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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

It has been estimated in the United States that inferior highway pavement 

conditions could contribute to approximately 30% of the annual highway fatalities 

(FHWA, 2010). In particular, inadequate pavement friction or insufficient surface 

texture increases total crashes and also contributes to wet-weather crashes, 

resulting in increased fatalities, more serious personal injuries, and significant traffic 

delays. In Oklahoma, 73,267 crashes occurred in 2019, including 640 fatalities and 

33,038 injuries. 

Over the years, the Oklahoma Department of Transportation (ODOT) has 

been aggressively at the forefront in combating highway traffic safety problems and 

saving Oklahoman lives. As the most critical surface skid characteristics for safety, 

pavement texture and friction have been collected through the “Pavement 

Management Systems (PMS)” and the "Skid Studies Program". The statewide crash 

database, the SAFE-T: Statewide Analysis for Engineering & Technology, and the 

comprehensive construction management tool, the AASHTOWare SiteManager™, 

maintain abundant data sets that can be used to support highway safety 

management in Oklahoma. Meanwhile, ODOT is one of the national leaders in 

researching to better characterize friction and texture performance of pavements for 

improved roadway safety. 
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Better utilizing the available pavement friction, surface texture, roadway 

safety data, and relevant results, along with other necessary ODOT data sets, could 

result in significant benefits to reduce traffic fatalities, serious injuries, and traffic 

delays in Oklahoma. With a comprehensive statistical analysis using the integrated 

ODOT data sets, the critical influencing factors contributing to roadway crashes 

could be identified. Subsequently, the appropriate safety countermeasures can be 

applied to improve roadway safety and further reduce traffic delays. 

 

1.2 Project Tasks 

The main objective of this implementation study is to utilize pavement friction, 

surface texture, and other supporting data sets available at ODOT for the reduction 

of traffic crashes and delays in Oklahoma. Specifically, the research aims to address 

the following sub-objectives: 

• to integrate relevant pavement condition, road geometry, traffic flow, and 

crash data in Oklahoma; 

• to determine the statistical significance of these data items, especially 

friction and texture, to roadway crashes; 

• to develop friction models based on ODOT data sets and pavement 

surface texture profile data from non-contact testing techniques; 

• to demonstrate the role of friction and texture data in the selection of 

preventative maintenance strategies for safe roads; 

• to develop enhanced safety performance function (SPF) for the Oklahoma 

roadway network using available data sets. 
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To accomplish the objectives of this study, the following six tasks, listed 

below, were performed. 

• Task 1 Literature Review. This task involved a comprehensive literature 

review to develop an in-depth understanding of various aspects related to 

this project. 

• Task 2 Data Acquisition and Preprocessing. The relevant data sources 

that could be used for the reduction of traffic crashes and delays in 

Oklahoma were investigated in this task, including pavement management 

system, SiteManger construction management system, skid studies 

program, statewide analysis for engineering & technology (SAFE-T) crash 

database, and additional data collected from previous ODOT projects. 

• Task 3 Statistical Analysis, Friction Models, and Demands. Friction 

prediction models were developed based on available ODOT data or 

pavement surface texture data. Furthermore, the friction demands in terms 

of investigatory and intervention levels were established. 

• Task 4 Pavement Maintenance Strategies for Safety. This task applied 

life-cycle cost analysis methodologies to determine the most cost-effective 

preservation maintenance strategies considering the corresponding traffic 

crashes and delays. Besides, a safety performance function (SPF) was 

developed to quantify the impacts of pavement skid performance on 

roadway crashes and thus to evaluate the safety effects of preservation 

maintenance. 
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• Task 5 Analysis Tool. An Excel analysis tool was developed to assist the 

data management and integrate roadway crashes into the life cycle 

analysis procedure for the selection of preventive treatments. 

• Task 6 Final Report and Training. This task included the drafting and 

submission of the final report and delivering training for ODOT engineers. 

 

1.3 Report Outline 

This report consists of seven chapters. An overview of each chapter is given 

below: 

• Chapter 1 provides the background and objectives of the project. 

• Chapter 2 documents the summary of the literature review related to the 

project.  

• Chapter 3 introduces the available data sets at ODOT and the procedure 

to integrate those data sets. 

• Chapter 4 presents the development of safety performance function (SPF) 

and the establishment of pavement friction demands. 

• Chapter 5 demonstrates the statistical analysis results and the pavement 

friction prediction models. 

• Chapter 6 presents the procedure and results of the life cycle analysis 

considering roadway crashes and provides case studies and comparisons. 

• Chapter 7 summarizes the conclusions and future recommendations of 

this study.  
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CHAPTER 2 LITERATURE REVIEW 

 

Skid resistance of pavement plays a significant role in road safety and has 

been studied extensively in the last decade.  The existing literature on the following 

five relevant research areas was summarized in this section: (1) pavement friction 

and texture; (2) pavement texture and measurement; (3) measurement of skid 

resistance of pavements; (4) preventive maintenance treatments for restoring skid 

resistance; and (5) relationships between aggregate characteristics and skid 

resistance. 

 

2.1 Pavement Friction and Texture 

2.1.1 Pavement Friction 

Pavement friction is the force resisting the relative motion between vehicle 

tires and the pavement surface, and it is a critical factor influencing the crash rates 

on both wet and dry conditions for roads (Najafi et al., 2015; Flintsch et al., 2012; 

Hall et al., 2009). Pavement friction results from a complex interplay between two 

principal frictional force components:  adhesion and hysteresis (Hall et al., 2009). 

Adhesion forces are most responsive to the micro-level asperities (microtexture) of 

the aggregate particles contained in the pavement surface, while the hysteresis 

forces developed within the tire are most responsive to the macro-level asperities 

(macrotexture) formed in the surface via mix design and/or construction techniques. 
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As a result, adhesion governs the overall friction of smooth-textured and dry 

pavements, while hysteresis is the dominant component of wet and rough-textured 

pavements. 

Hall (2009) grouped the influencing factors of pavement friction forces into 

four categories: pavement surface characteristics, vehicle operational parameters, 

tire properties, and environmental factors. Considering various pavement surface 

conditions (including asphalt type, nominal aggregate size, and texture depth) and 

contact areas (considering tire loading, inflation pressure, and type of tire), Labbate 

(2001) investigated the skid resistance performance of pavements. The skid 

resistance showed an initial loss in the early life, followed by an increase in friction, 

and thereafter a reduction in the equilibrium condition. The rolling resistance 

increased with reduced contact areas. 

The influence of asphalt mixture type and Portland cement concrete surface 

textures on friction performance of pavements has been widely studied (Asi, 2007; 

Ahammed and Tighe, 2008). Previous studies found that air temperature and 

pavement temperature could affect the friction performance of pavements, both in 

short-term and long-term cycles. At low testing speed, friction tended to decrease 

with increasing pavement temperature. An opposite trend was observed at high 

testing speed (Luo, 2003; Jahromi et al., 2011). Roe et al. (1998) noted that friction 

reduced with increasing testing speed and reached the minimum level at about 

100km/h for smooth tires. The level of high-speed friction depended to a large extent 

on the low-speed friction. Friction on surfaces with low texture depth dropped more 

rapidly at high speed. Wilson (2006) identified up to 30% variations in friction 
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performance over a short period of time. The seasonal variation of the friction 

coefficient was neither obvious nor predictable. Kotek and Florkova (2014) 

conducted long-term friction monitoring on various pavements and concluded that 

friction coefficients were affected by surface age, traffic intensity, and climatic 

conditions. Dan et al. (2017) measured friction coefficients of pavement specimens 

with different ages, contamination (water, snow, ice), and temperature conditions, 

and found that friction of new pavement exhibited the highest sensitivity to 

temperature variations. 

2.1.2 Pavement Texture 

Pavement texture is the commanding surface characteristic that affects tire-

pavement friction, often categorized by various wavelengths into micro-texture 

(wavelength less than 0.5mm) and macro-texture (wavelength of 0.5mm to 50mm).  

Micro-texture is generally provided by the relative roughness of the aggregate 

particles in asphalt pavements and by the fine aggregates in concrete surfaces. 

Macro-texture is generally provided by proper aggregate gradation in asphalt 

pavements and by supplemental treatments such as tinning, broom, diamond 

grinding, or grooving in concrete surfaces (Flintsch et al., 2012). 

Various parameters, such as traffic level, aggregate characteristics, and 

pavement texture, have been included to develop pavement friction prediction 

models (Ergun et al., 2005; Ahammed and Tighe, 2008; Ahammed and Tighe, 2012; 

Rezaei and Masad, 2013; and Ueckermann et al., 2015). Several research activities 

depended on pavement texture for friction performance evaluation using advanced 
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data analysis methodologies (Rado and Kane, 2014; Kane et al., 2015; Kanafi et al., 

2015; Kanafi and Tuononen, 2017; and Yang et al., 2017). 

 

2.2 Relationship between Friction and Roadway Crash 

Pavement friction and texture are among the most crucial surface factors that 

influence road safety. Insufficient pavement friction or surface texture can often be a 

determining factor for a collision, especially under wet conditions. Many studies have 

investigated the relationship between pavement friction/texture and road crashes 

and found that the probability of wet-skidding crashes could be reduced if friction 

between vehicle tire and pavement was enhanced. A recent study by Pulugurtha et 

al. (2008, 2012) found that crashes significantly decreased with the increase in 

pavement macro-texture. It recommended maintaining pavement macro-texture of at 

least 0.08 in. (2.0 mm) on tinned concrete pavements, and 0.04 in. (1.0 mm) on 

asphalt pavements to reduce crashes and enhance safety on Interstate highways. 

Although it is believed that a direct relationship exists between pavement 

friction/texture and wet-crash rates, no specific threshold values have been 

established for pavement friction/texture to assure roadway safety (AASHTO, 2008). 

Pavement friction demands, which are specific to the characteristics of a particular 

roadway, must be considered when establishing such thresholds. Pavement friction 

demand is dictated by site conditions (such as longitudinal grade, superelevation, 

the radius of curvature, terrain, climatic conditions), traffic characteristics (volume 

and mix of vehicle types), and driver behaviors (prevailing speed, response to 

conditions, etc.). These conditions are continually changing over time and are 
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different for every roadway, making it difficult to establish a “one size fits all” friction 

threshold (Merritt et al., 2015). 

 

2.3 Safety Performance Functions 

In the AASHTO Highway Safety Manual (HSM, 2010), highway safety is 

generally evaluated using safety performance functions (SPFs), which are detailed 

as statistical models to predict the expected average crash frequency for a certain 

roadway facility, mainly as a function of traffic exposure indicators. The HSM 

identifies three types of SPF applications: 

• Network screening to identify locations that may benefit the most from a 

safety treatment. 

• Determination of safety impacts of design alternatives. When SPFs are 

used in project-level decision-making, they are applied to estimate the 

average expected crash frequency for control conditions and the proposed 

alternatives. 

• Determination of safety effects of engineering treatment. These are usually 

implemented in combination with statistical methods, such as Empirical 

Bayes (EB), to evaluate the effectiveness of before and after treatments. 

Highway agencies are encouraged to develop state-specific SPFs for different 

roadway facilities and crash types (Merritt et al., 2015). The jurisdiction-specific 

SPFs are likely to enhance the reliability of the crash predictive method (HSM, 2010; 

Lu et al., 2012). For example, the SPF in Virginia was developed to include skid 
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resistance and the radius of curvature in their SPFs for interstate and primary 

highway systems (De León Izeppi et al., 2016). 

 

2.4 ODOT Efforts for Improved Highway Safety 

To improve highway safety and save Oklahoman lives, the Oklahoma 

Department of Transportation (ODOT) operates several rigorous safety-related 

programs, including (1) the “Skid Studies Program” that schedules testing of 

pavement friction on an annual basis; (2) the Pavement Management Systems 

(PMS) program that administrates the data collection and management of 

pavements; (3) the Statewide Analysis for Engineering & Technology (SAFE-T) 

database that stores the statewide crash information available from 1998 to present; 

and (4) the SiteManager™ that provides for data entry, tracking, reporting, and 

analysis of contract data from award through finalization. It consists of various 

functionalities, such as contract records, contract administration, contractor 

payment, materials management, and laboratory inventory management system 

(LIMS).  

Besides, ODOT continues supporting research work to better characterize 

pavement friction and texture performance for improved highway safety. ODOT has 

been actively participating in the Every Day Counts (EDC) initiatives to improve 

roadway safety, and closely collaborating with other agencies such as the Oklahoma 

Highway Safety Office (OHSO) in analyzing and improving highway safety in 

Oklahoma. 
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2.5 Summary 

In this Chapter, a comprehensive literature review was conducted. The 

literature review focused on several relevant technical aspects, including pavement 

friction and texture, the relationship between friction and roadway crash, safety 

performance functions, and ODOT’s efforts for improving highway safety. 
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CHAPTER 3 DATA ACQUISITION AND INTEGRATION 

 

This Chapter investigated relevant data sources at ODOT that could be used 

in this study. Several database systems managed by ODOT, including the Pavement 

Management System (PMS), Statewide Analysis for Engineering &Technology 

(SAFE-T) database, Skid Studies Program, and SiteManager® construction 

management system, were reviewed. In particular, the relevant data sets, such as 

pavement surface conditions, roadway geometry, traffic flow characteristics, 

pavement preventive maintenance treatments, materials testing and sampling 

results, crash type and severity, were extracted from these ODOT databases. 

Besides, the friction and texture data sets collected from the existing ODOT projects 

were also acquired. Since the extensive amount of data was obtained from different 

database platforms, the acquired data sets should then be linked and integrated for 

each pavement section under study, which would be used for SPF and friction model 

developments in Chapter 4 and Chapter 5.  

 

3.1 Pavement Management System (PMS) 

ODOT PMS maintains a computer database of pavement distresses and 

other roadway characteristics for the National Highway System (NHS) and State 

Highway System (SHS) routes. The PMS data is formatted with one record for every 

0.01 miles of pavement, including the location information (highway name, control 

section number, mile point, control subsection, GPS, etc.), pavement surface 
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characteristics (surface type, IRI, rutting, macro-texture, etc.), roadway geometry 

(grade, curvature, number of lanes, etc.), etc.  

According to ODOT, the subsections of a control section are generated based 

on multiple criteria in the ODOT Road Inventory Manual, such as state highway 

junction, political jurisdiction, urban area boundary, surface width, or type change. 

The subsection breaks are subject to change among different years if pavement type 

or the number of lanes alters. More details on the breaking rules of the control 

subsection can be found in ODOT Road Inventory Manual (ODOT, 2010). 

Each subsection of a control section can be considered as a uniform roadway 

segment. Therefore, the roadway subsection was selected as the basic unit for 

further analysis in this study, and the corresponding data from the various ODOT 

database was aggregated for each subsection. Table 3-1 presented the summary of 

the available subsections in the ODOT PMS database from 2012 to 2016. 

Table 3-1 Subsections in the ODOT PMS Database (2012-2016) 

Highway 
Classification Year # of 

Subsection 
Avg Length of 

Subsection Lane Miles 

Interstate Highway 2012 0.00 0.00 0.00 
Interstate Highway 2014 1316.00 1.02 1346.00 
Interstate Highway 2016 1338.00 1.01 1346.00 
United Highway 2012 771.00 0.91 702.00 
United Highway 2014 1328.00 1.05 1397.00 
United Highway 2016 491.00 0.86 421.00 
State Highway 2012 198.00 1.11 221.00 
State Highway 2014 184.00 1.14 211.00 
State Highway 2016 0.00 0.00 0.00 
Total / 5626.00 1.00 5643.00 
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3.2 Statewide Analysis for Engineering &Technology (SAFE-T) 

SAFE-T is a statewide crash database garnered from collision report forms 

submitted by law enforcement officers (Adams and Warren, 2017). Detailed 

Oklahoma crash data is available since 1998. The SAFE-T database can generate 

reports in several formats based upon multiple criteria, such as date ranges, 

highway filters, control section, division, etc. Crash data is recorded as a point 

location event with a wide variety of relevant information, including the location 

information (highway name, control section number, mile point, subsection ID, GPS, 

etc.), collision type (rear-end, head-on, etc.), collision severity levels (fatality, injured, 

property damage, etc.), traffic volume in terms of annual average daily traffic 

(AADT), and roadway characteristics (shoulder, median, etc.). 

 

3.3 SiteManagerTM Construction Management System 

The ODOT SiteManagerTM data system is a comprehensive client/server-

based construction management tool, which provides features for data entry, 

tracking, reporting and analysis of contract data from award through finalization. 

SiteManagerTM construction data consists of various functionality, such as contract 

records, contract administration, contractor payment, materials management, the 

sampling test results of pavement mixture.  

The locations of the construction sites are descriptive in SiteManager TM, but 

not linked to the GPS coordinates or the subsections of the control sections as used 

in the other ODOT database. In order to integrate with other data sets, a manual 

location matching procedure was implemented for each construction site by 
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examining and comparing the ODOT control section maps and the corresponding 

location descriptions. 

 

3.4 Skid Studies Program 

Historically, the Skid Studies Program at ODOT was managed through the 

Strategic Asset & Performance Management (SAPM) Division. ODOT used to 

perform systematic skid studies for the entire highway system before 2010, while in 

recent years the scope had been downsized to the annual testing of US-69, all the 

Interstate Highways, as well as the Strategic Highway Research Program (SHRP) 

sites (ODOT, 2018). Currently, ODOT is transitioning to special skid resistance 

testing based on an on-demand basis, rather than running through the Skid Studies 

Program in SAMP.  

ODOT collected friction data using a locked-wheel skid tester, a common 

friction measurement equipment, operating at 50mph during testing. The friction data 

was recorded at an interval of approximately 0.5 miles, reported by control sections 

as individual files. A significant amount of data pre-processing efforts was devoted to 

combining those files in various years into a unified database with universal data 

formats, since the scope of friction testing sites had been changed during the past 

years, and the reporting items and data formats were slightly different from year to 

year. 

Friction data collected at ODOT from 2012 to 2016 were gathered and 

summarized in Table 3-2. Friction data was collected in the outer lane for both 

directions for divided roads, while one direction for undivided roads. The total lane 
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miles of the yearly skid testing ranged from 0 to 8172 kilometers (0 to 5,078 miles) 

during the study periods, yielding a total of 29,517 kilometers (18,341 miles) of field 

friction data collection. No friction data was received in 2016, while only a handful of 

control sections on US-69 were tested in 2013. 

Table 3-2 Data Summary of ODOT Skid Program (2012 – 2016) 

Year Location # of Control Section Testing Lane-miles 
2012 I-35, US, SH 474 5,078 
2013 US-69 14 213 
2014 IS, US, SH 664 7,148 
2015 IS, US, SH 553 5,903 
2016 / 0 0 
Total  IS, US, SH 1705 18,341 

 

3.5 Other Data Sources 

In addition to the database systems managed by ODOT, ODOT has been 

sponsoring research projects with extensive pavement field condition data collection. 

During the past three years, field performance data, including 1mm 3D pavement 

image data, pavement cracking, rutting, roughness, macro-texture, and friction data, 

had been collected multiple times on the selected testing sites. These data sets can 

be used as additional data sources for this project. 

 

3.6 Linking the Various Data Sets for Each Subsection 

A significant challenge in the data compilation is the coordination of the 

various data sets using a uniform referencing system for efficient and consistent 

data processing. For example, SAFE-T crash data is referenced by control 

subsections with GPS coordinates; friction data is referenced by control section and 

milepost; the PMS data contains both information; while the SiteManagerTM 
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construction data only includes descriptive information on project locations, which 

must be manually collected by comparing with the ODOT Contract Section Maps. 

Data inconsistency is another challenge during the data process and integration. For 

example, the coding of the traveling directions within the various databases is 

inconsistent. The PMS database uses “5” for the primary directions while “6” for the 

secondary directions of a roadway segment, while the crash and friction data use 

letters to define the directions.  

After manually modifying the inconsistent data items into the same formats, 

all the relevant data sets were linked and summarized for each subsection of a 

highway control section for further statistical analysis. The data items obtained from 

each subsection are listed in Table 3-3.  

Table 3-3 Data Items Provided in the ODOT Datasets 

Data Source Data Item 
SAFE-T Crash data (frequency, type, severity) 
SAFE-T Average annual daily traffic (AADT) 
SAFE-T Presence of medians and shoulders 
Skid Studies Program Friction 
PMS Segment identification: location, length 
PMS Pavement surface conditions: surface type, texture, IRI 

(rutting) 
PMS Roadway geometry (grade, curve, number of lanes) 
SiteManager® Maintenance rehabilitation & reconstruction (MR&R) 

Works  
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CHAPTER 4 SAFETY PERFORMANCE FUNCTION AND FRICTION DEMANDS 

 

The safety performance functions (SPFs) are detailed as statistical models to 

predict the expected average crash frequency for a specific roadway facility, mainly 

as a function of traffic exposure indicators. Although skid resistance is commonly 

agreed as an essential factor in highway safety, it has not been considered in the 

current SPFs in the Highway Safety Manual (HSM) to estimate crash rates of 

various roadway categories. 

Friction demand, on the other hand, is a critical aspect of pavement friction 

management. An appropriate level of pavement friction must be maintained across 

all pavement sections within a given highway network. The level of friction 

considered appropriate must be determined based on each section’s friction 

demand. Several factors are generally used for the establishment of friction demand, 

such as the traffic levels, highway function class, climate zone, crash history, and 

age of surfacing, while the number of crashes or crash rates is the most widely used 

indicators for the determination of the investigatory and intervention friction threshold 

levels.  

The various data items processed from Chapter 3 enable in-depth statistical 

modeling for the development of SPF and friction demand levels. In this Chapter, an 

enhanced SPF was developed based on count data models using ODOT safety-

related data sets. Meanwhile, the friction demand levels were determined using the 

methodologies recommended in the AASHTO Guide for Pavement Friction.   
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4.1 Data Processing 

4.1.1 Identify Highway Segment 

The acquired data described in Chapter 3 were divided into uniform roadway 

segments per the subsections of a control section. First, a complete list of highway 

segments was generated for all the unique subsections in the ODOT PMS database, 

along with the starting and ending mileposts to define each segment. Subsequently, 

the initial list of segments was filtered by two criteria. Segments with missing 

roadway characteristics were eliminated, especially for those without friction data. 

Meanwhile, the segments with MR&R works during the analysis period were 

excluded to minimize the impacts of site conditions changes on roadway crashes. 

The ability to associate all data for a given roadway segment is critical to the 

accuracy and continued using them for model development. A major challenge is the 

coordination of the various data sets using a common referencing system for 

efficient data processing. As discussed in Chapter 3, SAFE-T crash data are 

referenced by control subsections with GPS coordinates, friction data are referenced 

by control section and milepost, PMS data contain both information, while the site 

construction data only provide descriptive location information manually collected 

from the ODOT Contract Section Maps. In addition, the coding conventions of some 

data items are inconsistent among the database, such as the definitions of roadway 

directions. 

After manually modifying the inconsistent data to the same format, all 

required data were linked to each highway segment by subsection ID and direction 

of travel. As a result, the sample size was reduced to 1835 roadway segments. 
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Furthermore, 24 segments were excluded as they were found to have MR&R works 

from 2012 to 2016, resulting in a final data size of 1811 segments. The basic 

information of the selected final list of segments is summarized in Table 4-1. 

Table 4-1 Lane Miles Analyzed (2012-2016) by Highway Class 

Highway Classification IS Hwy US Hwy State Hwy Total 
# of Segment 1103 587 121 1811 
Average Segment 
Length 1.14 1.24 1.26 1.18 

Lane Miles 1254 726.62 152.3 2132.93 

 

Table 4-2 Crash Data (2012-2016) by Highway Class 

Highway Class IS Hwy US Hwy State Hwy Total Percent 
Total Crash 25,941 3,644 454 30,039 100.0% 
Crash Severity / / / / / 
Fatal 135 52 7 194 0.65% 
Personal Injury 7,369 1,126 172 8,667 28.85% 
Property Damage 18,437 2,466 275 21,178 70.50% 
Pavement Condition / / / / / 
Dry 21,652 3,131 413 25,196 83.88% 
Wet 4,289 513 41 4,843 16.12% 
Type of Crash / / / / / 
Fixed-Objects 5,600 638 99 6,337 21.10% 
Sideswipe 4,779 434 34 5,247 17.47% 
Angle-Related 2,532 1,125 146 3,803 12.66% 
Rollover 893 137 29 1,059 3.53% 
Head-On 49 35 4 88 0.29% 
Rear End 12,088 1,275 142 13,505 44.96% 

 

4.1.2 Crash Data 

Roadway crashes are classified into a wide range of types. However, only 

vehicle crashes that are mainly caused by roadway characteristics should be 
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included in this study. This task turned out to be challenging since most crashes 

were possibly caused by multiple factors. After close consultation with ODOT 

engineers, Several types of crashes were determined not to be primarily due to 

inadequate infrastructure conditions and therefore excluded for further analysis. 

These types included vehicle-train, vehicle-pedestrian, vehicle-animal crashes, and 

crashes that involved alcohol, drugs, work zones. Furthermore, crashes that 

occurred on contaminated pavement conditions (snow, ice, oil, et al.) were 

eliminated from the analysis considering that full contact between tire and pavement 

surfaces could not be guaranteed. After filtering and aggregating the crash data for 

the subsections, 34.5 % of the segments had no crash during the analysis period. 

The detailed crash information is displayed in Table 4-2. The 5-year crash data of 

analysis show that 29.50% of the crashes led to fatalities or injuries, while 70.50% 

were property damage crashes. On average, 83.88% of crashes occurred on dry 

conditions and 16.12% on wet surfaces. 

4.1.3 Safety-Related Data Sets  

Several factors appear to influence roadway safety performance in previous 

studies (HSM 2010; Arhin et al. 2015; Fwa et al. 2016; Aram 2010; Miller and 

Zoloshnja 2009), including traffic volume (AADT), roadway surface conditions 

(friction, texture, surface type, roughness), and geometry factors (longitudinal grade, 

horizontal curvature, number of lanes, presence of shoulder and median). These 

factors, available in the ODOT databases, were acquired and linked to each 

corresponding segment.  
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The surface type under this study included asphalt (AC), jointed concrete 

(JCP), and continuously reinforced concrete pavement (CRCP). For each segment, 

friction performance was measured in terms of two indices: the average friction 

number and the interquartile range (IQR) of friction. IQR is the difference between 

the 75th and 25th percentiles of data, which is a statistical measurement of 

variability within a segment. Besides, the average of the lowest quartile of mean 

profile depth (MPD) was used to indicate the worst conditions of surface texture. 

International roughness index (IRI), generally expressed in inch per mile, is a 

standard roadway roughness measure reflecting the reaction of a vehicle to roadway 

profiles. FHWA (1990) recommended a threshold of 2.7 m/km (170 in/mile) for 

acceptable ride quality and a threshold of 1.5m/km (95 in/mile) for good ride quality. 

Accordingly, IRI was ranked as “Good”, “Acceptable”, or “Poor” for each of the 16.1-

meter (0.01-mile) ODOT PMS data, and the lowest ranking level within the 

subsection was assigned to the segment.  

Rutting is common distress along the two pavement wheel paths and 

presents a safety risk to vehicles during wet weather with reduced skid resistance, 

which could lead to loss of control or hydroplaning accidents (Fwa et al., 2016). In 

this study, a rut depth of 12.7mm (0.5 in) was selected as the threshold between 

high and medium rut severity, and 6.4mm (0.25 in.) was chosen in between medium 

and low rut severity (AASHTO 1989; Lister and Addis 19770; Sousa et al. 1991). 

Similar to that for IRI, the most severe level was assigned to each corresponding 

segment. 
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Table 4-3 Potential Contributing Factors for Crash Analysis 

Class Factors Description Statistical Distribution 
Crash 
Exposure 

Segment 
Length 

Segment Length 
(mile) 

Min.: 0.05; Max.: 10.2; 
Mean: 1.178 

Crash 
Exposure 

AADT AADT (vehicle/day) Min.: 1600; Max.:158,561; 
Mean: 28,653 

Crash 
Exposure 

Rural or 
Urban 

1-Rural; 2-Urban Rural: 55.5%; Urban: 
44.5% 

Skid 
Resistance 

Average 
Friction 

The average friction 
value  

Min.: 16.9; Max.: 62.0; 
Mean: 40.13 

Skid 
Resistance 

IQR of 
Friction 

Interquartile of 
friction 

Min.: 0; Max.: 26.95; Mean: 
2.85 

Skid 
Resistance 

MPD The average of 
lowest quartile 
MPDs 

Min.: 0.336; Max.: 2.524; 
Mean: 0.766 

Surface 
Conditions 

Avg. IRI 
Ranking 

1-Good; 2-
Acceptable; 3-Poor 

Good: 4.8%; Acceptable: 
19.8%; Poor: 75.4% 

Surface 
Conditions 

Max. Rut 
Ranking 

1-Good; 2-
Acceptable; 3-Poor 

Good: 6.4%; Acceptable: 
23.3%; Poor: 70.3% 

Surface 
Conditions 

Pavement 
Type 

1-AC; 2-JCP; 3-
CRCP 

AC: 57.8%; JCP: 30.6%; 
CRCP: 11.7% 

Roadway 
Geometry 

Avg. Grade Average grade 
value  

Min.: 0.033; Max.: 4.516; 
Mean: 1.013 

Roadway 
Geometry 

Avg. degree 
of curvature 

Average degree of 
curvature  

Min.: 0; Max.:17.293; 
Mean: 0.266 

Roadway 
Geometry 

Maximal 
degree of 
curvature 

The largest degree 
of curve 

Min.: 0; Max.: 66.62; Mean: 
1.188 

Roadway 
Geometry 

Length of 
curves 

Total length of 
curves with radius < 
1000 (m) 

Min.: 0; Max.: 2.95; Mean: 
0.103 

Roadway 
Geometry 

Number of 
Lanes 

# of lanes  2, 3, 4, 6, 8, 10 

Roadway 
Geometry 

Presence of 
Shoulder 

0-No; 1-Yes No: 4.1%; Yes: 95.9% 

Roadway 
Geometry 

Presence of 
Median 

0-No; 1-Yes No: 10.7%; Yes: 89.3% 

 

Many research efforts revealed the radius of the horizontal curve was 

significant to roadway crashes (Krammes et al. 1993; Aram 2010). Studies also 
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showed the differences between straight sections and curves, which became 

pronounced at a radius of about 1000 meters (3281 ft) or less (USDOT 1984). 

Therefore, in this study, curves with a radius below 1000 meters (3281 ft), or a 

degree of curvature greater than 1.75°, were considered to have negative effects on 

roadway safety. The total length of such curves within each segment was calculated 

for further crash analysis.  

The influencing factors and their descriptive statistics are shown in Table 4-3. 

 

4.2 Safety Performance Function (SPF) 

4.2.1 Overview of Crash Modeling Methods 

The crash prediction modeling (i.e. SPF) requires statistical analysis to map 

the relationship between crash data and roadway characteristics. Before the 

analysis, it is critical to understand the distribution of crash data. Crash occurrences 

are discrete and non-negative integers, as well as random and rare events. 

Therefore, roadway safety in terms of the frequency of crashes is often studied, 

which involves the number of crashes occurring in some geographical space 

(usually a homogeneous roadway segment or intersection) over a specified period. 

Because crash-frequency data are non-negative integers, Poisson regression 

models have been used for analysis for several decades (Lord and Mannering 

2010). In a Poisson regression model, the probability of roadway segment 𝑖𝑖 having 

𝑦𝑦𝑖𝑖 accidents per period (5 years in this study) is given by: 

            (4-1)  
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Where λi is the Poisson parameter for segment i, which equals the expected number 

of accidents per period in segment i. The Poisson regression model is estimated by 

specifying the Poisson parameter λi as a function of explanatory variables, where the 

most common functional form being λi = exp(βXi). 

However, Poisson models restrict its distribution with equal mean and 

variance. Thus, it is not able to handle over-dispersion or under-dispersion 

problems, where the mean of the crash counts does not take the same value of the 

variance.  

The Poisson-Gamma (Negative Binomial) regression model is an extension of 

the Poisson model to overcome such possible dispersion problems in the crash 

data. The Negative Binomial model introduces an error term 𝜖𝜖 into the Poisson 

parameter: 

     (4-2) 

When ε approaches zero, the Negative Binomial model becomes a Poisson model. 

The addition term ε allows the variance of data to differ from the mean, as defined 

below with k as the over-dispersion parameter: 

          (4-3) 

In this project, the enhanced SPF was developed using negative binomial 

regression models with a log-linear relationship between crash frequency and 

roadway characteristics.  

4.2.2 SPF and Empirical Bayes Method 

SPFs are regression equations that estimate the average crash frequency for 
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a specific site type. In the HSM (2010), the SPFs were developed for three facility 

types (rural two-lane roads, rural multilane highways, and urban and suburban 

arterials). An example of SPF for roadway segments on rural two-lane highways is: 

       (4-4) 

where AADT is the average annual daily traffic volume (vehicles per day), and L is 

the length of the roadway segment (miles). Both are crash exposure-related factors, 

while roadway conditions and characteristics have not been considered. 

The SPFs in the HSM must be calibrated to local conditions since exiting 

SPFs are only directly representative of the sites used to develop them (HSM 2010). 

Two parameters should be determined in the calibration process: the calibration 

factor and the calibrated dispersion parameter. The calibration factor (C) is 

determined by: 

   (4-5) 

where predicted crashes for each site are calculated using the SPF predictive 

model. Subsequently, the calibration factor works as a multiplier to the SPF 

prediction: 

    (4-6) 

Furthermore, the statistical reliability of average crash estimation can be 

improved by combining observed crash frequency and estimates of the average 

crash frequency, using the Empirical Bayes predictive method (EB Method) to 

compensate for the potential bias resulting from regression-to-the-mean (RTM) 

errors. The RTM is the tendency of crash fluctuations where a comparatively high 
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crash frequency is followed by a low crash frequency (Hauer 1996). Failure to 

account for the RTM bias may result in an over-estimation or under-estimation of 

long-term crash frequency. The EB method uses a weighted adjustment factor, w, 

which is a function of the SPF’s over-dispersion parameter, k, in the negative 

binomial distribution: 

   (4-7) 

Therefore, the expected average crash frequency for the analyzed period is 

calculated: 

     (4-8) 

4.2.3 Selection of Influencing Variables 

Variable selection is a process to determine a set of independent variables for 

the final regression model from a pool of candidate variables. The subset of the 

independent variables needs to be as complete and realistic as possible. On the 

other hand, the independent variables included should be as few as possible to 

eliminate irrelevant variables, which will decrease the precision of the model and 

increase the complexity of data collection. To balance the goodness-of-fit and model 

simplicity, the backward stepwise method was implemented for the model selection 

and development.  

The backward stepwise method is often used in variable selection for 

regression models. It starts with a model including all candidate variables. At each 

step, the variable with the least significance is removed until all the remaining 

variables are significant. To determine the best final model in this process, the 
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Akaike Information Criterion (AIC) and the log-likelihood ratio test are performed. 

The AIC, proposed by Akaike (1973), has been routinely used during the past 

decades: 

              (4-9) 

Where log is the maximized log-likelihood value and K is the number of estimable 

parameters in the approximating model. It is desired to rescale the AIC values so 

that the minimum AIC (AICmin) has a value of zero. The AIC value can be rescaled 

as the simple difference: 

            (4-10) 

To better interpret the relative likelihood of a model, the Akaike weight is 

calculated as below (Burnham and Anderson 2002): 

        (4-11) 

Subsequently, the model with the highest Akaike value is selected as the best 

model. Furthermore, the best model can be compared to other models in terms of 

the evidence ratios:  

          (4-12) 

The evidence ratios help strengthen the evidence for or against the various 

alternative hypotheses. A large evidence ratio suggests strong support that one 

model is better than the other.  

Another technique to determine the best model is the log-likelihood ratio 

(LLR) test, which is generally used to compare two nested models where one model 

is obtained from the other by setting some of the parameters to be zero. The null 
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hypothesis of this technique assumes the reduced model (Lr) is true. While the 

alternative hypothesis supposes the current model (Lc) is true. To test the null 

hypothesis, the likelihood-ratio is calculated using Equation 4-13 and compared with 

the critical Chi-Square value (χk2). LLR is distributed as χ2 statistic with k degree of 

freedom, where k is the difference in the number of parameters estimated between 

the two models including the intercepts (Lord et al., 2013). A larger LLR leads to 

small p-values, which indicates that the null hypothesis can be rejected. In other 

words, the reduced model is not preferred in comparison to the current model. 

            (4-13) 
 
4.2.4 Safety Performance Function Modeling Results 

The negative binomial regression model was developed using 5 years of 

statewide crash data in Oklahoma. The function form, as shown in Equation 4-4, 

was adopted to develop the enhanced SPF incorporating roadway characteristics. It 

should be noted that the natural log transformation of segment length (L) and AADT 

were used herein, the same form as that used in the AASHTO HSM (2010):  

           (4-14) 

where: β1 = coefficient of the influencing variable Xi; α = intercept.  

The initial model was built with all of the listed parameters in Table 4-3 and 

then eliminated the least significant parameter step by step. The corresponding AIC 

was computed for each model and summarized in Table 4-4.  
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Table 4-4 Akaike Information Criterion for Model Selection 

Model AIC Δi wi ERi Variable Removed 
1 10769.96 6.97 0.010 32.62 / 
2 10767.96 4.97 0.028 12.00 Max. Rut Level 
3 10766.10 3.11 0.072 4.74 Smallest Quartile MPD 
4 10764.38 1.39 0.170 2.00 Avg. Degree of Curve 
5 10762.99 0.00 0.341 1.00 Length of Curve 
6 10763.43 0.44 0.274 1.25 Rural or Urban 
7 10766.10 3.11 0.072 4.74 Pavement Type 
8 10767.99 5.00 0.028 12.18 Avg IRI Level 
9 10772.47 9.48 0.003 114.43 Max. Degree of Curve 
10 10779.20 16.21 0.000 3310.98 Avg Grade 

 

Table 4-5 Log-Likelihood Ratio Test Results 

Model #Df Chisq Pr(>Chisq) 
6 13 / / 
5 14 2.44 0.12 

 

The Akaike weights (wi) in Table 4-4 indicate that Model 5 has a 34.1% 

chance of being the best model, followed by Model 6, which eliminates an additional 

variable. The evidence ratio (ERi) of Model 6 over Model 5 is 1.25, suggesting that 

Model 5 is 1.25 times more likely to be the best fit. Since the chances of being the 

best model are close for Model 5 and 6, the LLR test was performed to determine 

the final model. As shown in Table 4-5, the p-value is greater than 0.05, failing to 

reject the null hypothesis. In other words, including the extra variable does not 

provide a significant improvement on the goodness-of-fit of the model. In conclusion, 

Model 6 was selected as the final SPF model in this study. The estimated 

coefficients and over-dispersion parameters are displayed in Table 4-6. The 
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enhanced SPF is obtained by inserting the coefficients into the model, as shown in 

Equation 4-14. 

Table 4-6 SPF Model Regression Analysis Results 

Parameters Coefficients Std. Error z value Pr(>|z|) Sig.Code 
(Intercept) -8.28 0.688 -12.037 < 2e-16 *** 
Ln of Segment Length 0.60 0.046 12.902 < 2e-16 *** 
Ln of AADT 1.24 0.066 18.767 < 2e-16 *** 
Avg Friction -0.02 0.006 -2.455 0.0141 * 
IQR Friction -0.06 0.013 -4.667 3.1E-06 *** 
Avg IRI Level 0.16 0.072 2.259 0.0239 * 
Pavement Type -0.14 0.063 -2.159 0.0308 * 
Avg Grade 0.20 0.066 3.051 0.0023 ** 
Max. Degree of Curve 0.03 0.011 2.410 0.0160 * 
# of Lanes 0.19 0.051 3.733 0.0002 *** 
Presence of Shoulder -1.37 0.196 -7.000 2.6E-12 *** 
Presence of Median -0.93 0.164 -5.627 1.8E-08 *** 

Note: 1). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 2). Dispersion parameter for Negative Binomial=0.4166 
 3). AIC: 10763.43 
 

In addition to segment length and AADT considered in the AASHTO HSM 

SPF model, nine pavement surface condition parameters and roadway geometry 

factors are significant contributors to roadway vehicle crashes. The positive 

regression coefficients for some factors, such as segment length, AADT, number of 

lanes, IRI level, degree of curvature of horizontal curves, and longitudinal grade, 

imply that the average risk of crashes is expected to increase with the increase of 

those factors. These findings are consistent with several previous studies (HSM 

2010; Arhin et al. 2015; Fwa et al. 2016; De León Izeppi et al. 2016). On the other 

hand, the risk of crashes decreases with the increases in the other factors which 

have negative coefficients. It is desirable that higher surface friction can significantly 

reduce vehicle crashes, especially under wet conditions (FHWA 2016). As proved in 
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Table 9, both the average friction and the variance of friction (IQR) have negative 

effects on vehicle crashes. Besides, the presence of shoulder and/or median helps 

to reduce the risk of crashes, which is consistent with that illustrated in the HSM 

(2010). For pavement type, which is a categorical variable, it suggests that certain 

pavement types generate fewer crashes as compared to others. Such findings 

should be further explored and verified in future research due to the unbalanced 

data sets in terms of pavement types. 

4.2.5 Crash Estimation with Empirical Bayes Method 

Because a traffic crash is generally a rare event, one shortcoming of safety 

estimates based on accident counts is that they may be too imprecise to be useful. 

They are subject to a common, long recognized, regression-to-mean (RTM) bias in 

the safety analysis. For practical reasons, one is often interested in the safety of 

entities that either requires attention because they seem to have too many accidents 

or merit attention because they have fewer accidents than expected. The Empirical 

Bayes (EB) method is commonly known to address two problems of safety 

estimation; it increases the precision of estimates beyond what is possible when one 

is limited to the use of two-three years of history accidents, and it corrects for the 

RTM bias. 

With the enhanced SPF, the expected crash number in the five years was 

estimated by combing with the EB method. An example is provided on US-69 and 

displayed in Figure 4-1. The figure displays the data by the segments on US-69. The 

observed crash within each segment is marked with a triangle symbol, and the 

predicted crash from the SPF predictive model is plotted with circular circle symbols. 
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In general, the estimation from the SPF model is found to be higher on those 

segments with zero observed crashes and lower than those segments with observed 

high crash rates. To reduce the RTM bias and produce more reliable crash 

estimations, the SPF predicted crash rate is further improved with the EB Method, as 

shown in Equations 4-7 and 4-8. After employing the EB method, the expected crash 

rate is plotted with a dotted line in Figure 4-1. 

  

Figure 4-1 Observed, SPF Prediction, and Expected Crashes on US-69 NB 

 

4.3 Friction Demands 

4.3.1 Pavement Friction Management Program  

Highway safety management in the U.S. began in 1966 with the passage of 

the Highway Safety Act to improve and expand the nation's highway safety activities. 

The Act established the State and Community Highway Safety Grant Program 

(U.S.C. Title 23, Section 402), commonly known as the "402" program. The aspects 
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of a safety management program of interest to pavement engineers are the design 

and maintenance of roadway surfaces that enhance highway safety by reducing 

skid-related crashes (i.e., ensuring there is adequate friction at the pavement–tire 

interface throughout a pavement service life). As a result, highway agencies have 

been increasingly interested in setting up or improving pavement friction 

management (PFM) programs that help ensure adequate levels of surface friction 

and texture to minimize the risk of skid-related crashes (FHWA, 1980).  Figure 4-2 

shows a typical example of PFM programs. The procedure of successful strategies 

for managing pavement friction includes the following key steps: 

• Network definition - subdivide the highway network into distinct pavement 

sections and group the sections according to levels of friction need. 

• Network-level data collection - gather all the necessary information, 

including pavement friction and texture, and crash data. 

• Network-level data analysis - Analyze friction and/or crash data to assess 

overall network condition and identify friction deficiencies. Herein, 

investigatory and intervention levels for friction are established, based on 

which a detailed site investigation or the application of a friction restoration 

treatment is developed. 

• Detailed site investigation - Evaluate and test deficient pavement sections. 

Subsequently, causes and remedies are determined for restoration design 

over the project length in terms of non-friction-related items, such as 

alignment, the layout of lanes, intersections, and traffic control devices, the 

presence, amount, and severity of pavement distresses, and longitudinal 
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and transverse pavement profiles; and the current pavement friction 

characteristics including both micro-texture and macro-texture. 

• Selection and prioritization of short- and long-term Restoration treatments - 

Plan and schedule friction restoration activities as part of the overall 

pavement management process by comparing costs and benefits of the 

different restoration alternatives over a defined analysis period. 

This project followed the framework in Figure 4-2 and made the most use of 

the available ODOT datasets described in Chapter 3. The pavement sections were 

consistent with the current control sections and subsections in the PMS dataset. The 

crash data were recorded in the SAFE-T dataset, and the friction data were 

processed from the Skid Studies Program. The establishment of the investigatory 

and intervention levels is introduced herein, and the selection of treatments through 

a life cycle cost analysis will be investigated in the following chapters. 
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Figure 4-2 Flowchart of An Example PFM Program (AASHTO, 2009) 
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4.3.2 Methods for Determining Friction Demand 

Because conditions and circumstances change along a highway, it is 

challenging to define one single friction threshold between “safe” and “potentially 

unsafe.” Although the ideal situation is to have friction supply meet or exceed friction 

demand over the entire system, such a practice would be prohibitively expensive (as 

well as largely unnecessary) and would not generate the cost-benefits associated 

with a better-targeted strategy. A more practical approach, therefore, is to maintain 

an appropriate level of pavement friction within the highway network, based on each 

section’s friction demand. This approach ensures the provision of adequate friction 

levels for a variety of roadways (intersections, approaches to traffic signals, tight 

curves) and traffic conditions. 

In a PFM program, the adequacy of friction is assessed using the two distinct 

threshold levels defined earlier in this Chapter - investigatory and intervention levels. 

Pavement sections with measured friction values at or below an assigned 

investigatory level are subject to a detailed site investigation to determine the need 

for a warning or remedial action, such as erecting warning signs, performing more 

frequent testing and analysis of friction data and crash data, or applying a short-term 

restoration treatment. For pavement sections with friction values at or below the 

intervention level, remedial action may consist of either immediately applying a 

restoration treatment or programming a treatment into the maintenance or 

construction work plan and erecting temporary warning signs at the site of interest. 

Presented in the sections below are three feasible methods to establish the 

investigatory or intervention friction levels, either in terms of friction number (FN) or 
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international friction index (IFI), as recommended in the AASHTO Guide of 

Pavement Friction for use in identifying deficient or potentially deficient PFM 

sections. 

 

Figure 4-3 Setting Investigatory and Intervention Levels Using Time History of 

Pavement Friction (AASHTO, 2009) 

Method 1 establishes thresholds only using historical pavement friction data. 

An example graphical-based Method 1 is presented in Figure 4-3. This method uses 

historical trends of friction loss determined by plotting friction loss against pavement 

age or time for a specific friction demand category. The investigatory level is set at 

the pavement friction value where friction loss begins to increase at a significantly 

faster rate. The intervention level is then set at a certain amount (e.g., five FN 

points) or percentage (e.g., 10 percent) below the investigatory level. The friction 
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value at which friction loss begins to increase rapidly can be determined graphically 

or through analytical/statistical methods.  

Method 2 establishes thresholds using both historical pavement friction data 

and crash data. This method compares historical pavement friction and crashes data 

for the given friction demand category for which levels are being set. Figure 4-4 

shows a plot of friction and wet-to-dry crash trends for a specific friction demand 

category. The investigatory level is set corresponding to a large change in friction 

loss rate, while the intervention level is set where there is a significant increase in 

crashes. 

 

Figure 4-4 Setting Investigatory and Intervention Levels Using Time History of 

Friction and Crash Rate History (AASHTO, 2009) 

Method 3 establishes thresholds using pavement friction distribution and 

crash rate - friction trend. This method uses the distribution of friction data versus 
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the crash rates that correspond with the friction for the category of the roadway for 

which the levels are being set. As the most robust approach, Method 3 has the 

advantage of allowing one to discern the number of roadway sections below a 

certain level and to adjust the level to accommodate a highway agency’s needs and 

budget.  

4.3.3 Determining Friction Demand with Crash Frequency 

 The data used to determine the friction demands were preprocessed from 

the available data items at ODOT as described in Chapter 3. 1, 812 subsections 

were filtered out with friction values compiled from the Skid Studies Program and 

crash numbers from the SAFE-T database. The recorded friction values of each year 

from 2010 through 2018 were compiled together with the numbers of crashes on 

these pavement subsections. The paired friction values and numbers of crashes 

were compiled and summarized in Table 4-7.  

Table 4-7 Subsection Counts and No. of Crashes by Friction Range 

Friction Range Subsection NO. Mean of Crash Number 
<20 28 14.9 
[20,25) 115 17.5 
[25,30) 366 12.0 
[30,35) 1116 5.6 
[35,40) 1670 3.3 
[40,45) 1709 2.5 
[45,50) 1164 1.8 
[50,55) 511 1.2 
[55,60) 128 0.9 
[60,65) 19 1.2 
≥65 4 1.0 
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Figure 4-5 Setting Investigatory and Intervention Levels Using Oklahoma 

Friction and Crash Data 

Method 3 was applied in this project to establish the friction demand 

thresholds using pavement friction distribution and crash rate–friction trend, with the 

following four steps: 

• Step 1 - plotted a histogram of counting pavement subsections with friction 

value at several ranges. On the same graph, plotted the average mean 

number of the wet-to-dry crash for the friction value at the same range 

(Figure 4-5). 

• Step 2 - calculated the mean pavement friction (mean= 40.3) and standard 

deviation (sd = 7.4) for all the studied subsections. 

• Step 3 - set the investigatory level as the mean friction value minus “X” times 

of standard deviations of friction. The factor “X” was adjusted in 

consideration of the wet-to-dry crashes curve. According to Figure 4-5, “X” 
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was set to 0.7, and the investigatory level was set to 35, where the wet-dry 

crashes began to increase considerably.  

• Step 4 - set intervention level as the mean friction value minus “Y” times of 

standard deviations of friction. The factor “Y” was more significant than “X” 

and was adjusted so that the intervention level to a minimum satisfactory 

wet-to-dry crash rate or by the point where the amount of money was 

available to repair that many roadway sections. Herein, “Y” was 

recommended to be 1.4, and the intervention level was set as 30. However, 

the friction levels could be further adjusted based on the cost and benefit 

analysis.  

 

4.4 Summary 

This Chapter described the detailed procedures of processing the ODOT 

datasets for the development of enhanced Safety Performance Function (SPF) and 

the establishment of friction demand levels. The developed SPF can be used to 

predict the expected number of crashes under different pavement conditions. On the 

other hand, the friction demands are a crucial component for the Pavement Friction 

Management program. An in-depth analysis of friction and crash data suggested that 

the investigatory level could be set to 35 and the intervention level be 30. The 

findings from this Chapter would be integrated into Chapter 6 to quantify the safety 

costs for various pavement preventive treatments. 
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CHAPTER 5 PAVEMENT FRICTION PREDICTION MODELS 

 

Predicting pavement friction is an important step in a Pavement Friction 

Management program for the selection and prioritization of restoration treatments. 

The various data sources from Chapter 3 enable the use of in-depth statistical 

modeling techniques to develop friction prediction models for different pavement 

maintenance treatments. In this Chapter, the friction performance after each 

treatment was analyzed, and conventional regressional friction models were 

developed using the ODOT datasets. Meanwhile, advanced deep learning (DL) 

based algorithms were also implemented for friction prediction directly using 

pavement surface texture profiling data, which could provide an additional alternative 

for evaluating skid resistance on roadway segments without filed friction data. 

 

5.1 Conventional Regression Models 

Figure 5-1 shows the compiling process of friction numbers for the 

subsections before and after maintenance treatments based on the data sets from 

the ODOT database. Pavement subsections received preventive treatments were 

identified from the SiteManagerTM database, and their construction material 

properties were also acquired. The descriptive location information in SiteManagerTM 

for each subsection was then linked to the corresponding control section ID and the 

GPS coordinates in the PMS database. Subsequently, the traffic volumes on the 
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subsections were obtained from the ODOT traffic maps. The friction numbers before 

and after each treatment were compiled from the Skid Program.  

 

Figure 5-1 Flowchart for Conventional Friction Model Development 

After a comprehensive data compiling process, 770 subsections with 

complete data sets were identified for further analysis, who received three primary 

types of maintenance treatments. Table 5-1 summarized the number of subsections 

for each treatment type. A thin overlay is the most widely used treatment type, while 

UTBWC has the least number of subsections. The following analyses were 

conducted on three aspects: the friction performance for each treatment, the 

influencing factors of friction performance, and the development of regressional 

friction prediction models. 
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Table 5-1 Summary of Subsections with Preventive Treatments 

Treatment Type Subsection Number SiteManager Definitions 
Thin Overlay / Superpave Mix 

AC TypeS4 526 Asphalt Concrete Type S4 
AC TypeS5 89 Asphalt Concrete Type S5 
AC TypeS6 12 Asphalt Concrete Type S6 

UTBWC 34 Ultra-Thin Bonded Wearing Couse 
Diamond Griding 109 P.C. Concrete for Pavement 

 
5.1.1 Friction Performance of Preservation Treatments 

The identified subsections were further filtered where friction numbers were 

available shortly after the construction (within 1 year), in order to investigate the 

friction performance immediately after each treatment, as summarized in Table 5-2. 

Figure 5-2 visualized the distribution of friction numbers for each treatment type. 

Pavements with diamond grinding treatments demonstrated the highest average 

friction numbers, possibly resulted from the enhanced macrotexture after grinding. 

The friction numbers of pavements with UTBWC treatments were slightly higher than 

those with thin overlays. Thin overlays paved with AC S6 mixes had a higher 

average friction number than S4, S5 mixes, and UTBWC.  However, it should be 

noted that the sample sizes for S6 mixes and UTBWC were relatively small, whose 

results may not be accurate. 

Table 5-2 Summary of Pavement Friction Immediately After Maintenance 

Maintenance Type Section Count Min. Max. Mean Standard deviation 
Thin Overlay 122 28.8 58.4 41.7 6.1 

AC TypeS4 83 28.8 58.4 40.8 6.5 
AC TypeS5 31 33.2 49.9 42.9 4.7 
AC TypeS6 8 43.0 53.3 46.4 3.6 

UTBWC 7 37.0 54.5 43.6 7.0 
Diamond Grinding 32 35.5 52.4 45.6 5.2 
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Figure 5-2 Boxplot of Pavement Friction for Each Treatment Type 

5.1.2 Influencing Factors on Friction Performance  

The multivariance linear analysis was conducted to investigate the influencing 

factors on the friction performance for the preventive treatments. The friction number 

was the dependent variable while treatment age, treatment type, traffic volume 

(AADT), binder type, and aggregate type and properties (Los Angeles LA Abrasion, 

Micro Deval, and rock type) were adopted as the independent variables. The three 

categorical factors: the treatment type, binder type, and aggregates type were coded 

into nominal scales. For example, the thin overlay S4 was set as the default nominal 

type while the other treatment types (S4 and S5) were compared to S4 as an 

indicator variable. 
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Table 5-3 Pavement Friction Multivariant Analysis Results 

Variable Estimate Std. Error t value Pr(>|t|) Significance 
Intercept 47.46 2.82 16.85 <0.001 *** 
Treatment Age (Year) -0.44 0.20 -2.23 0.027 * 
AADT (1000 vehicles / day) -0.10 0.03 -3.84 0.000 *** 
Treatment Type 
(AC TypeS4 as comparison) / / / / / 
 AC TypeS5 3.35 0.79 4.26 <0.001 *** 
 AC TypeS6 3.41 2.30 1.48 0.140  
 UTBWC 6.15 1.27 4.84 <0.001 *** 
 Diamond Grinding 2.53 1.55 1.63 0.105  
Binder Grade  
(PG 64-22 as comparison) / / / / / 
 PG 70-28 3.61 2.59 1.39 0.165  
 PG 76-28 -0.74 1.31 -0.56 0.575  
LA Abrasion -1.23 0.45 -2.77 0.006 ** 
Micro Deval 1.17 0.29 4.10 <0.001 *** 
Aggregate Type  
(Rhyolite as comparison) / / / / / 
 Limestone 4.84 3.26 1.48 0.140  
 Sandstone 11.24 5.34 2.11 0.037 * 
 Granite 13.41 4.69 2.86 0.005 ** 

Note: 1. Significance Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 2. Residuals: Min -11.02, 1Q -2.81, Median 0.18, 3Q 2.86, Max 14.16 
 3. Residual standard error: 4.09 on 167 degrees of freedom 
 4. Multiple R-squared:  0.53, Adjusted R-squared:  0.50 
 5. F-statistic: 14.6 on 13 and 167 DF, p-value: <2e-16 
 

The multivariant analysis results were summarized in Table 5-3. The 

regression model had an adjusted R squared value of 0.50, indicating roughly 50% 

of the variance in friction numbers could be explained by the influencing factors. The 

friction values declined at the rate of 0.44 units per year. An addition of 1000 AADTs 

in traffic volume would cause 0.1 units to decrease in pavement friction.  

As compared to the S4 treatment, the S5 and S6 treatments could improve 

the pavement frictions by 3.35 and 3.41 units, while the diamond grinding and 
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UTBWC lifted the friction by 2.53 and 6.15 units, respectively. In other words, 

UTBWC performed the best in improving pavement friction. For binder grade, PG 

64-22 was used as the baseline type, but the statistical results indicated pavement 

friction was not sensitive to the change of binder grade.  

The aggregate properties had significant influences on pavement friction 

based on the statistical analysis results. LA abrasion and Micro-Deval are two 

essential properties for aggregates. The LA abrasion test subjects coarse aggregate 

samples (retained on the No. 12 (1.70 mm) sieve) to abrasion, impact, and grinding 

in a rotating steel drum containing a specified number of steel spheres. The LA 

abrasion test tends to break aggregates while the Micro-Deval test tends to polish 

them. As a result, a lower LA abrasion loss value indicates that the aggregates are 

tougher and more resistant to abrasion. On the contrary, aggregates with a higher 

Micro-Deval value tend to result in higher pavement friction. The statistical results in 

Table 5-3 confirmed these assumptions.  

For the aggregate type, rhyolite was set as the comparison group, and the 

analysis showed that sandstone and granite aggregates could significantly increase 

pavement frictions, while the results for treatments with limestone were not 

statistically significant. 

5.1.3 Regressional Friction Prediction Models 

The statistical regressional model derived from Table 5 3 was comprehensive 

by considering all the statistically important variables. However, on many occasions, 

the values for serval variables are unknown on existing pavement surfaces. Besides, 

the major objective of this study was to select the appropriate preventive treatment 
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for a maintenance project with optimal skid performance and thus safety benefits. 

For this specific application, the traffic volume, aggregate type and properties, binder 

type can be assumed to be identical. Therefore, in this section, a simplified linear 

friction prediction model for each treatment type was developed considering the 

treatment type as the only independent variable. The friction deterioration before and 

after each treatment was examined. 

 
Figure 5-3 Friction Variations of Pavement Sections After UTBWC Treatment  

Taking UTBWC as the example, the friction variations on the pavement 

sections before and after UTBWC treatments were plotted in Figure 5-3. On the left 

half of the figure, both the sections in red and in blue had not received any treatment 

yet. It is observed that those sections (“before treatment”) showed very similar 

determination trends in terms of the friction numbers. On the right half of the figure, 

the sections in red from the left half received their first UTBWC treatment (“after 

treatment”) while those in blue remained untreated (“before treatment”). A 
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performance jump was observed when comparing surface friction values for the 

“before treatment” and “after treatment” sections. A linear friction model was thus 

built with the intercept of 42.5 (initial friction after treatment) and a deterioration rate 

of -0.8 units per year. 

Similarly, the linear deterioration models for thin overlay and diamond 

grinding were also built, whose results were summarized in Table 5 4. In recent 

years, ODOT has installed dozens of high friction surface treatments (HFST) to 

address safety needs at high demanding locations. The research team used the 

OSU Grip Tester and collected seven rounds of friction data (November 2015, 

March 2016, June 2016, September 2016, January 2017, July 2017, and December 

2017) on 6 HFST sites (3 sites on SH-20 in Salina, 2 sites on I-40 and 1 site on I-44 

in Oklahoma City. The friction data were plotted in Figures 5-4. The average friction 

values of the six HFST sites from the seven collection events were 0.97, 0.89, 0.79, 

0.73, 0.66, 0.69, and 0.61. The friction numbers measured from the Grip Tester were 

transformed to the skid numbers measured with the ODOT locked wheel tester 

(referred to as SN) using the conversion equation developed from in the ODOT 

SP&R 2306 research project. Subsequently, the linear regression model for HFST 

was also developed, whose results were added to Table 5-4. 

 
Figure 5-4 Friction Deterioration of HFST Sites in Oklahoma  
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Table 5-4 Linear Friction Deterioration Models 

Maintenance Type Intercept Deterioration Rate Subsection No. R2 

Thin Overlay 41.4 -0.5 98 0.42 
UTBWC 42.5 -0.8 29 0.45 
Diamond Grinding 44.5 -0.6 10 0.43 
HFST 95.0 -5.9 6 0.93 

 
HFST had the highest intercept in the friction model, followed by the diamond 

grinding, UTBWC, and thin overlay. Slight differences were observed between the 

intercepts in Table 5 4 and the average value shown in Table 5 2. The reason was 

that the data used in this section did not include sites with more than one treatment 

during the analysis period. For deterioration rates, HFST deteriorated at the highest 

rate, followed by UTBWC, diamond grinding, and thin overlay. The R2 of HFST 

reached over 0.93, while those for the other three treatment types were around 0.44, 

indicating only about 44% of the variances in friction numbers could be explained by 

the regression models. More robust models are therefore expected for reliable 

analysis results. 

 

5.2 Deep Convolutional Neural Network (CNN) Friction Model 

It is widely accepted that surface macro-texture is a predominant contributor 

to pavement friction and wet-pavement safety. In a friction model, most state 

highway agencies characterize macro-texture data using traditional indicators. 

However, such methods depend on simple averaging of the profile peaks, which 

abandon the rich detailed information of the texture profiles. It is expected that 

friction models developed directly using high-resolution raw surface texture data 
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could generate more accurate results than those based on the traditional texture 

indicators. 

In this section, deep learning (DL) based friction prediction model was 

developed using the most recent development in artificial intelligence. The DL model 

development process includes two critical steps: (1) obtain the raw pavement 

surface texture profile data at the top critical portion where the tire-road contact 

occurs; (2) utilize the convolutional neural network (CNN), one of the commonly 

used DL architectures, for the development of DL friction model named as 

FrictionNet. 

5.2.1 Data Acquisition and Processing 

The data used herein were acquired from 49 high friction surface treatment 

(HFST) sites in 12 states in the U.S., including Oklahoma, through a research 

project sponsored by the Federal Highway Administration (FHWA). The locations of 

the data collection sites are shown in Figure 5-5. Pavement macrotexture data and 

friction data were collected in parallel at traffic speed using the AMESTM high-speed 

profiler and the OSU Grip Tester, respectively.  

The AMES Model 8300 Survey Pro High-Speed Profiler is used to collect 

surface macro-texture data at 0.5 mm (0.020 in) sampling intervals at speeds 

between 40 km/h (25 mph) and 112 km/h (70 mph). The system is certified by the 

FHWA Long-Term Pavement Performance program and other state testing agencies 

(AMES 2017). The Grip Tester, designed following the ASTM E2340/E2340M-

11R15 standard (ASTM E2340/E2340M-11R15 2015), can continuously measure 

pavement longitudinal friction operating around the critical slip of an anti-lock braking 
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system (ABS). The device can operate at the highway speed of 80 km/h (50 mph) as 

well as the low speed of 32 km/h (20 mph) using the desired water film thickness 

sprayed in front of the testing tire during data collection. 

 

 

Figure 5-5 Friction Data Collection Site Locations 

In addition to the HFST sections, the adjacent untreated lead-in and lead-out 

pavement sections 300 ft before and after the HFST treatments were also tested in 

the data collection. These sections included those on flexible pavements, rigid 

pavements, and bridge decks with or without grooving (Figure 5-6).  The surface 

macrotexture data was collected at 0.020-in (0.5-mm) sampling interval at speeds 

between 25 mi/h (40 km/h) and 70 mi/h (112 km/h). The friction data from the Grip 

Tester was continuously measured at 3-ft (1-m) interval.  
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Figure 5-6 Examples Pavement Categories 

After collecting pavement macro-texture and friction data, the measured 

macro-texture profile and friction number are paired for every 1-meter segment for 

the DL model development. Instead of using the raw macro-texture profiles, the 

spectrogram of the macro-texture profile was obtained and fed to the CNN network 



 

55 

as the training input. Every 1-meter raw macro-texture profile contained 2,000 

texture points, while its corresponding spectrogram had a dimension of 50 × 38. The 

transformation of raw texture profile into spectrogram has been successfully 

implemented in many one-dimensional (1D) audio signal processing studies for CNN 

network training and information retrieval (Dieleman and Schrauwen 2014 and 

Huang et al. 2015). Figure 5-7 shows an example spectrogram with time and 

frequency decompositions of a macro-texture profile. The collected friction numbers 

are rounded to the nearest 0.1 ranging from 0.2 to 1.0 to represent skid performance 

of diversified pavement surface categories. 

 
Figure 5-7 Example Spectrogram of Texture Profile 

Data collection accomplished on the field sites had a total length of 63,648 m 

(208,818.9 ft). The obtained texture and friction data had an imbalanced distribution 

between the different classes. For example, there were 15,319 friction values equal 

to 0.8 whereas only 2,328 of them were 1.0. The data imbalance feature could 
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underperform the CNN model since CNN architecture assumes a balanced 

distribution of classes in the training data. Therefore, the sampling method, as 

introduced in other studies (Chen et al. 2004 and He and Garcia 2009), was adopted 

herein to generate a balanced distribution of classes in the prepared dataset and to 

improve the performance of the proposed model. Finally, the 63,000 pairs of macro-

texture and friction data with a balanced distribution of classes were prepared for the 

development of FrictionNet. 80%, 10%, and 10% of the prepared data were 

randomly selected for training, validation, and testing, respectively. 

5.2.2 Deep CNN Modeling and Training 

As depicted in Figure 5-8, the proposed deep-learning CNN model FrictionNet 

was constituted of six layers: two convolution layers, three fully-connected layers, 

and one output layer. The convolution layers extracted feature maps of the input, 

while the fully connected layers connected neurons between layers and classify the 

input. The input of the proposed FrictionNet was the spectrogram of raw texture 

profile with the size of 50 × 38. The output layer produced the probability distribution 

of predicted 9 friction levels based on the result of the softmax function. There were 

64 and 96 kernels with size 3 × 3 for the first and second convolutional layers. 64, 

96, and 32 neurons were contained in each fully-connected layer from the left to the 

right as shown in Figure 5-8. After each convolutional layer, average pooling was 

added with the size of 2 × 2 without overlapping. The activation function employed 

hyperbolic tangent function for the convolutional and fully connected layers, which 

has been commonly used in artificial neural networks (Cireşan et al. 2012). 
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The tuned parameters of FrictionNet, in a total of 606,409, were summarized 

in Table 5-6. The network was trained using the 50,400 pairs of pavement texture 

spectrogram and friction data sets. With one NVIDIA GeForce GTX TITAN Black 

graphics processing unit (GPU) card, the training process took 2.73 hours and 

reached maximum training and validation accuracy. The MXNet library 

(https://mxnet.incubator.apache.org/) was implemented as the platform herein for the 

development of FrictionNet. 

 

Figure 5-8 Deep Learning-based FrictionNet Architecture 

Table 5-5 Parameters for FrictionNet 

Layer Number of parameters 
Layer 1: convolution 640 
Layer 2: convolution 55,392 
Layer 3: fully connected 540,736 
Layer 4: fully connected 6,240 
Layer 5: fully connected 3,104 
Layer 6: output 297 
Total 606,409 

 
Selecting the appropriate combination of various training techniques was 

influential in the training process for FrictionNet to achieve high prediction accuracy 

and reduce training time. Stochastic gradient descent and Xavier initialization were 
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related to the weight information during the training of the model; L2 regularization 

and dropout layers were applied to combat overfitting for the network; Cross-Entropy 

and softmax function were adopted concerning the classification of the predicted 

friction numbers. The brief introductions to the techniques with the best performance 

for the proposed model were described in the following. 

Learning method. The weighting parameters can be updated during the 

learning process via several approaches: AdaGrad optimizer (Duchi et al. 2011), 

RMSprop optimizer (Hinton et al. 2012), and stochastic gradient descent (Krizhevsky 

et al. 2012). Stochastic gradient descent demonstrated the best performance and 

was adopted in this CNN model as the learning method with a batch size of 30 

examples, the momentum of 0.9, and weight decay of 0.0005. A small weight decay 

was essential to tune the CNN model, and the update of weight was defined as 

  (5-1) 

where i is the iteration index, v is the momentum variable, ε is the learning rate, and 

the component inside of the open angle bracket is the average over the ith batch Di 

of the deviation of the objective with respect to w, evaluated at wi (Krizhevsky et al. 

2012). 

Weight initialization. Right weight initialization is important to ensure the 

network converging with reasonable training time and controllable loss function. 

Three methods: uniform, normal, and Xavier initialization had been tested to initialize 

the weights in each layer of the proposed network. The Xavier initialization, which is 
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designed to keep the scales of gradients at roughly the same level within all layers, 

worked best in practice among them. This initializer filled the weights with random 

numbers in the range of [-c, c], where c equals to the square root of 2.34 divided by 

ni in this model and 𝑛𝑛𝑖𝑖 is the number of neurons feeding into weights (Glorot and 

Bengio 2010). 

Combat overfitting. Overfitting refers to a model that approximates the 

training data too well that the noise or random fluctuations in the training data is 

picked up and learned as concepts by the model (Brownlee 2016). Overfitting could 

occur during the tuning of the 606,409 parameters in the FrictionNet model. 

Regularization methods, including L2 regularization and dropout layers, were applied 

to combat the overfitting of the network. L2 regularization, also known as weight 

decay, modified the cost function by adding an extra term which was the sum of the 

squares of all the weights in the network. The extra term was expressed as 

   (5-2) 

Where λ>0 is known as the regularization parameter, and n is the size of the training 

set (Nielsen 2017).  

The dropout layer is another efficient technique to reduce overfitting with 

significant improvements over other regularization methods (Krizhevsky et al. 2012 

and Srivastava et al. 2014). Two dropout layers were utilized after the first and the 

second fully-connected layers with the probability of 0.25. With this dropout layer, 

25% of the hidden neurons in the two fully-connected layers would be randomly 

excluded during training. This significantly increased the robustness of the model 
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with different random subsets of the neurons, and therefore reduced test errors and 

overfitting (Krizhevsky et al. 2012). 

Cost Function. The cost will be high if the proposed model cannot accurately 

classify friction numbers. Cross-Entropy was employed in FrictionNet as the cost 

function of the softmax classifier to address the learning slowdown issue and 

measure how close the actual output to the desired output (Nielsen 2017). Since the 

prediction of friction number via FrictionNet was a discrete multi-class classification 

problem, the Cross-Entropy was defined as: 

    (5-3) 

where p and q are the actual and predicted friction number at xth training individually. 

Cross-Entropy could improve the learning speed and learn at a rate controlled by the 

similarity between the actual and predicted friction number (Zhang et al. 2017). 

SoftMax Function. The SoftMax function is popular as the final layer of a 

neural network that yields the predicted probability scores for multi-classification 

problems (Glorot and Bengio 2010, Krizhevsky et al. 2012, Abdel-Hamid et al. 2014, 

and Nielsen 2017). The calculated probabilities ranged from 0.0 to 1.0 for each 

class, while the sum of all probabilities should be 1.0. The target class would have 

the highest probability score among all the possible classes. The SoftMax function 

was explained as 

  (5-4) 

where the net input z is defined as z = w0x0+w1x1+…+wmxm (w is the weighted 

vector, x is the feature vector of a training sample, and w0 is the bias unit) (Raschka 
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2015). It computed the probability that the training sample x(i) belonged to class j 

was given the weight and net input z(i). Accordingly, the softmax function was 

applied to the output layer so that the FrictionNet could be used to predict friction 

level among the 9 classes ranging from 0.2 to 1.0 at 0.1 intervals. 

5.2.3 Prediction Results 

The performance of FrictionNet was evaluated based on the classification 

accuracy score, which was defined as the number of correct predictions divided by 

the total number of model predictions multiplied by 100 to turn it into a percentage. 

The classification accuracy score was expressed as below: 

Where y^ and y are the predicted and actual friction levels.  

   (5-5) 

 
Figure 5-9 Accuracy of FrictionNet 
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50,400 and 6,300 pairs of pavement texture spectrogram and friction data 

sets were randomly selected for the training and validation of FrictionNet. The 

classification accuracies for training and validation were displayed in Figure 5-9. As 

observed, the accuracy was improved as the training round increases. The highest 

classification accuracy of FrictionNet was 96.85% observed at the 314th iteration. 

Therefore, the parameters derived at the 314th iteration were considered as the 

“optimal” for the FrictionNet architecture. The accuracy of training data achieved at 

96.85% while 88.92% for validation data. With the L2 regularization and dropout 

layers, the validation classification accuracy remained approximately to that of the 

training data, indicating no overfitting problem in this model.  

The testing data was selected from one of the testing sites. It was 

approximately 6,300-meter or 3.9-mile in length, which contained 6,300 texture 

profiles. The optimal parameters obtained from training and validation data training 

were applied in prediction on testing data. The predicted and actual friction levels 

were summarized in Table 5-6. The numbers located along the diagonal line in the 

confusion matrix represented the correct predictions for each friction level. 5,573 

correct predictions and 727 false predictions were obtained from the model for the 

testing data sets, resulting in a classification accuracy of 88.37%. There were two 

potential reasons for the incorrect predictions. First was the location wondering of 

GPS from two data collection devices.  In detail, pavement texture and friction data 

were collected via two separate vehicles and then paired based on their GPS 

coordinates, which may produce slightly different readings. Also, the wandering of 

the two vehicles during field data collection may vary. Second, the noises in the 
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input of FrictionNet, though addressed by the spectrogram technique, may still have 

impacts on the friction prediction accuracy. Nevertheless, the results in Table 5-6 

show that FrictionNet could predict correct friction levels with high accuracy. 

Table 5-6 Summary of FrictionNet Prediction Accuracy 

Actual/predicted friction 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0.2 687 17 12 12 8 5 4 0 4 
0.3 20 577 34 12 12 3 10 5 2 
0.4 24 54 557 18 16 6 9 7 6 
0.5 16 28 16 618 12 3 8 3 2 
0.6 9 18 5 4 638 7 8 3 3 
0.7 4 11 5 2 2 659 9 2 3 
0.8 10 34 11 11 18 28 562 39 13 
0.9 9 8 7 6 4 11 28 616 7 
1 0 1 2 0 0 1 2 0 653 

 

The total processing time for the entire testing section was 1.78 minutes. On 

average, it takes 16.95 milliseconds per processing of one texture profile. The 

processing time was much shorter than the time took to collect the responding 3.9-

mile field data at 60 mph (approximately 3.90 minutes). In addition, the FrictionNet 

was implemented on a single middle-class GPU. With more advanced algorithms 

and powerful GPU, the processing time could be reduced further. Therefore, the 

current FrictionNet can predict friction numbers from the collected texture data in 

real-time.  

To better visualize the performance of FrictionNet, the actual and predicted 

friction levels of 50 randomly selected samples from the testing data were plotted in 

Figure 5-10. Only 3 false predictions appeared in the 50 selected samples. The 

prediction accuracy on validation and testing data sets was 88.92% and 88.37% 
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which excelled the accuracy of the regression model using traditional texture 

indicators. 

 

Figure 5-10 FrictionNet Validation Results 

5.3 Summary 

This Chapter analyzed the friction performance of the commonly used 

treatment types in Oklahoma. The influencing factors on friction were identified 

based on multivariate analysis methods, and the deterioration models were 

developed using ODOT data sets. The deterioration models can be combined with 

the SPF model developed in Chapter 4 to predict the friction variations and the 

expected crash numbers of the pavements with various preventive treatment options 

during the entire life cycle period, which will be discussed and applied in Chapter 6 

for the selection and prioritization of restoration treatments.  
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Meanwhile, deep-learning techniques were applied in this Chapter for the 

development of the FrictionNet model directly using pavement surface texture 

profiles. The FrictionNet results demonstrated promising accuracy in classifying 

pavement friction levels, which could enable transportation agencies to predict 

friction performance from texture profiles in real-time. 
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CHAPTER 6  LIFE CYCLE COST ANALYSIS FOR COMPARING MAINTENANCE 

STRATEGIES  

 

With the enhanced SPF and the friction prediction models developed in 

Chapter 4 and Chapter 5, the different maintenance strategies can be prioritized 

based on agency, user, but also safety-related costs during the life cycle analysis 

period. The RealCost software developed by FHWA has been widely used by state 

highway agencies to predict agency and user costs. A VBA spreadsheet tool was 

developed to supplement RealCost by including the calculation of safety costs in the 

life cycle cost analysis procedure.  

 

6.1 Life Cycle Cost Analysis 

6.1.1 The LCCA Procedure 

Transportation agencies advocate for effective measures evaluating the 

costs, benefits, timing, longevity, and decision-making process to determine an 

effective pavement program (MnDOT, 2014). As an increasingly challenging issue, 

preservation is especially critical in Oklahoma due to its relatively small 

transportation budget and correspondingly fragile maintenance budget (Riemer et 

al., 2010).  Instead of conducting costly, time-consuming rehabilitation and 

reconstruction projects, proactive preservation is more cost-effective to provide the 

traveling public with improved safety and mobility, reduced congestion, smoother 

and longer-lasting pavements (Geiger, 2005).  
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Life cycle cost analysis (LCCA) is an engineering economic analysis tool that 

many state agencies require for pavement construction and rehabilitation decision 

making (MnDOT, 2017; Gransberg et al., 2010; Bilal et al., 2009; J. Hall et al., 2009; 

Monsere et al., 2009; Cambridge et al., 2005).  The basic steps involved in an 

LCCA, as shown in Figure 6-1, were summarized from the FHWA Life Cycle Cost 

Analysis Primer (FHWA 2002) and the Interim Technical Bulletin (FHWA 1998): 

 
Figure 6-1 Flowchart of Life Cycle Cost Analysis 

• Make initial strategy and analysis decisions (strategies and analysis 

period).  The strategies involve rehabilitation and maintenance activities of 

each alternative expected over the analysis period.  The analysis period 

should be sufficiently long to reflect long-term cost differences between 
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alternatives. The activity timing is generally determined by the analyst’s 

judgment based on experience and historical data.  

• Estimate costs.  Costs associated with the owning agency and users are 

calculated for each alternative. Agency costs included costs for project 

supervision and administration, materials, labor, and traffic control for the 

initial installation, as well as any rehabilitation and maintenance costs 

required over the life cycle of the alternative.  User costs incurred by the 

traveling public include those in both work-zone and non-work-zone 

phases.  Generally, the user costs incurred during non-work-zone phases 

are excluded in LCCA due to a lower likelihood of difference among 

alternatives (FHWA, 2002).  

• Compare alternatives. Comparison usually involves expressing each 

alternative using a common metric such as the net present value (NPV) or 

a benefit-cost ratio (B/C). 

• Analyze the results and reevaluate alternatives. Results should be 

scrutinized for the most influential costs, factors, and assumptions. LCCA 

has two possible computational approaches: deterministic and 

probabilistic (FHWA, 1998).  The deterministic approach uses discrete 

input values and a single output value and has been the traditional LCCA 

type used in transportation decision making (FHWA, 2002).  A probabilistic 

approach generally involves sensitivity analysis and risk analysis. Original 

design strategy alternatives should be reevaluated base on these results 

analysis in order to improve the cost-effectiveness of each alternative. The 
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deterministic LCCA is less complex than a probabilistic type and can be 

appropriate when uncertainty is not expected to have a material effect on 

the outcome of the economic analysis (FHWA, 2003).  

6.1.2 Available Tools  

Currently, several software programs are available on the market for the 

LCCA of pavements. The two most well-known tools are the RealCost software 

developed by the Federal Highway Administration (FHWA) and the LCCAExpress by 

the Asphalt Pavement Alliance (APA). Both RealCost and LCCAExpress use the 

LCCA principles recommended by the FHWA to compare the economics of 

alternative designs for a given road project. LCCAExpress is an executable program 

and outputs an Excel file with only one worksheet, which is less friendly for 

secondary development as compared to RealCost. The RealCost software is a VBA 

program building on a 32-bit version of Microsoft Excel, and it exhibits its inputs and 

results in multiple worksheets. Agency and user costs can be calculated from both 

tools during the life cycle period. However, neither RealCost nor LCCAExpress have 

considered safety costs resulting from roadway crashes in the prioritization of 

alternative maintenance strategies. 

 

6.2 Calculation of Cost Components 

6.2.1 RealCost Software Outputs 

RealCost allows pavement designers to investigate the effects of cost, service 

life, and economic inputs for life-cycle pavement investment decisions, whose 
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graphical user interface (GUI) is shown in Figure 6-2. 

 

Figure 6-2 User Interface of RealCost 

Figure 6-3 shows the interface to define activity information including time, 

type, construction cost, and work zone inputs for each alternative, and to save the 

input files of all alternatives being considered. After specifying project and alternative 

details, the software calculates life-cycle values for both agency and user costs 

associated with construction and rehabilitation using the FHWA’s work zone user 

cost calculation method. The user costs are calculated by comparing the traffic 

demand to roadway capacity on an hour-by-hour basis. The RealCost software can 
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perform both deterministic and probabilistic LCCA modeling of pavements, and also 

supports deterministic sensitivity analyses and probabilistic risk analyses. 

 
Figure 6-3 Alternative Details in RealCost 

RealCost provides both tabular and graphic comparisons of agency and user 

costs. Example figures produced from RealCost are shown in Figure 6-4. The users 

can not only compare the total costs of alternatives but also estimate the 

expenditure of agency and users during the analysis period. Similar to any economic 

tool, LCCA provides critical information to the overall decision-making process, but 

the analyst should make the final decision after combining other considerations such 

as risk, available budgets, and political and environmental concerns. 
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Figure 6-4 Example Output Figures in RealCost 
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Despite its friendly user-interface and streamlined LCCA procedure, the 

RealCost software has its limitation and disadvantages. For example, the software 

does not calculate agency costs or service lives for individual construction or 

rehabilitation activities. These values must be input by the analyst and should reflect 

the construction and rehabilitation practices of the agency. Besides, the crash-

related safety costs are not considered in the software calculation. Neglecting the 

difference in pavement safety performance may results in incorrect calculation of the 

overall costs of preservation treatments, especially for those targeted to improve 

roadway safety such as the high friction surface treatments (HFST). 

6.2.2 Safety Cost 

The findings in the former chapters have pathed the way to estimate and 

integrate safety costs into the LCCA procedure. The friction prediction models can 

predict the surface skid variations during its life cycle after a preservation treatment 

is installed. Subsequently, the expected number of crashes for the segment under 

study is estimated using the enhanced SPF, in which pavement friction and several 

other indicators (in Chapter 4) are its influencing factors. Finally, the safety cost of 

each alternative can be obtained by multiplying the number of expected crashes with 

the unit crash cost.  

The FHWA’s Crash Costs for Highway Safety Analysis guideline documented 

a comprehensive review on the calculation of the unit crash costs considering 

various crash severities and types and their applications. Two types of injury scales 

are included in the guideline: the KABCO scale and the maximum abbreviated injury 

scale (MAIS). KABCO, as defined in the Model Minimum Uniform Crash Criteria 
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(MMUCC), is a standardized set of data elements and attributes for crash reporting, 

where K stands for Fatal Injury, A stands for Suspected Serious Injury, B for 

Suspected Minor Injury, C for Possible Injury and O for No Apparent Injury.  

On the other hand, the Abbreviated injury scale (AIS) is an integer scale 

developed by the Association for the Advancement of Automotive Medicine to rate 

the severity of individual injuries. AIS classifies individual injuries per their relative 

severity on a six-point scale, as shown in Table 6-1, with 1 meaning very minor and 

6 meaning currently untreatable injuries. Based on AIS, the MAIS is applied in the 

roadway crash classification using the score of the most severe injury suffered by an 

injured person in a crash. 

These two types of injury scales are transformable in some states. As 

presented in Table 6-2, ODOT sets various MAIS severity levels that directly equal 

to KABCO severities and uses the MAIS person-injury unit costs for the KABCO 

crash unit cost. 

Table 6-1 AIS Injury Codes 

AIS Code Injury Example 
Probability of 

Death (%) 
0 None No injury 0 
1 Minor Superficial laceration 0 
2 Moderate Fractured sternum 1-2 
3 Serious Open humerus fracture 8-10 
4 Severe Perforated trachea 5-50 
5 Critical Ruptured liver with tissue loss 5-50 
6 Maximum Total severance of aorta 100 
9 Not further specified N/A N/A 
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Table 6-2 ODOT MAIS to KABCO Direct Conversion  

MAIS KABCO Description Comprehensive Crash Unit Cost 
MAIS 6 K Fatal Injury $9,600,000 
MAIS 4 A Suspected Serious Injury $2,553,600 
MAIS 2 B Suspected Minor Injury $451,200 
MAIS 1 C Possible Injury $28,800 
MAIS 0 O No Apparent Injury $4,200 

 
As the enhanced SPF developed in Chapter 4 only predicts the expected 

crash frequency without crash severity and types, it is important to study the 

probability of crashes in each level. The distribution of the crashes in the MAIS scale 

was surveyed in the national report The Economic and Societal Impact of Motor 

Vehicle Crashes published by the National Highway Traffic Safety Administration 

(NHTSA). Besides, the Oklahoma Highway Safety Office (OHSO) provides an online 

Interactive Crash Maps in Oklahoma. Table 6-3 summarized the crashes of different 

severity levels in Oklahoma from 2017 to 2019. The weighted unit crash cost is 

therefore estimated to be 205 thousand dollars as shown in Table 6-3.   

Table 6-3 Weighted Crash Unit Cost Estimation in Oklahoma (2017~2019) 

Severity 
Level 

2017 2018 2019 Total Percent 
Comprehensive Crash 

Unit Cost ($1000) 

K 613 603 584 1800 0.83% $9,600.0 

A 2,146 2,054 1,809 6,009 2.78% $2,553.6 

B 7,326 7,471 7,370 22,167 10.26% $451.2 

C 13,024 12,721 13,343 39,088 18.10% $28.8 

O 48,306 48,431 5,0161 146,898 68.02% $4.2 
 

https://okdpswf.maps.arcgis.com/apps/MapSeries/index.html?appid=bbceac52ab4644cb8e9d9753bfd8f137
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6.2.3 Developed VBA Spreadsheet Tool 

A VBA spreadsheet tool was developed in this project to combining the 

outputs from the RealCost software (agency and user costs) with the safety costs 

estimated for each preventive maintenance strategy. Figure 6-5 illustrates the 

flowchart for the development of the VBA tool.  

 

Figure 6-5 Flowchart of Developed Software 
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The spreadsheet tool provides a graphical interface to make the software 

easy to use (Figure 6-6). The developed spreadsheet allows users to input project 

details for various maintenance strategies, update the friction prediction models and 

the SPFs for crash estimation, and finally calculate and visualize the safety cost of 

each strategy. The tool imports the agency and user costs calculated in the 

RealCost software (version 2.5) and thus enable the comparisons of the total costs 

of each alternative. All the user inputs, calculation results, and visualization charts 

are stored in multiple worksheets in one Excel file. A step-by-step user’s guide is 

provided in Appendix A.  

 
Figure 6-6 User Interface of Safety Cost Calculator 
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6.3 Case Study and Results 

6.3.1 Preventive Treatments 

A variety of preservation treatments have the capabilities to improve surface 

texture and enhance pavement friction performance. Table 6-4 summarized the 

construction cost, expected service life, and friction performance for each of the 

common preservation treatments in Oklahoma. The average cost and service life 

data were adopted from the ODOT SP&R 2275 project final report, while the initial 

friction numbers and the deterioration rates were obtained from the regression 

models as described in Chapter 5. It is observed that High Friction Surfacing 

Treatments (HFST) provides superior friction performance, while the average 

installation cost is more expensive than the other types of treatments.   

Table 6-4 Unit Cost, Expected Life and Friction Performance of Treatments 

Treatment 
Type 

Average Cost per 
Square Yard (US 
dollars) 

Expected 
Service Life 
(Year) 

Initial 
SN 

Deterioration 
Rate 

Thin Overlay 3.25 8 – 12 41.4 -0.5 

Chip Seal 1.77 3 – 5 NA NA 

UTBWC 4.00 8 – 10 42.5 -0.8 

HFST 19.00 7 – 12 95 -5.9 

Microsurfacing 2.5 7 – 10 NA NA 
 
6.3.2 Example Project and Alternative Details 

In this case study, three typical preventive treatments: HFST, UTBWC, and 

thin overlay, were chosen to demonstrate the life cycle cost analysis considering 

their safety costs in the decision-making process. As shown in Figure 6-7, the 
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example project has a length of 0.5 miles, two 12-ft lanes in each direction with the 

presence of both median and shoulders. The analysis period is 30 years beginning 

from 2021. The discount rate is set to 4%. There are 20,000 average annual daily 

traffic (AADT) with a yearly growth rate of 4%. The average longitudinal grade is 2 

degrees, and the maximum degree of horizontal curvature is 8 degrees (716.7 ft of 

curve radius) within the roadway segment. For each activity, the preservation 

treatment work is conducted on one lane while leaving the other lane open and then 

switch to the open lane.  

 

Figure 6-7 Project Details for the Example Project 
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The intercepts and the deterioration rates of the linear friction prediction 

models for the analysis were set based on results in Table 5-4 and Table 6-4. The 

SPF model used the default coefficients developed in Chapter 4. The unit crash cost 

was weighted by the probabilities of crashes at different severity levels based on the 

ODOT crash data from 2017 to 2019, as shown in Table 6.3. The service lives of the 

three alternatives were set as the average of the expected range (Table 6.4): HFST 

8 years, UTBWC 9 years, and thin overlay 10 years. After specifying these 

parameters, the VBA spreadsheet tool automates the predictions of friction 

variations during the life cycle and their expected crash numbers and safety costs of 

each alternative.  

The agency and user costs were estimated using the RealCost Software. The 

project details used in the safety cost calculator were inconsistent with the inputs for 

RealCost. Additional details in RealCost included: speed limit 75 mph, percentage of 

single-unit trucks 5%, percentage of combination unit trucks 10%, free flow capacity 

2047 pc/ln/hr, and the rural model for the hourly traffic distribution. The values of 

user time were set to software default values: 11.5 $/hour for passenger cars, 18.5 

$/hour for single unit trucks, and 21.5 $/hour combination unit trucks. The traffic 

hourly distribution and added vehicle time and cost were also set to default value as 

they are not the focus of this project and thus kept the same for all three alternatives.  

 The agency cost was calculated by multiplying the average construction cost 

with the surface treatment area (6,400 square yards for 2 lanes). The activity inputs 

for work zones were kept the same as the differences in their construction processes 

among the three treatments could be neglected. After setting these parameters, the 
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RealCost software can automate the deterministic analysis process and output the 

agency and user costs of each alternative. Table 6-5 summarized the alternative 

treatment results from the RealCost software for the example project. 

Table 6-5 Alternative Details in RealCost for the Example Project 

RealCost Alternative Items HFST UTBWC Thin Overlay 
Number of Activities 4 4 3 
Agency Construction Cost ($1000) 121.6 25.6 20.8 
Activity Service Life (Years) 8 9 10 
Maintenance Frequency (Years) 8 9 10 
Agency Maintenance Cost ($1000) 10 10 10 
Activity Work Zone Inputs / / / 
Work Zone Length (miles) 1 1 1 
Work Zone Duration (days) 20 20 20 
Work Zone Capacity (vphpl) 1500 1500 1500 
Work Zone Speed Limit (mph) 40 40 40 

 

6.3.3 Results and Comparison 

Figure 6-8 illustrates the agency and user costs of each alternative 

discounted to the present values. The undiscounted agency and user costs by 

analysis year, also named as expenditure stream, are presented in Figure 6-9. It is 

observed that the agency cost of HFST is much higher than those of UTBWC and 

Thin Overlay. Although the user cost of HSFT is slightly lower, the total costs (sum 

of agency and user costs) of HFST show that it is the most expensive treatment 

option if safety costs are not considered in the life cycle cost analysis.  
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Figure 6-8 Agency and User Costs for the Case Study  
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Figure 6-9 Agency and User Costs Expenditure Stream for the Case Study 

The influences of the safety costs were analyzed using the developed VBA 

spreadsheet tool. Figure 6-10 plots the predicted friction variations of the three 

investigated alternatives. The friction demands established in Chapter 4, including 

the investigatory and intervention level, are also presented in the figure with red 

dash lines. As observed, all the investigated alternatives meet the friction demands 

over the life cycle analysis period. HFST owns the highest predicted friction 
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numbers, while the UTBWC and thin overlay behave slightly differently in friction 

performance. 

 

Figure 6-10 Friction Variations of HFST, UTBWC, and Thin Overlay 

Subsequently, the predicted friction numbers were fed into the enhanced 

SPF, which was integrated into the Spreadsheet tool, to estimate the expected crash 

numbers during the life cycle analysis period, as shown in  Figure 6-11. It is 

observed that higher friction numbers of HFST make the pavement safer with much 

less predicted crash numbers. By multiplying the number of estimated crashes with 

the unit crash cost, the total safety costs during the life cycle period of HFST, 

UTBWC, and thin overlay were calculated and summed (Figure 6-12). The crash 

costs over the analysis years are presented in Figure 6-13. The HFST decreases the 

crash costs dramatically due to its improvement in pavement Friction and the 

reduction in the number of crashes.  
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Figure 6-11 Predicted Friction Numbers for the Case Study 

 

Figure 6-12 Crash Costs of HFST, UTBWC, and Thin Overlay 
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Figure 6-13 Crash Cost Expenditure Stream for the Case Study 

Table 6-6 Total Costs for HFST, UTBWC, and Thin Overlay 

Cost  
($1000) 

Agency  
Cost 

 - HFST 

User  
Cost  

- HFST 

Agency 
 Cost 

 - UTBWC 

User  
Cost 

 - UTBWC 

Agency 
 Cost 

 – Thin OL 

User  
Cost  

– Thin OL 
RealCost Results $226.84 $519.45 $43.95 $473.53 $32.80 $317.48 

Subtotal / $746.29 / $517.48 / $350.28 

Crash Cost / $2,224.01 / $14,210.14 / $14,553.01 

Total / $2,970.30 / $14,727.14 / $14,903.29 
 

Adding the predicted safety costs to the agency and user costs estimated in 

RealCost, the total costs of the three alternatives were calculated and summarized 

in Table 6-6. It is observed that the total cost of HSFT is the lowest when taking 

crash cost into account. On the other hand, if only the agency and user costs are 

compared for prioritization, HFST would not be selected. However, HFST is an 

effective treatment for projects with high historical or potential crash frequency and 
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high friction demands, such as those located at intersections with high volume traffic, 

segments with sharp curves, interchange ramps, and slippery bridge decks. 

 

6.4 Summary 

This chapter reviewed the concepts, procedures, and available software tools 

for life cycle cost analysis. RealCost has been widely used by state highway 

agencies to predict agency and user costs. However, RealCost does not include 

safety costs in its calculation. The developed VBA spreadsheet supplements such 

needs using the friction models and the enhanced SPF developed in this project to 

predict the expected crash numbers and the corresponding safety costs.  

A case study was presented to compare the life cycle cost of three common 

preservation treatments: HFST, UTBWC, and thin overlay. The results show that the 

agency cost of HFST is the highest among the three alternatives, the user cost of 

HFST is also slightly higher due to the additional traffic delay in work zones with 

shorter service life. However, the total life cost of HFST is the lowest when safety 

costs are considered. Although the high agency costs could limit the application of 

HFST, it would be a cost-effective alternative in expected roadway crash reduction, 

especially for sites with high demands of surface skid resistance. 
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CHAPTER 7 CONCLUSIONS  

 

Better utilizing the available pavement friction, surface texture, roadway 

safety data, and relevant results, along with other necessary data sets, could result 

in significant benefits to reduce traffic fatalities, serious injuries, and traffic delays. 

The Oklahoma Department of Transportation (ODOT) has been leading research in 

characterizing friction and texture performance of pavements for improved roadway 

safety. 

In this project, several database systems managed by ODOT, including the 

Pavement Management System (PMS), Statewide Analysis for Engineering 

&Technology (SAFE-T) database, Skid Studies Program, and the SiteManager® 

construction management system, were investigated and the relevant data sets 

were linked and acquired for safety analysis. Those data sets include roadway 

geometry, traffic flow characteristics, pavement preventive maintenance treatments, 

materials testing and sampling results, crash type and severity, pavement surface 

conditions, friction and texture.  In total, 1,811 subsections were identified with 

complete data sets that were required for the development of enhanced safety 

performance functions (SPFs) and the establishment of the friction demand levels. 

The developed SPF was used to predict the expected number of crashes 

under different pavement conditions. In addition to segment length and AADT that 

are currently considered in the AASHTO HSM SPF model, nine pavement surface 

condition parameters and roadway geometry factors were identified to be statistically 
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significant to roadway vehicle crashes. The positive regression coefficients include 

the segment length, AADT, number of lanes, IRI level, degree of curvature of 

horizontal curves, and longitudinal grade, implying that the average risk of crashes is 

expected to increase with the increase of those factors. On the other hand, the risk 

of crashes decreases with the increases of the other factors with negative 

coefficients, such as the average friction, the variance of friction (IQR), the presence 

of shoulder and/or median. 

Establishing the friction demands is a key component for the Pavement 

Friction Management program. An in-depth analysis of friction and crash data was 

conducted following methodologies recommended in the AASHTO Guide for 

Pavement Friction. The investigatory level and the intervention level were set to 35 

and be 30 for Oklahoma roadways.  

Besides, the friction performance of the commonly used treatment types in 

Oklahoma was analyzed. The influencing factors on friction were identified based on 

multivariate analysis methods, and the deterioration models were developed using 

ODOT data sets. The deterioration models were then combined with the developed 

SPF model to predict the friction variations and the expected crash numbers of the 

pavements with various preventive treatment options, whose results were further 

used in the life cycle cost analysis for the selection and prioritization of restoration 

treatments.  

Meanwhile, deep-learning techniques were applied for the development of the 

FrictionNet model directly using pavement surface texture profiles. The FrictionNet 



 

90 

results demonstrated its capability in classifying pavement friction levels based on 

real-time texture profiles. 

Finally, a VBA-based spreadsheet tool was developed to integrate the 

findings of this study and implement them in the life cycle cost analysis for project 

selection with optimized skid performance and maximized safety benefits. This tool 

depends on the RealCost software for the calculations of agency and user costs, 

while includes the life cycle safety costs by combing results from the friction models 

and the enhanced SPF. A case study was presented to compare the life cycle cost 

of three common preservation treatments: HFST, UTBWC, and thin overlay. The 

results showed that the agency cost of HFST was the highest among the three 

alternatives, but the total life cycle cost of HFST was ranked the lowest when safety 

costs were considered. 

This project presented an integral process to include pavement skid 

performance of different preventive treatments and their safety benefits in the life 

cycle cost analysis. The outcomes of this project could bring significant benefits to 

reduce traffic fatalities, serious injuries, and traffic delays in Oklahoma.  

It should also be acknowledged that various data limitations have limited the 

development of rigorous and accurate friction models. The location referencing 

information of the pavement sections was inconsistent among the various ODOT 

database systems. Pavement friction data were collected only for Oklahoma’s 

interstate highways through the ODOT’s Skid Program, but on many occasions the 

measurements were incomplete. As a result, the friction models for some preventive 

treatments were developed based on a small number of data samples. It is 
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anticipated that more special on-demand skid data could be collected for sites with 

various treatment types. 
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APPENDIX: USER MANUAL OF THE SAFETY COST CALCULATOR 

 

A.1 Installation and Preparation 

The Safety Cost Calculator is developed and recommended to be run on the 

32-bit version of the Microsoft Excel platform with macro content enabled. It is 

designed to run in Microsoft Excel 2000 or later versions. Besides, up-to-date 

service packs for Windows and Office 2000 (or Excel 2000) are essential to run the 

software.  

 
Figure A-1 Excel Macro Security Setting 

Excel must be set to allow macros to run on the tool. As shown in Figure A-1, 

before starting the software, open Excel 2000, check the macro security settings, 
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and ensure that macros are allowed. The security settings are accessed from the 

Excel 2000 menu bar.  

After the Excel macro setting, an opening page would appear when the users 

open the tool, as shown in Figure A-2. Users need to “Enable Content” to display 

the Main Menu interface, which has seven buttons (Figure A-3).  would appear 

when the users open the tool, as shown in Figure A-2. Users need to “Enable 

Content” to display the Main Menu interface, which has seven buttons (Figure A-3).  

 
Figure A-2 Opening Page 

If users only need to compare the crash costs of different maintenance 

strategies, it is sufficient to follow the first six modules (except the Total Cost 

module) shown in the main menu. If the user would like to compare all costs: 

agency, user, and crash costs, the RealCost (version 2.5) software should be 

downloaded the FHWA Life-Cycle Cost Analysis Software website and installed as 

well. The system requirement and configuration of RealCost are the same as those 

for the Safety Cost Calculator.  

https://www.fhwa.dot.gov/infrastructure/asstmgmt/lccasoft.cfm
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Figure A-3 Main Menu 

A.2 User Input 

In the user input section, users can input the project details, including project 

name, analysis period, beginning year, discount rate, project length, etc. Some of 

these items, such as the “Presence of Shoulders or Median” and “Number of 

Alternatives” can be chosen from the drop-down menu (Figure A-4). Except for the 

“Project Name”, the only number is allowed for other input items. Some items such 
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as the “Analysis Period” and “No. of Lanes” only accept integers, while other 

items, such as “Discount Rate” and “Average Longitudinal Grade” allow decimals. 

After clicking the “Confirm and Continue” button, the program will automatically 

switch to the Alternative Details interface (Figure A-5). The number of columns will 

be dynamically assigned based on the number of alternatives used in the Project 

Details interface.  

 
Figure A-4 Input Project Details 

In the Alternative Details interface, the program will populate the treatment 

type and service life of the available preservation treatments. The user can choose 

the activity type and the corresponding service year in the drop-down menu for each 
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alternative. Once one activity is specified, the following activities will be automatically 

updated using the present alternative settings for the entire life cycle period. Users 

can also modify the input values for each activity. 

 

Figure A-5 Input Alternative Details 
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Figure A-6 Modify Treatment Types 

 The Software is capable of storing and listing data for up to ten types of 

preservation treatments. If a specific treatment type is not included, users can 

modify or add treatment types by clicking the “Modify or Add Treatment” button 

(Figure A-6). Users can also delete unnecessary treatment types (Figure A-7).  
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Figure A-7 Delete Treatment Types 

Once the user has modified and confirmed the list of treatment types, the 

software will empty the alternative details and require user selection. When all 

alternatives have been updated, the user can click the “Confirm and Continue” 

(Figure A-5) and moves to the Crash Model section. 

 

A.3 Crash Model 

The Crash Model section specifies the parameters for the “Friction Model”, 

“Safety Performance Function”, and the “Unit Crash Cost”. The “Friction Model” 

enables the software to predict pavement friction numbers after each activity. The 

predicted friction numbers and inputted project details will be fed into the “Safety 
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Performance Function” to predict the numbers of crashes for each alternative. The 

intercept and deterioration rate for each treatment type can be automatically loaded 

with the parameters saved in the tool or modified with user inputs (Figure A-8). The 

“Safety Performance Function” interface displays the model coefficients developed 

in Chapter 4 and allows users to update them when a new model is more 

appropriate (Figure A-9). All the friction model and SPF prediction results are stored 

along with the project details in the User Input worksheet. 

 

Figure A-8 Friction Models 

After confirming the SPF coefficients, the software will shift to the Crash Unit 

Cost worksheet and its interface (Figure A-10). The unit crash cost data are adopted 

from the Economic and Societal Impact of Motor Vehicle Crashes, 2010 (Revised) 

(No. DOT HS 812 013) report (Blincoe, Lawrence, et al., 2015). The crashes are 

divided into different severity levels and the unit cost and probability of crashes at 

each level are estimated.  
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Figure A-9 Safety Performance Function 

 

Figure A-10 Unit Crash Cost 
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A.4 Results 

The Results section includes two buttons: “Crash Prediction” and “Total 

Cost”.  The Crash Prediction button initiates the software to calculate the predicted 

friction numbers, estimate expected crash frequency, and compute the crash cost of 

each alternative (Figure A-11). Users can click either of the three buttons to switch to 

the corresponding Excel worksheet. In each worksheet, the detailed data (friction 

number, crash number, or crash cost in $1000) are listed by year during the life 

cycle period, and the plots are also presented. Specifically, the investigatory and 

intervention levels established in Chapter 4 are also added to the friction plot (Figure 

A-12). These two friction demand levels are password protected and only the 

administrator can modify them. In case the friction variations of one alternative reach 

lower than the friction levels, users should reconsider the alternative and modify its 

inputs in the Alternative Details interface.  

 

Figure A-11 Viewing Results 
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Figure A-12 Friction Prediction and Comparisons 

 The Safety Cost Calculator does not calculate the agency construction cost, 

or the user cost caused by construction, as these capabilities have already been 

integrated into several existing software such as LCCAExpress and RealCost. 

However, the Safety Cost Calculator offers the option to directly import the 

RealCost results so that the total cost of each alternative can be compared.  

Users should follow the RealCost User Guide to calculate agency and user 

costs available at the FHWA Life-Cycle Cost Analysis Software website. Users 

should make consistent inputs in the RealCost software and the Safety Cost 

Calculator. Once the results were obtained in RealCost, save the RealCost excel 

file (Figure A-13) for direct import into the Safety Cost Calculator by clicking the 

“Compare Total Cost” button (Figure A-11) or the “Total Cost” button in the Main 

Menu (Figure A-14) and then clicking “Import RealCost File” (Figure A-15). The 

Safety Cost Calculator software will read the deterministic results of RealCost, 

combine them with the crash costs and plot the corresponding figures in the “Total 

https://www.fhwa.dot.gov/infrastructure/asstmgmt/lccasoft.cfm
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Cost Comparison” worksheet (Figure A-16). The users can click the “View Cost 

Data” to switch from the detailed numbers and the plots. 

 
 

Figure A-13 Save RealCost Output File 

 

Figure A-14 Import and View Results 
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Figure A-15 Import RealCost Output File 

 
Figure A-16 Total Cost Comparison Results 
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