
FLOATING-POINT COMPARATOR WITH RELU OPERATOR

FOR MACHINE LEARNING ENHANCEMENT

By

LANDON RAY BURLESON

Bachelor of Science in Computer Engineering
Oklahoma State University

Stillwater, Oklahoma
2019

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2021

FLOATING-POINT COMPARATOR WITH RELU OPERATOR

FOR MACHINE LEARNING ENHANCEMENT

Thesis Approved:

Dr. James E. Stine, Jr.

Thesis Adviser

Dr. Bingzhe Li

Dr. Gary Yen

ii

Name: LANDON RAY BURLESON

Date of Degree: MAY, 2021

Title of Study: FLOATING-POINT COMPARATOR WITH RELU OPERATOR
FOR MACHINE LEARNING ENHANCEMENT

Major Field: ELECTRICAL ENGINEERING

Abstract: This article provides various comparator designs that provide comparisons
to double, single, half, and bfloat floating-point values as well as provide comparison
modes for 32 and 64 bit two’s compliment integer encoded numbers. The variety
of different modes described are assessable via select signal to the proposed com-
parators. This comparator also houses a Rectified Linear Unit (ReLU) function to
leverage performance in a machine learning environment. Many forms of machine
learning architectures, such as Deep Neural Network (DNN) and Convolutional Neu-
ral Network (CNN), utilize the ReLU algorithm for weight updates to their respective
computational layer networks. Providing a hardware level solution to these weight
updates within these networks would produce faster results for the networks respec-
tive outputs due to the speed and reliability of hardware solutions over the traditional
based software solutions found in the industry today.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. BACKGROUND . 4

2.0.1 Two’s Complement and Comparison Arithmetic 5

2.0.2 IEEE 754 Floating-Point and Comparison Arithmetic 8

2.0.3 ReLU . 12

III. IMPLEMENTATION AND TESTING 16

3.0.1 Two’s Complement Implementation 16

3.0.2 Floating-Point Comparator and ReLU Implementation 17

3.0.3 Tree-Based Subtractor Architecture and DesignWare Floating-

Point Comparators . 23

3.0.4 Design Flow and SoC . 25

3.0.5 Testing . 25

IV. RESULTS . 27

4.0.1 Synthesis . 27

4.0.2 Power . 31

V. CONCLUSION . 35

REFERENCES . 36

iv

LIST OF TABLES

Table Page

2.1 Floating-Point Condition Codes and Descriptions 8

3.1 Comparator Options via 3-bit Select Signal 18

3.2 Feature Sets for Proposed and Previous Designs 23

4.1 Synthesis Results for the Various Floating-Point Comparator Designs

in Sky130 Technology Node . 28

4.2 Synthesis Results for the Various Floating-Point Comparator Designs

in Sky90 Technology Node . 28

4.3 Synthesis Results for the Various Floating-Point Comparator Designs

in cmos32soi ARM SOI Technology Node 29

4.4 Power Results for the Various Floating-Point Comparator Designs in

Sky130 Technology Node . 32

4.5 Power Results for the Various Floating-Point Comparator Designs in

Sky90 Technology Node . 32

4.6 Power Results for the Various Floating-Point Comparator Designs in

cmos32soi ARM SOI Technology Node 33

v

LIST OF FIGURES

Figure Page

2.1 Two’s Complement Number Encoding (4-bit) 5

2.2 Two’s Complement Comparison Example 7

2.3 IEEE 754 Floating-Point Standards 8

2.4 IEEE 754 Comparator Types [1] . 10

2.5 Example Comparison Operation in Accordance with IEEE 754[2] . . 12

2.6 ReLU Operation . 14

3.1 4-bit Magnitude Comparator Utilizing the Optimized Modules 17

3.2 Flowchart for the Implementation of fpcomp opt ReLU Module . . . 21

3.3 Tree-Based Subtractor Architecture [3] 24

3.4 Design Flow . 26

vi

CHAPTER I

INTRODUCTION

Machine learning has become a staple in modern computing and processing. neu-

ral networks such as Deep Neural Network (DNN) or Convolution Neural Network

(CNN) has become common among researchers specializing in image recognition and

big data sciences. The performance of these networks are crucial as computation

intensity and data grows in size and scope throughout a multitude of different indus-

tries. Both DNN and CNN networks operate using a network of layers that provide

the means in which all calculations are carried out. These networks dynamically

change the weights of these computational layers in order to provide an accurate

prediction for the result of a respective input. The process in which layer weight

updates are done by using a module called Rectified Linear Unit (ReLU). Currently,

the ReLU operation is utilized through software implementation for neural network

designs but this work proposes a hardware based approach to leverage performance

in the weight update events of a neural network. This is made possible by utilizing a

floating-point comparator with built in ReLU functionality as discussed within this

paper. Past comparator implementations generally lack machine learning functional-

ity and lacked details of the operation of the comparator design [4], [5], [6], [7]. In

recent times however, comparators with machine learning functionality have begun to

become more common to develop due to the demand for faster and more efficient neu-

ral network implementations [8]. However, the recent advancement of comparators

with machine learning functionality generally lack details and versatility within their

respective designs. The following quote from Hennessy depicts a large demand for

1

high performance neural network designs: ”In addition to these large players, dozens

of startups are pursuing their own proposals.” [9, p. 60] ”To meet growing demand,

architects are interconnecting hundreds to thousands of such chips to form neural-

network supercomputers.” [9, p. 60] ”This avalanche of DNN architectures makes for

interesting times in computer architecture.” [9, p. 60] ”It is difficult to predict in

2019 which (or even if any) of these many directions will win, but the marketplace

will surely settle the competition just as it settled the architectural debates of the

past.” [9, p. 60]. Taking this quote into consideration, these massive neural networks

that are being utilized in industry are used strictly for computational performance.

Any loss in performance over software based ReLU operations or poorly optimized

floating-point comparator designs jeopardizes performance severely due to the sheer

amount of weight updates found within these networks. This work provides a versa-

tile floating-point comparator design with ReLU functionality to provide performance

uplift and optimization to future and current neural network designs.

Comparison operations for both floating-point and integer encoded values were

derived directly from the IEEE 754 standards [1]. The ReLU operation used with the

machine learning variants of the proposed floating-point comparator designs is dis-

cussed in Section II along with the comparison functionality. The various approaches

to the floating-point comparator designs and the inner workings of the proposed work

are also described in detail within the aforementioned section. This work also pro-

vides various multi-function floating-point comparator designs with an emphasis on

machine learning operations to leverage performance within the layer weight update

events of a neural network [2]. In industry, it is common to use a subtractor as a

comparator. Comparison outcomes using a subtractor are determined from the sign

bit for both floating-point or integer operands. This work provides a way to directly

compare between two floating-point or two’s complement operands with the possible

outcomes being greater than, less than, equal, and unordered respectively. Further-

2

more, a variety of floating-point encoding options are included in the various proposed

designs such as double, single, half, and bfloat precision. This is to provide versatility

inside an Floating-Point Unit (FPU) for any neural network encoding requirements.

For this work, using a simple 2-bit comparison between Op1 and Op2 outputs a 0x1,

0x2, 0x3, or 0x4 to correspond to the floating-point condition codes (FCC) found in

Table 2.0.2. This behavior is directly derived from comparison operations detailed in

the IEEE 754 standard [1].

Section III discusses the implementation(s) of the proposed designs and the other

work used to quantify performance differences. Details on the floating-point, two’s

complement, and machine learning functionality is discussed thoroughly for each in-

dependent design. The main focus of this work is the fpcomp opt ReLU design for

floating-point and two’s complement comparison operations in addition to the ReLU

function for machine learning operations. A flowchart is provided for a visual demon-

stration of the operation and tie-ins to the various blocks that make up the afore-

mentioned design(s). The design flow format used to iterate, test, and synthesis all

designs is described as well.

All testing was conducted using the ModelSim simulation tool for all hardware

descriptive language (HDL) implementations and the Synopsys DesignWare synthesis

tool was used for all HDL synthesis trials. To ensure proper functionality, the Testfloat

[10] floating-point test vector generation tool was used in tandem with a self-checking

test bench for all ModelSim tests. Further details for testing is discussed in Section

III.

Results were gathered based upon operation and synthesis results. All designed

floating-point units are compared against the DesignWare standard floating-point

comparator as well as a previous tree-based subtractor architecture [3]. The varying

designs of this papers units is discussed further in Section IV.

3

CHAPTER II

BACKGROUND

Machine learning has become a mainstay in computer computation and arithmetic.

Some workflows that are common within this industry include image recognition,

Artificial Intelligence, and voice recognition. These networks are made up of input,

computational, and output layers respectively. By placing a set of data or a specified

input through these layers, the outputs produce an estimation of what the network

expects is the correct result based on the weights of the computational layers and

the pre-existing conditions determined from the learning phase of the initial neural

network design. Using neural networks, work flows such as image recognition become

relatively efficient and accurate for the desired results. However, in current implemen-

tations of these networks, a software based approach is used to update the weights

of their layer map by using the ReLU operation found in Figure 2.0.3. As implemen-

tations of the various neural network types become more intensive, the performance

of the overall network decreases drastically due to the abstraction a software based

ReLU function imposes.

Using the IEEE 754 standards [1] [11] [12] [13] for the floating-point number

encodings and the arithmetic, this paper provides a multi-function comparator that

offers floating-point, and two’s compliment comparison modes using a 2-bit magnitude

compare approach. Further discussion of the implementation and inner workings of

these modules are explained in later sections of this paper.

Combining the floating-point and two’s complement comparison functionality with

the ReLU operator used within various neural networks designs, provides an effective

4

hardware-based solution to the growing need for faster and efficient neural network

designs. The following sections will cover the IEEE 754 comparison arithmetic, two’s

complement, and the ReLU operation.

2.0.1 Two’s Complement and Comparison Arithmetic

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Unsigned

Two's Complement

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111
1000

Sign/Magnitude

Decimal

Figure 2.1: Two’s Complement Number Encoding (4-bit)

Two’s complement number encoding provides a format for use to represent both neg-

ative and positive integers. The bit on the furthest left of the encoding is considered

the most-significant-bit (MSB) and the furthest right-most bit is the least-significant-

bit (LSB). Similar to floating-point number encoding, the MSB bit is considered the

sign bit of a given number. If set to high or ’1’, the number encoded in two’s com-

plement or floating-point is regarded as a negative value. If set to low or ’0’, the

number encoded is considered a positive value. All two’s complement operations con-

ducted using any of the proposed designs yield an output of greater-than, less-than, or

equal-to. These outcomes are directly correlated with the Floating-point Condition

Codes (FCC) outputs found in later sections discussing floating-point comparison and

the accompanying arithmetic. Unlike the floating-point operations discussed later, a

two’s complement number cannot be an invalid number. This is due to a lack of an

exponent within the number encoding. To add to this, this work exclusively uses a

fixed-point (constant radix) for all two’s complement encoding. This means that all

two’s complement numbers are integers and therefore, have no fractional part of it’s

respective encoding. Since the two’s complement operands are fixed-point, any com-

5

bination of a binary value will yield a valid value for comparison operations. There is

no possibility of a not-a-number outcome in contrast to the floating-point encoding

counterpart.

Possible combinations of operands (Op1 and Op2) for two’s complement include:

Op1 and Op2 are positive, Op1 is positive and Op2 is negative, Op1 is negative

and Op2 is positive, or Op1 and Op2 are negative values. With this in mind, the

methodology used to determine whether Op1 is less-than Op2 is determined from the

magnitude of each individual number as follows: Op1 is negative and Op2 is positive,

Op1 and Op2 are positive and the magnitude of Op1 is less-than the magnitude of

Op2, Op1 and Op2 are negative and the magnitude of Op1 is greater than the mag-

nitude of Op2. The equal-to flag is determined whether both operands are equivalent

in value. The greater-than flag can be determined from the equal-to and the less-

than flags respectively through boolean logic. The equations 2.1 and 2.2 acquire the

greater-than and less-than flags respectively for a two’s complement comparison.

Due to the way floating-point numbers are encoded, the magnitude comparison

operation is valid for both floating-point numbers and two’s complement numbers.

The reason for this is due to the exponent being ahead of the fraction of a floating-

point number. The ’exponent’ of a two’s complement number will always be positive

in this circumstance and therefore will produce appropriate results when compared

using the proposed floating-point comparator(s). For a two’s complement comparison

example, as shown in Figure 2.0.1, Op1 is set as negative -78 and Op2 is set as positive

42 yielding a 01 as the output which corresponds to the less-than flag in the FCCs

described in the IEEE 754 floating-point section below. The process in which this

outcome is produced is straightforward. The least-significant two bits for Op1[1:0] = 10

and Op2[1:0] = 10 are compared and yield an ’00’ output for equivalence. Moving to

the compare module located to the left, Op1[3:2] = 00 and Op2[3:2] = 10 are compared

against one another and yield a ’01’ since Op1 is less than Op2. Following the same

6

2-bit
Compare

2-bit
Compare

Op2[3:2] Op1[3:2] Op2[1:0] Op1[1:0]

Optimized
2-bit

Compare

Out = 00Out = 01

Op1 = -7810 = 10110010

2-bit
Compare

2-bit
Compare

Op2[7:6] Op1[7:6] Op2[5:4] Op1[5:4]

Optimized
2-bit

Compare

FCC[1] = GT = 0
FCC[0] = LT = 1

Out = 10 Out = 10

Optimized
2-bit

Compare

Op2 = 4210 = 00101010

Out = 00 Out = 01

Figure 2.2: Two’s Complement Comparison Example

pattern, Op1[5:4] = 00 and Op2[5:4] = 10 are compared and results in a FCC of ’10’

for greater-than outcome. The MSBs of each operand is compared Op1[7:6] = 10 and

Op2[7:6] = 00 which gives the FCC ’10’ for a greater than outcome. The next stage

of the comparator utilizes the FCC outputs from the previous stage for the basis of

the next comparison operations. Starting with the least-significant bit side of the

comparator, the FCC from the [1:0] bit comparison is compared against the FCC

from the [3:2] comparison. This operation yields a ’01’ less-than outcome. The FCCs

between bits [7:6] and [5:4] are compared and the output for this operation yields a ’00’

for equivalence. Finally, comparing the FCCs for bits [7:4] and [3:0] results in a final

output of ’01’ for the comparison between Op1 and Op2 two’s complement operations.

The final stage of the comparison module uses the left-most comparison results as

Op1 due to the MSBs being more significant in terms of finding the comparison results

7

for the inputted operands. The magnitude comparison modules shown in the figure

utilize the aforementioned equations for the less-than and greater-than outcomes.

The modules denoted as ’Optimized’ use equations 2.3 and 2.4 respectively. These

optimize the comparison functionality and is discussed further in the following section.

2.0.2 IEEE 754 Floating-Point and Comparison Arithmetic

IEEE 754 Double Precision (64−bits)

IEEE 754 Half Precision (16−bits)

IEEE 754 Single Precision (32−bits)

sign bit

sign bit

63 62

sign bit Exponent (11−bits) Fraction (52−bits)

Fraction (23−bits) Exponent (8−bits)

Exponent (5−bits) Fraction (10−bits)

51 0

091415

31 30 22 0

Figure 2.3: IEEE 754 Floating-Point Standards

The proposed work provides comparison operation for the following IEEE 754 floating-

point types: double, single, and half precision floating-point numbers. Each of these

encodings correspond to a 64, 32, and 16 bit floating point numbers respectively.

These encodings all have various sizes for the exponent and fraction and can be

viewed in Figure 2.0.2. A comparison operation presented in this work is detailed

as a two bit magnitude comparison between Op1 and Op2. These two operands are

compared using the boolean logic found in Equations 2.1 and 2.2. This operation will

FCC[1:0] Description

00 A = B

01 A < B

10 A > B

11 Unordered

Table 2.1: Floating-Point Condition Codes and Descriptions

8

output the less-than (LT) and the greater-than (GT) flags for use in future commands

of a processor. Once these flags are found, they are converted into the FCCs which

is defined as the following: LT is mapped to FCC[0] and GT is mapped to FCC[1].

If FCC[1] = 0 and FCC[0] = 0, the comparison is a result of Op1 and Op2 being

equivalent (EQ).

The final FCC combination is defined as FCC[1] = 1 and FCC[0] = 1 which corre-

sponds to the unordered (UO) variant of the FCC codes. The unordered distinction

of the FCC is determined from the exponent value found in Op1 or Op2. If the

observed exponent of Op1 or Op2 is all 1’s or high’s, the number is considered NaN

or infinite. As mentioned before, the FCC for this scenario is 0x3. Within this work,

a set of select bits are used to specify the desired number encoding and accurately

determine the validity of an input operand. The proposed design aspects of these

modules along with these additional features are discussed further in Section III.

An optimized magnitude compare was also utilized to provide the most efficient

performance possible with the proposed work within this paper [2]. The optimized

GT and LT Equations are shown in Equations 2.3 and 2.4 respectively. The original

equations 2.1 and 2.2 were optimized by introducing ’don’t cares’ into the equation

and in turn optimize the 2-bit magnitude compare operation found within these de-

signs. Some of floating-point comparator designs (denoted with ’ opt ’) proposed use

the optimized variant of the comparison operation. The feature set differences and

inner workings of each independently proposed design is discussed further in chapter

III

GT = Op1[1] ·Op2[1] +Op1[1] ·Op1[0] ·Op2[0] +Op1[0] ·Op2[1] ·Op2[0] (2.1)

LT = Op1[1] ·Op2[1] +Op1[1] ·Op1[0] ·Op2[0] +Op1[0] ·Op2[1] ·Op2[0] (2.2)

9

GT = GT [1] +GT [0] · LT [1] (2.3)

LT = LT [1] +GT [1] · LT [0] (2.4)

In accordance to the IEEE 754 floating-point standard, there are two ways to

accomplish a comparison operation result between two floating-point operands. The

first is to return the floating-point condition codes with the possible outputs shown

in Table 2.0.2. The second way to accomplish a comparison result is by specifying

a desired outcome and designating the output of the comparator of either true or

false for this event. For example, if the desired outcome is LT and if the comparison

between two operands results in a LT outcome, the output from the comparator will

yield a ’true’ for this event. However, if the operation results in a outcome other than

the expected result, the comparator will yield a ’false’. The other possible output is

to yield an invalid flag if either operand is not a number or unordered. For this work,

all comparator designs output the appropriate FCC codes for a given operation in

accordance to the possible FCC code outputs found in Table 2.0.2. See Figure 2.0.2

for a visual representation of the two types of 754 comparators.

Comparator
(IEEE 754 Type 1)Op2

Op1

FCC = 01 = LT
 = 10 = GT
 = 00 = EQ
 = 11 = UO

Comparator
(IEEE 754 Type 2)Op2

Op1

FCC = 01 = LT
 = 10 = GT
 = 00 = EQ

True, False, or
Invalid

Figure 2.4: IEEE 754 Comparator Types [1]

As shown in Figure 2.0.2, the ’2-bit Compare’ modules use equations 2.1 and

2.2 for the GT and LT flags respectively. Similar to the two’s complement example

above, the ’Optimized 2-bit Compare’ modules utilize the 2.3 and 2.4 respectively.

10

As comparison operations are conducted on each 2-bit operand, the GT and LT flags

found within each comparison result is then used to find the next set of FCCs. This

is done until all comparisons are exhausted and the final FCC is formed. As shown,

Op1[7:0] is set to 01010111 and Op2[7:0] is set to 01011111 respectively. The final

result of the comparison operation between the two binary values yield a ’01’ output

for the FCC code. The following describes the process in which this finalized result is

produced for the two operands. Following a similar process as the previous example,

the least-significant two bits for Op1[1:0] = 11 and Op2[1:0] = 11 are compared and

yield an ’00’ output for equivalence. Moving to the compare module located to the

left, Op1[3:2] = 01 and Op2[3:2] = 11 are compared against one another and yield a ’01’

since Op1 is less than Op2 in magnitude. Continuing the pattern, Op1[5:4] = 01 and

Op2[5:4] = 01 are compared and results in a FCC of ’00’ for equivalence. The MSBs

of each operand is compared Op1[7:6] = 01 and Op2[7:6] = 01 which gives the FCC

’00’ for the equal-to outcome. The next stage of the comparator uses the previous

outcomes to produce the FCC for the group of bits observed. Starting with the right-

most side of the comparator, the FCC from the [1:0] bit comparison is compared

against the FCC from the [3:2] comparison. This operation yields a ’01’ less-than

outcome. The FCCs between bits [7:6] and [5:4] are compared and the output for

this operation yields a ’00’ for equivalence. Finally, comparing the FCCs for the

bit groups [7:4] and [3:0], this results in a final output of ’01’ for the comparison

between Op1 and Op2. This code corresponds to the LT result and therefore, the

comparison is valid for the example shown. Notice that the comparator does not

make any distinctions for any specific section of an encoding. The edge cases for

floating-point and the accompanying exponent and fraction sections associated with

this encoding is handled within the ’exception handling’ unit proposed within this

work. These edge cases and further details of the inner workings of the magnitude

comparator are discussed in chapter III.

11

2-bit
Compare

2-bit
Compare

Op2[3:2] Op1[3:2] Op2[1:0] Op1[1:0]

Optimized
2-bit

Compare

Out = 00Out = 01

Op1 = 01010111

2-bit
Compare

2-bit
Compare

Op2[7:6] Op1[7:6] Op2[5:4] Op1[5:4]

Optimized
2-bit

Compare

FCC[1] = GT = 0
FCC[0] = LT = 1

Out = 00 Out = 00

Optimized
2-bit

Compare

Op2 = 01011111

Out = 00 Out = 01

Figure 2.5: Example Comparison Operation in Accordance with IEEE 754[2]

2.0.3 ReLU

The Rectified Linear Unit (ReLU) operation is used heavily in machine learning envi-

ronments to update the weights of the computational layers within a neural network.

ReLU functionality can be added to any type of neural network. However, the most

common neural networks that utilize the ReLU function are the Convolutional Neural

Network (CNN) and multilayer perceptron architectures [14], [15], [16], [17], and [18].

The CNN variant consists of input, computational, convolution, and output layers.

These architectures are often used for image processing and object recognition. The

multilayer perceptron architecture uses nodes that are synonymous with human neu-

rons to use input vectors as a source of computation. These input vectors are shuffled

into neurons known as perceptrons which calculate the weights which correspond to

12

the likelihood that the given vector belongs in a desired class or set of data [19]. Once

the weights are calculated using the perceptrons, the weights must be updated for a

given computation layer. This need for a an operation is the reason for the ReLU

operation being so common within the architectures described. The importance of

this function within a respective neural network is immeasurably significant. The

ReLU function dictates an appropriate moment in which to update the weight of a

computational layer based on a previous result. This process ultimately maintains

these weights to accurately predict a result of a respective input for a given neural

network.

An example of a computation would be to use a CNN to predict if a input image

has a desired object. Not all pictures are the same in terms of contrast, saturation,

lighting, etc. However, the particular shape and characteristics of an object remain

relatively constant in a given photo set. The layer weights found within the initial

neural network design will be set to a default value to attempt a successful prediction

of the object. Feeding this neural network pictures (with and without the object) will

build up the layer weights to an appropriate value set to more accurately predict if the

object is present in an input image. This process requires the ReLU function to update

all layers within a timely manner to process data faster. As stated in the introduction,

the neural networks of today are increasing in size and scope dramatically. As size

increases, so does the number of computational layers and furthermore the number

of weight updates required to maintain accurate predictions for a neural network.

Currently, the most common way to implement the ReLU operator is through

software. A software approach is several layers abstracted from the hardware. This

approach increases delay significantly by adding an unnecessary amount of instruc-

tions for a single operation. To visualize this, an example ReLU function code is

shown below with the associated x86 assembly code (Listing II.1, II.2). The assembly

code output from the C code results in approximately 10 instructions for a single

13

ReLU operation. Using the software variant of the ReLU operator introduces a ex-

ecution delay over the hardware based approach proposed in this work. Using this

works proposed hardware-based floating-point comparator with ReLU functionality,

will exponentially increase the speed in which these calculations are conducted and

allow a significant improvement of throughput for the supercomputer scale neural

networks of today [9]. By implementing this function within hardware, this process

is reduced to a single instruction for execution. As an example, assume a clock cy-

cle time is 1 ps within a single-cycle architecture. A software based ReLU function

would take 10 ps per ReLU operation. Using the same architecture and speed, the

proposed work would execute the same operation in 1 ps. This speedup compounded

with the shear amount of ReLU operations required in the supercomputer scale neu-

ral networks, would produce a significant performance boost over the conventional

implementation.

Commonly, a subtractor is used to determine a comparison of Op1 and Op2 within

a neural network. Once completed, the weights are updated in accordance accordance

with Figure 2.0.3. In this work, Op1 is used to compare against ’0’ to determine the

ReLU output for the layer weight in question. Once this operation is complete for

every iteration of the learning process, the original weight value is cleared from the

layer in question and is then OR’ed with the ReLU value to complete the update

process. In summary, the ReLU operator provides a way to maintain a positive Op1

output for a given weight update event.

ReLU =

Op1, if Op1 > 0

0, if Op1 ≤ 0

(2.5)

Figure 2.6: ReLU Operation

14

#include <stdio.h>

int main() {

double a = 3.39030830803;

double result;

if (a > 0)

result = a;

else

result = 0.0;

printf("The_result_is_%lg\n", result);

}

Listing II.1: ReLU program in C

.LFB0:

.cfi_startproc

endbr64

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp , %rbp

.cfi_def_cfa_register 6

subq $16 , %rsp

movsd .LC0(%rip), %xmm0

movsd %xmm0 , -8(%rbp)

movsd -8(%rbp), %xmm0

pxor %xmm1 , %xmm1

comisd %xmm1 , %xmm0

jbe .L7

movsd -8(%rbp), %xmm0

movsd %xmm0 , -16(%rbp)

jmp .L4

.L7:

pxor %xmm0 , %xmm0

movsd %xmm0 , -16(%rbp)

Listing II.2: Assembly in x86 for the ReLU Function

15

CHAPTER III

IMPLEMENTATION AND TESTING

This section covers all implementations of the various proposed floating-point com-

parator (fpcomp) designs and the other works. This includes detailed inner-workings

of all designs and the various differences incorporated into each unique unit. For

better understanding, multiple diagrams are used to describe the various operations

and feature sets.

3.0.1 Two’s Complement Implementation

Similar to the fpcomp inner workings, the modules that have two’s complement func-

tionality (exception to the fpcomp only and fpcomp opt only) use the 2-bit magnitude

compare with or without the optimization to generate the LT and EQ flags respec-

tively. These flags are then inserted into the exception handling block within all

proposed designs to determine whether the GT flag is set or not. The UO verifica-

tion is unnecessary for two’s complement due to the respective encoding. It is not

possible to have an infinite or an invalid number encoded with a two’s complement

format. Therefore, the only operation done on the two’s complement comparison re-

sults within the exception handling block is the generation of the finalized FCC for a

given comparison operation. The input Sel signal used to determine a floating-point

encoding versus a two’s complement number is Sel[2]. If Sel[2] is set to ’1’ for the input

signal going into the comparator, the comparator treats both Op1 and Op2 as two’s

complement numbers. The remaining Sel[1] and Sel[0] signals determine the number

of bits each number encompasses. A 16-bit value is represented as Sel[2]·Sel[1]·Sel[0],

16

a 32-bit value is represented as Sel[2] ·Sel[1] ·Sel[0], and a 64-bit value is represented

as Sel[2] ·Sel[1] ·Sel[0] respectively. These Sel[2:0] signal values are consistent across

all proposed designs that include two’s complement functionality.

3.0.2 Floating-Point Comparator and ReLU Implementation

2-bit Mag
Compare

2-bit Mag
Compare

Op1[3:2] Op2[3:2] Op1[1:0] Op2[1:0]

Optimized
2-bit Mag
Compare

FCC[1] = GT
FCC[0] = LT

GT[0], LT[0]
GT[1], LT[1]

Figure 3.1: 4-bit Magnitude Comparator Utilizing the Optimized Modules

The implementation of the proposed design of this paper is shown in Figure 3.0.2.

The operation of the fpcomp opt ReLU module goes as follows: sign extend operand

1 (Op1) and operand 2 (Op2) based on select signals, compare Op1 against Op2,

generate FCC through the exception handling block, output the appropriate FCC,

and generate the z0 signal from the ReLU operation.

For the sign extension module, both operands and the 3-bit Sel signal are inputted

into this block. Based on the Sel signal, the sign extension block extends the sign

of each operand inputted by 32 bits or 48 bits. This distinction is made by the size

of each operand to result in a 64 bit output into the comparison block. The sign

extension is done to ensure that the comparison operation is functional for all input

17

types into the proposed model. As an example operation, if both operands are 32-bit

floating-point numbers, the Sel[2] = 0, Sel[1] = 0, and Sel[0] = 1. The operation of

the sign extension function relies on Sel[0] · Sel[1] · Sel[2] and Sel[0] · Sel[1] · Sel[2]

to produce the Ext32 and Ext16 signals. If Ext32 is set to high, then the operands

are sign extended by 32 additional bits. If Ext16 is set to high, the the operands are

sign extended by 48 additional bits.

From the sign extension module, Op1[63:0] and Op2[63:0] are inputted into the

comparison module for analysis. Within the comparison module, the 2-bit magnitude

comparison sub-modules are used to calculate the appropriate less-than, greater-than,

equal-to, or unordered result in correspondence with the IEEE 754 FCC values. The

magnitude comparison operation is characterized in Equations 2.2 and 2.1. For the

optimized variants of the comparator designs, these versions of the magnitude com-

pare modules utilize a optimized form of the magnitude compare functions discussed

in previous chapter. This enhancement allows the comparison operation to execute

with fewer clock cycles than the standard comparison operation and use fewer logic

gates for power and area savings [2].

Sel[2:0] Description

000 Double Precision Numbers

001 Single Precision Numbers

010 Half Precision Numbers

101 16-bit Integers

110 64-bit Integers

111 32-bit Integers

Table 3.1: Comparator Options via 3-bit Select Signal

The magnitude comparison operation is visualized in figure 3.0.2 using a simplified

4-bit comparator. As mentioned before, the ’2-bit Mag Compare’ blocks are represen-

18

tative of the boolean equations 2.1 and 2.2 for the GT and LT flags respectively. Once

the initial magnitude compare on the 2-bit input operands is complete, the generated

GT and LT flags are used to determine the final FCC value inside of the optimized

version of the aforementioned equations. The optimized variants are defined as 2.3

and 2.4 for the final GT and LT flags respectively. This portion of the operation sub-

stitutes the use of Op1 and Op2 in favor of GT[1:0] and LT[1:0] to obtain the expected

and accurate results. If a design does not use the optimization, the optimization block

shown in Figure 3.0.2 is replaced with a standard 2-bit magnitude comparator for all

magnitude comparison operations. The MSB of the respective operands entering the

comparison module are flipped to ensure magnitude comparison operation is con-

ducted correctly for both two’s complement and floating-point values. To validate

this notion, suppose Op1 is negative and Op2 is positive. If a magnitude compar-

ison is conducted on these operands without flipping the sign bit, the result would

reveal that Op1 is greater than Op2 due to the magnitude comparator interpreting

the signed value as a unsigned one and generating a GT flag. Flipping the sign bits

in this case and other cases would ensure proper initial comparison results via FCC.

This method produces appropriate FCC values for two’s complement operands but

doesn’t cover all edge cases for floating-point encodings. The FCC generated from

the magnitude comparator module is then inputted into the exception handling block

to handle all edge cases as well as handle both floating-point and integer encoded

numbers. The initial LT and EQ values are passed along with each operand to the

exception handling unit of the design to finalize the results of the operation.

The exception handling block is used to generate the FCC per the IEEE 754

standard based upon the LT and EQ flags set from the comparison operation. This

block checks for an unordered FCC output based on the floating-point operands before

finalizing the FCC value. This distinction is done by utilizing the Sel signal coming

into the exception handling block to determine whether the operands are floating-

19

point encoded or not. The Sel signal also determines the precision of the floating-

point operands. These operations must be conducted to determine if the inputted

floating point values should be checked for a not-a-number (unordered) encoding. This

scenario is determined by observing the exponent values within the exponent segment

of the floating-point encoding. An exponent shown to be all 1’s is considered not-a-

number for a floating-point encoding. A signalling unordered output is determined

by the MSB of the fraction section of the floating-point number. If this bit is set to

0 and the exponent of the number is set to all 1’s, the unordered output is signalling

and the invalid flag is set to high. If not signalling, the UO flag is set and the final

FCC is returned as ’11’ from the exception handling block. Once a non-unordered

result is determined, the LT and EQ flags are found due to the UO flag being set to

0. If both input operands are found to be valid (not unordered), the finalized FCC

flags are found with the following logic expressions. The EQ flag is set by using the

following logic equation: EQ = EQmag | (Op1zero · Op2zero · fp) · UO. The EQ

flag is set if the EQmag flag is set from the comparator module or if the floating-point

operands are equal to zero and if the UO flag is not set. The LT flag is set using

the following logic equation: LT = ((LTmag · fp) | (LTmag · Op1[63] · Op2[63] ·

fp) | (LTmag · (Op1[63] · Op2[63]) · fp)) · EQ · UO. The LT flag is set if LTmag

is set and the operation is not a floating-point comparison or if the LTmag is not set

and if both floating-point operands are negative and the magnitude of Op1 is greater

than Op2 or if LTmag is set and if both floating-point operands are positive and the

magnitude of Op1 is less than Op2 and if EQ and UO are not set. The GT flag is

determined by the following logic: GT = (LT | EQ | UO). The GT flag is directly

calculated by the other possible flags because it cannot be set while the other flags

are set. The final FCC bits are calculated using FCC[0] = LT + UO and FCC[1] =

GT + UO respectively.

For the fpcomp opt ReLU module, upon generating the FCC values, the signals

20

are passed into the ReLU module along with Op1[63:0] to generate the z0 signal used

as the output of the ReLU operation. This operation is done using a mux21 module

and a signal defined by ∼ FCC[1] to select the Op1[63:0] operator or 64’h0 for the

output z0. The FCC[1] is considered the GT bit in accordance to the FCC codes.

FCC [1:0]

Op2 [63:0]

Op1 [63:0]

Op1 [63:0], LT, EQ Op2 [63:0], LT, EQ

Sel [2:0]

z0 [63:0]

Comparison

Exception Handling

ReLU Module

Sign Extension (64−bit)

Op1 Op2

Op1 [63:0]

Figure 3.2: Flowchart for the Implementation of fpcomp opt ReLU Module

As shown in Table 3.0.2, the various fpcomp designs use a diverse feature set to

accomplish similar goals to the fpcomp opt ReLU module. The various designs gen-

erally, all have basic floating-point comparison operations. However, these designs

vary in terms of two’s compliment functionality, the use of the magnitude compar-

ison optimization, and machine learning functionality. The following designs have

machine learning functionality: fpcomp ReLU, fpcomp ml, fpcomp opt ReLU, and

fpcomp maxmin. The differences

21

among these designs are directly related to the method used to implement the ma-

chine learning operations. The fpcomp ReLU and fpcomp opt ReLU are functionally

the same with exception to the ladder using the optimization for the floating-point

comparison operations and the zctrl input that is used within the fpcomp ReLU de-

sign. The zctrl signal inside of the fpcomp ReLU module is used to switch between a

comparison operation and a ReLU operation. This is done by setting Op2 to either

64’h0 or its original input value. The main advantage of the fpcomp opt ReLU design

is that both the comparison output of the operands and the RelU output is always

outputted without the need of an additional control signal. The fpcomp maxmin and

fpcomp ml designs are based upon the DesignWare variation of the comparator used

for machine learning operations [20]. Starting with the fpcomp maxmin design, this

design utilizes both ’max’ and ’min’ functions. These functions output the largest

is smallest value in respect to the input operands for the maximum and minimum

variables respectively. The fpcomp ml design uses the ’max’ function similarly to how

the ReLU function works. It outputs either Op1 or 64’h0 depending on whether Op1

is greater than 0 or not.

The remaining fpcomp designs do not have the machine learning functionality.

These designs include: fpcomp, fpcomp comb, fpcomp only, and fpcomp opt only.

The standard fpcomp design is considered the baseline and it has both floating-point

and two’s compliment comparison operations. It however, doesn’t utilize the opti-

mization of the 2-bit magnitude compare function. The fpcomp comb also doesn’t

utilize the optimization and it lacks the bfloat comparison functionality. Both the fp-

comp only and fpcomp opt only have only floating-point comparison operations. All

designs designated with ’ opt’ supports the 2-bit magnitude optimization described

in the previous chapter. See Table 3.0.2 for a visual of differing feature sets between

all proposed designs.

22

Module DP SP HP Bfloat 16-bit 2’s comp 32-bit 2’s comp 64-bit 2’s comp max/min ReLU Optimization

fpcomp X X X X X X X

fpcomp only X X X X

fpcomp opt only X X X X X

fpcomp comb X X X X X X

fpcomp ml X X X X X X X X

fpcomp maxmin X X X X X X X X

fpcomp ReLU X X X X X X X

fpcomp opt ReLU X X X X X X X X X

tree subtractor architecture [3] X X X X X X X

DW fp cmp [20] X X X X X

Table 3.2: Feature Sets for Proposed and Previous Designs

3.0.3 Tree-Based Subtractor Architecture and DesignWare Floating-Point

Comparators

The proposed designs of this work described below are directly compared against the

tree-based subtractor and the DW comparators respectively.

The tree-based subtractor architecture uses a magnitude compare similar to the

proposed work with exception to the generate and propagate nodes that are used

in place of the proposed 2-bit magnitude modules. These nodes are analogous to

similarly designed tree-based adders. The subtractor based comparator is the most

common comparator found in industry today and it uses the subtraction operation

found within the (Floating-Point Unit) FPU or (Arithmetic Logic Unit) ALU to take

the difference between two operands and ultimately check the sign bit of the output

for the comparison result. If the sign bit is set, Op1 is less-than Op2, if the sign bit is

not set, Op1 is greater-than Op2, and if the result of the operator is all zeros, Op1 is

equal to Op2. For ease of use and proper operation, the tree-based subtractor design

uses 1’s complement for the comparison process [3]. Using a similar operation to what

is found in the flowchart for fpcomp opt ReLU (3.0.2, the tree-based subtractor de-

sign was adapted to replace the ’Comparison’ portion of the chart with the subtractor

comparator. This was done to ensure similar operation between the subtractor com-

parator and the proposed designs 3.0.2 for a fair contrast between both architectures.

23

However, the ReLU module was left out of the subtractor architecture and was only

tested against proposed designs that lacked this functionality as well. The tree-based

subtractor architecture is visually represented in Figure 3.0.3. This figure shows both

the black and the ’OR’ nodes used to create the generate and propagate values to

ultimately generate the GT and LT flags through a subtraction based process. The

required boolean equations are also provided within the figure.

The DesignWare comparator provides a baseline floating-point comparator that

is completely support all floating-point types targeted in this work (double precision,

single precision, half precision, and bfloat). This particular design, however, does not

include two’s complement comparison operations. A direct comparison of feature sets

between all proposed designs and other works are found in Table 3.0.2.

OR
g3, p3

OR
g2, p2

OR
g1, p1

OR
g0, p0

Op1[3] Op2[3] Op1[2] Op2[2] Op1[1] Op2[1] Op1[0] Op2[0]

GT = G3:0

GP = P3:0

EQ = ~GT & GP

LT = ~GT | ~GP

(g1, p1) (g0, p0)

G = g1 | p1 & g0
P = p1 & p0

OR
gi, pi

Op1[i] Op2[i]

gi = Op1[i] & ~Op2[i]
pi = Op1[i] | ~Op2[i]

Figure 3.3: Tree-Based Subtractor Architecture [3]

24

3.0.4 Design Flow and SoC

Shown in Figure 3.0.4 is the general design flow used to implement the proposed de-

signs into independent System on Chip (SoC) designs. These SoCs were designed in a

way to directly implement any proposed design into a existing hardware design. Any

proposed design could be directly added to a processors data-path for bolstered com-

parison and machine learning performance. All designs were written in SystemVerilog

(HDL) and simulated using the ModelSim test suite. Once the designs were verified

within the test suite, the HDL was taken through synthesis using all three of the

technology nodes used within this work (SkyWater 130nm, SkyWater 90nm, and

cmos32soi ARM SOI). Once the synthesis runs are complete, the results are analyzed

and used to provide design feedback for the development of the HDL. This cycle is re-

peated until all optimization and design improvement options are extinguished. The

final synthesis results are then recorded.

3.0.5 Testing

Testing was conducted using the ModelSim test suite for HDL simulation and De-

signWare was used for all synthesis runs for all floating-point comparator designs.

Floating-point test vectors were generated using the Testfloat tool for thorough anal-

ysis of floating-point and two’s complement functionality within all designs. This tool

generates both Op1 and Op2 along with the expected result FCC value in accordance

to IEEE 754 standard. Using these values in tandem with self-checking test benches

allowed for easy checking for operation error within the HDL.

The ModelSim test suite was initialized with a ’.do’ file with the appropriate test

parameters for the various comparison operations. These included 64-bit, 32-bit,

and 16-bit floating-point comparison values with emphasis on each FCC possibility.

These possibilities include GT, LT, EQ, and UO to provide thorough analysis to the

proposed designs. Using this testing methodology, the design in question is thoroughly

25

HDL

Simulation (ModelSim

Synthesis

Yes

Yes

Passed?

Iterate

Pass Simulation?

No

No

Review Synthesis
Results (Power, Area

Timing)

Figure 3.4: Design Flow

examined and analyzed for accuracy of the outputs. These tests used the Testfloat

tool to generate all test vector values for these edge cases for the emphasized FCC

possibilities described earlier. These simulations also produced a ’VCD’ file that was

used within the synthesis design flow for more accurate power measurements within

each respective fpcomp design.

The Synopsys DC Shell synthesis tool was used once designs were verified within

the ModelSim suite. The tool was configured for the SkyWater 130nm (Sky130) and

SkyWater 90nm (Sky90) technology nodes using the typical-typical design corners

for all standard cell models in the SkyWater technology. The cmos32soi ARM SOI

(32nm) cells were however, set up to use the ’RVT’ cells. These cells are used for the

highest speeds possible for design. This design flow generated the power, area, and

timing metrics used for the design comparison in the following section.

26

CHAPTER IV

RESULTS

This section describes the results of testing the individual designs using the method-

ology described in the previous section. As mentioned before, the Sky130nm, Sky90,

and cmos32soi ARM SOI technology nodes was utilized to generate synthesis results

for all fpcomp designs. All synthesis tests were conducted to find area, power, and

timing. Further analysis of the power discrepancies between all designs is also in-

cluded within this analysis.

4.0.1 Synthesis

The results of the synthesis runs are described in the following tables for the Sky130,

Sky90, and cmos32soi ARM SOI respectively: Table 4.0.1, Table 4.0.1, and Table

4.0.1. The timing reported within the tables is measured using the timing results of

the critical path of an individual design. Power is calculated using the summation

of the internal, switching, and leakage power. Due to these designs lacking any

sequential components, area is a calculation of the absolute area that encompasses

purely the combinational circuits in each of the discussed fpcomp designs. The power-

delay product was also provided to provide context of efficiency of power and timing.

This figure of merit also excludes switching power to provide for a better performance

comparison metric.

27

Modules Area (µm2) Power (mW) Period Met (ns) Power-Delay Product (pJ)

fpcomp 8,892.2987 0.6402 1.8174 1.1630

fpcomp only 5,471.0567 0.4119 0.8473 0.3491

fpcomp opt only 5,606.5877 0.4148 0.8818 0.3658

fpcomp comb 7,673.2523 0.5685 1.2315 0.7002

fpcomp ml 8,334.0575 0.6352 1.2413 0.7885

fpcomp maxmin 7,581.6773 0.6679 1.2010 0.8021

fpcomp ReLU 9,158.9651 0.6916 1.2808 0.8858

fpcomp opt ReLU 8,812.4453 0.6866 1.2754 0.8757

tree subtractor architecture [3] 7,314.7435 0.5142 1.2231 0.6289

DW fp cmp [20] 12,815.3718 3.7638 1.6917 6.3670

Table 4.1: Synthesis Results for the Various Floating-Point Comparator Designs in

Sky130 Technology Node

Modules Area (µm2) Power (mW) Period Met (ns) Power-Delay Product (pJ)

fpcomp 2,413.7400 0.2438 0.5832 0.1422

fpcomp only 1,463.1400 0.0860 0.4003 0.0344

fpcomp opt only 1,748.3200 0.1496 0.3855 0.1600

fpcomp comb 2,376.5000 0.1723 0.5644 0.0973

fpcomp ml 2,287.3200 0.1282 0.6162 0.0790

fpcomp maxmin 2,456.8600 0.1946 0.5777 0.1124

fpcomp ReLU 2,655.8000 2.1693 0.1727 0.3746

fpcomp opt ReLU 2,424.5200 1.6007 0.1322 0.2116

tree subtractor architecture [3] 2,110.9200 0.1084 0.6195 0.0672

DW fp cmp [20] 3,082.1001 2.2527 0.5694 1.2830

Table 4.2: Synthesis Results for the Various Floating-Point Comparator Designs in

Sky90 Technology Node

28

Modules Area (µm2) Power (mW) Period Met (ns) Power-Delay Product (pJ)

fpcomp 1,738.3632 0.8473 0.1080 0.0985

fpcomp only 1,056.2328 0.2795 0.0731 0.0204

fpcomp opt only 1,235.3040 0.3313 0.0770 0.0255

fpcomp comb 1,617.0672 0.3918 0.1053 0.0413

fpcomp ml 1,758.1536 0.4615 0.0991 0.0457

fpcomp maxmin 1,498.6440 0.4014 0.1061 0.0429

fpcomp ReLU 1,345.4280 0.3294 0.1089 0.0359

fpcomp opt ReLU 1,584.5088 0.4083 0.1135 0.0463

tree subtractor architecture [3] 1,469.5968 0.3848 0.1098 0.0422

DW fp cmp [20] 2,348.0352 14.3007 0.1200 1.7150

Table 4.3: Synthesis Results for the Various Floating-Point Comparator Designs in

cmos32soi ARM SOI Technology Node

As shown in Table 4.0.1, the area varies drastically across all designed modules.

The Synopsys DesignWare comparator fell behind every designed comparator within

the table in terms of area and power in comparison to the proposed designs. The

designs that yielded the best results across all metrics were the fpcomp only and

fpcomp opt only modules. This is expected due to the lack of machine learning

and integer based operations. The tree subtractor architecture is most similar to

the fpcomp comb design in terms of feature set. The fpcomp comb design provided

marginally worse performance in all metrics tested. The percentage difference for area,

power, and timing are defined as follows: 4.78%, 10.05%, and 0.68%. These values

imply marginal differences between the two comparators in terms of both performance

and feature set. The fpcomp opt ReLU provides the similar results in comparison to

the fpcomp ReLU design in terms of all metrics tested. The percentage difference

corresponding to these results are: 3.86%, 0.72%, and 0.426%. As mentioned before,

the fpcomp opt ReLU design provides results for both the ReLU function and the

comparison operation without the need to choose between the two. The fpcomp ReLU

design on the otherhand, only provides a ReLU output or a comparison output for Op1

29

and Op2 at any given time. The results from this synthesis run shows little difference

between the two designs. However, in practice the fpcomp opt ReLU would yield

slightly better results over the fpcomp ReLU counterpart in both area and timing.

As shown in 4.0.1, the Sky90 technology synthesis runs resulted in similar trends

within the margin of error for all modules.

As shown in Table 4.0.1, the area and timing found within the 32nm results are

all improvements over the 90nm and 130nm technology runs. The Synopsys Design-

Ware comparator fell behind every designed comparator within the table in terms of

area, power, and timing. The difference between the worst timing (DesignWare) and

the best (fpcomp only) was 143.6% difference. To solidify the performance of this

papers proposed designs, the fpcomp ReLU design provides the best power and area

results out of the modules designed with the machine learning ReLU functionality in

mind. As with the Sky130 and Sky90 synthesis results, the fpcomp ReLU and fp-

comp opt ReLU modules offer similar performance metrics with an slight advantage

to the fpcomp ReLU design. The strictly floating-point comparator designs show a

similar conclusion in terms of their respective performance metrics. The fpcomp only

and fpcomp opt only designs showcase a 15.63% worse area, 16.96% worse power, and

5.24% worse timing for the fpcomp opt only design. The tree subtractor architecture

shows promising results across the board in comparison to this papers proposed de-

signs. However, the differences between the fpcomp comb design and the tree-based

subtractor is marginal but both power and timing prove to be better for the imple-

mentation of the fpcomp comb design. The fpcomp ReLU design manages to best

the tree subtractor architecture in all three categories regardless of the additional

machine learning functionality.

All technology nodes used for synthesis tests follow the same trends within their

respective test suite. Whenever the technology node decreases in size, the area, power,

and speed improve drastically. For the synthesis tests, all speed targets were varied

30

in accordance to the technology node being used. The clock frequency targets for the

set 2,000MHz, 4,000MHz, and 20,000MHz for Sky130, Sky90, and cmos32soi ARM

SOI respectively. This was done to force the timing to fail for their respective target

periods to ensure the synthesis engine exhaustively tries to reach the timing goal.

This allows for more accurate area and power results to be formulated with respect

to the frequency target. The Power-Delay Product value shown in the above tables

is used to normalize out the switching power metric to represent the efficiency of the

design. The lower the number the better. Note that this metric is measured in a unit

of energy (pJ).

Synthesis results are merely a prediction of a particular design’s performance

metrics. To fully realize the advantages of the designs, a Place-and-Route (PNR)

run must be conducted due to the short-comings present within the synthesis results.

Place-and-Route would reveal the performance benefits of the optimization (designs

denoted ’ opt’) versus the unoptimized designs. It would also allow for realistic area,

power, and timing results to better differentiate real performance between all proposed

designs and other works.

4.0.2 Power

Shown in the following tables is a comprehensive look at the power results for each

individual design. As mentioned before, the power is split into three groups: internal,

switching, and leakage power. The internal power is given by the individual stan-

dard cell power delivery from the VDD and GND rails respectively. The switching

power is determined from the capacitance at each node in a design. This capacitance

includes gate, diffusion, and wire capacitance values. Leakage power is described by

the amount of amperage that leaks through a gate of a transistor. This phenomenon

becomes more common as transistor size decreases. It occurs due to a strong voltage

potential on one side of the channel pulling electrons between the source and drain

31

inadvertently because of proximity of the terminals. The following tables showcase

the power results for each technology node tested (Sky130, Sky90, and cmos32soi

ARM SOI).

Modules Internal (mW) Switching (mW) Leakage (nW) Total (mW)

fpcomp 0.1745 0.4655 131.1926 0.6402

fpcomp only 0.1215 0.2904 68.1806 0.4119

fpcomp opt only 0.1184 0.2963 67.2624 0.4148

fpcomp comb 0.1608 0.4076 111.0391 0.5685

fpcomp ml 0.1778 0.4573 128.0321 0.6352

fpcomp maxmin 0.1632 0.5046 109.1492 0.6679

fpcomp ReLU 0.1787 0.5127 137.1926 0.6916

fpcomp opt ReLU 0.1825 0.5040 127.8869 0.6866

tree subtractor architecture [3] 0.1499 0.3642 92.6337 0.5141

DW fp cmp [20] 0.8497 2.8931 221.1670 3.7430

Table 4.4: Power Results for the Various Floating-Point Comparator Designs in

Sky130 Technology Node

Modules Internal (mW) Switching (mW) Leakage (nW) Total (mW)

fpcomp 0.0985 0.1438 1,408.2000 0.2438

fpcomp only 0.0411 0.0444 619.7482 0.0860

fpcomp opt only 0.0683 0.0802 1,037.1000 0.1496

fpcomp comb 0.0737 0.0972 1,423.5000 0.1723

fpcomp ml 0.0576 0.0696 1,115.1000 0.1282

fpcomp maxmin 0.0743 0.1188 1,538.3000 0.1946

fpcomp ReLU 0.0769 0.0943 1,424.5000 0.1727

fpcomp opt ReLU 0.0551 0.0760 1,079.9700 0.1322

tree subtractor architecture [3] 0.0518 0.0557 861.8221 0.1084

DW fp cmp [20] 1.0556 1.1957 1,422.4300 2.2527

Table 4.5: Power Results for the Various Floating-Point Comparator Designs in Sky90

Technology Node

32

Modules Internal (mW) Switching (mW) Leakage (uW) Total (mW)

fpcomp 0.3172 0.3036 226.4267 0.8473

fpcomp only 0.0741 0.0589 146.5311 0.2795

fpcomp opt only 0.0847 0.0707 175.9724 0.3313

fpcomp comb 0.0913 0.0867 213.8396 0.3918

fpcomp ml 0.1133 0.1025 245.6304 0.4614

fpcomp maxmin 0.0903 0.1199 191.1570 0.4014

fpcomp ReLU 0.0730 0.0855 170.9406 0.3294

fpcomp opt ReLU 0.0947 0.1028 210.8073 0.4083

tree subtractor architecture [3] 0.0855 0.0837 215.6767 0.3848

DW fp cmp [20] 8.1795 5.7783 342.8702 14.3007

Table 4.6: Power Results for the Various Floating-Point Comparator Designs in

cmos32soi ARM SOI Technology Node

In order to obtain as accurate power figures as possible, ’saif’ files were imported

into the synthesis engine for analysis of the signals during a testbench conditions.

These files are directly generated from the ’VCD’ files mentioned in the earlier testing

section. These files allows for accurate power predictions for the design by using the

testvectors used from Testfloat inside of the ModelSim test suite to generate a power

profile for the synthesis engine to utilize for power prediction.

As can be seen in the tables found above, as the technology node size decreased,

the power for each respective design also generally decreased with exception to the

32nm synthesis flow. A noteworthy observation is that the leakage power for each

design increased as the technology node size decreased. This is expected due to the

channel length decreasing and allowing current to flow when a high voltage potential

is placed on either the source or the drain terminals of a transistor. Switching and

internal power generally decreased when the technology node decreased as well. This

is due to the decreases in capacitance and threshold voltage as the transistor size

decreased. The capacitance would decrease due to the size decrease of all gates,

33

diffusion, and wire traces throughout the design. The internal power would decrease

since the design VDD associated within a cell design would decrease as the higher

voltage potential is unnecessary for smaller transistors as it could possibly damage the

designs. This reduction in voltage also implies a reduction in current and power. With

these characteristics in mind, as a particular design falls below the 45nm technology

node, the leakage current increases exponentially due to the channel length. These

conclusions are easily seen in the 32nm table versus the 90nm table. However, these

issues are resolved by using a 3D transistor designs such as FinFET [21] [22]. Further

analysis of the power metrics will be conducted in the future using power analysis

tools such as Voltus to verify these values further.

34

CHAPTER V

CONCLUSION

Future work for this proposal includes using the PNR flow to accurately assess all

performance differences between all designs. These tests would yield closer-to-reality

results in comparison to the synthesis runs. In addition to the PNR design flow,

designing a CNN or DNN with each comparator utilizing machine learning func-

tionality would be beneficial to compare the performance between a software and

hardware based ReLU approach.

The results of these floating-point comparator modules are promising for both

the comparison operation and the ReLU operation found within machine learning

workflows. Seen in Section IV, the synthesis results of the fpcomp opt ReLU module

shows promise in comparison to the other designs and works. This potentially sizable

increase in performance provides a good argument for the proposed work be intro-

duced into future neural network implementations that are stringent on execution

time of each iteration of progress within a DNN or CNN. As progress is made within

the field of machine learning, any and all possible performance enhancements should

be sought to provide faster response times within these networks. The current ReLU

software solution used in these networks is a performance hinderance in comparison to

hardware-level solutions. Also, due to the frequency in which neural networks update

their respective weights within the computational layers, the responsiveness of the

ReLU operator becomes the most impactful operation within the network in terms

of execution time and delay. This potential performance limitation can be resolved

with the proposed hardware-based solution of this paper.

35

REFERENCES

[1] IEEE, “Ieee standard for interval arithmetic,” standard, IEEE Computer Society,

2015.

[2] M. J. S. James E. Stine, “A combined two’s complement and floating-point

comparator,” IEEE, 2005.

[3] F. Ntouskas, C. Efstathiou, and K. Pekmestzi, “Efficient design of magnitude

and 2’s complement comparators,” Integration, the VLSI Journal, pp. 164–169,

2020.

[4] K. W. Glass, “Digital comparator circuit.”

[5] D. Norris, “Comparator circuit.”

[6] F. Murabayashi, T. Hotta, S. Tanaka, T. Yamauchi, H. Yamada, T. Nakano,

Y. Kobayashi, and T. Bandoh, “3.3 v bicmos techniques for a 120-mhz risc

microprocessor,” 1994.

[7] E. S. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mo-

hammad, “A fully bypassed six-issue integer datapath and register file on the

itanium-2 microprocessor,” 2002.

[8] I. V. Zoev, A. P. Beresnev, E. A. Mytsko, and A. N. Malchukov, “Implementation

of 14 bits floating point numbers of calculating units for neural network hardware

development,” in Materials Science and Engineering (I. Publishing, ed.), 2017.

[9] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architec-

ture,” Communications of the ACM, vol. 62, pp. 48–60, 2019.

36

[10] J. R. Hauser, “Berkeley testfloat,” 2018.

[11] IEEE, “Ieee standard for binary floating-point arithmetic,” standard, IEEE Com-

puter Society, 1985.

[12] IEEE, “Ieee standard for floating-point arithmetic,” standard, IEEE Computer

Society, 2008.

[13] IEEE, “Ieee standard for floating-point arithmetic,” standard, IEEE Computer

Society, 2019.

[14] H. Yu, J. Cheng, X. Zhang, Y. Gao, and K. Mei, “Implementation of convolu-

ational neural network with co-design of high-level synthesis and verilog hdl,”

IEEE, 2020.

[15] A. F. M. Agrap, “Deep learning using rectified linear units (relu),” 2019.

[16] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Automated verification

of neural networks: Advances, challenges and perspectives,” 2018.

[17] J. A. A. Opschoor, P. C. Petersen, and C. Schwab, “Deep relu networks and

high-order finite element methods,” Seminar for Applied Mathematics, 2019.

[18] P. Hill, B. Zamirai, S. Lu, Y.-W. Chao, M. Laurenzano, M. Samadi, M. Pa-

paefthymiou, S. Mahlke, T. Wenisch, J. Deng, L. Tang, and J. Mars, “Rethinking

numerical representations for deep neural networks,” 2018.

[19] Standford, “The perceptron,”

[20] DesignWare, “Dw fp cmp,” tech. rep., Synopsys, 2020.

[21] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor.

Oxford, 2011.

37

[22] N. H. E. Weste and D. M. Harris, CMOS VLSI Design. Addison-Wesley, 2011.

[23] J. L. Henneessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 2019.

[24] S. L. Harris and D. M. Harris, Digital Design and Computer Architecture: ARM

Edition. Morgan Kaufmann, 2016.

[25] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2004.

[26] J. Henry S. Warren, Hacker’s Delight. Addison Wesley, 2013.

[27] DesignWare, “Dw cmp dx,” tech. rep., Synopsys, 2019.

[28] DesignWare, “Dw cmp dx,” tech. rep., Synopsys, 2019.

38

VITA

Landon Ray Burleson

Candidate for the Degree of

Master of Science

Thesis: FLOATING-POINT COMPARATOR WITH RELU OPERATOR
FOR MACHINE LEARNING ENHANCEMENT

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical Engineering
at Oklahoma State University, Stillwater, Oklahoma in May, 2021.

Completed the requirements for the Bachelor of Science in Computer Engineer-
ing at Oklahoma State University, Stillwater, Oklahoma in December, 2019.

Experience:

Graduate Research Assistant - VLSI Computer Architecture Research Group
OSU
January 2020 - May 2021

