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Abstract: Riparian soils are uniquely susceptible to the formation of macropores, voids 

with preferential flow in comparison to surrounding strata, which are hypothesized to 

promote fast transport of water through soil layers. Electrical Resistivity Imaging (ERI) 

can locate spatial heterogeneities in soil wetting patterns caused by preferential flow 

through macropores, thus optimizing the design of riparian buffers. Temporal ERI 

(TERI) imaging was conducted in a fine and coarse field setting with artificial 

macropores to evaluate flow under unsaturated simulated rainfall conditions and saturated 

infiltrometer conditions.  

 

Results from field data show that while macropores are detectable using TERI datasets, 

this results in an average field setting would detect the wetted zone in the vicinity of a 

macropore, not the macropore itself. The results were similar for both the primary fine 

grain soil site in Oklahoma as well as the coarse grain site in North Carolina. TERI data 

indicate that without artificial rainfall or macropores in low noise conditions, a single 

macropore would not be detected, a wetted zone would be the best detection. In a field 

evaluation of naturally occurring macropores, the TERI technique would detect the 

wetted zone around a macropore similar to an area of increased hydraulic conductivity in 

a heterogeneous soil matrix.  The findings from the first set of experimentation indicate 

an appropriate resolution and electrode spacing for the second experiment in this thesis.  

The second experiment entails the tracer velocity mapping of alluvial soil.  Preliminary 

results show TERI as a viable method for calculating the fluid velocity along a series of 

vertical profiles in the coarse-grained North Carolina field site.   
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CHAPTER I 
 

 

INTRODUCTION 

 

Modern agricultural practices include the use of fertilizers and pesticides that may be transported 

from fields to adjacent streams during precipitation events, resulting in impacts to surface water. 

Riparian buffers are vegetation strips that offer streams and other surface water reservoirs 

protection from the contaminant runoff (Edwards et al., 1988. Larger buffer zones are not always 

an ideal solution for limiting runoff because larger zones create a land productivity issue (Weiler 

and Naef, 2003a; Lee et al., 2004). Thus, it’s vital to determine size and location to place the 

buffer zone to satisfy both runoff prevention and optimal land productivity. The majority of 

runoff may enter surface water via preferential flow paths. Knowing the hydrogeological 

properties and distribution of features such as macropores will increase the efficacy in 

determining buffer zone dimensions. (Weiler and Naef, 2003b).  

 In order to improve macropore characterization in riparian areas, this thesis evaluates the use of 

temporal electrical resistivity imaging (TERI) to detect macropores or areas with macropores 

affecting subsurface flow. The first objective for this project is to determine if macropores can be 

detected with TERI. We present the field design of macropore detection experiments followed by 

the design of the ERI setup. A number of methods were used to simulate adding fluids to 

macropores with these wetting approaches detailed. The set of TERI experiments to evaluate 

macropore detection are presented in Chapter 2. 
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The second objective for this project is to detect macropores using TERI through tracer velocity 

analysis of TERI data.  Tracer velocity is the speed at which added water moves through a section 

of the test plot vertically. Vertical profiles along the ERI lines are used to calculate wetting front 

velocities that can be combined over a number of different temporal datasets to create a hydraulic 

conductivity map of the subsurface in the TERI domain. This set of TERI experiments are 

presented in Chapter 3. 
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CHAPTER II 
 

 

DETECTING MACROPORE FINGERING USING TEMPORAL ERI 

 

INTRODUCTION 

Modern agricultural practices use fertilizers and pesticides that may be transported from fields to 

adjacent streams during precipitation events, resulting in negative impacts to surface water. 

Riparian buffers are vegetation strips that offer streams and other surface water reservoirs 

protection from the contaminant runoff (Edwards et al., 1988). Simply creating larger buffers 

zones is not ideal for stopping the most runoff because it creates a land productivity issue (Weiler 

and Naef, 2003a; Lee et al., 2004). Thus, it’s vital to determine size and location to place the 

buffer zone to satisfy both runoff prevention and optimal land productivity. Knowing the 

hydrogeological properties of geological features such as macropores and gravel outcrops would 

increase the efficacy in determining buffer zone dimensions. (Weiler and Naef, 2003b). 

 The current design of conservation practices such as vegetative filter strips and riparian buffers 

focuses solely on surface runoff with subsurface nutrient transport assumed to be negligible (Fox, 

2019). However, subsurface transport can become significant with preferential leaching and can 

negate the intended benefits of these widely adopted control practices (Fuchs et al., 2009). In fact, 

when observing the functioning of riparian buffers, practitioners commonly find that the observed 

hydrologic response of the system suggests a much higher infiltration capacity than expected 

based on soil texture or matrix infiltration experiments alone (Sabbagh et al., 2009, Heeren et al.,  
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2015). To limit degradation of ecosystem services and improve land use efficiency, research is 

needed on understanding and incorporating the influence of preferential flow in buffer design 

(Orozco-Lopez et al., 2018; Fox, 2019). 

It is difficult to classify a macropore based on a predetermined size because of soil heterogeneity. 

For this reason, the definition of a macropore is a pore that exhibits preferential channeling of 

fluids in comparison to other pores in the surrounding strata (Beven and Germann, 1982). This 

preferential channeling has made computer modeling of macropore flow historically problematic. 

According to Skovdal Christiansen et al. (2004) and Jarvis et al. (1991) the largest uncertainty 

with modeling macropore flow remains the behavioral changes between saturated and unsaturated 

upper-boundary conditions. Apart from saturation, soil type and heterogeneity are major 

compound factors for preferential flow in macropores. This was indicated in the studies on tillage 

in fields which have shown the concentrations of dissolved phosphorus in precipitation event 

water was much greater in no-till fields (Williams et al., 2016).  Disturbing the soil can help 

reduce the risk of phosphorus transport from tile-drained fields. In places that cannot be tilled, 

especially near any adjacent stream to a field, mapping the area for preferential flow paths can aid 

runoff prevention efforts using accurate buffer zones. 

 Soil texture and soil moisture content both impact the occurrence and prevalence of preferential 

flow in soils (Simunek et al., 2003; Orozco-Lopez et al., 2018). Preferential flow has been 

observed to occur in a variety of soil textures. For example, a meta-analysis performed by Koestel 

et al. (2012) on the impact of macropore flow on solute breakthrough curves suggested that 

moderate macropore flow was only possible above a threshold of 8% clay content. Also, 

macropore flow has been observed to generate at near saturation, proposed by some authors to be  

6 to 10 cm when the water pressure exceeds the required entry pressure of the pore interface 

(Jarvis and Larsson, 2001; Jarvis, 2007). Furthermore, the interaction of this macropore flow with 

the presence of a shallow water table may also be of more importance for riparian buffers 
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(Orozco-Lopez et al., 2018). The presence of a shallow water table can modify soil water contents 

in the vadose zone providing greater opportunities for the activation of macropore flow and 

reduces mass transfer between the matrix and macropore domains. While recent research has 

suggested that preferential flow pathways can be activated under unsaturated soil moisture 

conditions, additional research to verify the occurrence of preferential flow under various soil 

hydraulic conditions such as the presence of macropores or capillary barriers and an 

understanding of how to detect preferential flow once it activates is critical. 

Temporal electrical resistivity imaging (TERI) is a geophysical surveying technique used for 

evaluating the subsurface. Resistivity measurements have been used since the 1800s to evaluate 

electrical changes in the subsurface (Van Nostrand and Cook, 1966). Advances in instrumentation 

and computing allowed temporal resistivity data to be acquired and processed to observe soil 

fluid movement and lateral migration (Griffiths and Turnbull, 1985; Halihan et al., 2019). While 

resistivity measurements have existed for a long time, TERI was limited in soil studies prior to 

sufficient instrumental and computational developments (Yunmoon Jung, 2000; Zhou et al., 

2001). As the instrumentation has become more widely available, the differences in resistivity 

due to the migration of soil moisture have been evaluated for a number of soil properties, most 

commonly vegetation, water content, and temperature variability (Jayawickreme et al, 2008; 

Acharya et al., 2017; Dick et al, 2018; Halihan et al., 2019). By being able to define certain soil 

properties that can change over the time period of the resistivity data set collection, significant 

insights can be gained into the spatial location and temporal period of soil moisture migration and 

macropore activation. 

One objective of macropore studies is to determine the distribution of macropores in the 

subsurface and to improve the understanding of their function and how to manage areas with 

significant macropore flow. Using TERI may allow macropore structure to be delineated by 

observing where preferential flowpaths occur as the electrical properties change more quickly in 
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areas affected by macropores (Moysey and Liu, 2012; Menichino et al., 2014). The objective of 

this research is to evaluate in controlled conditions whether TERI can demonstrate the presence 

of artificial macropores whose location and dimensions are known a priori. Using a fine grained 

and coarse grained site, TERI will be used to determine if artificial precipitation or artificial 

infiltration in a single macropore can be detected. The signal generated from the wetting may 

either be too weak to be detected compared to background noise or may be too similar to signals 

generated by soil heterogeneity.  

 

SITE DESCRIPTION 

For thorough examination of preferential flow in differing upper-boundary conditions, the 

experiments were conducted on two field sites. The first site was in Stillwater, Oklahoma, USA 

(36º06’04.25”N, 97º08’11.01”W). Stillwater has ~89 cm (35 in) of precipitation annually with 

average high temperatures of 34ºC (94ºF) during the summer and mild to cool winters where 

temperatures regularly drop below freezing (Zhang and Nearing, 2005; Mullens et al., 2013). The 

soil surface in the region is characterized by a Grainola-Lucien complex soil and the Permian 

Garber-Wellington formation lies beneath (Cobb and Hawker, 1918; Lim and Miller, 2004). 

Grainola-Lucien complex soils are defined by their clay-like appearance and texture. The fine-

grained nature of the soil yields limited lateral flow which should indicate higher preferential 

flow in macropores. Within the survey area, the ground was relatively flat with 24 cm (9 in) total 

relief and covered with bermuda and fescue grasses, commonly seen throughout Oklahoma.  

Rooting depth was measured on site, ranging from 8-10 cm.  (Figure 1a).  

The second field site was in Raleigh, North Carolina, USA (35º45’36.36”N, 78º40;44.79”W). 

Raleigh has a similar humid-subtropical climate to Stillwater, differing with more annual 

precipitation of 117 cm (46 in) (Boyles and Raman, 2003). This site contrasts with the site in 
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Stillwater exhibiting a Pacolet sandy loam at the surface and Late Proterozoic-Cambrian lineated 

felsic mica gneiss beneath (Cawthorn, 1970). The coarser grain size demonstrated a presence of 

macropores and higher slope for the site allowed for more preferential pathways and lateral flow 

than the Oklahoma fine-grained soil.  The survey area consisted of bare soil to lightly vegetated 

woodland on the periphery (Figure 1b). Vegetation in the area included Loblolly pine, red maple, 

oak genus, butterfly bushes and holly. The plot was adjacent to Walnut Creek, a small-first order 

stream.  According to the USGS 0208734795 streamflow station at South Wilmington St. (1.6 km 

(1 mile) from North Carolina field site), the discharge for Walnut Creek averaged 38 m3 (1340 

ft3) per second in 2019.  The average width of the stream is 5.9 m (19 ft). 

For the set of experiments conducted to evaluate macropores with TERI, the majority of work 

was conducted in the Oklahoma site. The site allowed better control of soil moisture changes by 

providing a slower moving moisture front with well constrained grassy vegetation. The North 

Carolina site provided a reasonable comparison as the experiments only used artificial 

precipitation and macropores. This eliminated the variability that would be generated due to 

macropore structure, precipitation patterns, and riparian vegetation effects. The only requirement 

of the experimental sites was to provide a different soil hydraulic conductivity. A site with 

extremely electrically resistive soil (quartz sand with no fines) may impact the results if data 

quality decreased due to poor electrical coupling. Additionally, a site with significant quantities 

of roots or hardpan would make it difficult to insert artificial macropores. 
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Figure 1 - Field sites for TERI experiments. A) ERI line in fine grain soil site in Oklahoma. Orange cable connects 28 
stainless steel electrodes at a 1.6 meter spacing in fine soil. B) ERI line in coarse grain soil site in North Carolina. The 
orange cable connected the electrodes in the ground to the resistivity instrument utilized for this work. The white 
cylinder below the sprinkler tripod is the rain gauge used for measuring precipitation. 28 electrodes at 0.4 meters 
spacing were utilized for the experiment. 

 

METHODOLOGY 

The design of the field experiments involved determining a set of soil and macropore parameters 

and scale for the experiment to provide a clear understanding of macropores using TERI. We 

present the field design followed by the design of the ERI setup. Three methods were used to 

generate electrical changes due to adding fluids to macropores and these wetting approaches are 

detailed. Finally, the set of TERI experiments are presented followed by the methods used to 

analyze the results.  

Experimental Field Design: 

To determine if TERI would detect a macropore via electrically conductive fingering patterns, a 

series of field tests were conducted to compare ERI resolution, fluid boundary conditions, and 

macropore dimensions. An electrically conductive finger pattern should appear as a stripe or 

streak of increasing bulk electrical conductivity on a TERI dataset. These increases in bulk 

electrical conductivity in the TERI data are the primary focus to indicate fluid f pathways 
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provided by macropores. Different wetting approaches separately test saturated and unsaturated 

upper-boundary conditions. A macropore infiltrometer gradually drained water directly into an 

artificial macropore and emulated saturated conditions. The same area dried for a couple of hours 

and was wetted again with a sprinkler simulating rainfall over a larger area, which maintained 

unsaturated upper-boundary conditions. The artificial macropores were also limited in number 

and distributed evenly across the line. This was to avoid signal blending from multiple 

macropores during data processing.  

 

 

Figure 2 - Setup for field TERI experiments. A) Location of processed data nodes after inversion of TERI datasets 
relative to the location of the artificial macropore and the electrodes for a 0.4 meter spacing experiment. B) Field 
photo of Stillwater, OK field site with metal rod used to generate artificial macropore and simulate saline fluid in 
macropore. C) Schematic Diagram of artificial macropores in field setting relative to entire TERI domain and 28 
electrode setup.  

ERI Design: 

A series of ERI resolution tests were conducted to determine the electrode spacing for maximum 

temporal dataset quality. ERI experiments rely on a point source approximation for the location 

of electrodes.  Signal is relayed from one electrode to neighboring electrodes for generating a 
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current field. Thus, getting them too close violates the basic point source assumptions for ERI 

data collection and limits electrode spacing in the field to about 0.25 meters on practical basis 

(Van Nostrand and Cook, 1966). On the other end of the spacing scale, too large of spacings 

would compromise the ability to detect macropore signatures and the signal strength would 

decrease with increasing image block size (Figure 2). In the first experiment, three overlapping 

ERI lines with electrode spacings doubling for subsequent experiments were set up along a flat 

grassy area in the Oklahoma field site. Testing sizes ranged from 0.4 m, 0.8 m, and 1.6 m 

spacings. Artificial macropores were placed in the middle of each line spacing. The macropores 

were located at; 5.3m, 11.0m, and 20.4m. Following data collection, the field apparent resistivity 

data are inverted to generate a modeled resistivity profile (Loke et al, 2003). Regardless of 

inversion approach, an ERI dataset becomes a smoothed representation of the subsurface 

variations in electrical properties.  

 ERI datasets were collected with an AGI SuperSting R8 Resistivity Instrument. The instrument 

allows a user to collect and store full apparent resistivity datasets. Multiple datasets can be 

processed to evaluate the changes in bulk resistivity that occurred between datasets to obtain 

TERI data. A relay switch box and a 28-electrode dumb cable were attached to stainless steel 

electrodes to survey the field site. To power the instrument for data collection, a gas-powered 

generator and an AGI power supply box were used to convert the 110 V source from the 

generator to a 12 V source for the instrument. Once the survey lines were laid out in the field, the 

SuperSting field computer measured apparent resistivity between electrodes using the 

Halihan/Fenstemaker method (Halihan et al., 2005; Acharya et al, 2017; Halihan et al., 2019). 

This robust inversion technique was utilized to convert the apparent resistivity data to modeled 

electrical resistivity data. These data were differenced in order to obtain datasets of changes in 

bulk electrical conductivity between datasets (Halihan et al., 2011; Acharya et al, 2017; Halihan 

et al., 2019). 
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Wetting Approaches:  

In the Oklahoma field site, a metal rod with a diameter of 6 mm was placed in the middle of the 

ERI line to a depth of 50 cm (Figure 1). The metal rod was left in situ during imaging to simulate 

a high salinity fluid filling a single macropore. The importance of using this technique lies with 

the metal rod in a fixed position in the ground having no lateral effects versus wetting the ground 

with water. The same metal rod was used to generate additional artificial macropores.  

Once the artificial macropores were created, the intention was only wet the zone influenced by 

the artificial macropores. A 5-gallon bucket was utilized to make a macropore infiltrometer. A 

hole the diameter of the rod was put in the bottom of the bucket; by holding the bucket down over 

the macropore location, water could be added directly to the macropore. A full infiltrometer 

would take approximately 30 minutes to an hour to drain into the macropore. This setup allowed 

partial wetting of the macropore domain with a limited volume of water. In these experiments, we 

used 2 liters or 20 liters of water to fill the infiltrometer. The setup also allowed imaging of the 

macropore under fully saturated conditions by continually adding water during an imaging 

period. The flow rate from the infiltrometer was measured by monitoring the change in water 

level over time in the bucket and using the hole size for the flow area.  

The final wetting method used a sprinkler to wet the survey area while avoiding any pooling of 

water at the surface. A rain gauge was used to determine the precipitation flux generated by the 

sprinkler system. The sprinkler was applied to attempt to simulate a large precipitation event over 

an approximately one-hour period. The method may result in some uneven application of water 

due to the spray pattern of the sprinklers, but this did not result in visually significant differences 

in the wetted area. To monitor the soil moisture during the North Carolina experiments, EC-5 soil 

moisture sensors (METER Environment, Pullman, WA) were inserted at depths of 10, 20, 30 and 

40 cm in covered trenches. EC-5 sensors have a measurement volume of approximately 0.2 L and 

therefore provide near point-scale estimates of water content. The sensors were connected to EM-
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50 data loggers (METER Environment, Pullman, WA), recording soil water contents at 1-minute 

intervals. These sensors confirmed that soil moisture remained below saturation throughout the 

sprinkler infiltration tests. 

Imaging Experiments:  

Data collection consisted of three experiments, with sets of imaging sequences where the ERI 

geophysical surveying was employed. The first imaging sequence involved determining the 

optimal ERI resolution for detecting a single macropore in the fine soil Oklahoma field site. The 

second imaging sequence was at the same field site with three macropores across the same ERI 

line in fine soil. The last and final imaging sequence was in the North Carolina field site, 

characterized by coarse soil.  

For the Oklahoma field site, three electrode spacings of: 0.4 m, 0.8 m, and 1.6 m were alternated 

between three electrical signal changes, totaling nine TERI datasets for the first sequence. Each 

signal detection was imaged once for each electrode spacing change. The first set of ERI datasets 

collected were three background datasets with no macropores, one for each electrode spacing. 

The first signal detection test was the metal rod left in place at the middle of the ERI line, while 

spacings were doubled for each of the three images. For the second test, the metal rod was 

removed from the ground, leaving an open macropore. In place of the metal rod, the macropore 

infiltrometer was placed and held over the macropore location. Two liters of water was added to 

the macropore infiltrometer and allowed to fully drain into the macropore for the starting image 

set with the two-liter source. Finally, the last test in this imaging sequence was fundamentally 

identical with the second test, utilizing the macropore infiltrometer once more. This time, 20 liters 

of water was added to the bucket, followed by the final three resistivity datasets being collected. 

There was an assumption that the wetted domain from a fluid addition would not migrate 

significantly during the time required to move cables and collect the three datasets at the varying 

resolutions. 
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Field Site Test Soil Type 
Upper-boundary 

conditions 

Electrode 

spacing (m) 

Wetting 

approach 

F
in

e 
S

o
il

 

(O
K

) 

1 macropore Fine unsaturated 

0.4 

metal rod 0.8 

1.6 

1.6 

2 L water 0.8 

0.4 

0.4 

20 L water 0.8 

1.6 

3 macropores Fine 

unsaturated 

0.4 

sprinkler 

saturated 
macropore 

infiltrometer 

C
o
ar

se
 

S
o
il

 

(N
C

) 

1 macropore Coarse 

unsaturated 

0.4 

sprinkler 

saturated 
macropore 

infiltrometer 

Table 1 - Imaging sequence for the TERI experiments in Oklahoma and North Carolina. 

 

TERI Analysis:   

Once each ERI dataset was acquired from the field, they were inverted and differenced to 

determine the changes in bulk conductance over time (Halihan et al., 2019). The RMS error was 

evaluated for each ERI inversion and each TERI differenced dataset. The noise levels for the 

datasets were compared by evaluating two ERI datasets prior to any wetting experiments to 

determine experimental repeatability of no water being added to the system. Once the noise levels 

were determined, the data could be evaluated as either an entire TERI dataset that was contoured 

by value as a 2D dataset or plotted along a line through the data as a 1D horizontal or vertical 

dataset. To compare different wetting methods, a single vertical or horizontal line of data were 

extracted from the TERI datasets to evaluate vertical or horizontal changes at the macropore 

locations.   

The analysis to determine the effects of a single macropore first evaluated the effect of TERI 

resolution. The results of the various spacings were compared for the location of the metal rod. 

The effects of the various wetting methods were compared for the peak change in bulk 
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conductance, how well the location and depth of the macropore was detected, and how much 

lateral signal was available from the various wetting sources. The second analysis involved three 

macropores evenly spaced over the ERI line to differentiate saturated versus unsaturated 

conditions. The unsaturated macropores affected by artificial precipitation were compared to the 

macropore that had saturated conditions throughout the experiment due to the macropore 

infiltrometer wetting a macropore during an entire imaging event. The final analysis compared 

the unsaturated and saturated macropores in the fine-grained Oklahoma site against the coarse-

grained North Carolina site. The datasets were evaluated vertically at the location of the artificial 

macropore as well as comparing lateral extent.  

 

RESULTS  

The results present the overall data quality of the experiments, which had a low background noise 

in order to detect some of the effects. First the single macropore experiment with a range of TERI 

resolution and wetting sources is presented. Second, the multiple macropore experiment results 

are evaluated and then the third experiment comparing between the coarse and fine-grained sites. 

Data Quality: 

At the Oklahoma site, there were 15 ERI datasets and 11 TERI datasets. The ERI inversion RMS 

errors were approximately 2.5%. This was a low error percentage as RMS can be as high as 20-

25% and still be considered acceptable ERI data (Zarroca et al., 2015). The TERI differencing 

datasets had lower RMS differencing error values of approximately 1%. The changes in the 

difference data increased in the dataset over time in the shallow portion of the dataset, as the 

ground heated up. This increased from less than a half percent change to approximately 2.5% 

increase in conductance (Figure 3). The background datasets for the TERI experiments indicated 
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that less than 0.5% change in conductance was present between datasets due to instrumentation 

and setup. 

The coarse-grained North Carolina field site included 3 ERI datasets and 2 TERI datasets. There 

was a higher error percentage among ERI datasets from North Carolina compared to datasets 

from Oklahoma, likely due to site conditions as all datasets had lower errors than many published 

datasets. ERI RMS error percentages were approximately 4.5%. TERI RMS values were 

approximately 3%. Less heating occurred on the North Carolina site as it was better shaded than 

the Oklahoma site. The background datasets for the TERI experiments indicated that less than 

0.5% change in conductance was present between datasets due to instrumentation and setup. 

 

 

Figure 3 - TERI results from the Oklahoma field experiment with two different wetting sources at 0.4 meter electrode 
spacing. A) Metal rod source location indicated by black line. B) 20 L wetting source located at same lateral location as 
metal rod source. Note increase in noise from background data over time as data collection occurred after some 
ground heating occurred relative to the first wetting experiment. 

 

Single Macropore Detectability: 

The effect of resolution from the single artificial macropore experiment provides the data to 

determine an effective electrode spacing for field investigations of natural macropores. The metal 
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rod experiment provided a detectable signal of a 1.6% increase in conductance at the location of 

the rod in the 0.4 meter electrode spacing dataset (Figures 3a and 4a). Data for 1D profiles 

(Figure 4) come from a single vertical line of data from the larger dataset (Figure 3). This was in 

a context of noise levels below 0.5% change in positive conductance and below ~1.0% noise 

levels in negative conductance. In typical field datasets with errors of 3% or higher, the rod would 

not be detectable in the 0.2 meter block that the technique was evaluating, but in the low noise 

datasets, it was apparent. At the 0.8 meter spacing, the rod was still detectable above the 0.5% 

noise level, but at the 1.6 meter spacing the rod was part of the noise. The structure of the data 

has a negative change in resistivity of less than 1% as part of the signal. The depth of the rod was 

captured by the dataset as well with the bottom of the rod located adjacent to a peak value 

detected just above or below the base (Figure 4a). The peak value trends deeper with larger image 

resolution. 

The various wetting sources used for the single macropore experiment allowed larger signals to 

be generated as a greater volume of the subsurface became wetted. The 2-liter source roughly 

doubled the signature from the metal rod with a peak conductance change of 2.9%. For the 2-liter 

source, the 1.6 meter spacing again could not detect the signal from the wetting relative to the 

noise in the dataset. For the 20-liter source, the signal for the 0.4 and 0.8 meter spacing grew to 

approximately 9%, and the 1.6 meter spacing generated a change of approximately 3% allowing a 

detection relative to the noise of the datasets (Figure 4b). The peak values in the wetting sources 

tended to be at or near the surface with the gradient of the data dropping the value below the 

noise levels near the elevation of the bottom of the rod. The data also had negative changes in 

resistivity greater than the noise levels below the detection of the wetted area (Figure 4b). This 

was interpreted as an effect of the method and not a field change in the bulk conductance of the 

material. 
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Figure 4 - Vertical profiles for single macropore resolution experiments with two different wetting sources. A) Single 
metal rod simulating a saline macropore with no lateral flow away from the macropore. B) Twenty liters of water 
added to macropore to generate a wetted zone around the macropore to increase the conductance of the area. 

 

On a lateral basis, the signals employed in the single artificial macropore experiments should 

exist in only the region between the electrodes. Only the 20-liter source should have significant 

potential for higher lateral spread. For all three sources, the location of the macropore was the 

peak lateral signal (Figure 5). Data from 1D lateral lines (Figure 5) come from single horizon of 

data in larger dataset (Figure 3). The lateral effects with the presence of the metal rod are 

displayed as a change in conductance as a distance away from the metal rod’s location for the 

spacings to each side of the rod location. The width of the lateral effects gets larger with 

increased spacings, but the signal was contained to the data blocks in the adjacent stake spacing 

location from the location of the artificial macropore (Figure 5). The location was detected 

properly, with a width of three times the actual location for the macropore. 
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Figure 5 - Lateral effects showing all wetting sources for the single artificial macropore experiment at a TERI image 
horizontal profile. Gray line represents the metal rod signal, the orange line is the 2 liters of water signal and the blue 
line is the signal generated by 20 liters of water. The location of the artificial macropore laterally is indicated by the 
vertical gray line. The location of the electrodes for the 0.4 meter spacing relative to the datapoints is provided as blue 
crosses. 

 

Multiple Macropores Saturated versus Unsaturated: 

The experiment to test multiple macropores allows a comparison between three artificial 

macropores, two that experience only precipitation and one that experiences a saturated condition 

after precipitation using the macropore infiltrometer. The results for the experiment on a vertical 

basis show a similar change with conductivity in relation to depth as the single macropore 

resolution tests. The peak of conductance changes sharply at the 0.5 meter depth base of the 

macropores. As expected, the saturated macropore exhibited a larger change conductance than 

precipitation alone, but not significantly (Figure 6). The bulk conductivity changes between the 

three macropores was stronger than the single macropore experiment as more water was applied 

in the experiment. All three macropores appear to have activated during the unsaturated 

experiment with the sprinkler wetting source. 
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Figure 6 - Lateral changes in bulk electrical conductivity in a three artificial macropore experiment (macropore 
locations as vertical lines) that had artificial precipitation applied first to produce an unsaturated upper boundary 
condition (orange line). The center macropore was then saturated using a macropore infiltrometer during the next 
TERI experiment (blue line). 

 

COARSE SOIL VERSUS FINE SOIL 

 
Figure 7 - Vertical profiles of TERI datasets at the location of artificial macropores for coarse (C) and fine sites (F). 
Unsaturated wetting conditions were generated with a sprinkler. A continuous flow from a macropore infiltrometer 
was used to generate a saturated profile.  
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The results for the coarse soil are similar to the fine soil with the unsaturated profiles not 

qualitatively different in trends relative to the saturated experiments (Figure 7). At both sites, the 

saturated experiment generated a slightly higher change in bulk conductivity near the top of the 

profile, but the shape of the resulting signal was otherwise roughly identical. The coarse site had 

overall larger changes in bulk conductivity based on a different media. No apparent changes in 

macropore activation were detected between the two sites. Both sites had active macropore flow 

in both the macropore infiltrometer saturated condition and the high artificial precipitation 

wetting condition. 

DISSCUSSION 

The experiments were useful in that by utilizing small time changes in an artificially controlled 

macropore with artificial precipitation, low noise levels could be achieved that were below 

normal variations in surficial temperature or soil moisture changes in electrical properties (REF). 

The experiments allow a measurement of the ER signal generated by a single macropore in the 

subsurface which is only a signal between 1% and 2% change for a metal rod simulating a 

macropore filled with high salinity fluids. Under natural field conditions, this signal would be 

undetectable. 

The experiment also allows the data to clearly indicate that negative resistivity changes beneath 

the wetting signal were not due to soil moisture migration, but simply an artifact of the method. 

As the experiment had both low noise and low signal, these negative resistivity changes were in 

some cases similar in magnitude to the wetting positive change in resistivity (Figure 4 and 7). 

These changes should relate to the location of positive changes in resistivity and should not be 

interpreted as soil moisture migration, but simply an artifact of the methods used to obtain the 

numerical profiles. 
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 The questions surrounding macropore detection using TERI are similar among a range of 

investigators that the experiment was evaluated. First, can the method detect a single macropore, 

second, how precisely is a macropore located with TERI, and finally, what does TERI indicate 

about the activation of macropores. These questions are addressed in order below. 

Can TERI Detect a Single Macropore?  

The metal rod used to simulate a macropore filled with saline fluid with no lateral flow was 

detectable with high resolution (low stake spacing) and low noise which would not be possible in 

some soil settings (Mosey and Liu, 2012). The small electrode spacing was repeatable, but 

difficult to access large riparian areas except at spot locations. The low noise level achieved was 

not repeatable as other field sites have much higher background noise. Additionally, if the 

temporal difference between surveys was before and after rain events, the longer time between 

imaging events would result in greater noise due to heating and vegetative effects (Robinson et 

al., 2012; Acharya et al., 2017). 

Does TERI locate macropores precisely?  

In a normal freshwater soil environment, a fluid filled macropore would not provide as great of a 

resistivity contrast with media as the metal rod did. Detecting an active macropore would require 

detection of wetted media around the macropore for typical size macropores. The conductive 

fingering that may be generated may be near a macropore, but lateral migration of fluids will only 

show the rough location laterally. Additionally, a narrow stronger wetting front would look 

similar to a broader weaker zone due to the lateral spread of the TERI data. The technique will 

provide a reasonable estimate for the depth of the macropores if they are responsible for 

generating the fingering signal. The shape could also be produced by a change in the media other 

than macropores that is causing a high hydraulic conductivity pathway.  

 



 

22 
 

 

When Do Macropores Activate? 

The change in bulk conductivity generated by the artificial macropores wetted by sprinkler was 

only slightly weaker than the signal obtained by saturation from the macropore infiltrometer. 

Whether an unsaturated boundary was simulated with a sprinkler, or the macropore infiltrometer 

provided a fully saturated macropore, there was a higher change in bulk conductivity near the 

macropores. This indicates preferential flow through macropore activation does not require 

complete saturation of the upper boundary conditions in these experiments. Artificial 

precipitation rates were comparable to a heavy rainfall event, so the macropores may not activate 

under lighter precipitation events. Preferential flow activating under unsaturated flow conditions 

in riparian buffers suggests macropore infiltration as a significant contributor to total infiltration 

across a range of storm intensities. Such results further support the need for design tools and 

analyses that consider preferential flow in quantifying the effectiveness of riparian buffers. 

Additional research into macropore activation mechanism would be required, but the TERI 

approach may be useful in evaluating alternative conceptual models. 

Future Work 

The results suggest TERI can be useful in evaluating macropore flow as a method to detect areas 

that have changed electrical properties due to changes in soil moisture. However, this detection as 

a spatial characterization is insufficient to evaluate macropore flow as compared to soil fractures 

or grain size heterogeneity in the soil matrix. If the subsurface matrix properties are well 

understood, the TERI data can be used to illustrate where anomalous wetted areas are distributed. 

The results suggest that mapping macropores with the method may be better achieved by 

evaluating the rate of changes of electrical properties at a single location as macropore changes 

should occur more quickly than those due to matrix heterogeneity. 
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CONCLUSION 

Artificial macropores were detected using TERI in a field environment in a fine-grained soil as an 

increase in bulk conductance finger in the subsurface. In a low noise environment, a 6-millimeter 

metal rod, simulating a saline fluid filled macropore, was detected using a 0.4 and a 0.8 meter 

electrode spacing. The detection provided a good depth control and lateral location of the 

macropore, but a broader lateral extent. When a perimeter around the macropore was wetted with 

2 or 20 liters of water, a similar result was obtained with progressively stronger signals. 

Experiments in fine and coarse-grained soils at two sites in the USA, Oklahoma and North 

Carolina demonstrated that artificial macropores can activate under both unsaturated and 

saturated surface conditions. The unsaturated conditions were generated by sprinklers simulating 

a large rain event and the saturated conditions were generated by a macropore infiltrometer 

consisting of a bucket with a macropore size hole used to feed water directly into an artificial 

macropore. While the magnitude of the change in bulk conductance was different in the different 

sites, the response measured by the TERI datasets was similar between the two sites. 
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CHAPTER III 
 

 

TRACER VELOCITY MAPPING OF ALLUVIAL SOIL USING TEMPORAL ELECTRICAL 

RESITIVITY IMAGING 

 

INTRODUCTION 

Preferential flow in soils can occur along any path of least resistance.  The most common 

preferential pathway in soils are macropores, which are pores that vary in size and allow for rapid 

fluid migration in comparison to the surrounding strata (Beven and Germann, 1982).  Macropores 

account for only a small percentage of total pore space in soils, yet they can dominate the flow 

and transport behavior, especially during heavy precipitation events. (Beven and Germann, 1982; 

Jarvis, 2007).  This is important for modern agricultural practices which include the use of 

fertilizers and pesticides that may be transported from fields to adjacent streams during 

precipitation events, resulting in impacts to surface water (Moysey and Liu, 2012).  Noninvasive 

tools like electrical resistivity monitoring could provide significant insight into the behavior of 

macropores in soils at the landscape scale.  This research focuses on using temporal electrical 

resistivity imaging (TERI) to determine if macropore flow and associated increases in soil  

hydraulic conductivity can be mapped in the subsurface based on a set of TERI profile datasets.   
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In a recent study by (Shanahan et al., (2015) electrical magnetic induction (EMI) measurements 

from several field sites surveyed by Butt Close and Warren Field were taken and placed in an 

Markov chain Monte Carlo (McMC) algorithm which took measurements of electromagnetic 

induction from 10 cm depth intervals and made a distribution calculation for a normalized 

histogram per depth interval of the density of predicted soil hydraulic conductivity values per 10 

cm depth interval.  This histogram generates a representative curve for electrical conductivity in 

relation to soil moisture with depth.  However, the algorithm assumes a uniform soil horizon.     

The field site in this investigation does not have a uniform soil composition, which could alter the 

soil moisture profile.  To account for this, previous works by (Minet et al., 2011) used GPR 

(Ground Penetrating Radar) data based on the propagation of an electromagnetic wave in a multi-

layered soil horizon.  The GPR datasets were inverted from four configurations fitting a two-

layered soil moisture profile.  Each configuration was derived from fitting the parameters to a 

Van Genuchten soil model.  The parameters determined the configurations through a best fit 

calculation.  As a result, this study created a reference soil moisture profile using Van Genuchten 

parameters of GPR data in a multi-layered soil column.    

Reference soil moisture profiles were used in previous studies using ERI (Mishra et al., 2015). 

Soil profiles were modeled from irrigated fields across the United States (Mishra et al., 2015).  

ERI datasets were combined to create vertical soil moisture profiles based on the principle of 

maximum entropy (POME).  An additional important factor of this study is the curves for the soil 
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profiles were based on three types of wetting events: long time after rain/irrigation, short time 

after rain/irrigation, and immediately after rain/irrigation.  Soil moisture profiles generated from 

this method provide a framework for interpreting the vertical data profiles evaluated with TERI 

analysis in this research.  While (Mishra et al., 2015) shows a representative soil moisture curve 

based on wetting events, a uniform soil column is assumed.  Lastly, there are limiting factors 

using POME which include the total probability constraint and the mass balance constraint.    

Other work has been done to directly evaluate the variation of hydraulic conductivity at field sites 

to assess preferential flow. Sudicky (1986) collected permeability measurements across a series 

of cores along two cross sections, one along and the other transverse to the flow direction.  Along 

the two cross sections, a regular-spaced grid of hydraulic conductivity data with 0.05 m vertical 

and 0.1 m horizontal spatial discretization revealed that the aquifer is comprised of numerous 

thin, discontinuous lenses of contrasting hydraulic conductivities.  Sudicky (1986) created a soil 

hydraulic conductivity table of the Borden Aquifer based on estimations and calculations to input 

into predictive models of flow and transport.   

The primary objective of this research is to evaluate preferential flow via mapping hydraulic 

conductivity with TERI profiles of alluvial soils.  It’s hypothesized that TERI will work with 

mapping hydraulic conductivity because changes in electrical conductivity over time should show 

fluid migration through pulses of increased electrical conductance generated from soil wetting.  

This coupled with the amount of time it takes for the pulses to wax and wane in a profile could 

delineate flow and allow tracer velocities to be quantified.  Combining several TERI profiles in 

proximity will yield a map of the hydraulic conductivity over an area where preferential flow can 

be determined by localized K values in relation to one another.   
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SITE DESCRIPTION 

The field site was a 2 x 10 m test plot located in Raleigh, North Carolina, USA (Figure 3.1). 

Raleigh has a humid-subtropical climate, with an annual precipitation of 117 cm (46 in) (Boyles 

and Raman, 2003). This site is characterized by a Pacolet sandy loam at the surface and Late 

Proterozoic-Cambrian lineated felsic mica gneiss beneath (Cawthorn, 1970).  The survey area 

was situated over bare soil with vegetated woodland on the periphery.  The plot was adjacent to a 

small, first-order stream which empties into Lake Raleigh.  The test area was designed 

perpendicular to the contour of the soil to provide a downhill surface runoff longitudinal to the 

plot.   Bedrock depth varies but is approximately 0.7 m from surface.  Visible macropores are 

evident on the edge of the plot in the bank of the stream.  This aligns with the sharply sloped 

topography at the end of the wetting domain, leading to the stream (Figure 3.2).  Prior to the slope 

is a flat area varying by a few cm in relief across the plot. The area itself is 87 m above sea level 

and located 35°45’36.63”N  78°40’44.23”W.    

The test plot was bounded on the sides using landscape edging and consisted of four ERI lines, 

five test pits with soil moisture probes, and a wetting source.  Figure 8 below depicts the plot with 

spatial relationships; including a 0.8 m distance between lines 1 and 2 and 2.0 m distance between 

lines 3 and 4.  The wetting source was a 2 meter wide PVC pipe located 1.5 m down from the 

start of lines 1 and 2.  The soil moisture probes along each side of the wetting domain are part of 

the experiment conducted by (Guertault, et al, 2019) which were in soil pits covered with blue 

tarps (figure 3.2).  Figure 3.2 shows just the wetting domain, with the view from the beginning 

with the wetting source in the foreground, looking down toward the end of the ERI lines within 
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the wetting domain.  Note the drop in topography at the end of the image, this is the location of 

the visible macropores and a steep slope for the stream bank.  

 
Figure 8 - Diagram depicting the wetting domain in the NC site where wetting front velocity analyses were made.  Line 
1 is parallel with flow while line 3 is perpendicular to flow crossing line 1 and the wetting domain.  These lines are the 
principal investigation of this chapter.  Lines 2 and 4 are greyed out due to insignificance in the study.     
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Figure 9 - Field photo of the entire wetting domain in the North Carolina site.  Line 1 is on the left, line 2 is on the right.  
The wetting source is the black and white pvc pipe in the foreground, Soil pits are covered in blue tarps.   

 

METHODS 

In order to conduct this experiment, a test plot was constructed perpendicular to the elevation 

contours.  The test plot included: a wetting source to saturate the domain perpendicular to the 

stream, four ERI lines, and a TERI analysis of the data gathered to visualize what happened 
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during the experiment.  The experiment was constrained to the area of the testing plot using 

landscape edging.  Additional experiments were performed using soil test pits Guertault et al., 

(2019).   

The plot included four ERI lines that crossed perpendicularly to each other in pairs (Figure 8).  

Two of the lines were largely inside the experimental wetting domain and are referred to as the 

longitudinal lines.  The other two lines only crossed through the domain and are referred to as the 

transverse lines.  This wetting domain and specifically one ERI line of each orientation (ERI lines 

1 & 3) are the primary focus for this section (Figure 8).  Line 1 is parallel with flow and exhibits 

the most change in topography.  Line 3 is perpendicular to flow and crosses the wetting domain 

as well as line 1.  This line is relatively flat with little changes in topography.  Lines 2 and 4 

collected data but are not included in the analysis, thus they are greyed out.  The wetting domain 

was fenced in on three sides with landscape edging and precipitation measurements were taken 

through the discharge pipe (Figures 8 and 9).  

Wetting Methods:  

The objective in this experiment is to attempt to detect macropore flow with saturated upper 

boundary conditions.  In order to saturate the upper layer of the survey area, a 2 meter-wide flume 

was connected to a standard garden hose and dispersed water evenly over the wetting domain via 

1.5 cm diameter holes in a piece of PVC pipe across the flume (Figure 3.3).  Discharge 

measurements from the runoff pipe at the end of the plot domain indicate that the flume equated 

to 0.17 l/s (2.69 gpm) based on an average of discharge collections in a small 2-liter bucket 

during 30 second intervals.   



 

31 
 

 
Figure 10 - Field photo of the wetting source for the wetting domain in North Carolina. 

   

TERI Data Collection Methods: 

ERI datasets were collected with an Advanced Geosciences, Inc. (AGI) SuperSting R8 Resistivity 

Instrument. The instrument allows a user to collect and store apparent resistivity data.  Multiple 

datasets can be processed to evaluate the changes in bulk resistivity that occurred between 

datasets to obtain TERI data. A relay switch box and four 28-electrode dumb cable were attached 

to stainless steel electrodes to survey the field site (Figure 9). To power the instrument for data 

collection, a gas-powered generator and an AGI power supply box were used to convert the 110 

V source from the generator to a 12 V source for the instrument. Once the survey lines were laid 

out in the field, the SuperSting field instrument measured apparent resistivity between electrodes 

and the data were processed and differenced using the Halihan/Fenstemaker algorithm (Halihan et 

al., 2005; Halihan et al., 2019). 
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Five TERI datasets were collected for the experiment, two during soil wetting and three during 

drying.  There were replicate samples longitudinal to flow and transverse to the flow.  The best 

datasets from each direction were selected for analysis (Figure 8). The first TERI dataset occurred 

after 30 minutes of wetting and the second at 2.5 hours of wetting.  Thereafter, the time elapsed 

was a drying time since the water source was discontinued.  Datasets were collected at 2, 7.5, and 

18 hours after the wetting had ceased. Electrode spacing was 0.4 m, yielding a spatial resolution 

of 0.2 m.   

 

TERI Analysis: 

Once each ERI dataset was acquired from the field, they were inverted and differenced to 

determine the changes in bulk conductance over time (Halihan et al., 2019).  The RMS error was 

evaluated for each ERI inverted model resistivity dataset and each TERI differenced resistivity 

dataset. 

To evaluate vertical wetting along a single 1D pathway, a single vertical line of TERI data was 

extracted from the datasets to evaluate vertical changes due to water migrating downward in the 

profile.  Wetting curve profiles were created along TERI lines 1 and 3 every meter laterally from 

the left end starting at 1.5 m and ending at 8.5 m. Hydraulic conductivity values were calculated 

from the vertical profiles (Figures 13-16) by looking for the peak conductivity change and 

equating the depth of the peak change with the distance that the wetting front moved vertically 

into the soil.  The vertical distance between peak conductivity change values on each curve 

against time from the last peak value provides as distance per time interpreted as a soil hydraulic 

conductivity value.   
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After evaluating the data and extracting vertical data for each time period, every plot location per 

meter had vertical velocities calculated based on peak values with time curves.  The values are 

taken from peak points where data values are taken from the equipment with depth against 

change in electrical conductivity.  Every change in peak values from the time curves tells how far 

the water moved, distance between peak data points, over the time elapsed between each 1D 

curve.  If no changes were detected between datasets, the vertical velocity was determined to be 

zero.  This was common at a depth similar to the known bedrock contact. Results were 

compounded into a table to better visualize the different velocities calculated laterally along the 

line.   

 

RESULTS 

The first analysis in this section focuses on resistivity data quality which is of significance for 

temporal data evaluations as errors in a single dataset can be compounded in temporal 

comparisons. Next, the range and trends of resistivity values are evaluated in the first imaging 

sequences of the experiment to determine background resistivity changes (Figure 11).  Once the 

background is established, the range and trends of temporal changes can be analyzed with 

subsequent imaging of the wetted plot compared to the background (Figure 12).  After each 

vertical profile has been processed, the types of temporal changes are evaluated next. The four 

types of flow observed using TERI data are: macropore flow, lateral flow, matrix flow, and no 

flow.  Using these vertical profiles will ultimately be used to create a map of varying hydraulic 

conductivities across the plot.   

Data Quality:  
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TERI datasets collected from the NC field site wetting domain were inverted and differenced. 

Line 1 and line 3 were chosen for analysis due to their low RMS error values.  The RMS errors 

for Line 1 averaged 4-8% RMS and line 3 was 3-6%.  To discern between noise and signal, the 

trends and ranges of resistivity values as well as temporal changes are observed in detail.  It’s 

important to keep in mind that for a given soil, the four main controls on the apparent resistivity 

bounds are the total dissolved solids (TDS) of the fluid filling the macropores and the matrix 

pores, the saturation of the soil matrix, and the fraction of the soil filled with active macropores 

(Moysey and Liu, 2012).  The data for lines 1 and 3 were then tabulated in Microsoft Excel to 

show vertical profiles of the ERI lines during and after wetting.  The data plots were compared to 

soil moisture profiles found in previous studies (Mishra et al., 2015).   

 

Range and Trends of Resistivity Values: 

Static apparent resistivity images used as backgrounds for temporal analysis provide a range of 

resistivity values for the subsurface, denoting features such as lithological changes.  Readings 

from 200 – 2000 ohm-m are colored in burgundy interpreted to correspond largely to the soil 

matrix.  These values are relatively high for soil indicating a high porosity soil without significant 

amounts of electrically conductive clays.  Measurements that are greater than 2000 ohm-m is 

interpreted as low porosity bedrock which is scaled in grey colors (Figure 11).  Apparent 

resistivity of igneous and metamorphic bedrock varies from 1,000-100,000 ohm-m (Gunn et al., 

2015). Clays and tills have much a lower apparent resistivity averaging 10-1,000 ohm-m (Gunn et 

al., 2015).  Subsequent imaging of the plot after wetting are compared to the static resistivity 

values seen in (Figure 11) to give a range and trends of temporal changes.    
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Figure 11 - A) Electrical resistivity profile for line 1 longitudinal to the flow of the runoff flume.  B) Electrical resistivity 
profile for line 3 transverse to the flow of the runoff flume.  Orange outlining indicates the sections where unsaturated 
flow was interpreted as migrating through the soil zone. Soil hydraulic conductivity was calculated in tables 2 and 3. 
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Figure 12 - A) Change in Electrical conductivity profile of line 1.  B) Change in electrical conductivity profile of line 3.  
Orange outlining indicates the sections where soil hydraulic conductivity was calculated in tables 2 and 3 indicating 
the zone where fluids migrated through the vadose zone during the experiment.   

 

Range and Trends in Temporal Changes: 

The change in electrical conductivity over each ERI line that will be examined in detail for 

wetting front calculation and soil moisture profiles provide the base datasets for the hydraulic 

conductivity calculations (Figure 12).  These TERI images are references for where the wetting 

front analysis in this experiment are derived. Evaluation of the datasets indicated that background 

noise levels were approximately 6% (Figure 12) based on evaluating the data where no change 

should be occurring outside the wetting domain.  TERI data above 6% change in electrical 

conductivity is considered signal indicating locations where soil moisture has changed.  Similar 

changes between 6% and 50% are interpreted as areas dominated by soil matrix flow.  Areas that 
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experienced a change in electrical conductivity greater than 100%  are interpreted as likely 

macropore flow domains as these areas also dried more rapidly.  The transition between pure 

matrix flow and macropore flow areas is between 50% and 100%.    

Types of Temporal Changes: 

There are four distinct types of patterns distinguished by the wetting curve analysis.  Wetting 

curve profiles were created along lines 1 and 3 every meter from end to end starting at 1.5 m and 

ending at 8.5 m, respectively.  Longitudinal line 1 demonstrates both matrix (Figure 13) and 

macropore flow (Figure 14) profiles as each flow type is within the wetting domain (Figure 12A).  

Transverse line 3 includes both lateral flow profiles outside of the flume area (Figure 15) and no 

flow regions (Figure 16) as this perpendicular ERI line is mainly to characterize results outside of 

the wetting domain . The resistivity changed the most during wetting with a peak value increasing 

in depth during the wetting phase.  During the soil moisture redistribution phase with no surface 

water, the change in resistivity decreased over time and progressively deeper in depth for a simple 

soil wetting pattern which was located near the wetting source (Figure 10).    
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Figure 13 - Interpreted soil matrix flow observed 3.5 m laterally along Line 1.  This is indicated through peak values on 
each curve moving down with moderate changes in conductivity.  Green dots indicate peak resistivity values used for 
wetting front hydraulic conductivity calculation.   

 

 
Figure 14 - Interpreted macropore flow observed 7.5 m laterally along line 1.  Interpretation of macropore flow 
supported by depth of peak value reached with second curve (2.5 hrs) and staying consistent for each subsequent 
curve, as well as greater magnitude change in conductivity above 100% during the wetting period.  
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Figure 15 - Interpreted lateral flow observed 3.5 m along transverse line 3 outside of the reaches from the wetting 
source.  This location is 1.2 m away from the edge of the surface wetting domain.  In this pattern, changes are smaller 
at the surface and larger at the bedrock boundary.    

 

 
Figure 16 - No flow interpretation observed 8.5 m along transverse Line 3.  This location is 2.4 m away from the edge 
of the wetting domain where no moisture is expected to have changed during the experiment.  The largest change in 
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this pattern of the domain is a small negative change 18 hours after wetting was discontinued which could be 
attributed to the surface soil drying during the day.    
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Each flow type has distinctive characteristics that emanate interpretation.  Matrix flow (Figure 

13) shows a gradual vertical decrease in peak electrical conductivity values, labelled 1 through 5, 

indicating steady saturation over time.  Macropore flow (Figure 14) exhibits a vertical decrease in 

peak electrical conductivity values from 1 to 2, but 2-5 values plane off with no successive 

vertical decrease in peak values.  This is interpreted as rapid saturation where the wetting front 

reached a lithological boundary quickly.  Matrix flow and macropore flow differ in the time 

elapsed to reach the same level of vertical saturation in the profiles.  Macropore flow is 2-3 orders 

of magnitude greater in the detected tracer velocity than would occur for matrix flow.  Lateral 

flow (Figure 15) includes changes in electrical conductivity significant enough to record peak 

values, outside of the wetting domain.  The peak values, however, are sporadic and do not follow 

a pattern similar to matrix and macropore flow.  Lastly, no flow (Figure 16) has no peak values as 

this area was far enough from the wetting domain to remain dry during the entire experiment.   

 

 

Hydraulic Conductivity Calculation:  

The TERI calculated velocities were faster near the surface and slower with depth (Table 2).  At 

approximately ~0.7 m depth, velocities were null due to lack of deeper fluid migration detected in 

the datasets.  This boundary is interpreted as a low permeability bedrock boundary at 

approximately 0.7 m depth which causes soil water to migrate laterally in the downslope direction 

that the plume was oriented and corresponds to the soil depth determined from excavation.  

Calculated velocities change by two orders of magnitude across the plot from 12 to 1740 mm/hr.    
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 The same approach was taken for transverse Line 3 to make a calculated hydraulic conductivity 

section from compounded vertical profiles.  Results yield the same calculated K values for Line 3 

at the crossing with Line 1 with a sharp drop to dry vertical profiles at both ends of Line 3 where 

changes in electrical conductivity did not exceed the background change of 6% increase in 

conductance.    

 

 

Table 2 - Distribution of calculated tracer velocities based on wetting front velocities in each vertical profile on 

longitudinal Line 1. The red outlined cell (4.5) represents the location of crossing with transverse Line 3. Results are 

shown units of in mm/hr.  Figure 3.1 shows the location of TERI transects used as data sources for Tables 3.1 and 3.2.   
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Table 3 - Distribution of calculated tracer velocities based on wetting front velocities in each vertical profile on 

transverse Line 3. The red outlined cell (6.5) represents the location of crossing with longitudinal Line 1. Results are 

shown in units of mm/hr.   

To calculate the tracer velocities, the peak change in electrical conductivity values from vertical 

profiles along lines 1 and 3 were taken every meter from 1.5 m to 8.5 m on each line.  The peak 

values are labelled in time order (1-5) (Figures 13-15).  Next, the vertical distance measured 

using TERI data peak grid nodes from the surface was used as the depth of the the wetting front.  

Each of the five curves on the vertical profiles represent a time that had elapsed in correlation to 

either wetting or drying of the soil profile.  Coupling the vertical distance measured using TERI 

grid nodes and the time elapsed to for the peak value to get to that position gave tracer velocity as 

distance over time.  Lastly, a unit conversion from m/hr to mm/hr was applied to compare against 

previous research that calculated soil hydraulic conductivity.       

Line 1 shows calculated velocity tracer values between 10-40 mm/hr. These rates are similar for 

matrix flow from other studies on the same plot (Guertault et al, 2019).  Values that are an order 

of magnitude higher, upwards of 1740 mm/hr indicate macropore flow as these areas wetted and 

dried much faster than surrounding strata.  Lastly, the values for the edge of line 3 would result 
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from lateral flow as these areas are outside of the wetting domain.  This was part of the 

experimental design to show values for zero change in bulk electrical conductivity or no flow 

conditions in the soil plot.   

 

DISCUSSION  

Can TERI Be Utilized To Calculate Wetting Front Velocities? 

The results show wetting curves that are similar in shape to the curves expected for both vertical 

and lateral migration of fluids in soil over bedrock (Wilson, 2011; Wilson et al., 2018).   Around 

0.7 m depth, there is a rapid decrease for changes in bulk electrical conductance (Figure 12A) and 

is similar to the location of the significant change in bulk resistivity (Figure 11A).  This depth 

corresponds to where the competent bedrock limited macropore generation due to further depths 

but allowed piping processes to develop macropores laterally.  The TERI data and subsequent 

hydraulic conductivity analysis can be compared to what an expected wetting curve should look 

like along a profile of the line.  Once calculated velocities have been established using TERI, they 

can be compared with velocities obtained using alternative methods to validate the TERI 

approach.  In this experiment, the field plot utilized soil moisture meters in adjacent soil pits 

Guertault et al. (2021) calculated soil hydraulic parameters by fitting measurements to Van 

Genutchen parameters.  Results from Guertault et al. (2021) in the same field location yield K 

values between 23-36 mm/hr.  Similar values obtained using the TERI approach where results at 

the base of the soil at 4.5 and 8.5 m share locations with soil moisture probes for the Guertault et 

al. (2021) experiment (Table 2; Figure 8). The soil moisture probes were located at approximately 

0.5 m depth.  Locations where the calculated velocities are an order of magnitude higher 
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interpreted as are where macropore flow is observed.  These values may be attributed to a coarse 

grain matrix, but significant changes were seen in other areas further down the line and near the 

surface.  Macropore flow was also observed out of the profile at the end of the plume confirming 

the existence of macropores and flow in them during the experiment.   

Calculated hydraulic conductivity values in this research have datasets that match the models and 

data from more traditional sources (Guertault et al., 2021).  The change in hydraulic conductivity 

values within the macropore flow domains are within reason as Mallants et al. (1997) studied 

macropore flow in three types of soil and found hydraulic conductivity values in coarse-grained 

soil to have a coefficient of variation (CV) of 619%.  This would align with the two orders of 

magnitude difference between macropore flow and matrix flow hydraulic conductivity values in 

the results for this research.  Finally, a limiting factor for this method stems from the calculated 

hydraulic conductivity values.  Water can move through the survey area too fast for the 

instrument to image the wetting front location.  In some instances, during this experiment, fluid 

migration reached the interpreted lithological barrier at approximately 0.7 m before the 2.5 hour 

image duration was completed.  In this case, the area of the vertical profile was saturated to the 

depth of the interpreted bedrock boundary in less time than 2.5 hours.  

Vertical VS Lateral Flow 

This analysis focuses on four flow types in which a spatial relationship on the plot can be derived 

from vertical and lateral flow.  Vertical flow was utilized for hydraulic conductivity calculation.  

During wetting of the plot, areas within the wetting domain had begun to saturate at different 

rates.  TERI data measured the amount of time elapsed for various locations within the wetting 

domain to infiltrate to an interpreted bedrock boundary, where vertical fluid migration was 
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heavily mitigated.  Lateral flow was prevalent outside of the wetting domain on the transverse 

ERI lines.  Some locations detected signal despite having no direct wetting.  These locations also 

have sporadic vertical fluid migration intervals, different from those seen within the wetting 

domain.  For example, (Figure 15) outside of the wetting domain exhibits peak conductivity 

values in sequential order that do not follow a successive saturation pattern such as (Figures 13 

and 14) – both of which inside the wetting domain.   

  

 

CONCLUSION 

The TERI experiment indicates the ability to quantify the movement of water in the subsurface 

and to calculate the distribution of vertical hydraulic conductivity values in a heterogeneous soil 

using TERI profiles.  This is important for managing riparian zones and other locations with 

significant macropore flow.  TERI can help accurately locate areas of preferential flow caused by 

macropores, increasing the efficacy for placement and size of a riparian buffer.  Results from this 

experiment are validated by ordinary soil moisture measurements and literature estimates.  The 

hydraulic conductivity values for macropore flow compared to matrix flow in this research 

correspond to a similar ratio of hydraulic conductivity differences with macropore flow in coarse 

soil (Mallants et al. 1997).   

The findings in this research also exhibit definitive lateral and vertical features on the TERI 

datasets.  Lateral features indicate a fluid migration detected outside of the wetting domain in the 

plot, while vertical features were useful in calculating hydraulic conductivity.  Both lateral and 

vertical TERI features warrant the discovery of four flow types found within the plot during 
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experimentation.  The hydraulic conductivity calculations varied from 7 mm/hr to 1740 mm/hr.  

This vast difference in K values over a small area like the test plot supports the discovery of four 

flow types using this method.   
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