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Abstract:

This body of work details the design and analysis, as well as discussion of requirements for
eventual fabrication and flight testing, of a flying-wing aircraft. The design presented is fo-
cused primarily on matching the lift distribution to a bell curve and its effect on aerodynamic
performance for this aircraft configuration. Various analysis methods of the software-driven
design are justification for the wing shape: panel method, vortex lattice method, and compu-
tational fluid dynamics. The key phenomenon examined by the analysis methods, and to be
measured from the on-board inertial measurement unit, is proverse yaw. The unique wing
twist used to match the desired lift distribution encourages a favorable longitudinal force
differential by the aileron-deflected wingtips engulfed in upwash flow to induce thrust at
the wingtips. This yawing motion as a consequence of roll promotes a naturally coordinated
turn without the demand for rudder authority. The observation of proverse yaw coupled with
vorticity scenes, resultant from computational fluid dynamics, synchronizes this work with
emerging research suggesting the bell spanload is the apt model for avian flight. Addition-
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the flow field. The inboard movement of the vortex cores with centralized lift is found to
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CHAPTER I

INTRODUCTION

1.1 Motivation

The shape of the lift distribution across a finite wing greatly influences aerodynamic perfor-
mance, in terms of induced drag, and the need for structural rigidity at the wing root. In
1921, Ludwig Prandtl presented the classical result that minimum induced drag is achieved
for a finite wing when the lift distribution is elliptical in shape [16]. This understanding
has prevailed and modern wing designs are still commonly compared to the elliptical lift
distribution to assess efficiency with the common span efficiency factor, e. In 1933, Prandtl
revised his previous work after recognizing that the elliptical distribution may not be the
most efficient if a wing was not subject to a span constraint. Rather, a bell-shaped, span-
wise loading results in lower induced drag for a given lifting capacity [11] if the designer
accepts a higher wingspan. This optimization was achieved in the 1933 paper by applying a
bending moment constraint rather than assuming a fixed span, effectively increasing aspect
ratio rather than shaping the lift distribution to achieve an e of 1. A beneficial consequence
of the bell spanload, not recognized by Prandtl at the time, is proverse yaw[2] which can
obviate the need for a vertical stabilizer to provide a means for turn coordination in flying
wing configurations further reducing overall aircraft drag. In fact, the vertical stabilizer may
be omitted altogether if the resulting aircraft is immune from flight conditions where asym-
metric thrust would be encountered (i.e., single-engine) and has no need to operate off of
paved landing surfaces in crosswind conditions where alignment of the aircraft’s longitudinal
axis to the runway direction is desired prior to touchdown. Albion Bowers[2] recently lead a
group of researchers at NASA Armstrong through an experiment to validate the purported
efficiencies of a flying-wing glider featuring the 1933 Bell spanload. The researchers observed
the favorable proverse yaw in data collected from their flight test experiments, and provided
insights to the aerodynamics community synchronizing aerodynamic theory and observations
of avian formation flight.

This body of work describes progress towards the author’s design, manufacturing, and
plans for flight testing of Bellwether: a flying wing platform featuring the 1933 Prandtl Bell
lift distribution. Bellwether is intended to be used for atmospheric data collection while
demonstrating minimum induced drag. The Bell spanload is particularly well-suited to this
application for its induced drag characteristics which will increase platform endurance, while
keeping the centroid of the aerodynamic load close to the wing root which serves to limit
bending moments that must be passed through the center section. Bellwether has been de-
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signed using a combination of medium- and high-fidelity aerodynamic analysis techniques.
Vortex Lattice Methods (VLM) were used to design the geometric twist distribution to
match the desired span loading and to analyze local section aerodynamics towards selecting
appropriate airfoils. Following lofting of the flying wing with the desired twist distribution,
in SolidWorks, the geometry was extracted for mesh generation. Numerous simulations of
computational fluid dynamics (CFD) have been performed to validate the medium-fidelity
analysis techniques, allowing for an interesting comparison to be made between VLM and
CFD. This thesis compares the bell-shaped lift distribution (BSLD) to the industry-preferred
elliptical distribution (ELD), and it rigorously investigates the performance of other span-
loads as a parametric study on lift distribution and its affect on aerodynamic performance.
These differences are quantified for flying-wing aircraft configurations. Variance in geometric
wing twist are used to produce the desired distributions, and the different aircraft models
are evaluated by various computational methods. This work provides insight to the air-
craft design process, and it details the methods by which the experimental aircraft design is
generated and analyzed.

1.2 Background

This design follows in the footsteps of the Preliminary Research Aerodynamic Design to
Lower Drag, or Prandtl-D platform developed at NASA Armstrong[2]. A combination of
geometric and aerodynamic twist was utilized to ensure the lift distribution per unit span
conformed to the bell shape proposed by Prandtl as a more efficient alternative to the ellipti-
cal spanload when a span constraint is not present. Past research gives the expectation that
the design will realize an up to 11.1% decrease in induced drag while increasing the span
by 22.5% for a given structural weight, which this research effort intends to verify through
more robust aerodynamic analysis than previous efforts have utilized.

Figure 1: Elliptical Lift Distribution (a) v. Bell-Shaped Lift Distribution (b) [2]

Figure 1 illustrates how the wing-tip twist to a negative angle of attack in the region
of upwash can induce thrust, resulting in the favorable proverse yaw characteristic. Once
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ailerons are deflected anti-symmetrically, the lift vector on the high-lift wing will benefit
from the upwash, and it can be thought of as tilting forward. Due to the negative angle of
attack, the opposite wing tip is producing a negative lift vector, when the aileron is actuated
upward, tilting in the direction of the freestream, and thus, it fails to utilize the region of
upwash. This resultant force differential on the wingtips shows an ability for proverse yaw
in roll.

Figure 2: Change in Regions of Downwash from Elliptical (Left) to Bell-Shaped (Right) Lift
Distribution [2]

The movement of the upwash region inboard (Figure 2) matches what is believed to be
exhibited by bird flight. This has been examined by the formation of flight. To achieve
an optimal formation, birds overlap their wing tips such that they are capturing the entire
region of upwash. The amount of overlap is congruent with the inboard region of upwash
produced from the application of Prandtl’s revision of the most efficient spanwise lift distri-
bution [2].

The lift-to-drag ratios, flow field, and roll-yaw characteristics are evaluated in this re-
search by computational methods for four different lift distributions (later defined), and they
will be used to justify the shape of the finalized wing design for optimal aerodynamic per-
formance. Before outlining the design methodology and procedures, a literature review is
provided for a comprehensive understanding of the emerging research on the application of
this newly-analyzed lift distribution and its relationship to avian flight observations.
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CHAPTER II

Literature Review and Previous Work

2.1 Literature Review

This section journeys through a brief history of the industry-standard lift distribution before
exploring examples and research in support of an alternative. Discussion of the analysis tools,
methods, and results of various research help us understand what is known and how to best
contribute to the advancement of this alternative lift distribution. Research examining avian
flight formation provides a biomimetic link between bird flight and aircraft design. This is
used to suggest that birds benefit from the alternative lift distribution both in formation
flight and performing perfectly coordinated turns with favorable roll-yaw characteristics.
The collective theories and experiments are used to inform the aircraft design detailed in
this thesis.

2.1.1 Origin and Implementation of Elliptical Lift Distribution

For a century, aircraft have been designed using the same theory presented by Ludwig Prandtl
in ”Applications of Modern Hydrodynamics to Aeronautics” in 1921 [16], where he describes
the minimum drag solution for a finite wing is to design the wing such that the distribution
across the span takes the shape of an ellipse. This major theoretical installment discusses
many topics and applications. The portion most pertinent to modern aerodynamics is the
discussion on the theory of lift as it pertains to a monoplane. The theory described in
the published manuscript relies on the lifting-line approximation which describes a lifting
surface as a vortex-inducing line orthogonal to the free stream. This simplification leads to
the horseshoe vortex representation (Figure 3). The lifting line generates a bound vortex
inducing a downward component to freestream velocity. It is assumed that the lift is produced
uniformly across this line which means the total circulation is produced at the ends of the
lifting line creating the free vortices at the wingtips. As is easily depicted in (Figure 3), the
flow direction is downward between the vortices at the ends of the lifting line, and upwash
occurs outside of the horseshoe. This can also be viewed as a vortex ribbon (Figure 4)
formed from the curling of the flow at the wingtips in reaction to the pressure differential
caused on the wing. The high-pressure fluid flows to the region of low pressure on top of
the wing resulting in a curling flow in the wake of a finite lifting surface. The true nature
of the wake vortices is to dissipate and gravitate at a distance from the wings, but since the
greatest influence on the wing occurs nearest the body, the underpinnings of Prandtl’s theory
makes calculations reliant upon considering all vortex filaments as running in a straight line
opposite the aircraft’s direction of motion. The simplification makes the problem linear and
solvable.
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Figure 3: A finite wing, considered as due to vortices replacing the wing [16]

The influence of the vortical structure to the lifting surface increases the effective angle
of attack and the induced drag as the ends of the vortex sheet are positioned closer together,
which is to say the aspect ratio is inversely proportional to the induced drag (the next section
will utilize this idea by the reframing of design constraints to achieve a new analytical
solution). Prandtl uses this basis for the derivation of an elliptical shape of circulation
distribution across the span having fixed wingspan, total lift, and velocity (derivation in text
[16]). Vorticity and its relationship to the flow field and aerodynamic performance is an
ongoing theme in this thesis that will draw qualitative and quantitative comparisons to the
general overview provided in this section.

Figure 4: Change in shape of vortex ribbons at great distances behind the wing [16]

Prandtl’s early work also applies the lifting-line theory to multiple wing configurations
suggesting the elliptical lift distribution for a two-wing system.

Researchers at Pisa University, Italy [9] reference the Prandtl’s Best Wing System [8],
derived from Ludwig Prandtl’s 1924 work ”Induced Drag of Multiplanes” [17], in their effort
to optimize a box wing configuration for minimal induced drag. Inspired by Prandtl’s theo-
ries of a century prior, the Italian research team aim to solve a modern optimization problem
in the drag reduction of large, transport aircraft. The designs of which have been refined
over decades to a point of near stagnation. Noting that a 1% reduction in drag for a large
aircraft can save 400,000 liters of fuel and 5,000 kilograms of noxious emissions annually [20],
improvements in aerodynamic efficiency have great societal benefits. The researchers at Pisa
University present models produced by the in-house code MSD (Multiple Shape Design),
and analysis through CFD, to introduce an automated solution to optimization of box-wing
aircraft configurations. Two-dimensional curves and airfoils, in the form of .Dat files, are
used to construct all of the main features of the ”PrandtlPlane” by use of the MSD code:
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fuselage, wings, holes, fillets, etc. The swept box wing was analyzed in CFD at transonic
mach regimes to simulate flight conditions observed by most transport aircraft. The fuselage
is comparable to the Airbus A380, sporting a wingspan of 78 meters, so it is noted that the
reduction of the span of the PrandtlPlane to 70 meters produces a weight reduction of 30%,
though it is not mentioned how this is reconciled with the aft wing of equivalent span. The
researchers proceed with this design methodology for a smaller unmanned aircraft which was
fabricated as a scaled model for wind-tunnel testing. Though the results indicated longitudi-
nal static stability, the aircraft does not begin to produce lift until around 6 angle of attack,
and the trim point is shown graphically to occur at 12. These results are as unconventional
as the aircraft configuration, but the aerodynamic efficiency maintains satisfactory. This
research does not provide evidence of an aerodynamic advantage to the industry standard in
the implementation of the Prandtl’s Best Wing Design for a box-wing aircraft, but it offers
a design option to be further explored in the search for reduction of induced drag. 90% of
total drag is due to friction and induced drag, which depends heavily on the distribution of
lift across the wing span. It is posited in this body of work that, for today’s large transport
aircraft, ”no significant induced drag reduction is now possible” due to the decades of aircraft
design optimization. However, a new branch of research into alternative lift distributions,
spurred by none other than Ludwig Prandtl, may provide evidence to the contrary.

2.1.2 Discovery and Applications of Bell-Shaped Lift Distribution

In 1933, Ludwig Prandtl issued a publication titled “On Wings with the Least Induced Drag”
in the “Journal of Aviation Engineering and Motorized-Airship Aeronautics” amending the
case that the elliptical distribution is the optimum distribution to minimize induced drag
for all cases [11]. He notes that it is the desired solution when the aircraft designer has pre-
scribed gross weight and wingspan as design constraints. Prandtl derives an analytic solution
for an alternative curve that initializes gross lift (Equation 2.1.2) and moment of inertia of
the lift distribution (Equation 2.1.3) in the determination of induced drag (Equation 2.1.1)
to achieve the minimal induced drag solution. This solution resembles a bell curve which
gradually reduces the sectional lift produced to zero at the wingtips.

Di = ρ

∫ s

−s
Γwdy (2.1.1)

L = ρV

∫ s

−s
Γdy (2.1.2)

I = Lr2 = ρV

∫ s

−s
Γy2dy (2.1.3)

For the listed equations ρ is density, V∞ is freestream velocity, Γ is circulation, w is
downwash, y is the non-dimensional spanwise location with 0 being the wing centerline, s is
the semispan, and r is the radius of gyration for an ELD wing.

Equation 2.1.2 and Equation 2.1.3 are transformed into Equation 2.1.4 and Equation
2.1.5, respectively, where the parameterized spanload, b, is introduced. Γ0 is the circulation
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at the center of the wing, and µ is a ratio of circulations across the span (Equation 2.1.6)
for µ = 0 representing the ELD.

L =
π

4
ρbV∞Γ0(1−

µ

4
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After allowing span to become a parameter, Equation 2.1.8 is substituted into Equation
2.1.4 to isolate the circulation at the center of the wing as a function of the gross lift, the
freestream velocity, and the circulation ratio across the span (Equation 2.1.9).
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(2.1.9)

Transferring these variables to express induced drag yields Equation 2.1.10.

Di =
L2
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∞r

2
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2
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4
)
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4
)3

(2.1.10)

From the table shown in Figure 5 it is apparent that the minimum induced drag occurs
at µ equal to unity, but the function continues to decrease past this local minimum (Figure
6. However, the function loses its rational meaning beyond this inflection point because the
negative lift at the wingtips would cause a negative bending moment (M). Since the pre-
scribed structural weight is a function of bending moment, and the negative bending moment
does not result in a negative structural weight, the equation fails to hold the relationship
among these terms. Therefore, the largest reasonable value occurs at a µ of 1, which is also
the point of lowest induced drag.

Figure 5 also shows a 22.47% increase in span (1.0000 to 1.2247) from the elliptical
distribution at µ = 0 to the bell-shaped distribution µ = 1. The change in shape and
increase in span for the variation in circulation ratio is plotted in Figure 7.

µ = 1 is the analytical solution for minimal induced drag, but another artifact of relaxing
the wingspan constraint is the variation of downwash velocity distribution with change in
circulation ratio (Figure 8). It can be seen that a negative downwash (upwash) occurs at the
wingstips of circulation ratios of 0.5 and greater. For the bell-shaped lift distribution, this
location occurs at the 70.4% semispan. The upwash at the wingtip can provoke a forward
force, induced thrust. The variation in the downwash velocity, and its transition to upwash,
along with the actuation of induced thrust to create a favorable moment on an aircraft have
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Figure 5: µ Variation in Relation to Aerodynamic Characteristics Ratios [14]

Figure 6: Induced drag ratio compared to the circulation ratio [14]

implications on the aircraft design presented in this thesis and are the central themes to this
body of work.

In 1950, Robert T. Jones creates his own solution to the minimal-induced-drag problem
in his publication “The Spanwise Distribution of Lift for Minimum Induced Drag of Wings
having a given Lift and a given Bending Moment” [13] that mirrors the constraints set by
Prandtl’s revision: gross lift, freestream velocity, and root bending moment. Like Prandtl,
Jones alleviated the limitation on wingspan for a set structural weight (the root bending
moment constraint). His expression of minimum induced drag (Equation 2.1.11 - derivation
found in original text [13]) yields a 15% increase in span with a 15% reduction in induced
drag in the application of a bell spanload as opposed to the existing ELD.

Di =
L2

π ρ
2
V 2
∞(2se)2

[8(
se
s

)4 − 16(
se
s

)3 + 9(
se
s

)2] (2.1.11)

In accordance with the other analytical solutions for minimum induced drag, Jones applies
Prandtl’s lifting-line theory. He notes that the results are not restricted to that approxima-
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Figure 7: Circulation distribution of various spanloads [14]

Figure 8: Downwash velocity distribution of various spanloads [14]

tion stating that the induced drag of a lifting surface will be equivalent to that of a lifting
line if the spanwise distributions are the same. This is to say that the mathematical solution
may be applied to a flying wing, like the planform of the aircraft presented in this thesis,
not simply lifting surfaces spanning orthogonal to the freestream flow.

Around the same time Prandtl issued his revision of the minimal drag solution, Reimar
Horten independently derived an equivalent solution naming it ”bell shaped” in wing load-
ing. Though the methods were different, Horten generated the solution and added to the
effort in providing a calculation for the induced drag across the span. This novel finding
lead to the discovery of a consequence of the bell-shaped lift distribution not recognized by
Prandtl at the time; it produces proverse yaw. This is the act of the aircraft yawing in
coordination with a banked turn without the use of an auxillary yaw device. By contrast,
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aircraft today experience adverse yaw as a consequence of the high-lifting wing producing
greater induced drag as a consequence of lift in a banked turn.

The authors of ”Tailless Aircraft in Theory and Practice” [15] stand firm against the
claims made in favor of the bell-shaped distribution in its chapter entitled ”Fables, Misjudge-
ments and Prejudices, Fairy Tales and Myths” positing that proverse yaw is not observed,
and additional drag is a consequence of the application of this distribution to a flying wing.
Both claims are made in reference to Horten’s flying wings which produce adverse yaw in roll
and, cited admission from Horten, increased the induced drag by a factor of 4/3 in cruising
flight. Emerging research provide considerable counterarguments to the criticisms posed by
the authors [15].

In 2016, researcher of NASA Armstrong address this theory in the development and test-
ing of the Preliminary Research Aerodynamic Design to Lower Drag, or Prandtl-D [2]. This
aforementioned research simplified the equations of circulation and lift distributions derived
by Ludwig Prandtl (Equation 2.1.12 and Equation 2.1.13, respectively) and confirmed a de-
crease of up to 11.1% in induced drag while increasing the span by 22.5% in the application
of the BSLD for a set structural weight enforced by a restriction on root bending moment.
These are the equations from which this work will reference to graphically match the com-
putational results through CFD to the BSLD.

Γ(Y ) = Γ0(1− (
2Y

b
)
2

)
3
2 (2.1.12)

L(Y ) = L0(1− (
2Y

b
)
2

)
3
2 (2.1.13)

Additionally, this research was the first to perform experimental flight tests which ob-
served proverse yaw. The promising demonstration of coordinated flight without a tail
provoked recent interest in research regarding the application of this lift distribution to fly-
ing wings.

D. F. Hunsaker and W. F. Phillips of Utah State University have done extensive research
in the wake of NASA’s recent discoveries. One of the recent contributions by these authors,
in addition to the translation of Prandtl’s 1933 publication [11], produces minimal induced
drag solutions from various design constraints [12]. By removing the constraints of gross
weight and wingspan, as prescribed by Ludwig Prandtl in 1933, the researchers solve for
optimum lift distributions for three example rectangular wings as a result of varying design
constraints. The constraints and their resultant optimal distributions follow:
1) Prandtl’s suggested constraint on gross lift and moment of inertia of gross lift without a
constraint on wingspan governed by equation 2.1.14.
2) Gross weight, maximum stress, and wing loading of a rectangular wing planform presented
in equation 2.1.15.
3) An optimal lift distribution resulting from design choices of gross weight, maximum de-
flection, and wing loading shown in equation 2.1.16.
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bL∼(θ)

L
=

4

π
[sin(θ)− 1

3
sin(3θ)] ; z = −b cos(θ)

2
(2.1.14)

bL∼(θ)

L
=

4

π
[sin(θ)− 0.13564322 sin(3θ)] ; z = −b cos(θ)

2
(2.1.15)

bL∼(θ)

L
=

4

π
[sin(θ)− 0.05971587 sin(3θ)] ; z = −b cos(θ)

2
(2.1.16)

The equations above, detailed in the research production [12], are obtained assuming
a non-structural weight distribution given by 2.1.17 and only differ by the magnitude of a
Fourier coefficient. This method holds for rectangular wings of constant chord and thick-
ness. Variations of chord length and thickness along the span require numerical methods
that exceed the scope of the research. The research goes further and shows that for any
fixed lift and distribution of weight there exists an optimum wingspan for which the condi-
tion of minimal induced drag is satisfied. However, the solutions presented for each set of
constraints are derived specifically for rectangular wings and cannot be applied when wing
sweep is introduced. Though the solutions for the rectangular planform may not contribute
to tailless flight, it provides groundwork for aircraft designers concerned with drag reduction,
weight reduction, and fuel economy of commercial airliners.

W∼
n (z) = (W −Wr)

L(z)∼

L
−W∼

s (z) (2.1.17)

Investigation of non-elliptical lift distribution wings for commercial aircraft application
has been carried out by the Aerospace Integration Research Centre at Cranfield University
[5] in efforts to reduce the tail size of such aircraft. Authors use early-stage design tools,
such as XFLR5 and Athena Vortex Lattice (AVL), to generate Prandtl’s 1933 solution to
replace the wing of a commercial aircraft. Consistent with the previous research methods,
the wingspan is not selected as a design constraint, rather span extension and wing twist are
the output of yet another analytical revolution in aerodynamics by the early works of Ludwig
Prandtl, Lifting-Line Theory. The baseline model used for analysis is the wing of a small,
transport aircraft, SF50. The baseline is compared to two competing models. One applies
the analytical solution for the twist to produce minimum drag, while the other uses this tech-
nique with the allowance of increased wingspan (Prandtl’s prescription). Vertical tailplane
size is parametric for the three competing models to gauge aerodymamic performance with
reduction in structural weight. The approach inspired by Prandtl shows a 14% increase in
lift-to-drag ratio, a 44.34% reduction in vertical tail weight, and up to 17% improvement
in range of the aircraft. Flight stability in dutch roll mode was compromised for efficiency
metrics in both models deviating from the baseline. Control surface sizing and placement
must be further investigated in this study of lift distribution to aptly evaluate its effect on
aerodynamic performance and aircraft stability. Despite the promising results, the analysis
methods do not apply to swept-wing configurations.
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Seeking to contribute computation to the application of a bell-shaped lift distribution to
swept wings, professors at the Mangalore Institute of Technology and Engineering in India
[22] implement the Prandtl design to a forward-swept flying wing. They believe that an in-
crease in efficiency to this wing configuration will make it superior to a traditional, aft-swept
flying wing since it is inherently more maneuverable. Another benefit of this adaptation to
the forward-swept wing is that the reduction in load held by the outboard wing sections
further reduced the chance of tip stall. The wing modeling begins with a set root and tip
airfoil. Tip twist is parameterized at angles of 0, 2, 5, -2, and -5 degrees to modify the
lift distribution while maintaining constant aerodynamic twist (constant airfoil cross sec-
tions along the wing). Each configuration is analyzed through computational methods with
ANSYS. The researchers conclude that the aircraft with the tip twist of -2 relative to the
freestream flow exhibits the greatest aerodynamic performance, but the aerodynamic coef-
ficients for the other configurations are not presented. Though this tip twist is assumed to
resemble the Prandtl bell curve, the lift distributions of these configurations are not shown
to be validated. Additionally, the research does not relate the findings to the performance
of a traditional swept wing to justify the use of a forward sweep.

Richter et al [18] studied control surface efficacy in the generation of proverse yaw on
straight tapered flying wings applying the bell spanload. The relationship between aircraft
geometry and proverse yaw control power is realized by key variants: taper ratio, wing
chord, span length, twist distribution, and outboard wing control surface (OWCS) size.
Generally, an increase in the size of the OWCS exacerbates the yaw effect on the aircraft,
whether proverse or adverse yaw. This effect is tied to the amount of upwash or downwash
experienced at the outboard wing section. It is shown that the proverse yaw control power is
maximized when the control surface is engulfed in the region of upwash. It follows that the lift
distribution greatly affects the yaw ability in roll given that the distribution of lift commands
the regions of upwash and downwash. Researchers conclude that the application of the bell
spanload, increased wingspan, and greater tip twist suggest straight tapered flying wings
may be controllable and naturally coordinate turns. Though this research parameterized
geometries particular to straight tapered wings, the findings of the relationship among the
lift distribution, regions of upwash/downwash, control surface size and placement, and yaw
control power can be used for aircraft design prescriptions of various configurations. The
results provide additional support for the emerging research advocating for the use of the
BSLD, as opposed to the ELD, for favorable yaw in banked turns of tailless aircraft. The
research presented in this thesis will source these results for aileron sizing and placement for
the aircraft design, Bellwether.

2.1.3 Avian Flight Formation

Modern modeling of avian flight is done by assuming birds apply the elliptical lift distribu-
tion, since it has been thought to be the most efficient. This explanation fails to explain
why birds overlap their wings in flight formations, and it is contrary to reasonable explana-
tions of how birds perform effortlessly coordinated turns without an auxillary yaw device to
counteract the adverse yaw that is common with the ELD. Beyond the observation of pro-
verse yaw in accordance with Horten’s theory, Chief Scientist Albion Bowers of the National
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Aeronautical and Space Administration (NASA) Armstrong Flight Research Center relate
their observations of the bell-shaped lift distribution, and its effect on the flow field, to avian
flight formation to suggest that birds dynamically utilize this distribution for increased aero-
dynamic performance [2]. Dr. Bowers states three main distinctions between avian flight
and aircraft designed for elliptical spanloading:

1. The feathers at birds’ wingtips are soft, flexible, and narrow with thin structures
(ligaments, tendons, muscles, and bones) incapable of supporting load necessary to
match an ELD. By contrast, aircraft wings are reinforced structures designed to carry
a distributed lifting force out to the wingtips.

2. Birds fly in formation to receive aerodynamic benefits from the wing vortex roll-up of
the bird ahead of it in formation. This is observed that birds do this in a v-formation
with the wings overlapping. Aircraft also benefit from flying in formation, however,
the optimum location for aircraft is to position themselves with wingtips aligned.

3. Despite their sharp-tipped, narrow wings, birds do not experience wingtip stall. The
location of stall on a bird’s wing is observed to occur about 20% of the semispan from
the root. Aircraft of swept wings with sharp tips, primarily fighter aircraft, experience
wingtip stall and require mitigation techniques to avoid the detriment to aircraft control
in these events.

This is to suggest that the lift generated by bird wings tapers at the wingtips, and thus,
the distributed load across the span cannot match that of an ellipse. The lift distribution is
the ultimate influencer of the flow field.

The vortex shed line, which is the point at which the region of downwash transitions to
upwash [18], is shown in Figure 2 to be inboard at the 0.704 spanwise location for the BSLD.
It is suggested that the wing overlap in the v-formation of bird flight coincides with this
vortex shed line. A trailing bird, it is thought, willingly positions itself to fly with enough
wing overlap as to span the upwash region for energy savings without much intrusion into the
region of downwash. NASA researchers note that this location varies from previous research
on different flocks of birds: Portugal [7] citing a vortex core separation of 0.753 for the over-
lap of northern ibis flying formation, Spedding [10] noting 0.76 as the location for his kestrel
research, and NASA’s own analytical result of 0.704 semispan location. Though Portugal,
Spedding, and others prior have used ELD to model avian flight, all results of inboard vortex
cores suggest upwash flow at the wingtips. Referring back to Figure 1, this suggests that
birds coordinate turns with favorable yaw by the induced thrust at the wingtips that is a
natural consequence of the BSLD.

Kyle Lukacovic provides a charitable contribution to the examination of wingtip over-
lap of bird and aircraft flight formation and its effect on aerodynamic performance in ”A
Parametric Study of Formation Flight of a Wing Based on Prandtl’s Bell-Shaped Lift Distri-
bution” [14]. This study adds a computational analysis to two models of the NASA BSLD
wing, Prandtl-D, in flight formation parameterizing wing spacing and comparing the overall
efficiency of the two-wing system. The substantial outcomes of this study are (1) the BSLD
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Figure 9: Common cranes (grus grus) flying in formation over lake Fehér near Sándorfalva,
Hungary [14]

shows potential for significant increase in performance of formation flight and (2) the ELD is
unfit to model bird flight, which seems to relate much more closely to the BSLD on the basis
of wing overlap in flight formation. The study models the Prandtl-D using the planform,
wing geometry, and airfoil data provided in the NASA publication [2]. The trailing aircraft
is placed at different spanwise locations in the wake of the leading Prandtl-D model. The
trailing model is set at a distance of one wingspan behind the lead for all simulations. The
wing spacing is denoted as Y/b. For Y/b equal to zero, the port wingtip of one wing is
aligned with the starboard wing of another. Negative values of Y/b indicate a wing overlap,
whereas positive values correspond to the length of spanwise gap between the wings of the
two models. Figure 10 tabulates the results of a collection of CFD simulations ranging the
Y/b parameter from 0.148 to -0.444. This table presents the aerodynamic benefits received
by the trailing aircraft as a percentage of the experience of the leading model.

A Trefftz plane analysis was used to determine the reduction of induced drag for the
two-wing system. This is a far-field analysis that identifies the forces in the wake of a lifting
body by capturing velocity vectors in the wake. The perturbation velocities are related to
the aerodynamic parameters on the Trefftz plane. These analysis planes have been set up
to determine the aerodynamic benefits received by the trailing aircraft and quantify the
efficiency of the flight formation for various wing spacing. CFD shows maximum trailing-
wing benefits of a L/D ratio of 28.5% and a reduced system induced drag of 33.9%. It
is noted that this is not a direct comparison to the efficiency savings of formation flight
for ELD systems, but ”literature research of studies of aircraft in differing configurations
reported comparable induced drag reduction of 20-30%” [14]. This is to say that the ideal
wing overlap in a BSLD system outweighs the aerodynamic benefits of the wing-overlap
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optimization for an ELD system in flight formation.

Figure 10: Aerodynamic Parameter Percent Change Between Y/b = 0.148 and -0.444 for
the Trailing Wing Compared to the Leading Wing [14]

The ELD design aircraft wings has an average optimal spanwise position at Y/b = -
0.128 where the vortex is at the wingtip location (Y/b = 0). It is hypothesized by the
author that the reason for the trailing wingtip to span beyond the vortex shed line is that
is exposes more of the higher loaded wing area to the beneficial upwash of the vortex while
avoiding much of the ramifications of the downwash. Figure 11 gives the optimal wing
overlap of different systems and for different aerodynamic objectives for the bell-shaped lift
distribution. Additionally, the beneficial range of operation of the trailing wing is tabulated
for each metric. ”BSLD wide range of beneficial positioning of 0.407b (41% of the full
wingspan) or greater” is a substantial claim resultant from this research that relates to Dr.
Bowers and the juxtaposition of the ELD and BSLD flow fields in Figure 2. The average range
for trailing wings of ELD is around 0.250 which is significantly less than the range allowed
for trailing wings of BSLD to observe aerodynamic benefit. The difference is ascribed to the
wider vortex created by the bell spanload as opposed to the narrow vortex core generated by
elliptical wings at the wingtips resulting in the sharp, distinct discontinuity between regions
of upwash and downwash.

2.1.4 Literature Review - In Summary

For over a century, from the guidance of Ludwig Prandtl, aircraft wings have been designed
with the idea that lift distributed across the span should take the shape of an ellipse for the
most efficient aerodynamic result. By Ludwig Prandtl’s own revision, the discovery of the
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Figure 11: Optimal Position and Beneficial Range from Avian, ELD, and BSLD research
[14]

bell-shaped lift distribution has sparked research that suggest that this spanload is the most
efficient method of generating lift for a fixed amount of lift and a maximum root bending
moment (or structural weight). Most notably, Dr. Bowers at NASA Armstrong is the first
to measure proverse yaw by experimental flight data. The data materialized Horten’s theory
which recognized the phenomenon of induced thrust as a consequence of inboard upwash to
encourage favorable yaw without need for a vertical tail. NASA researchers correlate the
characteristics of the BSLD with bird flight which has been previously understood with ELD
analysis models. These correlations, advanced by Kyle Lukacovic of California Polytechnic
State University [14], provide three explanations to bird flight being modeled by BSLD that
have failed to be explained by ELD:

1. Birds can effortlessly and precisely coordinate turns without the use of an auxiliary yaw
device, which would be necessary to counteract the adverse yaw ELD wings produce
in roll consequential to the region of downwash engulfing the wingspan. This suggests
that the flow field generated by bird flight contains a vortex shed line that lies within
the wingspan (i.e. upwash is created within the span).

2. Birds have thin and light feathers, ligaments, tendons, and bones at their wingtips
not suitable to carry the load prescribed by an ELD. Furthermore, unlike thin-tipped
aircraft, birds do not experience tip stall; they stall close to the 20% span location.
This can be explained with the application of the BSLD to suggest that the load across
the span tapers to zero at the wingtip.

3. Birds overlap their wings when flying in formation to optimize energy savings. The
beneficial location can vary, but the ELD demands a much narrower range of wingtip
locations for the trailing bird to receive benefits. The spanwise area for formations of
ELD wings is hardly overlapping wingtips. Birds much more closely match the wing
overlap that proves to be most beneficial for wings designed with a BSLD.

This is pertinent because, in part, the aircraft design presented in this thesis is a biomimetic
solution in understanding how birds can maneuver with no observable yaw authority.
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This work turns to the aircraft design process that seeks to leverage this understanding
of inboard upwash and its assistance to proverse yaw.
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CHAPTER III

Design Methodology

Overall, the design lift distribution is intended to match the Prandtl Bell shape. Prandtl
[11], and subsequent researchers of the bell spanload, noted that optimization of this prob-
lem would require the abolition of the constraints placed on aircraft wingspan; however,
this design relies on placing that constraint. Although the theoretical underpinnings of this
lift distribution dictate no inherent wingspan, practical limits apply on the high-side to
keep vehicle weight below the maximum allowed for operations under the Federal Aviation
Administration’s Part 107 rules. Thus, design iterations were performed using historically
validated mass property models from Oklahoma State’s long history with development and
construction of fixed-wing unmanned aircraft systems. It was found that the design could
be reasonably guaranteed to fall below the 55 lb maximum (categorically remaining a small,
unmanned aircraft (SUAS)) while allowing for carriage of the desired atmospheric sensing
payloads if the span was limited to 25 feet. Additionally, this design point is congruent with
lab space availability and our current construction capability. These constraints allow for
the Bellwether aircraft to benchmark the Prandtl-D 3C from NASA Armstrong to define
a planform. Thus, this aircraft, Bellwether, is prescribed a 25 ft. wingspan (not including
the width of the fuselage), a 25 sweep, and 2.5 dihedral angles that have been demonstrated
previously. All analysis methods will use a flow of thermodynamic values reflective of stan-
dard atmospheric conditions at 1000 ft. asl. to simulate the flight conditions expected for
Stillwater, OK.
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Figure 12: Methodology Flow Chart

With the known planform and atmospheric flight conditions previously stated, the de-
sign methodology steps through the chronology beginning with airfoil analysis by low-fidelity,
panel methods. XFOIL, developed by Mark Drela [6], and XFLR5 are used to design airfoil
sections on the basis of Reynold’s number and desired sectional lift to match the desired
spanload. Once the root and tip airfoils are selected, they are geometrically linearly lofted
together adding consistent aerodynamic twist along the wing. The root and tip airfoils are
interpolated to create the airfoils at each foot of the span. All airfoils are saved as ’.dat’
files to import coordinates to and from different software packages. These spanwise airfoils
are used as control points individually rotated to introduce geometric twist along the wing.
This geometric twist is varied such that its addition to the set aerodynamic twist will yield
lift distributions desired by this comparative study. Vortex Lattice Methods are used to
estimate the sectional rotations required for each lift distribution evaluated. Four separate
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lift distributions, and in turn four separate wing designs, are generated for comparison. CAD
modeling applies these geometric wing twists, suggested by VLM, to a model with a fuselage
designed to make each lift distribution graphically continuous at the root. CFD evaluates
each flying wing’s adherence to the distribution it seeks to match. Conventional wing design
does not account for the effect of the fuselage to the lift distribution, but the design of this
flying wing incorporates a lifting-body fuselage to ensure a continuous curve validated by
high-fidelity, CFD analysis. Changes to wing twist, and observation of its adherence to its
desired lift distribution, iterate until convergence on the desired curve passes visual inspec-
tion. The design of Bellwether concludes when the aircraft has matched the curve described
by Prandtl’s revision of the minimal induced drag solution. After finalization of the aircraft
design, the wings are analyzed in absence of the fuselage to add comparison of aerodynamic
performance among the various analysis methods. Since VLM are not reliable in resolving
shear and pressure forces influenced by bluff fuselages, the comparison of XFLR5, AVL, and
CFD are done as wing-only analyses.

The methodology flow chart Figure 12 guides the reader through the process leading to
the aircraft design and analysis of Bellwether, though the presentation of this work is not
precisely adherent to the temporal flow chart. The analysis of the wing-only geometry takes
precendence in providing correlations among the methods of aerodynamic analysis. This is
done to encourage future aircraft designers to choose rapid results of VLM for highly-iterative
design changes. So, the analysis of the final wing design absent the fuselage is presented first
in this thesis comparing the low- and high-fidelity analysis tools before the presentation
of computational fluid dynamic processes and results of the four different aircraft designs
matching different lift distributions. This design process chose to accept computational
expense of iterating in CFD to ensure the final aircraft design, including the fuselage, matches
the promising spanload. The computational burden is placed on Oklahoma State University’s
High-Powered Computing Center (HPCC), Pete.

3.1 Span Loading Design Target

Given a planform, the objective of the flying wing design becomes to match the target Prandtl
Bell lift distribution by appropriate specification of geometric and aerodynamic twist across
the span. The Prandtl Bell distribution is shown by the blue line in Figure 13. This line is
generated from Equation 3.1.3, and is simply a scaled version of the circulation distribution
achieved from Prandtl’s 1933 analysis. Also included in the figure are curves representative of
the modern bell distribution (orange, Equation 3.1.1), the cosine distribution (gray, Equation
3.1.2), and the aforementioned elliptical distribution (green, Equation 3.1.4). These curves
are included for reference, as they have been extensively used in past aerodynamic analyses.
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Figure 13: Lift Distributions to be Matched

L′ =
x2

a2
+
y2

b2
Ellipse (3.1.4)

3.1.1 Span Load Analysis Using Vortex Lattice Methods (VLM)

Vortex Lattice Method, VLM, is a medium-fidelity software method for evaluating the aero-
dynamics of 3D wings subject to the limitations of potential flow. This numerical method
models aircraft lifting surfaces as a thin sheet of discrete vortices. Each vortex ring induces
velocity at all points in the flowfield domain. A system of equations linear is generated which
enforce zero normal flow boundary condition at each vortex ring’s control point based on
the amount of bound circulation retained in each vortex ring. The system of equations is
readily solvable using standard matrix inversion techniques from linear algebra. Knowing
the circulation bound by each vortex ring allows for rapid calculation of the lift and induced
drag. The insight brought by the tools leveraging this method allows for changes and quick
results as a result of these modifications, without the designer being burdened by the more
expensive calculations required by more robust methods, such as CFD.

The rapid, lower-fidelity analyses are performed using XFLR5 and Athena Vortex Lattice
(AVL). The flying wing is created and analyzed directly within the software package XFLR5.
At the spanwise locations indicated in Figure 16, the interpolated airfoils are angled to modify
the lift distribution until the target distribution presented in Section 3.1 is achieved.

21



Figure 14: Region of Downwash Observed by XFLR5 Analysis

3.2 Airfoil Analysis and Selection

Using low-Reynold’s number airfoils from the UIUC [21] database, a batch analysis gave
guidance for the selection of a root airfoil. The analysis ranged Reynold’s numbers of 200,000
to 700,000 by increments of 100,000 in order to capture all likely conditions experienced by
all wing sections in flight. Figure 15 displays the performance of the selected foils across this
operating range with the root airfoil shown in bright green, the tip airfoil in blue, and the
interpolated airfoils between the two.

Since the root airfoil is to be geometrically linearly lofted to the tip, good performance at
a large range of angle of attack, α, values is desired. It proved beneficial to add camber to a
NACA 4412 airfoil. This change shows greater consistency in performance of the lift-to-drag
ratio for alphas ranging from 8 to 0. The airfoil selected as the root, BellwetherOne, was
crafted by a 50% interpolation of the NACA 4412 airfoil with the Wortmann FX74 CL5 140.

Unique to this design, the selection of the tip airfoil is not significantly dependent upon
Reynold’s number or lift-to-drag performance; it is designed to taper the lift distribution to
zero at the tips to match the bell spanload. This wing selects a symmetric airfoil at the tip to
employ enough aerodynamic twist to make it easier to match the center-loaded distributions
without needing excessive geometric twist. The tip airfoil is positioned at a slightly negative
angle of attack to (1) taper the lift at the outboard wing section and (2) effectuate the region
of upwash for induced thrust. The anti-symmetric aileron deflection will engage the utility
of this design in producing proverse yaw.
The semispan airfoils are created at specified sections to build control points from which
angles of attack may be independently changed to match the desired lift distribution. The
creation of these airfoils are simply interpolated in XFLR5 between the root and tip airfoils
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Figure 15: Polars of Interpolated Airfoils

Figure 16: Interpolated Airfoil Cross Sections

to match a continuous lofting between the two. Figure 16 shows the change in shape of the
airfoil sections and the shape of each airfoil, from root (green) to tip (blue), whose location
along the span is shown in Figure 17.

3.3 Aircraft Modeling

With the use of SolidWorks, a baseline flying wing is made for the purpose of preliminary
analysis. The wing-section control points are placed at angles of attack determined by the
particular airfoil cross section’s performance as evaluated by XFLR5. With help of Figure
15, the section’s angle is graphically determined by the product of the chord and coefficient
of lift that section is required to produce to adhere to the desired lift distribution. This is
used to initialize the wing geometry prior to entering the loop of high-computational analysis
for lift distribution curve matching. This is done for four different models each achieving one
of the desired spanloads: Modern Bell, Cosine, Prandtl Bell, and Elliptical. Equations 3.1.1,
3.1.2, 3.1.3, 3.1.4 define these curves, respectively, and Figure 13 provides the graphical
representation of the curves to be achieved from the aircraft models.
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Figure 17: Planform Sections

Modeling a wing of the elliptical distribution presents design considerations in deviating
from the centrally concentrated spanloads. The first attempt aimed to use geometric twist to
achieve the lift distribution while keeping the same wing sections used for the other curves.
However, this requires outboard wing sections to experience local angles of attack in excess
of 9 which is not a feature that would be seen if the design was meant for that distribution.
The solution is to decrease aerodynamic twist by changing the airfoil cross sections such that
less camber is needed at the root and more at the tip. Since the root airfoil was generated
by adding camber to a NACA 4412 airfoil, that airfoil has been chosen as the constant wing
section of the ELD model. Congruent with the processes of the other distributions, the
curve determined the lift required for each semispan section of the wing. The coefficient of
lift is determined from the chord length and lift required and the flight condition. The initial
guess at each section’s angle of attack is generated from the lift-curve slope for each airfoil in
XFLR5. CFD iterations are used to modify geometric twist of the airfoil sections for closer
adherence to the elliptical curve.

This study adds Cosine and Modern Bell curves to offer a wider selection of designs from
which to compare lift-to-drag ratios and other aerodynamic performance metrics. The Cosine
curve closely resembles the Prandtl curve with slightly more central loading. The addition of
this spanloading allows for a closer look at how an incremental deviation to the theoretical
minimal induced drag will perform using high-fidelity aerodynamic tools. Introducing the
Modern Bell spanloading presents a highly-centralized lift distribution which can be expected
to shift the vortex cores farther inboard resulting in a larger region of upwash within the
span. Presenting various flow fields may contribute to the understanding of vortex core
location and proverse yaw control power.
Though the aileron sizing should be specific to each flow field to maximize yaw authority,
each wing design has been modeled with ailerons sized in accordance with the suggestion
by Richter et al [18] for favorable yaw moment in the flow field resulting from Prandtl’s
lift distribution. This guidance results in aileron placement ranging from the 80% span to
the wingtip. The control surface width extends from the trailing edge to the quarter chord
tapering with the wing geometry.
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CHAPTER IV

Comparing VLM and CFD Solutions for the Bellwether Wings

The analysis from the lower-order methods, XFLR5 and AVL, are compared to computa-
tional fluid dynamics results from STAR-CCM+ using the same wing geometry without the
influence of a fuselage. In particular, the coefficient of lift at pre-stall angles of attack are
compared among these analysis methods as well as the shape of the lift distributions pre-
sented as c*CL across the wingspan in vortex lattice methods.

4.1 Wing-Only Analysis of Bellwether in Vortex Lattice Methods

XFLR5 was used to model the wing for the VLMs. Beginning with the root airfoil, Bell-
wetherOne, the interpolated airfoils shown in Figure 16 are placed one foot apart along the
span as shown in Figure 17 (with the exception of the last interpolated airfoil to the tip air-
foil, RAE 101, whose distance is half a foot). In the wing editor window, the x and y panels
used for vortex lattice analysis are selected to use cosine spacing for each airfoil section to
provide a higher concentration of panels on the leading and trailing edge of the wing as well
as the root and the tip. All analysis methods found in XFLR5 were compared at a 0 degree
angle of attack in a fixed-speed analysis at a freestream velocity of 35 feet per second. Anal-
ysis methods VLM1 and VLM2 each produced coefficient of lift values of 0.762 regardless of
the addition of viscosity to the analysis settings. The Ring Vortex analysis setting produced
a coefficient of lift of 0.788, and lifting-line theory (LLT) output a coefficient of 0.830. LLT
is not generally used for swept wings, so that analysis method will be disregarded for this
aircraft configuration. The analysis setting used for the comparison of coefficients of lift
across angles of attack ranging from -4 to 10 degrees is VLM1.
The wing geometry from XFLR5 was directly imported into AVL for analysis. Solving at
a 0 angle of attack yields a coefficient of lift of 0.85 in the inviscid analysis. The Trefftz
plane results (Figure 18 - downwash marked in blue), as with XFLR5 (Figure 14), indicate
the transition from upwash to downwash begins within the span at the same approximate
location.

The discrepancies in the coefficients will be discussed with the results from CFD and the
evaluation of performance from all methods across the prescribed range of angles of attack.
The curve matching of lift distributions across the span will be performed at a constant
coefficient of lift for all analysis methods. Before introducing these results, the methodology
and design settings in STAR-CCM+ must be outlined.
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Figure 18: Trefftz Plane Results from AVL

4.2 Wing-Only Analysis of Bellwether in STAR-CCM+

The CAD model of Bellwether is first imported as a parasolid into STAR-CCM+ in the
creation of a surface mesh. A geometric block part of (25 x 30 x 50) cubic meters is used
as the flow domain from which the aircraft is extracted through a Boolean Subtract feature.
The wing surfaces are split by patch for additional surface control and command of prism
layer design.

The wing-extracted domain is added as a region with a region for each part and a bound-
ary for each part surface. The inlet of the domain is set as a velocity inlet with a magnitude
of 35 feet per second. The aft surface of the block domain is set as a pressure outlet at at-
mospheric pressure. The walls of the domain are set as a freestream with a mach number of
0.031 in correspondence with the inlet velocity magnitude and air at 1000 feet above sea level
to simulate atmospheric conditions in Stillwater, OK. A physics continuum is added with the
settings listed in Figure 20. Completion of the physics continuum settings prompts reports
and plots to be made to track desired performance parameters. Reports for coefficients of
lift, drag, and moment, as well as lift and drag forces, are monitored and plotted on the same
graph tracking their values per iteration of RANS flow solving. To output distributions of
lift and drag across the wingspan an accumulated force table is added as a tool. These tables
are referenced as the data series used in plotting the distributions, particularly used for the
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Figure 19: Flow Domain used for the Wing-Only Analysis of Bellwether

comparison of lift distribution to lower order methods. The data is collected as the average
force experienced within spanwise bins. The bin number is set to 20, which is to say, there
are 20 bins of equal width from wingtip to wingtip within each an accumulated force is the
output. This allows for an aggregate force distribution across the span. All main physics
reports, monitors, plots, and scenes (with the exception of the vorticity scenes which will
be explained later) can be duplicated by using the attached macro FlyingWingMacro.java
found in Appendix 0.7. Most of the settings are universal and can be transferred to any flying
wing re-imported into the domain, though some modifications may be required. Guidance
for most of these required changes can be found in the comments of the macro code. Once
the simulation has been constructed to report all of the physical properties desired, setup
proceeds with mesh settings and design.

Mesh design begins with the creation of a 3D-Automated mesh added to the flow domain.
A polyhedral mesher is selected with surface remesher enabled. Prism layer mesher is added
to accurately capture boundary layer by constructing thin, prismatic cells along boundary
surfaces. Surface controls are added for control of these prism layer numbers and thick-
ness for each surface independently. Default controls such as base size, target surface size,
minimum surface size, surface growth rate, and prism layer values are modified through an
iterative process to achieve a suitable mesh by inspection as a baseline. Leading and trailing
edges of the wing are examined to ensure the cell sizes are fine enough to produce smooth
surfaces in the mesh scenes as an indication that the model will be represented well when the
flow physics are introduced. Imperfections on thin or or highly-curved surfaces may be the
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Figure 20: Physics Settings for the Wing-Only Analysis of Bellwether

result of cells adjacent to the surface too large to capture the gradient of the surface. This
may result in a curved surface appearing jagged or lacking in resolution. Alternatively, this
problem may occur if the parasolid lacks resolution. The tessalation density determines how
closely the parasolid matches the CAD part. Density increases allow for a smaller minimum
surface size and higher quality mesh on the part surfaces but come at the cost of increased
cell count, and thus, greater computational effort and file size. Importation of the parasolid
is chosen with a ’very fine’ tessalation density after a ’medium’ density proved insufficient
for the trailing edge of the flying wing. Examination of prism layers, mesh size, and surface
boundaries (Figures 21, 22, and 23) initiate a baseline mesh to be refined with guidance from
scalar scenes, reports, and residual plots. The mesh is validated by a mesh independence
study. This study involves changing all mesh values to be relative to the base size then
changing the base size by 20 percent. If the physics values reported are closely similar to the
values solved for by the original mesh, then the mesh is said to be largely independent of the
cell size, meaning an increase in the cell count and computational effort does not provide
much aid in producing a more accurate result.

After iterations of meshing to create a visibly suitable mesh design, the physics are set
to run to 1000 iteration. In unpacking the physics results, two main metrics are evaluated in
the determination of a quality mesh design: convergence and wall y+. Checking convergence
of monitors and plots indicate whether the solver has achieved what it determines to be a
consistent answer to the physical parameters it is tracking. Wall y+ is a scalar measure
of velocity gradients near surface boundaries, essentially, indicating at which areas on the
surface of the part are losing information in adjacent cells close to the surface. This value
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Figure 21: Mesh Scene of Wing-Only Model

Figure 22: Planform Mesh Scene of Wing-Only Model

is desired to be close to unity. Coefficients and forces are monitored at each iteration shown
in Figure 24 and Figure 26, respectively. The values appear to converge as quickly as 100
iterations. Wall y+ scalar values shown in Figure 28 show values higher than optimal on
the wing, particularly on the leading edge. Due to the quick convergence of the physical
parameters, despite the sub-optimal wall y+ scenes, the CFD analysis proceeds with a mesh
independence study to validate the mesh design.

The base size of the mesh is increased by 20%, and the physics is run again to 1000
iterations. The comparison of the force coefficients is presented in Figure 29, and they
indicate this mesh design to be independent of cell size and accurately reporting the flow
physics. Additionally, the unsteady RANS physics solver ran on the same mesh to provide
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Figure 23: Prism Layer Mesh Scene of Wing-Only Model

Figure 24: Bellwether Wing-Only CFD - Coefficients Monitor

greater validation of the mesh and physics reports. The physics ran 5000 steps reporting
coefficients of lift and drag of 0.6363 and 0.03254 with a percent error of 0.1418% and
0.1346%, respectively, compared to the steady RANS physics solution.

Visualizing vorticity in the wake of the aircraft is a strong qualitative tool for understand-
ing the flow field and the changes caused by differences in lift distribution. This becomes
particularly pertinent in Chapter V. Here, it will be described how each of these scenes are
generated.
Figure 30 is a top view of a wake plane made from a derived part in STAR-CCM+. The
vorticity vector length corresponds to the magnitude. The largest vector is shown in red.
The vector lengths are modified in the properties window until the maximum vorticity vector
interacts with the wing for ease in identifying the location with the STAR-CCM+ measure-
ment tool. This is the central location about which the flow is turning (vortex core), and it
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Figure 25: Bellwether Wing-Only Unsteady RANS - Coefficients Monitor

Figure 26: Bellwether Wing-Only CFD - Forces Monitor

is normal to the rotation of the flow (i.e. the rotation is spanwise with each vortex rotating
towards the aircraft centerline). The difference in vector directions from port to starboard
vortices indicate opposite directionality. The flow outboard of the vortex center is where
the region of upwash occurs. The identification of the core location provides a qualitative
understanding of the influence on the change in flow field to aerodynamic performance when
this work turns to the comparison of the various lift distributions.

Another way to create this view in STAR-CCM+ is to add the wake plane to a scalar
scene where vorticity about the longitudinal axis is the scalar quantity (Figure 31). The
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Figure 27: Bellwether Wing-Only Unsteady RANS - Forces Monitor

Figure 28: Bellwether Wing-Only CFD - Wall Y+

scalar values are single values stored in each cell lying on the plane. The wake plane is the
same derived part used in Figure 30. Upper and lower bounds may be set in the properties
window to control the color gradient to better illustrate the change in vortex intensity around
the core.

Alternatively, the vortex cores may be generated directly in a displayer with moderate
computational expense (Figure 32). This is accomplished by creating a vortex core as a
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Figure 29: Mesh Resolution Percent Error

Figure 30: Bellwether Wing-Only CFD - Vorticity Vector Top View

Figure 31: Bellwether Wing-Only CFD - Wake Vorticity Scalar Scene
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Figure 32: Bellwether Wing-Only CFD - Vortex Core Scene

derived part, choosing the entire flow domain as the part added to the vortex core, and
viewing that part in a scalar scene. The scalar field of the scene must be set as the vorticity
about the axis of interest.
The qualitative tools aid in connecting this research with the work done by Ludwig Prandtl
[11] and Dr. Bowers of NASA [2] in Chapter V, but the wing-only analysis progresses with
the quantitative results to compare VLM to CFD.

4.3 Wing-Only Comparison of Analysis Methods

The alpha sweep in the vortex lattice methods range from -4 to 10. The VLM1 analysis
in XFLR5 solved for performance at 2 increments. AVL results were produced in 1 steps.
The range of angles of attack in CFD are from -2 to 6 in increments of 2 to reduce the
computational burden. Figure 33 illustrates the linear shift in CL values among the analysis
methods, though the slopes are similar. AVL, XFRL5, and STAR-CCM+ generate coefficient
of lift values at the zero angle of attack of 0.85, 0.762, and 0.64, respectively. The constrained
streamlines shown in Figure 121 show the 3-dimensional ”leakage” of flow captured in the
high-fidelity analysis performed by STAR-CCM+. The flow runoff reduces the lift produced
at the sections with the most cross flow. This spanwise flow is not observed by the lower-
fidelity methods which helps explain the over estimation of lift coefficient by the vortex
lattice analyses at the root sections showing the most cross flow. In the comparison of the
shape of the lift distributions, the wings used in the VLMs were analyzed at a constant CL
of 0.64 to match the value produced in STAR-CCM+ to maintain the imposition of fixed
lift and freestream velocity constraints. Geometric rotation of the wing is used to achieve
a common CL among the low-order analysis methods. This adjustment requires analysis of
the wing in AVL at an angle of attack of -2.2 and an angle of attack of -1.3 in XFRL5. The
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Figure 33: Comparison of Lift Curve Slopes of the Wing-Only Bellwether Model for VLM
and CFD Analyses

Figure 34: Constrained Streamlines on Bellwether Wing-Only Planform View

resultant distributions of chord multiplied by the coefficient of lift at each section along the
wing, c∗CL, is plotted in Figure 35 against the shape of the differential lift, dL, distribution
output by STAR-CCM+ and the Prandtl curve that represents the desired distribution.
Recall that this wing was designed with the lifting-body fuselage in STAR-CCM+ to match
the Prandtl curve, and Figure 35 overlays the wing-only distributions to show commonality
of the lower-order methods to CFD to inform the aircraft designer of the efficacy of VLM
for rapid results in capturing the flow field. Since L’, dL, c*CL, and circulation are scalable
distributions of one another, the dL distribution, shown by STAR-CCM+ results, is scaled
by a factor of 0.62 to illustrate its shape in contrast with the vortex lattice results.
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Figure 35: Comparison of Vortex Lattice Methods’ c*CL Curves to a Scaled Curve of dL
from CFD at a Common Lift Coefficient

4.3.1 Mathematical Justification for Curve Scaling

A challenge faced in this research was found when trying to compare the medium-fidelity
aerodynamic solutions to the high-order CFD computations. The CFD computations out-
put physics parameters describing the flow at each cell in the computational grid. Overall
forces and moments acting on surfaces that the grid has been generated over can be output
in post-processing. The solution of the full Navier-Stokes equations at each point in the
computational grid means that the overall forces and moments acting on the outer-mold line
of the geometry include components from the pressure distribution and skin friction from
streamline scuffing in and near the boundary layer. In addition to outputting the total forces
and moments at a specified point in the computational domain, the Star-CCM software al-
lows the user to define equidistant chordwise strips on the surface geometry and to isolate
force components acting along these strips.

The vortex lattice method discretizes the geometry by placing potential flow singularities,
vortex-ring elements in common implementations, over the mean camber line of the lifting
surfaces. For the purposes of explanation, the discussion below is considering a simple VLM
with only one horseshoe vortex in the chordwise direction. A linear system of equations is
developed to enforce the boundary condition of zero-normal flow through the control point
of each vortex ring. The boundary condition equation, in the absence of body angular rates,

at one vortex ring control point may be expressed as (
−→
V +

∑n
i=1 ~gkiΓi )̇̂nk = 0, where

−→
V is

the freestream velocity, ~gki is the velocity induced by vortex ring i at control point k, Γi
is the strength of the vortex ring i, and n̂k is the panel normal vector for control point k.
Writing this equation for each control point in the geometry results in a matrix expression
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in the form represented below:

[AIC][Γ] = [wi] (4.3.1)

In this equation, the aerodynamic influence coefficient matrix (AIC) is an nxn matrix
containing the terms ~gki for a unit vortex strength, wi is an nx1 vector containing the term−→
V ˙̂nk (the normal flow component) for each control point based on the current inflow con-
dition and geometric twist at the local strip of the wing. For a given geometry and inflow
condition, the nx1 circulation strength vector Γ can be solved for by inverting the AIC
matrix and pre-multiplying the vector of normal flow on the right-hand side of the above
equation, which is formed by simply considering the freestream flow contribution at each of
the panel control points.

Knowledge of the circulation distribution across the span allows for computation of sev-
eral aerodynamics quantities of interest. Firstly, applying the Kutta-Joukowski theorem
gives the spanwise lift distribution:

L
′
(y) =

dL(y)

dy
= ρV∞Γ(y) (4.3.2)

Note that the dL and L′ distributions is the same shape as the Γ distribution since for a
given flow solution, the density and inflow velocity are constant.

The incremental lift on segment dy of span can then be written as:

dL(y) = ρV∞Γ(y)dy (4.3.3)

From the definition of 2-D lift coefficient in airfoil theory, the lift per unit span can also
be written as:

L
′
(y) =

1

2
ρV∞

2c(y)Cl(y) (4.3.4)

Therefore, local lift coefficient at spanwise location y can be written as:

Cl(y) =
2Γ(y)

c(y)V∞
=

2

c(y)V∞
Γ(y) (4.3.5)
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For a given wing geometry and inflow condition, it is easily seen that the c(y)Cl(y) distri-
bution is simply a scaled version of the Γ distribution. Thus, many readily available outputs
from a Vortex Lattice Method, or similar, are seen to be the same shape, and simply scaled
versions of each other.

Γ(y)
Same Shape

=======⇒ dL(y)

dy
= ρV∞Γ(y)

Same Shape
=======⇒ c(y)Cl(y) =

2

V∞
Γ(y) (4.3.6)

Induced drag is quite simple to predict in a VLM after the Γ distribution is solved.
Traditional VLM formulations calculate the induced drag in the Trefftz plane, theoretically
located infinitely far behind the lift system using the equation below:

Di =
ρ

2

n∑
i=1

ΓiVnt,idsi (4.3.7)

In the expression, Di is the total induced drag, ρ is the density of the freestream flow, Γi
is the bound circulation at spanwise wing station i, Vnt,i is the velocity normal to the wake
in the Trefftz plane at spanwise station i, and dsi is the incremental distance along the span
at section i. As the wake normal velocity in the Trefftz plane is simply the sum of all the
velocity increments from each bound and trailing vortex in the lift system, the total induced
drag is simply a function of the resultant L′(y) distribution.

The lift distribution shape is useful in an aerodynamics optimization problem as it fully
determines the induced drag that will result from producing the required amount of lift with
a given spanload. The lift distribution is also useful for determination of wing structural
loading and the overall wing-root bending moment. Because the spanload distribution is
designed using a combination of geometric and aerodynamic twist, it is critically important
to remember that L′(y), Γ(y), dL, and c(y)Cl(y) distributions will all be the same shape
and simply scaled versions of one-another but that the spanwise distribution of local Cl will
result in a different shape because the chord is not constant along the span.

Induced Drag Comparison from VLM and CFD

The induced drag is the entirety of the drag force predicted by the VLM implementation as
no physics to include any contributions from skin friction terms are not included in the po-
tential flow formulation. Conversely, the CFD drag prediction contains both the lift induced
drag and contributions from viscous effects. There is no simple way to isolate only the lift
induced drag portion of the CFD solution (without the computational expense of a Trefftz
plane as a derived part [14]) or to reliably incorporate CDp type drag contributors in a VLM
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formulation.

Therefore, the knowledge that induced drag is entirely due to the shape of the resultant
spanwise lift distribution is applied to compare the VLM and CFD solutions. From the
VLM, readily available outputs include the spanwise chord distribution and local section
Cls. These can be multiplied together and plotted as a representation of Γ or dL. In the
CFD post-processing, the lift over a strip of the wing can be output and co-plotted with the
VLM c∗Cl distribution. The resultant curves are not expected to be of the same magnitude,
but should be the same shape. Therefore, the plots are made by applying a linear scale factor
to one of the curves to make the peak of the curves overlay each other. Then, the shape of
the curves from the two methodologies can be directly compared. If the shape is the same,
not only is the resultant lift distribution from each method equivalent, the induced drag will
be the same as well.
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CHAPTER V

CFD Analysis of Bellwether

The previous section validates the use of vortex lattice methods to develop rapid results for
the aircraft designer. This section turns to how CFD is leveraged to evaluate aerodynamic
performance of the BSLD and how it compares to its elliptical wing counterpart. The anal-
yses performed onward in this body of work will be done using high-fidelity tools on aircraft
designs with the fuselage included to best capture performance. Beginning with CFD vali-
dation techniques used in the previous section, this section progresses through high-fidelity
computation for the comparison of lift-to-drag ratios of the four different wing models at
level, steady flight and roll-yaw coupling in an aileron-deflected banked turn. Interpretation
of vorticity vector scenes describe upwash regions in the aircraft wake providing discussion
of the relationship of inboard upwash to proverse yaw.

5.1 Mesh Development

After importation of the aircraft parasolid models, the surfaces are split by patch for ad-
ditional control of mesh settings. Select surfaces are broken up by sections: wing leading
edge, wing trailing edge, central patches of both wings, wingtip leading edges, wingtip trail-
ing edges, wingtip mid-section, fuselage nose, fuselage body, and fuselage tail, which are
selected to be displayed in the planform view of the scene shown in Figure 41. This offers
specific control of these areas to directly command scalar values of interest, such as wall
y+, turbulent kinetic energy, and convective courant number. These values can be used to
provide guidance in the iterative mesh design process to achieve convergence of physical flow
properties. Prism layer design and wake refinement are two vital parameters in capturing
the flow physics. Figure 36 and Figure 37 visually depict the outcome of these designs. It
is pertinent to note, for purposes of computational expense, that iterations of physics runs
are used to refine the prism layer design and base cell size to create a mesh that begins
to reduce residuals across iterative steps, and limit wall y+ and turbulent kinetic energy
values, before wake refinement is enabled. This is done to capture the surfaces of the model
through iterative mesh/run steps before adding wake refinement which is likely to introduce
millions more cells into the domain increasing computational cost. Once the mesh design is
completed, and wake refinement enabled, analysis proceeds to check mesh independence by
evaluating the current mesh with a mesh of 20% reduced base size with all mesh elements
enabled as ”relative to base.”

The physics for the aircraft models without aileron deflection are run on a mesh of 23
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million cells. The computational burden is placed on the High-Powered Computing Center
(HPCC) at Oklahoma State University.

Figure 36: Longitudinal Mesh at the Root Airfoil

Figure 37: Horizontal Mesh with Wake Refinement Enabled

5.2 Level, Steady Flight Performance

Each model is first analyzed at the 0 degree angle of attack at a freestream velocity of 35 fps.
The performance was originally recorded by the unsteady Reynold’s-Averaged Navier Stokes
(U-RANS) solver for each model for 1 physical second of 5000 iterative steps. The results,
albeit small and bounded, were oscillatory. A steady RANS model was introduced to provide
a level, convergent result within the bounded U-RANS results for clarity of presentation.
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Figure 38: Bellwether Wall Y+

Figure 39: CFD-Matched Lift Distributions

The lift distributions, dL, across the span are plotted against the desired curves in Figure
39 to confirm each wing is producing lift congruent with how it is designed. Next, the
aerodynamic performance of each is measured in the ratio of lift to drag produced at the
common flight condition. To save on computational expense, the Modern Bell and Cosine
curves have not been iterated extensively to match their curves. Instead, they have been
designed with enough distinction to provide significant differences to the flow fields produced
by the Prandtl and ELD wings. The Bellwether design, applying the bell spanload outlined
by Ludwig Prandtl, shows greatest efficiency in level flight (Figure 40). The ELD wing is
found to be operating at a much lower coefficient of lift (0.323) than the other distributions,
so this comparison of the ELD to the other wings on this basis is ill-founded. The ELD
design failed to adhere to the fixed-lift design constraint placed upon the other distributions.
This can be corrected by running an alpha sweep and comparing the performance of the
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ELD at an incidence angle where the CL matches that of the other distributions. However,
this method is likely to introduce greater parasitic drag, so a L/D comparison would not
be representative of the efficiency of lift generation. A comparison could be made in setting
up a Trefftz plane in STAR-CCM+ as a grid of planar probes from which the velocity
vectors recorded are used to calculate induced drag from the flow field. This may be a
suitable method of comparing induced drag computationally, and the truest comparison
of aerodynamic efficiency in level flight, but it cannot entirely capture the aerodynamic
performance without also accounting for the parasite drag by measuring the total drag and
calculating induced drag (CD = CD0 + CDi). No clear comparison in level flight is made to
ELD, but it is determined that increasing the centralization of lift deviating from the bell
spanload results in decreased aerodynamic efficiency for this aircraft configuration in this
flow regime.

Figure 40: Comparison of Lift-to-Drag Ratios of the Various Wing Designs

For a physical explanation of how the change in lift distribution affects the roll-yaw
coupling response of the aircraft, we revert to the discussion of the regions of upwash and
downwash discovered by Dr. Bowers and the research team at NASA responsible for the
design and testing of the Prandtl-D flying wing [2]. Referencing Figure 2 depicts the sharp
induction of upwash flow at the wingtips caused by the elliptical lift distribution. The bell
spanload offers a smoother transition between regions of upwash and downwash that begin
within the wingspan. Depictions of trailing vortices for Bellwether and the ELD model are
observed to relate the computational findings to the Prandtl-D research and avian flight
correlations [2] [14].

Figure 41 and Figure 42 use vorticity vector scenes from STAR-CCM+ to illustrate
where these regions occur for Bellwether and the Elliptical model, respectively. ELD (Figure
42) places the center of its vortex at the wingtip with a sharp gradient in vorticity vector
strength. By contrast, BSLD (Figure 41) captures a much smoother change in vorticity
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Figure 41: Bellwether Vorticity Vector Scene

magnitude congruent with Figure 2. The measurement tool in STAR-CCM+ was used to
measure the location of the maximum vorticity vector to the aircraft centerline which spans
the region of downwash and indicates where the transition from upwash to downwash occurs
(i.e. distance from the root to the vortex core). This distance measures 9.17 feet which is
70.5% of the 13-foot semispan. The measured vortex core location nearly exactly mirrors
the 70.4% semispan location found by NASA’s investigation of this lift distribution in 2016
[2].

5.3 Banked Turn Performance

In order to simulate a banked turn, the aircraft models are revised with the addition of
ailerons from the 80% span position to the RAE 101 airfoil section at the wingtips. This
design choice was advised by the range of optimal placement between 76% and 82% found
by Richter et al [18] for maximum proverse yaw control. The inboard and outboard surfaces
of the ailerons extend to the quarter chord, and they are linearly lofted together as a solid.
They are designed such that the angle of deflections can be easily modified for a downward
deflection on the port side aileron and an upward deflection on the starboard aileron. This
banked turn simulation deflects the ailerons 20 anti-symmetrically.

Like the level-flight analysis, the banked-turn CFD records yaw moment by the implicit
U-RANS solver for each model tested. The results presented are from the subsequent analyses
using the steady RANS solver to ouput a clear value within the oscillatory bounds of the
U-RANS result. This is done primarily for validation of the physics continuum and clear
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Figure 42: Elliptical Model Vorticity Vector Scene

presentation of results. The creation of proverse yaw (Figure 43) is evident for the wing
designs in which the ailerons are engulfed in the upwash. The distributions centralizing lift
the most experience the greatest effect of proverse yaw. Bellwether, utilizing the spanloading
described by Prandtl, exhibits the greatest aerodynamic efficiency in level flight (Figure 40)
and is the closest to performing a perfectly coordinated turn in roll (Figure 43). Deviations
from this spanloading shows decreases in overall flight performance. As discussed in the
level flight section, the L/D comparison does not apply to the elliptical wing. The ELD is
reported to be the most efficient solution for a fixed wingspan. Since the analyses of this
work does not alleviate wingspan constraint for a fixed structural weight (or root bending
moment), previous research would lead to the belief that this design should perform best
when the ailerons are not engaged. As expected, the ELD operates with clear adverse yaw
effects in roll. Figure 44 tracks the convergent yaw values for each physics iteration. The first
100 iterations of the steady RANS results have been clipped to remove extraneous values
from the plot.

Examination of an aileron mesh scene (Figure 45) encourages discussion on improve-
ments to be made in the modeling and mesh design for the aileron-deflected models. These
models have been made such that the port aileron deflects 20 down with attachment along
the high-pressure surface of the wing. Conversely, the starboard aileron is deflected 20 up
with attachment at the upper wing surface. The deflection angle creates sharp edges of sur-
face discontinuity. CAD features such as this should be avoided for purposes of importation
as surface mesh for CFD simulation. Notice the prism layer contraction to the sharp edge
causing the thin, prismatic layer to no longer follow the flow direction to precisely capture
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Figure 43: Yaw Control Power per Unit Roll from 20 Anti-Symmetric Aileron Deflection

Figure 44: Yaw Moment Monitor by Iteration of Steady RANS Solver in STAR-CCM+
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velocity gradients close to the surface boundary. Future CAD modeling could create a filled
boundary by creating planar surfaces in the gaps of the ends of each aileron and a surface
bounding the upper surfaces. This may also be remedied using a solid loft feature from
creating a sketch profile in the corner gaps at the ends of each aileron and using the attach-
ment surface as a guide curve to avoid a potential non-manifold-body error in STAR-CCM+.

Figure 45: Aileron Mesh Scene on Longitudinal Plane

A smooth, continuous surface allows for greater control of prismatic layer design and, in
turn, improved accuracy of velocity and pressure gradients around the body. It can also be
seen in Figure 45 that the trailing edge curvature is not matched causing a sharp, angular
feature. Again, the prism layers are forced to turn at the sharp angle instead of rounding
smoothly. The aileron surface mesh should be imported at an increased tessalation density
to build small surfaces of high curvature with greater accuracy. This must be coupled with
refined mesh settings on the control surface such as decreasing minimum surface and target
surface sizes.
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CHAPTER VI

Avian-Inspired Aircraft Design and Performance

The previous sections detail analytical and computational methods to justify the aerody-
namic design of Bellwether. The aerodynamic shape has been driven by the application of
the BSLD and artistic resemblance to birds with the shaping of the lifting-body fuselage.
This section discusses aircraft performance metrics for stability and control from computa-
tional results and progresses to CAD modeling of the final aircraft shape, internal structure,
and basic construction techniques.

6.1 Longitudinal Stability and Performance

Understanding of the aircraft’s performance beings with unpacking the results of an alpha
sweep. The results give a graphical understanding of longitudinal performance across inci-
dence angles (Figure 46) to illustrate the range for optimal performance and the stall region
where the linear, elastic region of lift loses its efficacy. The range of greatest lift-to-drag
ratio can be seen between −2 and 2 operate at high coefficients of lift ranging from 0.7 to
1 for maximum aerodynamic performance. This is optimal for the aircraft to complete its
mission of atmospheric data collection while demonstrating minimum induced drag.

To understand stability of the aircraft the center of gravity must be estimated after
modeling the aircraft and all of the internal components. The center of gravity (c.g.) location
is approximated by a spreadsheet of point masses in cooperation with the SolidWorks c.g.
displayer to model each component and report the location with respect to the model.
Density of aircraft composite skin made of fiberglass layers and a divinycell foam core is
approximated based on previous aircraft fabricated through Oklahoma State University’s
long history of building unmanned aircraft. Other known internal components (Pixhawk
OrangeCube autopilot, electric motor, RunCam camera, video transmitter, receiver, 12”
propeller, servo motors, and batteries) are available in the Unmanned Systems Research
Institute (USRI) lab space, Excelsior, to be sized and weighed for accurate modeling. The
c.g. location is used as the origin for many aircraft stability concerns through STAR-CCM+
including the reports and monitors constructed to track the coefficient of moment about the
c.g. Since this aircraft configuration operates without the use of a tail, there is little margin
for error in the placement of the c.g. for maintaining longitudinal stability. As not to induce
a positive or negative pitching moment that would require additional control, the propulsor
placement is designed to run through the center of gravity in line with the freestream, or
longitudinal axis. Figure 47 shows how this design works with a 3D-printed, fin-like support
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Figure 46: Bellwether - Lift Curve and L/D Developed by Alpha Sweep Analysis in STAR-
CCM+

structure for the propulsor shaft. This addition is adhered to the composite fuselage, and the
motor shaft slides through the fuselage and the fin to drive the propeller. This design allows
for the CFD analysis of pitch stability to be representative of the aircraft behavior without
needing to account for the pitching moment induced by the propulsive system. Additionally,
the propeller placement was chosen to operate aft of the fuselage as not to influence the
freestream flow on the fuselage, since the lift generated by the body was included in the
design and analysis to match the Prandtl bell lift distribution.

For longitudinal stability, the pitching moment about the c.g. for various angles of attack
is the primary plot used to understand the aircraft’s behavior in flight. For a positive moment
corresponding to a pitch up, and negative for pitch down, Figure 48 plots Cmv.α for a range
of c.g. locations along the longitudinal axis. The purpose for ranging the point of interest:

1. Finding the aerodynamic center which, for a flying wing, is equivalent to the neutral
point and is the location about which pitching moment is constant and independent
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Figure 47: Propulsor Placement in Line with Center of Gravity ISO

of incidence angle.

2. Graphically identifying the c.g. locations to satisfy longitudinal static stability: Cmα <
0, Cmα=0 ≥ 0, and it must cross the x-axis to achieve trim.

3. Noting the range of static margin required for longitudinal static stability, where the
static margin is equivalent to the distance of the center of gravity from the neutral
point divided by the mean aerodynamic chord;
SM = (Xnp−Xcg)

MAC
x100%

The optimal point can be seen to be a static margin, SM, of 20% to satisfy the enumerate
criteria above. At this c.g. location the Cmα slope crosses the x-axis at 0 angle of attack,
meaning there exists no positive or negative pitch moment at this trim point, and it will
seek to return to this operating point when subject to perturbations. Conveniently, the
trim point occurs at the angle of attack of greatest efficiency by metric of L/D as graphed
above (Figure 46). The computer-calculated center of gravity marked the location at a
SM of 26.5%. Bellwether has been designed with a modular propulsion bay that slides
out the back hatch of the fuselage to swap or rearrange the propulsive components. Rails
are designed within the bay to allow for the batteries powering the electric motor to be
positioned at various longitudinal locations to set the c.g. to achieve the desired SM. Figure
48 provides a top view of the fuselage to show the c.g. relation to the body and the c.g.
travel necessary to the attain the SM corresponding to the desired performance curve. Each
criterion for longitudinal static stability has been met and, thus, concluding analysis for
pitch-axis control.
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Figure 48: Longitudinal Static Stability from CM v. Alpha Plot for Varying Center of
Gravity Locations

6.2 Lateral Stability of Bellwether

In order to better understand aircraft performance in a banked turn, the effect of sideslip
to yaw and roll must be in account. To observe this effect, CFD analysis is performed
on Bellwether for freestream sideslip angles of 2.5, 5, 7.5, and 10. The aircraft is rotated
inside the flow domain by an exposed parameter responsible for setting yaw angle in de-
grees. If unchanged, the lab coordinate system will remain to output forces and moments
in accordance with a zero-sideslip condition. This fixed coordinate system is said to be in
wind frame, since it maintains an axis along the direction of the freestream regardless of
aircraft position. However, the desired outcomes of forces and moments are considered with
respect to the body of the aircraft, so the reports and monitors must be made to reflect
its changes in position. An adaptable coordinate system is not made available in Flying-
WingMacro.java, but the change can be made with relative ease. A new coordinate system
can be developed in the CAD window of STAR-CCM+ relating the points and/or planes
constructing the Cartesian coordinates to the aircraft body so the reference system changes
with body rotation and translation. A less adaptable method, but equally effective, is to
define a new local coordinate system under the ”Tools” tab of the main page. It can be
defined as Cartesian, cylindrical, or spherical. For this application, it is easiest to create a
Cartesian system that sets an axis as a rotated vector from the original Cartesian coordinates.

Alternatively, the resultant forces and moments may be passed through a rotation matrix
to correct for the change of frame as was done here. A Direction Cosine Matrix (DCM)
changes the resultant vectors of roll, pitch, and yaw moments from wind frame to body
frame (Equation 6.2.1 and Equation 6.2.2) [23].
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ClCm
Cn


body

= DCMbw

ClCm
Cn


wind

(6.2.1)

The coefficients of these moments are transformed for each β value of 2.5, 5, 7.5, and 10
for a constant angle of attack, α = 0.

DCMbw =

 cos(α)cos(β) sin(β) sin(α)cos(β)
−cos(α)sin(β) cos(β) −sin(α)sin(β)
−sin(α) 0 cos(α)

−1 (6.2.2)

Roll and yaw coefficients (Cl and Cn, respectively) are plotted from the beta sweep
(Figure 49). The analysis indicates that a negative roll moment is created for positive
sideslip with a slight yaw moment into the freestream suggesting that static directional, or
weathercock, stability is inherent. The trendlines of the figure indicate the roll and yaw
stability coefficients to be Clβ = −0.0086 and Cnβ = 0.0008, respectively.

Figure 49: Coefficients of Roll (Cl) and Yaw (Cn) with Respect to Sideslip Angle (β)

Perfect coordination would assume zero sideslip, but that may not be the case in flight.
Relating these results back to the banked turn performance offers a more comprehensive
understanding of the turn coordination. The coefficient of roll for the 20 aileron deflection,
Clδ=20, is approximately 0.25 from CFD results. From Figure 49, this positive roll moment
is only slightly counteracted in sideslip, so it is acting only marginally as a wing leveler. If
the linear relationship holds for greater angles of sideslip, it would take a β of 30 to nullify
the roll moment caused by 20 aileron deflection. The yaw moments created are much less
pronounced. The yaw coefficient with respect to sideslip (per degree) is 0.0008. The proverse
yaw created by aileron deflection is roughly Cnδ=20 = 0.0018, which is to say the effect of
sideslip is additive to proverse yaw. The Modern Bell and Cosine wing models operate with
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yaw control is excess of Cnδ=20 = 0.005. By contrast, the Elliptical wing creates a coefficient
of nearly Cnδ=20 = −0.007 that appears to be negated at 8.75 of sideslip according to the
linear trend reported by STAR-CCM+. A tradeoff made by seeking more centralized lift
distributions for increase yaw control power may not be worth sacrificing L/D performance
in level flight, since the directional stability will add favorable yaw in sideslip.

6.3 CAD Modeling, Internal Design, and Fabrication Techniques

The modeling begins with the importation of .dat files as x,y,z coordinates into SolidWorks
to create splines of specific airfoil geometry. From these splines, sketch blocks are created so
that they may be inserted as different sizes at different locations and angles of twist. The
airfoils are positioned from BellwetherOne at the root to RAE 101 at the tip of the wing in
accordance with Figure 50.

Figure 50: Geometric Twist Angles for Each Spanwise Airfoil

The semispan wing sections are lofted together and connected to the fuselage cross sec-
tion at the centerline through the use of guide curves to obtain the desired biomimetic shape.
The fuselage shape was made iteratively through high-fidelity analysis to ensure it produces
the lift required to promote the smooth, continuous bell curve. The aerodynamic shape is
hollowed out for the creation of the structural components. The ribs are created at the
semispan locations of the sketch blocks created from the .dat file splines and lofted to an
adjacent intersection curve made from the interaction between the wing and a reference
plane distanced the rib thickness from the airfoil sketch block. A lofted feature is chosen
over an extrusion to adhere to the sweep and dihedral along the span. The fuselage ribs and
bulkheads are made using the same technique. Lightning holes are laser cut in the Aeroply
ribs and bulkheads to reduce the weight of the structural components while remaining to
support shear flow. The fuselage internal structure harbors specific bays: camera system,
avionics, propulsion, and storage. Each compartment is accessible through magnetic hatches
composed from the fiberglass skin.
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Figure 51: CAD Model of Bellwether Internals

The wing bending moment is supported by a 6’ carbon fiber spar positioned at the quarter
chord and a balsa wood spar positioned at the 3/4 chord. The balsa spar is adhered inside
the wing by a carbon-fiber infused epoxy in the composite layup process. For additional
support at the root, 3 blocks of dense foam are fit between the first 3 wing sections. The
dense, supporting foam is cut using a computer numerical control (CNC) router which is
the same technique used to shape the aircraft molds. The mold designs and images of CNC
operation can be seen in Appendix 0.4. Due to the unique wing twist the aircraft molds
require a non-linear parting line for the halves of the structure (Appendix 0.4). This results
in a piecewise linear surface as the interface between top and bottom molds of an aircraft
part. Each half of a wing mold is made as a solid, lofted body in CAD from which the wing
shape is extracted with a lofted cut feature using the wing profiles. This aircraft fabrication
process has begun, and its creation and experimental conclusions will ensue as future works.
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Figure 52: Bellwether - Rear View

Figure 53: Bellwether - Front View
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CHAPTER VII

Future Works

The ambitions for this research effort extend to seeking experimental validation through nu-
merous methods. Some methods have been tried, but no conclusive data have been obtained
to present in this document. Images of wind tunnel and laser-optic water tunnel testing
can be found in Appendix 0.5. The pinnacle of comparing aircraft performance from com-
putation to experimentation will come from the full-size fabrication of the 26 ft. wingspan
aircraft. The roll-yaw coupling is to be parsed from the inertial measurement unit (IMU)
to retrieve data that may be suitable for comparison to the aileron-deflected model in CFD.
A pitot probe will provide airspeed to couple with the IMU to determine if the aircraft is
flying at the expected cruise speed for the lift required (operating CL expected for level
flight). In addition to the standard sensors used on unmanned aircraft systems, a network
of sensors are to be integrated in the wing of the aircraft as a unique, theoretical method of
determining the distribution of lift experimentally.

7.1 Leading-Edge Flow Sensing

To revert to a common theme, we can see many examples of flow sensing found in the natural
world such as with avian flight. Birds have neural networks of mechanoreceptors responsible
for sensing dynamic, atmospheric conditions in flight. In the case of the peregrine falcon,
vibration magnitude is the sensory stimulus used for sensing incidence angle when engaged
in a rapid dive maneuver [4]. This research aims to mimic this streamlined, built-in sensing
by gathering pressure data along the wing for the purpose of outputting incidence angle and
obtaining sectional lift coefficient, Cl. Flush air data sensing (FADS) are an effective method
of obtaining this information, but there are drawback to their implementation. Such booms
require intrusive and rigid mechanical ties to the body of the aircraft. These external designs
are susceptible to damage for a belly-landing aircraft such as Bellwether. Seeking an internal
and well-integrated method of flow sensing leads to the pursuit of an alternative.
A fundamental aspect of this research is evaluating the effect of lift distribution to per-
formance of a flying wing. Currently, experimental data is not present in confirming the
computational results. An experimental flow sensing project has begun to validate the lift
distribution from flight testing. 5-hole probes are used to measure stagnation points on the
leading edge of the aircraft. This section discusses the theory, design, and integration of the
flow-sensing system into a wing of Bellwether.
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7.1.1 Theory

Discrete surface pressures measured at 5 ports on the leading edge of a wing are passed
through an algorithm to calculate air-data parameters as detailed by researchers at North
Carolina State University [19]. The real-time measurement of aerodynamic parameters in
flight enhances aircraft capabilities while preventing dangerous stall situations. This is par-
ticularly useful for this flying wing which operates at a very high coefficient of lift and notices
stall effects at a 7 angle of attack.
The measurement of the stagnation point (P0), which is the point of maximum pressure, can
be used to calculate the freestream velocity (U) and any incidence angle.

P0 = P +
1

2
ρU2 (7.1.1)

U =

√
2(P0 − P

ρ
(7.1.2)

A parabola is used for the estimation of the shape of the leading edge of the wing section.
The pressure distribution measured from the 5 ports are used as inputs to an algorithm solv-
ing the exact potential-flow solution using a nonlinear regression. The angle of attack and
lift coefficient are found using a look-up table which is found to be accurate for subsonic,
pre-stall flow regimes [19].

The shape of an airfoil is given by the expression of the nose radius (r) of the airfoil
and the initial slope of the camber line (λ) from the reduction of a high-order polynomial
derivation (complete derivation and theory cited [19]) resulting in Equation 7.1.3.

y = ±(2rx)
1
2 + λx (7.1.3)

The algorithm is made with the ability to predict the lift coefficient and angle of attack on
a wing section, and it can be extended to compute the aerodynamic parameters for sections
along the wing. Due to the unique aerodynamic and geometric twist of this wing, and added
redundancy, this design proceeds with multiple processing points on the semispan.

7.1.2 Design and Integration

This pressure-sensing experiment involves the integration of pressure sensors within the com-
posite shell. 3D-printed sleeves harboring the pressure sensors are to be placed at specified
locations along the span. Each sleeve is made by lofting two intersection curves. The in-
tersection curves are made from the creation of planes parallel to the freestream and their
interaction with the wing section. Extruded cuts are made so that the sleeve only occupies
the leading edge and does not extend down the chord. The part is shelled to create internal
volume for the pressure sensors. 5 extruded circular cuts are made at the leading edge in
precise locations: the point on the leading edge of zero curvature, 2% chord location on top
and bottom, and 5% chord location top and bottom. The holes punches are made orthogonal
to the surface.
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Figure 54: Port Wing Mold Assembly and the Integration of Leading-Edge Flow Sensors

3 locations are selected at the presumed area of highest gradient in the lift distribution
to experimentally determine its adherence to the Prandtl bell curve. Each 3D-printed sleeve
must then be designed separately to follow the sectional mold line of the wing. Due to
symmetry, the leading-edge inserts will only be placed on the port wing (Figure 54). The
starboard wing will harbor ballast mirroring the masses and locations of the sensing system.

The sleeves must be applied in such a way in order for the pressure holes to receive
freestream air, but the design also favors internal integration. The composite layup process
will accommodate this design by cutting out the skin and core material at the leading edge
locations for the sensing sleeves prior to the application of epoxy. After the creation of the
composite within the mold, the sleeves may be epoxied and the Arduino wired internally to
create a neural sensing network within the wing that runs to the power source in the avionics
bay.

7.1.3 Wind Tunnel Demonstration System

A leading-edge sleeve designed for the 7.5 ft. semispan location is printed out of ABS plastic
(Figure 55) to used as a demonstration system for wind-tunnel testing. The model adds a
sting attachment for the model to be place on the force balance in the wind tunnel. Thin
extrusion features are made on the inside of the sleeve to connect rubber tubes from the holes
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on the leading edge to their respective pressure sensors. The pressure sensors are wired to
an Arduino computer board responsible for applying the algorithm and storing the in-flight
data to an SD card. The first sleeve (Figure 55) has been tested for basic readings of pressure
data containing only 1 pressure sensor for the initial test. This model is representative of
what will be included in the wing, but a second model (like the sleeve shown in Figure 54) is
made to more accurately simulate the in-flight reading since the model will take the shape
of the entire wing section housing the sensing mechanism.

Figure 55: Sensing Sleeve Mounted in the Endeavor Wind Tunnel

The algorithm has yet to be applied for the determination of aerodynamic properties.
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CHAPTER VIII

Conclusion

This thesis set out to design an unmanned aircraft using a bell-shaped lift distribution and
investigate, through highly-computational methods, the centralization of lift and the aerody-
namic effect on the change of shape of the flow field. Vortex Lattice Methods are performed
to provide the aircraft designer with confidence in the use of rapid tools for aerodynamic
calculation. VLM is compared to CFD to illustrate its viability for initial-stage calculations.
The author suggests the use of the lower-order methods for highly-iterative design processes
of subsonic lifting bodies.
The primary theory tested is the centralization of lift and the effect on aerodynamic perfor-
mance with the change in the flow field. Four separate wing models have been made, each
designed with a different distribution of lift by the command of aerodynamic and geometric
twist. Observation of the vortical structures and core locations in the flow field provide
an intuition for the relationship of the centralization of lift to roll-yaw coupling. Further
parameterizations would provide greater clarity to this relationship:

1. More aileron deflection angles to be tested

2. Changes in aileron area and inboard reach with relation to the vortex core location

3. Alpha sweep for ELD to compare to BSLD at common CL

4. Swap wingspan constraint for bending moment constraint and compare BSLD to ELD

It is stated that the change in shape of the lift distribution from elliptical to bell decreases
the drag by about 11% with a 22.5% increase in span for the same structural weight [2].
As discussed in the early sections, aspect ratio is inversely proportional to induced drag.
However, this is not to say that the BSLD is more efficient than ELD in level flight. Greater
parasite drag is expected from the increase in span, and since CD = CD0 + CDi the overall
drag could remain the same (or even increase) dependent upon the ratio of increased parasite
drag to the induced drag reduction. No evidence in this study, or in the referenced research,
is provided to confidently suggest that any aircraft configuration will benefit in level flight
from deviating from the ELD.

The elliptical wing in this study operates at a much lower coefficient of lift (0.323) than the
other distributions. Therefore, it cannot be accurately compared in terms of aerodynamic
performance since it did not meet the required lift constraint. The CL can be matched
through an alpha sweep analysis of the wing and extracting the performance metrics at
the CL corresponding to a particular point on the lift-curve slope. This may fix the issue
of the lift constraint, but adding geometric rotation to the wing to alter CL introduces
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more parasite drag. A better way to do this comparison could be to set up a Trefftz plane
in STAR-CCM+ as a grid of planar probes from which the velocity vectors recorded are
used to calculate induced drag from the flow field. Though this may be the best method
of comparing induced drag computationally, no clear process using software tools has been
identified by the author to provide evidentiary results in favor of the BSLD to ELD in level
flight.

Distributions of centralized lift have a clear advantage in performing a banked turn
without need for an auxillary yaw device. The change in the flow field for the creation on
inboard upwash allow for the presence of proverse yaw for anti-symmetric aileron deflection.
The inboard travel of the vortex cores is proportional to proverse yaw control power. When
the aileron is engulfed in upwash, induced thrust will occur so long as the deflected aileron
does not produce enough downwash to counteract the upwash from the inboard vortex core.
The behavior of favorable yaw into a banked turn and the location and size of the vortex core
are used as evidence of its application to bird flight. From coordinated turns to the variable
wing spacing in avian flight formation, it is suggested that birds use the much wider inboard
vortex created by the BSLD to set their wing overlap to enhance aerodynamic efficiency in
the wake of the leading bird.

It could potentially be reasoned that the incorporation of this spanload can reduce the tail
size of more traditional aircraft configurations. The application of the BSLD may prove to be
beneficial to standard aircraft if the reduction in structural weight is of greater importance
than any losses occurring in level flight, though true comparisons of the ELD to BSLD in
level flight have not been performed. This body of work is not conclusive in the advocation
for the application of a bell spanload for optimal aerodynamic efficiency. However, these
findings are congruent with the suggestions of emerging research positing that this spanload
is more apt for modeling avian flight.

8.1 Summary

1. VLM overestimates the lift coefficient compared to CFD for a swept wing designed by
the BSLD, but the distribution across the span closely matches the high-fidelity lift
distribution.

2. CFD results suggest BSLD as most fit for performing coordinating turns from the
examination of roll-yaw coupling behavior.

3. CFD shows favorable L/D for BSLD in level flight for a fixed wingspan constraint
compared to the other distributions operating at the same CL (cosine and modern bell
curves).

4. Vorticity scenes produced in STAR-CCM+ agree with Ludwig Prandtl’s revised work
and NASA’s Prandtl-D project locating the vortex core produced by the BSLD to
occur at the 70.4-70.5% semispan location.

5. Congruent with emerging research, most notably the work from Kyle Lukacovic [14]
in the wake of the Prandtl-D [2], the activation of the induced thrust at the wingtips
and shape of the flow field suggest avian flight is best modeled by the bell spanload.
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APPENDICES

0.1 Aircraft CAD Drawings and Renderings

Figure 56: Bellwether Side View - Avian Inspiration

64



Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Avian Section
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Avian Down
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Avian Front
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Avian Swoop
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



 26.68 

 3
.7

0 

 0
.8

6 

 2
.7

1 
Bellwether Planform Measurements

 1
.1

9 

A A

B B

2

2

1

1

WEIGHT: 

Bellwether_Planform

Scott Weekley

BellwetherPROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN 
THIS DRAWING IS THE SOLE 
PROPERTY OF <COMPANY NAME >.  
ANY REPRODUCTION IN PART OR AS 
A WHOLE WITHOUT THE WRITTEN 
PERMISSION OF <COMPANY NAME> 
IS PROHIBITED.

COMMENTS:

SHEET 1 OF 1

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

NEXT ASSY USED ON

APPLICATION DO  NOT  SCALE  DRAWING

FINISH

MATERIAL

REV.

A
DWG.  NO.SIZE

SCALE:1:96

SOLIDWORKS Educational Product. For Instructional Use Only.



3

7

1

4

8

5

11

9
141215

Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Fuselage Components

SHEET 1 OF 2

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



ITEM NO. PART NUMBER DESCRIPTION QTY.

1 BellwetherV4.5 
Fuselage w bulkheads 1

2 Bellwether V9 Solid 
Wings w Ribs LH 1

3 Camera_5.8GHz_RunC
am_Swift2 1

4 Electric Motor Speed 
Controller (ESC) 1

5 FREEZE_Aircraft 
Controls Reciever Jeti 1

6 FREEZE_Servo_2.16 2

7 FREEZE_Video 
Transmitter 1

8 OrangeCube_Autopilo
t 1

9 Power Sensor 1
10 TelemetryDiskAntenna 1

11 TelemetryRadio_RFD90
0x 1

12 Turnigy G32 770kV 1

13 5.25ft carbon fiber spar 
no mass 2

14 LiPo_4500mAh_22.2V 2
15 Propeller 1

A A

B B

2

2

1

1

Bill of Materials

DO NOT SCALE DRAWING SHEET 2 OF 2

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



CC

 0.20  R2
.74

 

 13.47 in. SECTION C-C

SCALE 1 : 12

Bellwether
Avian-Inspired Flying Wing

A A

B B

2

2

1

1

Bellwether

DO NOT SCALE DRAWING

Center Cut
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:96 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

Scott WeekleyNAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

SOLIDWORKS Educational Product. For Instructional Use Only.



Figure 57: Propulsor Placement in Line with Center of Gravity

Figure 58: Bellwether Planform View
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Figure 59: Bellwether1
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Figure 60: Bellwether2
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Figure 61: Bellwether3

Figure 62: Bellwether4
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Figure 63: Bellwether5

Figure 64: Bellwether6
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0.2 Data Plots

Figure 65: Lift and Drag Monitor of Bellwether - Unsteady RANS results

78



Figure 66: Residual Plot

Figure 67: Drag Distribution in Roll

Relevant citations: Prandtl21 AdvancedUAV Bowers WingSections UASDesign [1] [3]
XFLR5Low [18] [12] [21]
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Figure 68: Cosine Model - Drag Distribution in Roll

Figure 69: Cosine Model - Lift Distribution in Roll
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Figure 70: Modern Bell - Drag Distribution in Roll (bin direction is backwards on this plot)

Figure 71: Modern Bell - Lift Distribution in Roll (bin direction is backwards on this plot)
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Figure 72: Prandtl Bell - Drag Distribution in Roll

Figure 73: Prandtl - Lift Distribution in Roll
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Figure 74: Elliptical - Drag Distribution in Roll (bin direction is backwards on this plot)

Figure 75: Elliptical - Lift Distribution in Roll
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Figure 76: Combine Alpha Sweep
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Figure 77: Distributions at Common CL of All Analysis Methods
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0.3 CFD Mesh Scenes

Figure 78: Wake Refinement

Figure 79: Aileron Mesh 1
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Figure 80: Aileron Mesh 2

Figure 81: Aileron Mesh 3

87



Figure 82: Aileron Mesh 4
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0.4 Aircraft Mold Design and Fabrication

Figure 83: Fuselage Mold

Figure 84: Inboard Wing Mold

Figure 85: Inboard Wing Mold - Top View
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Figure 86: Outboard Wing Mold

Figure 87: Outboard Wing Mold - Top View

Figure 88: Mold 1
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Figure 89: Mold 2

Figure 90: Mold3
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0.5 Experimental Models and Images

Figure 91: System of Components for Leading-Edge Flow Sensing Sleeve
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Figure 92: Wind Tunnel Setup for 3D-Printed Bellwether Model
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Figure 93: Wind Tunnel Flow Visualization
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Figure 94: Wind Tunnel 1

Figure 95: Wind Tunnel 2
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Figure 96: Wind Tunnel 3

Figure 97: Wind Tunnel 4
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Figure 98: Wind Tunnel 5

Figure 99: Water Tunnel 1
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Figure 100: Water Tunnel 2

Figure 101: Water Tunnel 3
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Figure 102: Water Tunnel 4

Figure 103: Water Tunnel 5
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0.6 CFD Streamlines and Vorticity Scenes

Figure 104: Bellwether Vorticity 1
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Figure 105: Bellwether Vorticity 2

101



Figure 106: Bellwether Vorticity 3
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Figure 107: Bellwether Vorticity 4

Figure 108: Bellwether Vorticity 5
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Figure 109: Elliptical Vorticity 1
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Figure 110: Elliptical Vorticity 2
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Figure 111: Elliptical Vorticity 3
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Figure 112: Cosine Vorticity 1

107



Figure 113: Cosine Vorticity 2
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Figure 114: Cosine Vorticity 3
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Figure 115: Modern Bell Vorticity 1
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Figure 116: Modern Bell Vorticity 2

Figure 117: Bellwether Streamlines 1
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Figure 118: Bellwether Streamlines 2

Figure 119: Bellwether Streamlines 3
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Figure 120: Bellwether Vector Scene

Figure 121: Bellwether Vortex Core
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0.7 Flying Wing Macro
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1 // Scott Weekley

2 // 6 August 2020

3 // Setup of Mesh , Physics , Reports , Plots , and Scenes for Aircraft

4 // Used for Design and Analysis of Flying -Wing , Bellwether

5

6

7 // ----------------------------- Expected Steps Prior to Running

--------------------------------

8 //User is to have imported the aircraft as a surface mesh , and

named the surfaces "Flying Wing"

9 // Create a Block part with dimensions of the desired flow domain

10 //NOTE: It may be desired to separate parts of the aircraft for

analysis of specific regions // (this is done in the

analysis of Bellwether). This is accomplished by selecting the

// aircraft part surface , then right click to select "Split

by Patch." This will require all // of the dependencies to

reflect this change (all reports , scenes , etc.)

11 // Perform a Boolean -Subtract between the Block part and the Flying

Wing with the Block as the // target part

12 // Rename the Subtract "Flow Domain"

13 //In the Flow Domain surfaces , right click on the Block Surface and

"Split by Patch"

14 // Select the surface from which the flow will enter the domain and

name it "Inlet"

15 //Name the opposite surface "Outlet"

16 //Close

17 // Rename the remaining Block Surface "Freestream"

18 // Assign the Flow Domain to Region and select "Create a Region for

Each Part" and "Create a // Boundary for Each Part Surface"

19 //

----------------------------------------------------------------------------------------------

20

21

22

23

24 // ----------------------- Important Modifications for your Design

------------------------------

25 // Depending on the size of your aircraft and domain , the mesh

default controls should change:

26 // Base Size

27 // Target Surface Size

28 // Maximum Cell Size

29 //The mesh custom controls "Flying Wing" should also change to meet

the needs of your aircraft

30 // Target Surface Size

31 // Number of Prism Layers

32 // Prism Layer Total Thickness

33 // Growth Rate

34 // Wake Refinement Options

35 //NOTE: If the aircraft surfaces are split by patch , all surfaces

need to be added to this // surface control.

36 //In Regions , the surface "Freestream" should include a Mach number

that agrees with the physics // conditions set for the

flight speed

37 // Derived Part , "Longitudinal Tip", should be moved along the Z-

axis to coincide with wing tip
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38 //

----------------------------------------------------------------------------------------------

39

40

41

42 // STAR -CCM+ macro: FlyingWingMacro.java

43 // Written by STAR -CCM+ 14.04.013

44 package macro;

45

46 import java.util .*;

47

48 import star.common .*;

49 import star.base.neo.*;

50 import star.material .*;

51 import star.base.report .*;

52 import star.coupledflow .*;

53 import star.prismmesher .*;

54 import star.flow .*;

55 import star.vis.*;

56 import star.dualmesher .*;

57 import star.metrics .*;

58 import star.meshing .*;

59

60 public class FlyingWingMacro extends StarMacro {

61

62 public void execute () {

63 execute0 ();

64 execute1 ();

65 }

66

67 private void execute0 () {

68

69 Simulation simulation_0 =

70 getActiveSimulation ();

71

72 MeshPart meshPart_0 =

73 (( MeshPart) simulation_0.get(SimulationPartManager.class).

getPart("Flow Domain"));

74

75 AutoMeshOperation autoMeshOperation_0 =

76 simulation_0.get(MeshOperationManager.class).

createAutoMeshOperation(new StringVector(new String [] {"star.

resurfacer.ResurfacerAutoMesher", "star.dualmesher.

DualAutoMesher", "star.prismmesher.PrismAutoMesher"}), new

NeoObjectVector(new Object [] {meshPart_0 }));

77

78 autoMeshOperation_0.setLinkOutputPartName(false);

79

80 simulation_0.getUnitsManager ().getSystemOption ().setSelected(

UnitsManagerSystemOption.Type.SYSTEM_USCS);

81

82 autoMeshOperation_0.getDefaultValues ().get(BaseSize.class).

setValue (0.7);

83

84 PartsTargetSurfaceSize partsTargetSurfaceSize_0 =

85 autoMeshOperation_0.getDefaultValues ().get(
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PartsTargetSurfaceSize.class);

86

87 partsTargetSurfaceSize_0.getRelativeSizeScalar ().setValue (2.0);

88

89 partsTargetSurfaceSize_0.getRelativeSizeScalar ().setValue

(100.0);

90

91 PartsMinimumSurfaceSize partsMinimumSurfaceSize_0 =

92 autoMeshOperation_0.getDefaultValues ().get(

PartsMinimumSurfaceSize.class);

93

94 partsMinimumSurfaceSize_0.getRelativeSizeScalar ().setValue (2.0)

;

95

96 DualAutoMesher dualAutoMesher_0 =

97 (( DualAutoMesher) autoMeshOperation_0.getMeshers ().getObject(

"Polyhedral Mesher"));

98

99 dualAutoMesher_0.setEnableGrowthRate(true);

100

101 PrismAutoMesher prismAutoMesher_0 =

102 (( PrismAutoMesher) autoMeshOperation_0.getMeshers ().getObject

("Prism Layer Mesher"));

103

104 prismAutoMesher_0.getPrismStretchingOption ().setSelected(

PrismStretchingOption.Type.WALL_THICKNESS);

105

106 MaximumCellSize maximumCellSize_0 =

107 autoMeshOperation_0.getDefaultValues ().get(MaximumCellSize.

class);

108

109 maximumCellSize_0.getRelativeSizeScalar ().setValue (1000.0);

110

111 SurfaceCustomMeshControl surfaceCustomMeshControl_0 =

112 autoMeshOperation_0.getCustomMeshControls ().

createSurfaceControl ();

113

114 autoMeshOperation_0.getMesherParallelModeOption ().setSelected(

MesherParallelModeOption.Type.PARALLEL);

115

116 surfaceCustomMeshControl_0.getGeometryObjects ().setQuery(null);

117

118 PartSurface partSurface_2 =

119 (( PartSurface) meshPart_0.getPartSurfaceManager ().

getPartSurface("Flying Wing"));

120

121 surfaceCustomMeshControl_0.getGeometryObjects ().setObjects(

partSurface_2);

122

123 surfaceCustomMeshControl_0.setPresentationName("Flying Wing");

124

125 surfaceCustomMeshControl_0.getCustomConditions ().get(

PartsTargetSurfaceSizeOption.class).setSelected(

PartsTargetSurfaceSizeOption.Type.CUSTOM);

126

127 PartsCustomizePrismMesh partsCustomizePrismMesh_0 =

128 surfaceCustomMeshControl_0.getCustomConditions ().get(
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PartsCustomizePrismMesh.class);

129

130 partsCustomizePrismMesh_0.getCustomPrismOptions ().setSelected(

PartsCustomPrismsOption.Type.CUSTOMIZE);

131

132 PartsRemesherTetPolyWakeRefinementOption

partsRemesherTetPolyWakeRefinementOption_0 =

133 surfaceCustomMeshControl_0.getCustomConditions ().get(

PartsRemesherTetPolyWakeRefinementOption.class);

134

135 partsRemesherTetPolyWakeRefinementOption_0.

setPartsWakeRefinementOption(true);

136

137 PartsTargetSurfaceSize partsTargetSurfaceSize_1 =

138 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsTargetSurfaceSize.class);

139

140 partsTargetSurfaceSize_1.getRelativeSizeScalar ().setValue (2.0);

141

142 PartsCustomizePrismMeshControls

partsCustomizePrismMeshControls_0 =

143 partsCustomizePrismMesh_0.getCustomPrismControls ();

144

145 partsCustomizePrismMeshControls_0.setCustomizeNumLayers(true);

146

147 partsCustomizePrismMeshControls_0.setCustomizeTotalThickness(

true);

148

149 NumPrismLayers numPrismLayers_0 =

150 surfaceCustomMeshControl_0.getCustomValues ().get(

CustomPrismValuesManager.class).get(NumPrismLayers.class);

151

152 IntegerValue integerValue_0 =

153 numPrismLayers_0.getNumLayersValue ();

154

155 integerValue_0.getQuantity ().setValue (6.0);

156

157 PrismThickness prismThickness_0 =

158 surfaceCustomMeshControl_0.getCustomValues ().get(

CustomPrismValuesManager.class).get(PrismThickness.class);

159

160 prismThickness_0.getRelativeSizeScalar ().setValue (5.0);

161

162 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).getDistance ().setValue

(20.0);

163

164 Units units_1 =

165 ((Units) simulation_0.getUnitsManager ().getObject("deg"));

166

167 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).getSpreadAngle ().

setUnits(units_1);

168

169 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).getSpreadAngle ().

setValue (572.9577951308231);
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170

171 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).getSpreadAngle ().

setValue (10.0);

172

173 PartsWakeRefinementSize partsWakeRefinementSize_0 =

174 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).getIsotropicSize ();

175

176 partsWakeRefinementSize_0.getRelativeSizeScalar ().setValue

(50.0);

177

178 PartsRemesherTetPolyWakeRefinementSet

partsRemesherTetPolyWakeRefinementSet_0 =

179 surfaceCustomMeshControl_0.getCustomValues ().get(

PartsWakeRefinementValuesManager.class).get(

PartsRemesherTetPolyWakeRefinementSet.class);

180

181 partsRemesherTetPolyWakeRefinementSet_0.getGrowthRateQuantity ()

.setValue (1.5);

182

183 SurfaceCustomMeshControl surfaceCustomMeshControl_1 =

184 autoMeshOperation_0.getCustomMeshControls ().

createSurfaceControl ();

185

186 surfaceCustomMeshControl_1.getGeometryObjects ().setQuery(null);

187

188 PartSurface partSurface_1 =

189 (( PartSurface) meshPart_0.getPartSurfaceManager ().

getPartSurface("Freestream"));

190

191 PartSurface partSurface_3 =

192 (( PartSurface) meshPart_0.getPartSurfaceManager ().

getPartSurface("Inlet"));

193

194 PartSurface partSurface_4 =

195 (( PartSurface) meshPart_0.getPartSurfaceManager ().

getPartSurface("Outlet"));

196

197 surfaceCustomMeshControl_1.getGeometryObjects ().setObjects(

partSurface_1 , partSurface_3 , partSurface_4);

198

199 PartsCustomizePrismMesh partsCustomizePrismMesh_1 =

200 surfaceCustomMeshControl_1.getCustomConditions ().get(

PartsCustomizePrismMesh.class);

201

202 partsCustomizePrismMesh_1.getCustomPrismOptions ().setSelected(

PartsCustomPrismsOption.Type.DISABLE);

203

204 surfaceCustomMeshControl_1.setPresentationName("No Prism Layers

");

205

206 PhysicsContinuum physicsContinuum_0 =

207 simulation_0.getContinuumManager ().createContinuum(

PhysicsContinuum.class);

208

209 physicsContinuum_0.enable(ThreeDimensionalModel.class);
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210

211 physicsContinuum_0.enable(ExplicitUnsteadyModel.class);

212

213 physicsContinuum_0.enable(SingleComponentGasModel.class);

214

215 physicsContinuum_0.enable(CoupledFlowModel.class);

216

217 physicsContinuum_0.enable(CoupledEnergyModel.class);

218

219 physicsContinuum_0.enable(IdealGasModel.class);

220

221 physicsContinuum_0.enable(LaminarModel.class);

222

223 LaminarModel laminarModel_0 =

224 physicsContinuum_0.getModelManager ().getModel(LaminarModel.

class);

225

226 physicsContinuum_0.disableModel(laminarModel_0);

227

228 IdealGasModel idealGasModel_0 =

229 physicsContinuum_0.getModelManager ().getModel(IdealGasModel.

class);

230

231 physicsContinuum_0.disableModel(idealGasModel_0);

232

233 CoupledEnergyModel coupledEnergyModel_0 =

234 physicsContinuum_0.getModelManager ().getModel(

CoupledEnergyModel.class);

235

236 physicsContinuum_0.disableModel(coupledEnergyModel_0);

237

238 CoupledFlowModel coupledFlowModel_0 =

239 physicsContinuum_0.getModelManager ().getModel(

CoupledFlowModel.class);

240

241 physicsContinuum_0.disableModel(coupledFlowModel_0);

242

243 physicsContinuum_0.enable(CellQualityRemediationModel.class);

244

245 physicsContinuum_0.enable(CoupledFlowModel.class);

246

247 physicsContinuum_0.enable(CoupledEnergyModel.class);

248

249 physicsContinuum_0.enable(IdealGasModel.class);

250

251 physicsContinuum_0.enable(LaminarModel.class);

252

253 VelocityProfile velocityProfile_0 =

254 physicsContinuum_0.getInitialConditions ().get(VelocityProfile

.class);

255

256 velocityProfile_0.getMethod(ConstantVectorProfileMethod.class).

getQuantity ().setComponents (35.0, 0.0, 0.0);

257

258 Region region_0 =

259 simulation_0.getRegionManager ().getRegion("Flow Domain");

260
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261 Boundary boundary_0 =

262 region_0.getBoundaryManager ().getBoundary("Freestream");

263

264 FreeStreamBoundary freeStreamBoundary_0 =

265 (( FreeStreamBoundary) simulation_0.get(ConditionTypeManager.

class).get(FreeStreamBoundary.class));

266

267 boundary_0.setBoundaryType(freeStreamBoundary_0);

268

269 MachNumberProfile machNumberProfile_0 =

270 boundary_0.getValues ().get(MachNumberProfile.class);

271

272 machNumberProfile_0.getMethod(ConstantScalarProfileMethod.class

).getQuantity ().setValue (0.031);

273

274 Boundary boundary_1 =

275 region_0.getBoundaryManager ().getBoundary("Inlet");

276

277 InletBoundary inletBoundary_0 =

278 (( InletBoundary) simulation_0.get(ConditionTypeManager.class)

.get(InletBoundary.class));

279

280 boundary_1.setBoundaryType(inletBoundary_0);

281

282 VelocityMagnitudeProfile velocityMagnitudeProfile_0 =

283 boundary_1.getValues ().get(VelocityMagnitudeProfile.class);

284

285 velocityMagnitudeProfile_0.getMethod(

ConstantScalarProfileMethod.class).getQuantity ().setValue (35.0)

;

286

287 Boundary boundary_2 =

288 region_0.getBoundaryManager ().getBoundary("Outlet");

289

290 PressureBoundary pressureBoundary_0 =

291 (( PressureBoundary) simulation_0.get(ConditionTypeManager.

class).get(PressureBoundary.class));

292

293 boundary_2.setBoundaryType(pressureBoundary_0);

294

295 Units units_2 =

296 simulation_0.getUnitsManager ().getPreferredUnits(new

IntVector(new int[] {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}));

297

298 Scene scene_1 =

299 simulation_0.getSceneManager ().getScene("Geometry Scene 2");

300

301 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

MAKE_SCENE_TRANSPARENT);

302

303 PartDisplayer partDisplayer_4 =

304 (( PartDisplayer) scene_1.getCreatorDisplayer ());

305

306 partDisplayer_4.initialize ();

307

308 scene_1.getCreatorGroup ().setQuery(null);
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309

310 scene_1.getCreatorGroup ().setObjects(region_0);

311

312 scene_1.getCreatorGroup ().setQuery(null);

313

314 scene_1.getCreatorGroup ().setObjects(region_0);

315

316 PlaneSection planeSection_0 =

317 (PlaneSection) simulation_0.getPartManager ().

createImplicitPart(new NeoObjectVector(new Object [] {}), new

DoubleVector(new double [] {0.0, 0.0, 1.0}), new DoubleVector(

new double [] {0.0, 0.0, 0.0}) , 0, 1, new DoubleVector(new

double [] {0.0}));

318

319 LabCoordinateSystem labCoordinateSystem_0 =

320 simulation_0.getCoordinateSystemManager ().

getLabCoordinateSystem ();

321

322 planeSection_0.setCoordinateSystem(labCoordinateSystem_0);

323

324 planeSection_0.getInputParts ().setQuery(null);

325

326 planeSection_0.getInputParts ().setObjects(region_0);

327

328 planeSection_0.getOriginCoordinate ().setUnits0(units_2);

329

330 planeSection_0.getOriginCoordinate ().setUnits1(units_2);

331

332 planeSection_0.getOriginCoordinate ().setUnits2(units_2);

333

334 planeSection_0.getOriginCoordinate ().setDefinition("");

335

336 planeSection_0.getOriginCoordinate ().setValue(new DoubleVector(

new double [] {0.0, 0.0, 0.0}));

337

338 planeSection_0.getOriginCoordinate ().setCoordinate(units_2 ,

units_2 , units_2 , new DoubleVector(new double [] {0.0, 0.0,

0.0}));

339

340 planeSection_0.getOriginCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

341

342 planeSection_0.getOrientationCoordinate ().setUnits0(units_2);

343

344 planeSection_0.getOrientationCoordinate ().setUnits1(units_2);

345

346 planeSection_0.getOrientationCoordinate ().setUnits2(units_2);

347

348 planeSection_0.getOrientationCoordinate ().setDefinition("");

349

350 planeSection_0.getOrientationCoordinate ().setValue(new

DoubleVector(new double [] {0.0, 1.0, 0.0}));

351

352 planeSection_0.getOrientationCoordinate ().setCoordinate(units_2

, units_2 , units_2 , new DoubleVector(new double [] {0.0, 1.0,

0.0}));

353
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354 planeSection_0.getOrientationCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

355

356 SingleValue singleValue_0 =

357 planeSection_0.getSingleValue ();

358

359 singleValue_0.getValueQuantity ().setValue (0.0);

360

361 singleValue_0.getValueQuantity ().setUnits(units_2);

362

363 RangeMultiValue rangeMultiValue_0 =

364 planeSection_0.getRangeMultiValue ();

365

366 rangeMultiValue_0.setNValues (2);

367

368 rangeMultiValue_0.getStartQuantity ().setValue (0.0);

369

370 rangeMultiValue_0.getStartQuantity ().setUnits(units_2);

371

372 rangeMultiValue_0.getEndQuantity ().setValue (1.0);

373

374 rangeMultiValue_0.getEndQuantity ().setUnits(units_2);

375

376 DeltaMultiValue deltaMultiValue_0 =

377 planeSection_0.getDeltaMultiValue ();

378

379 deltaMultiValue_0.setNValues (2);

380

381 deltaMultiValue_0.getStartQuantity ().setValue (0.0);

382

383 deltaMultiValue_0.getStartQuantity ().setUnits(units_2);

384

385 deltaMultiValue_0.getDeltaQuantity ().setValue (1.0);

386

387 deltaMultiValue_0.getDeltaQuantity ().setUnits(units_2);

388

389 MultiValue multiValue_0 =

390 planeSection_0.getArbitraryMultiValue ();

391

392 multiValue_0.getValueQuantities ().setUnits(units_2);

393

394 multiValue_0.getValueQuantities ().setArray(new DoubleVector(new

double [] {0.0}));

395

396 planeSection_0.setValueMode(ValueMode.SINGLE);

397

398 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

USE_DISPLAYER_PROPERTY);

399

400 planeSection_0.setPresentationName("Horizontal");

401

402 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

MAKE_SCENE_TRANSPARENT);

403

404 scene_1.getCreatorGroup ().setQuery(null);

405

406 scene_1.getCreatorGroup ().setObjects(region_0);
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407

408 scene_1.getCreatorGroup ().setQuery(null);

409

410 scene_1.getCreatorGroup ().setObjects(region_0);

411

412 PlaneSection planeSection_1 =

413 (PlaneSection) simulation_0.getPartManager ().

createImplicitPart(new NeoObjectVector(new Object [] {}), new

DoubleVector(new double [] {0.0, 0.0, 1.0}), new DoubleVector(

new double [] {0.0, 0.0, 0.0}) , 0, 1, new DoubleVector(new

double [] {0.0}));

414

415 planeSection_1.setCoordinateSystem(labCoordinateSystem_0);

416

417 planeSection_1.getInputParts ().setQuery(null);

418

419 planeSection_1.getInputParts ().setObjects(region_0);

420

421 planeSection_1.getOriginCoordinate ().setUnits0(units_2);

422

423 planeSection_1.getOriginCoordinate ().setUnits1(units_2);

424

425 planeSection_1.getOriginCoordinate ().setUnits2(units_2);

426

427 planeSection_1.getOriginCoordinate ().setDefinition("");

428

429 planeSection_1.getOriginCoordinate ().setValue(new DoubleVector(

new double [] {0.0, 0.0, 0.0}));

430

431 planeSection_1.getOriginCoordinate ().setCoordinate(units_2 ,

units_2 , units_2 , new DoubleVector(new double [] {0.0, 0.0,

0.0}));

432

433 planeSection_1.getOriginCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

434

435 planeSection_1.getOrientationCoordinate ().setUnits0(units_2);

436

437 planeSection_1.getOrientationCoordinate ().setUnits1(units_2);

438

439 planeSection_1.getOrientationCoordinate ().setUnits2(units_2);

440

441 planeSection_1.getOrientationCoordinate ().setDefinition("");

442

443 planeSection_1.getOrientationCoordinate ().setValue(new

DoubleVector(new double [] {0.0, 0.0, 1.0}));

444

445 planeSection_1.getOrientationCoordinate ().setCoordinate(units_2

, units_2 , units_2 , new DoubleVector(new double [] {0.0, 0.0,

1.0}));

446

447 planeSection_1.getOrientationCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

448

449 SingleValue singleValue_1 =

450 planeSection_1.getSingleValue ();

451
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452 singleValue_1.getValueQuantity ().setValue (0.0);

453

454 singleValue_1.getValueQuantity ().setUnits(units_2);

455

456 RangeMultiValue rangeMultiValue_1 =

457 planeSection_1.getRangeMultiValue ();

458

459 rangeMultiValue_1.setNValues (2);

460

461 rangeMultiValue_1.getStartQuantity ().setValue (0.0);

462

463 rangeMultiValue_1.getStartQuantity ().setUnits(units_2);

464

465 rangeMultiValue_1.getEndQuantity ().setValue (1.0);

466

467 rangeMultiValue_1.getEndQuantity ().setUnits(units_2);

468

469 DeltaMultiValue deltaMultiValue_1 =

470 planeSection_1.getDeltaMultiValue ();

471

472 deltaMultiValue_1.setNValues (2);

473

474 deltaMultiValue_1.getStartQuantity ().setValue (0.0);

475

476 deltaMultiValue_1.getStartQuantity ().setUnits(units_2);

477

478 deltaMultiValue_1.getDeltaQuantity ().setValue (1.0);

479

480 deltaMultiValue_1.getDeltaQuantity ().setUnits(units_2);

481

482 MultiValue multiValue_1 =

483 planeSection_1.getArbitraryMultiValue ();

484

485 multiValue_1.getValueQuantities ().setUnits(units_2);

486

487 multiValue_1.getValueQuantities ().setArray(new DoubleVector(new

double [] {0.0}));

488

489 planeSection_1.setValueMode(ValueMode.SINGLE);

490

491 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

USE_DISPLAYER_PROPERTY);

492

493 planeSection_1.setPresentationName("Longitudinal - Root");

494

495 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

MAKE_SCENE_TRANSPARENT);

496

497 scene_1.getCreatorGroup ().setQuery(null);

498

499 scene_1.getCreatorGroup ().setObjects(region_0);

500

501 scene_1.getCreatorGroup ().setQuery(null);

502

503 scene_1.getCreatorGroup ().setObjects(region_0);

504

505 PlaneSection planeSection_2 =
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506 (PlaneSection) simulation_0.getPartManager ().

createImplicitPart(new NeoObjectVector(new Object [] {}), new

DoubleVector(new double [] {0.0, 0.0, 1.0}), new DoubleVector(

new double [] {0.0, 0.0, 0.0}) , 0, 1, new DoubleVector(new

double [] {0.0}));

507

508 planeSection_2.setCoordinateSystem(labCoordinateSystem_0);

509

510 planeSection_2.getInputParts ().setQuery(null);

511

512 planeSection_2.getInputParts ().setObjects(region_0);

513

514 planeSection_2.getOriginCoordinate ().setUnits0(units_2);

515

516 planeSection_2.getOriginCoordinate ().setUnits1(units_2);

517

518 planeSection_2.getOriginCoordinate ().setUnits2(units_2);

519

520 planeSection_2.getOriginCoordinate ().setDefinition("");

521

522 planeSection_2.getOriginCoordinate ().setValue(new DoubleVector(

new double [] {0.0, 0.0, 12.5}));

523

524 planeSection_2.getOriginCoordinate ().setCoordinate(units_2 ,

units_2 , units_2 , new DoubleVector(new double [] {0.0, 0.0,

12.5}));

525

526 planeSection_2.getOriginCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

527

528 planeSection_2.getOrientationCoordinate ().setUnits0(units_2);

529

530 planeSection_2.getOrientationCoordinate ().setUnits1(units_2);

531

532 planeSection_2.getOrientationCoordinate ().setUnits2(units_2);

533

534 planeSection_2.getOrientationCoordinate ().setDefinition("");

535

536 planeSection_2.getOrientationCoordinate ().setValue(new

DoubleVector(new double [] {0.0, 0.0, 1.0}));

537

538 planeSection_2.getOrientationCoordinate ().setCoordinate(units_2

, units_2 , units_2 , new DoubleVector(new double [] {0.0, 0.0,

1.0}));

539

540 planeSection_2.getOrientationCoordinate ().setCoordinateSystem(

labCoordinateSystem_0);

541

542 SingleValue singleValue_2 =

543 planeSection_2.getSingleValue ();

544

545 singleValue_2.getValueQuantity ().setValue (0.0);

546

547 singleValue_2.getValueQuantity ().setUnits(units_2);

548

549 RangeMultiValue rangeMultiValue_2 =

550 planeSection_2.getRangeMultiValue ();
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551

552 rangeMultiValue_2.setNValues (2);

553

554 rangeMultiValue_2.getStartQuantity ().setValue (0.0);

555

556 rangeMultiValue_2.getStartQuantity ().setUnits(units_2);

557

558 rangeMultiValue_2.getEndQuantity ().setValue (1.0);

559

560 rangeMultiValue_2.getEndQuantity ().setUnits(units_2);

561

562 DeltaMultiValue deltaMultiValue_2 =

563 planeSection_2.getDeltaMultiValue ();

564

565 deltaMultiValue_2.setNValues (2);

566

567 deltaMultiValue_2.getStartQuantity ().setValue (0.0);

568

569 deltaMultiValue_2.getStartQuantity ().setUnits(units_2);

570

571 deltaMultiValue_2.getDeltaQuantity ().setValue (1.0);

572

573 deltaMultiValue_2.getDeltaQuantity ().setUnits(units_2);

574

575 MultiValue multiValue_2 =

576 planeSection_2.getArbitraryMultiValue ();

577

578 multiValue_2.getValueQuantities ().setUnits(units_2);

579

580 multiValue_2.getValueQuantities ().setArray(new DoubleVector(new

double [] {0.0}));

581

582 planeSection_2.setValueMode(ValueMode.SINGLE);

583

584 scene_1.setTransparencyOverrideMode(SceneTransparencyOverride.

USE_DISPLAYER_PROPERTY);

585

586 planeSection_2.setPresentationName("Longitudinal - Tip");

587

588 ForceCoefficientReport forceCoefficientReport_0 =

589 simulation_0.getReportManager ().createReport(

ForceCoefficientReport.class);

590

591 forceCoefficientReport_0.setPresentationName("Coefficient of

Drag");

592

593 forceCoefficientReport_0.getReferenceVelocity ().setValue (35.0);

594

595 forceCoefficientReport_0.getParts ().setQuery(null);

596

597 Boundary boundary_3 =

598 region_0.getBoundaryManager ().getBoundary("Flying Wing");

599

600 forceCoefficientReport_0.getParts ().setObjects(boundary_3);

601

602 forceCoefficientReport_0.getReferenceArea ().setValue (45.0);

603
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604 ForceCoefficientReport forceCoefficientReport_1 =

605 simulation_0.getReportManager ().createReport(

ForceCoefficientReport.class);

606

607 forceCoefficientReport_1.setPresentationName("Copy of

Coefficient of Drag");

608

609 forceCoefficientReport_1.copyProperties(

forceCoefficientReport_0);

610

611 forceCoefficientReport_1.setPresentationName("Coefficient of

Lift");

612

613 forceCoefficientReport_1.getDirection ().setComponents (1.0, 1.0,

0.0);

614

615 forceCoefficientReport_1.getDirection ().setComponents (0.0, 1.0,

0.0);

616

617 ForceReport forceReport_0 =

618 simulation_0.getReportManager ().createReport(ForceReport.

class);

619

620 forceReport_0.setPresentationName("Drag");

621

622 forceReport_0.getParts ().setQuery(null);

623

624 forceReport_0.getParts ().setObjects(boundary_3);

625

626 ForceReport forceReport_1 =

627 simulation_0.getReportManager ().createReport(ForceReport.

class);

628

629 forceReport_1.setPresentationName("Copy of Drag");

630

631 forceReport_1.copyProperties(forceReport_0);

632 }

633

634 private void execute1 () {

635

636 Simulation simulation_0 =

637 getActiveSimulation ();

638

639 ForceReport forceReport_1 =

640 (( ForceReport) simulation_0.getReportManager ().getReport("

Copy of Drag"));

641

642 forceReport_1.setPresentationName("Lift");

643

644 forceReport_1.getDirection ().setComponents (1.0, 1.0, 0.0);

645

646 forceReport_1.getDirection ().setComponents (0.0, 1.0, 0.0);

647

648 MomentReport momentReport_0 =

649 simulation_0.getReportManager ().createReport(MomentReport.

class);

650
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651 momentReport_0.setPresentationName("Moment - Roll");

652

653 momentReport_0.getDirection ().setComponents (-1.0, 0.0, 0.0);

654

655 momentReport_0.getParts ().setQuery(null);

656

657 Region region_0 =

658 simulation_0.getRegionManager ().getRegion("Flow Domain");

659

660 Boundary boundary_3 =

661 region_0.getBoundaryManager ().getBoundary("Flying Wing");

662

663 momentReport_0.getParts ().setObjects(boundary_3);

664

665 MomentReport momentReport_1 =

666 simulation_0.getReportManager ().createReport(MomentReport.

class);

667

668 momentReport_1.setPresentationName("Copy of Moment - Roll");

669

670 momentReport_1.copyProperties(momentReport_0);

671

672 momentReport_1.setPresentationName("Moment - Pitch");

673

674 momentReport_1.getDirection ().setComponents (-1.0, 0.0, -1.0);

675

676 momentReport_1.getDirection ().setComponents (0.0, 0.0, -1.0);

677

678 MomentReport momentReport_2 =

679 simulation_0.getReportManager ().createReport(MomentReport.

class);

680

681 momentReport_2.setPresentationName("Copy of Moment - Roll");

682

683 momentReport_2.copyProperties(momentReport_0);

684

685 momentReport_2.setPresentationName("Moment - Yaw");

686

687 momentReport_2.getDirection ().setComponents (-1.0, -1.0, 0.0);

688

689 momentReport_2.getDirection ().setComponents (0.0, -1.0, 0.0);

690

691 ForceCoefficientReport forceCoefficientReport_0 =

692 (( ForceCoefficientReport) simulation_0.getReportManager ().

getReport("Coefficient of Drag"));

693

694 ForceCoefficientReport forceCoefficientReport_1 =

695 (( ForceCoefficientReport) simulation_0.getReportManager ().

getReport("Coefficient of Lift"));

696

697 simulation_0.getMonitorManager ().createMonitorAndPlot(new

NeoObjectVector(new Object [] {forceCoefficientReport_0 ,

forceCoefficientReport_1 }), true , "Reports Plot");

698

699 ReportMonitor reportMonitor_0 =

700 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Coefficient of Drag Monitor"));
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701

702 ReportMonitor reportMonitor_1 =

703 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Coefficient of Lift Monitor"));

704

705 MonitorPlot monitorPlot_0 =

706 simulation_0.getPlotManager ().createMonitorPlot(new

NeoObjectVector(new Object [] {reportMonitor_0 , reportMonitor_1

}), "Reports Plot");

707

708 monitorPlot_0.open();

709

710 Scene scene_1 =

711 simulation_0.getSceneManager ().getScene("Geometry Scene 2");

712

713 SceneUpdate sceneUpdate_1 =

714 scene_1.getSceneUpdate ();

715

716 HardcopyProperties hardcopyProperties_1 =

717 sceneUpdate_1.getHardcopyProperties ();

718

719 hardcopyProperties_1.setCurrentResolutionWidth (1018);

720

721 hardcopyProperties_1.setCurrentResolutionHeight (735);

722

723 PlotUpdate plotUpdate_0 =

724 monitorPlot_0.getPlotUpdate ();

725

726 HardcopyProperties hardcopyProperties_2 =

727 plotUpdate_0.getHardcopyProperties ();

728

729 hardcopyProperties_2.setCurrentResolutionWidth (1016);

730

731 hardcopyProperties_2.setCurrentResolutionHeight (734);

732

733 monitorPlot_0.setPresentationName("Coefficients");

734

735 ForceReport forceReport_0 =

736 (( ForceReport) simulation_0.getReportManager ().getReport("

Drag"));

737

738 simulation_0.getMonitorManager ().createMonitorAndPlot(new

NeoObjectVector(new Object [] {forceReport_0 , forceReport_1 }),

true , "Reports Plot");

739

740 ReportMonitor reportMonitor_2 =

741 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Drag Monitor"));

742

743 ReportMonitor reportMonitor_3 =

744 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Lift Monitor"));

745

746 MonitorPlot monitorPlot_1 =

747 simulation_0.getPlotManager ().createMonitorPlot(new

NeoObjectVector(new Object [] {reportMonitor_2 , reportMonitor_3

}), "Reports Plot");
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748

749 monitorPlot_1.open();

750

751 hardcopyProperties_2.setCurrentResolutionWidth (1018);

752

753 hardcopyProperties_2.setCurrentResolutionHeight (735);

754

755 PlotUpdate plotUpdate_1 =

756 monitorPlot_1.getPlotUpdate ();

757

758 HardcopyProperties hardcopyProperties_3 =

759 plotUpdate_1.getHardcopyProperties ();

760

761 hardcopyProperties_3.setCurrentResolutionWidth (1016);

762

763 hardcopyProperties_3.setCurrentResolutionHeight (734);

764

765 monitorPlot_1.setPresentationName("Forces");

766

767 simulation_0.getMonitorManager ().createMonitorAndPlot(new

NeoObjectVector(new Object [] {momentReport_1 , momentReport_0 ,

momentReport_2 }), true , "Reports Plot");

768

769 ReportMonitor reportMonitor_4 =

770 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Moment - Pitch Monitor"));

771

772 ReportMonitor reportMonitor_5 =

773 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Moment - Roll Monitor"));

774

775 ReportMonitor reportMonitor_6 =

776 (( ReportMonitor) simulation_0.getMonitorManager ().getMonitor(

"Moment - Yaw Monitor"));

777

778 MonitorPlot monitorPlot_2 =

779 simulation_0.getPlotManager ().createMonitorPlot(new

NeoObjectVector(new Object [] {reportMonitor_4 , reportMonitor_5 ,

reportMonitor_6 }), "Reports Plot");

780

781 monitorPlot_2.open();

782

783 hardcopyProperties_3.setCurrentResolutionWidth (1018);

784

785 hardcopyProperties_3.setCurrentResolutionHeight (735);

786

787 PlotUpdate plotUpdate_2 =

788 monitorPlot_2.getPlotUpdate ();

789

790 HardcopyProperties hardcopyProperties_4 =

791 plotUpdate_2.getHardcopyProperties ();

792

793 hardcopyProperties_4.setCurrentResolutionWidth (1016);

794

795 hardcopyProperties_4.setCurrentResolutionHeight (734);

796

797 monitorPlot_2.setPresentationName("Moments");
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798

799 AccumulatedForceTable accumulatedForceTable_0 =

800 simulation_0.getTableManager ().createTable(

AccumulatedForceTable.class);

801

802 accumulatedForceTable_0.setPresentationName("Drag Distribution"

);

803

804 accumulatedForceTable_0.getParts ().setQuery(null);

805

806 accumulatedForceTable_0.getParts ().setObjects(boundary_3);

807

808 AccumulatedForceHistogram accumulatedForceHistogram_0 =

809 (( AccumulatedForceHistogram) accumulatedForceTable_0.

getHistogram ());

810

811 accumulatedForceHistogram_0.getBinDirection ().setComponents

(1.0, 0.0, -1.0);

812

813 accumulatedForceHistogram_0.getBinDirection ().setComponents

(0.0, 0.0, -1.0);

814

815 accumulatedForceHistogram_0.setNumberOfBin (150);

816

817 AccumulatedForceTable accumulatedForceTable_1 =

818 simulation_0.getTableManager ().createTable(

AccumulatedForceTable.class);

819

820 accumulatedForceTable_1.setPresentationName("Lift Distribution"

);

821

822 accumulatedForceTable_1.getParts ().setQuery(null);

823

824 accumulatedForceTable_1.getParts ().setObjects(boundary_3);

825

826 AccumulatedForceHistogram accumulatedForceHistogram_1 =

827 (( AccumulatedForceHistogram) accumulatedForceTable_1.

getHistogram ());

828

829 accumulatedForceHistogram_1.setNumberOfBin (150);

830

831 accumulatedForceHistogram_1.getBinDirection ().setComponents

(1.0, 0.0, -1.0);

832

833 accumulatedForceHistogram_1.getBinDirection ().setComponents

(0.0, 0.0, -1.0);

834

835 accumulatedForceHistogram_1.getForceDirection ().setComponents

(1.0, 1.0, 0.0);

836

837 accumulatedForceHistogram_1.getForceDirection ().setComponents

(0.0, 1.0, 0.0);

838

839 XYPlot xYPlot_0 =

840 simulation_0.getPlotManager ().createPlot(XYPlot.class);

841

842 xYPlot_0.open();
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843

844 hardcopyProperties_4.setCurrentResolutionWidth (1018);

845

846 hardcopyProperties_4.setCurrentResolutionHeight (735);

847

848 PlotUpdate plotUpdate_3 =

849 xYPlot_0.getPlotUpdate ();

850

851 HardcopyProperties hardcopyProperties_5 =

852 plotUpdate_3.getHardcopyProperties ();

853

854 hardcopyProperties_5.setCurrentResolutionWidth (1016);

855

856 hardcopyProperties_5.setCurrentResolutionHeight (734);

857

858 xYPlot_0.setPresentationName("Lift Distribution");

859

860 xYPlot_0.getDataSetManager ().addDataProviders(new

NeoObjectVector(new Object [] {accumulatedForceTable_1 }));

861

862 xYPlot_0.getParts ().setQuery(null);

863

864 xYPlot_0.getParts ().setObjects(boundary_3);

865

866 XYPlot xYPlot_1 =

867 simulation_0.getPlotManager ().createPlot(XYPlot.class);

868

869 xYPlot_1.open();

870

871 hardcopyProperties_5.setCurrentResolutionWidth (1018);

872

873 hardcopyProperties_5.setCurrentResolutionHeight (735);

874

875 PlotUpdate plotUpdate_4 =

876 xYPlot_1.getPlotUpdate ();

877

878 HardcopyProperties hardcopyProperties_6 =

879 plotUpdate_4.getHardcopyProperties ();

880

881 hardcopyProperties_6.setCurrentResolutionWidth (1016);

882

883 hardcopyProperties_6.setCurrentResolutionHeight (734);

884

885 xYPlot_1.setPresentationName("Drag Distribution");

886

887 xYPlot_1.getParts ().setQuery(null);

888

889 xYPlot_1.getParts ().setObjects(boundary_3);

890

891 xYPlot_1.getDataSetManager ().addDataProviders(new

NeoObjectVector(new Object [] {accumulatedForceTable_0 }));

892

893 simulation_0.getSceneManager ().createGeometryScene("Mesh Scene"

, "Outline", "Mesh", 3);

894

895 Scene scene_2 =

896 simulation_0.getSceneManager ().getScene("Mesh Scene 1");
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897

898 scene_2.initializeAndWait ();

899

900 PartDisplayer partDisplayer_5 =

901 (( PartDisplayer) scene_2.getDisplayerManager ().getDisplayer("

Mesh 1"));

902

903 partDisplayer_5.initialize ();

904

905 SceneUpdate sceneUpdate_2 =

906 scene_2.getSceneUpdate ();

907

908 HardcopyProperties hardcopyProperties_7 =

909 sceneUpdate_2.getHardcopyProperties ();

910

911 hardcopyProperties_7.setCurrentResolutionWidth (25);

912

913 hardcopyProperties_7.setCurrentResolutionHeight (25);

914

915 hardcopyProperties_6.setCurrentResolutionWidth (1018);

916

917 hardcopyProperties_6.setCurrentResolutionHeight (735);

918

919 hardcopyProperties_7.setCurrentResolutionWidth (1016);

920

921 hardcopyProperties_7.setCurrentResolutionHeight (734);

922

923 scene_2.resetCamera ();

924

925 scene_2.setPresentationName("Mesh - Horizontal");

926

927 partDisplayer_5.getInputParts ().setQuery(null);

928

929 PlaneSection planeSection_0 =

930 (( PlaneSection) simulation_0.getPartManager ().getObject("

Horizontal"));

931

932 partDisplayer_5.getInputParts ().setObjects(planeSection_0);

933

934 simulation_0.getSceneManager ().createGeometryScene("Mesh Scene"

, "Outline", "Mesh", 3);

935

936 Scene scene_3 =

937 simulation_0.getSceneManager ().getScene("Mesh Scene 1");

938

939 scene_3.initializeAndWait ();

940

941 PartDisplayer partDisplayer_6 =

942 (( PartDisplayer) scene_3.getDisplayerManager ().getDisplayer("

Mesh 1"));

943

944 partDisplayer_6.initialize ();

945

946 SceneUpdate sceneUpdate_3 =

947 scene_3.getSceneUpdate ();

948

949 HardcopyProperties hardcopyProperties_8 =
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950 sceneUpdate_3.getHardcopyProperties ();

951

952 hardcopyProperties_8.setCurrentResolutionWidth (25);

953

954 hardcopyProperties_8.setCurrentResolutionHeight (25);

955

956 hardcopyProperties_7.setCurrentResolutionWidth (1018);

957

958 hardcopyProperties_7.setCurrentResolutionHeight (735);

959

960 hardcopyProperties_8.setCurrentResolutionWidth (1016);

961

962 hardcopyProperties_8.setCurrentResolutionHeight (734);

963

964 scene_3.resetCamera ();

965

966 scene_3.setPresentationName("Mesh - Longitudinal - Root");

967

968 partDisplayer_6.getInputParts ().setQuery(null);

969

970 partDisplayer_6.getInputParts ().setObjects(boundary_3);

971

972 Scene scene_4 =

973 simulation_0.getSceneManager ().createScene("Copy of Mesh -

Longitudinal - Root");

974

975 scene_4.setPresentationName("Copy of Mesh - Longitudinal - Root

");

976

977 scene_4.copyProperties(scene_3);

978

979 scene_4.initializeAndWait ();

980

981 PartDisplayer partDisplayer_7 =

982 (( PartDisplayer) scene_4.getDisplayerManager ().getDisplayer("

Mesh 1"));

983

984 partDisplayer_7.initialize ();

985

986 scene_4.open();

987

988 SceneUpdate sceneUpdate_4 =

989 scene_4.getSceneUpdate ();

990

991 HardcopyProperties hardcopyProperties_9 =

992 sceneUpdate_4.getHardcopyProperties ();

993

994 hardcopyProperties_9.setCurrentResolutionWidth (25);

995

996 hardcopyProperties_9.setCurrentResolutionHeight (25);

997

998 hardcopyProperties_8.setCurrentResolutionWidth (1018);

999

1000 hardcopyProperties_8.setCurrentResolutionHeight (735);

1001

1002 hardcopyProperties_9.setCurrentResolutionWidth (1016);

1003
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1004 hardcopyProperties_9.setCurrentResolutionHeight (734);

1005

1006 scene_4.setPresentationName("Mesh - Longitudinal - Tip");

1007

1008 partDisplayer_7.getInputParts ().setQuery(null);

1009

1010 PlaneSection planeSection_2 =

1011 (( PlaneSection) simulation_0.getPartManager ().getObject("

Longitudinal - Tip"));

1012

1013 partDisplayer_7.getInputParts ().setObjects(planeSection_2);

1014

1015 partDisplayer_6.getInputParts ().setQuery(null);

1016

1017 PlaneSection planeSection_1 =

1018 (( PlaneSection) simulation_0.getPartManager ().getObject("

Longitudinal - Root"));

1019

1020 partDisplayer_6.getInputParts ().setObjects(planeSection_1);

1021

1022 simulation_0.getSceneManager ().createScalarScene("Scalar Scene"

, "Outline", "Scalar");

1023

1024 Scene scene_5 =

1025 simulation_0.getSceneManager ().getScene("Scalar Scene 1");

1026

1027 scene_5.initializeAndWait ();

1028

1029 PartDisplayer partDisplayer_8 =

1030 (( PartDisplayer) scene_5.getDisplayerManager ().getDisplayer("

Outline 1"));

1031

1032 partDisplayer_8.initialize ();

1033

1034 ScalarDisplayer scalarDisplayer_0 =

1035 (( ScalarDisplayer) scene_5.getDisplayerManager ().getDisplayer

("Scalar 1"));

1036

1037 scalarDisplayer_0.initialize ();

1038

1039 Legend legend_0 =

1040 scalarDisplayer_0.getLegend ();

1041

1042 BlueRedLookupTable blueRedLookupTable_0 =

1043 (( BlueRedLookupTable) simulation_0.get(LookupTableManager.

class).getObject("blue -red"));

1044

1045 legend_0.setLookupTable(blueRedLookupTable_0);

1046

1047 SceneUpdate sceneUpdate_5 =

1048 scene_5.getSceneUpdate ();

1049

1050 HardcopyProperties hardcopyProperties_10 =

1051 sceneUpdate_5.getHardcopyProperties ();

1052

1053 hardcopyProperties_10.setCurrentResolutionWidth (25);

1054
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1055 hardcopyProperties_10.setCurrentResolutionHeight (25);

1056

1057 hardcopyProperties_9.setCurrentResolutionWidth (1018);

1058

1059 hardcopyProperties_9.setCurrentResolutionHeight (735);

1060

1061 hardcopyProperties_10.setCurrentResolutionWidth (1016);

1062

1063 hardcopyProperties_10.setCurrentResolutionHeight (734);

1064

1065 scene_5.resetCamera ();

1066

1067 scene_5.setPresentationName("Wall Y+");

1068

1069 scalarDisplayer_0.getInputParts ().setQuery(null);

1070

1071 scalarDisplayer_0.getInputParts ().setObjects(boundary_3);

1072

1073 Scene scene_0 =

1074 simulation_0.getSceneManager ().getScene("Geometry Scene 1");

1075

1076 scene_0.setPresentationName("Flying Wing");

1077

1078 PartDisplayer partDisplayer_0 =

1079 (( PartDisplayer) scene_0.getDisplayerManager ().getDisplayer("

Outline 1"));

1080

1081 partDisplayer_0.getInputParts ().setQuery(null);

1082

1083 partDisplayer_0.getInputParts ().setObjects(boundary_3);

1084 }

1085 }
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