic supervised learning method, i.e., the robustness of the findings can be jeopardized (Lecué

et al. 2020).

Sparsity. One critical challenge in applying the classic supervised machine learning model is

that the punishment label liti is very sparse. Although we have millions of records on the predictors

obtained from the CEMS dataset, we only have a very limited number of records of outcome

http://www.mee.gov.cn/gkml/?ClassInfoId=119
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variables, i.e., liti = 1 for the factories that were caught by MEEC. This creates severe sparsity in

the matrices.

Missing Label. Related to the problem above, the sparsity of the data matrix also means that

there may exist many violators who report falsified environmental monitoring data yet have not

been caught, due to the resource constraints associated with the manual random inspection process.

If we treat the violation status of a firm purely based on information from VPD (i.e., if a facility

exists in VPD, set violation status = 1, and −1 otherwise), it is very likely we would have mislabeled

many facilities as −1 although they have in fact violated environmental regulations (but have not

been caught by the inspection). In other words, if a facility is caught by MEEC, it is a violator.

However, if a facility is not caught by MEEC, it does not mean it is a non-violator. Thus, this leads

to a number of missing labels in the raw data. If we were to label non-punished facilities with the

label liti =−1, it may result in large biases in decision-making due to the incorrect labeling.

Lack of Fidelity in Reporting Data. As we allude to earlier, a major problem in the raw

CEMS reporting data is the low fidelity caused by intentional manipulation of the reporting devices.

This problem undermines the underlying trustworthiness of the raw data. Therefore, it is not

advisable to operate directly on the raw data. Rather, we need to find some reliable clues, not from

the raw data itself, but from the features derived from the raw data, to detect violators.

To overcome these challenges, we endeavor to leverage two methods. First, we use feature engi-

neering to abstract features of the reported raw data and use these features to construct a new

CEMS data quality assessment framework. This is consistent with Cormack et al. (2007) and Garla

and Brandt (2012), who show that utilizing features instead of raw data results in better predictive

power in their respective research contexts. Our data quality assessment framework incorporates

six data quality features that can be used to evaluate the fidelity of the raw data reported. These

six data features can overcome the low fidelity, irregularity, and outlier issues for CEMS data.

Second, we propose two new PU learning methods to conquer the sparsity and missing label issues

associated with raw CEMS data. The details are provided in the following two sections.

5 CEMS Data Quality Assessment Framework

In this section, we propose a new data quality assessment framework that includes a number of

features derived from CEMS data. We derive these features from two sources. One is through

surveying existing data quality literature. The other is through domain knowledge gained from

qualitative interviews with subject matter experts (SMEs). Below we describe the construction of

this data quality assessment framework.
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5.1 Data Quality Literature and Qualitative Interviews

Existing literature has long recognized that data quality is a multi-dimensional concept (Ballou and

Pazer 1985, Dey and Kumar 2010, Wang and Strong 1996). Many authors have provided definitions

of the dimensions of data quality from different perspectives. Strong et al. (1997) define data

quality as the fitness for use by data consumers. Ballou and Pazer (1985) suggest that accuracy,

completeness, consistency, and timeliness are the dimensions of data quality. Wang and Strong

(1996) provide an analysis from the perspective of those who use the data, and group various

attributes of data quality into intrinsic, contextual, representational, and accessibility data quality

classes. A detailed review is provided by Keller et al. (2017). To fit our research context, we take in

the elements discussed in existing literature such as completeness, consistency (Ballou and Pazer

1985), and fitness for use by data consumers (Strong et al. 1997).

We also supplement the literature review findings with domain knowledge gained from qualita-

tive interviews with SMEs from MEEC as well as the CEMS device manufactures. These planned

interviews took place over the course of one and a half years and were scheduled quarterly. Thus,

we met and interviewed SMEs at six different times throughout the project, with the first four

interviews focusing on learning from SMEs and the last two interviews focusing on soliciting feed-

back on our proposed big data analytical approaches. At each interview, which typically lasted 2–3

hours, there were at least six experts (this was a legal requirement by the project sponsor, MEEC,

to ensure the quality of the interviews). Because we wanted to obtain a comprehensive view of

the issue at hand, we rotated SMEs throughout the project. Altogether we interviewed 10 unique

SMEs. These experts were composed of two groups. One group included employees holding senior

positions at MEEC, such as the Deputy Director of the Appraisal Center for Environment and

Engineering, and the Director of Technology Support Center for Regulatory Modeling. These senior

employees work out of MEEC headquarters in Beijing. (On occasion, we also invited employees

holding a senior position at the provincial level.) These senior employees all have more than 10

years of work experience in the industry. This group of SMEs have a comprehensive view of the

issue at a national level and shared information regarding the severity of the problem, its damages,

the high costs associated with manual inspection, etc.

The second group included specialists from the CEMS device manufacturers (we selected special-

ists with at least 5 years of work experience), and the front-line employees for the environmental

protection agencies at the provincial level and/or municipal level. Because there are many different

manufacturers of CEMS devices, interviews with equipment specialists from device manufacturers

informed us on conditions affecting the stability of these devices. Interviews with the front-line
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employees from the environmental protection agencies provided experiential insights on some com-

monly used methods to manipulate the CEMS device in order to produce fraudulent reports. They

also provided insights on the indications of such fraudulent activities.

We conducted the interviews with a semi-structured format (Bartlett et al. 2006). A semi-

structured interview allows the researchers to control the research focus, yet at the same time allows

the emergence of new ideas (Cachia and Millward 2011). The discussions were centered around the

following key questions: First, which of the abnormal data in the dataset are caused by defects

of the CEMS devices themselves, and which are true anomalies? Second, do these abnormal data

represent fraudulent activities in reporting? And third, what are the underlying reasons causing

the abnormal reporting? Information collected through these interviews proved to be instrumental

in the development of the reporting data quality index. Besides the three key questions, we also

allowed SMEs to expand on related topics. At the end of each interview, each attending SME

signed off on the interview notes.

Our interview data suggest that at times, environmental violators do not want to be monitored

by the government. When the mandatory monitoring requirements are enforced, these violators

do not willingly upload high quality reporting data. For example, one of the SMEs informed us

that many companies with environmental violations would deliberately cut off the power of CEMS

devices when releasing toxins, and the monitoring device would temporarily fail, resulting in a

data upload value of 0 or NA (not applicable). Therefore, a useful reporting data quality in our

research context must factor in data quality issues caused by deliberate attempts to alter data.

We combined these interview findings with data quality dimensions reported in past literature and

came up with a new set of domain-knowledge-driven features derived from raw reporting data.

These features can inform us on the reporting data quality suitable to our research context.

5.2 Feature Engineering and Composition of Reporting Data Quality Index

Feature engineering refers to the process of utilizing domain knowledge to extract attributes (i.e.,

features) from raw data, and it can be done either automatically, semi-automatically, or by manual

selection (Gaber et al. 2020). Arguably a manual feature selection based on domain knowledge is

preferred (Moro et al. 2014). Our research utilizes manual selection of features. We combine findings

from existing research and qualitative interviews with SMEs, and develop a reporting data quality

index. This index is composed of a set of six features that describe the characteristics of reported

raw data. These data features can be categorized into three dimensions: Accuracy, Completeness,

and Industry Particularity. The accuracy dimension captures the validation of the data, and thus is

represented and measured by the abnormal ratio and zero ratio of CEMS data. The completeness

dimension refers to the extent to which data are not missing when the CEMS is in operation, and
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Figure 1 Reporting Data Quality Framework

is quantified by suspension ratio and null ratio. The third dimension is industry characteristics. It

takes into consideration variations among industries, and measures whether the data collected are

true and credible in specific industry scenarios. The framework is presented in Figure 1 and the

detailed explanations for each of the six features are shown below.

5.2.1 Accuracy Dimension: Abnormal Ratio There exist negative values and abnor-

mally large values in CEMS data. One of the key reasons is that some facilities failed to properly

conduct routine calibration and reconditioning of CEMS devices. These abnormal records are not

valid measurements for emissions. We use the accumulated period, which refers to the total length

of negative values and abnormally large values in CEMS monitoring records, and its proportion in

accumulated running time as an indication of CEMS data quality.

q1 =
Accumulated Abnormal Period

Accumulated Running Time
. (1)

Based on this formulation, we note that a large abnormal ratio signals carelessness in maintaining

reporting devices and can lead to reduction in the quality of reported data.

5.2.2 Accuracy Dimension: Zero Ratio Zero values refer to scenarios in which the emis-

sion concentrations recorded by CEMS are exactly equal to zero. In reality, even if the true emission

concentration is very low, the data should fluctuate around zero rather than stick to the zero posi-

tion. Furthermore, one of the SMEs provided us one possible reason why continuous zero values

are recorded: The manufacturing facility cuts off the power of CEMS devices when it is releasing

toxins. Thus, the continuous appearance of zero values is an indicator of possible tampering with
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environmental monitoring devices. We use the accumulated zero value period, which refers to the

total length of zero values in CEMS monitoring records, and its proportion in accumulated running

time, as an indication of CEMS data quality.

q2 =
Accumulated Zero Value Period

Accumulated Running Time
. (2)

This second indicator, q2, is another measurement of the accuracy dimension of CEMS data,

factoring potential behavioral issues of the reporting facility.

5.2.3 Completeness Dimension: Suspension Ratio We denote a suspension ratio (q3)

to reflect the stability of the device operation as follows:

q3 = 1− Accumulated Running Time

Supposed Running Time
. (3)

The “supposed running time” in the above equation refers to the length of time from the beginning

to the end of normal operation of CEMS devices during a data quality observation period. If the

suspension rate is greater than 0, we can postulate that the device was temporarily suspended for

a period of time. High suspension rate implies that CEMS devices might be suffering from unstable

daily operation, while a rate close to zero signals stable operations.

5.2.4 Completeness Dimension: Null Ratio There exist NA (not available) values in

the CEMS data, which means that the CEMS equipment could not upload valid data. Thus, we

can use the following null ratio (q4) to reflect facilities daily operations behavior:

q4 =
Accumulated Null Period

Accumulated Running Time
. (4)

Here, “accumulated null period” refers to the total length of null value in CEMS monitoring records.

A high null ratio may indicate that the factories do not follow the regular maintenance procedures

and quality assurance activities for CEMS, which can be regarded as a signal of unhealthy routine

operation. We cannot rule out the possibility that the CEMS device was sabotaged by the facility

in order to avoid emission monitoring by the authorities.

5.2.5 Industry Particularity Dimension: Over-standard Rate The over-standard

rate, which is denoted by q5, is a ratio that measures proportion of time that a reporting device

exceeds an emission standard.

q5 =
Accumulated Out of Control Period

Valid Time
. (5)

To eliminate the impact of abnormal records, we remove the period when abnormality occurred

from the accumulated running time. Therefore, the valid time is defined as the accumulated running

time minus the abnormal period and zero value period. The definition of out-of-control period

is the number of hours that the average emission concentration exceeds corresponding emission

standards. The over-standard rate gives a snapshot of reporting facilities intentions to comply with

environmental policies.
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5.2.6 Industry Particularity Dimension: Fluctuation Rate We noticed instances of

extremely high or extremely low fluctuation of CEMS. For instance, the emission concentration

reported appears to be a constant for an extended period. In this case, the variance of emission

concentration may be lower than the industrial standard variance. In addition, a high fluctuation

may occur when the CEMS probe suffers from poor quality and becomes oversensitive, resulting

in drifts in measured values. We define the fluctuation rate as follows:

q6 =
|Variance− Industry-standard Variance|

Normalization Constant
. (6)

Here, the industrial standard variance is a self-selected reference value, and one can easily choose

the average variance or median or other reasonable values for different industries.

As we discussed earlier, the lack of fidelity, irregularity, and the existence of many outliers in

the raw data prevent us from operating directly on the raw data. We overcome these challenges

by deriving a set of features based on domain knowledge. Specifically, transforming raw data into

a uniform set of features ensures that the number of features is the same across different factories.

In addition, aggregating the raw data to obtain the six data features significantly reduces the

variability of raw data, which can improve the robustness of the learning models. In summary,

although operating on features may lose some information in the raw data (remember that some

facilities have manipulated the raw data so some reported raw data is not trustworthy), it enables

us to utilize machine learning approaches to build predictive models (see Section 7). Below we

describe method innovations that enable us to build such predictive models.

6 Research Method: PU Learning Framework

6.1 Why PU Learning?

Violator detection, in essence, is a binary classification problem. Our objective is to predict (classify)

a facility as either a violator or not a violator. In a traditional binary classification problem, the

decision function is trained by a dataset that contains both positive and negative samples, and

that is fully labeled. However, in the combined datasets of CEMS data and VPD, only the limited

number of facilities that have been caught by manual inspection are labeled as positive samples,

and the rest are unlabeled. This causes the aforementioned sparsity and missing label issues in the

dataset, and makes the classification problem difficult.

Fortunately, PU learning (Bekker and Davis 2020), or learning from positive and unlabeled data,

can overcome some of the challenges with our datasets. PU learning is an emerging machine learning

method that has drawn considerable attention recently (Jaskie and Spanias 2019). In PU learning,

each unlabeled sample could belong to either the positive or negative class. This fundamental
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assumption is consistent with the context of environmental violator detection. The factories that

are caught represent the labeled samples while others are the unlabeled samples.

We transform our dataset into the PU dataset as a triplet (X,Y,L) with X = (X1,X2, . . . ,X6)
> ∈

R6, a vector involving 6 data quality indicators, where Y is the true class label to present whether

the factory is a violator, and L is a binary variable recording whether the factory was caught by

MEEC. Obviously, the class label Y cannot be observed, but information about it can be derived

from the value of L. For example, if the factory was caught by MEEC, then this factory must be

a violator, which means L= 1 and implies

P(Y = 1|L= 1) = 1.

However, if L =−1, we cannot know if the factory is a violator or not. That is, information on Y

is missing.

PU learning methods are commonly divided into two categories according to labeling mechanism-

based and labeling mechanism-free schemes (Bekker and Davis 2020). First, labeling mechanism-

based PU learning generally treats the unlabeled samples as negative samples. We then build a

decision function (classifier). Obviously this classifier is biased, as it assumes all unlabeled samples

to be negative. To correct this bias, a labeling mechanism is built, which is incorporated into the

training process. Second, labeling mechanism-free PU learning is generally built on the separability

assumptions of the positive and negative samples. In other words, negative samples are very far

from the positive samples in an unknown feature space. According to this separability property,

reliable negative samples could be selected from the unlabeled samples. Thus, using supervised

learning approaches on the labeled positive samples and selected reliable negative samples can

obtain a decision function. In the next two subsections, we propose two kinds of PU learning

approaches to the environmental violator detection problem, and show their effectiveness.

6.2 Labeling Mechanism-Based PU Learning for Violator Detection

The basic idea of labeling mechanism-based PU learning is to treat all unlabeled samples as nega-

tives, and then design a new supervised learning strategy that can correct the learning bias due to

the incorrect labeling, based on assuming the labeling mechanism is known. It should be mentioned

that the labeled samples, which are in VPD, represent the factories that have been actually caught

in a random inspection by MEEC. This randomness in inspection ensures that the labeling of facili-

ties satisfies the selected completely at random (SCAR) assumption (Elkan and Noto 2008). That is,

P(L= 1|X,Y = 1) = c,
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which means any violators are caught completely at random, independent from their features.

The value c is called label frequency, which denotes the probability of being caught. Based on this

SCAR assumption, we can compute that

P(L= 1|X,Y = 1) =
P(L= 1, Y = 1|X)

P(Y = 1|X)
=

P(L= 1|X)

P(Y = 1|X)
= c.

Therefore, P(L= 1|X) = cP(Y = 1|X). This formulation is critically important. It means that we

can obtain P(Y = 1|X) by the following steps. First, we estimate P(L= 1|X), and then P(Y = 1|X)

can be corrected by using P(L= 1|X) divided by constant c. Estimating P(L= 1|X) is the common

target of any supervised learning method that is trained with positive and unlabeled samples. The

correction step is consistent with the insight of labeling mechanism-based PU learning. Based on

this assumption, Zhang and Lee (2005) provide a new version of naive Bayes to handle the positive

and unlabeled text data. Lee and Liu (2003) propose a weighted logistic regression. Elkan and Noto

(2008) use a similar approach to obtain biased support vector machines. These methods are effective

for their specific datasets. However, there has not been any justification of such methods. In this

study, we propose a new PU learning framework and provide mathematical proof of its legitimacy

for datasets that satisfy the SCAR assumption. Then, two new PU learning schemes are proposed.

Let us refer back to solving the binary classification problem with input and output pair (X,Y )

by supervised learning approaches, where X ∈ X is a feature representation of a sample and Y ∈

{−1,1} is the corresponding label. The aim of supervised learning for binary classification problems

is to find a proper decision function (classifier) by minimizing the so-called expected risk (Bousquet

et al. 2004), i.e.,
min
f

EY |X [`(Y, f(X))|X], (7)

where ` : X × {−1,1} → R is a well-defined loss function to quantify the misclassification error.

Given X, it is natural to perform classification by comparing P(Y = 1|X) and P(Y =−1|X), i.e.,

a reasonable decision function is

f(X) = sign(P(Y = 1|X)−P(Y =−1|X)),

which is called a Bayesian classifier (or Bayesian decision boundary) of the binary classification

problem (Lin 2004). According to Lin (2004) and Bartlett et al. (2006), a commonly accepted

standard of the loss function ` in supervised learning is to require that the population minimizer

of expected risk with the specific loss function results in the Bayesian classifier. That is to say that

the minimizer of EY |X [`(f(X), Y )|X] has the same sign as sign(P(Y = 1|X)−P(Y =−1|X)). The

loss function that satisfies this unique property is called Fisher consistent (Lin 2004).

In this paper, we have shown that the violator detection problem is consistent with the PU

learning framework due to the sparsity and missing label issues. However, a commonly accepted
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way to handle the violator detection problem is to treat it as a classical binary classification

problem, i.e., the unlabeled samples are considered as negative samples. In the following, we provide

Theorem 1 to show that this naive approach can result in biased decision-making. Note that all

the proofs in this paper are listed in Appendix A.

Theorem 1. Suppose that the SCAR labeling mechanism is satisfied for positive sample Y = 1 and

labeled sample L = 1, i.e., P(L = 1|X) = cP(Y = 1|X), then the Bayesian classifier for the binary

classification problem can be derived as

f(X) = sign(P(Y = 1|X)−P(Y =−1|X)) = sign
(2− c

c
P(L= 1|X)−P(L=−1|X)

)
.

Theorem 1 actually implies that applying any Fisher consistent loss functions for the PU dataset

directly leads to a large bias. We know that the optimal Bayesian classifier is P(Y = 1|X)−P(Y =

−1|X) and Fisher consistent loss has the same sign as the Bayesian classifier. However, learning

with a PU dataset directly results in the Bayesian classifier P(L = 1|X) − P(L = −1|X), which

is not equal to P(Y = 1|X) − P(Y = −1|X) according to the result of Theorem 1. Therefore,

Theorem 1 provides the theoretical reason why directly training a classifier on a PU dataset is

biased. Note that Elkan and Noto (2008), Lee and Liu (2003), and Zhang and Lee (2005) all use

the sample weighting strategy to correct the learning bias. However, they were not able to explain

the theoretical reason for such corrections. Sharing the same insight, we would like to propose a

new weighting strategy to correct the learning bias in PU learning. The fundamental idea of this

strategy is to use the result of Theorem 1 to construct a weighting function that can transfer some

loss functions to be Fisher consistent.

Let us denote a weighting function

g(Y ) =
{

2− c if Y = 1,
c, if Y =−1. (8)

It is well known that the loss function (logistic loss) for logistic regression is `(Y, f(X)) = log(1 +

exp(−Y f(X))), and the loss function (exponential loss) of AdaBoost is `(Y, f(X)) = exp(−Y f(X)).

Both are Fisher consistent (Friedman et al. 2000). The next two theorems show how to correct the

above two losses to be Fisher consistent for PU learning by using weighting function g(Y ). For the

logistic regression,

Theorem 2. Suppose that the SCAR labeling mechanism is satisfied, i.e., P(L = 1|X) = cP(Y =

1|X), and further denote f∗1 (X) = arg minEL|X [g(L)`(f(X),L)|X] where `(f(X),L) = log(1 +

exp(−Lf(X))), then we have

sign(f∗1 (X)) = sign(P(Y = 1|X)−P(Y =−1|X)).

For the AdaBoost,
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Theorem 3. Suppose that the SCAR labeling mechanism is satisfied, i.e., P(L = 1|X) =

cP(Y = 1|X), and further denote f∗2 (X) = arg minEL|X [g(L)`(f(X),L)|X] where `(f(X),L) =

exp(−Lf(X)), then

sign(f∗2 (X)) = sign(P(Y = 1|X)−P(Y =−1|X)).

Theorems 2 and 3 show that incorporating the weighting function g(Y ) into the training stage

of logistic regression and AdaBoost can correct the decision bias that comes from the PU dataset

if the SCAR assumption is satisfied. In practice, the real distribution of the PU dataset cannot

be obtained, so we have to use the empirical risk minimization (9) (Bousquet et al. 2004) to take

the place of expected risk minimization (7) in the training stage. Then we propose the following

algorithms for the PU logistic regression and AdaBoost. To implement Algorithm 1, we need to

set the parameter c in the weighting function g(Y ). The tuning of the parameter will be addressed

in Section 7.

Algorithm 1 Labeling Mechanism-Based PU Learning Algorithm for Violator Detection

1: Transform R into X= (x1,x2, . . . ,xn)> ∈Rn×6 by the proposed data quality assessment frame-
work, where xi = (xi1, . . . , xi6)

>, i= 1, . . . , n is the data quality indicators of the i-th factory.
2: Compute

f̂ ∈min
f

{ 1

n

n∑
i=1

g(liti)`(f(xi), liti)
}
, (9)

where g(L) is defined by (8), and `(f(X),L) = exp(−Lf(X)) and `(f(X),L) = log(1 +
exp(−Lf(X))) are used for logistic regression and AdaBoost, respectively.

6.3 Labeling Mechanism-Free PU Learning for Violator Detection

The separability assumption is the fundamental basis of labeling mechanism-free PU learning. This

assumption considers that all the positive samples are very similar to the labeled samples and the

negative samples are very different from them in an unknown feature space (Bekker and Davis

2020). Based on this assumption, PU learning can be formulated as a two-step technique as follows.

• Step 1: Constructing a reasonable approach to identify reliable negative samples from the

unlabeled samples in a feature space.

• Step 2: Applying supervised learning techniques with the positive and reliable negative samples

to obtain the decision function (classifier).

In the first step, the key objective is to define a proper feature space so that positive and negative

samples in the new feature space are clearly separated, and then the unlabeled samples, which are

far away from labeled samples, are selected as reliable negatives. Thus, how to define a proper

feature space that leads to the separability assumption becomes a crucial problem in labeling
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mechanism-free PU learning. In the existing PU learning literature (Chaudhari and Shevade 2012,

Fung et al. 2005, Liu and Peng 2014), this problem is handled by applying domain knowledge. For

example, many PU learning approaches have addressed text classification problems, therefore many

feature engineering techniques, such as TFIDF (Term Frequency Inverse Positive-Negative Docu-

ment Frequency) and word embedding, provide a new feature space for the texts. In this situation,

a natural way to select negative samples is to use a clustering technique (Chaudhari and Shevade

2012, Fung et al. 2005, Li and Liu 2003, Liu and Peng 2014, Lu and Bai 2010), such as k-means clus-

tering, because in the feature space, the positive and negative samples are assumed to be separable.

In the second step, the labeled positive and reliable negative samples are employed to train a

decision function. Obviously, any supervised learning method, such as support vector machines (Li

and Liu 2003), logistic regression (Lee and Liu 2003), and naive Bayes (Lu and Bai 2010), could

be used in this context. Finally, to obtain more reliable negative samples and to enhance the

robustness of the classifier, previous research also apply an iterative strategy (Li and Liu 2003). In

this iterative strategy, researchers utilize the obtained classifiers to classify the remaining unlabeled

data, in the hope of providing more reliable negative samples. This results in an updated classifier.

This iterative process repeats itself until a satisfactory result is obtained.

Using a similar insight, we propose the following labeling mechanism-free PU learning algorithm

(Algorithm 2) for violator detection. Given raw CEMS data R = {r1,r2, . . . ,rn} and VPD l =

(l1t1 , . . . , lntn) where liti = 1 means the i-th factory is punished at timestamp ti, we denote factory

index set as I = {1,2, . . . , n}, labeled positive sample index set as L= {i : liti = 1}, and unlabeled

sample index set as U = {i : liti =−1}, thus I =L∪U . Given any index set M and its cardinality

of m, we further denote XM = (xi1 ,xi2 , . . . ,xim) as the sub-matrix of X = (x1,x2, . . . ,xn)>, xi

as the i-th row vector, and the index as ij ∈M, j = 1, . . . ,m. Algorithm 2 is based on the above

formulation.

Algorithm 2 provides a new labeling mechanism-free PU learning method for violator detection.

Comparing with existing approaches, this new method incorporates the feature space supported

by the data quality assessment framework, which is constructed by the domain knowledge of

SMEs. Afterwards, we utilize k-means clustering and an iterative scheme to obtain reliable negative

samples. The effectiveness of these techniques has been validated in a number of studies (Chaudhari

and Shevade 2012, Fung et al. 2005, Li and Liu 2003, Liu and Peng 2014, Lu and Bai 2010).

7 PU Learning Models and the Detection of Environmental Violators

7.1 Data Processing

In this section, we describe an application of the proposed techniques to the integrated CEMS

dataset and VPD. The VPD contains 372 records of factories caught through manual inspection
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Algorithm 2 Labeling Mechanism-Free PU Learning Algorithm for Violator Detection
1: Given the maximal clustering number K and iterative number J . Transform R into X =

(x1,x2, . . . ,xn)> ∈ Rn×6 by the proposed data quality assessment framework, where xi =
(xi1, . . . , xi6)>, i= 1, . . . , n is the data quality indicators of the i-th factory.

2: for k = 2 :K do
3: Apply k-means clustering algorithm on data quality matrix X.
4: Compute the average distances dk of the samples that are in the cluster which does not involve

positive samples, with all positive samples.
5: end for
6: Select k∗ = arg maxk=1:K dk.
7: Run K-means via the clustering number k∗ and select the samples that are in the cluster which does

not involve the positive samples as reliable negatives, and denote the selected reliable negative samples
with the index set RN1 = {i : the i-th sample is selected as reliable negative sample}.

8: for j = 1 : J do
9: Use a supervised learning approach on the dataset {(xj , ljtj ) : j ∈ L ∪ RNj} to obtain a decision

function fj . Apply fj on the sample set with index I − (L∪RNj) to predict their labels.
10: Add the predicted negative samples into RNj to obtain a new reliable negative sample set.
11: end for
12: Output: fJ as the final classifier.

during 2016-2017. Of these records, 118 were caught for gas violation. The set consisting of the gas

violation factories that have been caught is labeled as the sample index set L. Out of the 7,643

facilities, there are 3,482 relevant facilities that installed a gas emission monitoring system. We

remove the 118 facilities from these 3,482 facilities and select the remaining ones into the unlabeled

set U . Thus, L and U are disjoint.

Before building predictive models, we process the data from CEMS and VPD to ensure appro-

priate integration of the two datasets. First, we examine the date that a particular facility has

been caught, and remove entries in the CEMS dataset post that date (note that although VPD

is published quarterly, it does specify the date when a particular facility has been caught). Since

it is reasonable to expect the violating facility to change its reporting behavior after it has been

caught, we must remove the post-caught data to ensure the consistency of the data used to predict

environmental predictors. Second, we use the remaining dataset to compute data quality indica-

tors. Note that these indicators are ratio data. For example, the first indicator, abnormal ratio,

is computed by dividing accumulated abnormal period by accumulated running time. Therefore,

the computation of the indicators is time scale free. Thus, the removal of post-caught records, as

reported in step one, will not impact the computation of the ratio data. Third, certain facilities

may contain several outlets. When we calculate the reporting data quality indicators, the average

value of outlets is utilized as the reporting data quality indicators for the facility.

7.2 Model Description

Table 3 provides a summary of the models we built. We now provide a detailed discussion of

these. We built five types of model: (i) learning from raw CEMS data of L∪U , using Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber 1997), which is a specific recurrent neural



Article submitted to: Production and Operations Management
Xiangyu Chang et al.: Violator Detection via CEMS Data 25

network (RNN) architecture that was designed to model temporal sequences and their long-range

dependencies more accurately than conventional RNNs; (ii) learning from L∪ U with the 6 data

quality features, using logistic regression and AdaBoost; (iii) learning from L∪U with the 6 data

quality features using the algorithm proposed by Lee and Liu (2003) (denoted as WLR-PU);

(iv) learning from L∪U with the 6 data quality features using Algorithm 1; and (v) learning from

L∪U with the 6 data quality features using Algorithm 2. We also test a naive rule-based model

based on insights from the qualitative interviews. We report the results of the rule-based model

in Appendix B. The results are inferior to other prediction models presented here. Tables 4 and 5

provide summaries of model results.

Table 3 Model Comparison

Method Raw Data or Features PU Learning Evaluation Metric

LSTM Raw Data No AUC, precision, recall, F1-score
Logit Features No AUC, precision, recall, F1-score

AdaBoost Features No AUC, precision, recall, F1-score

WLR-PU Features Yes recall, Fpu

PU Logistic Features Yes recall, Fpu

PU AdaBoost Features Yes recall, Fpu

PU-2 Logistic Features Yes AUC, precision, recall, F1-score
PU-2 AdaBoost Features Yes AUC, precision, recall, F1-score

Scenario (i) is the baseline: learning a classifier from raw CEMS data, characterized by irregular-

ity and outliers. To deal with the irregularity, we adopt the state-of-the-art deep learning technique

LSTM. Scenario (ii) employs classical supervised learning approaches for the CEMS data that we

recognized as a fully labeled dataset. This represents a scenario that utilizes feature engineering

but does not utilize PU learning, i.e., we treat liti values as the true labels of CEMS data and

the unlabeled samples as negative samples. Note that liti values lead to an unbalanced training

set because factories that are caught are relatively smaller in number than factories that are not

caught. Then we use the classical sample weighting method (He and Garcia 2009) to train the

logistic regression and AdaBoost with the loss formulation as:

min
f

{n+ +n−

n+

∑
liti=1

`(f(xi), liti) +
n+ +n−

n−

∑
liti=−1

`(f(xi), liti)
}
, (10)

where `(f(X),L) = exp(−Lf(X)) and `(f(X),L) = log(1 + exp(−Lf(X))) are used for logistic

regression and AdaBoost respectively, and n+, n− are the number of labeled samples and unlabeled

samples. To make comparison with other PU learning algorithms, we also include scenario (iii).

Even though many PU learning classification techniques have been proposed over the last decade,

most of them focus on the classification of text data, which makes them inapplicable to our research

context. We choose WLR-PU, which is the most suitable technique for our CEMS application. This
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Table 4 Mean and Standard Deviation of AUC, Precision, Recall, F1-score, and Fpu for Different Comparable

Models

Method AUC Precision Recall F1 FPU

LSTM 0.57(0.08) 0.04(0.01) 0.93(0.03) 0.07(0.01) -
Logit 0.71(0.07) 0.03(0.006) 0.73(0.14) 0.07(0.012) -

AdaBoost 0.80(0.08) 0.10(0.03) 0.46(0.15) 0.16(0.05) -

WLR-PU 0.78(0.06) 0.03(0.006) 0.69(0.15) 0.06(0.01) 1.66(0.64)
PU Logistic 0.75(0.06) 0.03(0.006) 0.73(0.17) 0.06(0.01) 1.47(0.47)

PU AdaBoost 0.80(0.08) 0.04(0.01) 0.76(0.14) 0.07(0.01) 1.83(0.47)
PU-2 Logistic(J = 1) 0.97(0.03) 0.53(0.18) 0.87(0.10) 0.65(0.14) 14.99(4.80)

PU-2 AdaBoost(J = 1) 0.96(0.05) 0.94(0.10) 0.83(0.14) 0.87(0.10) 29.44(5.86)
PU-2 Logistic(J = 5) 0.96(0.04) 0.44(0.16) 0.86(0.11) 0.57(0.13) 14.28(5.08)

PU-2 AdaBoost(J = 5) 0.94(0.06) 0.88(0.15) 0.79(0.15) 0.82(0.13) 30.42(7.21)
PU-2 Logistic(J = 9) 0.96(0.03) 0.44(0.16) 0.86(0.11) 0.56(0.13) 14.13(4.92)

PU-2 AdaBoost(J = 9) 0.94(0.06) 0.83(0.21) 0.79(0.15) 0.80(0.17) 29.51(9.03)

Table 5 Mean and Standard Deviation of Recall@k for Different Comparable Models

k LSTM B-Logit B-Ada WLR-PU PU Log PU Ada PU2Log(1) PU2Ada(1) PU2Log(5) PU2Ada( 5) PU2Log(9) PU2Ada(9)

10 0.03(0.01) 0.09(0.05) 0.34(0.13) 0.14(0.1) 0.19(0.11) 0.34(0.13) 0.21(0.01) 0.2(0.02) 0.21(0.0) 0.19(0.04) 0.21(0.0) 0.19(0.04)
20 0.03(0.01) 0.1(0.07) 0.37(0.13) 0.2(0.11) 0.27(0.12) 0.37(0.13) 0.41(0.03) 0.39(0.04) 0.41(0.02) 0.3(0.07) 0.41(0.01) 0.29(0.06)
30 0.06(0.01) 0.1(0.06) 0.4(0.13) 0.25(0.13) 0.31(0.14) 0.41(0.14) 0.58(0.06) 0.56(0.07) 0.58(0.06) 0.36(0.1) 0.56(0.06) 0.35(0.09)
40 0.09(0.02) 0.11(0.06) 0.43(0.14) 0.28(0.13) 0.31(0.14) 0.44(0.15) 0.69(0.11) 0.7(0.12) 0.69(0.1) 0.42(0.14) 0.65(0.1) 0.42(0.15)
50 0.10(0.03) 0.11(0.07) 0.45(0.14) 0.3(0.14) 0.32(0.14) 0.46(0.15) 0.73(0.1) 0.78(0.14) 0.73(0.09) 0.47(0.18) 0.7(0.09) 0.48(0.2)
60 0.12(0.05) 0.11(0.07) 0.48(0.14) 0.32(0.14) 0.35(0.14) 0.47(0.16) 0.77(0.08) 0.81(0.14) 0.77(0.07) 0.52(0.21) 0.75(0.07) 0.52(0.22

scenario can be viewed as a baseline PU learning algorithm. Finally, scenarios (iv) and (v) represent

our proposed methods, where scenario (iv) represents labeling mechanism-based PU learning and

(v) represents labeling mechanism-free PU learning. We should mention that the unknown labeling

frequency c is treated as a tuning parameter, which is selected by 5-folder cross validation in

Algorithm 1. In Algorithm 2, we set the maximal cluster number K = 30 and iterative number J

from 1 to 9.

In each scenario, we split the whole dataset into a training set with 80% of samples and a testing

set with 20% of samples and repeat the experiment 100 times. The average and standard deviation

of AUC, precision, recall, F1-score, Fpu, and recall@k, which are the commonly used measurements

in supervised learning and PU learning, are reported in Tables 4 and 5. Because different scenarios

represent different model assumptions, the model fit indicators should be interpreted in the context

of the type of model being evaluated. We provide more detail on this in the next subsection.

7.3 Model Evaluation and Results

First of all, scenarios (i) (i.e., LSTM) and (ii) (i.e., logistic regression and AdaBoost) represent

models without the PU learning framework. In these models, the labeled samples are treated as

positive samples and nonlabeled samples are treated as negative samples. In these three models,

the violator detection problem is treated as a classical binary classification problem, and as such

AUC, precision, recall, and F1-score can be utilized to compare their performance. From Table 4,
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the AUC value of LSTM is less than that of logistic regression or AdaBoost. This demonstrates the

advantage of the proposed data quality features over raw data, thereby benefiting the detection of

falsification issues in reported data. However, the precision and F1-scores across all three models

are very poor due to the unlabeled dataset, i.e., these models treat the unlabeled data as true

negatives, which is incorrect. This justifies the need to employ the proposed PU learning framework

in the subsequent scenarios.

Second, we compare the results of violator detection under the PU learning framework by WLR

(Lee and Liu 2003) and our proposed PU logistic regression and AdaBoost. Note that although

we report AUC, precision, and F1-scores in Table 4, they are not the best indicators of model fit

due to the existence of unlabeled data. Along the same line, we do not report precision@k and f@k

because they require clearly labeled datasets. Under the PU learning framework, recall and Fpu

are two meaningful measurements (Lee and Liu 2003). Recall measures the accuracy of catching

the true offenders, and can be denoted as r = P(Ŷ = 1|Y = 1). Under the SCAR assumption, the

recall can be estimated from PU data as r = P(Ŷ = 1|L = 1). Based on the definition of recall, we

know that higher recall value means higher capability to catch violators. Fpu = r2

P(Ŷ=1)
, which has

been proven to have the same property as the F1-score, could be estimated from PU data, and

the Fpu indicates efficiency in catching violators (Bekker and Davis 2020). From Table 4, the PU

AdaBoost shows high accuracy in catching violators (best recall), while at the same time, it uses

less resources (best Fpu compared to other PU learning models).

Third, we present the AUC, precision, recall, and F1-scores for the two labeling mechanism-free

PU learning methods, which are denoted as PU2Ada and PU2Log, for the use of AdaBoost and

logistic regression in Step 9 of Algorithm 2. We tried different iterative numbers J from 1 to 9

and found that the optimal number of cluster k∗ is always around 18. For different Js, the results

show that the algorithms are robust and J = 1 can achieve the best recall value. This means that

the data quality indicators we proposed fit the separability assumption on the CEMS data and

VPD, because using k-means algorithms once suffices to separate the labeled (positive) and reliable

negative samples.

Finally, we report the recall@k for different k = 10,20, . . . ,60, because recall is the only metric

that can be used to compare the capability of catching violators for all comparable methods. Based

on the results of Table 5, the labeling mechanism-free PU learning (PU2Ada and PU2Log) still has

the best performance in catching violators. In summary, the labeling mechanism-free PU learning

algorithms show signs of robustness and good performance in detecting violators, due to their

simplicity, efficiency, and accuracy in detection.
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7.4 Robustness Test

Our key models are built on waste gas datasets. In order to test the robustness and to enhance the

generalizability of our model, we have also applied our prediction models to wastewater datasets.

Wastewater data collection uses an entirely different mechanism, and collects data on an entirely

different set of substances at completely different intervals. However, there is some preliminary

evidence that our predictive models may work well for the wastewater context. The results of

predictive models based on this context are provided in Appendix C. We note that due to the

drastically different context, some parameters may need to be fine-tuned accordingly. We call for

future research to investigate this further.

7.5 Field Test

The previous sections have demonstrated the predictive power of the proposed CEMS data quality

assessment framework and the PU learning methods based on the empirical data we collected.

Next, we take advantage of the findings from our prediction models and prescribe a new means

of violation detection, which we then use in a field test. This field test provides evidence of the

usefulness of our newly prescribed process. It also serves as a means to further validate the results

of our prediction model.

We prescribe four steps to systematically generate a list of suspected environmental violators.

These four steps are documented in Figure 2. First, we extract raw CEMS data from July 1, 2017

to December 31, 2017 in one of the provinces in China. Second, we use the data quality assessment

framework to compute a set of data quality indicators for each of the reporting facilities. Third, we

run the labeling mechanism-free PU logistic regression model that is obtained in Algorithm 2 with

this set of indicators, and compute the violation status. Finally, we rank firms based on predicted

violation probability and obtain a list of the top five suspicious facilities. We provided the list to

MEEC, which subsequently assembled a team to inspect these five suspicious factories in 2018. We

report the results based on this targeted inspection mechanism below.

MEEC inspected five case companies. Case Company A is a large steel-making company. Its

main source of pollution is air pollution. In this company, gas pollutants are discharged through

the chimney after being treated. The inspection staff found a hidden break at the bottom of the

chimney used to discharge gas pollutants (see Figure 3). This break served to introduce more

oxygen to dilute the gas pollutants, thereby distorting the readings on the monitoring devices.

Case Companies B and C changed their monitoring devices immediately before the arrival of

staff to perform the facility inspection, indicating that perhaps there was a leak of information to

these facilities, which prompted them to switch the devices. According to our SMEs, it is highly
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Figure 2 Prescribed New Process of Targeted Inspection

Figure 3 Evidence of Tampering with Monitoring Device

likely that these facilities would have been caught circumventing the monitoring devices, had the

devices not been changed right before the inspection. The staff were not able to find any evidence

of tampering with the device in Case Company D. However, the company cannot explain the data

quality problems.

Finally, Company E showed evidence of introducing new pollution control equipment for environ-

mental protection. The new equipment had recently reduced the average concentration of pollution

(between the time of our analysis and the inspection). Note that the difference between Case Com-

panies B and C, and Case Company E is that the latter showed evidence of improving production

and waste control process without changing the monitoring device, while the former two case com-

panies showed no evidence of improving the production or waste control process; at the same time,

they showed evidence of changing the monitoring device immediately before the inspections. Along

the same lines, the difference between Case Company D and Case Company E is that the former

showed no evidence of improving the production or waste control process and could not explain the
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abnormal readings, while the latter showed improvements in the production and waste control pro-

cess, which provided a logical explanation for the improvement of readings at the time of inspection.

8 Conclusions and Managerial Implications

Environmental violations pose severe threats to the triple bottom line (e.g., Lee and Tang 2018,

Mendelssohn et al. 2012) and distort fair competition for non-violating firms (Delmas and Keller

2005). However, low fidelity in reported environmental monitoring data is not uncommon and

impedes public agencies ability to detect hidden violators. We conduct a study to make predictions

on environmental violators. Along the way, we showcase a holistic approach to solve a practical

problem in sustainability enforcement with descriptive, predictive, and prescriptive data analytics

techniques. Our approach has been tested in a field test and the results are satisfactory and

encouraging.

8.1 Contributions

Our study contributes to both sustainability literature and big data analytics. First, we build a

reporting data quality assessment framework, which provides a useful way to measure the level of

fidelity in the reported environmental monitoring data. Its significance lies beyond the detection of

inaccuracy in data caused by the noise in big data (Dey and Kumar 2013), in that the framework

can detect low fidelity caused by intentional manipulation of the data. As far as we know, we are

the first to derive such a measurement scale, which can serve as an excellent tool for public offices

to deploy in situations where there are conflicts between government reporting requirements and

the internal efficiency of firms (Marquis and Qian 2014).

Second, we utilize approaches to build prediction models of environmental violators and prescribe

a new process to catch cheaters. These prediction models and the new process greatly increase

the efficiency and effectiveness of environmental agencies’ operations. Third, while building pre-

diction models, we develop two new PU learning techniques to overcome the sparsity and missing

label challenges in the empirical dataset. The usability of these two new PU learning techniques

we developed is not restricted to our unique dataset, but can be generalized to other datasets

where sparsity and mislabeled data exist in a binary classification problem. Fourth, our research

answers calls from operations and supply chain management scholars to use a holistic approach

(Swaminathan 2018, Wang et al. 2016) to solve operational problems. Our study is one of the first

to integrate descriptive, predictive, and prescriptive data analytics elements to solve a pressing

problem in sustainable operations.

Our research has great practical implications. Public agencies can utilize the prediction model

to compute the probability of environmental violation for each reporting facility. This is the most
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direct and effective mechanism to identify violators, and potentially reduces the resource investment

associated with manual inspections. In addition, once the improved detection algorithm has been

fully implemented and communicated to pollutant-producing facilities, we expect more facilities

will report high quality data and proactively work on improving their internal operations to reduce

the severity of pollutants.

Although we studied the detection of hidden environmental violators using datasets from China,

we expect that the research findings can be easily adaptable to environmental protection in other

countries. For example, the EPA in the United States utilizes the same CEMS devices to monitor

environmental pollutants, and can benefit from pioneering the use of our data quality assessment

framework to measure the quality of reported waste gas data. The resulting data quality indices

can then be used to predict the under-reporting of emissions by manufacturing facilities in the US.

Our predictive model shows superb predictive power and thus can be used in conjunction with

the control chart approach that the EPA is rolling out (EPA 2016). Similarly, we could apply our

model to data collected on oilsands operations in Canada and evaluate whether data falsification

is involved in the reporting of pollutant data.

8.2 Future Research Directions

This research can be extended in several directions. First, the VPD is limited in the number of

records compared to the size of the CEMS dataset. However, the sample size is increasing with

the passing of time. With a larger sample size, future research can utilize other complex predictive

techniques in machine learning to refine the predictive model and enhance prediction accuracy.

Second, our research focuses on the detection of violations for gas pollutants. We also validate its

usefulness in the wastewater context. Future research can replicate our research for the detection of

other types of pollutants. Such research will enhance the generalizability of the reporting data qual-

ity assessment framework and potentially shed light on the detection of anomalies in data reported

by other Internet of Things devices. Lastly, our research is data-driven. We made it clear that our

objective is prediction, not finding causal relationships (Kitchin 2014). Future research can take

advantage of our data-driven findings and build theoretical models. This type of follow-up research

will help us explain and understand why facilities follow and/or violate environmental regulations.

Appendix

A Proofs

A.0.1 Proof of Theorem 1 According the definition of SCAR, we know that P(L = 1|X) =

cP(Y = 1|X) and P(L=−1|Y =−1,X) = 1, so we can compute that

P(L=−1|X) = P(L=−1|Y =−1,X)P(Y =−1|X) +P(L=−1|Y = 1,X)P(Y = 1|X)
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= P(Y =−1|X) + (1− c) ∗P(Y = 1|X)

= P(Y =−1|X) +
1− c

c
∗P(L= 1|X),

and

P(Y =−1|X) = P(L=−1|X)− 1− c

c
∗P(L= 1|X).

Thus,

P(Y = 1|X)−P(Y =−1|X) =
1

c
P(L= 1|X)−P(L=−1|X) +

1− c

c
P(L= 1|X)

=
2− c

c
P(L= 1|X)−P(L=−1|X).

This implies the results.

A.0.2 Proof of Theorem 2 Let us compute and denote that

G(f(X)) = EL|X(g(L) exp{−Lf(X)})

= (2− c)P(L= 1|X) log(1 + exp{−f(X)}) + cP(L=−1|X) log(1 + exp{f(X)}).

.

Therefore, f∗1 must satisfy

∂G(f(X))

∂f(X)
=−(2− c)P(L= 1|X)

1 + exp{f(X)}
+

cP(L=−1|X) exp{f(X)}
1 + exp{f(X)}

= 0,

and we can obtain

f∗1 (X) = log
(2− c)P(L= 1|X)

cP(L=−1|X)
.

Thus,

sign(f∗1 (X)) = sign
(

log
(2− c)P(L= 1|X)

cP(L=−1|X)

)
= sign

(2− c

c
P(L= 1|X)−P(L=−1|X)

)
= sign(P(Y = 1|X)−P(Y =−1|X)),

where the last equation is based on Theorem 1.

A.0.3 Proof of Theorem 3 Let us compute and denote that

G(f(X)) =EL|X(g(L) exp{−Lf(X)}) = (2−c)P(L= 1|X) exp{−f(X)}+cP(L=−1|X) exp{f(X)}.

Therefore, f∗2 must satisfy

∂G(f(X))

∂f(X)
=−(2− c)P(L= 1|X) exp{−f(X)}+ cP(L=−1|X) exp{f(X)}= 0,

and we can obtain

f∗2 (X) =
1

2
log

(2− c)P(L= 1|X)

cP(L=−1|X)
.
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Thus,

sign(f∗2 (X)) = sign
(

log
(2− c)P(L= 1|X)

cP(L=−1|X)

)
= sign

(2− c

c
P(L= 1|X)−P(L=−1|X)

)
= sign(P(Y = 1|X)−P(Y =−1|X)),

where the last equation is based on Theorem 1.

B Naive Check

In Section 5, we put forward the CEMS data quality assessment framework based on domain

knowledge from SMEs. We test a naive rule-based model based on the qualitative interviews we

conducted with the SMEs.

We use the same data processing method that is described in Section 7 to construct the training

set from CEMS data and VPD. We split the whole dataset into a training set (80% of samples)

and a testing set (20% of samples) and repeat the experiment 100 times. We use the null ratio as

a prediction rule, and its average ROC curve is shown in Figure 4. Figure 4 shows that the naive

rule-based method cannot achieve the desired prediction power. The average AUC of the null ratio

is 0.64. Compared with the logistic regression and/or AdaBoost in scenario (i) of Section 7, the

prediction power is relatively low. This provides motivation to investigate a more powerful method

to detect violators.

Figure 4 ROC Curve of Rule Derived by Null Ratio.
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Table 6 Mean and Standard Deviation of AUC, Precision, Recall, F1-score, and Fpu for Different Comparable

Models for Wastewater Dataset

Method AUC Precision Recall F1 FPU

LSTM 0.68(0.01) 0.04(0.0) 0.74(0.08) 0.07(0.0) -

Logit 0.54(0.06) 0.02(0.006) 0.35(0.14) 0.034(0.01) -
AdaBoost 0.78(0.07) 0.08(0.01) 0.56(0.12) 0.14(0.02) -

WLR-PU 0.58(0.06) 0.018(0.005) 0.38(0.13) 0.035(0.01) 0.53(0.32)

PU Logistic 0.57(0.06) 0.013(0.0003) 0.98(0.04) 0.027(0.0006) 0.97(0.058)
PU AdaBoost 0.78(0.07) 0.037(0.01) 0.70(0.12) 0.07(0.017) 1.86(0.57)

PU-2 Logistic(J = 1) 1.0(0.0) 0.71(0.37) 0.89(0.08) 0.72(0.31) 8.14(4.48)
PU-2 AdaBoost(J = 1) 0.99(0.01) 0.71(0.21) 0.86(0.08) 0.76(0.15) 9.56(2.86)
PU-2 Logistic(J = 5) 0.99(0.0003) 0.70(0.36) 0.88(0.08) 0.71(0.30) 7.98(4.19)

PU-2 AdaBoost(J = 5) 0.90(0.02) 0.51(0.27) 0.80(0.08) 0.57(0.22) 9.62(4.94)
PU-2 Logistic(J = 9) 1.0(0.0) 0.70(0.36) 0.89(0.08) 0.71(0.30) 7.97(4.19)

PU-2 AdaBoost(J = 9) 0.85(0.03) 0.45(0.26) 0.78(0.08) 0.52(0.23) 9.01(5.07)

C Prediction Results for Wastewater Dataset

Table 7 Mean and Standard Deviation of Recall@k for Different Comparable Models for Wastewater Data

k LSTM B-Logit B-Ada WLR-PU PU Log PU Ada PU2Log(1) PU2Ada(1) PU2Log(5) PU2Ada( 5) PU2Log(9) PU2Ada(9)

10 0.08(0.01) 0.01(0.02) 0.39(0.09) 0.01(0.02) 0.02(0.03) 0.4(0.08) 0.1(0.01) 0.11(0.0) 0.1(0.01) 0.11(0.0) 0.09(0.02) 0.11(0.01)
20 0.16(0.05) 0.01(0.02) 0.46(0.11) 0.01(0.02) 0.03(0.04) 0.46(0.09) 0.18(0.02) 0.21(0.01) 0.18(0.03) 0.21(0.01) 0.18(0.03) 0.2(0.02)
30 0.20(0.03) 0.01(0.02) 0.48(0.11) 0.02(0.03) 0.03(0.04) 0.49(0.09) 0.24(0.05) 0.32(0.03) 0.25(0.06) 0.32(0.02) 0.25(0.06) 0.3(0.04)
40 0.22(0.06) 0.01(0.02) 0.49(0.11) 0.02(0.03) 0.04(0.04) 0.5(0.1) 0.3(0.08) 0.42(0.03) 0.32(0.08) 0.42(0.03) 0.31(0.09) 0.4(0.06)
50 0.22(0.07) 0.01(0.02) 0.5(0.11) 0.03(0.04) 0.05(0.04) 0.51(0.1) 0.36(0.1) 0.52(0.04) 0.39(0.1) 0.52(0.05) 0.38(0.1) 0.49(0.06)
60 0.22(0.07) 0.01(0.02) 0.51(0.11) 0.04(0.04) 0.05(0.05) 0.52(0.1) 0.41(0.1) 0.63(0.04) 0.45(0.1) 0.61(0.06) 0.44(0.11) 0.57(0.06)
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