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Abstract:  
 
Insects, rely on their innate immune system as the first line of defense against invading 
microorganisms. Innate immunity is mediated by germline-encoded pattern recognition 
receptors (PRRs), such as TLRs, NOD-like receptors, and peptidoglycan (PGN) 
recognition proteins (PGRPs). These receptors induce interactions with pathogen-
associated molecular patterns, to initiate innate immune responses by activating pathways 
that regulate the expression of antimicrobial peptides (AMPs). PGRPs are one of the most 
important types of PRRs found in insects and were first discovered in the hemolymph of 
silkworms as proteins that bind bacterial PGN and activate the prophenoloxidase (proPO) 
pathway to initiate melanization, which is an antimicrobial host defense mechanism in 
insects. The differential recognition of diaminopimelic acid (DAP) and Lys-type PGs is 
in fact common across the PGRP family. 
 
Previous studies on Drosophila melanogaster showed that increase in spontaneous 
melanization was observed when PGRP-LE was over-expressed and Drosophila PGRPs 
prefer Lys-type PGNs than DAP type PGNs. However, specific recognition of different 
types of peptidoglycans by PGRPs and also how they regulate the proPO system are not 
yet fully understood in Manduca sexta. Therefore, this study is focused on determining 
the role of M. sexta PGRPs in bacterial recognition and proPO activation, and elaboration 
of their specificity towards different bacteria. Recombinant MsPGRPs were expressed in 
a baculovirus expression system and purified. To gain functional insights into the 
recognition of PGN and the activation of proPO pathways by MsPGRPs (MsPGRP 2, 3, 
4, 5, 12 ecto and 13), binding specificity and proPO levels were analyzed in this study.  
 
Taken together, our results from ELISA, pull-down assays with PGNs and live bacteria, 
and PO activity assays suggest that MsPGRPs 2-5 and 13 are positive regulators of the 
proPO activation system. They preferentially recognize DAP-type PGNs over Lys-type 
PGNs. Although the recent progress has brought us closer to understanding the role of M. 
sexta PGRPs in bacterial sensing and proPO activation, the precise mechanism of 
MsPGRP-PGN specific binding that leads to synergistic enhancement in the proteolytic 
activation of proPO in plasma need further investigations.
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CHAPTER I 
 
 

INTRODUCTION 

 

Biochemistry behind insect immune system has been a hot topic for several decades. 

Contribution of insect biochemistry and genetics to human research is significant in many 

ways. Simpler than vertebrates, insects provide a lead for the progress of knowledge to 

bridge existing knowledge gaps on fundamental aspects of biochemistry of immune 

system and ethical guidelines are less stringent for insect research (Arrese and Soulages, 

2010; Didham et al., 2019). For example, Drosophila is used as a model system to study 

molecular mechanisms of human diseases (Pandey and Nichols, 2011). Such studies are 

facilitated by genetic manipulation and directed to discover new regulators of lipid 

metabolism in the case of obesity research. The adverse effects of insect pests on humans 

range from competing for food to transmission of vector-borne diseases such as malaria, 

leishmaniasis, filarisis and yellow fever etc. Anthropogenic environmental changes might 

be acting as anchors, assisting the spread of the insect pests and their breeding habitats.  

 

Insects are constantly exposed to pathogenic microorganisms and mainly rely on their 

innate immunity as the first line of defense against the invading microbes (Wang et al., 

2019). Recognition and distinction of invaders from host cells is critical in a successful 

immune response (Kang et al., 1998; Kanost et al., 2004). Two arms of the innate 
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immunity are cellular and humoral responses. The former includes phagocytosis, nodule 

formation and encapsulation, mediated by insect hemocytes. The latter consists of 

antimicrobial peptide production through the Toll and immune deficiency (Imd) 

pathways, melanization via prophenoloxidase (proPO) activation, and hemolymph 

coagulation (Leulier et al., 2003). Insect humoral immune responses are mediated by 

proteins in body fluids such as hemolymph (Gillespie and Kanost, 1997; Kaneko et al., 

2005, 2004) 

  

Humoral responses occur mainly through pattern recognition receptors (PRRs), which 

recognizes pathogen associated molecular patterns (PAMPs) that are absent in the host. 

These PAMPs include lipopolysaccharides (LPS) of Gram-negative bacteria, lipoteichoic 

acid (LTA) of Gram-positive bacteria, peptidoglycans (PGN) of the two types of bacteria, 

β-1,3-glucans of fungi, and nucleic acids of microbes (Akira et al., 2006; Medzhitov and 

Janeway, 2002). The proPO activation is remarkably sensitive to specific recognition of 

bacterial PGNs. Pathways leading to AMP expression have been extensively studied in 

Drosophila melanogaster and Manduca sexta (Choe et al., 2002; Myllymäki et al., 2014; 

Royet et al., 2011; Yu et al., 2002).  

 

Insect peptidoglycan recognition proteins (PGRPs) play vital roles as PRRs in 

recognition and distinction of invading pathogen and activation of intracellular signaling 

pathways (Dziarski and Gupta, 2006). Some PGRPs are involved in activating the proPO 

cascade and inducing phagocytosis. The association of PGRPs with a broad spectrum of 

activities inside cells and on cell surface of tissues makes them an effective surveillance 
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toward PGNs (Choe et al., 2002; Kang et al., 1998; Wang et al., 2019; Yu et al., 2002). 

Their study remains a subject of interest to many scientists, many years after the 

silkworm PGRP was discovered as the first PRR (Yoshida et al., 1996) . PGRPs are 

evolutionary conserved, and their gene duplication and sequence divergence have yielded 

new functions worthy of further investigation (Kang et al., 1998). 

 

Spontaneous melanization occurs when Drosophila PGRP-LE and M. sexta PGRP1 were 

over-expressed (Sumathipala and Jiang, 2010; Takehana et al., 2004; Yu et al., 2002; Zhu 

et al., 2003). While the role of PGRPs in bacterial recognition and inducing immune 

responses is well recognized in D. melanogaster and some other insect species, such a 

role has not yet been experimentally established for PGRPs beyond PGRP1 in M. sexta. 

Thirteen PGRP genes were identified in the M. sexta genome (Hu et al., 2019; Yu et al., 

2002; Zhang et al., 2015). The phylogenetic analysis of Manduca and Drosophila PGRPs 

showed that Manduca PGRP1, 5–7, 9, 13 are similar to Drosophila PGRP-SA, whereas 

Manduca PGRP2–4 are similar to Drosophila PGRP-SB/SC/SD. M. sexta PGRP8 is 

orthologous to Drosophila PGRP-LD, while PGRP10 and PGRP11 are 2:1 orthologous 

to Drosophila PGRP-LA. Manduca PGRP12A/B may correspond to Drosophila PGRP-

LC/LE (Zhang et al., 2015). Sequence comparison of Manduca PGRPs showed that 

Manduca PGRP13 contains a low molecular weight lipoprotein-11 domain. Such domain 

structure has not been associated with PGRP domain in other lepidopteran insects. 

M. sexta PGRP2–4 contain key residues (H, Y, H, T, C) at conserved positions for 

amidase activity.  
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On the basis of the transcriptome and proteome data, PGRP1–3, and 5 are up-regulated  

upon microbial challenge (Zhang et al., 2015). Manduca PGRP1 participates in the  

proPO activation system in a Ca2+-dependent manner. It preferably binds to DAP-PGN  

rather than Lys-PGN (Sumathipala and Jiang, 2010; Wang and Jinag, 2017)(Hu et al.,  

2019). However, specific recognition of different types of PGNs by the other PGRPs and  

how they may regulate the proPO system are not yet reported in M. sexta. Consequently,  

my current study is focused on determining binding specificity of some other M. sexta  

PGRPs towards PGNs from different bacteria and their possible roles in proPO  

activation. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 
2.1 Overview of insect immune system  

Insects are exposed to various entomopathogenic microorganisms including bacteria, 

fungi, viruses, and parasites. Due to their efficient system of biological defense, only few 

cause infection (Gillespie and Kanost, 1997).  During evolution, insects have developed 

lines of defense against microbial infection, including physical barriers and innate 

immunity. Physical barriers such as cuticle, midgut, and trachea are hard to penetrate; 

some hemolymph proteins and hemocytes mediate humoral and cellular responses, 

respectively (Gillespie and Kanost, 1997; Tsakas and Marmaras, 2010; Wang et al., 

2019). Compared with immunoglobulins and T-cell receptors in mammals, insect innate 

immunity is less specific and has no memory (Tsakas and Marmaras, 2010). Recent 

studies showed that the immune system of insects is more robust and specific than 

contemplated  previously (Cooper and Eleftherianos, 2017; Sheehan et al., 2020). Insect 

innate immunity plays an important role in preventing infectious diseases and 

maintaining homeostasis (Sheehan et al., 2018). 

 

Two arms of the innate immune system are cellular and humoral responses. After 

microbes overcome the physical barrier of insects, humoral and cellular defense 

responses are often activated. Since the two types of reactions share an extracellular 
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signaling system upon infection, the distinction between humoral and cellular responses 

is, up to a point, artificial (Tsakas and Marmaras, 2010). 

 

 

 

Figure 1: Overview of the antimicrobial defense of insects  

 

2.2 Insect cellular responses 

Hemocyte responses include phagocytosis, nodule formation, and encapsulation. 

Insect hemocytes and human neutrophils and macrophages are similar structurally and 

functionally (Akira et al., 2006; Kanost et al., 2004; Sheehan et al., 2018). Cellular 

responses occur immediately after a pathogen invasion of hemocoel. Previous studies on 

Drosophila larvae showed a decrease in circulating plasmatocytes during infection. In 
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adults, removal of phagocytic hemocytes leads to increased susceptibility to various 

pathogenic infection (Manachini et al., 2011; Wang et al., 2010). 

 

Several types of hemocytes has been identified in insects based on cell morphology, 

including granulocyte (or lamellocyte in Drosophila), oenocytoid (or crystal cells in 

Drosophila), prohemocyte, spherulocytes, and plasmatocytes (Rosales, 2017). Types of 

hemocytes and hemocyte responses vary species to species (Akira et al., 2006; Meister, 

2004). Not all of these hemocyte types are present in all insect species. Granulocytes and 

plasmatocytes have the ability of adhesion and phagocytosis, while oenocytoids produce 

prophenoloxidase (proPO) (Rosales, 2017). Phagocytosis is a potent immune response. 

Upon invasion of insect hemocoel by pathogenic microbes, plasmatocytes and granular 

cells recognize, engulf, and entrap them in hemocyte aggregates known as nodules, and 

finally destroy them. 

 

Previous studies on insect immune system have observed melanization in those nodules 

and other sites of infection, which happens via the activation of proPO by proteinases 

present in the insect hemolymph (Kanost et al., 2004; Nazario-Toole and Wu, 2017; 

Tsakas and Marmaras, 2010). Encapsulation occurs when hemocytes encounter larger 

targets, such as parasites, protozoa, nematodes, and parasitoid wasp eggs. Encapsulation 

is limited to invertebrates. During this process, hemocytes form a capsule around a target 

at first and then kill the target within the capsule (Meister, 2004).  
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2.3 Insect humoral responses 

Insect humoral defense responses occur in minutes to hours post infection. They are 

mainly composed of three immune reactions: antimicrobial peptide production through 

the Toll and Imd pathways, melanization through proPO activation pathway, and 

hemolymph coagulation. These responses are mediated by proteins in body fluids, mainly 

hemolymph (Augustin and Bosch, 2010; Gillespie and Kanost, 1997; Tsakas and 

Marmaras, 2010).  

 

2.3.1 Hemolymph coagulation or clotting 

Open wound is an ideal site for microorganisms to enter their host circulatory 

system and, thus, bears a great risk for systemic infection. To prevent invasion and 

propagation of invading pathogens, wound sealing has to be a rapid process to reduce 

blood loss. Hence, reestablishment of tissue integrity via hemolymph clotting is a crucial 

part of the innate immune system (Aprelev et al., 2019; Loof et al., 2011; Schmid et al., 

2019). In contrast to the closed circulatory system in vertebrates, which requires delicate 

balance between thrombosis and fibrinolysis, the open circulatory system in insects may 

allow blood to clot more rapidly to minimize fluid loss (Dushay, 2009; Loof et al., 2011; 

Manachini et al., 2011; Schmid et al., 2019). Hemolymph coagulation forms an insoluble 

matrix to plug the wound, maintain the hydrostatic skeleton of small insects prone to 

dehydration, entrap microbes at wound sites to ward off infection (Dushay, 2009).   

 

The process of coagulation differs from species to species and also varies in life stages of 

the same species. Some similarities have been observed in different species as well. The 
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evolution of a clotting system in insects under different environmental, physiological, and 

immunological pressures is still poorly understood (Dushay, 2009; Loof et al., 2011; 

Manachini et al., 2011; Schmid et al., 2019). Hemolymph coagulation has been studied 

using model insect Drosophila melanogaster in the past two decades. Recent microscopic 

and genetic studies revealed multiple signals from the wound, which coordinate the 

cellular responses. Interactions between soluble hemolymph proteins (e.g. lipid carrier 

lipophorin) and hemocyte-released components (e.g. hemocytin) participate in the 

formation of hemolymph clot, whereas enzymes such as transglutaminase may crosslink 

clot proteins (Theopold et al., 2002, 2004; Wang et al., 2010). Insect transglutaminase is 

found to be involved in clotting at an initial stage (Schmid et al., 2019; Sheehan et al., 

2018). Wound leaking in some species triggers humoral reactions to cause self-assembly 

of lipids and proteins that lead to formation of fibrin-like threads (Bidla et al., 2005; 

Dziedziech et al., 2020). 

 

After the formation of such clot in most insects, eventual crosslinking produces hard, 

mature clot through melanization, indicating the presence of phenoloxidase (PO), PO2 in 

Drosophila proPO2 (Scherfer et al., 2004). POs play different roles in insect immunity 

including killing of invading pathogens, clot formation, cross-linking during wound 

closure and wound healing (Bidla et al., 2005; Loof et al., 2011; Zhao et al., 2011, 2007). 

Several steps in the process of coagulation in D. melanogaster are wound plugging, scab 

formation, and epidermal cell mobilization at the site of wounds, which happen at 

different time scales. In insects with high hemocyte density, such as M. sexta larvae, 
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coordinated cell aggregation and humoral reactions suggest a collective conduct (Aprelev 

et al., 2019).  

 

2.3.2 Antimicrobial peptide production 

Antimicrobial peptides (AMPs) are multifunctional peptides involved in insect 

humoral immune response. Produced mainly in the fat body and released into the 

circulation (Yu et al., 2010). AMPs have a wide range of antibacterial, antifungal, and 

antiviral activities. AMPs kill pathogenic microbes by physically damaging the microbial 

cell membrane and may not cause resistance in bacteria like antibiotics do. AMPs have 

several mechanisms for their activity, such as interfering microbial metabolism and 

disrupting membrane to facilitate the entrance of antibiotics into their cytoplasm. Recent 

studies have found that electrostatic or hydrophobic interactions between AMPs and 

microbial cell membrane are dependent on lipid composition of the membrane (Wu et al., 

2018). Based on amino acid sequence and structures, insect AMPs can be categorized 

into three groups, 1) linear peptides with α-helical structures that lack cysteine residues, 

such as cecropins and moricins, 2) compact structures stabilized by disulfide bonds, such 

as defensins, drosomycins and gallerimycins, 3) peptides rich in proline and/or glycine 

residues (Rosales, 2017; Sheehan et al., 2018; Tsakas and Marmaras, 2010). In insects 

several AMPs including cecropins, drosocin, attacins, diptericins, defensins, ponericins, 

drosomycin, and metchnikowin are well studied (Rosales, 2017). 

 

In insects, Toll and Imd pathways are the main signaling pathways to regulate AMP 

production (Wu et al., 2018). The spectra of AMPs vary. For instance, Gly/Pro-rich 
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AMPs are mostly active against Gram-negative bacteria. Defensins are effective against 

Gram-positive bacteria. Cecropins are active against both Gram-positive and -negative 

bacteria (Sheehan et al., 2018). In Drosophila, infections by Gram-positive bacteria and 

fungi activate the Toll pathway to produce AMPs, whereas infection by Gram-negative 

bacteria triggers the Imd pathway to produce AMPs (Dziarski and Gupta, 2018; Gillespie 

and Kanost, 1997).  

 

Both Toll and Imd pathways are initiated by PGRPs upon recognition of invading 

pathogens, and finally induce AMP production via conserved NF-κB signaling cascades 

(Akira et al., 2006). According to recent literature, there is some overlap between the two 

pathways in response to Gram-positive or Gram-negative bacteria (Horng and 

Medzhitov, 2001; Mellroth et al., 2005; Nishide et al., 2019; Yokoi et al., 2012). In some 

conditions, Drosophila PGRP-SD can recognize Gram-negative bacteria and activate Toll 

pathway (Leone et al., 2008). In addition, Gram-positive Bacillus subtilis with DAP-type 

PGN activate the Imd pathway rather than Toll pathway (Horng and Medzhitov, 2001; 

Wang et al., 2019; Yokoi et al., 2012). While, Drosophila PGRP-SA has selective 

affinity for different PGNs, PGRP-LCx has affinity for both Lys and DAP-PGNs 

(Mellroth et al., 2005). Antimicrobial effectors then kill the invading pathogens and, after 

an appropriate level of immune responses is reached, their production is down regulated.  

 

Pattern‐recognition by PGRPs initiates a serine protease cascade that leads to activation 

of Spätzle‐processing enzyme (SPE), which in turn cleaves proSpätzle (an inactive 

precursor) to generate an active cytokine, Spätzle. The mature Spӓtzle acts as a ligand for 
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the Toll receptor to initiate a signaling pathway that leads to activation of the 

transcription factors Dif and Dorsal to initiate transcription of AMP genes (Duneau et al., 

2017; Issa et al., 2018; Rahimi et al., 2016). Basic components of the Toll pathway are 

transmembrane receptor Toll, which contains extracellular leucine rich repeats, and 

intracellular adaptors such as Tube and MyD88 (Gobert et al., 2003; Kang et al., 1998; 

Tsakas and Marmaras, 2010). Insect Toll receptors do not directly bind to pathogens or 

pathogen-derived compounds and are activated by Spätzle. In contrast, PGRP-LC and 

PGRP-LE are the upstream PRRs of Drosophila Imd proteins. Downstream molecules of 

Imd pathway are dFADD, Dredd (a caspase homolog), dTAK1, dIKK complexes, and 

Relish, another NF-kB (Aggarwal and Silverman, 2008). Activated Relish enters the cell 

nucleus to enhance the expression of AMPs (Swaminathan et al., 2006; Zhao et al., 

2018). 

 

2.3.3 Melanization through prophenoloxidase (proPO) activation pathway 

In insects, melanization plays a vital role in various physiological processes 

including antimicrobial activity, wound healing, and cuticle tanning (Sheehan et al., 

2018). Melanization has a wide range of anti-pathogenic effect on parasites, bacteria, 

fungi, and viruses. In insects, pathogen recognition by PRRs initiates an extracellular 

serine protease cascade, which finally activate proPO to catalyze the oxidation of phenols 

to quinones to produce melanin and activate cytokines (e.g. Spätzle, stress responsive 

peptides). These cytokines then activate intracellular signaling pathways to express 

immunity-related genes and cellular defense reactions including phagocytosis, 

encapsulation, and others to kill and sequester the infectious agents (Bidla et al., 2005; 
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Kanost et al., 2004; Laughton and Siva-Jothy, 2011; Yu et al., 2002). Previous literature 

states that the anti-pathogenic activities are coordinated by interactions between 

melanization and some immune responses (Bidla et al., 2005; Binggeli et al., 2014; 

Kanost et al., 2004).  

 
In M. sexta, pathogen recognition by PRRs causes auto-activation of hemolymph serine 

protease-14 (HP14) precursor. The initiator HP14 then activates proHP21, HP21 activates 

HP5 and proPO activating protease 3 (PAP3) precursors. HP6, activated by HP5, further 

activates PAP1 and HP8 precursors to induce the Toll pathway, since HP8 is an 

activating enzyme of Spätzle-1, which is a ligand of Toll receptor. PAP1–3 generate 

active PO in the presence of a cofactor composed of serine protease homolog-1 and -2 to 

generate active intermediates to kill invading pathogens (Bidla et al., 2005; Kanost et al., 

2004; Sheehan et al., 2018; Y. Wang et al., 2020).   

 

 

 

 

 

 

 

 

 

Figure 2: A simplified model of the serine protease network in M. sexta, adapted from 

(Y. Wang et al., 2020).  
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Enzymatic reactions of active PO that generate toxic compounds have been extensively 

studied over the past two decades. Briefly, PO hydroxylates monophenols to form o-

diphenols and then oxidize the latter to o-quinones. These quinones then polymerized to 

form melanin (Binggeli et al., 2014; Kanost et al., 2004). For instance, active PO 

catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA). After 

DOPA oxidation, decarboxylation, and nucleophilic substitution, 5,6-dihydroxyindole 

(DHI) is produced. Oxidation and polymerization of DHI produce DHI-eumelanin. PO 

involves not only in melanization but also sclerotization in some species.  

 

PO catalyze the formation of dopamine quinone using dopamine as a substrate, which 

cyclizes non-enzymatically to produce DHI (Laughton and Siva-Jothy, 2011; Zhao et al., 

2011, 2007). Dopamine can also be N-acetylated to produce N-acetyldopamine (NADA) 

or N-alanylated to produce N-β-alanyldopamine (NBAD) using acetyl/β-alanyl 

transferases. Both NADA and NBAD are transported to insect cuticles during pupation 

and converted to oxidative intermediates for crosslinking of cuticle proteins and chitins, 

i.e. cuticle sclerotization, which is mainly catalyzed by laccase (Wang et al., 2010; Zhao 

et al., 2011, 2007). 
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Figure 3: Mechanisms and physiological functions of PO-mediated reactions in 

insects and crustaceans, adapted from (Zhao et al., 2007).  

 
 
Evidence supports that DHI has a broad-spectrum of antimicrobial activities, kills wasp 

embryos, kills insect hemocytes, and may also cause damage of host tissues (Zhao et al., 

2011, 2007). Hence, melanization needs to be tightly regulated as a local, transient 

reaction against non-self. Various serpins negatively regulate the serine protease cascade 

for focused responses by inhibiting proPO activation and thereafter PO activity (Binggeli 

et al., 2014; Kanost et al., 2004). Serpins have been extensively studied in M. sexta, D. 

melanogaster, and some other insects (Kanost and Jiang, 2015; Meekins et al., 2018; 

Suwanchaichinda et al., 2013; Y. Wang et al., 2020). One recent example is that M. sexta 

HP5 is inhibited by multiple serpins (1A, 1J, and 4) in hemolymph (Y. Wang et al., 

2020). 
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2.4 Recognition and distinction of invading microorganism 

The recognition and distinction of invading microbes from the host cells is an 

essential step in successful immune responses. Telling apart self from non-self must 

happen first (Kang et al., 1998; Kanost et al., 2004). The activation of humoral responses 

occurs mainly through PRRs, which recognizes PAMPs that present only in pathogens 

but not in the host. PAMPs include lipopolysaccharides (LPS) of Gram-negative bacteria, 

lipoteichoic acids (LTAs) of Gram-positive bacteria, peptidoglycans (PGNs) of walled 

bacteria, β-1,3-glucans of fungi, and nucleic acids of bacteria and viruses (Akira et al., 

2006; Medzhitov and Janeway, 2002). Although, LPS is a potent immune stimulator, 

studies showed that it cannot stimulate Imd pathway in Drosophila melanogaster 

(Kaneko et al., 2004; Leulier et al., 2003). 

 

In comparison, PGNs stimulate multiple immune reactions in Drosophila (Akira et al., 

2006; Swaminathan et al., 2006). PGNs are essential cell wall components of almost all 

walled bacteria, providing the host immune system an advantage for detecting invading 

bacteria. PGN are polymers of β-1,4-linked N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) cross-linked by short stem peptides. The amino acid 

composition of this stem peptides and the linkage between stem peptides vary from 

species to species, whereas the glycan chain is relatively conserved in all bacteria. Most 

of Gram-positive bacteria have lysine residue (Lys-type PGN)  at the third position of the 

stem peptide, whereas some Gram-positive bacteria such as the Bacillus species and 

many Gram-negative bacteria replace lysine residue with meso-diaminopimelic acid 

(DAP) in their PGNs (Vollmer et al., 2008). 
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2.5 Pattern Recognition Receptors 

Innate immunity is mediated by germline-encoded PRRs, such as NOD-like receptors 

and PGRPs (Dziarski and Gupta, 2006; Gillespie and Kanost, 1997; Kanost et al., 2004). 

These receptors interact with PAMPs to initiate innate immune responses by activating 

pathways that regulate AMP expression. 

 

2.5.1 Peptidoglycan recognition proteins in insects 

PGRPs are one of the most important types of PRRs found in insects and were first 

discovered in the hemolymph of silkworms as proteins that bind bacterial PGN and 

activate the proPO pathway to initiate melanization, an antimicrobial defense mechanism 

of insects (Yoshida et al., 1996). The discovery of PGRPs significantly contributed to 

scientific progress in the field of immunobiology. PGRPs conserved from insects, 

mollusks and mammals, which recognize PGN in bacterial cell wall, and function in 

antibacterial immunity and inflammation (Ramirez et al., 2020). PGRPs are evolutionary 

conserved but number and type of PGRPs vary from species to species. In D. 

melanogaster, there are 13 PGRP genes encoding 19 proteins (Royet et al., 2011). The 

silkworm Bombyx mori has 12 PGRP genes (Kayalvizhi and Antony, 2011; Tanaka et al., 

2008). There are 7 PGRP genes in the yellow fever mosquito Aedes aegypti and 13 in M. 

sexta (Dziarski and Gupta, 2006; Wang et al., 2019; Zhang et al., 2015). 

 

PGRPs can be categorized into several types based on their function (catalytic or sensor) 

and on their transcript length (short or long, PGRP-S/L) (Dziarski and Gupta, 2018, 

2006). The short forms have an N-terminal signal peptide leading them to hemolymph. 
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The long forms can be transmembrane or secretory PGRPs (Steiner, 2004; Werner et al., 

2000). The main sites of PGRP expression are tissues involved in insect immune 

responses. PGRP-Ss, present in cell-free hemolymph, are synthesized in fat body, 

hemocytes, and epidermal cells in the midgut, whereas PGRP-Ls are mainly expressed in 

hemocytes (Dziarski and Gupta, 2006). PGRP-S expression is up-regulated in response to 

bacterial infection, whereas PGRP-L are mostly constitutive proteins (Werner et al., 

2000; Yu et al., 2002).   

 

Some PGRPs with the catalytic residues hydrolyze peptidoglycans prior to immunogenic 

cascade and act as non-immunogenic molecule. For example, in Drosophila, six PGRPs (-

LB, -SB1, -SB2, -SC1a, -SC1b, and -SC2) have catalytic activity (Mellroth and Steiner, 

2006). This may protect the host immune system from over activation by non-pathogenic 

organisms. Only the number of bacteria exceeding this catalytic activity of PGRPs 

facilitates the activation of signaling pathway (Dziarski and Gupta, 2018). The catalytic 

PGRPs contain conserved residues for Zn2+ binding, required for the amidase activity 

(Reiser et al., 2004).  On the other hand, sensor PGRPs bind to PGNs and activate immune 

responses via Toll and Imd pathways, but do not hydrolyze PGNs due to the lack of Zn ion 

binding residues such as Cys that is needed for the enzyme activity (Dziarski and Gupta, 

2018, 2006; Royet et al., 2011). However, Drosophila PGRP-LB has both sensory and 

catalytic activity that control the level of the host immune responses during microbial 

infections (Zaidman-Rémy et al., 2006). 

 

The function of PGRPs in Drosophila and some other insects have been well studied 
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(Akira et al., 2006; Basbous et al., 2011; Binggeli et al., 2014; Dziarski and Gupta, 2018; 

Gillespie and Kanost, 1997; Saul and Sugumaran, 1986; Sugumaran et al., 2006). The 

gene duplication and sequence divergence of PGRPs allow recognition of structurally 

diverse PGNs to activate different immune pathways (e.g. Toll or Imd), induce 

proteolytic cascades that generate antimicrobial products via PO or Spätzle, induce 

phagocytosis, and hydrolyze peptidoglycans to finally protect insects from bacterial 

infection. 

 

In Drosophila, Gram-positive bacterial and fungal infection stimulates the Toll pathway, 

while Gram-negative bacterial infection stimulates the Imd pathway (Gillespie and 

Kanost, 1997; Swaminathan et al., 2006).  However, crosstalk between Toll and Imd 

pathways has been observed (Wang et al., 2019; Zhang et al., 2019; Zhao et al., 2011, 

2018). Previous biochemical work have observed crosstalk between Toll and Imd 

Pathways in Drosophila , facilitated by the interaction of FADD with IMD, Dredd, and 

MyD88 (Mellroth et al., 2005). Some insect PGRPs take part in proPO activation that 

leads to melanization through the activation of extracellular serine protease cascade 

(Binggeli et al., 2014; Dunn and Drake, 1983; Dziarski and Gupta, 2006). 

 

Individual PGRPs show preferences for different types of PGNs. The variability in PGRP 

sequences has given rise to their specificity. In Drosophila, PGRP‐SA in hemolymph 

binds to Lys‐type PGNs and, together with PGRP‐SD and Gram‐negative binding 

protein-1 (GNBP1), activates the Toll pathway (Gobert et al., 2003; Pili-Floury et al., 

2004). After polymeric DAP-PGN binds to PGRP‐LCx homodimer (DAP‐type polymeric 
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PGN) or after monomeric DAP-PGN binds to the LCx-LCa heterodimer, the Imd 

pathway is activated to produce AMPs in Drosophila (Kaneko et al., 2004). While 

PGRP-LCx prefers DAP-PGN, it can also recognize Lys-PGN to a lesser extent (Capo et 

al., 2016; Choe et al., 2002). PGRP‐LE can bind both polymeric and monomeric DAP‐

type PGN to activate the Imd pathway in two ways (Kaneko et al., 2006): 1) the 

extracellular PGRP‐LE activates through PGRP‐LC, possibly by forming a PGRP-LE 

and -LC complex (Takehana et al., 2004, 2002), 2) intracellular PGRP‐LE activates 

through interaction with the Imd adaptor protein (Kaneko et al., 2006; Takehana et al., 

2004, 2002; Yano et al., 2008). In contrast, PGRP‐LF inhibits the Imd pathway by 

binding to PGRP‐LCx but not to peptidoglycan and, thus, prevents the formation of a 

PGRP‐LC active dimer (Chevée et al., 2019). 

 

Some PGRPs bind to bacterial PGN to activate the proPO pathway, which promotes 

wound healing and melanization. In Drosophila, PGRP-LE binds to DAP-type PGN and 

activate zymogenic proPO into active PO. Then through a series of reactions the active 

PO will produce melanin to encapsulate the pathogen (Gillespie and Kanost, 1997; 

Söderhäll et al., 2013; Takehana et al., 2002; Tsakas and Marmaras, 2010; Wang et al., 

2019). In Helicoverpa armigera, association of PGRP-A with Lys- and DAP-type PGN 

triggers the proPO activation and participate in the melanization of nodules and capsules 

(Li et al., 2015). In B. mori, PGRP-S5 plays multiple roles, as a receptor for activation of 

the proPO pathway, as a negative regulator for the Imd pathway, and as a bacteriocide 

(Chen et al., 2016).  
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2.6 Manduca sexta (Tobacco hornworm) 

M. sexta represents a large group of pest insects in the order of Lepidoptera, and is 

often used as a model organism to study the insect biochemical pathways and 

biochemistry of insect immunity, due to their ease of rearing and large size that makes it 

collect a large volume of hemolymph. The life cycle of M. sexta consists of four stages: 

embyo, five larval instars, pupa, and adult. M. sexta is less susceptible to a variety of 

pathogenic bacteria, compared to other lepidopterans, possibly be due to the high level 

of hemocytes and detoxification ability (Dean et al., 2004; Koenig et al., 2015; Pauchet 

et al., 2010). Expanding the knowledge of the immunobiochemistry of lepidopteran 

insects may be beneficial to the development of novel strategies for management of 

agricultural pests and disease vectors and could be used to understand human health 

related problems. 
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CHAPTER III 
 
 

METHODOLOGY 

 

3.1 Insect rearing and plasma collection 

M. sexta eggs were purchased from Carolina Biological Supply and larvae were 

reared on an artificial diet as described previously (Dunn and Drake, 1983). Prolegs of 

naïve fifth instar larvae at day 2 were cut to collect hemolymph. Plasma samples from 

both naïve (i.e. control) and immune challenged insects were separated from hemocytes 

by centrifugation at 5000×g for 4 min, aliquoted, and stored at -80°C for later use.  

 

3.2 cDNA cloning and construction of expression plasmid for M. sexta PGRP3, 

PGRP4, PGRP12ecto, PGRP13FL, PGRP13N and PGRP13C domains 

cDNA fragments of M. sexta PGRP3, PGRP4, and PGRP12 ectodomain were amplified 

from a cDNA pool of induced fat body. cDNA fragments of full-length, N-and C-

terminal domains of MsPGRP13 were amplified from a cDNA pool of nervous tissue. 

Primers were designed to have EcoRI and NdeI restriction sites at 5’ end of the forward 

primers (FP) and HindIII and XhoI sites at 5’ end of the reverse primers (RP). For 

PGRP3, FP j287 (5’-GGAATTCTTCCATCATTATTTGCA) and RP j1490 (5’-

CTCGAGAGTGGTATTATTTCTGCG); for PGRP4, FP j1491 (5’-GAATTCGACCT 

AACTTTCACAGTG) and RP j1492 (5’-CTCGAGTGTCTTTTTAATTTTGTCGA); for
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PGRP12ecto, FP j1475 (GAATTCATATGGATTCAACAAGAGATGACA) and RP 

j1476 (5’-AAGCTTACTCGAGTGTTTTTGAGACCATCTC); for PGRP13FL, FP j429 

(5’GAATTCATATGGATTGTGACGTAATCGATAAG) and RP j430 (5’-AAGCTTA 

CTCGAGATGAAAGATGCGCCAAC); for PGRP13N, FP j429 (5’-GAATTCATATGG 

ATTGTGACGTAATCGATAAG) and RP j431 (5’-AAGCTTACTCGAGCCATTGAGG 

CCGT); for PGRP13C, FP j432 (5’GAATTCCTCAATGGATAGAAAAC) and RP j430 

(5’-AAGCTTACTCGAGATGAAAGATGCGCCAAC). Following T/A cloning of the 

amplified products into pGEM-T vector (Promega) and sequence validation of the 

recombinant plasmids, the insert was retrieved by EcoRI-XhoI double digestion and 

subcloned into the same sites of pMFH6 (Lu and Jiang, 2008). 

 

3.3 Generation of baculovirus and infection of insect cells for the expression of M. 

sexta PGRP3, 4, 12ecto, 13FL, 13N and 13C. 

Baculoviruses were generated by in vivo transposition of the pMFH6 expression 

cassette with DH10bac. White bacterial colonies were used to isolate bacmids DNA 

according to the manufacturer’s instructions (Life Technologies). Correct bacmids were 

confirmed by PCR using a vector-specific reverse primer (j030) and the forward primers 

of corresponding cDNA fragments. Then these bacmid DNA samples were used to 

transfect Spodoptera frugiperda Sf9 cells with the DNA-Cellfectin mixture in a 

conditioned medium, to obtain initial viral stock (V0), as previously described (Y.Wang 

et al., 2011). Gradual increase in viral titer and protein expression was achieved through 

serial infections. Large-scale infection of Sf9 insect cells (2×106 per ml) in 900 ml Sf-

900 II serum-free medium (Life Technologies) was performed with a viral stock at a 
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multiplicity of infection of 10 as previously described (Y.Wang et al., 2011). After 

incubation of the infected cells at 27°C for 72−84 h with gentle agitation (150 rpm), 

cells were pelleted by centrifugation at 5000×g for 20 min at 4°C and supernatants were 

used for protein purification. 

 

3.4 Multiple sequence alignment of M. sexta PGRPs with their homologs in other 

organisms 

In order to study the sequence similarities and differences between the PGRPs, a 

multiple sequence alignment was performed using UPGMA clustering method in MEGA-

X with a gap opening penalty of -2.9 and gap extension penalty of 0.00 (Kumar et al., 

2018). 

 

3.5 Purification of M. sexta PGRPs 2−5, 12ecto, 13FL, 13N, and 13 C 

Supernatants of the insect cell cultures were mixed with equal volume of H2O 

containing 1 mM benzamidine. After pH adjustment to 6.4, the mixture was then 

centrifuged at 22100×g for 20 min at 4°C and loaded onto a 40 ml column of dextran 

sulfate-Sepharose CL-6B (DS) equilibrated in buffer A (10 mM potassium phosphate, 1 

mM benzamidine, 0.01% Tween 20, pH 6.4). Next the column was washed with 5 

volumes of buffer A (200 ml). Proteins bound to the DS column were eluted with a linear 

gradient of 0−1.0 M NaCl in buffer A and collected using fraction collector at 4.5 

ml/tube/3 min. Collected column fractions were analyzed by 12% SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE) followed by Coomassie blue staining or immunoblot 

analysis using 1:1000 diluted, affinity-purified rabbit anti-(His)6 IgG as a primary 
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antibody and goat-anti-mouse IgG as a secondary antibody (Sumathipala and Jiang, 2010; 

Y.Wang et al., 2011).  

 

Based on the SDS-PAGE analysis, column fractions containing the target protein and 

least amount of other proteins were combined and pH was adjusted to 7. Then the pooled 

DS fractions were loaded onto a pre-equilibrated 2-ml Ni2+-NTA agarose column with 10 

mM imidazole in buffer B (50 mM Tris, pH7.5, 300 mM NaCl, 0.005% Tween 20, 5% 

glycerol, 1 mM benzamidine or 0.5 mM benzamidine and 0.5 mM 4-amino-benzamidine, 

and 10 mM imidazole, pH 8.0). Bound proteins were eluted using linear gradient of 10-

100 mM imidazole in 20 ml buffer A followed by 250 mM imidazole in buffer A at 1 

ml/tube/2 min. Eluted protein fractions were analyzed as described above. All the steps of 

purification were performed at 4°C. Finally, the desired protein fractions were combined 

and concentrated using Amicon ultracentrifugal 10K MWCO filter device (Millipore). 

Concentrated proteins were buffer exchanged with 20 mM Tris-Cl, pH 7.5, 50 mM NaCl 

on the same device to have final concentration of 1 mg/ml of protein. Proteins were 

aliquoted and stored at -80°C until further use. 

 

3.6 Elicitor-independent proPO activation by M. sexta PGRPs at different 

concentrations 

Hemolymph collected from day 2, fifth star naïve Manduca larvae, were diluted 

(1:10) with buffer E (20 mM Tris-HCl, pH 8.0, 1 mM CaCl2, 0.001% Tween-20). Then 

5 μl of diluted hemolymph were incubated with purified PGRPs (0, 200, 400, 600, 800, 

1000 ng) or BSA (0, 200, 400, 600, 800, 1000 ng) as a negative control, in 0.001% 
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Tween-20, 1 mM CaCl2, 20 mM Tris-HCl, pH 7.5, in a final volume of 24 μl. PO 

activity was determined after 60 min using dopamine as a substrate on a 96-well 

microplate reader. Absorbance was monitored at 470 nm in the kinetic mode, and 

plotted as mean ± SEM (n = 3) against amount of PGRPs added (Sumathipala and Jiang, 

2010; Y.Wang et al., 2011). 

 

3.7 Elicitor-dependent proPO activation by M. sexta PGRPs 

Insoluble PGNs from M. luteus, S. aureus, B. megaterium and B. subtilis (2 μg) 

(Sumathipala and Jiang, 2010) and soluble PGNs (2 μg) from E. coli ((InvivoGen) were 

used as elicitors for this experiment. Hemolymph collected from day 2, fifth star naïve 

Manduca larvae, were diluted (1:10) with buffer E. To test the effect of PGRP-elicitor 

interaction on proPO activation, five μl of diluted plasma was incubated with 15 μl of the 

buffer (#1), 2.0 μg of elicitor in buffer (#2), 200 ng of PGRP in buffer (#3), or both 2.0 

μg elicitor and 200 ng of PGRP in buffer (#4). The total volume of the four mixtures in 

each elicitor group was adjusted to 20 µl with buffer. The reaction mixtures were 

incubated at room temperature for 1 hr prior to the PO activity assay. The enzyme 

activities were plotted as mean ± SEM (n=3) in bar graphs, along with those of the 

controls (#1, plasma only; #2, plasma and elicitor; #3, plasma and PGRP). Interaction of 

plasma factors with elicitor (#2 - #1) and also the presence of plasma with PGRPs (#3 - 

#1) led to proPO activation. Therefore, an interaction of elicitor with PGRPs in plasma 

(#4 - #1) was expected to increase proPO activation to a level significantly higher than 

the sum of the two components [(#2 - #1) + (#3 - #1)]. Hence, PO activities of #4 and (#2 
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+ #3 - #1) were directly compared using unpaired t-test to reveal possible synergistic 

enhancement caused by elicitor-PGRP interaction. 

 

3.8 Enzyme-linked immunosorbent assay (ELISA) of M. sexta PGRP binding to 

soluble peptidoglycans 

Soluble PGNs from E. coli DAP-PGN and S. aureus Lys-PGN (InvivoGen) were 

separately used as ligands to measure total and specific binding to M. sexta PGRP3, 4, 

12ecto, 13FL, 13N, and 13C as previously described (Sumathipala and Jiang, 2010; 

Y.Wang et al., 2011). Two µg each PGN per well (50 μl, 40 ng/μl) was added to 96-well 

microplate and air dried overnight under the room temperature. Then, PGNs were fixed 

by incubating the plates at 60°C for 30 min, followed by blocking with 200 µl of 1 mg/ml 

bovine serum albumin (BSA) in Tris buffered saline (TBS: 137 mM NaCl, 3 mM KCl, 25 

mM Tris-HCl, pH 7.6) at 37°C for 2 h. After washing the plate three times with TBS, 

diluted PGRP samples (300 ng in 50 μl TBS containing 0.1 mg/ml BSA) were added to 

the wells (50 μl/well) and the plate was incubated at room temperature for 3 h and further 

processed to get total binding.  

 

To test specific binding between the PGRPs and PGNs, a competition experiment was 

performed. Aliquots of the PGRPs (200 ng in 1 μl) were pre-incubated with 20 μg of 

PGNs in 50 μl TBS with 0.1 mg/ml BSA for 1 h at room temperature. Following BSA 

blocking of the plate wells coated with PGNs (2 μg), the pre-incubation mixtures (with 

the corresponding PGNs) were added to the wells and incubated for 3 h at room 

temperature. Following a washing step with 200 μl TBS for 4 times, 100 μl of 1:1000 
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diluted anti-(His)5 monoclonal antibody in TBS containing 0.1 mg/ml BSA was added 

and incubated for 2 h at 37°C. Unbound anti-(His)5 antibody molecules were removed by 

washing with 200 μl TBS for 4 times, followed by adding 100 μl of 1:2000 diluted goat 

anti-mouse IgG conjugated to alkaline phosphatase (AP) (Bio-Rad) in TBS containing 

0.1 mg/ml BSA. Plates were incubated at room temperature overnight. Then unbound 

samples were washed four times with 200 μl TBS followed by adding 50 μl of 1.0 mg/ml 

p-nitrophenyl phosphate in 0.5 M MgCl2, 10 mM diethanolamine. Plates were incubated 

at room temperature for 20 min and absorbance was measured at 405 nm in the kinetic 

mode on a microplate reader. One unit of AP activity is defined as the amount of enzyme 

causing an increase of 0.001 absorbance unit per minute. 

 

3.9 Binding of M. sexta PGRPs to insoluble peptidoglycans 

One mg each of the insoluble PGNs from B. megaterium, B. subtilis, S. aureus and M. 

luteus was separately mixed with 0.2 µg each of the PGRPs in 50 µl of buffer D (20 mM 

Tris-HCl, pH 8.0, 20 mM NaCl). The mixture was incubated at 4 ˚C for 2 h with mixing. 

Then 10 µl of the total mixture was mixed with 2.0 µl 5×SDS sample buffer and analyzed 

as total fraction. The rest of the reaction mixture (40 µl) was centrifuged at 6000g for 15 

min. After the centrifugation of this mixture, 10 µl of supernatant was mixed with 2.0 µl 

5×SDS sample buffer and analyzed as unbound fraction. The pellet was washed 3 times 

with 200 µl of buffer D each and then mixed with 20 µl of 2×SDS sample buffer (total 

volume: about 40 µl) and analyzed as bound fraction. The total, unbound, and bound 

samples (10,10,5 µl) were heated at 95˚C for 5 min and were separated by 15% SDS-

PAGE followed by immunoblot analysis using 1:1000 diluted anti-(His)5 monoclonal 
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antibody (Bio-Rad) and goat-anti-mouse IgG conjugated to alkaline phosphatase (Bio-

Rad). 

 

3.10 Binding of the M. sexta PGRPs to microbial cells 

Single bacterial cultures of B. megaterium, B. subtilis, S. aureus, Klebsiella pneumoniae, 

Pseudomonas aeruginosa, Salmonella typhimurium, E. coli and M. luteus were used in 

this experiment. Bacterial cultures were grown in 3 ml LB medium at 37 °C until the 

OD600 was close to 0.5 and centrifuged at 10,000×g for 3 min to obtain cell pellet, 

followed by washing the pellet twice with 200 ml of buffer D (20 mM Tris-HCl, pH 8.0, 

20 mM NaCl). Cell pellets were resuspended in 40 µl of buffer. Then 10 µl of the 

purified PGRPs (3 µg) were added separately to each cell suspension and incubated for 2 

h at 4 °C with mixing. Then 10 µl of the total mixture was mixed with 5×SDS buffer and 

analyzed as total fraction. The rest of the reaction mixture (40 µl) was centrifuged at 

6000×g for 15 min. After the centrifugation of this mixture, supernatant (10 µl) was 

mixed with 5×SDS buffer and analyzed as unbound fraction. The pellet was washed 3 

times with 200 µl of the buffer each and mixed with 20 µl of 2×SDS bufferand analyzed 

as bound fraction. The total, unbound, and bound samples were heated at 95˚C for 5 

minutes and subjected to 15% SDS-PAGE and immunoblot analysis using 1:1000 diluted 

anti-(His)5 monoclonal antibody and goat-anti-mouse IgG conjugated to alkaline 

phosphatase.
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CHAPTER IV 
 
 

RESULTS 

 

4.1 Multiple sequence alignment of M. sexta PGRPs  

Multiple sequence alignment was performed to compare sequences of PGRPs from 

M. sexta, other insects and human, as well as T7 lysozyme (Fig. 4). MsPGRP2, 3, 4, 5, 

12 and 13 are >34% identical and >52% similar to MsPGRP1. MsPGRP2, 3 and 4 have 

four of the five catalytic residues (His18, Tyr47, His123, Lys129, Cys131, T7 lysozyme 

numbering) identical to T7 lysozyme, with an exception of Thr substituting Lys129. 

These five residues in T7 lysozyme interact with a catalytic zinc ion. Manduca PGRP 2-

4 have the five residues identical to Drosophila PGRP-SB and -SC, which have the 

amidase activity (Steiner, 2004). MsPGRP1, 5, 12, and 13 lack 2−3 of these residues, 

suggesting that are PGN receptors but not enzymes.  

 

PGN binding sites of DmPGRP-SB contains His-Thr/Ser (H-S/T), Asn-Phe (N-F), 

Arg (R), Asn (N), His (H) and Cys (C). However, DmPGRP-SA and SD contain Asp-

Phe (DF) and Lys-Phe (KF) at the corresponding positions of NF respectively. In 

contrast, DmPGRP-LC and LE have Gly-Trp (GW) rather than NF. Similar NF residues 

at the corresponding positions were observed in MsPGRP5. However, these residues 
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were replaced by NY, QW and KF in MsPGRP 1, 12 and 13 respectively. Similar to 

DmPGRP-LC and LE, MsPGRP2,3 and 4 contain Gly-Trp (GW) instead of NF.  

 

In addition, Arg254 residue is highly conserved in DAP-type PGRPs, including 

DmPGRP-LE, LB, LC and SD. This Arg residue, is not found in DmPGRP-SA which 

recognize Lys-PGNs. Since Arg has a positively charged side chain that could interact 

with the carboxyl group of DAP-PGN, it is believed to be responsible for DAP-PG 

recognition (Hu et al., 2019; Leone et al., 2008; Lim et al., 2006). MsPGRP2, 3, 4 and 12 

contain Arg at the corresponding position, while it is replaced by Ser in MsPGRP1 and 

Val in MsPGRP5 and 13.  

 

4.2 Construction, expression and purification of recombinant M. sexta PGRP 2-5, 12 

ecto and 13 full, 13N and 13 C domains 

cDNA fragments of the PGRPs were PCR amplified and sequence verified, before 

cloning into pMFH6, followed by expression in baculovirus infected Sf9 cell cultures. 

This system allows secretion of the mature proteins into the medium and eliminated 

contamination of bacterial components that may interfere with functional assays 

including proPO activation assay. All the recombinant PGRPs with a C-terminal 

hexahistidine tag were purified by cation exchange chromatography on a dextran 

sulfate-Sepharose column and further isolated by affinity chromatography on a Ni-NTA 

agarose column. From one liter of conditioned Sf9 medium for each protein, we 

obtained 2, 3.08, 2.4, 1.5, 1.5, 3.04, 1 and 3.28 mg of MsPGRPs 2−5, 12ecto, 13FL, 

13N and 13C. In the SDS-PAGE analysis, the purified recombinant MsPGRPs 2−5, 
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13FL, 13N and 13C migrated as a single band at 19, 24, 21, 19, 48, 15 and 27 kDa 

positions close to their calculated masses (20,770, 25230, 22,312, 20,706, 51,451, 

15,152 and 26,799 Da).  

 

MsPGRP12ecto domain mainly migrated as a doublet at 24 kDa position. All purified 

recombinant MsPGRPs were recognized by anti-(His)5 antibody (Fig. 5). 

 

4.3 Elicitor-independent proPO activation by MsPGRP 1-5, 12 ecto, 13Fl, 13N and 

C terminal domains at different concentrations 

In order to test the role of M. sexta PGRPs in proPO activation, purified recombinant 

MsPGRPs were incubated in concentration dependent manner only with diluted 

hemolymph plasma from naïve larvae (Fig 6). Addition of MsPGRPs enhanced proPO 

activation with the increase of their concentrations, even in the absence of microbial 

elicitor. The MsPGRP1-triggered proPO activation (Sumathipala & Jiang, 2010) was 

used as a positive control to validate the reproducibility of protocol. As concentration of 

MsPGRPs increase, proPO activation increase. For MsPGRP5, 13Fl and 13N proPO 

activation reached the peak values of 15.4, 10.6 and 10.3 U at the PGRP concentration 

of 0.1 mg/ml. For MsPGRPs 1-4, proPO activation appeared to increase and level out 

towards a maximum, with the increase of recombinant MsPGRP 1-4 concentrations 

(Fig. 6). Maximum values of PO activity with MsPGRPs 1-4 were 8.7, 10.5, 13.2, and 

11.7 U, respectively.  
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The elicitor-independent proPO activation did not occur until 600 ng of PGRP12ecto 

was added. The domain was truncated from the transmembrane receptor for use as a 

control. The true negative control of BSA did not cause any PO activity increase. 

However, for MsPGRP 12 ecto domain I did not see any increased proPO activity until 

600 ng and even after that the increase was low. This may be due to the fact that the 

PGRP 12 being transmembrane receptor. I used BSA as a negative control and did not 

observe such response in proPO activation after adding BSA to the plasma in 

concentration dependent manner. Similarly, I did not see any increased proPO activity 

with MsPGRP 13 C.  

 

4.4 Elicitor-dependent proPO activation by M. sexta PGRPs 3FL, 4, 12ecto, 13FL, 

13N, and 13C 

I further tested effects of the PGRPs on proPO activation in the presence of M. 

luteus and S. aureus Lys-type PGNs and E. coli, B. megaterium and B subtilis DAP-type 

PGNs (Fig. 7). Since the elicitor-dependent proPO activation by MsPGRPs 2, 3short, and 

5 were already tested by a previous lab member, I started with MsPGRPs 3FL, 4, 12ecto, 

13FL, 13N and 13C. Diluted plasma was incubated one hour at room temperature with 

buffer, PGNs, PGRPs or both PGNs and PGRPs. In both samples of plasma alone (#1) 

and the mixture of PGRP with plasma (#2), low levels of PO activity were observed. 

Increased levels of proPO activation in plasma were observed after PGRP (#3) and 

PGRPs with PGNs (#4) had been added.  
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The observed PO activity increases with the combination of PGRPs (3FL, 4, 13FL 

and 13N) with DAP-PGNs were significantly higher than with Lys-PGNs (Fig7). A 

significantly high PO activity was observed for a combination of MsPGRP3, plasma and 

PGNs from E. coli, B. megaterium and B. subtilis. For the combination of PGRP3 with 

M. luteus PG, the increased PO activity was not significant. With S. aureus PG, PO 

activity of the plasma was significantly lower than when PGRP3FL added. Similar results 

were obtained for PGRP13FL and 13N, in which a significantly higher PO activities were 

observed only with a combination of the PGRPs, plasma, and DAP-PGNs but not with 

Lys-PGNs.  

 

However, with Lys-PGs from S. aureus and M. luteus, PO activity of the plasma was 

significantly lower than when PGRP 13FL added.  In case of the PGRP4, significantly 

higher PO activity was observed with DAP-PGNs (E. coli, B. megaterium and B. subtilis) 

and Lys-PGNs (M. luteus). Neither PGRP12ecto nor PGRP13C significantly increased 

PO activity in plasma in the presence of DAP- and Lys-PGNs. Surprisingly, none of these 

PGRPs increased PO activity in plasma by S. aureus PGN. The synergistic effects on 

proPO activation by the PGRPs 3FL, 4, 13FL, and 13N in the presence of DAP-PGNs 

were likely caused by specific interactions with these PGNs, whereas the lack of 

synergism with Lys-PGNs coincided with incomplete binding of the PGRPs to these 

PGNs (see below).  
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4.5 ELISA-based plate assay of the PGRP bindings to E. coli and S. aureus 

peptidoglycans 

In order to elucidate binding specificity of the purified PGRPs to bacterial PGNs, we 

performed ELISA to examine total and specific bindings (Fig. 8). PGNs from E. coli 

(DAP-tye) and S. aureus (Lys-type) and M. sexta PGRPs 2, 3FL, 3s, 4, 5, 12ecto, 13FL, 

13N, and 13C were tested. Low alkaline phosphatase activities (<4 U) indicated low total 

binding of the PGRPs with S. aureus PGN. In comparison with the negative control of 

BSA, some concentration-dependent bindings were observed for PGRP3FL, 13FL and 

13N with S. aureus Lys-PGN. 

 

After the PGRPs had been pre-incubated with excess amount of S. aureus Lys-PGN, 

the mixtures were subjected to the binding assay. If their bindings to the PGNs was 

specific during the preincubation, no PGRPs would be left for interacting with the 

immobilized PGNs. In contrast, nonspecific binding is unsaturable. As observed in 

competition experiment, the bindings of PGRPs 2, 3FL, 3s, 5 and 13 with Lys-PGN of S. 

aureus were low and nonspecific in most cases. However, significant decreases in the 

PGRP4, PGRP12ecto, and PGRP13N binding were detected after competition with S. 

aureus PGN, except for 400ng of PGRP4 and 300 ng of PGRP13N (Fig. 8).  

 

When the same experiment was done using E. coli DAP-PGN, specific bindings were 

observed for M. sexta PGRPs 2-5, 12ecto, 13FL and 13N (Fig. 8). All of these PGRPs 

showed much higher binding than the BSA control. The specific interaction of E. coli 

DAP-PG with PGRP12ecto at the concentration of 200 ng caused a decrease in the 
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enzyme activity but the p value was 0.07. Taken together, the ELISA support high and 

specific binding of all but PGRP13C to E. coli DAP-PGNs and low and nonspecific 

binding of PGRPs 2, 3FL, 3S, 5, 13FL, and 13C to S. aureus PGN.  

 

4.6 Binding of M. sexta PGRPs 2-4, 12ecto, 13FL, 13N, and 13C to insoluble 

peptidoglycans 

To further test binding specificity of MsPGRPs, pulldown assays were performed 

for each of the seven PGRPs and insoluble peptidoglycans from B. megaterium (DAP-

type), B. subtilis (DAP-type), M. luteus (Lys-type), and S. aureus (Lys-type) (Fig. 9). 

All of the PGRPs, except for PGRP13C, showed specific binding with DAP-PGN 

from B. megaterium. However, PGRPs 3FL, 3s, 4, 13FL and 13N terminal domain 

displayed more binding with B. subtilis PGN than PGRPs 2 and 12ecto did. were more 

specificity than PGRP 2 and 12 ecto domain which showed partial bindings. The 

PGRP13C, a lipoprotein-11 domain, did not bind to any PGNs. 

 

The PGRP4 completely bound to M. luteus Lys-PG whereas PGRP2 showed 

partial binding (Fig. 9). In contrast, the PGRPs 3FL, 12ecto, 13FL, and 13N did not 

bind the Lys-PG at all. In case of S. aureus Lys-PGN, PGRP12ecto displayed partial 

binding but none of the other proteins bound. Again, the pulldown assay indicated that 

the M. sexta PGRPs recognized DAP-PGNs better than Lys-PGNs in an order of Bm > 

Bs > Ml > Sa. Manduca PGRP 2 showed binding preference for PGNs in the order of 

Bm > Bs, Ml > Sa, whereas PGRP 3FL showed binding preference for PGNs in the 

order of Bm, Bs > Ml, Sa. Manduca PGRP 4 and 13N terminal domain showed 
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binding preference for PGNs in the order of Bm, Bs > Ml > Sa.  PGRP 12 e showed 

binding preference for PGNs in the order of Bm > Bs > Sa > Ml. Manduca PGRP 

13FL showed binding preference for PGNs in the order of Bm, Bs > Sa > Ml. 

 

4.7 Binding of M. sexta PGRPs 2-4, 12ecto, 13FL, 13N, and 13C to microbial cells 

Bindings of PGRPs to bacteria and PGNs may differ greatly, due to the presence of 

other cell wall components such as techoic acids, lipoteichoic acids, and proteins. PGN 

layers of Gram-negative (G-) bacteria are covered by lipopolysaccharides embedded in 

lipid bilayer of the outer membrane. To further examine the process of bacteria 

recognition, we incubated the purified PGRPs with eight live bacteria (Fig. 10), B. 

megaterium (G+, DAP-PGN), B. subtilis (G+, DAP-type), E. coli (G-, DAP-type), K. 

pneumoniae (G-, DAP-type), S. typhimurium (G-, DAP-type), P. aeruginosa (G-, DAP-

type), M. luteus (G+, Lys-type), and S. aureus (G+, Lys-type).  

 

In agreement with the results obtain from the pulldown assays with PGNs, the 

PGRPs 2, 3FL, 3s, 4, 13FL, and 13N showed complete bindings with B. megaterium, 

whereas the PGRP12ecto had partial binding (Fig. 10). With B. subtilis, PGRPs 4, 

13FL and 13N displayed near complete bindings, while the PGRPs 2, 3FL and 12ecto 

showed partial bindings. PGRP13 C terminal domain has no binding with B. subtilis 

and other seven bacteria. Only PGRP3FL showed inconsistency in binding with B. 

subtilis cells and PGNs. No binding was observed for S. typhimurium, P. aeruginosa 

and S. aureus by the PGRPs 3FL, 4, 13FL, 13N and 13C. Partial bindings of the 
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bacteria were observed for PGRP12ecto. These results are consistent with the PGN 

bindings (Fig. 10).  

 

With M. luteus, the PGRPs 2, 4 and 12ecto showed partial binding while the other 

four did not bind. This is consistent with the PGN binding data of the PGRPs 2, 3, 

13FL, 13N and 13C, but not PGRP4 or PGRP12ecto (Fig. 9). After the proteins had 

been incubated with K. pneumoniae cells, complete binding of the PGRP2 occurred, 

partial bindings were observed for the PGRPs 12ecto, 13FL, and 13N, no bindings were 

found for PGRPs 3FL, 4 or 13C. None of the PGRPs showed complete binding with E. 

coli cells. M. sexta PGRPs 2, 3FL, and 13FL showed more binding than PGRP4 or 

12ecto. Little binding occurred between E. coli cells and PGRPs 4, 12ecto, or 13C. 

 

Again, the pulldown assay with whole bacteria indicated that the M. sexta PGRPs 

recognized Gram-positive bacteria with DAP-PGNs better than Gram-positive bacteria 

with Lys-PGNs in an order of Bm > Bs > Ml > Sa. Gram-negative bacteria showed low 

binding compared to Gram-positive bacteria. Manduca PGRP 2 showed binding 

preference for Gram-positive bacteria in the order of Bm > Bs > Ml > Sa, whereas for 

Gram-negative bacteria the order was Kp > Ec > St, Pa. Manduca PGRP 3FL showed 

binding preference for Gram-positive bacteria in the order of Bm > Bs, Ml > Sa, 

whereas for Gram-negative bacteria the order was Ec > Kp, St, Pa. Manduca PGRP 4 

showed binding preference for Gram-positive bacteria in the order of Bm > Bs > Ml > 

Sa, whereas for Gram-negative bacteria the order was Ec > Kp, St > Pa. Manduca 

PGRP 12 ectodomain showed similar binding preference for all of the Gram-positive 

bacteria used in this experiment, whereas for Gram-negative bacteria the order was Kp, 
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St, Pa > Ec. Manduca PGRP 13 FL and 13 N terminal domains showed similar binding 

preference for Gram-positive bacteria in the order of Bm, Bs > Ml, Sa. However, they 

showed different binding preferences for Gram-negative bacteria. In case of PGRP 13 

FL the order of binding preference was Ec > Kp > Pa, St, where as for PGRP 13 N it 

was Kp > Ec, Pa, St. 

 



40 
 

CHAPTER V 
 
 

DISCUSSION 

 

Biochemistry of insect immune responses has been a hot topic for several decades. 

Insect pests are responsible for major damages by destroying crops or transmitting 

vector-borne diseases. M. sexta represents a large group of agricultural pests in the order 

of Lepidoptera and has a low susceptibility to a variety of pathogenic bacteria (Cooper 

and Eleftherianos, 2017). Better understanding the lepidopteran insect immune system 

may be beneficial to the development of novel strategies for management of agricultural 

pests and disease vectors and also could be used to understand human health related 

problems. 

 

During evolution, insects have developed several lines of defense against microbial 

infection. Innate immune system is the main defense against invading pathogens. In 

insects, Toll, IMD and proPO activation are the main signaling pathways to eliminate 

invading pathogens (Sheehan et al., 2018; Tsakas and Marmaras, 2010). The activation 

of these pathways occurs mainly through PRRs, which recognizes PAMPs, such as 

lipopolysaccharide, peptidoglycan and lipophosphoric acid (Tsakas and Marmaras, 

2010; Wu et al., 2018).  The recognition of invading microbes and distinction from the 

host are mediated by PRRs such as PGRPs. 

https://www.thecanadianencyclopedia.ca/article/insect/
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The interactions between PGRPs and PGNs on the surface of invading microbes 

trigger some intracellular signaling pathways through an integrated serine protease 

network (Akira et al., 2006; Dziarski and Gupta, 2018; Yu et al., 2002). Although the 

importance of PGRPs in detecting bacteria and promoting immunity is well recognized 

in D. melanogaster, such a role has not yet been experimentally established for PGRPs 

as a system in M. sexta. This study is focused on determining the roles of M. sexta 

PGRPs in proPO activation and specificity towards different PGNs and bacteria. 

 

5.1. Structural basis and evolutionary relationships of the PGRPs in M. sexta 

PGRPs, conserved from insects to mammals, are a superfamily of ubiquitous 

proteins that recognize PGNs to initiate innate immune signaling (Kang et al., 1998; 

Leulier et al., 2003; Steiner, 2004). Thirteen PGRP genes have been identified in 

the M. sexta genome. In addition to the recognition domain, PGRP13 has a lipoprotein-

11 domain, which is not found in other insects (Zhang et al., 2015). According to the 

phylogenetic tree of M. sexta and D. melanogaster PGRPs, Manduca PGRPs 1, 5-7, 9, 

and 13 are close to Drosophila PGRP-SA, PGRP2–4 to -SB/SC/SD, PGRP8 to -LD, 

PGRP10/11 to -LA, and PGRP12A/B to -LC/LE. M. sexta PGRPs 2-4 contain the key 

residues (His, Tyr, His, Thr, and Cys) for the amidase activity that cleaves the amide 

bond between lactyl and L-alanine residues in the stem peptide of PGNs. This cleavage 

can break down PGNs to attenuate host immunity. While the Lys residue in T7 

lysozyme is required for the amidase activity is replaced by Thr in the Manduca and 

Drosophila PGRPs, the enzyme activity remains in PGRP-SB and -SC (Steiner, 2004). 
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M. sexta PGRP12 has two splicing variants, 12A and 12B (Hu et al., 2019; Zhang et al., 

2015).  

 

The crystal structure of Manduca PGRP1 (Hu et al., 2019) showed that the overall 

folding is closely similar to human and Drosophila PGRPs and several differences are 

also present (Hu et al., 2019; Zhang et al., 2015). Similar observations were made in 

the multiple sequence alignment of Manduca and Drosophila PGRPs (Fig. 4). 

Sequence variations between Manduca and Drosophila PGRPs at certain positions of 

PGN binding sites have some effect on their ability to recognize PGNs but largely 

affect the distinction of Lys- and DAP-PGNs (Charroux et al., 2009; Royet and 

Dziarski, 2007; Steiner, 2004). For example, Manduca PGRP1 contains Asn96 and 

Tyr97 (NY) and recognizes DAP-PGNs. In contrast, Drosophila PGRP-SA which is 

orthologous to MsPGRP1 contains Asp and Phe (DF) at the same positions, prefers 

Lys-PGNs over DAP-PGNs (Fig 4).  

  

5.2. M. sexta PGRPs and melanization 

ProPO activation is one of the defense responses in insects. In order to check the 

connection between PGRPs and proPO activation cascade, elicitor-independent PO 

activity increase was tested using the PGRPs in a range of concentrations. Addition of 

MsPGRPs alone enhanced proPO activation in concentration dependent manner, 

confirming a correlation between PGRPs (2-5 and 13) and proPO activation. Similar 

results were observed for MsPGRP1 (Sumathipala and Jiang, 2010) and DmPGRP-LE 

(Sumathipala and Jiang, 2010; Takehana et al., 2002). These findings support the 
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hypothesis that increased concentrations of PGRPs in plasma may have triggered self- 

association, that favors spontaneous melanization by interacting with other components 

of the proPO activation cascade (Y.Wang et al., 2011). However, for PGRP3s and 

12ecto, we did not detect much increased PO activity until 400-600 ng and the 

enhancement was much lower in the range of 600-1000 ng. Their C-terminal truncation 

is responsible for the changes. 

 

While the non-physiological increases of spontaneous melanization supported the 

involvement of PGRPs 1-5 and 13 in proPO activation, a more direct connection was 

tested using microbial elicitors. When compared to the plasma only (#1), adding small 

amounts of PGNs did not cause major PO activity increase in the diluted plasma (#2). 

The increases caused by a low level of the purified PGRPs (#3) were higher. Addition 

of the PGRPs (3, 4, 13FL, 13N) and DAP-PGNs to 1:10 diluted larval plasma caused 

significant increased PO activity (#4). In contrast, the Lys-PGNs did not cause 

statistically significant increase with the PGRPs under the assay conditions except for 

PGRP4, which shows synergistic enhancement in proPO activation with M. luteus 

Lys-PGNs. The synergistic effect on proPO activation by the exogenous PGRPs in the 

presence of DAP-PGNs in plasma was likely caused by specific interactions with these 

DAP-PGNs, whereas lack of synergism with Lys-PGNs coincided with the incomplete 

binding of MsPGRPs to these PGNs. On the other hand, MsPGRPs 12ecto and 13C 

did not cause significant increased PO activity, may be due to the fact that MsPGRP12 

being a transmembrane receptor and 13C being a lipoprotein domain that do not 

interact with PGNs. 
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Previous studies on Lepidoptera hemolymph have revealed a constant low PO 

activity. However a significant increase of PO level was observed after an injury 

and/or infection (Kanost et al., 2004; Shrestha and Kim, 2009, 2008; Q. Wang et al., 

2020; Yu et al., 2002). In physiological conditions, a low, constitutive level of PGRPs 

are present in hemolymph. Upon a recognition of invading pathogens, PGRPs may 

form clusters on pathogen surface and transmit the invasion signal to other molecules 

to trigger the immune system including proPO activation (Park et al., 2007). 

 

5.3. M. sexta PGRP binding patterns affected by bacterial surface structures 

The biochemical analysis of proPO activation provided evidence that the PGRPs 

sense DAP-PGNs better than Lys-PGNs and specific binding between DAP-PGNs and 

MsPGRPs synergistically induce the proPO activation cascade. To test the role of 

binding specificity on immunological function, ELISA and pulldown assays using both 

PGNs and microbial cells were performed. In agreement with the ELISA data, 

MsPGRPs 2-4, and 13 showed specific binding with DAP-PGN from E. coli not with S. 

aureus Lys-PGN. In case of M. luteus, we observed binding and proPO activation with 

MsPGRP4, which is similar to the results observed for M. sexta PGRP1 (Sumathipala 

and Jiang, 2010). However, MsPGRPs 3, 12ecto and 13 were not able to bind and 

increase proPO activation with M. luteus in plasma. Sequence variations in PGN 

binding sites likely have impacted the differential binding of MsPGRPs.  
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All of the MsPGRPs used in this experiment, specifically bound to DAP-PGNs 

from both B. megaterium and B. subtilis, and synergistically enhanced proPO 

activation. The complete binding shown by B. megaterium PGNs in contrast to B. 

subtilis’, may be due to the low cross-linking exhibited by B. megaterium PGNs and the 

glucosamine deacetylation that occurs in B. subtilis PGNs (Atrih et al., 1999). The 

differences in melanization stimulation, attributed to the B. megaterium and B. 

subtilis PGNs may also stem from these structural differences. The results observed in 

ELISA agreed well with those of the pull-down tests using the purified PGRPs and 

PGNs from E. coli and S. aureus. On the other hand, MsPGRP12ecto showed partial 

binding with S. aureus PGN, even though it didn’t increase PO activity. We found that 

the extracellular PGRP domain of PGRP12 had affinity for all types of PGNs.  

 

Although the polysaccharide chain in PGN is conserved in all bacteria, the stem 

peptides vary in amino acid composition (Vollmer et al., 2008). Hence, the structural 

changes in the stem peptides of different bacteria such as degree of cross-linking, 

glycan strand modifications, as well as the type of MsPGRPs may also be responsible 

for the differential binding and initiation of the immune pathways (Royet and Dziarski, 

2007; Swaminathan et al., 2006). Even though S. aureus is a pathogenic species, lack or 

low level of virulence have also been observed due to the strain diversity of S. aureus in 

some C. elegans experiments (García-Lara et al., 2005; Sifri et al., 2003). S. aureus 

usually have a pentaglycine cross bridge in between 3rd L-Lys and 4th D-Ala in the stem 

peptide and the glycine content differs from strain to strain (Vollmer et al., 2008). 

Hence, this highly crosslinked pentaglycine bridge will prevent sensing and binding of 
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S. aureus PGNs by MsPGRPs. The lack of binding also coincided with the result that 

PGRP did not further enhance proPO activation triggered by S. aureus and M. luteus.  

 

Binding specificity of MsPGRPs were further tested with live bacterial cells, since 

the bacterial cell wall may interfere the PGN bindings by MsPGRPs. Gram-positive 

bacteria contain a thick PGN layer which is exposed to outside environment, whereas 

Gram-negative bacteria contain relatively thin PGN layer covered by the outer 

membrane. This phenomenon supports the findings that the MsPGRPs showed partial 

or no binding to the live cells of Gram-negative E. coli, S. typhimurium, K. pneumonia, 

and P. aeruginosa.  This suggests outer membrane of these bacteria might have 

prevented the interactions between their PGNs and MsPGRPs. Current understanding 

on the mechanism and structural moieties (e.g. lipopolysaccharides, proteins) are 

involved in the observed PGRP associations remain unclear and need further 

investigations. 
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CHAPTER VI 
 
 

CONCLUSION 

 

Upon pathogen invasion, a battle occurs between the microbe trying to establish an 

infection and host defense to prevent the infection. Virulence index of the pathogen, 

host immune responses and other host factors determine the outcome of this battle. 

PGRPs are one of the immune surveillance protein sets present in Manduca 

hemolymph that recognize bacterial peptidoglycans and transmit signal to trigger 

immune responses. Taken together, our results from ELISA, pull-down assays with 

PGNs and live bacteria, and PO activity assays suggest that MsPGRPs 1-5 and 13 are 

positive regulators of the proPO activation system. They preferentially recognize DAP-

type PGNs over Lys-type PGNs. Our results suggest that Manduca sexta PGRPs are 

tailored towards DAP-PGNs rather than Lys-PGNs. Although the recent progress has 

brought us closer to understanding the role of M. sexta PGRPs in bacterial sensing and 

proPO activation, the precise mechanism of MsPGRP-PGN specific binding that leads 

to synergistic enhancement in the proteolytic activation of proPO in plasma need 

further investigations. 

 

The findings of my research have expanded the current understanding of MsPGRPs 

in bacterial sensing and proPO activation in Manduca sexta, paving the way for further 
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explorations to better translate the host-pathogen interactions and bridge current 

knowledge gaps in pathogen infections. With the global trend of being continuously 

challenged by emerging and reemerging infectious diseases and classical infections, an 

improved understanding of insect innate immune system is important for developing 

improved disease diagnostics, interventional strategies, or novel vaccines. 
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FIGURES 
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MsPGRP-13    PTAQQMEALNGLLACGVKLGHLT--PDYRIITHRQLILSDSPGQ----------------------  
DmPGRP-SB1   PSAQMLQNAKDLIELAKQRGYLK--DNYTLFGHRQTKATSCPGS----------------------  
DmPGRP-SC1a  LEPNMISAAQQLLNDAVNRGQLS--SGYILYGHRQVSATECPGG----------------------  
DmPGRP-LC    PNERQLEACQLLLQEGVRLKKLT--TNYRLYGHRQLSATESPGE----------------------  
DmPGRP-LE    PTADALNMCRNLLARGVEDGHIS--TDYRLICHCQCNSTESPGP----------------------  
DmPGRP-SA    PSDAALQAAKDLLACGVQQGELS--EDYALIAGSQVISTQSPGP----------------------  
DmPGRP-SD    PNKEALDAAKELLEQAVKQAQLV--EGYKLLGHRQVSATKSPGP----------------------  
BmPGRP-s     PSGAMLEALRSLLRCGVERGHLA--GDYRAVAHRQLIASESPGRKLYNQIRRWPEWLENVDSIKNH  
TniPGRP-s    PTQKSLDALRALLRCGVERGHLT--ANYHIVGHRQLISTESPGRKLYNEIRRWDHFLD--------  
             :          *   ..  :            :.*   . .** 
HsPGRP-Ia    PNAAALEAAQDLIQCAMVKGYLT--PNYLLVGHSDVARTLSPGQALYNIISTWPHFKY--------  
T7 lysozyme  KFDANFTPAQMQSLRSLLVTLLAKYEGAVLRAHHEVAPKACPSFDLKRWWEKNELVTSDRF-----  

 
 

 
Fig. 4.  Multiple sequence alignment of PG-binding domains in insect and human PGRPs with 

T7 lysozyme.  Amino acid sequences of the domains in M. sexta PGRP1, 2, 3, 4 , 5, 12 and 13 and 

in D. melanogaster PGRP-SB1 (DmPGRP-SB1), PGRP-SC1a (DmPGRP-SC1a), PGRP-LE 

(DmPGRP-LE), PGRP-SA (DmPGRP-SA), PGRP-SD (DmPGRP-SD), B. mori PGRP1 (BmPGRP-

S), T. ni PGRP (TniPGRP-S), Homo sapiens PGRP1αC (HsPGRP-1a) and T7 lysozyme are aligned.
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amino acids in bold red are shown or predicted to be N-acetylmuramoyl-L-alanine amidases 

with the conserved His18, Tyr47, His123, K129/T and C131 all present for binding the catalytic 

zinc ion in T7 lysozyme as well as the five insect PGRPs (three from Manduca and two 

from Drosophila). Numbers on the right indicate positions of the residues in the entire 

PGRP sequences. For the sixteen insect PGRPs, positions with 70, 90 and 100% identities 

are marked with “.”, “:” and “*”, respectively, and residues different from the consensus 

are shaded gray. Residues highlighted yellow represent the conserved residues for PGN 

binding. 
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Fig. 5:  The M. sexta PGRPs purified from the baculovirus-

infected Sf9 cell cultures. 

Purified PGRPs were analyzed by 12% SDS-PAGE.  Left panel, 

Coomassie blue staining; right panel, immunoblot analysis using 

anti-(His)5 as the first antibody, along with pre-stained molecular 

weight standards (M) with their sizes indicated on the left. 

The purified recombinant MsPGRPs 2−5, 13 were migrated as a 

single band at 19, 24, 21, 19, 48, 15 and 27 kDa positions close 

to their calculated masses (20,770, 25230, 22,312, 20,706 and 

51,451 Da). MsPGRP12ecto migrated as a double band at 24 

kDa position. 
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Fig. 6: Concentration-dependent increase in proPO activation caused by the 

purified M. sexta PGRPs in the absence of microbial elicitor. As described in Section 

3.6, aliquots of cell-free hemolymph from day 2, fifth instar naïve larvae were incubated 

at room temperature with 0.2 to 1.0 µg of MsPGRP or BSA in a final volume of 24 µl. 

PO activities were determined and plotted as mean ± SEM (n=3).  
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Fig. 7:  Enhancement of proPO activation in plasma from naïve larvae by PGNs in 

the absence or presence of M. sexta PGRPs.  As described in Section 3.7, PGNs of B. 

megaterium (A), B. subtilis (B), E. coli (C, soluble), M. luteus (D) and S. aureus (E) were 

separately incubated with 1:10 diluted plasma and purified recombinant MsPGRPs 3, 4, 

12ecto, 13FL, 13N and 13C separately for 60 min at room temperature. PO activity (#4) 

was measured and plotted as mean ± SEM (n = 3), along with those of the controls (#1, 

plasma only; #2, plasma and PG; #3, plasma and PGRP1). Since interaction of plasma 

factors with elicitor (#2 - #1) and co-presence of plasma and exogenous MsPGRP (#3 - #1) 

both lead to proPO activation, an interaction of elicitor and exogenous MsPGRP in plasma 

(#4 - #1) is expected to increase proPO activation to a level significantly higher than the 

sum of the two components [i.e. (#2 - #1) + (#3 - #1)]. To detect a possible synergistic 

effect of PGN-MsPGRP interaction, the PO activity changes represented by (#4 - #1) and 

(#2 + #3 – 2×#1) are compared using unpaired t-test. An asterisk (*) on #4 indicates that 

(#4 - #1) is significantly higher (p < 0.05). 
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Fig. 8:  ELISA of the M. sexta PGRPs interacting with soluble peptidoglycans from S. 

aureus (A, B, C, G, H, I, M, N, O) and E. coli (D, E, F, J, K, L, P Q R).  MsPGRPs 2, 

3s, 4, 5, 12ecto and 13 were tested for binding with PGNs from both E. coli and S. aurueus 

separately. As described in Section 3.8, the purified MsPGRPs were incubated with soluble 

PG immobilized on a 96-well microplate. The binding was detected via ELISA and alkaline 

phosphatase activity is shown as mean ± SEM (n=3).  Binding without a competitor, with 

excess soluble PG as competitor (c), and the negative control of BSA (BSA).
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Figure 9: Binding of M. sexta PGRPs 2-4 12ecto, 13FL, 13N and 13C to 

peptidoglycans. Binding assays were performed using the purified PGRP2 (A), PGRP3 

(B), PGRP 4 (C), PGRP12e (D), PGRP13FL (E) PGRP13N (F) and PGRP13C (G) and 

insoluble PGNs. T, U, B represents total, unbound, and bound fractions which were 

separated by SDS-PAGE followed by immunoblot analysis using anti-(His)5 as the first 

antibody. 
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Fig. 10, Binding of M. sexta PGRP 2-4, 12ecto, 13FL, 13N and 13C to different 

bacteria.  Binding assays were performed using the purified PGRP2 (A), PGRP3 (B),  

PGRP 4 (C), PGRP12e (D), PGRP13FL (E) PGRP13N (F) and PGRP13C (G) and whole 

bacteria. T, U, B represents total, unbound, and bound fractions which were separated by 

SDS-PAGE followed by immunoblot analysis using anti-(His)5 as the first antibody. 
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TABLES 
 

 

Table 1: Relationship between binding of exogenous PGRPs and increase in proPO  
activation 

 

  

 

 

 

  Lys-type PG DAP-type PG 
M. luteus S. aureus B. 

megaterium 
B. subtilis E. coli (s) 

PGRP2 PG binding PB No CB PB  N.a 
proPO activation + - + - + 

PGRP3 PG binding No No CB CB N.a  
proPO activation - ↓ + + + 

PGRP4 PG binding CB No CB CB N.a  
proPO activation + - + + + 

PGRP12 PG binding No PB PB PB N.a  
proPO activation - - - - - 

PGRP13 PG binding No No CB CB N.a  
proPO activation ↓ ↓ + + + 

PGRP13
N 

binding No No CB CB N.a  
proPO activation - - + + + 

PGRP13
C 

binding No No No No N.a  
proPO activation - - - - - 
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APPENDICES 
 
 

List of Abbreviations 
AMP  antimicrobial peptide 
BSA bovine serum albumin  
CLIP clip-domain serine protease 
DAP meso-diaminopimelic acid 
DHI 5,6-dihydroxyindole  
DREDD death-related ced-3/Nedd2 like protein 
DS dextran sulfate-Sepharose CL-6B  
ELISA Enzyme-linked immunosorbent assay 
FADD Fas-associated protein with Death Domain 
GlcNAc N-acetylglucosamine 
GNBP Gram-negative bacteria-binding protein 
HP Hemolymph proteinase 
His Histidine 
IgG Immunoglobulin-G 
Imd immune deficiency 
IPTG isopropyl-β-D-thiogalactopyranoside 
LDLa Low Density Lipoprotein receptor class A 
L-DOPA L-dihydroxyphenylalanine  
LPS lipopolysaccharide 
LTA Lipoteichoic acid 
Lys Lysine 
MAMP microbe-associated molecular pattern 
MurNAc N-acetylmuramic acid 
NADA N-acetyldopamine  
NBAD N-β-alanyldopamine 
NF-κB  nuclear factor-Κb 
Ni-NTA Ni-nitrilotriacetic acid 
PAMP pathogen-associated molecular pattern 
PAP proPhenoloxidase activating proteinase 
PEG polyethylene glycol 
PCR Polymerase chain reaction 
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PGN peptidoglycan 
PGRP peptidoglycan recognition protein 
PGRP-L peptidoglycan recognition protein  long form 
PGRP-S peptidoglycan recognition protein  short form 
PO phenoloxidase 
proPO prophenoloxidase 
PRR pattern recognition receptor 
SDS-PAGE sodium dodecyl sulfate- Polyacrylamide gel electrophoresis 
Serpin serine proteinase inhibitor 
Sf9 Spodoptera frugiperda  
SP serine proteinase 
SPH serine proteinase homolog 
SPE Spätzle‐processing enzyme  
TBS Tris buffered saline 
UPGMA unweighted pair group method with arithmetic mean 
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