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Abstract:

The ability to learn and execute optimal control policies safely is critical to the real-
ization of complex autonomy, especially where task restarts are not available and/or
when the systems are safety-critical. Safety requirements are often expressed in terms
of state and/or control constraints. Methods such as barrier transformation and con-
trol barrier functions have been successfully used for safe learning in systems under
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forcement learning to learn the optimal control policy. However, existing barrier-based
safe learning methods rely on fully known models and full state feedback. In this the-
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tially observable state. The applicability of the developed techniques is demonstrated
through simulations, and to illustrate their effectiveness, comparative simulations are
presented wherever alternate methods exist to solve the problem under considera-
tion. The thesis concludes with a discussion about the limitations of the developed
techniques. Extensions of the developed techniques are also proposed along with the
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Chapter I

INTRODUCTION

1.1 Motivation

Since the beginning of time, humans have attempted to imitate natural techniques

in order to solve human design problems. In nineteenth century, Charles Darwin

showed that species correct their behaviors based on interactions with the environ-

ment in order to stay safe and/or to avail benefits [1]. For example, Ivan Pavlov

used inducing conditional reflexes with simple reward or punishment to teach dogs

behavior patterns [2]. Therefore, it can be said that learning the correct behavior

to survive from interactions with the environment is a highly desirable characteristic

of a species/cognitive agent. A cognitive agent can be described as an agent that

acquires knowledge and understanding through thinking, experience, and the senses

to produce a specific result.

To humans, one of the most coveted design tasks is to perform assigned tasks

precisely while remaining safe. Ultimately, this entailed the development of cognitive

agents/autonomous agents. Repeatability, accuracy, and lack of physical fatigue are

crucial advantages of autonomous agents over humans. Additionally, autonomous

systems can provide advantages in settings where humans may be in danger, such as

war zones and hostile environments. In order to maximize the likelihood of success

and reduce the number of casualties, using autonomous systems for complex, high-risk

tasks has long been a goal of humans.

In this thesis, the interaction between an agent and it’s environment is modeled

using actions, states, and rewards. The environment will be interpreted as the sur-
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roundings or circumstances under which the agent operates. Furthermore, we will

refer to an enticing stimulus, delivered to an agent to change its actions as a reward.

Similarly, a penalty can be described as an aversive stimulus applied to an agent to

change its actions.

Typically, any action taken by an agent affects the state of the system (i.e., the

agent and the environment), and the agent is rewarded (or penalized) for it. Learning,

in this context, amounts to the synthesis of a behavior policy/strategy, is defined as a

map from the state space to the action space to complete a given task. Most natural

and artificial methods to learn policies involve “trial and error” where policies are

learned and refined by implementing them and observing the resulting rewards. While

“trial and error” or “learning from failure” is an integral part of the learning process,

safety-critical systems require learning techniques where the errors and failures result

in, perhaps suboptimal, but safe behavior. As a result, safely learning a correct policy

which ensures both safety and correct action is a critical capability for an agent to

possess.

What exactly is safety, correct action, and correct policy? Depending on the

objectives of the agent-environment interaction, safety can be described in several

ways. Intuitively, safety connotes the ability to avoid danger. In robotics, guidance,

and control applications, safety is often expressed in terms of state and/or action

space constraints. Correct action is often described as the action that maximizes

the cumulative reward or minimizes the cumulative cost. In robotics, guidance, and

control applications, the cumulative cost is often interpreted as a Bolza cost, i.e.,

the combination of a Lagrange cost and a Meyer cost. The Lagrange cost is the

cumulative penalty accumulated along a path traversed by the agent, and the Meyer

cost is the penalty at the boundary. Policies with lower total costs are considered

better, and policies that minimize the total cost are considered optimal.

In robotics, guidance, and control applications, correctness and safety of a policy
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are quantified in terms of a Bolza cost and state-space and/or action space constraints,

respectively. In addition to safety and optimality, stability is another critical charac-

teristic of an autonomous system. Stability is often described as the agent’s desired

response with no intolerable variation in response to parameter changes. In summary,

the goal of the thesis is to develop learning techniques that enable an agent to learn

an policy to achieve a task while maintaining safety and stability doing learning and

execution.

In robotics, stability has traditionally received far less attention than safety [3]. In

general, policy-based trajectory planners use the agent’s exact dynamical model and

knowledge of the environment to ensure that the agent/robot is safe by maintaining

defined constraints (state space and/or action space constraints) and planning ob-

stacle avoidance maneuvers [4]. Sample-based methods generate policy by extracting

samples (also known as useful information) from an agent’s state and/or action space

and then using the samples to design trajectories. To ensure safety, sample-based

policies take into account an agent’s dynamics. Sample-based policies face a tradeoff

in that they must strive to support either safety and persistent feasibility (i.e., the

existence of a solution that meets the constraints on state space and/or action space)

or performance (i.e., optimality) [5–7]. Another safe trajectory planner is Nonlinear

Model Predictive Control (NMPC), where the system dynamics are used for plan-

ning and obstacles are treated as constraints in an optimization program over the

control inputs of a robot. Policies generated using NMPC face the same tradeoffs as

sample-based policies [8–15]. Reachability-based methods, another type of trajectory

planners, precalculate a reachable set using the robot’s motion, then use these reach-

able sets to ensure collision avoidance at runtime. Reachability-based policies enable

strict safety guarantees and some persistent feasibility guarantees but the precomput-

ing of the reachable sets are often inefficient as they over-approximate the reachable

sets [16–21].
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Control design techniques based on Lyapunov functions and control Lyapunov

functions have been used to ensure stability in control systems, and control barrier

functions have been used to resolve safety concerns. Recently, control barrier func-

tions have been merged with control Lyapunov functions to create control synthesis

techniques that ensure both stability and safety. However, to achieve the correct

policy, these methods must ensure that the effort is minimized, i.e., they must solve

an optimization problem. In most cases, these optimization problems must consider

a large number of state space and/or action space constraints which leads to the

dilemma of choosing between optimally and safety [22–24].

The barrier function-based system transformation (BT) method solves this prob-

lem. A complete state constrained and/or action space-constrained optimal control

problem is converted into a similar, unconstrained optimization problem using this

transformation process. The state constraints can be guaranteed if the initial state is

within the prescribed bound, which guarantees safety [25]. Thus, we seek a method

that can be used in conjunction with BT to obtain the correct policy that stabilizes

the agent while keeping it safe and minimizing its Bolza cost.

Finding the optimal policy that minimizes the total Lagrange and Meyer cost

(Bolza cost) is known as the Bolza optimal control problem. Obtaining an analytical

solution to the Bolza problem is often infeasible if the system dynamics are nonlin-

ear. On the other hand, numerous numerical solution techniques are available to solve

Bolza problems; however, numerical solution techniques require exact model knowl-

edge and are realized via open-loop implementation of offline solutions. Open-loop

implementations are sensitive to disturbances, changes in objectives, and changes in

the system dynamics; hence, we seek online closed-loop solutions of optimal control

problems to solve this drawback [26–34].

We can find these closed-loop solutions using the value function. Typically value

function is described with the respect of a given policy, i.e., how good it is for an agent
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to be in a given state under a given policy. The notion of “how good” is expressed in

terms of the total accumulated cost. In other words, a value function evaluated at a

given state and under a given policy is defined as the total accumulated cost starting

from the given state under the given policy. Under the general conditions we can

now say that the optimal policy value function will be our optimal policy. Therefore,

to solve the online closed-loop optimal control problem, we need to determine the

optimal value function.

In the past, value function-based dynamic programming (DP) techniques such as

policy iteration (PI) and value iteration (VI) have been developed as useful tools for

optimal control synthesis for systems with finite state and action spaces. However,

as the state space’s size increases, computing both PI and VI become practically in-

feasible [29, 33, 35–37]. To tackle this problem, approximate dynamic programming

(ADP) techniques can be used. ADP algorithms approximate the classical PI and

VI algorithms to compute approximate optimal value function using a parametric ap-

proximation of the policy or the value function, i.e., if the policy or the value function

can be parameterized with sufficient accuracy using a small number of parameters,

the optimal control problem reduces to an approximation problem in the parameter

space. Furthermore, this formulation lends itself to an online solution approach using

reinforcement learning (RL) where the parameters are adjusted on the-fly using input-

output data [38–42]. Despite the drawbacks such as needing: 1) sufficient exploration

of the state-action space and 2) some insight into the dynamics of the system, RL

has given rise to practical techniques that can synthesize nearly optimal policies to

control nonlinear systems that have large state and action spaces and unknown or

partially known dynamics.

In online implementations of RL, the control policy derived from the approximate

value function is used to control the system; hence, obtaining a good approximation of

the value function is critical to the closed-loop system’s stability. Similar to adaptive
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control, the sufficient exploration condition manifests itself as a persistence of exci-

tation (PE) condition when RL is implemented online. In general, it is difficult to

guarantee PE a priori; hence, to ensure PE, a probing signal is applied to the controller

using trial and error. In the stability analysis, the probing signal is ignored; hence,

the closed-loop implementation’s stability cannot be guaranteed. However, model-

based RL (MBRL) schemes has been developed which uses finite exciation (FE) to

relax the PE condition. Using FE facilitated by model-based extrapolation, stability

and convergence of online RL can established under a PE-like condition that, while

impossible to guarantee a priori, can be verified online [43, 44]. On the other hand,

MBRL methods are prone to failure due to inaccurate models such as models with

parametric uncertainties and/or partially observable models. Online MBRL methods

that handle modeling uncertainties are motivated by tasks that require systems to

operate in dynamic environments with changing objectives and system models, and

accurate models of the system and environment are generally not available in complex

tasks due to sparsity of data.

In this thesis, a novel MBRL technique combined with BT has been develop for

models with parametric uncertainties to achieve the correct policy. To address, the

partial observability of the models, another MBRL technique combined with BT has

been developed for continuous nonlinear control affine systems in the Brunovsky form.

The applicability of the developed methods is demonstrated through simulations, and

to illustrate their effectiveness, comparative simulations are presented wherever alter-

nate methods exist to solve the problem under consideration. The thesis concludes

with a discussion about the limitations of the developed technique, and further ex-

tensions of the technique are proposed, along with the possible approaches to achieve

them.
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1.2 Literature Review

One way to generate safe trajectories for the agent is to use different sample-based

methods such as rapidly-exploring random trees (RRT), probabilistic road maps

(PRM), fast marching trees (FMT), and so on [5–7]. Sample-based techniques map

trajectories by sampling from the control input and/or state space of a dynamical

system. It results temporal and/or spatial discretization of the system’s dynamic

model. A finer discretization usually allows for stronger claims about the safety of

such methods, but at the expense of increased computational cost and, resulting a

reduction in performance [4,21]. With respect to an arbitrary cost function, sample-

based methods may generate optimal trajectories but do not ensure safety. To ensure

safety, the sample-based methods incorporate the dynamics of an agent [5,21,45], and

to perform obstacle avoidance, obstacles are buffered to compensate for the robot’s

shape [4,21], resulting the reduction of performance by reducing the free space avail-

able for planning. On the other hand, trajectory planners need to achieve persistent

feasibility, (Planning is persistently feasible if there always exists a safe trajectory

or stopping maneuver before the robot completes executing the previously planned

trajectory [21]) to be feasible in real life. Ensuring persistent feasibility demands

additional computational cost which causes reduction of performance. [45–47] shows

that linearizing the robot’s model results rapid results but one may lose safety guaran-

tees. This means that sample-based methods suffer from the tradeoff between safety

guarantee and performance, i.e., optimality.

Nonlinear Model Predictive Control (NMPC) techniques, another type of safe

trajectory planner, experience the same tradeoff as sample-based methods. NMPC

techniques map trajectories by formulating an optimization program over a system’s

control inputs, with the dynamics and obstacles treated as constraints. In general,

NMPC techniques discretize time, and linearize the dynamical model of the system

to make the optimization problem feasible [8–11, 15, 21]. To avoid linearization (still
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requires discretization), pseudo-spectral methods approximate the NMPC program

with polynomial functions [12]. An alternative to these types of discretizations and

simplifications of the dynamics is Sequential Action Control (SAC) [13, 14]. The

obstacle avoidance NMPC techniques have been shown in [15]. On the other hand,

various methods such as fine discretization [15], linearization of the dynamics [10],

tracking a precomputed a dynamically feasible reference trajectory [48], exploitation

of environement structure [11], usage of SAC [13, 14], computation of the viability

kernels (assuming the environment is known) [49] have been attempted to ensure

persistent feasibility.

Reachability-based techniques uses precomputed reachable sets to synthesize safe

tracking controllers to ensure collision avoidance, and/or considering state constraints,

and/or control constraints at runtime [21]. In literature, a number of Reachability-

based techniques exist to compute reachable sets such as sums-of-square (SOS) pro-

gramming [17, 19], Hamilton-Jacobi-Bellman (HJB) reachability [16, 50], zonotope

reachable sets [18, 20]. By computing overapproximations of the reachable sets of

robots in state space, the SOS and zonotope attempts safety [19, 20]. The HJB ap-

proach, on the other hand, poses its offline reachability analysis as a differential game

between a complex model (i.e., high fidelity) of a system and a simplified planning

model. The numerical solution of this offline reachability analysis is not provably

overapproximative [51]. For the SOS approach, with a finite library of reachable sets,

one attempts to compose the reachable sets sequentially at runtime [19, 21] to ad-

dress persistent feasibility, though it is unclear how to continue when no reachable

sets are available. Zonotope approach is used to valid a single maneuvur though it is

unknown how to promise the existence of valid manuevurs [18] during the whole run

time. For the HJB approach, one can simultaneously plan exploration trajectories

and trajectories that return the system to a previously known safe location [52]; how-

ever, due to the reachability analysis’ underlying conservatism, which restricts the
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system’s free space making it stuck at the same position for a long time. A more re-

cent reachability-based approach in [21] has taken a system decomposition approach

to improve the tractability of computing reachable sets, resulting strict safety. Persis-

tent feasibility is achieved by prescribing a minimum sensor horizon and a minimum

duration for the planned trajectories. However, this approach is still burdened with

calculating expensive reachable sets.

To avoid the calculation of reachable sets, [22, 23] reintroduced the concept of

control barrier functions. Originally, the concept of control barrier functions was

developed by the inspiration of set invariance concept introduced in the 1940s. In

1942, Nagumo provided necessary and sufficient conditions for set invariance [53].

Later, [54] showed details about the safety in terms of set variance. Later, in the 2000s,

barrier certificates were introduced as a convenient tool to formally prove safety of

nonlinear and hybrid systems [55–57]. The barrier certificates were motivated by its

use in the optimization literature where barrier functions are added to cost functions

to avoid undesirable regions. A barrier function is a continuous function whose value

on a point increases to infinity as the point approaches the boundary of the feasible

region of an optimization problem [58]. A barrier certificate is a function of state

satisfying some conditions on both the function itself and its time derivative along

the flow of the system, and a barrier between potential system trajectories and the

given unsafe region denotes that a given system is safe [55]. In achieving this, one do

not need to compute the reachable set neither we need to have explicit computation

of system flows.

Later, barrier certificate approach has been extended to a Lyapunov-like approach

known as Barrier Lyapunov function in [59], but the definition of Barrier Lyapunov

function is different than the one considered in the current literature, while the con-

ditions of Barrier Lyapunov function ensure safety over the entire set(not just on the

boundary), they also enforce invariance of every level set. Meanwhile, the work on
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viability theory [60,61] extended the above-mentioned approaches to open dynamical

systems. This facilitated a move from invariant sets to controlled invariant sets, which

are sets that can be made invariant by designing a controller appropriately. Inspired

by the barrier certificate, the notion of control barrier function was first introduced

in [62]. Later, [22, 23] redefined the concept of control barrier function to minimize

the restriction by providing necessary and sufficient conditions. Safe stabilizing con-

trollers can be synthesised by the control barrier function method by embedding set

invariance conditions within an optimal problem. The problem reduces to solving

a quadratic program (QP) at each time stage to obtain the optimal control if the

control system is affine in controls and the cost is quadratic [22]. This QP-based

approach works myopically, which means the safe control is just a function of the cur-

rent state [24, 63], which means this method can guarantee local safety at each time

point, but the safety restriction is satisfied based on how often the QP is solved [64].

This creates a problem of selecting step sizes during solving QP, a step size that is

too small can lead to additional computation, whereas a step size that is too big can

lead to risky actions. Moreover, if QP based approach is designed too conservatively,

it may use unnecessary intervention when the situation is not dangerous; if QP based

approach is too optimistic, it may allow the state to get too close to the boundary of

the safe set and have to invoke large intervention to prevent the state from approach-

ing to the bound of the set, and it may become infeasible, and fails. To increase

the feasibility of the QP a relaxation variable is added, which can easily become in-

feasible in the presence of conflicting control, stability, and safety constraints [65].

While increasing feasibility, this relaxation no longer guarantees convergence to the

desired equilibrium point [66]. To address these issues, [24] proposes to reformulate

constrained QP as an unconstrained optimal control problem with new augmented

instantaneous cost.

Since developing analytical solutions for nonlinear systems much more difficult,
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numerical solutions are sought for solving optimal control problems of general nonlin-

ear systems [67]. Formulating the optimal control problem in terms of a Hamiltonian

and then numerically solving a two-point boundary value problem for the state and co-

state equations is a typical approach [26,27]. Another option is to directly transpose

the optimal control problem into a nonlinear programming problem and then solve

the resulting nonlinear program [68–73]. By avoiding the need to solve the Hamilton-

Jacobi-Bellman equation, the nonlinear optimal control problem can be solved using

inverse optimal control [74–81]. However, these numerical solution techniques require

exact model knowledge and are realized via open-loop implementation of offline solu-

tions. Open loop implementations are sensitive to disturbances, changes in objectives,

and changes in the system dynamics; hence, online closed-loop solutions of optimal

control problems need to be sought. One way to find closed-loop solutions is to use

value functions [24] which can be obtained by the DP techniques. The literature on

DP techniques focused on the theory of optimality is substantial [28–34]. The need

for exact model knowledge limits the applicability of conventional DP techniques like

PI and VI. Model-free reinforcement learning techniques such as Q-learning [31] and

temporal difference learning [29,36] avoid the need for exact model knowledge. These

methods, however, require that the states and actions be on finite sets. Despite the

fact that the theory was developed for finite state spaces of any scale, model-free re-

inforcement learning techniques can only be applied in small state spaces. Under the

umbrella of neuro-dynamic programming [33, 36–42], extensions of simulation-based

reinforcement learning algorithms have been studied for systems with countable state

and action-spaces.

Both PI and VI become computationally infeasible as the size of the space grows.

The need for excessive computation can be avoided if the approximate optimal value

function instead of the exact optimal value function is computed. To obtain an ap-

proximation to the optimal value function using PI, the generalized Hamilton-Jacobi-
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Bellman equation must be solved approximately in each iteration [35]. Several meth-

ods to approximate the solutions to the generalized Hamilton-Jacobi-Bellman equa-

tion have been studied in the literature. The generalized Hamilton-Jacobi-Bellman

equation can be solved numerically using perturbation techniques [82–84], finite dif-

ference [85–87] and finite element [88–90] techniques, or using approximation methods

such as Galerkin projections [91,92]. In this thesis, a linear-in-the-parameters approx-

imation scheme developed in [93, 94] has been used to approximate value function.

The characteristics of the approximation scheme, also known as the Universal Ap-

proximation theorem, can be established using the Stone-Weierstrass theorem [94,95].

This theorem states that a single layer neural network can simultaneously approxi-

mate a function and its derivative given a sufficiently large number of basis functions.

The function approximation error, along with its derivative can be made arbitrarily

small by increasing the number of basis functions used in the approximation. To

ensure system stability during the learning phase, a two-network approach is utilized,

where in addition to the value function, the policy is also approximated using a para-

metric approximation. The critic learns the value of a policy by updating the weights,

and the actor improves the current policy by updating the weights.

The two-network approach known as the actor-critic architecture is one of the most

widely used architectures to implement generalized PI algorithms [28,30,36,42,96,97].

Actor-critic methods were first developed in [98] for systems with finite state and

action-spaces, and in [28] for systems with continuous state and action-spaces using

neural networks to implement the actor and the critic. The actor can learn directly to

minimize the estimated cost-to-go, where the estimate of the cost-to-go is obtained by

the critic [28,42,97–100]. The actor can also be tuned to minimize the Bellman error

(also known as the temporal-difference error) [101]. The critic network can be tuned

using the method of temporal differences [28, 29, 36, 39, 40, 42, 102] or using heuristic

dynamic programming [30,37,103] or its variants [97, 104,105].
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The iterative nature of actor-critic methods makes them particularly suitable for

offline computation and for discrete-time systems [106–117]. A continuous-time for-

mulation of actor-critic methods was first developed in [118]. In [118], the actor and

the critic weights are tuned continuously using an adaptive update law designed as a

differential equation. While no stability or convergence results are provided in [118],

the developed algorithms can be readily utilized to simultaneously learn and utilize

an approximate optimal feedback controller in real-time for nonlinear systems. A

sequential (one network is tuned at a time) actor-critic method that does not require

complete knowledge of the internal dynamics of the system is presented in [119]. Con-

vergence properties of actor-critic methods for continuous-time systems where both

the networks are concurrently tuned are examined in [120], and a Lyapunov-based

analysis that concurrently examines convergence and stability properties of an online

implementation of the actor-critic method is developed in [121].

In online implementations of reinforcement learning, the control policy derived

from the approximate value function is used to control the system; hence, obtaining

a good approximation of the value function is critical to the stability of the closed-

loop system. Obtaining a good approximation of the value function online requires

convergence of the weights of the actor-critic to their ideal values. Hence, similar to

adaptive control, the sufficient exploration condition manifests itself as a persistence

of excitation condition when reinforcement learning is implemented online.

Parameter convergence has been a focus of research in adaptive control for sev-

eral decades. It is common knowledge that least-squares and gradient descent-based

update laws generally require persistence of excitation in the system state for con-

vergence of the parameter estimates. Modification schemes such as projection al-

gorithms, σ−modification, and e−modification are used to guarantee boundedness

of parameter estimates and overall system stability; however, these modifications do

not guarantee parameter convergence unless the persistence of excitation condition is
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satisfied [122–124].

In general, the controller does not ensure the persistence of excitation condition.

Thus, in an online implementation, an ad-hoc exploration signal is often added to

the controller [36, 125, 126]. Since the exploration signal is not considered in the

the stability analysis, it is difficult the ensure stability of the online implementation.

Moreover, the added probing signal causes large control effort expenditure and there

is no means to know when it is sufficient to remove the probing signal. More recent

works [43] have leveraged techniques from concurrent learning adaptive control [127]

in the form of BE extrapolation which allows the BE to be evaluated at unexplored

regions of the statespace. This extrapolation results in a virtual excitation of the

system which facilitates weight estimate convergence [43].

The unconstrained optimal control problem posed by [24] is solved using ADP

where the proximity penalty approach is cast into the framework of control barrier

functions. The proximity approach was first introduced in the context of obstacle

in [128] and [129], where an additional term that penalizes proximity to obstacles was

added to the cost function. Since the added proximity penalty in [128] was finite, the

ADP feedback could not guarantee obstacle avoidance, and an auxiliary controller

was needed. In [129], a barrier-like function was used to ensure unbounded growth

of the proximity penalty near the obstacle boundary. While this approach results

in avoidance guarantees, it relies on the relatively strong assumptions that the value

function is continuously differentiable over a compact set that contains the obstacles

and penalty-induced discontinuities in the cost function. Therefore, while the control

barrier function approved results in safety guarantees, the existence of a smooth value

function, in spite of a nonsmooth cost function, needs to be assumed. Furthermore, to

facilitate parametric approximation of the value function, the existence of a forward

invariant compact set in the interior of the safe set needs to be established. Since

the invariant set needs to be in the interior of the safe set, the penalty becomes
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superfluous, and safety can be achieved through conventional Lyapunov methods.

This thesis is inspired by another approach to safe ADP, recently developed in

[130], based on the idea of transforming a state and input constrained nonlinear

optimal control problem into an unconstrained one with a type of saturation function

was introduced in [131, 132]. In [130], input and state constrained optimal control

problems are solved using ADP where the state constrained optimal control problem

is transformed, using a barrier transformation (BT), into an equivalent, unconstrained

optimization problem. In contrast to [24], mere stability of the transformed system

is sufficient for the original system.

A MBRL approach to address the state-constrained optimal control problem ap-

pears in [133], where the results in [130] are extended to soften the restrictive persis-

tence of excitation requirement. While the transformation in [130] and [133] results in

verifiable safe feedback controllers, it requires exact knowledge of the system model,

which is often difficult to obtain. [134], [135] proposed concurrent learning algorithm

(CL) for online model learning, where information-rich past data is stored and concur-

rently used along with gradient based parameter update laws. Unlike the PE condi-

tion, an online verifiable rank condition on the stored data is sufficient for parameter

convergence. Later, [136] proposed a filtered concurrent learning (FCL) algorithm

based on the framework of composite adaptive control proposed in [10]. In addition

to the low pass filtering, as performed in [10], the proposed method uses an integral

of the filtered outputs to obviate the restrictive PE condition. In this thesis inspired

by [136], a novel filtered concurrent learning technique for online model learning is

developed, and later integrated with the BT method to yield a novel MBRL solution

to the online state-constrained optimal feedback control problem under parametric

uncertainty.

Apart from parametric uncertainties in exact system model, another significant

drawback of the MBRL methods is that they require full state feedback measure-
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ments, and as such, cannot be used if the system is partially observable. MBRL in

partially observable systems has long been a focus of study in RL [137, 138], where

partially observable Markov decision processes (POMDPs) have been utilized to re-

alize MBRL using output feedback. In [139] an output-feedback MBRL method is

developed for a class of nonlinear systems where the problem is formulated as a state

estimation problem, and for a specific class of systems, an online solution is obtained

that guarantees stability during the learning phase. To the best of the authors’ knowl-

edge, online RL solutions to safety-constrained optimal control problems in partially

observable nonlinear continuous-time systems are not available in the literature.

1.3 Outline of the thesis

Chapter 1 serves as the introduction. This chapter focuses on the concerns and

weaknesses of existing methods; motivating the thesis’s development as well as offering

a comprehensive overview of the state of the art.

Chapter 2 contains a brief review of available techniques used in the application of

BT RL to deterministic continuous-time systems. This chapter also includes a brief

review on the available methods used in the state of the art.

Chapter 3 presents the development of a safety aware model-based reinforcement

learning technique using BT for the deterministic continuous-time systems with para-

metric uncertainties. This chapter implements a novel online MBRL based controller

which uses BFs, BE extrapolation and a novel FCL method. A known BF transforma-

tion is applied to a constrained optimal control problem to generate an unconstrained

optimal control problem in the transformed coordinates. MBRL is used to solve the

problem online in the transformed coordinates in conjunction with the novel FCL to

learn the unknown model parameters. Regulation of the system states to a neigh-

borhood of the origin and convergence of the estimated policy to a neighborhood

of the optimal policy is determined using a Lyapunov based stability analysis, and
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simulations are presented to demonstrate the performance of the developed controller.

Chapter 4 implements the development of a safety aware model based reinforce-

ment learning technique using BT for output-feedback optimal control of a class of

deterministic continuous-time nonlinear systems. A novel online MBRL based con-

troller which uses BFs, BE extrapolation and a novel state estimator method has been

developed. This new state estimator takes the observable output feedback of the sys-

tem using the BFs, and implements in the original coordination. Later, regulation of

the transformed system states to a neighborhood of the origin and convergence of the

estimated policy to a neighborhood of the optimal policy is determined using a Lya-

punov based stability analysis, and a relation between the convergence of the original

state systems and the converge of the transformed state systems has been shown.

Simulations are performed to demonstrate the applicability and the effectiveness of

the developed method.

Chapter 5 concludes the thesis. A summary of the thesis is provided along with

a discussion on open problems and future research directions.

Proofs of the theorems and lemmas from chapters 3 and 4 are available in the

appendix.

1.4 Contributions

This section details the contributions of this thesis over the state-of-the-art.

1.4.1 Safety-aware ADP for systems with Parametric Uncertainty

The main contributions of this chapter:

• Novel implementation of BT in deterministic nonlinear systems with parametric

uncertainties.

• Novel FCL-based system identification for deterministic barrier transformed
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systems with parametric uncertainties. Theoretical result guarantees that the

estimated unknown parameters of the barrier transformed systems with para-

metric uncertainties converges to the real parameters.

• The inclusion of FCL makes the full state feedback controller robust to mod-

eling errors and guarantees closed-loop stability under a finite (as opposed to

persistent) excitation condition.

• Novel implementation of simulated experience in deterministic barrier trans-

formed nonlinear systems with parametric uncertainties using FCL-based sys-

tem identification.

• Detailed stability analysis to establish simultaneous online identification of bar-

rier transformed system dynamics and online approximate learning of the op-

timal controller in barrier transformed coordinate, while maintaining barrier

transformed system stability. The stability analysis shows that provided the

system dynamics can be approximated fast enough, and with sufficient accu-

racy, simulation of experience based on the estimated model implemented via

approximate BE extrapolation can be utilized to approximately solve an infinite-

horizon optimal regulation problem online are provided.

• Novel theoretical result to guarantee that the optimal stabilizing controller de-

veloped for the barrier transformed system also stabilize the original system,

and if the initial state is within the prescribed bound, the state constraints

and/or control constraints can be guaranteed.

• Simulation results that demonstrate the approximate solution of an infinite-

horizon optimal regulation problem online for an inherently unstable control-

affine nonlinear system with uncertain drift dynamics without the addition of

an external ad-hoc probing signal.
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In summary, for the first time ever, a safety aware model based reinforcement

learning method using BT has been developed for the system with parametric uncer-

tainties.

1.4.2 Safety-aware ADP for partially observable systems

The main contributions of this chapter:

• Novel state estimator for deterministic barrier transformed partial observable

systems. Theoretical result to guarantee that the estimated deterministic bar-

rier transformed state converge to the real barrier transformed state.

• Detailed stability analysis to establish simultaneous online estimation of the

state and online learning of an approximate optimal controller in barrier trans-

formed coordinate, while maintaining system stability.

• Novel theoretical result to guarantee that the optimal stabilizing controller de-

veloped for the deterministic barrier transformed partial observable system also

stabilize the original deterministic partial observable system, and if the initial

state is within the prescribed bound, the state constraints and/or control con-

straints can be guaranteed.

• Simulation results that demonstrate the approximate solution of an infinite-

horizon optimal regulation problem online for an inherently unstable control-

affine nonlinear system with uncertain drift dynamics without the addition of

an external ad-hoc probing signal.

In summary, a novel safety aware model based reinforcement learning method

using BT has been developed for deterministic partially observable systems.
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Chapter II

PRELIMINARIES

The focus of this thesis is to develop frameworks to guarantee safety while obtaining

online approximate solutions to infinite horizon total-cost optimal control problems

for nonlinear, partially observable, deterministic systems. This chapter serves as

a brief introduction to safety certification methods, and model-based reinforcement

learning methods that have been used to facilitate the development.

2.1 Notation

Throughout the thesis, unless otherwise specified, the notation Rn represents the

n−dimensional Euclidean space, and the elements of Rn are interpreted as column

vectors, (·)T denotes the vector transpose operator. For any arbitary, a ∈ R, R≥a

denotes the interval [a,∞), and R>a denotes the interval (a,∞). Unless otherwise

specified, an interval is assumed to be right-open. If any arbitary a ∈ Rm and

b ∈ Rn, then [a; b] denotes the concatenated vector

a
b

 ∈ Rm+n, and [a, b] denotes

the concatenated vector

[
a b

]
∈ R1×(m+n). The notations In and 0n denote the n×n

identity matrix and the zero element of Rn, respectively. The notation f ∈ CN (X, Y ),

N ∈ R≥0, denotes that the function f : X → Y is N -times continuously differentiable.

Function names corresponding to state and control trajectories are reused to denote

elements in the range of the function. For example, the notation u (·) is used to

denote the function u : R≥t0 → Rm, the notation u is used to denote an arbitrary

element of Rm, and the notation u (t) is used to denote the value of the function u (·)
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evaluated at time t. The notation f ∈ O (g) denotes that there exists c,M ∈ R>0

such that |f(x)| ≤ c|g(x)|, ∀ x > M

.

2.2 Method for Safety Certifications

2.2.1 Problem Formulation

A nonlinear control affine system as follows

ẋ = f (x) + g (x)u, (1)

where x ∈ Ω ⊆ Rn denotes the system state, u ∈ U ⊂ Rm denotes the control input,

f : Ω → Rn denotes the drift dynamics, and g : Ω → Rn×m denotes the control

effectiveness matrix. To ensure that the control problem is well posed, it is assumed

that f and g are Lipschitz continuous on a set Ω that contains the origin as an interior

point, f(0) = 0, and ∇f(x) is continuous and bounded for every bounded x ∈ Ω.

2.2.2 Barrier Transformation

Definition 1 Let the function b : R→ R, is referred to as barrier function (BF), be

defined as

b(ai,Ai)(yi) := log
Ai(ai − yi)
ai(Ai − yi)

, ∀i = 1, 2, . . . , n, (2)

where ai and Ai are two constants satisfying ai < 0 < Ai.

Let define b(a,A) : Rn → Rn as b(a,A)(x) := [b(a1,A1)(x1); . . . ; b(an,An)(xn)] with a =

[a1; . . . ; an] and A = [A1; . . . ;An]. Moreover, the inverse of (2) exists on interval

(ai, Ai), and is given by

b−1
(ai,Ai)

(yi) = aiAi
eyi − 1

aieyi − Ai
, ∀yi ∈ R. (3)

Derivative of (3) with respect to yi yields

db−1
(ai,Ai)

(yi)

dyi
=

Aia
2
i − aiA2

i

a2
i e
yi − 2aiAi + A2

i e
−yi

. (4)
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Consider the BF based state transformation

si := b(ai,Ai)(xi), xi = b−1
(ai,Ai)

(si). (5)

The time derivative of the transformed state can be computed using (4) and the chain

rule as

dsi
dt

=
ẋi

db−1
(ai,Ai)

(z)

dz
|z=si

, (6)

which yields the transformed dynamics

ṡi =
fi(x) + gi(x)u
db−1

(ai,Ai)
(z)

dz
|z=si

= Fi(s) +Gi(s)u, (7)

where

Fi(s)=
a2
i e
si−2aiAi+A

2
i e
−si

Aia2
i−aiA2

i

fi

(
[b−1

(a1,A1)(s1);...;b−1
(an,An)(sn)]

)
, (8)

Gi(s)=
a2
i e
si−2aiAi+A

2
i e
−si

Aia2
i−aiA2

i

gi

(
[b−1

(a1,A1)(s1);...;b−1
(an,An)(sn)]

)
. (9)

After using the BT, the dynamics of the transformed state s = [s1; . . . ; sn] can be

expressed as,

ṡ = F (s) +G(s)u, (10)

where F (s) := [F1(s); . . . ;Fn(s)] ∈ Rn, and G(s) := [G1(s); . . . ;Gn(s)] ∈ Rn×q.

The method used in this thesis to solve unconstrained infinite-horizon total cost

optimal control problems for non linear systems is discussed in the next section.

2.3 Unconstrained infinite-horizon optimal control problem

2.3.1 Problem Formulation

The focus of this section is on unconstrained infinite-horizon total cost optimal control

problems for nonlinear systems that are affine in the controller and cost functions that

are quadratic in the controller. That is, optimal control problems where the system

dynamics are of the form

ẋ = f (x) + g (x)u, (11)
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where x ∈ Ω ⊆ Rn denotes the system state, u ∈ Rm denotes the control input,

f : Ω → Rn denotes the drift dynamics, and g : Ω → Rn×m denotes the control

effectiveness matrix. To ensure that the control problem is well posed, it is assumed

that f and g are Lipschitz continuous on a set Ω that contains the origin as an interior

point such that f(0) = 0 and ∇f(x) is continuous and bounded for every bounded

x ∈ Ω. The notation φ(t; t0, x
0, u(·)) denotes a trajectory of the system in (11) at

time t under the control signal u with the initial condition x0 ∈ Ω and initial time

t0 ∈ R≥0.

The cost functional is of the form

J
(
t0, x

0, u (·)
)

=

∞̂

t0

c
(
x
(
τ ; t0, x

0, u (·)
)
, u (τ)

)
dτ, (12)

where the local cost c : Rn × Rm → R is defined as

c (x, u) , Q (x) + uTRu, (13)

where state penalty function, Q : Rn → R is a positive definite function, and control

penalty matrix (or, reward), R ∈ Rm×m is a symmetric positive definite matrix.

To ensure that the optimal control problem is well-posed, the minimization prob-

lem is constrained to the set of admissible controllers, and the existence of at least

one admissible controller is assumed.

Definition 2 Admissible Control [91]: Given the system (f, g), a control u is defined

to be admissible with respect to the state penalty function Q on R, if u is continuous

on Ω, u(0) = 0, u stabilizes (f, g) on Ω, and J <∞, ∀x ∈ Ω.

2.3.2 Exact Solution

If the functions f , g, and Q are stationary (time-invariant) and the time-horizon is

infinite, then the optimal control input is a stationary state-feedback policy u(t) =

ζ(x(t)) for some function ζ : Rn → Rm [140].
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Definition 3 Let f : S → R be a real-valued function. Let f be bounded below on S.

The infimum of f on S is defined as inf
x∈S

f(x) := k ∈ R such that: (1): ∀x ∈ S :

k ≤ f(x), (2): ∀ε ∈ R > 0 : ∃x ∈ S : f(x) < k + ε.

The optimal value function V ∗ : Rn → R≥0 can be expressed as

V ∗(x) := inf
u(·)∈U[t,∞)

ˆ ∞
t

c(φ(τ, x, u[t,τ)(·)), u(·))dτ, (14)

for all x ∈ Ω, where uI and UI are obtained by restricting the domains of u and func-

tions in UI to the interval I ⊆ R, respectively. Assuming that an optimal controller

exists, let the optimal value function, denoted by V ∗ : Rn × Rm → R, be defined as

V ∗(x) := min
u(·)∈U[t,∞)

ˆ ∞
t

c(φ(τ, x, u[t,τ)(·)), u(·))dτ, (15)

[44, theorem 1.5] shows that for a nonlinear system described by (11), V ∗(x) ∈

C1 (Rn,R) is the optimal value function corresponding to the cost functional (12) if

and only if it satisfies the Hamilton-Jacobi-Bellman equation

min
u∈Rm

(
∇V (x)

(
f(x)+g(x)u

)
+Q(x)+uTRu

)
=0, (16)

where ∇ (·) denotes the derivative of (·) with respect to its first argument with the

boundary condition V (0) = 0. Provided the HJB in (16) admits a continuously dif-

ferentiable solution, it constitutes a necessary and sufficient condition for optimality,

i.e., if the optimal value function in (14) is continuously differentiable, then it is the

unique solution to the HJB in (16) [141]. The optimal control policy u∗ : Rn → Rm

can be determined from (16) as [44]

u∗(x) = −1

2
R−1gT (x)

(
∇V ∗ (x)

)T
, ∀x ∈ Ω. (17)

The HJB in (16) can be expressed in the open-loop form as

∇V ∗(x)
(
f(x) + g(x)u∗

)
+Q(x) + u∗TRu∗ = 0, ∀x ∈ Ω. (18)
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Using (17) in (16) can be expressed in the closed-loop

∇V ∗(x)f(x)− 1

4
∇V ∗ (x)R−1gT (x)

(
∇V ∗ (x)

)T
+Q (x) = 0, ∀x ∈ Ω. (19)

The optimal policy can now be obtained using (17) if the HJB in (19) can be solved

for the optimal value function V ∗.

2.3.3 Value Function Approximation

In general, an analytical solution of the HJB equation is infeasible; hence, an approx-

imate solution is sought. The actor-critic (also known as adaptive-critic) architecture

is one of the most widely used architectures to implement generalized policy iteration

algorithms [28,36,42,96–100]. The actor can learn to directly minimize the estimated

cost-to-go, where the estimate of the cost-to-go is obtained by the critic. In an ap-

proximate actor-critic-based solution, the optimal value function V ∗ is replaced by a

parametric estimate V̂
(
x, Ŵc

)
. and the optimal policy u∗ by a parametric estimate

û
(
x, Ŵa

)
where Ŵc ∈ RL and Ŵa ∈ RL denote vectors of estimates of the ideal pa-

rameters. The objective of the critic is to learn the parameters Ŵc, and the objective

of the actor is to learn the parameters Ŵa. Substituting the estimates V̂ and û for

V ∗ and u∗ in (18), respectively, a residual error δ : Rn × RL × RL → R, called the

Bellman Error, BE, is defined as

δ(x, Ŵc, Ŵa) := ∇V̂ (x, Ŵc)
(
f(x) + g(x)û(x, Ŵa)

)
+Q(x) + û(x, Ŵa)

TRû(x, Ŵa).

(20)

To solve the optimal control problem, the critic aims to find a set of parameters

Ŵc and the actor aims to find a set of parameters Ŵa such that

δ(x, Ŵc, Ŵa) = 0, (21)

and

u∗(x, Ŵa) = −1

2
R−1gT (x)

(
∇V̂

(
x, Ŵc

))T
, ∀x ∈ Ω. (22)

25



Due to the lack of an exact basis for value function approximation, an approximate

set of parameters that minimizes the BE is pursued. In particular, to ensure uniform

approximation of the value function and the policy over an operating domain Ω ⊂ Rn,

it is desirable to find parameters that minimize the integral error Es : RL × RL → R

defined as

Es(Ŵc, Ŵa) :=

ˆ
x∈Ω

δ2
(
x, Ŵc, Ŵa

)
dx. (23)

In an online implementation of the deterministic actor-critic method, it is desirable

to update the parameter estimates Ŵc and Ŵa online to minimize the instantaneous

error Es

(
Ŵc(t), Ŵa(t)

)
or the cumulative instantaneous error

E(t) :=

ˆ t

0

Es

(
Ŵc(τ), Ŵa(τ)

)
dτ, (24)

while the system in (11) is being controlled using the control law, u(t) = û
(
x(t), Ŵa(t)

)
.

2.3.4 RL-based Online Implementation

Exact model knowledge is needed to compute the Bellman error in (20) and the

integral error in (23). In addition, computing the integral error in (36) is generally

infeasible. In reinforcement learning-based approximate online optimal control, the

Hamilton-Jacobi-Bellman equation along with an estimate of the state derivative [125,

142], or an integral form of the Hamilton-Jacobi-Bellman equation [143] is utilized to

approximately evaluate the Bellman error along the system trajectory.

The Bellman error, evaluated at a point, provides an indirect measure of the

quality of the estimated value function evaluated at that point. Therefore, the un-

known value function parameters are updated based on evaluation of the Bellman

error along the system trajectory. Such weight update strategies create two chal-

lenges for analyzing convergence. The system states need to satisfy the persistence

of excitation condition, and the system trajectory needs to visit enough points in the

state-space to generate a good approximation of the value function over the entire
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domain of operation. These challenges are typically addressed in the related litera-

ture [121,142,144–151] by adding an exploration signal to the control input to ensure

sufficient exploration of the domain of operation. However, no analytical methods

exist to compute the appropriate exploration signal when the system dynamics are

nonlinear.

For notational brevity, the dependence of all the functions on the system states

and time is suppressed in the stability analysis subsections unless required for clarity

of exposition.

2.4 Linear-in-the-parameters approximation of the value function

While the critic updates the estimates Ŵc (·), the actor simultaneously updates the

parameter estimates Ŵa (·) using a gradient-based approach so that the quantity

û
(
x, Ŵa

)
+ 1

2
R−1gT (x)

(
∇V̂

(
x, Ŵc

))T
decreases. The weight updates are per-

formed online and in real-time while the system is being controlled using the control

law u = û
(
x, Ŵa

)
. In general, ensuring stability during the learning process is diffi-

cult. The use of two separate sets of parameters to estimate the value function and

the policy is actually needed solely to preserve stability during the learning process.

For feasibility of analysis, the optimal value function is approximated using a

linear-in-the-parameters approximation

V̂
(
x, Ŵc

)
:= Ŵ T

c σ (x) , (25)

where σ : Rn → RL is a continuously differentiable nonlinear activation function

such that σ (0) = 0 and ∇σ (0) = 0, and Ŵc ∈ RL, where L denotes the number of

unknown parameters in the approximation of the value function. Based on (17), the

optimal policy is approximated using the linear-in-the-parameters approximation

û
(
x, Ŵa

)
:= −1

2
R−1g (x)T ∇σT (x) Ŵa. (26)
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A least-squares update law for the critic weights is designed based on the subse-

quent stability analysis as

˙̂
Wc = −ηcΓ

ω

ρ
δ̂t, (27)

Γ̇ =

(
βΓ− ηc

ΓωωTΓ

ρ2

)
1{‖Γ‖≤Γ}, (28)

where Γ : R≥t0 → RL×L is a time-varying least-squares gain matrix,
∥∥Γ (t0)

∥∥ ≤ Γ,

ω := ∇σ (x) ẋ, ρ := 1 + νωTΓω ∈ R, ν ∈ R is a positive constant gain, Γ > 0 ∈ R is

a saturation constant, β > 0 ∈ R is a constant forgetting factor, and ηc > 0 ∈ R is a

constant adaptation gain.

The actor weights are updated based on the subsequent stability analysis as

˙̂
Wa = −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

ηcGσŴaω
T

4ρ
Ŵc, (29)

where ηa1, ηa2 ∈ R are positive constant adaptation gains,

Gσ := ∇σ (x) g (x)R−1gT (x)∇σT (x).

The stability analysis indicates that the sufficient exploration condition takes the

form of a PE condition that requires the existence of positive constants ψ and T such

that the regressor vector satisfies

ψIL ≥
ˆ t+T

t

ω(τ)ω(τ)T

ρ(τ)
dτ, ∀t ∈ R≥t0 (30)

Let W̃c := W −Ŵc and W̃a , W −Ŵa denote the vectors of parameter estimation

errors, where W ∈ RL denotes the constant vector of ideal parameters. Provided (30)

is satisfied, and under sufficient conditions on the learning gains and the constants ψ

and T , the candidate Lyapunov function

VL

(
x, W̃c, W̃a

)
, V ∗ (x) +

1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a

can be used to establish convergence of x, W̃c, and W̃a to a neighborhood of zero as

t→∞, when the system in (11) is controlled using the control law

u = û
(
x, Ŵa

)
, (31)

28



and the parameter estimates Ŵc (·) and Ŵa (·) are updated using the update laws in

(27) and (29), respectively.
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Chapter III

SAFETY-AWARE MODEL-BASED REINFORCEMENT LEARNING

WITH PARAMETRIC UNCERTAINTIES

Awareness of safety is crucial in reinforcement learning when task restarts are not

available and/or when the system is safety critical. Safety requirements are often

expressed in terms of state and/or control constraints. In the past, model-based re-

inforcement learning approaches combined with barrier transformations have been

used as an effective tool to learn the optimal control policy under state constraints

for systems with fully known models. In this chapter, a reinforcement learning tech-

nique is developed that utilizes a novel filtered concurrent learning method to realize

simultaneous learning and control in the presence of model uncertainties for safety

critical systems.

3.1 Problem Formulation

3.1.1 Control objective

Consider a continuous-time affine nonlinear dynamical system

ẋ = f(x)θ + g(x)u, (32)

where x = [x1; . . . ;xn] ∈ Rn is the system state, θ ∈ Rp are the unknown parameters,

u ∈ Rq is the control input, and the functions f : Rn → Rn×p and g : Rn → Rn×q

are known, locally Lipschitz functions with f(x) = [f1(x); · · · ; fn(x)] and g(x) =

[g1(x); · · · ; gn(x)]. The notation [a; b] denotes the vector [a b]T .

The objective is to design a controller u for the system in (32) such that starting
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from a given feasible initial condition x0, the trajectories x(·) decay to the origin and

satisfy xi(t) ∈ (ai, Ai), ∀t ≥ 0, where i = 1, 2, . . . , n and ai < 0 < Ai. While MBRL

methods such as those detailed in [44] guarantee stability of the closed-loop with state

constraints are typically difficult to establish without extensive trial and error. In the

following, a BT is used to guarantee state constraints.

3.1.2 Barrier Transformation

Let the function b : R→ R, is referred to as barrier function (BF), be defined as

b(ai,Ai)(yi) := log
Ai(ai − yi)
ai(Ai − yi)

, ∀i = 1, 2, . . . , n, (33)

Let define b(a,A) : Rn → Rn as b(a,A)(x) := [b(a1,A1)(x1); . . . ; b(an,An)(xn)] with a =

[a1; . . . ; an] and A = [A1; . . . ;An]. Moreover, the inverse of (33) on the interval

(ai, Ai), is given by

b−1
(ai,Ai)

(yi) = aiAi
eyi − 1

aieyi − Ai
. (34)

Taking the derivative of ((34)) with respect to yi yields

db−1
(ai,Ai)

(yi)

dyi
=

Aia
2
i − aiA2

i

a2
i e
yi − 2aiAi + A2

i e
−yi

. (35)

Consider the BF based state transformation

si := b(ai,Ai)(xi), xi = b−1
(ai,Ai)

(si). (36)

In the following derivation, whenever clear from the context, the subscripts ai and

Ai of the BF and its inverse are suppressed for brevity. The time derivative of the

transformed state can be computed using the chain rule as ṡi = ẋi
∂b−1

(ai,Ai)
(zi)

∂z
|z=si

which

yields the transformed dynamics

ṡi =
fi(x)θ + gi(x)u
db−1

(ai,Ai)
(zi)

dz
|z=si

= Fi(s)θ +Gi(s)u, (37)

where

Fi(s)=
a2
i e
si−2aiAi+A

2
i e
−si

Aia2
i−aiA2

i

fi

(
[b−1(s1);...;b−1(sn)]

)
, (38)
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Gi(s)=
a2
i e
si−2aiAi+A

2
i e
−si

Aia2
i−aiA2

i

gi

(
[b−1(s1);...;b−1(sn)]

)
. (39)

After using the BT, the dynamics of the transformed state s = [s1; . . . ; sn] can be

expressed as,

ṡ = F (s) +G(s)u = y(s)θ +G(s)u, (40)

where y(s) := [F1(s); . . . ;Fn(s)] ∈ Rn×p, and G(s) := [G1(s); . . . ;Gn(s)] ∈ Rn×q.

Continuous differentiability of b−1 implies that F and G are locally Lipschitz

continuous. Furthermore, f(0) = 0 along with the fact that b−1(0) = 0 implies that

F (0) = 0. As a result, for all compact sets Ω ⊂ Rn containing the origin, G is bounded

on Ω and there exists a positive constant Ly such that ∀s ∈ Ω, ‖y(s)‖ ≤ Ly‖s‖. The

following lemma relates the solutions of the original system to the solutions of the

transformed system.

Lemma 3.1.1 If t 7→ Φ
(
t, b(x0), ζ

)
is a Carathéodory solution to (40), starting

from the initial condition b(x0), under the feedback policy (s, t) 7→ ζ(s, t), and if

t 7→ Λ(t, x0, ζ) is a solution to (32), starting from the initial condition x0, under the

controller u(t) = ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
, then Λ(t, x0, ζ) = b−1

(
Φ(t, b(x0), ζ)

)
for almost

all t ∈ R≥0.

Proof. see Lemma 3.1.1 in Appendix A.

It is immediate from Lemma 3.1.1 that if the trajectories of (40) are bounded

and decay to a neighborhood of the origin under a feedback policy (s, t) 7→ ζ(s, t),

then the feedback policy (x, t) 7→ ζ
(
b(x), t

)
, when applied to the original system in

(32), achieves the control objective stated in section (3.1.1). To develop a BT MBRL

method that is robust to parametric uncertainties, the following section develops a

novel identifier inspired by the filtered concurrent learning (FCL) method presented

in [136].
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3.2 Parameter Estimation

Estimates of the unknown parameters, θ̂ ∈ Rp, are generated using the filter

Ẏ =


y(s),

∥∥Yf∥∥ ≤ Yf ,

0, otherwise,

Y (0) = 0, (41)

Ẏf =


Y TY,

∥∥Yf∥∥ ≤ Yf ,

0, otherwise,

Yf (0) = 0, (42)

Ġf =


G(s)u,

∥∥Yf∥∥ ≤ Yf ,

0, otherwise,

, Gf (0) = 0, (43)

Ẋf =


Y T (s− s0 −Gf ),

∥∥Yf∥∥ ≤ Yf ,

0, otherwise,

Xf (0) = 0, (44)

where s0 =
[
b
(
x0

1

)
; . . . ; b

(
x0
n

)]
, and the update law

˙̂
θ = β1Y

T
f (Xf − Yf θ̂), θ̂(0) = θ0, (45)

where β1 is a symmetric positive definite gain matrix and Yf is a tunable upper bound

on the filtered regressor Yf .

Equations (40) - (45) constitute a nonsmooth system of differential equations

ż = h(z, u) =


h1(z, u),

∥∥Yf∥∥ ≤ Yf ,

h2(z, u), otherwise,

(46)

where z = [s; vec(Y ); vec(Yf ); Gf ; Xf ; θ̂], h1(z, u) = [F (s) +G(s)u; vec(y(s));

vec(Y TY );G(s)u; Y T (s− so−Gf ); β1Y
T
f (Xf −Yf θ̂)], and h2(z, u) = [F (s) +G(s)u;

0; 0; 0; 0; β1Y
T
f (Xf − Yf θ̂)]. Since ‖Yf‖ is non-decreasing in time, it can be shown

that (46) admits Carathéodory solutions.
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Lemma 3.2.1 If ‖Yf‖ is non-decreasing in time then (46) admits Carathéodory so-

lutions.

Proof. see Lemma 3.2.1 in Appendix A.

Note that (42), expressed in the integral form

Yf (t) =

ˆ t3

0

Y T (τ)Y (τ)dτ, (47)

where t3 := inf
t
{t ≥ 0 | ‖Yf (t)‖ ≤ Yf}, along with (44), expressed in the integral

form

Xf (t)=

ˆ t3

0

Y T (τ)
(
s(τ)−s0−Gf (τ)

)
dτ, (48)

and the fact that s(τ)− s0 − Gf (τ) = Y (τ)θ, can be used to conclude that Xf (t) =

Yf (t)θ, for all t ≥ 0. As a result, a measure for the parameter estimation error can be

obtained using known quantities as Yf θ̃ = Xf − Yf θ̂, where θ̃ := θ− θ̂. The dynamics

of the parameter estimation error can then be expressed as

˙̃θ = −β1Y
T
f Yf θ̃. (49)

The filter design is thus motivated by the fact that if the matrix Y T
f Yf is positive

definite, uniformly in t, then the Lyapunov function V1(θ̃) = 1
2
θ̃Tβ−1

1 θ̃ can be used

to establish convergence of the parameter estimation error to the origin. Initially,

Y T
f Yf is a matrix of zeros. To ensure that there exists some finite time T such

that Y T
f (t)Yf (t) is positive definite, uniformly in t for all t ≥ T , the following finite

excitation condition is imposed.

Assumption 3.2.1 There exists a time instance T > 0 such that Yf (T ) is full rank.

Note that the minimum eigenvalue of Yf is trivially non-decreasing for t ≥ t3 since

Yf (t) is constant ∀t ≥ t3. For t4 ≤ t5 ≤ t3, Yf (t5) = Yf (t4) +
´ t5
t4
Y T (τ)Y (τ)dτ . Since

Yf (t4) is positive semidefinite, and so is the integral
´ t5
t4
Y T (τ)Y (τ)dτ , we conclude

that λmin(Yf (t5)) ≥ λmin(Yf (t4)), As a result, t 7→ λmin(Yf (t)) is non-decreasing.
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Therefore, if Assumption 3.2.1 is satisfied at t = T , then Yf (t) is also full rank

for all t ≥ T . Similar to other MBRL methods that rely on system identification

( [44, Chapter 4]) the following assumption is needed to ensure boundedness of the

state trajectories over the interval [0, T ].

Assumption 3.2.2 A feedback controller ψ : Rn → Rq that keeps the trajectories

of (40) inside a known bounded set over the interval [0, T ), without requiring the

knowledge of θ, is available.

If a feedback controller that satisfies Assumption 3.2.2 is not available, then, under

the additional assumption that the trajectories of (40) are exciting over the interval

[0, T ), such a controller can be learned, online while maintaining system stability,

using model-free reinforcement learning techniques such as [142,150,152].

Remark 3.2.1 While the analysis of the developed technique dictates that a different

stabilizing controller should be used over the time interval [0, T ), typically, similar

to the examples from section 3.5.1 and section 3.5.2, the transient response of the

developed controller provides sufficient excitation so that T is small (in the exam-

ples provided in section 3.5.1 and section 3.5.2, T is the order of 10−5 and 10−6,

respectively), and the stabilizing controller is not needed in practice.

3.3 Model-Based Reinforcement Learning

Lemma 3.1.1 implies that if a feedback controller that practically stabilizes the trans-

formed system in (40) is designed, then the same feedback controller, applied to the

original system by inverting the BT also achieves the control objective stated in Sec-

tion 3.1.1. In the following, a controller that practically stabilizes (40) is designed as
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Figure 1: Developed BT MBRL framework (after Yf (T ) is full rank [Assumption

3.2.1]). This control system consists of simulation-based BT-actor-critic-estimator

architecture. In addition to the transformed state-action measurements, the critic

also utilizes states, actions, and the corresponding state-derivatives to learn the value

function. In the figure, BT: Barrier Transformation; TS: Transformed State; BE:

Bellman Error. Dotted line means one time initialization, and dashed lines mean

learning action.
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an estimate of the controller that minimizes the infinite horizon cost1

J(u(·)) :=

ˆ ∞
0

r(φ(τ, s0, u(·)), u(τ))dτ, (50)

over the set U of piecewise continuous functions t 7→ u(t), subject to (40), where

φ(τ, s0, u(·)) denotes the trajectory of ((40)), evaluated at time τ , starting from the

state s0 and under the controller u(·), r(s, u) := sTQs + uTRu, and Q ∈ Rn×n and

R ∈ Rq×q are symmetric positive definite (PD) matrices. Assuming that an optimal

controller exists, let the optimal value function, denoted by V ∗ : Rn × Rq → R, be

defined as

V ∗(s) := min
u(·)∈U[t,∞)

ˆ ∞
t

r(φ(τ, s, u[t,τ)(·)), u(·))dτ, (51)

where uI and UI are obtained by restricting the domains of u and functions in UI

to the interval I ⊆ R, respectively. Assuming that the optimal value function is

continuously differentiable, it can be shown to be the unique positive definite solution

of the Hamilton-Jacobi-Bellman (HJB) equation

min
u∈Rq

(
∇sV (s)

(
F (s)+G(s)u

)
+sTQs+uTRu

)
=0, (52)

where ∇(·) := ∂
∂(·) . Furthermore, the optimal controller is given by the feedback policy

u(t) = u∗(φ(t, s, u[0,t))) where u∗ : Rn → Rq defined as

u∗(s) := −1

2
R−1G(s)T (∇sV

∗(s))T . (53)

3.3.1 Value function approximation

Since computation of analytical solutions of the HJB equation is generally infeasible,

especially for systems with uncertainty, parametric approximation methods are used

to approximate the value function V ∗ and the optimal policy u∗. The optimal value

function is expressed as

V ∗ (s) = W Tσ (s) + ε (s) , (54)

1For applications with bounded control inputs, a non-quadratic penalty function similar to [153,

Eq. 17] can be incorporated in (50).
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where W ∈ RL is an unknown vector of bounded weights, σ : Rn → RL is a vector

of continuously differentiable nonlinear activation functions such that σ (0) = 0 and

∇sσ (0) = 0, L ∈ N is the number of basis functions, and ε : Rn → R is the

reconstruction error. Exploiting the universal function approximation property of

single layer neural networks, it can be concluded that given any compact set χ ⊂ Rn

and a positive constant ε ∈ R, there exists a number of basis functions L ∈ N,

and known positive constants W̄ and σ such that ‖W‖ ≤ W̄ , sups∈χ
∥∥ε (s)

∥∥ ≤ ε,

sups∈χ
∥∥∇sε (s)

∥∥ ≤ ε, sups∈χ
∥∥σ (s)

∥∥ ≤ σ, and sups∈χ
∥∥∇sσ (s)

∥∥ ≤ σ [154]. Using

((52)), a representation of the optimal controller using the same basis as the optimal

value function is derived as

u∗ (s) = −1

2
R−1GT (s)

(
∇sσ

T (s)W +∇sε
T (s)

)
. (55)

Since the ideal weights, W , are unknown, an actor-critic approach is used in the

following to estimate W . To that end, let the NN estimates V̂ : Rn × RL → R and

û : Rn × RL → Rq be defined as

V̂
(
s, Ŵc

)
:= Ŵ T

c σ (s) , (56)

û
(
s, Ŵa

)
:= −1

2
R−1GT (s)∇sσ

T (s) Ŵa, (57)

where the critic weights, Ŵc ∈ RL and actor weights, Ŵa ∈ RL are estimates of the

ideal weights, W .

3.3.2 Bellman Error

Substituting (56) and (57) into (52) results in a residual term, δ̂ : Rn×RL×RL×Rp →

R, which is referred to as Bellman Error (BE), defined as

δ̂(s, Ŵc, Ŵa, θ̂) := ∇sV̂ (s, Ŵc)
(
y(s)θ̂ +G(s)û(s, Ŵa)

)
+û(s, Ŵa)

TRû(s, Ŵa)+s
TQs.

(58)
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Traditionally, online RL methods require a persistence of excitation (PE) condition

to be able learn the approximate control policy [148, 149, 155]. Guaranteeing PE a

priori and verifying PE online are both typically impossible. However, using virtual

excitation facilitated by model-based BE extrapolation, stability and convergence

of online RL can established under a PE-like condition that, while impossible to

guarantee a priori, can be verified online (by monitoring the minimum eigenvalue of

a matrix in the subsequent Assumption 3.3.1 [43]. Using the system model, the BE

can be evaluated at any arbitrary point in the state space. Virtual excitation can

then be implemented by selecting a set of states
{
sk | k = 1, · · · , N

}
and evaluating

the BE at this set of states to yield

δ̂k(sk, Ŵc, Ŵa, θ̂) := ∇sk V̂ (sk, Ŵc)
(
ykθ̂ +Gkû(sk, Ŵa)

)
+ û(sk, Ŵa)

TRû(sk, Ŵa) + sTkQsk, (59)

where, ∇sk := ∂
∂sk

, yk := y(sk) and Gk := G (sk). Defining the actor and critic weight

estimation errors as W̃c := W−Ŵc and W̃a := W−Ŵa and substituting the estimates

(54) and (55) into (52), and subtracting from (58) yields the analytical BE that can

be expressed in terms of the weight estimation errors as2

δ̂ = −ωT W̃c +
1

4
W̃ T
a GσW̃a −W T∇sσyθ̃ + ∆, (60)

where ∆ := 1
2
W T∇sσGR∇sε

T + 1
4
Gε − ∇sεF . GR := GR−1GT ∈ Rn×n, Gε :=

∇sεGR∇sε
T ∈ R, Gσ := ∇sσGR

−1GT∇sσ
T ∈ RL×L,

and ω := ∇sσ
(
yθ̂ +Gû(s, Ŵa)

)
∈ RL.

Similarly, (59) implies that

δ̂k=−ωTk W̃c+
1

4
W̃ T
a GσkW̃a−W T∇skσkykθ̃+∆k, (61)

2The dependence of various functions on the state, s, is omitted for brevity whenever it is clear

from the context.
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where, Fk := F (sk), εk := ε(sk), σk := σ(sk), ∆k := 1
2
W T∇skσkGRk

∇skε
T
k + 1

4
Gεk −

∇skεkFk, Gεk := ∇skεkGRk
∇skε

T
k , ωk := ∇skσk

(
ykθ̂ +Gkû(sk, Ŵa)

)
∈ RL, GRk

:=

GkR
−1GT

k ∈ Rn×n and Gσk := ∇skσkGkR
−1GT

k∇skσ
T
k ∈ RL×L.

Note that sups∈χ |∆| ≤ dε and if sk ∈ χ then |∆k| ≤ dεk, for some constant d > 0.

3.3.3 Update laws for Actor and Critic weights

The actor and the critic weights are held at their initial values over the interval [0, T )

and starting at t = T , using the instantaneous BE δ̂ from (58) and extrapolated BEs

δ̂k from (59), the weights are updated according to

˙̂
Wc = −kc1Γ

ω

ρ
δ̂ − kc2

N
Γ

N∑
k=1

ωk
ρk
δ̂k, (62)

Γ̇ = βΓ− kc1Γ
ωωT

ρ2
Γ− kc2

N
Γ

N∑
k=1

ωkω
T
k

ρ2
k

Γ, (63)

˙̂
Wa = −ka1

(
Ŵa − Ŵc

)
− ka2Ŵa

+
kc1G

T
σ Ŵaω

T

4ρ
Ŵc +

N∑
k=1

kc2G
T
σk
Ŵaω

T
k

4Nρk
Ŵc, (64)

with Γ (t0) = Γ0, where Γ : R≥t0 → RL×L is a time-varying least-squares gain matrix,

ρ (t) := 1 + γ1ω
T (t)ω (t), ρk (t) := 1 + γ1ω

T
k (t)ωk (t), β > 0 ∈ R is a constant

forgetting factor, and kc1 , kc2 , ka1 , ka2 > 0 ∈ R are constant adaptation gains. The

control commands sent to the system are then computed using the actor weights as

u(t) =


ψ(s(t)), 0 < t < T,

û
(
s(t), Ŵa(t)

)
, t ≥ T,

(65)

where the controller ψ was introduced in Assumption 3.2.1. The following verifiable

PE-like rank condition is then utilized in the stability analysis.
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Assumption 3.3.1 There exists a constant c3 > 0 such that the set of points{
sk ∈ Rn | k = 1, . . . , N

}
satisfies

c3IL ≤ inf
t∈R≥T

 1

N

N∑
k=1

ωk (t)ωTk (t)

ρ2
k (t)

 . (66)

Since ωk is a function of the weight estimates θ̂ and Ŵa, Assumption 3.3.1 cannot

be guaranteed a priori. However, unlike the PE condition, Assumption 3.3.1 can

be verified online. Furthermore, since λmin

(∑N
k=1

ωk(t)ωT
k (t)

ρ2k(t)

)
is non-decreasing in the

number of samples, N , Assumption 3.3.1 can be met, heuristically, by increasing the

number of samples.

3.4 Stability Analysis

Theorem 3.4.1 Provided Assumptions (3.2.1, 3.2.2, and 3.3.1) hold and the gains

are selected large enough based on (72) - (75), then the system state s, weight esti-

mation errors W̃c and W̃a, and parameter estimation error θ̃ are uniformly ultimately

bounded.

Proof. Under Assumption 1, the state trajectories are bounded over the interval

[0, T ). Over the interval [T,∞), let Br ⊂ Rn+2L+p denote a closed ball with ra-

dius r centered at the origin. Let χ := Br ∩ Rn. Let the notation
∥∥(·)

∥∥ be defined

as ‖h‖ := supso∈χ
∥∥h (so)

∥∥, for some continuous function h : Rn → Rm. To facilitate

the analysis, let
{
$j ∈ R>0 | j = 1, · · · , 7

}
be constants such that $1 +$2 +$3 = 1,

and $4 +$5 +$6 +$7 = 1. Let c ∈ R>0 be a constant defined as

c :=
β

2Γkc2
+
c3

2
, (67)

k5 be a positive constant defined as k5 := (W̄Kc1∇sσLy). and let ι ∈ R be a positive
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constant defined as

ι ,
(kc1 + kc2)2

∥∥∥∆̂
∥∥∥2

4kc2c$3

+
1

4
‖Gε‖+

1

4 (ka1 + ka2)$6

(
1

2
W‖Gσ‖+

1

2
‖∇sεGT∇sσT‖

)
+

1

4 (ka1 + ka2)$6

(
ka2W +

1

4
(kc1 + kc2)W

2‖Gσ‖
)2

. (68)

To facilitate the stability analysis, let VL : Rn+2L+p × R≥0 → R≥0 be a continuously

differentiable candidate Lyapunov function defined as

VL (Z, t) := V ∗(s) +
1

2
W̃ T
c Γ−1(t)W̃c +

1

2
W̃ T
a W̃a + V1(θ̃), (69)

where V ∗ is the optimal value function, V1 was introduced in section 3.2 and Z ,[
s; W̃c; W̃a; θ̃

]
. The update law in (62) ensures that the adaptation gain matrix is

bounded such that

Γ ≤ ‖Γ(t)‖ ≤ Γ,∀t ∈ R≥T . (70)

Using the fact that V ∗ and V1 are positive definite, Lemma 4.3 from [156] yield

vl
(
‖Z‖

)
≤ VL (Z, t) ≤ vl

(
‖Z‖

)
, (71)

for all t ∈ R≥T and for all Z ∈ Rn+2L+p, where vl, vl : R≥0 → R≥0 are class K

functions. Let vl : R≥0 → R≥0 be a function defined as vl
(
‖Z‖

)
:= λmin{Q}‖s‖2

2
+

kc2c$1

2

∥∥∥W̃c

∥∥∥2

+ (ka1+ka2)$4

2

∥∥∥W̃a

∥∥∥2

+
‖θ̃‖2

2
.

The sufficient conditions for ultimate boundedness of Z are derived based on the

subsequent stability analysis as(
kc2c$2 −

k5rε

2

)
(ka1 + ka2)$5 ≥

(
ka1 +

1

4
(kc1 + kc2)W‖Gσ‖

)
, (72)

(ka1 + ka2)$7 ≥
1

4
(kc1 + kc2)W‖Gσ‖, (73)

λmin{Yf (T )} ≥ k5r

2ε
+ 1, (74)

v−1
l (ι) < vl

−1(vl(r)). (75)
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The bound on the function F and the NN function approximation errors depend on

the underlying compact set; hence, ι is a function of r. Even though, in general, ι

increases with increasing r, the sufficient condition in (75) can be satisfied provided

the points for BE extrapolation are selected such that the constant c, introduced in

(67) is large enough and that the basis for value function approximation are selected

such that ‖ε‖ and ‖∇ε‖ are small enough.

The orbital derivative of (69) along the trajectories of (40) and (62) - (64) is given

by

V̇L = ∇sV
∗F +∇sV

∗Gû+ W̃ T
c Γ−1 ˙̃Wc +

1

2
W̃ T
c Γ̇−1W̃c + W̃ T

a
˙̃Wa + V̇1. (76)

Substituting (62) - (64) in (76) yields

V̇L ≤ ∇sV ∗ (F +Gu∗)−∇sV ∗Gu∗ +∇sV ∗Gû− W̃T
c Γ−1

(
− kc1Γ

ω

ρ
δ̂ − 1

N
Γ

N∑
k=1

kc2ωi
ρk

δ̂k

)

− 1

2
W̃T
c Γ−1

(
βΓ− kc1(Γ

ωωT

ρ2
Γ)− kc2

N
Γ

N∑
k=1

ωkω
T
k

ρ2k
Γ

)
Γ−1W̃c

− W̃T
a

(
− ka1(Ŵa − Ŵc)− ka2Ŵa +

(
(
kc1ω

4ρ
ŴT
a Gσ +

N∑
k=1

kc2ωk
4Nρk

ŴT
a Gσk)T Ŵc

))
+ V̇1. (77)

Using the inequality 1
ρ2
≤ 1

ρ
,

V̇L ≤ −sTQs−
β

2
W̃T
c Γ−1W̃c −

1

2N
W̃T
c

 N∑
k=1

kc2ωkω
T
k

ρk

 W̃c − (ka1 + ka2) W̃T
a W̃a

+

1

2
WTGσ +

1

2
∇sεGT∇sσT + ka2W

T − 1

4
kc1W

T ω

ρ
WTGσ −

1

4

1

N
WT

N∑
k=1

kc2ωk
ρk

WTGσk

 W̃a

+ W̃T
c

kc1ω
ρ

∆ +
1

N

N∑
k=1

kc2ωk
ρk

∆k

+ ka1W̃
T
a W̃c +

1

4
kc1W̃

T
c

ω

ρ
WTGσW̃a

+
1

4

1

N
W̃T
c

N∑
k=1

kc2ωk
ρk

WTGσkW̃a +
1

4
kc1W

T ω

ρ
W̃T
a GσW̃a

+
1

4

1

N
WT

N∑
k=1

kc2ωk
ρk

W̃T
a GσkW̃a +

1

4
Gε + V̇1 − W̃T

c kc1
ω

ρ
WT∇sσyθ̃

− 1

N
W̃T
c kc2

N∑
k=1

ωk
ρk
WT∇sσkykθ̃. (78)
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So,

V̇L ≤ −sTQs−
1

4
WTGσW +

1

2
WTGσW̃a +

1

4
Gε +

1

2
W̃T
a ∇sσGR∇sεT

− W̃T
c Γ−1

(
− kc1Γ

ω

ρ
(−ωT W̃c +

1

4
W̃T
a GσW̃a −WT∇sσyθ̃ +

1

2
WT∇sσGR∇sεT +

1

4
Gε −∇sεF )

)
+ W̃T

c Γ−1

(
1

N
Γ

N∑
k=1

kc2ωk
ρk

(
− ωTk W̃c +

1

4
W̃T
a GσkW̃a − (WT∇sσkykθ̃) + ∆k

))
− β

2
W̃T
c Γ−1W̃c +

1

2
kc1W̃

T
c

ωωT

ρ2
W̃c

+
1

2
kc2W̃

T
c

1

N

N∑
k=1

ωkω
T
k

ρ2k
W̃c + ka1W̃

T
a W̃c − (ka1 + ka2)W̃T

a W̃a + ka2W̃
T
a W

− W̃T
a

((
kc1ω

4ρ
ŴT
a Gσ +

N∑
k=1

kc2ωk
4Nρk

ŴT
a Gσk

)T
Ŵc

)
− θ̃Tβ−1

1 β1Y
T
f Yfθ. (79)

Using Rayleigh-Ritz theorem,

V̇L ≤ −sTQs−
1

4
WTGσW +

1

2
WTGσW̃a +

1

4
Gε +

1

2
W̃T
a ∇sσGR∇sεT

− W̃T
c Γ−1

(
− kc1Γ

ω

ρ
(−ωT W̃c +

1

4
W̃T
a GσW̃a −WT∇sσyθ̃ +

1

2
WT∇sσGR∇sεT +

1

4
Gε −∇sεF )

)
+ W̃T

c Γ−1

(
1

N
Γ

N∑
k=1

kc2ωk
ρk

(
− ωTk W̃c +

1

4
W̃T
a GσkW̃a − (WT∇sσkykθ̃) + ∆k

))

− β

2
W̃T
c Γ−1W̃c +

1

2
kc1W̃

T
c

ωωT

ρ2
W̃c +

1

2
kc2W̃

T
c

1

N

N∑
k=1

ωkω
T
k

ρ2k
W̃c + ka1W̃

T
a W̃c

− (ka1 +ka2)W̃T
a W̃a+ka2W̃

T
a WW̃T

a

((
kc1ω

4ρ
ŴT
a Gσ +

N∑
k=1

kc2ωk
4Nρk

ŴT
a Gσk

)T
Ŵc

)
−λmin{Yf}‖θ̃‖2.

(80)

Using Cauchy-Schwartz inequality,

V̇L ≤ −sTQs− kc2c
∥∥∥W̃c

∥∥∥2 − (ka1 + ka2)
∥∥∥W̃a

∥∥∥2
+

(
1

2
W‖Gσ‖+

1

2

∥∥∥∇sεGT∇sσT∥∥∥+ ka2W +
1

4
(kc1 + kc2)W

2‖Gσ‖
)∥∥∥W̃a

∥∥∥
+
∥∥∥W̃c

∥∥∥((kc1 + kc2)
∥∥∥δ̂∥∥∥)+ W̃T

c

ka1 +
1

4
kc1

ω

ρ
WTGσ +

1

4

1

N

N∑
k=1

kc2ωk
ρk

WTGσk

 W̃a

+
1

4
(kc1 + kc2)W‖Gσ‖

∥∥∥W̃a

∥∥∥2 +
1

4
‖Gε‖

+ (k5r)

(
‖θ̃‖2

2ε
+
ε‖W̃c‖2

2

)
− λmin{Yf}‖θ̃‖2. (81)
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(81) can be re-expressed as

V̇L ≤ −sTQs− kc2c ($1 +$2 +$3)
∥∥∥W̃c

∥∥∥2 − (ka1 + ka2) ($4 +$5 +$6 +$7)
∥∥∥W̃a

∥∥∥2
+

(
1

2
W‖Gσ‖+

1

2

∥∥∥∇sεGT∇sσT∥∥∥+ ka2W +
1

4
(kc1 + kc2)W

2‖Gσ‖
)∥∥∥W̃a

∥∥∥
+
∥∥∥W̃c

∥∥∥((kc1 + kc2)
∥∥∥δ̂∥∥∥)+

(
ka1 +

1

4
(kc1 + kc2)W‖Gσ‖

)∥∥∥W̃a

∥∥∥∥∥∥W̃c

∥∥∥
+

1

4
(kc1 + kc2)W‖Gσ‖

∥∥∥W̃a

∥∥∥2 +
1

4
‖Gε‖ − λmin{Yf}‖θ̃‖2 + (k5r)

(
‖θ̃‖2

2ε
+
ε‖W̃c‖2

2

)
. (82)

Provided the gains are selected based on the sufficient conditions in (72), (73), (74)

and (75), the Lyapunov derivative can be upper-bounded as

V̇L ≤ −vl
(
‖Z‖

)
, ∀ ‖Z‖ > v−1

l (ι) , (83)

for all t ≥ T and ∀Z ∈ Br. Using (71), (75), and (83), Theorem 4.18 in [156] can

then be invoked to conclude that Z is uniformly ultimately bounded in the sense

that lim supt→∞
∥∥Z (t)

∥∥ ≤ vl
−1
(
vl
(
v−1
l (ι)

))
. Furthermore, the concatenated state

trajectories are bounded such that
∥∥Z (t)

∥∥ ∈ Br for all t ∈ R≥T . Since the estimates

Ŵa approximate the ideal weights W , the policy û approximates the optimal policy

u∗.

Using Lemma 3.1.1, it can be concluded that the optimal feedback policy u∗,

applied to the original system in (32), achieves the control objective stated in section

(3.1.1).

3.5 Simulation

To demonstrate the performance of the developed method for a nonlinear system with

an unknown value function, two simulation results, one for a two-state dynamical

system (84), and one for a four-state dynamical system (87) corresponding to a two-

link planar robot manipulator, are provided.
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3.5.1 Two state dynamical system

The dynamical system is given by

ẋ = f(x)θ + g(x)u (84)

where

f(x) =

x2 0 0 0

0 x1 x2 x2(cos(2x1) + 2)2

 , (85)

θ = [θ1; θ2; θ3; θ4] and g(x) = [0; cos(2x1) + 2]. The BT version of the system can be

expressed in the form (40) with G(s) = [0;G21 ] and

y(s) =

F11 0 0 0

0 F22 F23 F24

 , (86)

where

F11 =

(
a2

1e
s1 − 2a1A1 + A2

1e
−s1

A1a2
1 − a1A2

1

)
x2,

F22 =

(
a2

2e
s2 − 2a2A2 + A2

2e
−s2

A2a2
2 − a2A2

2

)
x1,

F23 =

(
a2

2e
s2 − 2a2A2 + A2

2e
−s2

A2a2
2 − a2A2

2

)
x2,

F24 =

(
a2

2e
s2 − 2a2A2 + A2

2e
−s2

A2a2
2 − a2A2

2

)
x2(cos(2x1) + 2)2,

G21 =

(
a2

2e
s2 − 2a2A2 + A2

2e
−s2

A2a2
2 − a2A2

2

)
cos(2x1) + 2.

The state x = [x1 x2]T needs to satisfy the constraints, x1 ∈ (−7, 5) and x2 ∈ (−5, 7).

The objective for the controller is to minimize the infinite horizon cost function in

(50), with Q = diag(10, 10) and R = 0.1. The basis functions for value function

approximation are selected as σ(s) = [s2
1; s1s2; s2

2]. The initial conditions for the

system and the initial guesses for the weights and parameters are selected as x(0) =

[−6.5; 6.5], θ̂(0) = [0; 0; 0; 0], Γ(0) = diag(1, 1, 1), and Ŵa(0) = Ŵc(0) =
[

1/2; 1/2; 1/2
]
.
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The ideal values of the unknown parameters in the system model are θ1 = 1, θ2 = −1,

θ3 = −0.5, θ4 = 0.5 and the ideal values of the actor and the critic weights are

unknown. The simulation uses 100 fixed Bellman error extrapolation points in a 4x4

square around the origin of the s−coordinate system.

Results for the two state system

As seen from Fig. 2, the system state x stays within the user-specified safe set while

converging to the origin. The results in Fig. 3 indicate that the unknown weights for

both the actor and critic NNs converge to similar values. As demonstrated in Fig. 4

the parameter estimation errors also converge to the zero.

Since the ideal actor and critic weights are unknown, the estimates cannot be di-

rectly compared against the ideal weights. To gauge the quality of the estimates, the

trajectory generated by the controller

u(t) = û
(
s(t), Ŵ ∗

c

)
,

where Ŵ ∗
c is the final value of the critic weights obtained in Fig. 3, starting from

a specific initial condition, is compared against the trajectory obtained using an

offline numerical solution computed using the GPOPS II optimization software [157].

The total cost, generated by numerically integrating (50), is used as the metric for

comparison. The results in Table (1.) indicate that while the two solution techniques

generate slightly different trajectories in the phase space (see Fig. 5) the total cost

of the trajectories is similar.

Sensitivity Analysis for the two state system

To study the sensitivity of the developed technique to changes in various tuning pa-

rameters, a one-at-a-time sensitivity analysis is performed. The parameters kc1, kc2,

ka1, ka2, β, and v are selected for the sensitivity analysis. The costs of the trajecto-
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Table 1.: Comparison of costs for a single barrier transformed trajectory of (84),

obtained using the optimal feedback controller generated via the developed method,

and obtained using pseudospectral numerical optimal control software.

Method Cost

BT MBRL with FCL 71.8422

GPOPS II [157] 72.9005

Figure 2: Phase portrait for the two-state dynamical system using MBRL with FCL

in the original coordinates. The boxed area represents the user-selected safe set.
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Figure 3: Estimates of the actor and the critic weights under nominal gains for the

two-state dynamical system.

Figure 4: Estimates of the unknown parameters in the system under the nominal

gains for the two-state dynamical system. The dash lines in the figure indicates the

ideal values of the parameters.
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Figure 5: Comparison of the optimal trajectories obtained using GPOPS II and using

BT MBRL with FCL and fixed optimal weights for the two-state dynamical system.

ries, under the optimal feedback controller obtained using the developed method, are

presented in Table II for 5 different values of each parameter.

The parameters are varied in a neighborhood of the nominal values (selected

through trial and error) kc1 = 0.3, kc2 = 5, ka1 = 180, ka2 = 0.0001, β = .03, and

v = 0.5. The value of β1 is set to be diag(50, 50, 50, 50). The results in Table II

indicate that the developed method is robust to small changes in the learning gains.

3.5.2 Four state dynamical system

The four-state dynamical system corresponding to a two-link planar robot manipu-

lator is given by

ẋ = f1(x) + f2(x)θ + g(x)u (87)

where

f1(x) =



x3

x4

−M−1Vm

x3

x4




, (88)
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Table 2.: Sensitivity Analysis for the two state system

kc1= 0.01 0.05 0.1 0.2 0.3

Cost 72.7174 72.6919 72.5378 72.3019 72.1559

kc2= 2 3 5 10 15

Cost 71.7476 72.3198 72.1559 71.8344 71.7293

ka1= 175 180 250 500 1000

Cost 72.1568 72.1559 72.1384 72.1085 72.0901

ka2= 0.0001 0.0009 0.001 0.005 0.01

Cost 72.1559 72.1559 72.1559 72.1559 72.1559

β= 0.001 0.005 0.01 0.03 0.04

Cost 72.2141 72.1559 72.1958 72.1559 72.1352

v= 0.5 1 10 50 100

Cost 72.1559 72.4054 72.6582 79.1540 81.32
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f2(x) =


0, 0, 0, 0

0, 0, 0, 0

−[M−1,M−1]D

 , θ =



fd1

fd2

fs1

fs1


, (89)

g(x) =


0, 0

0, 0

(M−1)T

 . (90)

where

D := diag

[
x3, x4, tanh(x3), tanh(x4)

]
, (91)

M :=

p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

 ∈ R2×2, (92)

VM :=

−p3s2x4 −p3s2(x3 + x4)

p3s2x3 0

 ∈ R2×2, (93)

with s2 = sin(x2), c2 = cos(x2), p1 = 3.473, p2 = 0.196, p3 = 0.242. The positive

constants fd1 , fd2 , fs1 , fs1 ∈ R are the unknown parameters. The parameters are

selected as fd1 = 5.3, fd2 = 1.1, fs1 = 8.45, fs1 = 2.35.

The state x = [x1 x2 x3 x4]T , that corresponds to angular positions and the

angular velocities of the two links needs to satisfy the constraints,

x1 ∈ (−7, 5), x2 ∈ (−7, 5), x3 ∈ (−5, 7) and x4 ∈ (−5, 7). The objective for

the controller is to minimize the infinite horizon cost function in (50), with Q =

diag(1, 1, 1, 1) and R = diag(1, 1) while identifying the unknown parameters θ ∈ R4

that correspond to static and dynamic friction coefficients in the two links. The

ideal values of the the unknown parameters are θ1 = 5.3, θ2 = 1.1, θ3 = 8.45,

and θ4 = 2.35. The basis functions for value function approximation are selected

as σ(s) = [s1s3; s2s4; s3s2; s4s1; s1s2; s4s3; s2
1; s2

2; s2
3; s2

4]. The initial conditions for the
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Figure 6: State trajectories for the four-state dynamical system using MBRL with

FCL in the original coordinates. The dash lines represent the user-selected safe set.

system and the initial guesses for the weights and parameters are selected as x(0) =

[−5;−5; 5; 5], θ̂(0) = [5; 5; 5; 5], Γ(0) = diag(10, 10, 10, 10, 10, 10, 10, 10, 10, 10), and

Ŵa(0) = Ŵc(0) = [60; 2; 2; 2; 2; 2; 40; 2; 2; 2]. The ideal values of the actor and the

critic weights are unknown. The simulation uses 100 fixed Bellman error extrapola-

tion points in a 4x4 square around the origin of the s−coordinate system.

Results for the four state system

As seen from Fig. 6, the system state x stays within the user-specified safe set while

converging to the origin. As demonstrated in Fig. 8, the parameter estimations

converge to the true values.

A comparison with offline numerical optimal control, similar to the procedure used for

the two-state, yields the results in Table (3.) indicate that the two solution techniques

generate slightly different trajectories in the state space (see Fig. 9) and the total

cost of the trajectories is different. We hypothesize that the difference in costs is due

to the basis for value function approximation being unknown.
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Figure 7: Estimates of the critic weights under nominal gains for the four-state dy-

namical system.

Table 3.: Costs for a single barrier transformed trajectory of (87), obtained using the

developed method, and using pseudospectral numerical optimal control software.

Method Cost

BT MBRL with FCL 95.1490

GPOPS II 57.8740

In summary, the newly developed method can achieve online optimal feedback

control thorough a BT MBRL approach while estimating the value of the unknown

parameters in the system dynamics and ensuring safety guarantees in the original co-

ordinates. The following section details a one-at-a-time sensitivity analysis and study

the sensitivity of the developed technique to changes in various tuning parameters.

Sensitivity Analysis for the four state system

The parameters kc1, kc2, ka1, ka2, β, and v are selected for the sensitivity analysis.

The costs of the trajectories, under the optimal feedback controller obtained using the

developed method, are presented in Table II for 5 different values of each parameter.

The parameters are varied in a neighborhood of the nominal values (selected through
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Figure 8: Estimates of the unknown parameters in the system under the nominal

gains for the four-state dynamical system. The dash lines in the figure indicates the

ideal values of the parameters.

Table 4.: Sensitivity Analysis for the four state system

kc1= 0.01 0.05 0.1 0.5 1

Cost 95.91 95.4185 95.1490 94.1607 93.5487

kc2= 1 5 10 20 30

Cost 304.4 101.0786 95.1490 92.7148 93.729

ka1= 5 10 20 30 50

Cost 94.9464 95.1224 95.1490 95.1736 95.1974

ka2= 0.05 0.1 0.2 0.5 1

Cost 95.2750 95.2480 95.1490 94.9580 94.6756

β= 0.1 0.5 0.8 0.9 0.95

Cost 125.33 109.7721 95.1490 92.91 93.7231

v= 50 70 100 125 150

Cost 92.2836 93.34 95.1490 96.1926 97.9870
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Figure 9: Comparison of the optimal state trajectories obtained using GPOPS II and

using BT MBRL with FCL and fixed optimal weights for the four-state dynamical

system.

trial and error) kc1 = 0.1, kc2 = 10, ka1 = 20, ka2 = 0.2, β = 0.8, and v = 100. The

value of β1 is set to be diag(100, 100, 100, 100). The results in Table (4.) indicate that

the developed method is not sensitive to small changes in the learning gains.
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Chapter IV

SAFETY-AWARE MODEL-BASED REINFORCEMENT LEARNING

WITH PARTIAL OUTPUT-FEEDBACK

Deployment of unmanned autonomous systems in complex, high-risk tasks provides

operational benefits such as accuracy, physical endurance, and so on. Hence, the

usage of unmanned autonomous systems has been significantly expanding over the

past decades. To realize complex autonomy, techniques that allow autonomous agents

to learn to perform tasks, in a provably safe manner, are needed. While recent years

have seen prolific progress in the area of safe reinforcement learning [22, 24, 25, 130,

133, 158], most existing techniques require full state feedback. This chapter focuses

on the development of a reinforcement learning framework for autonomous systems

in continuous time under partial observability, while guaranteeing stability and safety

which is a critical, and yet open research question.

4.1 Problem Formulation

We consider the following continuous-time affine nonlinear dynamical system in Brunovsky

form

ẋ1 = x2

ẋ2 = f(x) + g(x)u, (94)

where x1 := [x11 ; . . . ;x1n ] ∈ Rn and x2 := [x21 ; . . . ;x2n ] ∈ Rn, x := [x1;x2] ∈ R2n

is the system state, u ∈ Rm is the control input, and x1 ∈ Rn is the output. The

drift dynamics, f : R2n → Rn, and control effectiveness, g : R2n → Rn×m, are locally
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Lipschitz continuous. Let, x̂ := [x̂1; x̂2], x̂1 := [x̂11 ; . . . ; x̂1n ], and x̂2 := [x̂21 ; . . . ; x̂2n ]

be the estimates of x, x1, and x2 respectively. The notation [a; b] denotes the vector

[a b]T .

The objective is to design an adaptive estimator to estimate the state, online,

using input-output measurements, and to simultaneously estimate and utilize an op-

timal controller, u, such that starting from a given feasible initial condition x0, the

trajectories x(·) decay to the origin and satisfy xij(t) ∈ (aij , Aij). The notation (·)ij is

used above and in the rest of the manuscript to denote the jth element of the vector

(·)i.

Note that the unknown part of the state, x2 is simply the time derivative of the

output, x1. While the derivative can be computed numerically, state estimators, such

as the one designed in the following section, have been shown to be more robust to

measurement noise than numerical differentiation. Furthermore, the state estimator

designed in the following section allows for rigorous inclusion of state estimation errors

in the analysis of the feedback controller.

4.2 State Estimation

In this section, a state estimator inspired by [159] is developed to generate estimates

of x. The estimator is given by

˙̂x =

 ˙̂x1

˙̂x2

 =

 x̂2

f (x̂) + g (x̂)u+ ν1

 (95)

where, ν1 = [ν11 ; . . . ; ν1n ] ∈ Rn is a feedback term designed in the following. To design

of ν1 is motivated by the need to establish bounds1 on state estimation errors in a

barrier-transformed coordinate system. To facilitate the design of ν1, let the state

1precisely, (180) in section B.2
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estimation errors be defined as

x̃1 = x1 − x̂1,

x̃2 = x2 − x̂2. (96)

Let the function b : R→ R, is referred to as barrier function (BF), be defined as

b(aij ,Aij
)(yij) := log

Aij(aij − yij)
aij(Aij − yij)

, ∀i = 1, 2; ∀j = 1, 2, . . . , n. (97)

Whenever clear from the context, the subscripts aij and Aij of the BF. The feedback

component ν1j is designed as

ν1j =
(A1ja

2
1j
− a1jA

2
1j

)

a2
1j
eb(x̂1j ) − 2a1jA1j + A2

1j
e−b(x̂1j )

(α2(b(x1j)− b(x̂1j))− (k + α + β) ηj), (98)

where the signal ηj is added to compensate for the fact that x2j is not measurable.

Based on the subsequent stability analysis, the signal ηj is designed as the output of

the dynamic filter

η̇j = −β1ηj − krj − α
(

d

dt

(
b(x1j)− b(x̂1j)

))
, (99)

where ηj (T0) = 0, α, k, and β are positive constants and the error signal rj is defined

as

rj =
d

dt

(
b(x1j)− b(x̂1j)

)
+ α(b(x1j)− b(x̂1j)) + ηj. (100)

The signal ηj can be implemented via the integral form,

ηj(t) =

ˆ t

0

(
− (k + β1)ηj(τ)− kα

(
b(x1j)

− b(x̂1j)
)

(τ)
)
dτ − (k + α)

(
b(x1j)(t)− b(x̂1j)(t)

− b(x1j)(0) + b(x̂1j)(0)
)
. (101)

While MBRL methods such as those detailed in [44] guarantee stability of the closed-

loop with state constraints are typically difficult to establish without extensive trial

and error. In the following, a BT is used to guarantee state constraints.
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4.3 Barrier Transformation

The inverse of (97) exists on interval (aij , Aij), and is given by

b−1
(aij ,Aij

)(yij) = aijAij
eyij − 1

aije
yij − Aij

. (102)

Consider the BF based state transformation

sij := b(aij ,Aij
)(xij), xij = b−1

(aij ,Aij
)(sij). (103)

In the following derivation, whenever clear from the context, the subscripts aij and

Aij of the inverse of BF are suppressed for brevity.

To transform the dynamics in (94) using the BT, the time derivative of the trans-

formed state variables can be computed as

ṡ1 = H(s), (104)

where H(s) = [H(s11 , s21); . . . ;H(s1n , s2n)], and

H(s1j , s2j) =
a2

1j
es1j − 2a1jA1j + A2

1j
e−s1j

A1ja
2
1j
− a1jA

2
1j

b−1(s2j). (105)

Similarly,

ṡ2 = F (s) +G(s)u, (106)

where F (s) = [F (s11 , s21); . . . ;F (s1n , s2n)], G(s) = [G(s11 , s21); . . . ;G(s1n , s2n)],

F (s1j , s2j) =

(
a2

2j
es2j − 2a2jA2j + A2

2j
e−s2j

A2ja
2
2j
− a2jA

2
2j

)
f([b−1(s1j), b

−1(s2j)]), (107)

and

G(s1j , s2j) =

(
a2

2j
es2j − 2a2jA2j + A2

2j
e−s2j

A2ja
2
2j
− a2jA

2
2j

)
g([b−1(s1j), b

−1(s2j)]). (108)

The system (94), in the transformed coordinates, can then be expressed as

ṡ = [ṡ1; ṡ2] =

 H(s)

F (s) +G(s)u

 . (109)
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As detailed in Lemma 4.3.1 below, design of the BT ensures that the trajectory of

(94) and (109) are linked by the BT whenever the initial conditions and the feedback

policies are linked by the BT.

Lemma 4.3.1 If t 7→ Φ
(
t, b(x0), ζ

)
is a Carathéodory solution to (109), starting

from the initial condition b(x0), under the feedback policy (s, t) 7→ ζ(s, t), and if

t 7→ Λ(t, x0, ζ) is a solution to (94), starting from the initial condition x0, under the

controller u(t) = ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
, then Λ(t, x0, ζ) = b−1

(
Φ(t, b(x0), ζ)

)
for almost

all t ∈ R≥0.

Proof. See Lemma 4.3.1 in Appendix B.

To transform the state estimator using the BT, let

ŝij := b(x̂ij), and s̃ij := sij − ŝij . (110)

The state estimator can then be expressed in transformed coordinates as

˙̂s =

 ˙̂s1

˙̂s2

 =

 H(ŝ)

F (ŝ) +G(ŝ)u+ ν2(s̃1, η)

 , (111)

where, ν2 = [ν21 ; . . . ; ν2n ], η = [η1; . . . ; ηn], and

ν2j =

a2
2j
eŝ2j − 2a2jA2j + A2

2j
e−ŝ2j

A2ja
2
2j
− a2jA

2
2j

 ν1j

(
[b−1(s̃1j), ηj

)
. (112)

As detailed in Lemma 4.3.2 below, the design of the BT ensures that the trajecto-

ries of (95), (96), (97), (98), (99), (100) and (111), (112) linked by the BT whenever

the underlying state trajectories x(·) and s(·) and the initial conditions x̂0 and ŝ0 are

linked by the BT.

Lemma 4.3.2 If t 7→ Ψ
(
t; b(x1(·)), b(x̂0)

)
is a Carathéodory solution to (111), start-

ing from the initial condition b(x̂0) along the trajectory t 7→ b(x1(t)), and if t 7→

ξ(t;x1(·), x̂0) is a solution to (95), starting from the initial condition x̂0 along the

trajectory x1(·), then ξ(t;x1(·), x̂0) = b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
for all t ∈ R≥0.
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Proof. See Lemma 4.3.2 in Appendix B.

The following section develops a bound on a Lyapunov-like function of the state

estimation errors to be utilized in the subsequent stability analysis.

4.4 Optimal Control Formulation

Lemma 4.3.1 implies that if a feedback controller that practically stabilizes the trans-

formed system in (109) is designed, then the same feedback controller, applied to

the original system by inverting the BT also achieves the control objective stated in

Section 4.1. In the following, a controller that practically stabilizes (109) is designed

as an estimate of a controller that minimizes the infinite horizon cost2

J(u(·)) :=

ˆ ∞
0

c(φ(τ, s0, u(·)), u(τ))dτ, (113)

over the set U of piecewise continuous functions t 7→ u(t), subject to (109), where

φ(τ, s0, u(·)) denotes the trajectory of (109), evaluated at time τ , starting from the

state s0, and under the controller u(·). In (113), c(s, u) := Q′(s) + uTRu where

Q′(s) := sTQs, Q′(s) : R2n 7→ Rn, Q ∈ Rn×n and R ∈ Rm×m are symmetric positive

definite (PD) matrices.

Assumption 4.4.1 One of the following is true:

1. Q′ is PD.

2. Q′ is PD, and s1 7→ Q′ (s) is PD for all nonzero s2 ∈ Rn.

3. Q′ is PD, s2 7→ Q′ (s) is PD for all nonzero s1 ∈ Rn and F (s) 6= 0 whenever

s1 6= 0.

2For applications with bounded control inputs, a non-quadratic penalty function similar to [153,

Eq. 17] can be incorporated in (113).
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Figure 10: Developed BT MBRL framework. Simulation-based BT-actor-critic-

estimator architecture. The critic utilizes Estimated transformed states, actions,

and the corresponding Estimated transformed state-derivatives to learn the value

function. In the figure, BT: Barrier Transformation; MS: Measured State; TS: Trans-

formed State; ES: Estimated State; ETS: Estimated Transformed State; BE: Bellman

Error.
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Assuming that an optimal controller exists, let the optimal value function, denoted

by V ∗ : Rn × Rq → R, be defined as

V ∗(s) := min
u(·)∈U[t,∞)

ˆ ∞
t

c(φ(τ, s, u[t,τ)(·)), u(·))dτ, (114)

where uI and UI are obtained by restricting the domains of u and functions in UI

to the interval I ⊆ R, respectively. Assuming that the optimal value function is

continuously differentiable, it can be shown to be the unique PD solution of the

Hamilton-Jacobi-Bellman (HJB) equation

min
u∈Rq

(
Vs1
(
H(s)

)
+ Vs2

(
F (s) +G(s)u

)
+ sTQs+ uTRu

)
= 0, (115)

where ∇(·) := ∂
∂(·) , and V(·) := ∇(·)V . Furthermore, the optimal controller is given by

the feedback policy u(t) = u∗(φ(t, s, u[0,t))) where u∗ : Rn → Rm defined as

u∗(s) := −1

2
R−1G(s)T (∇s2V

∗(s))T . (116)

4.4.1 Value function approximation

Since computation of analytical solutions of the HJB equation is generally infeasible,

especially for systems with uncertainty, parametric approximation methods are used

to approximate the value function V ∗ and the optimal policy u∗. The optimal value

function is expressed as

V ∗ (s) = W Tσ (s) + ε (s) , (117)

where W ∈ RL is an unknown vector of bounded weights, σ : R2n → RL is a vector

of continuously differentiable nonlinear activation functions such that σ (0) = 0 and

∇sσ (0) = 0, L ∈ N is the number of basis functions, and ε : R2n → R is the recon-

struction error. Exploiting the universal function approximation property of single

layer neural networks, it can be concluded that given any compact set3 B (0, χ) ⊂ R2n

3Note that at this stage, the existence of a compact forward-invariant set that contains trajectories

of (109) is not being assumed. The existence of such a set is established in section 4.7, theorem

4.7.1.
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and a positive constant ε ∈ R, there exists a number of basis functions L ∈ N, and

known positive constants W̄ and σ such that ‖W‖ ≤ W̄ , sups∈B(0,χ)

∥∥ε (s)
∥∥ ≤ ε,

sups∈B(0,χ)

∥∥∇sε (s)
∥∥ ≤ ε, sups∈B(0,χ)

∥∥σ (s)
∥∥ ≤ σ, and sups∈B(0,χ)

∥∥∇sσ (s)
∥∥ ≤ σ

[154].

Using (115), a representation of the optimal controller using the same basis as the

optimal value function is derived as

u∗ (s) = −1

2
R−1GT (s)

(
∇s2σ

T (s)W +∇s2ε
T (s)

)
. (118)

Since the ideal weights, W , are unknown, an actor-critic approach is used in the

following to estimate W . To that end, let the NN estimates V̂ : Rn × RL → R and

û : Rn × RL → Rm be defined as

V̂
(
ŝ, Ŵc

)
:= Ŵ T

c σ (ŝ) , (119)

û
(
ŝ, Ŵa

)
:= −1

2
R−1GT (ŝ)∇ŝ2σ

T (ŝ) Ŵa, (120)

where the critic weights, Ŵc ∈ RL and actor weights, Ŵa ∈ RL are estimates of the

ideal weights, W .

4.5 Errors bounds for the state estimator

To develop error bounds for the estimation errors, consider the time-derivative of

(104) as

s̈1 = F2(s) + F3(s) +G1(s)u, (121)

where F2(s1, s2) = [F2(s11 , s21); . . . ;F2(s1n , s2n)],

F3(s1, s2) = [F3(s11 , s21); . . . ;F3(s1n , s2n)], G1(s1, s2) = [G1(s11 , s21); . . . ;G1(s1n , s2n)],

F2(s1j , s2j) =

(
a2

1j
es1j − A2

1j
e−s1j

A1ja
2
1j
− a1jA

2
1j

)
b−1(s2j), (122)

F3(s1j , s2j) =

(
a2

1j
es1j − 2a1jA1j + A2

1j
e−s1j

A1ja
2
1j
− a1jA

2
1j

)
f([b−1(s1j), b

−1(s2j)]), (123)
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and

G1(s1j , s2j) =

(
a2

1j
es1j − 2a1jA1j + A2

1j
e−s1j

A1ja
2
1j
− a1jA

2
1j

)
g([b−1(s1j), b

−1(s2j)]). (124)

Similarly, time-derivative of the first state of (111) yields

¨̂s1 = F2(ŝ) + F3(ŝ) +G1(ŝ)u+ ν3, (125)

where ν3 = [ν31 ; . . . ; ν3n ] and

ν3j =

a2
1j
eŝ1j − 2a1jA1j + A2

1j
e−ŝ1j

A1ja
2
1j
− a1jA

2
1j

 ν1j([b
−1(s̃1j), ηj). (126)

We can rewrite (126) as

ν3j = (α2(b(x1j)− b(x̂1j))− (k + α + β) ηj) = (α2s̃1j − (k + α + β) ηj), (127)

and (99) as

η̇j = −β1ηj − krj − α ˙̃s1j . (128)

Using the fact that η = [η1; . . . ; ηn] which yields

η̇ = −β1η − kr − α(H̃(s, ŝ)), (129)

where H̃(s, ŝ) := H(s)−H(ŝ) = ˙̃s1. Furthermore, (100) can be expressed as

r = ˙̃s1 + αs̃1 + η, (130)

where r = [r1; . . . ; rn], which yields

˙̃s1 = r − αs̃1 − η, (131)

The time-derivative of the filtered error signal (130) is given by

ṙ = ¨̃s1 + α ˙̃s1 + η̇ = s̈1 − ¨̂s1 + α ˙̃s1 + η̇, (132)
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which yields

ṙ = F2(s) + F3(s) +G1(s)û(ŝ, Ŵa)− F2(ŝ)− F3(ŝ)

−G1(ŝ)û(ŝ, Ŵa)− α2s̃1 + (k + α + β1)η

+ α ˙̃s1 − β1η − kr − α ˙̃s1,

and can be expressed as

ṙ = F̃2(s, ŝ) + F̃3(s, ŝ) + G̃1(s, ŝ)û(ŝ, Ŵa)− α2s̃1 − kr + kη + αη, (133)

where F̃2(s, ŝ) := F2(s)− F2(ŝ), F̃3(s, ŝ) := F3(s)− F3(ŝ), G̃1(s, ŝ) := G1(s)−G1(ŝ).

The following lemma 4.5.1 develops a bound on a Lyapunov-like function of the state

estimation errors s̃1, r, and η. The bound is utilized in the subsequent stability

analysis in section 4.8.

Lemma 4.5.1 Let Vse : R3n → R≥0 be a continuously differentiable candidate Lya-

punov function defined as Vse(Z1) := α2

2
s̃T1 s̃1 + 1

2
rT r + 1

2
ηTη, where Z1 := [s̃T1 , r

T , ηT ].

Provided s, ŝ ∈ B(0, χ) for some χ > 0, the orbital derivative of Vse along the tra-

jectories of ˙̃s1, ṙ, and η̇, defined as V̇se(Z1, s, s̃, W̃a) := ∂Vse(Z1,s,s̃,W̃a)
∂s̃1

(H(s)−H(ŝ)) +

∂Vse(Z1,s,s̃,W̃a)
∂r

ṙ+ ∂Vse(Z1,s,s̃,W̃a)
∂η

η̇, can be bounded as V̇se(Z1, s, s̃, W̃a) ≤ −α3‖s̃1‖2− (k−

$1$4)‖r‖2 − (β1 − α)‖η‖2 +$1

(
1 +$4 +$4α‖

)
‖r‖‖s̃1‖+$1$4‖r‖‖η‖

+$2‖r‖‖W̃a‖+$3‖r‖.

Proof. See Lemma 4.5.1 in Appendix B.
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4.6 Model-based Reinforcement Learning

4.6.1 Bellman Error

Substituting (119) and (120) into (115) results in a residual term, δ̂ : R2n×RL×RL →

R, which is referred to as Bellman Error (BE), defined as

δ̂(ŝ, Ŵc, Ŵa) := V̂ŝ1(ŝ, Ŵc)
(
H(ŝ)

)
+ V̂ŝ2(ŝ, Ŵc)

(
F (ŝ) +G(ŝ)û(ŝ, Ŵa)

)
+ û(ŝ, Ŵa)

TRû(ŝ, Ŵa) + ŝTQŝ. (134)

Traditionally, online RL methods require a persistence of excitation (PE) condition

to be able learn the approximate control policy [148, 149, 155]. Guaranteeing PE a

priori and verifying PE online are both typically impossible. However, using virtual

excitation facilitated by the model, stability and convergence of online RL can es-

tablished under a PE-like condition that, while impossible to guarantee a priori, can

be verified online (by monitoring the minimum eigenvalue of a matrix in the subse-

quent Assumption 4.8.1) [43]. Using the system model, the BE can be evaluated at

any arbitrary point in the state space. Virtual excitation can then be implemented

by selecting a set of states
{
sk | k = 1, · · · , N

}
and evaluating the BE at this set of

states to yield

δ̂k(sk, Ŵc, Ŵa) := V̂sk1 (sk, Ŵc)
(
H(sk)

)
+ V̂sk2 (sk, Ŵc)

(
F (sk) +G(sk)û(sk, Ŵa)

)
+ û(sk, Ŵa)

TRû(sk, Ŵa) + sTkQsk. (135)

Defining the actor and critic weight estimation errors as W̃c := W − Ŵc and W̃a :=

W − Ŵa and substituting the estimates (117) and (118) into (115), and subtracting

from (134) yields the analytical BE that can be expressed in terms of the weight

68



estimation errors as4

δ̂ = −ωT W̃c +
1

4
W̃ T
a GσW̃a + ∆, (136)

where ∆ := 1
2
W T∇ŝ2σGR∇ŝ2ε

T + 1
4
Gε − (∇ŝ1εH +∇ŝ2εF ), GR := GR−1GT ∈ Rn×n,

Gε := ∇ŝ2εGR∇ŝ2ε
T ∈ R, Gσ := ∇ŝ2σGR

−1GT∇ŝ2σ
T ∈ RL×L, and ω := ∇ŝ1σH

+∇ŝ2σ
(
F +Gû(ŝ, Ŵa)

)
∈ RL.

Similarly, (135) implies that

δ̂k=−ωTk W̃c+
1

4
W̃ T
a GσkW̃a+∆k, (137)

where, Fk := F (sk), Gk := F (sk), Fk1 := H(sk), εk := ε(sk), σk := σ(sk),

∆k := 1
2
W T∇sk2

σkGRk
∇sk2

εTk + 1
4
Gεk −

(
∇sk1

εkFk1 +∇sk2
εkFk

)
,

Gεk := ∇sk2
εkGRk

∇sk2
εTk , ωk := ∇sk1

σkFk1 +∇sk2
σk

(
F +Gkû(sk, Ŵa)

)
∈ RL,

Gσk := ∇sk2
σkGkR

−1GT
k∇sk2

σTk ∈ RL×L and GRk
:= GkR

−1GT
k ∈ Rn×n.

Note that sups∈B(0,χ) |∆| ≤ dε and if sk ∈ B (0, χ) then |∆k| ≤ dεk, for some constant

d > 0.

4.6.2 Update laws for Actor and Critic weights

Using the instantaneous BE δ̂ from (134) and extrapolated BEs δ̂k from (135), the

weights are updated according to

˙̂
Wc = −kc

N
Γ

N∑
k=1

ωk
ρk
δ̂k, (138)

Γ̇ = βΓ− kc
N

Γ
N∑
k=1

ωkω
T
k

ρ2
k

Γ, (139)

˙̂
Wa = −ka1

(
Ŵa − Ŵc

)
− ka2Ŵa +

N∑
k=1

kc2G
T
σk
Ŵaω

T
k

4Nρk
Ŵc, (140)

4The dependence of various functions on the state, s, is omitted hereafter for brevity whenever

it is clear from the context.
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with Γ (t0) = Γ0, where Γ : R≥t0 → RL×L is a time-varying least-squares gain matrix,

ρ (t) := 1 + γωT (t)ω (t), ρk (t) := 1 + γωTk (t)ωk (t), γ > 0 is a constant positive

normalization gain, β > 0 ∈ R is a constant forgetting factor, and kc1 , kc2 , ka1 , ka2 >

0 ∈ R are constant adaptation gains. The control commands sent to the system are

then computed using the actor weights as

u(t) = û
(
ŝ(t), Ŵa(t)

)
, t ≥ 0. (141)

The Lyapunov function needed to analyze the closed loop system defined by (95),

(98), (101), (109), and (138), (139), (140) is constructed using stability properties of

(109) under the optimal feedback (116). To that end, the following section analyzes

the optimal closed-loop system.

4.7 Stability Under Optimal state Feedback

The following theorem establishes global asymptotic stability of the closed-loop sys-

tem under optimal state feedback.

Theorem 4.7.1 If the optimal state feedback controller (116) that minimizes the cost

function in (113) exists and if the corresponding optimal value function is continuously

differentiable and radially unbounded, then the origin of closed-loop system

ṡ1 = H(s),

ṡ2 = F (s) +G(s)u∗(s) (142)

is globally asymptotically stable.

Proof. Under the hypothesis of Theorem 4.7.1, the optimal value function is a unique

solution of the Hamilton-Jacobi-Bellman equation [160]

V ∗s1 (s)H(s1, s2) + V ∗s2 (s)
(
F (s) +G (s)u∗ (s)

)
+ c
(
s, u∗ (s)

)
= 0, (143)
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with

u∗(s) := −1

2
R−1G(s)T (∇s2V

∗(s))T , (144)

Since the solutions of (142) are continuous and the function V ∗ is positive semidef-

inite by definition, if V ∗


s1

s2


 = 0 for some s 6= 0, it can be concluded that

Q
(
φ
(
t, s, u∗ (·)

))
= 0,∀t ≥ 0, and u∗

(
φ
(
t, s, u∗ (·)

))
= 0, ∀t ≥ 0. If Assumption

4.4.1-(a) holds then φ
(
t, s, u∗ (·)

)
= 0,∀t ≥ 0, which contradicts s 6= 0. If Assumption

4.4.1-(b) holds, then s1

(
t, s, u∗ (·)

)
= 0,∀t ≥ 0. As a result, φ

(
t, s, u∗ (·)

)
= 0,∀t ≥ 0,

which contradicts s 6= 0. If Assumption 4.4.1-(c) holds, then s2

(
t, s, u∗ (·)

)
= 0,∀t ≥

0. As a result, s1

(
t, s, u∗ (·)

)
= c2,∀t ≥ 0 for some constant c2 ∈ Rn. Since F (s) 6= 0

if s1 6= 0, it can be concluded that c2 = 0, which contradicts s 6= 0. Hence, V ∗ (s)

cannot be zero for a nonzero s. Furthermore, since F (0) = 0, the zero controller

is clearly the optimal controller starting from s = 0. That is, V ∗ (0) = 0, and as a

result, V ∗ : R2n → R is PD.

Using V ∗ as a candidate Lyapunov function and using the HJB equation in (143),

it can be concluded that

V ∗s1 (s)H(s) + V ∗s2 (s)
(
F (s) +G (s)u∗ (s)

)
≤ −Q (s) , (145)

∀s ∈ R2n. If Assumption 4.4.1-(a) holds, then the proof is complete using Lyapunov’s

direct method. If Assumption 4.4.1-(b) holds, then using the fact that if the output

is identically zero then so is the state, the invariance principle [156, Corollary 4.2] can

be invoked to complete the proof. If Assumption 4.4.1-(c) holds, then finiteness of the

value function everywhere implies that the origin is the only equilibrium point of the

closed-loop system. As a result, the invariance principle can be invoked to complete

the proof.

Using Theorem 4.7.1 and the converse Lyapunov theorem for asymptotic stability

[156, Theorem 4.17], the existence of a radially unbounded PD function V : R2n → R
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and a PD function W : R2n → R is guaranteed such that

Vs1 (s)F (s) + Vs2 (s)
(
F (s) +G (s)u∗ (s)

)
≤ −W (s) , (146)

∀s ∈ R2n. The functions V and W are utilized in the following section to analyze the

stability of the output feedback approximate optimal controller.

4.8 Stability Analysis

The following verifiable PE-like rank condition is then utilized in the stability analysis.

Assumption 4.8.1 There exists a constant c1 > 0 such that the set of points{
sk ∈ Rn | k = 1, . . . , N

}
satisfies

c1IL ≤ inf
t∈R≥T

 1

N

N∑
k=1

ωk (t)ωTk (t)

ρ2
k (t)

 . (147)

Since ωk is a function of the weight estimates ŝ and Ŵa, Assumption 4.8.1 cannot

be guaranteed a priori. However, unlike the PE condition, Assumption 4.8.1 can

be verified online. Furthermore, since λmin

(∑N
k=1

ωk(t)ωT
k (t)

ρ2k(t)

)
is non-decreasing in the

number of samples, N , Assumption 4.8.1 can be met, heuristically, by increasing the

number of samples. It is established in [155, Lemma 1] that under Assumption 4.8.1

and provided λmin

{
Γ−1

0

}
> 0, the update law in (139) ensures that the least squares

gain matrix satisfies

ΓIL ≤ Γ (t) ≤ ΓIL, (148)

∀t ∈ R≥0 and for some Γ,Γ > 0. Using (137), the orbital derivative of the PD

function V introduced in (146), along the trajectories of (109), under the controller

u = û
(
ŝ, Ŵa

)
be defined as

V̇
(
s, s̃, W̃a

)
:= Vs1 (s)H(s) + Vs2 (s)

(
F (s) +G (s) û

(
ŝ, Ŵa

))
, (149)
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adding and subtracting Vs2 (s)
(
G (s)u∗ (s)

)
,

V̇
(
s, s̃, W̃a

)
= Vs1 (s)H(s) + Vs2 (s)

(
F (s) +G (s)u∗ (s)

)
−Vs2 (s)

(
G (s)

(
u∗ (s)− û(s, Ŵa)

))
. (150)

Using (146), the fact that G is bounded, the basis functions σ are bounded, and that

the value function approximation error ε and its derivative with respect to s, ŝ are

bounded on compact sets, the time-derivative can be bounded as

V̇
(
s, s̃, W̃a

)
≤ −W (s) + ι1ε+ ι2 ‖s̃‖

∥∥∥W̃a

∥∥∥+ ι3

∥∥∥W̃a

∥∥∥+ ι4 ‖s̃‖ , (151)

for all Ŵa ∈ RL, for all s ∈ B(0, χ), and for all ŝ ∈ B(0, χ), where χ ⊂ R2n is a

compact set, ι1, · · · , ι4 are positive constants, and s̃ := s− ŝ.

Let Θ
(
W̃c, W̃a, t

)
:= 1

2
W̃ T
c Γ−1 (t) W̃c+

1
2
W̃ T
a W̃a. The orbital derivative of Θ along

the trajectories of (138) - (140) is defined as

Θ̇
(
W̃c, W̃a, t

)
= W̃ T

c Γ−1 ˙̃Wc −
1

2
W̃ T
c Γ−1Γ̇Γ−1W̃c + W̃ T

a
˙̃Wa, (152)

where ˙̃Wc = − ˙̂
Wc, and ˙̃Wa = − ˙̂

Wa.

Provided the extrapolation states are selected such that sk ∈ B(0, χ),

∀k = 1, . . . , N , the orbital derivative in (152) can be bounded 5 as

Θ̇
(
W̃c, W̃a, t

)
≤ −kcc

∥∥∥W̃c

∥∥∥2

− (ka1 + ka2)
∥∥∥W̃a

∥∥∥2

+ kcι8ε
∥∥∥W̃c

∥∥∥+ kcι5

∥∥∥W̃a

∥∥∥2

+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥+
(
kcι7 + ka2W

)∥∥∥W̃a

∥∥∥ ,
(153)

for all t ≥ 0, where ι5, . . . , ι8 are positive constants that are independent of the

learning gains, W denotes an upper bound on the norm of the ideal weights W , and

c3 = mint≥0 λmin

{(
β

2kc
Γ−1 (t) + 1

2N

∑N
k=1

ωkω
T
k

ρk

)}
.

5The full derivation is shown in Appendix B.1
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Assumption 4.8.1 and (148) guarantee that c3 > 0. From (182) we get,

V̇se

(
Z1, s, s̃, W̃a

)
≤ −α3‖s̃1‖2 − (k −$1$4)‖r‖2

− (β1−α)‖η‖2 +$1 (1 +$4 +$4α) ‖r‖‖s̃1‖+$1$4‖r‖‖η‖+$2‖r‖‖W̃a‖+$3‖r‖,

(154)

for all Ŵa ∈ RL, for all s ∈ B(0, χ), and for all ŝ ∈ B(0, χ), where $2, $3 are positive

constants that are independent of the learning gains and $1, $4 are the Lipschitz

constants on B(0, χ) for F , and h, respectively.

The candidate Lyapunov function for the overall system is then defined as

VL (Z, t) := V (s) + Θ
(
W̃c, W̃a, t

)
+ Vse (Z1) , (155)

where Z :=

[
sT s̃T1 rT ηT W̃ T

c W̃ T
a

]T
. The orbital derivative of the candidate

Lyapunov function along the trajectories of (95), (100),(101),(109), (138), (139),

(140), under the controller (141), is defined as

V̇L(Z, t) = V̇
(
s, s̃, W̃a

)
+ V̇se

(
Z1, s, s̃, W̃a

)
+ Θ̇

(
W̃c, W̃a, t

)
. (156)

Let C ⊂ R5n be a compact set defined as C := {(s, s̃1, η, r) ∈ R5n|‖s‖ + ‖s̃1‖(1 +

$4(1 + α)) +$4(‖r‖‖+ ‖η‖) ≤ χ}. Using (180), whenever, (s, s̃1, η, r) ∈ C, it can be

concluded that s, ŝ ∈ B(0, χ). As a result, (151), (153), and (154)

imply that whenever Z ∈ C × R2L, the orbital derivative can be bounded6 as

V̇L (Z, t) ≤ −W (s)− kcc3

∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

− α3 ‖s̃1‖2

− (k −$1$4)‖r‖2 − (β1 − α)‖η‖2 + (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥
+ ι2(1 +$4 +$4α)‖s̃1‖

∥∥∥W̃a

∥∥∥+

(
ι2$4 +$2

)
‖r‖

∥∥∥W̃a

∥∥∥+ ι2$4‖η‖
∥∥∥W̃a

∥∥∥
+ (1 +$4 +$4α)$1‖r‖‖s̃1‖+$1$4‖r‖‖η‖+ ι4$4‖η‖+ ($3 + ι4$4)‖r‖

+

(
ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥+ kcι8ε
∥∥∥W̃c

∥∥∥+ ι4(1 +$4 +$4α)‖s̃1‖+ ι1ε,

6The full derivation is shown in Appendix B.2
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which yields

V̇L (Z, t) ≤ −W (s)− zT
(
M +MT

2

)
z + Pz + ι1ε,

where z :=

[∥∥∥W̃c

∥∥∥ ∥∥∥W̃a

∥∥∥ ‖s̃1‖ ‖r‖ ‖η‖
]T

,

P =

[
kcι8ε

(
kcι7 + ι3 + ka2W

)
ι4 (1 +$4 +$4α) ($3 + ι4$4) ι4$4

]
,

and

M =


[kcc3 − (kcι6 + ka1) 0 0 0

0 (ka1 + ka2 − kcι5) −ι2 (1 +$4 +$4α) − (ι2$4 +$2) −ι2$4

0 0 α3 −$1(1 +$4 +$4α) 0

0 0 0 (k −$1$4) −$1$4

0 0 0 0 (β1 − α)].

 ,

Provided the matrix M +MT is PD,

V̇L (Z, t) ≤ −W (s)−M ‖z‖2 + P̄ ‖z‖+ ι1ε,

where M := λmin

{
M+MT

2

}
. Letting M =: M1 +M2 and letting W : R5n+2L → R

be defined as W (Z) = −W (s)−M1 ‖z‖
2, the time derivative of (155) bounded as

V̇L (Z, t) ≤ −W (Z) , (157)

∀ ‖z‖ > 1
2

(
P
M2

+
√

P
2

M2
2

+
ι21ε

2

M2
2

)
= µ, Z ∈ B (0, χ̄), for all t ≥ 0, and some χ̄ such that

B̄(0, χ̄) ⊆ C × R2L.

Using the bound in (148) and the fact that the converse Lyapunov function is

guaranteed to be time-independent, radially unbounded, and PD, Lemma 4.3 can be

invoked to conclude that

v
(
‖Z‖

)
≤ VL (Z, t) ≤ v

(
‖Z‖

)
, (158)

for all t ∈ R≥0 and for all Z ∈ R5n+2L, where v, v : R≥0 → R≥0 are class K functions.
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Provided the learning gains, the domain radii χ and χ̄, and the basis functions for

function approximation are selected such that M +MT is PD and µ < v−1
(
v (0, χ̄)

)
,

Theorem 4.18 in [156] can be invoked to conclude that Z is uniformly ultimately

bounded. Since the estimates Wa approximate the ideal weights W , the policy û

approximates the optimal policy u∗.

4.9 Simulation

To demonstrate the performance of the developed method for a nonlinear system with

an unknown value function, two simulations, one for a two-state dynamical system

and one for a four-state dynamical system corresponding to a two-link planar robot

manipulator, are provided.

4.9.1 Two state dynamical system

The dynamical system is given by

ẋ1 = x2, ẋ2 = f(x) + g(x)u, (159)

where

f(x) = −x1 −
1

2
x2

(
1−

(
cos (2x1) + 2

)2
)
, (160)

g(x) = cos (2x1) + 2. (161)

Noted that x1 is the measureable output. Using our estimator, we have the following

estimated dynamics

˙̂x1 = x̂2, ˙̂x2 = f(x̂) + g(x̂)u+ ν1, (162)

The state, x = [x1 x2]T , and the estimated states x̂ = [x̂1 x̂2]T needs to satisfy

the constraints, x1, x̂1 ∈ (a1, A1) and x2, x̂2 ∈ (a2, A2) where a1 = -7, A1 = 5, a2 =

-5, A2 = 7. The objective for the controller is to minimize the infinite horizon cost
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Table 5.: Comparison of costs for a single trajectory of barrier transformed (159),

obtained using the optimal feedback controller generated via the developed method,

and obtained using pseudospectral numerical optimal control software.

Method Cost

BT MBRL with state estimator 97.25

GPOPS II [157] 86.37

function in (113), with Q = diag(10, 10) and R = 0.1. The basis functions for value

function approximation are selected as σ(ŝ) = [ŝ2
1; ŝ1ŝ2; ŝ2

2]. The initial conditions

for the state, the estimated state, and the initial guesses for the weights are selected

as x(0) = [−6.5; 6.5], x̂(0) = [−6; 6], Γ(0) = diag(1, 1, 1), and Ŵa(0) = Ŵc(0) =[
1/2; 1/2; 1/2

]
respectively. The ideal values of the actor and the critic weights for the

barrier-transformed optimal control problem are unknown. The simulation uses 100

fixed Bellman error extrapolation points in a 4x4 square around the origin of the

s−coordinate system.

Results for the two state system

Fig.11 indicates that the system state, x, stays within the user-specified safe set while

converging to the origin. As seen from Fig. 13, the state estimation errors also con-

verge to the zero. The results in Fig. 12 shows that the unknown weights for both

the actor and critic NNs converge to similar values.

As the ideal actor and critic weights are unknown, the estimates cannot be directly

compared against the ideal weights. To gauge the quality of the estimates, the tra-

jectory generated by the controller

u(t) = û
(
ŝ(t), Ŵ ∗

c

)
,

where Ŵ ∗
c is the final value of the critic weights obtained in Fig. 12, starting from
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Figure 11: Phase portrait for the two-state dynamical system using MBRL with state

estimator in the original coordinates. The boxed area represents the user-selected safe

set.

a specific initial condition, and is compared against the trajectory obtained using an

offline numerical solution computed using the GPOPS II optimization software [157].

The total cost, generated by numerically integrating (113), is used as the metric for

comparison. The results in Table 5. indicate that while the two solution techniques

generate slightly different trajectories in the phase space (see Fig. 14).

Sensitivity Analysis for the two state system

To study the sensitivity of the developed technique to changes in various tuning gains,

a one-at-a-time sensitivity analysis is performed. The gains k, α, β1, kc, ka1, ka2, β,

and v are selected for the sensitivity analysis. The costs of the trajectories, under the

optimal feedback controller obtained using the developed method, are presented in

Table 6. for 5 different values of each gain. The gains are varied in a neighborhood of

the nominal values (selected through trial and error) k = 0.0001, α = 0.0001, β1 = 10,

kc = 0.1, ka1 = 100, ka2 = 0.1, β = 5, and v = 5.

The results in Table 6. indicate that the developed method is robust to small

changes in the learning gains.
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Figure 12: Estimates of the actor and the critic weights under nominal gains for the

two-state dynamical system.

Figure 13: Estimation errors between the original states and the estimated states

under nominal gains for the two-state dynamical system.
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Figure 14: Comparison of the optimal trajectories obtained using GPOPS II and

using BT MBRL with fixed optimal weights for the two-state dynamical system.

Table 6.: Sensitivity Analysis for the two state system. The gains are varied in a

neighborhood of the nominal values (selected through trial and error) k = 0.0001,

α = 0.0001, β1 = 10, kc = 0.1, ka1 = 100, ka2 = 0.1, β = 5, v = 5 , and NF indicates

not feasible.

kc= 0.001 0.01 0.1 1 10

Cost 97.25 97.25 97.25 97.26 97.38

ka1= 30 50 100 200 500

Cost 97.26 97.25 97.25 97.25 97.25

ka2= 0.01 0.05 0.1 0.5 1

Cost 97.25 97.25 97.25 97.25 97.26

β= 1 2 5 10 30

Cost NF 97.25 97.25 97.25 97.25

v= 0.1 1 5 10 30

Cost 99.06 97.36 97.25 97.25 97.36
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4.9.2 Four state dynamical system

The four-state dynamical system corresponding to a two-link planar robot manipu-

lator is given by

ẋ1 = x2, ẋ2 = f(x) + g(x)u, (163)

where

x1 =

x11

x12

 , x2 =

x21

x22 ,

 ,

f(x) = −M−1

(
VM

x21

x22

+

fd1x21 + fs1 tanh(x21)

fd2x22 + fs2 tanh(x22)

),
g(x) = (M−1)T , u =

u1

u2

 ,
D := diag

[
x21 , x22 , tanh(x21), tanh(x22)

]
,

M :=

p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

 ∈ R2×2,

VM :=

−p3s2x22 −p3s2(x21 + x22)

p3s2x21 0

 ∈ R2×2,

with s2 = sin(x12), c2 = cos(x12), p1 = 3.473, p2 = 0.196, p3 = 0.242. The parameters

are selected as fd1 = 5.3, fd2 = 1.1, fs1 = 8.45, fs1 = 2.35.

Noted that x1 is the measureable output. Using our estimator, we have the fol-

lowing estimated dynamics

˙̂x1 = x̂2, ˙̂x2 = f(x̂) + g(x̂)û+ ν1, (164)
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Table 7.: Costs for a single barrier transformed trajectory of (163), obtained using

the developed method, and using pseudospectral numerical optimal control software.

Method Cost

BT MBRL with state estimator 11.226

GPOPS II 6.858

The state x = [x11 x12 x21 x22 ]
T corresponds to angular positions and the an-

gular velocities of the two links; x̂ = [x̂11 x̂12 x̂21 x̂22 ]
T corresponds to the es-

timated angular positions and the estimated angular velocities of the two links.

Now, x, x̂ need to satisfy the constraints, x11 , x̂11 ∈ (−1, 1); x12 , x̂12 ∈ (−1, 1);

x21 , x̂21 ∈ (−2, 2); x22 , x̂22 ∈ (−2, 2). The objective for the controller is to min-

imize the infinite horizon cost function in (113), with Q = diag(10, 10, 1, 1) and

R = diag(1, 1). The basis functions for value function approximation are selected

as σ(ŝ) = [ŝ11 ŝ21 ; ŝ12 ŝ22 ; ŝ21 ŝ12 ; ŝ22 ŝ11 ; ŝ11 ŝ12 ; ŝ22 ŝ21 ; ŝ
2
11

; ŝ2
12

; ŝ2
21

; ŝ2
22

].

The initial conditions for our state, our estimated states, and the initial guesses

for the weights are selected as x(0) = [−0.5;−0.5; 1; 1], x̂(0) = [−0.5;−0.5; 1.1; 1.1],

Γ(0) = diag(10, 10, 10, 10, 10, 10, 10, 10, 10, 10), and Ŵa(0) = [5; 15; 0; 0; 10; 2; 15; 5; 2; 2] ,

Ŵc(0) = [15; 15; 0; 0; 10; 2; 15; 5; 2; 2]. The ideal values of the actor and the critic

weights are unknown. The simulation uses 625 fixed Bellman error extrapolation

points in a 4x4 square around the origin of the s−coordinate system.

Results for the four state system

As seen from Fig. 15, the system estimated state x stays within the user-specified safe

set while converging to the origin. As demonstrated in Fig. 17 the state estimations

converge to the true values.

A comparison with offline numerical optimal control, similar to the procedure used

for the two-state, yields the results in Table 7. indicate that the two solution tech-
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Figure 15: Estimated State trajectories for the four-state dynamical system using

MBRL with state estimator in the original coordinates. The dash lines represent the

user-selected safe set.

niques generate slightly different trajectories in the state space (see Fig. 18) and the

total cost of the trajectories is different. We hypothesize that the difference in costs

is due to the basis for value function approximation being unknown.

In summary, the newly developed method can achieve online optimal feedback

control thorough a BT MBRL approach while estimating the value of the unknown

states in the system dynamics and ensuring safety guarantees in the original coordi-

nates.

The following section details a one-at-a-time sensitivity analysis and study the

sensitivity of the developed technique to changes in various tuning gains.

Sensitivity Analysis for the four state system

The gains kc, ka1, ka2, β, and v are selected for the sensitivity analysis. The costs of

the trajectories, under the optimal feedback controller obtained using the developed

method, are presented in Table 8. for 5 different values of each gain.

The gains are varied in a neighborhood of the nominal values (selected through

trial and error) kc = 1000, ka1 = 100, ka2 = 1, β = 0.001, v = 500, k = 0.001, α = 1,
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Figure 16: Estimates of the critic weights under nominal gains for the four-state

dynamical system.

Figure 17: Estimation errors between the original states and the estimated states

under nominal gains for the four-state dynamical system.
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Figure 18: Comparison of the optimal state trajectories obtained using GPOPS II

and using BT MBRL with fixed optimal weights for the four-state dynamical system.

Table 8.: Sensitivity Analysis for the four state system. The gains are varied in a

neighborhood of the nominal values (selected through trial and error) k = 0.001,

α = 1, β1 = 100, kc = 1000, ka1 = 100, ka2 = 1, β = 0.001, v = 500; WNC and NF

indicate weights not converging and not feasible, respectively.

kc= 100 500 1000 2000 5000

Cost 11.7277 9.94 11.226 WNC WNC

ka1= 10 50 100 250 500

Cost 13.01 11.546 11.226 11.226 11.94

ka2= 0.01 0.1 1 10 100

Cost 11.326 11.306 11.226 11.42 520.06

β= 0.00001 0.0001 0.001 0.01 0.1

Cost 11.234 11.229 11.226 WNC WNC

v= 1 50 500 1000 5000

Cost NF WNC 11.226 12.026 14.7279
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and β1 = 100. The results in Table 8. indicate that the developed method is not

sensitive to small changes in the learning gains.
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Chapter V

CONCLUSION AND FUTURE WORK

5.1 Summary

This thesis focuses on addressing the two key issues: (a) safety, (b) online learning

and optimization.

The method to address safety in this thesis, barrier transformation (BT), is an

effective method to address the safety issue for a dynamical system in real time as

this method reduces the computational cost significantly by avoiding the state con-

straints. While RL is a powerful technique for optimization and online learning, it

is often difficult to use RL to synthesis controllers safely due to the trial and error

learning approach that is fundamental to RL. Hence, RL typically requires a large

number of iterations due to sample inefficiency. Sample efficiency in RL can be im-

proved using model-based reinforcement learning (MBRL); however, Methods based

on MBRL are vulnerable to failure as a result of inaccuracies in models with para-

metric uncertainties and/or partially observable models. To address this issue, two

model-based reinforcement learning (MBRL) techniques for the safety-aware systems

have been developed in this thesis.

5.2 Results

Chapter III addresses the optimal controller synthesis issue for the safety-aware sys-

tems with parametric uncertainties. This chapter presents a novel online MBRL

based controller which uses BFs, BE extrapolation and a novel FCL method. A
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known BF transformation is applied to a constrained optimal control problem to gen-

erate an unconstrained optimal control problem in the transformed coordinates. The

system dynamics, if linear in the parameters in the original coordinates, are shown

to be also linearly parameterized in the transformed coordinates. MBRL is used to

solve the problem online in the transformed coordinates in conjunction with the novel

FCL to learn the unknown model parameters. Regulation of the system states to a

neighborhood of the origin and convergence of the estimated policy to a neighbor-

hood of the optimal policy is determined using a Lyapunov-based stability analysis.

Simulations are used to demonstrate the applicability of the developed approaches,

and to demonstrate their usefulness, comparative simulations are shown whenever

alternative techniques are available.

Chapter IV addresses the optimal controller synthesis issue for the safety-aware

partially observable systems. This chapter presents a novel framework for approxi-

mate optimal control of a class of safety aware nonlinear systems. The framework

consists of a novel safe state estimator, and a novel online MBRL based controller. A

BT has been applied to a constrained optimal control problem to generate an uncon-

strained optimal control problem in the transformed coordinates. MBRL is used to

solve the problem online in the transformed coordinates in conjunction with the novel

state estimator to estimate the transformed states. In the developed method, the cost

function is selected to be quadratic in the transformed coordinates. Regulation of the

system states to a neighborhood of the origin and convergence of the estimated policy

to a neighborhood of the optimal policy is determined using a Lyapunov-based stabil-

ity analysis. Furthermore, state estimator-based BT MBRL controller is guaranteed

to keep the state of the original system within the safety bounds. Simulations are

used to demonstrate the applicability of the developed approach, and to demonstrate

their usefulness, comparative simulations are shown whenever alternative techniques

are available.
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5.3 Limitations and future work

Limitations and possible extensions of the ideas presented in this thesis revolve around

the same two key issues: (a) safety, and (b) online learning and optimization.

The barrier function used in the BT to address safety is not time varying, a more

generic, and adaptive barrier function constructed, perhaps, using sensor data is a

subject for future research. The BT method used to address safety uses a box-based

barrier, a different barrier approach can be another interesting subject for future

research.

For optimal learning, parametric approximation techniques are used to approxi-

mate the value functions in this thesis. Parametric approximation of the value func-

tion requires selection of appropriate basis functions which may be hard to find for

the real-world systems. Developing techniques to systematically determine a set of

basis functions for real-world systems is a subject for research.

The barrier transformation method to ensure safety relies on the dynamics of the

system. While chapter III addresses parametric uncertainties, the established meth-

ods could result a potential safety violation due to the non-parametric uncertainties.

To be specific, since the safety relies on the inverting barrier function to recover the

original dynamics, Lemma 3.1.1, Lemma 4.3.1, and Lemma 4.3.2 which link between

the original dynamics and the transformed dynamics may break down due to the non-

parametric uncertainties/unmodeled dynamics; resulting a potential safety violation

or/and instability. Future studies can focus on developing a more rigorous theoretical

case and/or a more robust approach for ensuring safety.

The approaches developed in this thesis guarantee local stability over a small

compact set which causes the difficulty of determining correct gains to stabilize the

the states of the system.

A more direct extension of this thesis involves developing techniques to solve

the model uncertainty issue for the safety aware partially observable systems with

89



parametric uncertainties, which can be achieved by merging the techniques developed

in this thesis.

Besides, in the developed method, the cost function is selected to be quadratic in

the transformed coordinates. We have optimized our cost function in the transformed

coordinate. However, a physically meaningful cost function is more likely to be avail-

able in the original coordinates. Hence, techniques to transform cost functions from

the original coordinates to the barrier coordinates ensure that optimization in barrier

coordinates also corresponds to optimization in the original coordinates is another

topic for future research.

90



Bibliography

[1] C. Darwin, On the Origin of Species by Means of Natural Selection. London:

Murray, 1859, or the Preservation of Favored Races in the Struggle for Life.

[2] I. P. Pavlov, W. H. Gantt, and G. V. Folbort, Lectures on conditioned reflexes.

Liverwright Publishing Corporation, 1928.

[3] V. Duchaine and C. Gosselin, “Safe, stable and intuitive control for physical

human-robot interaction,” in 2009 IEEE International Conference on Robotics

and Automation, 2009, pp. 3383–3388.

[4] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[5] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” Int.

J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp.

846–894, 2011.

[7] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A

fast marching sampling-based method for optimal motion planning in many

dimensions,” Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921, 2015.

[8] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive

active steering control for autonomous vehicle systems,” IEEE Transactions on

control systems technology, vol. 15, no. 3, pp. 566–580, 2007.

91



[9] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, “Low complexity

mpc schemes for integrated vehicle dynamics control problems,” in 9th inter-

national symposium on advanced vehicle control (AVEC), 2008.

[10] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory generation

for wheeled mobile robots,” The International Journal of Robotics Research,

vol. 26, no. 2, pp. 141–166, 2007.

[11] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,

D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving in urban envi-

ronments: Boss and the urban challenge,” Journal of Field Robotics, vol. 25,

no. 8, pp. 425–466, 2008.

[12] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software for solving

multiple-phase optimal control problems using hp-adaptive gaussian quadrature

collocation methods and sparse nonlinear programming,” ACM Transactions on

Mathematical Software (TOMS), vol. 41, no. 1, pp. 1–37, 2014.

[13] A. D. Wilson, J. A. Schultz, A. R. Ansari, and T. D. Murphey, “Real-time tra-

jectory synthesis for information maximization using sequential action control

and least-squares estimation,” in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 4935–4940.

[14] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-form op-

timal control for nonlinear and nonsmooth systems,” IEEE Transactions on

Robotics, vol. 32, no. 5, pp. 1196–1214, 2016.

[15] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering using non-

linear model predictive control,” in 2018 Annual American Control Conference

(ACC). IEEE, 2018, pp. 4772–4777.

92



[16] J. Ding, E. Li, H. Huang, and C. J. Tomlin, “Reachability-based synthesis of

feedback policies for motion planning under bounded disturbances,” in 2011

IEEE International Conference on Robotics and Automation. IEEE, 2011, pp.

2160–2165.

[17] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake, “Convex op-

timization of nonlinear feedback controllers via occupation measures,” Int. J.

Robot. Res., vol. 33, no. 9, pp. 1209–1230, 2014.

[18] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles

using reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp.

903–918, 2014.

[19] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback

motion planning,” The International Journal of Robotics Research, vol. 36,

no. 8, pp. 947–982, 2017.

[20] M. Althoff, “An introduction to cora 2015,” in Proc. of the Workshop on Applied

Verification for Continuous and Hybrid Systems, 2015.

[21] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,

“Bridging the gap between safety and real-time performance in receding-

horizon trajectory design for mobile robots,” The International Journal of

Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.

[22] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function

based quadratic programs for safety critical systems,” IEEE Trans. Autom.

Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[23] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and

P. Tabuada, “Control barrier functions: Theory and applications,” in 2019

18th European Control Conference (ECC), 2019, pp. 3420–3431.

93



[24] M. H. Cohen and C. Belta, “Approximate optimal control for safety-critical sys-

tems with control barrier functions,” in 2020 59th IEEE Conference on Decision

and Control (CDC), 2020, pp. 2062–2067.

[25] N. S. M. Mahmud, K. Hareland, S. A. Nivison, Z. I. Bell, and R. Kamala-

purkar, “A safety aware model-based reinforcement learning framework for sys-

tems with uncertainties,” arXiv:2007.12666, 2020, submitted to IEEE Transac-

tions on Neural Networks and Learning Systems.

[26] O. von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory

optimization,” Ann. Oper. Res., vol. 37, no. 1, pp. 357–373, 1992.

[27] J. T. Betts, “Survey of numerical methods for trajectory optimization,” J. Guid.

Control Dynam., vol. 21, no. 2, pp. 193–207, 1998.

[28] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron-like adaptive elements

that can solve difficult learning control problems,” IEEE Trans. Syst. Man

Cybern., vol. 13, no. 5, pp. 834–846, 1983.

[29] R. S. Sutton, “Learning to predict by the methods of temporal differences,”

Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[30] P. J. Werbos, “A menu of designs for reinforcement learning over time,” Neural

Netw. for Control, pp. 67–95, 1990.

[31] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3,

pp. 279–292, 1992.

[32] R. E. Bellman, Dynamic programming. Mineola, NY: Dover Publications, Inc.,

2003.

[33] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed. Belmont,

MA: Athena Scientific, 2007, vol. 2.

94



[34] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control, 3rd ed. Hoboken,

NJ: Wiley, 2012.

[35] E. G. Al’Brekht, “On the optimal stabilization of nonlinear systems,” J. Appl.

Math. Mech., vol. 25, no. 5, pp. 1254–1266, 1961.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. Cam-

bridge, MA, USA: MIT Press, 1998.

[37] P. J. Werbos, “Approximate dynamic programming for real-time control and

neural modeling,” in Handbook of intelligent control: Neural, fuzzy, and adap-

tive approaches, D. A. White and D. A. Sorge, Eds. Nostrand, New York,

1992, vol. 15, pp. 493–525.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena

Scientific, 1996.

[39] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning

with function approximation,” IEEE Trans. Autom. Control, vol. 42, no. 5, pp.

674–690, 1997.

[40] J. N. Tsitsiklis and B. V. Roy, “Average cost temporal-difference learning,”

Automatica, vol. 35, no. 11, pp. 1799–1808, 1999.

[41] J. N. Tsitsiklis, “On the convergence of optimistic policy iteration,” J. Mach.

Learn. Res., vol. 3, pp. 59–72, 2003.

[42] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM J. Control

Optim., vol. 42, no. 4, pp. 1143–1166, 2004.

[43] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based reinforcement

learning for approximate optimal regulation,” Automatica, vol. 64, pp. 94–104,

Feb. 2016.

95



[44] R. Kamalapurkar, P. Walters, J. A. Rosenfeld, and W. E. Dixon, Reinforcement

learning for optimal feedback control: A Lyapunov-based approach, ser.

Communications and Control Engineering. Springer International Publishing,

2018.

[45] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A re-

view,” IEEE Access, vol. 2, pp. 56–77, 2014.

[46] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-

time motion planning with applications to autonomous urban driving,” IEEE

Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1105–1118,

2009.

[47] B. Luders, M. Kothari, and J. How, “Chance constrained rrt for probabilistic

robustness to environmental uncertainty,” in AIAA guidance, navigation, and

control conference, 2010, p. 8160.

[48] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and

M. Diehl, “An auto-generated nonlinear mpc algorithm for real-time obstacle

avoidance of ground vehicles,” in 2013 European Control Conference (ECC).

IEEE, 2013, pp. 4136–4141.

[49] A. Liniger and J. Lygeros, “Real-time control for autonomous racing based on

viability theory,” IEEE Transactions on Control Systems Technology, vol. 27,

no. 2, pp. 464–478, 2017.

[50] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,

“Fastrack: A modular framework for fast and guaranteed safe motion planning,”

in 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,

2017, pp. 1517–1522.

96



[51] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-

Jacobi formulation of reachable sets for continuous dynamic games,” IEEE

Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, Jul. 2005.

[52] D. Fridovich-Keil, J. F. Fisac, and C. J. Tomlin, “Safely probabilistically com-

plete real-time planning and exploration in unknown environments,” in 2019

International Conference on Robotics and Automation (ICRA). IEEE, 2019,

pp. 7470–7476.
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Appendix

Proofs

A Chapter III

Lemma 3.1.1 If t 7→ Φ
(
t, b(x0), ζ

)
is a Carathéodory solution to (40), starting

from the initial condition b(x0), under the feedback policy (s, t) 7→ ζ(s, t), and if

t 7→ Λ(t, x0, ζ) is a solution to (32), starting from the initial condition x0, under

the controller u(t) = ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
, then Λ(t, x0, ζ) = b−1

(
Φ(t, b(x0), ζ)

)
for all

t ∈ R≥0.

Proof. Since t 7→ Φ
(
t; b(x0), ζ

)
is a Carathéodory solution to ṡ = y(s)θ + G(s)u, it

is differentiable at almost all t. Since b−1 smooth, t 7→ b−1
(
Φ
(
t; b(x0), ζ

))
is also

differentiable at almost all t. When b−1
(
Φ
(
t; b(x0), ζ

))
is differentiable,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
=

d
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ds

dΦ
(
t, b(x0), ζ

)
dt

.

So,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
=

d
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ds

(
y
(
Φ
(
t; b(x0), ζ

))
θ

+G
(
Φ
(
t; b(x0), ζ

))
ζ
(
Φ
(
t; b(x0), ζ

)
, t
))
.

By the construction of y and G, for almost all t ∈ R≥0,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
= f

(
b−1
(
Φ
(
t; b(x0), ζ

)))
θ

+ g
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
,
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clearly t 7→ b−1
(
Φ
(
t; b(x0), ζ

))
is a Carathéodory solution to (32), starting from the

b−1
(
b(x0)

)
= x0 under the controller u(t) = ζ

(
Φ
(
t; b(x0), ζ

)
, t
)
. Finally, continu-

ity of t 7→ b−1
(
Φ
(
t; b(x0), ζ

))
and t 7→ Λ(t, x0, ζ) implies that b−1

(
Φ
(
t; b(x0), ζ

))
=

Λ(t, x0, ζ) for all t ∈ R≥0.

Lemma 3.2.1 If ‖Yf‖ is non-decreasing in time then (46) admits Carathéodory

solutions.

Proof. Since ‖Yf (0)‖ = 0, given any piecewise continuous control signal t 7→ u(t)

and initial conditions s0 and θ0, the Cauchy problem ż = h1(z, u), z(0) = z0 =

[s0; 0; 0; 0; 0; θ0] admits a unique Carathéodory solution t 7→ z1(0, z0) over [0, t∗), with

t∗ = min(t1, t2), where t1 = inf{t ∈ R≥0 | ‖Yf1(t, z0‖ = Yf} and t2 = inf{t ∈

R≥0| limτ 7→t ‖z1(τ, z0)‖ =∞}, where Yf1 denotes the Yf component of z1.

Given any (t
′
, z
′
) ∈ R≥0 ×R2n+2p+p2+np, the Cauchy problem ż = h2(z, u), z(t

′
) =

z
′
, also admits a unique Carathéodory solution t 7→ z2(t; t

′
, z
′
) over [t

′
, t∗∗) where t∗∗

= min
(
∞,
(

inf{t ∈ R≥t′ | limτ 7→t ‖z2(τ, b
′
, z
′
)‖ =∞}

))
.

If t∗ = t2 then t 7→ z1(t, z0) is also a unique Carathéodory solution to the Cauchy

problem ż = h(z, u), z(0) = z0. If not, then

t 7→ z∗(t, z0) =


z1(t, z0), t < t1

z2

(
t, t1, limτ↑t1 z1(τ, z0)

)
, t ≥ t1

, (165)

is a unique Carathéodory solution to the Cauchy problem ż = h(z, u), z(0) = z0.

B Chapter IV

Lemma 4.3.1 If t 7→ Φ
(
t, b(x0), ζ

)
is a Carathéodory solution to (109), starting

from the initial condition b(x0), under the feedback policy (s, t) 7→ ζ(s, t), and if

t 7→ Λ(t, x0, ζ) is a solution to (94), starting from the initial condition x0, under

the controller u(t) = ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
, then Λ(t, x0, ζ) = b−1

(
Φ(t, b(x0), ζ)

)
for all
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t ∈ R≥0.

Proof. Since t 7→ Φ
(
t; b(x0), ζ

)
is a Carathéodory solution to ṡ =

 H(s)

F (s) +G(s)u

,

it is differentiable at almost all t. Since b−1 smooth, t 7→ b−1
(
Φ
(
t; b(x0), ζ

))
is also

differentiable at almost all t. When b−1
(
Φ
(
t; b(x0), ζ

))
is differentiable,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
=

d
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ds

dΦ
(
t; b(x0), ζ

)
dt

.

So,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
=

d
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ds H

(
Φ
(
t; b(x0), ζ

))
F
(
Φ
(
t; b(x0), ζ

))
+G

(
Φ
(
t; b(x0), ζ

))
ζ
(
Φ
(
t; b(x0), ζ

)
, t
)
 .

By the construction of H, F , and G, for almost all t ∈ R≥0,

d

dt
b−1
(
Φ
(
t; b(x0), ζ

))
=


b−1
(
Φ2

(
t; b(x0

2), ζ
))

f
(
b−1
(
Φ
(
t; b(x0), ζ

)))
+ g
(
b−1
(
Φ
(
t; b(x0), ζ

)))
ζ
(
Φ
(
t; b(x0), ζ

)
, t
)

 .
Clearly t 7→ b−1

(
Φ
(
t; b(x0), ζ

))
is a Carathéodory solution to (94), starting from the

b−1
(
b(x0)

)
= x0 under the controller u(t) = ζ

(
Φ
(
t; b(x0), ζ

)
, t
)
. Finally, continu-

ity of t 7→ b−1
(
Φ
(
t; b(x0), ζ

))
and t 7→ Λ(t, x0, ζ) implies that b−1

(
Φ
(
t; b(x0), ζ

))
=

Λ(t, x0, ζ) for all t ∈ R≥0.

Lemma 4.3.2 If t 7→ Ψ
(
t; b(x1(·)), b(x̂0)

)
is a Carathéodory solution to (111), start-

ing from the initial condition b(x̂0) along the trajectory t 7→ b(x1(t)), and if t 7→

ξ(t;x1(·), x̂0) is a solution to (95), starting from the initial condition x̂0 along the

trajectory x1(·), then ξ(t;x1(·), x̂0) = b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
for all t ∈ R≥0.

Proof. Since t 7→ Ψ
(
t; b(x1(·)), b(x̂0)

)
is a Carathéodory solution to

˙̂s =

 H(ŝ)

F (ŝ) +G(ŝ)u+ ν2(s̃1, η)

, it is differentiable at almost all t. Since b−1 smooth,
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t 7→ b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
is also differentiable at almost all t.

When b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
is differentiable,

d

dt

(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
=

d
(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
ds

ds

dt
.

So,

d

dt

(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
=

d
(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
ds
H
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
F
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
+G

(
Ψ
(
t; b(x1(·)), b(x̂0)

))
u(t)

+ν2

(
Ψ
(
t; b(x1(·)), b(x̂0)

)
, t
)

 .

By the construction of H, F , ν2 and G, for almost all t ∈ R≥0,

d

dt

(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
=



b−1
(
Ψ2

(
t; b(x1(·)), b(x̂0

2)
))

f
(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
+g
(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)))
u(t)

+ν1

(
b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

)
, t
))


.

Clearly t 7→ b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
is a Carathéodory solution to (95),

starting from the initial condition b−1
(
b(x̂0)

)
= x̂0 along the

trajectory t 7→ b(x1(t)). Finally, continuity of t 7→ b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
and

t 7→ ξ(t;x1(·), x̂0)

implies that b−1
(
Ψ
(
t; b(x1(·)), b(x̂0)

))
= ξ(t;x1(·), x̂0) for all t ∈ R≥0.

Lemma 4.5.1 Let Vse : R3n → R≥0 be a continuously differentiable candidate Lya-

punov function defined as Vse(Z1) := α2

2
s̃T1 s̃1 + 1

2
rT r + 1

2
ηTη, where Z1 := [s̃T1 , r

T , ηT ].

Provided s, ŝ ∈ B(0, χ) for some χ > 0, the orbital derivative of Vse along the tra-

jectories of ˙̃s1, ṙ, and η̇, defined as V̇se(Z1, s, s̃, W̃a) := dVse(Z1,s,s̃,W̃a)
ds̃1

(H(s) −H(ŝ)) +

dVse(Z1,s,s̃,W̃a)
dr

ṙ+ dVse(Z1,s,s̃,W̃a)
dη

η̇, can be bounded as V̇se(Z1, s, s̃, W̃a) ≤ −α3‖s̃1‖2−(k−
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$1$4)‖r‖2 − (β1 − α)‖η‖2 +$1

(
1 +$4 +$4α‖

)
‖r‖‖s̃1‖+$1$4‖r‖‖η‖

+$2‖r‖‖W̃a‖+$3‖r‖.

Proof. Using the fact that Vse is PD and Lemma 4.3 from [156] yields

vl(‖Z1‖) ≤ Vse(Z1) ≤ vl(‖Z1‖) (166)

for all t ∈ R≥t0 and for all Z1 ∈ R3n, where vl, vl : R≥0 → R≥0 are class κ functions.

Let vl : R≥0 → R≥0 be a class κ function such that vl(‖Z1‖) = 1
2
(‖s̃1‖2 +‖r‖2 +‖η‖2).

Using (104), first state of (111), (128), and (133), the orbital derivative can be ex-

pressed as

V̇se(Z1, s, s̃, W̃a) = α2s̃1
T ˙̃s1 + rT ṙ + ηT η̇. (167)

(131) and (133) yields,

V̇se(Z1, s, s̃, W̃a) = α2s̃T1 (r − αs̃1 − η) + rT ṙ + ηT (−β1η − kr − α ˙̃s1), (168)

using (130),

V̇se(Z1, s, s̃, W̃a) = −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη + (rT F̃2(s, ŝ) + rT F̃3(s, ŝ)

+ rT G̃1(s, ŝ)û). (169)

Rewriting (169) as

V̇se(Z1, s, s̃, W̃a) ≤ −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη + rT F̃2(s, ŝ) + rT F̃3(s, ŝ)

−rT G̃1 (s, ŝ) û
(
s, W̃a

)
+ rT G̃1 (s, ŝ) ũ

(
s, ŝ, W̃a

)
− rT G̃1 (s, ŝ) ũ (s, ŝ,W )

+rT G̃1 (s, ŝ) û (s,W ) , (170)

which yields

V̇se(Z1, s, s̃, W̃a) ≤ −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη + rT F̃2(s, ŝ) + rT F̃3(s, ŝ)

−rT G̃1 (s, ŝ) û
(
s, W̃a

)
+ rT G̃1 (s, ŝ) û

(
s, W̃a

)
− rT G̃1 (s, ŝ) û

(
ŝ, W̃a

)
−rT G̃1 (s, ŝ) û (s,W ) + rT G̃1 (s, ŝ) û (ŝ,W ) + rT G̃1 (s, ŝ) û (s,W ) . (171)
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Simplifying (171) yields

V̇se(Z1, s, s̃, W̃a) ≤ −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη + rT F̃2(s, ŝ) + rT F̃3(s, ŝ)

+rT G̃1 (s, ŝ) û
(
s, W̃a

)
+ rT G̃1 (s, ŝ) û

(
s, W̃a

)
+ rT G̃1 (s, ŝ) û

(
ŝ, W̃a

)
+rT G̃1 (s, ŝ) û (s,W ) + rT G̃1 (s, ŝ) û (ŝ,W ) + rT G̃1 (s, ŝ) û (s,W ) . (172)

Using the Cauchy-Schwarz inequality and the fact that F2, F3, and G are Lipschitz

continuous on B(0, χ).

V̇se(Z1, s, s̃, W̃a) ≤ −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη

+$1‖r‖‖s̃‖+$2‖r‖‖W̃a‖+$3‖r‖, (173)

Provided s, ŝ ∈ B(0, χ) from (106) and (111),

s2 = b

(
ṡ1(

A1a
2
1 − a1A

2
1

a2
1e
s1 − 2a1A1 + A2

1e
−s1

)

)
= h(s1, ṡ1),

ŝ2 = b

(
˙̂s1(

A1a
2
1 − a1A

2
1

a2
1e
ŝ1 − 2a1A1 + A2

1e
−ŝ1

)

)
= h(ŝ1, ˙̂s1),

and

s̃2 = s2 − ŝ2 = h(s1, ṡ1)− h(ŝ1, ˙̂s1). (174)

Provided ṡ1 is fixed, Lipschitz continuity of h, we can write,

|h(s1, ṡ1)− h(ŝ1, ṡ1)| ≤ $4‖(s1, ṡ1)− (ŝ1, ṡ1)‖, (175)

where $4 is the Lipschitz constant. (175) yields,

|h(s1, ṡ1)− h(ŝ1, ṡ1)| ≤ $4‖s1 − ŝ1‖ or, |h(s1, ṡ1)− h(ŝ1, ṡ1)| ≤ $4‖s̃1‖. (176)

Provided s1 is fixed, Lipschitz continuity of h, we can write,

|h(s1, ṡ1)− h(s1, ˙̂s1)| ≤ $4‖(s1, ṡ1)− (s1, ˙̂s1)‖, (177)
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(177) yields,

|h(s1, ṡ1)− h(s1, ˙̂s1)| ≤ $4‖ṡ1 − ˙̂s1‖ or, |h(s1, ṡ1)− h(s1, ˙̂s1)| ≤ $4‖ ˙̃s1‖. (178)

Provided s, ŝ ∈ χ, Lipschitz continuity of h can be exploited to derive the bound

|h(s1, ṡ1)− h(ŝ1, ˙̂s1)| = |h(s1, ṡ1)− h(ŝ1, ṡ1) + h(ŝ1, ṡ1)− h(ŝ1, ˙̂s1)|

≤ |h(s1, ṡ1)− h(ŝ1, ṡ1)|+ |h(ŝ1, ṡ1)− h(ŝ1, ˙̂s1)| ≤ $4‖s̃1‖+$4‖ ˙̃s1‖

≤ $4‖s̃1‖+$4‖r − αs̃1 − η‖. (179)

Using the triangle inequality,

‖s̃‖ ≤ ‖s̃1‖+ ‖s̃2‖ ≤ (1 +$4 +$4α)‖s̃1‖+$4‖r‖+$4‖η‖. (180)

Substituting (180) into (173)yields

V̇se(Z1, s, s̃, W̃a) ≤ −α3s̃1
T s̃1 − krT r − (β1 − α)ηTη

+$1‖r‖
(

(1 +$4 +$4α)‖s̃1‖+$4‖r‖+$4‖η‖
)

+$2‖r‖‖W̃a‖+$3‖r‖. (181)

(181) can be rearranged as

V̇se(Z1, s, s̃, W̃a) ≤ −α3‖s̃1‖2 − (k −$1$4)‖r‖2 − (β1 − α)‖η‖2

+$1

(
1 +$4 +$4α‖

)
‖r‖‖s̃1‖+$1$4‖r‖‖η‖+$2‖r‖‖W̃a‖+$3‖r‖. (182)

B.1 Full derivative of Weight parameters

Let Θ
(
W̃c, W̃a, t

)
:= 1

2
W̃ T
c Γ−1 (t) W̃c + 1

2
W̃ T
a W̃a. The orbital derivative of Θ along

the trajectories of (138) - (140) is defined as

Θ̇
(
W̃c, W̃a, t

)
= W̃ T

c Γ−1 ˙̃Wc −
1

2
W̃ T
c Γ−1Γ̇Γ−1W̃c + W̃ T

a
˙̃Wa, (183)
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where ˙̃Wc = − ˙̂
Wc, and ˙̃Wa = − ˙̂

Wa. Substituting (138) - (140) in (183) yields,

Θ̇
(
W̃c, W̃a, t

)
= −W̃ T

c Γ−1

−kc
N

Γ
N∑
k=1

ωk
ρk
δ̂k


− 1

2
W̃ T
c Γ−1

βΓ− kc
N

Γ
N∑
k=1

ωkω
T
k

ρ2
k

Γ

Γ−1W̃c

− W̃ T
a

−ka1 (Wa −Wc)− ka2Wa +
N∑
k=1

kcG
T
kWaω

T
k

4Nρk
Wc

 , (184)

so,

Θ̇
(
W̃c, W̃a, t

)
= −W̃ T

c Γ−1

−kc
N

Γ
N∑
k=1

ωk
ρk
δ̂k


− 1

2
W̃ T
c Γ−1

βΓ− kc
N

Γ
N∑
k=1

ωkω
T
k

ρ2
k

Γ

Γ−1W̃c

− W̃ T
a

−ka1 (Wa −Wc)− ka2Wa +
N∑
k=1

kcG
T
kWaω

T
k

4Nρk
Wc

 , (185)

so,

Θ̇
(
W̃c, W̃a, t

)
= −W̃ T

c Γ−1

−kc
N

Γ
N∑
k=1

ωk
ρk
δ̂k

− β

2
W̃ T
c Γ−1W̃c

+
kc
2N

W̃ T
c

N∑
k=1

ωkω
T
k

ρ2
k

W̃c − (ka1 + ka2) W̃ T
a W̃a + ka1W̃

T
a W̃c + ka2W̃

T
a W

−
N∑
k=1

W̃ T
a

kcG
T
kWaω

T
k

4Nρk
Wc, (186)

so

Θ̇
(
W̃c, W̃a, t

)
= −W̃ T

c Γ−1

−kc
N

Γ
N∑
k=1

ωk
ρk

(
−ωTk W̃c +

1

4
W̃ T
a GσkW̃a + ∆k

)
− β

2
W̃ T
c Γ−1W̃c +

kc
2N

W̃ T
c

N∑
k=1

ωkω
T
k

ρ2
k

W̃c − (ka1 + ka2) W̃ T
a W̃a + ka1W̃

T
a W̃c

+ ka2W̃
T
a W −

N∑
k=1

W̃ T
a

kcG
T
kWaω

T
k

4Nρk
Wc, (187)
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so,

Θ̇
(
W̃c, W̃a, t

)
= −kc

N
W̃ T
c

N∑
k=1

ωk
ρk
ωTk W̃c +

kc
N
W̃ T
c

N∑
k=1

ωk
ρk

1

4
W̃ T
a GσkW̃a

+
kc
N
W̃ T
c

N∑
k=1

ωk
ρk

∆k −
β

2
W̃ T
c Γ−1W̃c +

kc
2N

W̃ T
c

N∑
k=1

ωkω
T
k

ρ2
k

W̃c − (ka1 + ka2) W̃ T
a W̃a

+ ka1W̃
T
a W̃c + ka2W̃

T
a W −

N∑
k=1

W̃ T
a

kcG
T
kWaω

T
k

4Nρk
Wc, (188)

so,

Θ̇
(
W̃c, W̃a, t

)
= −β

2
W̃ T
c Γ−1W̃c − (ka1 + ka2) W̃ T

a W̃a −
kc
2N

W̃ T
c

N∑
k=1

ωk
ρk
ωTk W̃c

− kc
2N

W̃ T
c

N∑
k=1

(
ωkω

T
k

ρk
− ωkω

T
k

ρ2
k

)
W̃c +

kc
N
W̃ T
c

N∑
k=1

ωk
ρk

∆k +
kc
N
W̃ T
c

N∑
k=1

ωk
ρk

1

4
W̃ T
a GσkW̃a

+ ka1W̃
T
a W̃c + ka2W̃

T
a W −

N∑
k=1

W̃ T
a

kcG
T
kWaω

T
k

4Nρk
Wc, (189)

so,

Θ̇
(
W̃c, W̃a, t

)
= −W̃ T

c

β
2

Γ−1 +
kc
2N

N∑
k=1

ωkω
T
k

ρk

 W̃c − (ka1 + ka2) W̃ T
a W̃a

+ kcW̃
T
c

N∑
k=1

ωk
Nρk

∆k + kcW̃
T
c

N∑
k=1

ωk
4Nρk

W̃ T
a GσkW̃a + ka1W̃

T
a W̃c

+ ka2W̃
T
a W − kc

N∑
k=1

W̃ T
a

GT
kWaω

T
k

4Nρk
Wc. (190)

Provided the extrapolation states are selected such that sk ∈ B(0, χ),

∀k = 1, . . . , N , the orbital derivative in (183) can be bounded as

Θ̇
(
W̃c, W̃a, t

)
≤ −kcc

∥∥∥W̃c

∥∥∥2

− (ka1 + ka2)
∥∥∥W̃a

∥∥∥2

+ kcι8ε
∥∥∥W̃c

∥∥∥+ kcι5

∥∥∥W̃a

∥∥∥2

+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥+
(
kcι7 + ka2W

)∥∥∥W̃a

∥∥∥ ,
for all t ≥ 0, where ι5, . . . , ι8 are positive constants that are independent of the learn-

ing gains, W denotes an upper bound on the norm of the ideal weights W , and

c3 = mint≥0 λmin

{(
β

2kc
Γ−1 (t) + 1

2N

∑N
k=1

ωkω
T
k

ρk

)}
. Assumption 4.8.1 and (148) guar-

antee that c3 > 0.
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B.2 Derivation for candidate Lyapunov function

The candidate Lyapunov function for the overall system is then defined as

VL (Z, t) := V (s) + Θ
(
W̃c, W̃a, t

)
+ Vse (Z1) , (191)

where Z :=

[
sT s̃T1 rT ηT W̃ T

c W̃ T
a

]T
. The orbital derivative of the candidate

Lyapunov function along the trajectories of (95), (100),(101),(109), (138), (139),

(140), under the controller (141), is defined as

V̇L(Z, t) = V̇
(
s, s̃, W̃a

)
+ V̇se

(
Z1, s, s̃, W̃a

)
+ Θ̇

(
W̃c, W̃a, t

)
. (192)

V̇L (Z, t) ≤ −W (s) + ι1ε+ ι2 ‖s̃‖
∥∥∥W̃a

∥∥∥+ ι3

∥∥∥W̃a

∥∥∥+ ι4 ‖s̃‖

− kcc
∥∥∥W̃c

∥∥∥2

− (ka1 + ka2)
∥∥∥W̃a

∥∥∥2

+ kcι8ε
∥∥∥W̃c

∥∥∥+ kcι5

∥∥∥W̃a

∥∥∥2

+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥+
(
kcι7 + ka2W

)∥∥∥W̃a

∥∥∥
− α3‖s̃1‖2 − (k −$1$4)‖r‖2 − (β1 − α)‖η‖2 +$1‖r‖‖s̃1‖+$1$4‖r‖‖s̃1‖

+$1$4α‖‖r‖s̃1‖+$1$4‖r‖‖η‖+$2‖r‖‖W̃a‖+$3‖r‖, (193)

so,

V̇L (Z, t) ≤ −W (s) + ι1ε+

(
ι2 ‖s̃‖+ ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥+ ι4 ‖s̃‖

− kcc
∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

+ kcι8ε
∥∥∥W̃c

∥∥∥+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥
− α3 ‖s̃1‖2 − (k −$1$4)‖r‖2 − (β1 − α)‖η‖2

+

(
1 +$4 +$4α

)
$1‖r‖‖s̃1‖+$1$4‖r‖‖η‖+$2‖r‖‖W̃a‖+$3‖r‖, (194)
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so,

V̇L (Z, t) ≤ −W (s)− kcc
∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

− α3 ‖s̃1‖2 − (k −$1$4)‖r‖2

− (β1 − α)‖η‖2 + ι1ε+

(
ι2 ‖s̃‖+ ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥+ ι4 ‖s̃‖

+ kcι8ε
∥∥∥W̃c

∥∥∥+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥+

(
1 +$4 +$4α

)
$1‖r‖‖s̃1‖

+$1$4‖r‖‖η‖+$2‖r‖‖W̃a‖+$3‖r‖, (195)

so,

V̇L (Z, t) ≤ −W (s)− kcc
∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

− α3 ‖s̃1‖2

− (k −$1$4)‖r‖2 − (β1 − α)‖η‖2 +

(
ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥ r
+ ι4(1 +$4 +$4α)‖s̃1‖+ ($3 + ι4$4)‖r‖+ ι4$4‖η‖

+ kcι8ε
∥∥∥W̃c

∥∥∥+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥
+ (1 +$4 +$4α)$1‖r‖‖s̃1‖+$1$4‖r‖‖η‖

+ ι2(1 +$4 +$4α)‖s̃1‖
∥∥∥W̃a

∥∥∥
+

(
ι2$4 +$2

)
‖r‖

∥∥∥W̃a

∥∥∥+ ι2$4‖η‖
∥∥∥W̃a

∥∥∥+ ι1ε, (196)

so,

V̇L (Z, t) ≤ −W (s)− kcc
∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

− α3 ‖s̃1‖2 − (k −$1$4)‖r‖2 − (β1 − α)‖η‖2

+ (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥+ ι2(1 +$4 +$4α)‖s̃1‖
∥∥∥W̃a

∥∥∥
+

(
ι2$4 +$2

)
‖r‖

∥∥∥W̃a

∥∥∥+ ι2$4‖η‖
∥∥∥W̃a

∥∥∥
+ (1 +$4 +$4α)$1‖r‖‖s̃1‖+$1$4‖r‖‖η‖+ ι4$4‖η‖+ ($3 + ι4$4)‖r‖

+

(
ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥+ kcι8ε
∥∥∥W̃c

∥∥∥+ ι4(1 +$4 +$4α)‖s̃1‖+ ι1ε, (197)
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Let C ⊂ R5n be a compact set defined as C := {(s, s̃1, η, r) ∈ R5n|‖s‖ + ‖s̃1‖(1 +

$4(1 + α)) +$4(‖r‖‖+ ‖η‖) ≤ χ}. Using (180), whenever, (s, s̃1, η, r) ∈ C, it can be

concluded that s, ŝ ∈ B(0, χ). As a result, (151), (153), and (154)

imply that whenever Z ∈ C × R2L, the orbital derivative can be bounded as

V̇L (Z, t) ≤ −W (s)− kcc3

∥∥∥W̃c

∥∥∥2

− (ka1 + ka2 − kcι5)
∥∥∥W̃a

∥∥∥2

− α3 ‖s̃1‖2

− (k −$1$4)‖r‖2 − (β1 − α)‖η‖2 + (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥
+ ι2(1 +$4 +$4α)‖s̃1‖

∥∥∥W̃a

∥∥∥+

(
ι2$4 +$2

)
‖r‖

∥∥∥W̃a

∥∥∥+ ι2$4‖η‖
∥∥∥W̃a

∥∥∥
+ (1 +$4 +$4α)$1‖r‖‖s̃1‖+$1$4‖r‖‖η‖+ ι4$4‖η‖+ ($3 + ι4$4)‖r‖

+

(
ι3 + kcι7 + ka2W

)∥∥∥W̃a

∥∥∥+ kcι8ε
∥∥∥W̃c

∥∥∥+ ι4(1 +$4 +$4α)‖s̃1‖+ ι1ε,

which yields

V̇L (Z, t) ≤ −W (s)− zT
(
M +MT

2

)
z + Pz + ι1ε,

where z :=

[∥∥∥W̃c

∥∥∥ ∥∥∥W̃a

∥∥∥ ‖s̃1‖ ‖r‖ ‖η‖
]T

,

P =

[
kcι8ε

(
kcι7 + ι3 + ka2W

)
ι4 (1 +$4 +$4α) ($3 + ι4$4) ι4$4

]
,

and

M =


[kcc3 − (kcι6 + ka1) 0 0 0

0 (ka1 + ka2 − kcι5) −ι2 (1 +$4 +$4α) − (ι2$4 +$2) −ι2$4

0 0 α3 −$1(1 +$4 +$4α) 0

0 0 0 (k −$1$4) −$1$4

0 0 0 0 (β1 − α)].

 .

Provided the matrix M +MT is PD,

V̇L (Z, t) ≤ −W (s)−M ‖z‖2 + P̄ ‖z‖+ ι1ε,

where M := λmin

{
M+MT

2

}
. Letting M =: M1 +M2 and letting W : R5n+2L → R

be defined as W (Z) = −W (s)−M1 ‖z‖
2, the time derivative of (155) bounded as

V̇L (Z, t) ≤ −W (Z) , (198)
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∀ ‖z‖ > 1
2

(
P
M2

+
√

P
2

M2
2

+
ι21ε

2

M2
2

)
= µ, Z ∈ B (0, χ̄), for all t ≥ 0, and some χ̄ such that

B̄(0, χ̄) ⊆ C × R2L.

Using the bound in (148) and the fact that the converse Lyapunov function is

guaranteed to be time-independent, radially unbounded, and PD, Lemma 4.3 can be

invoked to conclude that

v
(
‖Z‖

)
≤ VL (Z, t) ≤ v

(
‖Z‖

)
, (199)

for all t ∈ R≥0 and for all Z ∈ R5n+2L, where v, v : R≥0 → R≥0 are class K functions.

Provided the learning gains, the domain radii χ and χ̄, and the basis functions for

function approximation are selected such that M +MT is PD and µ < v−1
(
v (0, χ̄)

)
,

Theorem 4.18 in [156] can be invoked to conclude that Z is uniformly ultimately

bounded. Since the estimates Wa approximate the ideal weights W , the policy û

approximates the optimal policy u∗.
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