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Abstract: N-linked glycosylation is an essential and highly conserved protein modification 
reaction that takes place in all eukaryotes and some prokaryotes. This reaction is catalyzed 
by the enzyme complex, oligosaccharyltransferase (OST). In the central step of the N-
linked glycosylation reaction, the pre-assembled high mannose oligosaccharide moieties 
are transferred from dolichol linked donors to the side chain of a specific asparagine residue 
in the Asn-X-Thr/Ser (where X ≠ proline) sequence of the nascent protein. Genetic defects 
in the N-linked glycosylation in humans results a group of disorders known as congenital 
disorders of glycosylation (CDG) that include but are not limited to mental retardation, 
developmental delay, hypoglycemia etc. The complete loss of N-linked glycosylation is 
lethal to all organisms.  
 
In Saccharomyces cerevisiae, the functional OST is composed of eight of the nine non-
identical integral membrane protein subunits. The subunits Wbp1, Swp1, Ost1, Ost2, and 
Stt3p are essential for the viability of cells. The subunits Ost3 / Ost6 and Ost5 are non-
essential but are required for optimal OST function. The subunit Ost4 is essential for the 
growth of cells at 37o C, but not at 25o C. Ost4 is the smallest subunit critical for the OST 
activity and the stability of the Stt3-Ost4-Ost3 sub-complex. Any mutation of the residues 
from 18 to 24 to a charged residue results in the destabilization of the sub-complex and 
impairs cell growth and in vitro OST activity. Mutation of valine (V) at position 23 in Ost4 
to aspartate (D) causes defects in the N-linked glycosylation process. To understand the 
structure, function and role of Ost4 in N-linked glycosylation, characterizations of Ost4 
and its functionally important mutant/s are critical. 
 
My doctoral dissertation is focused on the following three parts: (1) production and 
biophysical characterization of Ost4V23D, (2) 3D structure determination of the Ost4 and 
Ost4V23D in DPC micelles by solution-state NMR and molecular dynamics (MD) 
simulation, and (3) 3D structure determination of Ost4 and Ost4V23D in bilayer by solid 
state NMR followed by MD simulation. A comparison of the structure of the V23D mutant 
protein to its wild-type to reveal how the mutation affects the overall structure and function 
of the enzyme. Additionally, we have shed light on the molecular basis of why a point 
mutation of certain hydrophobic residues to charged residues destabilizes the catalytic sub-
complex rendering the OST enzyme dysfunctional.
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CHAPTER 1 

Introduction 

1.1. NMR  

1.1.1 History and principles of NMR 

 Nuclear Magnetic Resonance (NMR) spectroscopy was first introduced by Isidor Rabi in 

1938. He was awarded the Nobel Prize in 1944. Two physicists, Felix Bloch and Edward 

Mills Purcell, extended the NMR technique for its use in solution and solid state in 1946. 

They were awarded the Nobel Prize in 1952. Since its discovery, NMR spectroscopy has 

been through some major theoretical and technical advancements. Richard R. Ernst 

introduced the Fourier transform (FT) to NMR in 1964.  He was awarded a Nobel Prize in 

1992 for this discovery. In this method, a single short pulse or a series of pulses in the form 

of radiofrequency is applied to the sample.  The signal emitted by the nuclear spins in the 

response to the pulses is Fourier transformed to get an NMR spectrum. This yields a much 

better signal to noise (S/N) ratio.  In the 1980s and 1990s, homo-and hetero-nuclear 

multidimensional NMR were developed, in which signals were acquired as a function of 

multiple frequency variables. The determination of high-resolution structures of 

macromolecules and their complexes was possible due to the hetero-nuclear 

multidimensional NMR. In multidimensional NMR, the resonances are spread into more 

than one dimension resulting in enhanced resolution. 
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In the early days, NMR was used as an analytical tool to determine the purity, quality, and 

content of the samples. In the modern era, NMR has become a versatile method to 

determine the molecular structures of chemical and biomolecules. NMR is based on the 

principle that all nuclei of a spinning atom have an intrinsic angular momentum of a 

spinning sphere. Based on the theory of quantum mechanics, for a nucleus containing spin, 

the optimum observable component of the angular momentum is a half-integral or integral 

multiple of h/2π, where h is Plank’s constant. For an atomic nucleus possessing angular 

momentum P, and spin quantum number I. The optimum observable component of the 

angular momentum can be represented by: 

𝑃	 = 	 $%
&'

                                                  (1.1) 

For an atom having non-zero spin (I ≠ 0), the magnetic moment, µ, can be defined by the 

equation: 

µ	 = 	 )%[$($,-)]-/&
&'

                                (1.2) 

Where γ is a constant, the gyromagnetic ratio of the nucleus. Depending on the atomic 

number and mass number of different atomic nuclei, spin quantum numbers, I, can be 

different. For example, a nucleus of an element containing an even atomic number and an 

even mass number will have zero spin quantum number, I, and angular momentum of such 

nuclei will be zero. The spin quantum number can be 1, 2, 3, 4… for a nucleus of an element 

having an even atomic number and odd mass number. Similarly, a nucleus of an element 

with an even or odd atomic number and odd mass number can have	-
&
, 2
&
, 3
&
, …… .. spin 

quantum numbers (1).  
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In the presence of an external magnetic field B0, a nucleus having a spin quantum number, 

I, can have 2I+1 possible states or orientations, and each state is related to a different 

potential energy – the Zeeman splitting. The potential energy of the nucleus in each state 

is µB0cosq, where q is the angle between the axis of the spin and the direction of the 

magnetic field. A nucleus such as 1H, 15N, 31P, 19F having a spin of one-half, has two 

linearly independent energy states, a and b spin states, in presence of an external magnetic 

field. In the absence of a magnet field, these states have the same energy, i.e. the states are 

degenerate. 

The lower energy state corresponds to a lower potential energy and a higher energy state 

corresponds to a higher potential energy of the nucleus. The difference in energy DE 

between the two states is directly proportional to the applied uniform external magnetic 

field, B0.  

DE=γhB0                       (1.3) 
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And this results in a small population bias favoring the lower energy state in thermal 

equilibrium. With more spins pointing up than down, a net spin magnetization along the 

magnetic field B0 results. The energy orientation states a nucleus having one-half spin can 

be represented by Figure 1.1. 

Figure 1.1: Energy states splitting as a function of applied external magnetic field strength. 

The figure was adapted from reference (1).  

For NMR spectroscopy, the frequency of the electromagnetic radiation can be calculated 

using the following equation. 

ΔE = hν = µB0/I                                                                                      (Eq. 1.4) 
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In the presence of the external magnetic field, the spinning nucleus precesses with a certain 

frequency called the precession frequency or Larmor frequency. Upon applying a radio 

frequency wave exactly equal to precession frequency perpendicular to the external 

magnetic field, the nucleus transition from the lower energy state to the upper energy state 

takes place. The gyromagnetic ratio, γ, of a nucleus and its radiation frequency, ν are related 

to each other under the influence of the external magnetic field as: 

                  ν = γB0/2π                                        (Eq. 1.5) 

i.e.             ν µ B0                                               (Eq. 1.6)                                                                                          

The precession frequency or Larmor frequency of a nucleus depends on the gyromagnetic 

ratio of the nucleus and the applied magnetic field.   

1.1.2 Chemical shifts 

The chemical shift of a nucleus is the difference between the resonance frequency of the 

nucleus and the standard. It is expressed in parts per million (ppm). The chemical shifts of 

different nuclei in a molecule are slightly different depending upon the local chemical 

environment. The chemical shift of a particular nucleus can be defined by the following 

equation:  

                         d = (npeak - nStandard)/frequency of instrument in MHz         (1.7)  

Where,  

npeak = resonance frequency of the nucleus in Hz. 
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nStandard = resonance frequency, in Hz, of an internal standard  

For 1H and 13C nuclei, tetramethylsilane (TMS) is the most commonly used reference. 

Nuclei with different molecular environments show different chemical shifts. This is very 

useful for structure determination by NMR. However, because of its low solubility in 

water, it is not used as an internal reference for biomolecules in aqueous solvents. Instead, 

a low concentration of 2,2-dimethylsilapentane-5-sulfonic acid (DSS) is used as the 

reference for biomolecules in aqueous solutions. 

When the external magnetic field is applied to a nucleus, the applied magnetic field is not 

always equal to the magnetic field experienced by the nucleus. The electrons present 

around the nucleus create a secondary magnetic field that either shield or deshield it from 

the applied magnetic field. Therefore, a difference in the field is observed between the 

applied magnetic field and the actual field experienced by the nucleus. This difference in 

the field experienced by the nucleus is termed nuclear shielding. The s-electrons have 

spherical symmetry and circulate in the presence of a magnetic field opposing the applied 

field. This means that the nucleus needs a higher magnetic field to be applied for it to come 

to the resonance. As a result, an upfield shift occurs. This upfield shift is also known as a 

diamagnetic shift. In contrast, the electrons in p-orbitals do not have spherical symmetry. 

Instead of opposing, they augment the applied field resulting in comparatively large 

magnetic fields at the nucleus producing a low field shift. This low field shift is also known 

as nuclear deshielding or a paramagnetic shift.  
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1.1.3 Relaxation in NMR  

For the proper interpretation of NMR spectra, understanding the relaxation is very 

important. At the equilibrium state of molecules, the population difference between spins 

at a higher energy level and spins at a lower energy level is zero. This condition is called a 

degenerate state. The population of the spins at an energy state is defined by Boltzmann 

distribution. When a molecule is subjected to an external energy source, some of the spins 

at a lower energy level are excited to the higher energy level. Upon removal of the external 

energy source, the spins at higher energy states return to the equilibrium state by a process 

called relaxation. In solution, which is also called an isotropic system, the nuclei relax to 

equilibrium by two processes: longitudinal or spin-lattice relaxation (T1), and transverse 

or spin-spin relaxation (T2). In longitudinal relaxation, the excited magnetization vector 

returns to its thermal equilibrium state. This occurs in the z-direction. The gain or loss of 

magnetization follows an exponential curve as given in Eq. 1.5.  

                                        Mz = M0 [1-e-t/T1]                                                    (Eq. 1.8)  

An example of T1 relaxations is shown in Figure 1.2a 

 

Longitudinal relaxation is due to energy exchange between the spins and anything around 

it. Since the magnetization vector returns to thermal equilibrium in T1, the spin-lattice 

relaxation is an enthalpy-driven phenomenon. T1 relaxation is inversely proportional to the 

magnetic field. The higher the magnetic field, the slower the longitudinal relaxation (2).  

Transverse or spin-spin relaxation (T2) is the mechanism by which the excited 

magnetization returns to equilibrium in the x-y direction and this occurs by a decay process. 

The T2 relaxation process can be described by an exponential curve as given by Eq. 1.9. 

                                              Mxy = M0 e-t/T2                                              (Eq. 1.9)  
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Figure 1.2b provides an example of the T2 relaxation process. 

 

Figure 1.2: Process of relaxation in NMR. (a) Longitudinal relaxation and (b) transverse 

relaxation. 

Transverse relaxation is caused by transient magnetic fields at any frequency and spin-spin 

interaction. Therefore, slower molecular tumbling results in a shorter T2. In contrast to T1 

relaxation, which is an enthalpy-driven process, T2 relaxation results in the loss of phase 

coherence, and therefore, is an entropy-driven process. Unlike T1, T2 is independent of the 

magnetic field. Both T1 and T2 can be determined by NMR experiments and T2 is always 

shorter than T1 (3). 
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1.1.4 Spin-spin coupling  

The magnetic interaction between nuclei with non-zero spin is termed spin-spin coupling. 

Two important types of spin-spin couplings are observed in NMR. 

1.1.4.1 Scalar coupling (or J-coupling) 

The scalar coupling or J-coupling is the interaction between nuclei through three chemical 

bonds. Splitting of NMR signals occurs due to scalar coupling. The splitting of NMR peaks 

occurs due to two spin states, alpha and beta, of a nucleus. The two nuclei connected by 

three chemical bonds have different spin states and influence the magnetic field of each 

other. A nucleus, which is bonded to another nucleus augmenting the applied magnetic 

field, comes to resonance at a slightly lower magnetic field. In contrast, a nucleus bonded 

to another nucleus that opposes the applied magnetic field come to resonance at a higher 

magnetic field.  In scalar coupling, the spin of one nucleus perturbs the spins of related 

electrons which in turn perturbs the energy levels of neighboring nuclei. This changes the 

resonance frequency of the neighboring nucleus resulting in the splitting of signal lines. 

The frequency difference between the split signal lines is termed as a J-coupling constant.  

Scalar coupling provides much information about a molecule. The three-bond scalar 

coupling provides information about the dihedral angle. The coupling pattern gives insight 

into the connectivity of atoms in a molecule. The coherence transfer in multidimensional 

NMR is possible due to scalar coupling. Since protein NMR is dependent on 

multidimensional NMR, J-coupling constants are crucial for protein NMR experiments. 

Moreover, J-coupling constants are very important for the investigation of drugs and a 

variety of small molecules. 
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1.1.4.2 Dipolar coupling 

The second type of coupling is dipolar coupling. In dipolar coupling, the spin-spin 

interaction takes place through space. Dipolar coupling results in some essential 

phenomenon in NMR spectroscopy, such as spin-spin relaxation and Nuclear Overhauser 

Effect (NOE). Spin-spin relaxation essentially determines the peak linewidth. NOE is 

responsible for the change in the intensity of the peak. The closer peak will have a larger 

peak intensity compared to the farther ones due to the NOE effect. This is the key to 

determine the structure of molecules and interaction processes between molecules as well. 

 

1.1.5 Nuclear Overhauser effect (NOE) 

When a nucleus is perturbed by applying a radio frequency (RF), it attempts to relax back 

to its equilibrium state by scalar coupling relaxation mechanism. However, the scalar 

coupling relaxation is not sufficient to relax the nucleus back to the equilibrium state. In 

such a case, the nucleus reaches its equilibrium state with an additional dipolar relaxation 

process. The irradiated nucleus transfers some of its energy, during relaxation by dipolar 

coupling method, to any nucleus nearby in space. Then, the second nucleus acts as if it is 

perturbed with the RF. Therefore, this second nucleus relaxes back to equilibrium 

increasing its intensity. This process is called the Nuclear Overhauser Effect (or NOE).  

 

 If two nuclei X and Y having two spin states, alpha and beta respectively, are coupled 

through the dipolar coupling, the two nuclei contain four energy states: aa (representing 

both spins at lower energy states), ab (X at lower and Y at higher energy states), ba (X at 

higher and Y at lower energy states), and bb (both spins at higher energy states). There are 
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two steps of transitions for each spin: aa->ba and ab->bb for X and aa->ab and 

ba->bb for Y (W1). Upon irradiation of one of the nuclei, the population aa becomes 

equal to ba and ab are equal to bb. But there is a still population difference between aa 

and bb states. Here, the population states are minimized via dipolar coupling relaxation 

(W2) resulting in the enhancement of the NMR signal intensity of the Y called a positive 

NOE. This occurs in the case of small molecules which tumble fast in solution. However, 

for larger molecules like proteins which tumble slowly in solution, the population 

difference is restored via another type of relaxation process that occurs between ba and ab 

(W0). This results in the decrease of NMR signal intensity of other nuclei known as 

negative NOE. Figure 1.3 shows all the transitions occurring between X and Y spin 

systems. 

 

Figure 1.3: Energy diagram for a dipolar-coupled two-spin system. The four states are αα, 

αβ, βα, and ββ; the zero- single- and double-quantum transitions are represented by W0, 

W1 and W2, respectively. This figure is drawn according to reference (2). 
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For medium-sized molecules ranging from 1 KDa to 3 KDa, the positive and negative 

NOEs compete and sometimes the NOES for such molecules is negligible or zero. NOE 

between two spins can be detected only if they are close enough (~6Å). The intensity of 

the NOE between two nuclei separated by distance r is inversely proportional to r6 (i.e. 

NOE µ r6) (4).   

 

1.1.6 Multidimensional NMR 

 Recent advancements in the NMR field have made the use of multidimensional NMR the 

most effective method for the elucidation of high-resolution structures of macromolecules. 

2D NMR provides the data in which the resonances are plotted in space defined by two 

axes. Jean Jeener was the first scientist who proposed the first 2D NMR in 1971, which 

was later implemented by Walter P. Aue, Richard R. Ernst, and Enrico Bartholdi (5, 6). 

Unlike 1D NMR, two additional factors, evolution period and mixing time, are included in 

2D NMR.  Therefore, a 2D NMR experiment contains the preparation period, the evolution 

time, mixing, and the acquisition as shown in Figure 1.4. 

 

Figure 1.4: A schematic representation of the 2D pulse program. The schematic was 

adapted from reference (4). 
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Some of the important 2D NMR experiments include Heteronuclear Single Quantum 

Coherence (HSQC), Correlation Spectroscopy (COSY), Total Correlation Spectroscopy 

(TOCSY), and Nuclear Overhauser Effect Spectroscopy (NOESY). 

 

1.1.6.1 HSQC  

HSQC stands for heteronuclear single quantum coherence. The HSQC generates an NMR 

signal for two different types of magnetically active nuclei that are bonded together. In 

general, HSQC contains two axes: the proton chemical shift and a heteronuclear chemical 

shift. The 1H nucleus has a larger Boltzmann population difference, the highest 

gyromagnetic ratio, and the higher detection sensitivity. Because of these reasons, it favors 

the magnetization transfer to and from the heteronucleus. And the heteronuclear 

experiments in which 1H is utilized as a passage by the heteronucleus have a much better 

sensitivity (signal to noise, S/N). Therefore, in the HSQC experiment, the magnetization is 

transferred from 1H to a directly connected heteronucleus and then transferred back to the 

proton for detection. Generally, two types of HSQCs are used in protein NMR: [1H, 15N]-

HSQC and [1H, 13C]-HSQC.  In [1H, 15N]-HSQC spectrum, each cross peak is due to the 

amide proton and nitrogen (amide) in the peptide bond of the protein. Therefore, the 

number of peaks in this experiment is equal to the number of non-proline residues present 

in the protein. This experiment is very sensitive to changes in the chemical environment, 

pH, temperature etc. Due to this reason, this experiment is also known as the fingerprint of 

the protein.  

1.1.6.2 COSY 
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 COSY is an example of the most popular multidimensional NMR spectroscopy which is 

used to identify the spin systems that are connected by a 3-bond distance. This allows us 

to identify the resonances that are connected by J-coupling.  

Figure 1.5 represents an example of the COSY spectrum.  

 

Figure 1.5: Example of 2D COSY spectrum for leucine. COSY provides a diagonally 

symmetric spectrum.  

1.1.6.3 TOCSY  

TOCSY stands for Total Correlation Spectroscopy. In TOCSY experiments, the 

magnetization is kept constant (spin-locked) by applying a certain amount of RF frequency. 

This time is called mixing time. During this mixing time, the coherence transfer takes place 

through the scalar coupling. As a result, resonances of all the protons attached to a 

particular spin system are observed. Figure 1.6 provides a general idea about the TOCSY 

experiment. In protein NMR, this experiment is used to identify the sidechain protons of 
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residues.

 

Figure 1.6: Schematic representation of the spectrum of a 2D TOCSY for the leucine 

residue. This experiment shows all sidechain hydrogen atoms of an amino acid residue. 

The spectrum is diagonally symmetric.    

1.1.6.4 NOESY 

NOESY is an abbreviated form of Nuclear Overhauser Effect Spectroscopy. The NOESY  

is based on the  NOE theory developed by American physicist Albert Overhauser who 

proposed that nuclear spin polarization could be augmented by the microwave irradiation 

of the conduction electrons in certain metals (7). NOESY utilizes the dipolar coupling to 

transfer the magnetization. It provides information about the distances between nuclei in 

space (within 5 Å). NOESY, in protein NMR, is an essential experiment for the 

determination of protein structure. The intensity of cross-peaks provides the distance 

between two nuclei in NOESY.   
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1.1.6.5 3D NMR 

For small proteins having a molecular weight less than 10 kDa, 2D proton NMR can be 

used to elucidate the structure. But as the molecular size of the molecule increases, the 2D 

proton NMR can not be used because of several reasons. The main reason is that the 2D 

proton NMR spectra become very complex for analysis and hinder the unambiguous 

assignment of the resonances of larger biomolecules in solution. In addition, large 

biomolecules tumble slowly in solution. This results in the line broadening in the 2D 

spectrum of the molecules. As a consequence, the spin systems of the molecule are severely 

overlapped for unambiguous resonance assignment. Thus, 2D proton NMR fails for the 

structure determination of larger biomolecules in solution.  

These limitations can be overcome by both increasing the dimension of the 2D NMR to 

3D and if needed to 4D NMR along with the utilization of other nuclei such as 15N and 13C.  

Thus, heteronuclear 3D NMR experiments solve the resonance overlap problem due to the 

line broadening of macromolecules. Since heteronuclear coupling is used in the case of 3D 

NMR, a 13C, 15N (double) labeled protein sample is required to perform 3D NMR 

experiments for larger proteins. Two 2D NMR pulse sequences can be combined to 

generate a 3D pulse sequence. During the construction of a 3D pulse sequence, the 

acquisition time of the first 2D pulse sequence and the preparation time from second 2D 

pulse sequence are removed and then the rest from each 2D pulse sequence are combined 

to yield a 3D pulse sequence. The sensitivity and digital resolution decrease with the 

increase in dimensionality in NMR. This limits the increase in dimensions in NMR 

experiments to a maximum of 4 dimensions or 4D NMR.  

1.1.6.6 Protein NMR  
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NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy (cryo-EM) are 

the three main methods for protein 3D structure determination at atomic resolution. 

Although X-ray crystallography is the predominant method for protein structure 

determination, it has certain limitations; for example, many proteins especially membrane 

proteins are difficult to crystallize. Additionally, if some of these difficult proteins can be 

crystallized, they may not diffract well to generate the structure. Furthermore, 

crystallography can not provide information on the dynamic behavior of proteins in 

solution. Although the cryo-EM method has made significant advancements recently for 

the determination of atomic resolution structures of large biomolecules and their 

complexes, it also cannot provide any information on the dynamics of the biological 

molecule under study (8). On the other hand, NMR spectroscopy is routinely used for 

structure, dynamics, and interactions studies for small to medium size biological molecules 

in solution (9-11). Solution-state NMR provides information on protein dynamics on a 

picosecond to second time scale. However, NMR is an intrinsically an insensitive 

technique and requires large amounts (both concentration and volume) of isotope-labeled 

samples to get meaningful data. Recent advancements in NMR techniques such as NMR 

instrumentation, magnetic field strengths, microcoils, cryogenically cooled probes, 

dynamic nuclear polarization, and sensitivity-enhanced pulse sequences have made it 

possible to acquire good quality NMR data on a protein sample at submicromolar 

concentrations. 

Atomic resolution structure determination of proteins by NMR spectroscopy include 

sample preparation, NMR data collection, data processing, data analysis, protein backbone 

assignment, sidechain assignment, NOE assignment, structure calculation, and refinement. 
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The refinement of the calculated NMR structure is an iterative process that takes several 

rounds of iteration. Therefore, it can take a tremendous amount of time before the final 

refined structure is obtained. 

 

1.1.6.6.1 Backbone chemical shift assignments 

The complete protein backbone assignment can be achieved by three pairs of 3D NMR 

experiments: (i) CBCA(CO)NH and HNCACB (12), (ii) HNCA and HN(CO)CA (13-15), 

and (iii) HNCO and HN(CA)CO (14-16). Each of these NMR spectrums has a [1H, 15N] 

HSQC plane in the X-Y dimension and a 13C plane in the Z-dimension. 

The 3D CBCA(CO)NH and 3D HNCACB Pair: 

The 3D CBCA(CO)NH and 3D HNCACB NMR experiments are the main pair for 

backbone assignments of the protein residues. In this pair, the magnetization is transferred 

from Hb to Cb and Ha to Ca, and again from Cb to Ca. Finally, to N and HN. In 

CBCA(CO)NH, the chemical shift is evolved on N and HN of its own (i) residue and Ca  

and Cb of the preceding (i-1) residue. In HNCACB, the chemical shift is observed for N, 

HN, Ca, and Cb of its residue and Ca, and Cb of preceding residue. For this reason, this 

3D NMR pair is very helpful in walking through the protein backbone to assign the 

backbone nuclei unambiguously.  
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Figure 1.7: Magnetization transfer process and chemical shift evolvement in (a), HNCACB 

and (b), CBCA(CO)NH experiments. HNCACB provides CA and CB resonances of its 

own and its preceding residues whereas CBCA(CO)NH provides CA and CB of the 

preceding residue only. This pair is very essential for walking through the backbone of a 

protein sequence.  

 

 

 

 



 20 

The HNCA and HN(CO)CA pair: 

In HNCA, the chemical shift is evolved on N, HN, and Ca of its i residue and Ca of the i-

1 residue (Figure 1.8). This spectrum is useful if the HNCACB and CBCA(CO)NH are of 

bad quality. Similarly, HN(CO)CA provides chemical Ca chemical shift of the preceding 

residue only (Figure 1.8). 

 

Figure 1.8: Magnetization transfer and chemical shift evolvement in (a), HNCA and (b), 

HN(CO)CA. Green circles indicate the nuclei for which chemical shift is observed. 
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The HNCO and HN(CA)CO pair:  

In this pair, HNCO provides chemical shifts of carbonyl (CO) of the preceding residue. 

The HN(CA)CO gives the CO chemical shifts of its own and the preceding residue. 

Figure 1.9: Magnetization transfer and chemical shift evolvement in (a), HNCO and (b), 

HN(CA)CO. Green circles indicate the nuclei for which a chemical shift is observed. 

This pair is used to link the residues during the backbone assignment. Figure 1.9 provides 

the scheme of magnetization transfer in this pair. 

After complete backbone assignment of the residues of a protein, the sidechain of the 

residues is assigned using different types of TOCSY experiments. The commonly used 
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TOCSY experiments are 15N-edited 3D HSQC-TOCSY (17) and 3D H(CCO)NH-TOCSY 

(18). Sometimes, 3D HCCH-TOCSY (19), a carbon-based 3D TOCSY, is used to get the 

sidechain protons. 

1.1.6.6.2 Side-chain chemical shift assignments 
 
In the 15N-edited 3D HSQC-TOCSY experiment, the magnetization transfers between 1H 

nuclei via isotropic mixing followed by the magnetization transfer to the neighboring 15N 

nuclei and back to 1H for detection (Figure 1.10 a). In this experiment, the chemical shift 

evolves on the amide nitrogen, proton, and the side-chain proton of the i residue (Figure 

1.10 a). This is an important experiment for the identification of the amino acid type and 

side-chain protons. Apart from HSQC-TOCSY, H(CCO)NH TOCSY and HCCH TOCSY 

are additional sets of experiments that are used for assigning side-chain protein nuclei. The 

former is 15N-based TOCSY and the later one is 13C-based TOCSY. In H(CCO)NH 

TOCSY, the magnetization is transferred from  the 1H nuclei to their attached 13C nuclei. 

Then, the magnetization is transferred to all side-chain carbon nuclei via isotropic mixing 

from where the magnetization is finally transferred to the carbonyl carbon, amide nitrogen 

and proton for the detection. The chemical shift is evolved on amide the 15N and 1H nuclei 

of the i residue and the side-chain 1H nuclei of the i-1 residue (Figure 1.10 b). In 13C HCCH 

TOCSY, the magnetization is transferred from 1H nuclei to their attached 13C nuclei and 

then to other carbon nuclei via isotropic mixing. Finally, the magnetization is transferred 

to the side chain 1H nuclei for detection. The chemical shift is evolved on side-chain 13C 

and 1H nuclei of i residue (Figure 1.10 c).  
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Figure 1.10: Magnetization transfer and chemical shift evolvement in 3D 15N HSQC 

TOCSY(a), 3D 15N H(CCO)NH TOCSY (b), and 3D 13C HCCH TOCSY. Green circles 

indicate the nuclei on which a chemical shift is observed. Purple circles indicate the nuclei 

that are used for magnetization transfer.  

 

1.1.6.6.3 NOE assignments 

After the backbone protons are assigned, the final step of the assignment is the NOE 

assignment. The intensity of a cross peak between a pair of protons provides the distance 

between them. This is achieved by assigning the NOE peaks. Experiments such as 15N-

edited 3D HSQC-NOESY (17, 20, 21) and 13C- edited 3D HSQC-NOESY (21) are used to 

get the NOEs between the protons. Once the NOEs are assigned, the structure calculation 

of the protein can be initiated by creating different restraint files. The files include the 
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chemical shift list, dihedral angle restraints, and the NOE restraints. By using these files as 

an input, the structure calculation is performed using CYANA (22). In addition to CYANA, 

other software packages such as XPLOR-NIH (23, 24) and ARIA (25) can also be used to 

calculate the structure. The final step of the structure calculation is the water refinement of 

the structure to lower the target function. The details of the structure calculation procedures 

will be discussed in Chapter 4. This can be performed by using software such as CNS, 

ARIA, YASRA, and XPLOR-NIH. The NMR structure contains an ensemble of structures 

having a low root mean square deviation (RMSD) among the defined set of structures. A 

good structure should contain a low energy function, and a few or no angle and distance 

restraint violations. The structure can be validated by using the program PROCHECK (26). 

 

1.1.7 Solid-state NMR spectroscopy 

In solution-state NMR spectroscopy, the molecules in solution are in rapid random motion. 

As a result, the environment around a molecule in the solution is isotropic. This isotropy is 

achieved only in the solution state due to the averaging of the anisotropic NMR interactions 

as the molecules tumble rapidly in the solution. Due to this isotropy, the NMR signals in 

solution NMR are sharp. In contrast to the solution sample, the solid samples have an 

anisotropic environment. Therefore, the solid-state NMR signals are a lot broader 

compared to those in solution-state NMR. The resolution of NMR spectra in solid-state 

NMR can be improved by applying specific techniques such as cross-polarization, magic 

angle spinning, enhanced probe electronics, and special 2D and 3D NMR experiments.  



 25 

The introduction of magic angle spinning (MAS) in solid-state NMR (ssNMR) has helped 

to make advancement in the elucidation of the molecular structure of complex 

macromolecules including membrane proteins. MAS was used in ssNMR to remove the 

anisotropic dipolar interactions in the solid samples. The anisotropy can be suppressed by 

rotating the sample at an angle of 54.740 with respect to the applied external magnetic field. 

This is termed magic angle spinning (MAS). MAS in ssNMR mimics the molecular motion 

phenomenon observed by the solution NMR. The fast-isotropic tumbling behavior of 

solutions can average the dipolar and chemical shielding component (3cos2ϴ - 1) to zero. 

But in ssNMR, this 3cos2ϴ - 1 term can be made zero by spinning the sample at an angle 

of 54.740 with respect to the applied magnetic field. For this, the solid powder samples are 

packed in a small rotor and then spun at a high spinning rate to get high-resolution spectra. 

The sensitivity of the ssNMR can be enhanced by using another technique called cross-

polarization (CP). In CP, the polarization is transferred from the abundant spins such as 1H 

to less abundant spins such as 13C and 15N.  

For the determination of the 3D structure of a membrane protein by using ssNMR, different 

MAS ssNMR experiments are utilized. (i) 2D dipolar assisted rotational resonance 

(DARR), (ii) 3D N-C-C correlation experiments such as NCACX, NCOCX, and 

CAN(CO)CX, (iii) hCHHC, and (iv) hNCHHC.  

(i) 2D dipolar assisted rotational resonance (DARR): This experiment is a 2D ssNMR 

experiment that is based on 13C-13C recoupling, mechanical rotation of the sample, and 1H 

irradiation (27, 28).  
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Figure 1.11: Magnetization transfer process and chemical shift evolvement in a CC2D 

DARR experiment. Chemical shift is observed on the 13C nuclei that are surrounded by 

green circles. The black arrowheads indicate the magnetization transfer when the mixing 

time is 10 -50 ms and the grey arrows represent the magnetization transfer when the mixing 

time is 200-500 ms. 

 

Here, the magnetization is transferred from 1H to the 13C nuclei connected to it and then to 

the 13C nuclei that are close by in space (Figure 1.11). This experiment when acquired with 

a mixing time of 10 to 50 ms provides intra-residue contacts. If recorded with a mixing 
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time of 200-500 ms, this can provide inter-residue contacts for assignment and structure 

calculation. 

(ii) 3D N-C-C correlation experiments such as NCACX, NCOCX, and CAN(CO)CX:  

These 3D experiments are acquired in order to walk through the protein backbone in 

ssNMR. These experiments are based on dipolar coupling dependent polarization transfer 

between N, CO, Ca, Cb, and side-chain carbon atoms to provide information for sequence-

specific backbone assignment. Each of these experiments is described below. 

1.1.7.1 NCACX  

This ssNMR spectrum is very helpful to determine the intra-residue correlations. In this 

experiment, the magnetization is transferred from 1H to 15N by cross-polarization and then 

to Ca and finally, from Ca, the magnetization is then transferred to any carbon nuclei 

nearby in space via the DARR step (29). The spectra generate intra-residue cross-peaks 

when acquired with shorter (10-50 ms) mixing times and can give rise to inter-residue 

cross-peaks if collected with longer (200-500 ms) mixing times (Figure 1.12).    
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Figure 1.12: Magnetization transfer process and chemical shift evolvement in a 3D 

NCACX experiment. Chemical shift is observed on the 13C nuclei that are surrounded by 

green circles. The black arrowheads indicate the magnetization transfer when the mixing 

time is 10 -50 ms and the grey arrows represent the magnetization transfer when the 

mixing time is 200-500 ms.   

1.1.7.2 NCOCX 

This experiment is also used to determine the intra-residue correlations for the sequence-

specific backbone assignment of protein residues. Similar to that in the NCACX 
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experiment, the magnetization, in NCOCX (29), is transferred from 1H to 15N of i residue 

via cross-polarization at the first step. But at the second step, the magnetization is then 

transferred to carbonyl (CO) of the i-1 residue via a specific CP step and finally to the 

carbon nuclei of i-1 via the DARR step. At short mixing (10-50 ms) time the chemical shift 

evolves on the N nucleus of its residue and CO, Ca, Cb, Cg etc. nuclei of the preceding 

residue (Figure 1.13). At higher mixing time, the chemical shift can evolve on carbon 

nuclei of its residue as well.   

 

Figure 1.13: Magnetization transfer process and chemical shift evolvement in a 3D 

NCOCX experiment. Chemical shift is observed on the 13C nuclei that are surrounded by 
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green circles. The black arrowheads indicate the magnetization transfer when the mixing 

time is 10 -50 ms and the grey arrows represent the magnetization transfer when the mixing 

time is 200-500 ms.   

1.1.7.3 CANCOX 

This is also a very important ssNMR experiment that is used for the sequence-specific 

backbone assignment of a protein. In this experiment, the magnetization is transferred from 

Ha to CA via cross-polarization and then to the 15N nucleus from where the magnetization 

is transferred to the CO of i-1 residue via selective cross-polarization. At the final step, the 

magnetization is then transferred to the 13C nuclei nearby via proton-driven spin diffusion 

(PDSD) (30). This experiment establishes the connection between two sequential residues. 

In this experiment, the chemical shift evolves on CA and 15N of i residue and CO and 

sidechain 13C of i-1 residue (Figure 1.14).  

 

Figure 1.14: Magnetization transfer process and chemical shift evolvement in a 

CANCOCX experiment. Chemical shift is observed on the 13C nuclei that are surrounded 

by green circles. The black arrowheads indicate the magnetization transfer. 
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1.1.7.4 2D CHHC 

This experiment is a 2D carbon-carbon experiment that gives the chemical shifts of 13C 

nuclei but encodes the information about the inter-proton distances attached to the carbon 

atoms. This experiment is used to derive the proton-proton distance restraints required for 

the protein structure calculation. In this experiment, the magnetization is transferred from 

the 1H nucleus to 13C by the cross-polarization process (Figure 1.15). After that, the 

magnetization is transferred back to the initial proton in three successive steps and then to 

another 1H nucleus present close to it. Finally, the magnetization is transferred back to the 

13C nuclei for detection (31). Therefore, the chemical shift evolves on the 13C nucleus that 

is attached to the initial proton and then detected on the nearby carbon. 

Figure 1.15: Magnetization transfer process and chemical shift evolvement in a 2D ChhC 

experiment. Chemical shift is observed on the 13C nuclei that are surrounded by green 

circles. The black arrowheads indicate the magnetization transfer. 
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1.1.7.5 2D NHHC  

This is a 2D experiment having carbon and nitrogen dimensions. In this experiment, the 

chemical shifts are detected for 13C and 15N nuclei but encode for proton-proton distances 

attached to them. This experiment also provides inter-proton distance restraints necessary 

for protein structure calculation. In this experiment, the magnetization is transferred from 

1H nuclei to 15N via cross-polarization and then in three successive steps, the 

magnetization is transferred back to the 1H and then to the close by 1H nuclei and finally 

to the 13C nuclei for detection (Figure 1.16) (31).  

 

Figure 1.16: Magnetization transfer process and chemical shift evolvement in a 2D NhhC 

experiment. Chemical shift is observed on the 13C nuclei that are surrounded by green 

circles. The black arrowheads indicate the magnetization transfer. 

1.2 Oligosaccharyltransferase 

Oligosaccharyltransferase (OST) is a membrane-associated enzyme complex that catalyzes 

an essential and highly conserved asparagine-linked glycosylation reaction. This reaction 
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is also known as N-linked glycosylation that occurs in the lumen of the endoplasmic 

reticulum (ER). It occurs in most eukaryotes and some prokaryotes (32-35). In contrast to 

eukaryotes, N-linked glycosylation in prokaryotes is nonessential but assists for survival 

and pathogenicity. The OST enzyme is monomeric in bacteria, archaea, and protozoa but 

is multimeric in higher eukaryotes such as animals, plants, and fungi (36). OST facilitates 

the transfer of an oligosaccharide donor substrate that is composed of three glucose (Glc), 

nine mannose (Man) and two N-acetylglucosamine (GlcNAc) monomers, 

(Glc3Man9GlcNAc2). This sugar molecule is attached to the ER membrane through a lipid 

which is generally a dolichol pyrophosphate (DolPP). The sugar molecule and the DolPP 

are together known as lipid-linked oligosaccharide (LLO). The sugar moiety of the LLO 

donor is transferred to the side chain of an asparagine residue of a consensus sequence -N-

X-T/S- (where X ≠ proline) nascent polypeptide (37, 38). This modification is necessary 

for proper protein folding and other biological processes such as molecular recognition, 

stability, cell-cell communication, and subcellular targeting (36, 39, 40). A general 

mechanism of N-linked glycosylation in higher eukaryotes is described in Figure 1.17. 

Genetic defects in N-linked glycosylation leads to a class of diseases collectively known 

as congenital disorders of glycosylation (CDG) with clinical symptoms that include but are 

not limited to developmental delay, mental retardation, liver dysfunction anorexia, 

gastrointestinal disorders, and dysmorphic features (42, 43). N-linked glycans are 

necessary for the proper folding of the nascent polypeptide (44-46). Any changes to the N-

glycan structure on proteins can flag them for proteasome degradation by the ER quality 

control system (40). 
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Figure 1.17: A general mechanism of the N-linked glycosylation of proteins in higher 

eukaryotes: pyrophosphate and monosaccharides are added to the dolichol lipid on the 

cytosolic side of the endoplasmic reticulum. The lipid-linked oligosaccharide (LLO) is 

inverted to the luminal side of the endoplasmic reticulum (ER). Additional 

monosaccharides are added to form the mature LLO. Oligosaccharyltransferase (OST) 

catalyzes the transfer of the oligosaccharide from the LLO to the side-chain of an 

asparagine residue in -N-X-T/S- consensus sequence within a protein. Protein folding 

occurs after N-linked glycosylation. The three terminal glucose residues are trimmed 

before translocating to the Golgi apparatus for sorting. Misfolded proteins are targeted for 

degradation by proteasomes. The figure is adapted from reference (41). 
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Unlike prokaryotic OST enzyme that contains a membrane-embedded single subunit: 

archaeal glycosylation B (AglB) for archaea, and protein glycosylation B (PglB) for 

bacteria, eukaryotic OST is composed of multiple non-identical protein subunits (37) 

(Figure 1.18). 

 

Figure 1.18: Subunit organization of the human and yeast OST complex in ER membrane. 

(a), OST-A complex. (b), OST-B complex. Subunits are labeled by mammalian names with 

yeast subunit names shown in parentheses. Mammalian OST-A complex is homologous to 

the yeast OST complex, while the yeast OST lacks KCP2 and DC2 subunits found 

exclusively in the OST-B complex. The figure is adapted from the reference (41).  
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The OST complex in humans and other mammals is divided into two distinct isoforms 

known as OST-A and OST-B. Each isoform performs completely different roles in the N-

linked glycosylation of proteins. OST-A is attached directly to the Sec61 of the 

translocation channel in the ER membrane and glycosylates the newly synthesized 

unfolded polypeptide chain emerging from the ribosome co-translationally (47, 48). The 

OST-A glycosylates the majority of glycoproteins in mammals (49). In contrast to OST-

A, OST-B plays a proofreading role to glycosylate the sites, in partially folded proteins or 

proteins that contain disulfide bonds, that are missed by OST-A. OST-A is very similar 

from the OST-B complex. However, they are dissimilar from each other to some extent. 

Both complexes share the following subunits: OST 4-kDa subunit (OST4), ribophorin 1 

(RPN1), ribophorin 2 (RPN2), defender against cell death 1 (DAD1), transmembrane 

protein 258 (TMEM258), and OST 48-kDa subunit (OST48) (50). The only difference 

between these two complexes is that OST-A contains keratinocyte-associated protein 2 

(KCP2) and/or DC2 in place of OST3/OST6 from yeast and the catalytic subunit is STT3A 

and OST-B and contains either tumor suppressor candidate 3 (TUSC3) or MAGT1 subunits 

as redox capable yeast OST3/OST6 homologs, respectively (48, 51, 52). KCP2 and DC2 

subunits were reported to have a connection to the ribosome via the translocation channel 

Sec61 (47, 48). However, the structure of OST-A shows that it did not contain the KCP2 

subunit as a part of subcomplex II, but it was found to bind an additional protein called 

malectin (53). The malectin takes part in the quality control of glycoproteins in the ER 

(54). The unfolded glycoproteins were found to increase the association between malectin 

and ribophorin I (55). This indicates that the OST-B complex may encounter more 

unfolded glycoproteins than OST-A.  
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Yeast, Saccharomyces cerevisiae, contains two functional isoforms that share seven 

subunits: Ost1, Ost2, Ost4, Ost5, Stt3, Swp1, and Wbp1. Each isoform consists of either 

an Ost3 or Ost6 subunit. Therefore, Ost3 and Ost6 subunits are homologues. In recent 

structural studies, genetic, and biochemical characterizations have shown these subunits to 

be into three subcomplexes: subcomplex I (Ost1-Ost5), subcomplex II (Wbp1-Swp1-

Ost2), and subcomplex III (Ost4-Stt3-Ost3/Ost6) (56-63). Recent advancements in atomic 

resolution structural techniques such as nuclear magnetic resonance (NMR) spectroscopy, 

crystallography, and cryo-electron microscopy have provided high-resolution structures of 

the individual subunits or the whole OST complex. Crystal structures of the luminal 

domain of Ost6 (64, 65), NMR structures of Ost4 (66, 67) and Stt3 (68), and low resolution 

cryo-EM structures of mammalian and yeast OST complex (69, 70) have contributed to the 

understanding of the OST enzyme complex and the overall mechanism of N-linked 

glycosylation reaction (Table 1.1). Recent high-resolution cryo-EM structures of the yeast 

OST complex (62, 63) and both of the human OST complexes (53) have transformed our 

understanding of this enzyme. Table 1.1 provides the structures of OSTs and their subunits 

determined so far by using various methods.  

 

Table 1.1: List of all the high-resolution structures determined by various methods thus 

far with their protein data bank (PDB) code. The table is adapted from reference (41). 

Prokaryotic Oligosaccharyltransferase 
References Bacterial Oligosaccharyltransferase 

Protein Method PDB ID 
Campylobacter lari PglB with acceptor 
peptide X-ray 3RCE (71) 

Campylobacter lari PglB with acceptor 
peptide and LLO analog X-ray 5OGL (72) 
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Campylobacter lari PglB with 
inhibitory peptide and reactive LLO X-ray 6GXC (73) 

C-terminal domain of Campylobacter 
jejuni PglB X-ray 3AAG (74) 

Archaeal Oligosaccharyltransferase 
The C-terminal soluble domain from 
Archaeoglobus fulgidus  X-ray 3VU0 (75) 

The C-terminal soluble domain from 
Pyrococcus horikoshii  X-ray 3VU1 (75) 

C-term globular domain as MBP 
fusion from Archaeoglobus fulgidus X-ray 3WAI (76) 

Archaeoglobus fulgidus AglB X-ray 3WAK (77) 
Archaeoglobus fulgidus AglB with Zn 
and sulfate X-ray 3WAJ (77) 

Archaeoglobus fulgidus AglB with 
acceptor peptide X-ray 5GMY (78) 

Eukaryotic Oligosaccharyltransferase 
(1) Yeast Oligosaccharyltransferase (OST) 

Yeast OST subunit Ost4p Solution 
NMR 1RKL (67) 

Oxidized Ost6L X-ray 3G7Y (65) 
Reduced Ost6L X-ray 3G9B (65) 
Photo-reduced Ost6L X-ray 3GA4 (65) 

C-terminal domain of Stt3p subunit Solution 
NMR 2LGZ (68) 

OST complex Cryo-EM 6EZN (63) 
OST complex Cryo-EM 6C26 (62) 
(2) Human Oligosaccharyltransferase 
Soluble N-terminal domain of 
N33/Tusc3 subunit X-ray 4M90, 4M91, 

4M92, and 4M8G (64) 

Ost4 subunit Solution 
NMR 2LAT (66) 

OST-A complex Cryo-EM 6S7O (53) 
OST-B complex Cryo-EM 6S7T (53) 

 

Despite a number of research reports on the role of subunits of the yeast OST enzyme, the 

exact functions of these subunits are still not clear. The subcomplexes in yeast are described 

below. 

 



 39 

Subcomplex I is composed of two subunits, Ost1 and Ost5. Ost1 contains two similar N-

terminal luminal domains and contains primarily β-sheets (62, 63). Ost1 binds only 

glycosylated peptides, which suggests that it may prevent the sliding of the newly 

glycosylated peptide back into the catalytic site (62, 79). And Ost5 of this subcomplex has 

been proposed to support Ost1 (62). 

 

Subcomplex II is formed of subunits Ost2, Swp1, and Wbp1. Swp1 and Wbp1 subunits 

contain one and two large luminal N-terminal domains respectively. The Ost2 subunit 

mediates the contacts between Stt3 and transmembrane helices of Wbp1 and Swp1. Swp1 

and Wbp1 most likely are involved in recruiting LLO or act as a docking platform for the 

recruitment of other accessory proteins acting on nascent glycoproteins (62, 63). Although 

a plethora of reports is published on the functions of these proteins, their role in substrate 

binding and catalysis is still unclear (80-82). Initially, Swp1 and Wbp1 along with Ost1 

were proposed to act as chaperones for protein folding and glycosylation (80, 83). The 

recent structures of the OST complex have shown them not to have chaperone-like folds 

(62, 63).   

 

Subcomplex III is composed of the smallest subunit Ost4, the catalytic subunit Stt3, and 

either Ost3 or Ost6. The NMR structure of the yeast Ost4 subunit in mixed aqueous-organic 

solvent shows a well-formed kinked helix (67). Mutation of any residue at positions 18-24 

to a charged residue in Ost4 results in severe growth defects in yeast (84). These mutations 

destabilize the Stt3-Ost4-Ost3 sub-complex (84, 85). Ost3, a subunit homologous to Ost6, 

consists of four transmembrane helices and Ost3 acts as an LLO docking site (62). 



 40 

Ost4 is reported to play a critical role in the incorporation of Ost3 or Ost6 in the OST 

complex (62, 63, 86). Ost4 is localized between Stt3 and Ost3 in the Stt3-Ost4-Ost3 sub-

complex, acting as a bridge stabilizing this complex (85). Ost4p is a mini-membrane 

protein having only one transmembrane domain containing 36 amino acid residues (85). 

Sequence alignment has shown that most yeast OST subunits have high sequence similarity 

with OST subunits identified in higher eukaryotes, while Ost4 has the highest sequence 

similarity (Fig. 1.19) in C. elegans, M. musculus, and H. sapiens (57, 67). Mutagenesis 

studies have shown that substitution of any residue in positions 18-24 in Ost4 with a 

charged residue results in temperature sensitivity, impaired cell growth and disrupts in vitro 

OST activity (84, 85). 

  

Figure 1.19: Sequence alignment of Ost4p from the S. cerevisiae (yeast) and analogs of 

Ost4 from other species: Homo sapiens (human), Mus musculus (house mouse), 

Schizosaccharomyces pombe (fission yeast), C. elegans (nematode), Xenopus laevis 

(clawed frog), Arabidopsis thaliana (thale cress), and Drosophila melanogaster (fruit fly). 

The residues highlighted in various colors are identical/similar across different species. 

 

The three-dimensional structure of chemically synthesized Ost4 was determined in our 

laboratory in mixed aqueous-organic solvents (67). Ost4 is folded into a well-formed 

kinked helix in this system. This structure explained the results of mutational studies. 
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Mutation of any residue present in positions Met18 to Ile24 in helix-2 to a charged residue 

in Ost4 resulted in severe growth defects in yeast affecting OST activity (84). These 

mutations were reported to cause destabilization of the Stt3-Ost4-Ost3 sub-complex (84, 

85). In contrast, mutation of any residue from Ile2 to Val17 did not affect OST activity or 

the stability of the complex (84). In the Stt3-Ost4-Ost3 sub-complex, Ost4 was reported to 

interact with Ost3 through residues M19, T20, I22 and V23, and with Stt3p through 

residues M18, L21 and I24 (67, 84). Thus, mutation of any of these hydrophobic residues 

to charged residue disrupted the interactions of Ost4 to either Ost3 or Stt3 in the complex 

(84, 85). Mutation of Met18 to Lys or Val23 to Asp resulted in a severe cell growth defect 

but mutation of Met18 to Leu or Val23 to Gly did not affect cell growth suggesting the 

importance of hydrophobic residues in these positions for maintaining the stability of the 

OST complex (84). Based on analysis of the NMR structure of yeast Ost4, it was suggested 

that the α2 helix of Ost4 interacts with Stt3 on one side and Ost3 on the other side via a i+4 

“ridges-into grooves” helix packing mechanism (67). The NMR structure of human Ost4 

determined in mixed aqueous-organic solvent shows a similar kinked helix as in yeast 

Ost4p (66, 67). Thus, point mutation of any residue in the α2 helix might disrupt the 

“ridges-into-grooves” fit resulting in the disruption of the Stt3-Ost4-Ost3 sub-complex.  

 

Although the high-resolution NMR structures of chemically synthesized Ost4 from yeast 

and human are available, the effect of functionally important mutations on the 3-D structure 

of this protein remains unanswered. For example, what would happen to the “ridges into 

groove” interaction between Ost4 and Stt3/Ost3 upon mutation of any residue in the α2 

helix? What is the impact of point mutation on the overall 3-D structure of Ost4? The 
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structure-function studies of Ost4 and its functionally important mutants would provide 

insight into the protein-protein interactions involved in stabilization of the Stt3-Ost4-Ost3 

sub-complex and consequently the OST complex. 

 

In this dissertation, the NMR structures of the Ost4 subunit and its critical point mutant 

Ost4V23D are to be determined by solution NMR in dodecyl phosphocholine (DPC) 

micelles and by ssNMR in the lipid bilayer. Additionally, the structures of Ost4 and its 

critical mutant will be compared in different membrane mimicking systems. The 

comparison of Ost4 structures determined in various membrane mimicking systems will 

be reported.  
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CHAPTER 2 

 
EXPRESSION, PURIFICATION, AND BIOPHYSICAL CHARACTERIZATION OF A 

MINI-MEMBRANE PROTEIN, Ost4 A SUBUNIT OF YEAST 

OLIGOSACCHARYLTRANSFERASE AND IT’S FUNCTIONALLY IMPORTANT 

MUTANT, Ost4V23D. 

 
2.1 Introduction 

Although the structural biology field has made tremendous advancements, structural and 

functional characterizations of integral membrane proteins remain a challenging task. The 

main limiting factors for structure determination at atomic resolution are the production of 

pure, homogeneous membrane proteins and their reconstitution in a suitable membrane 

mimetic. Of 150916 available protein structures, only 1178 (0.78%) PDB structures belong 

to unique membrane proteins (Figure 2.1a and Figure 2.1b). However, 30% of the genome 

is composed of membrane proteins and over 60% of current drug targets are membrane 

proteins (1, 2). This indicates the significance of membrane proteins. Purification of 

proteins to their homogeneity is the key to the structure determination of membrane 

proteins as well as for water-soluble proteins. Therefore, the target protein must be 

expressed and then purified to its homogeneity. However, the purification protocol is 

different for different proteins. Membrane proteins in particular are difficult to handle 

because of their hydrophobic surfaces.  
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Figure 2.1:PDB statistics of protein available protein structures as of 15th December 2020. 

(a) The total number of protein structures (green bars) and the total number of protein 

structures released annually (red bars). (b) The cumulative number of unique membrane 

proteins available since the first membrane protein structure in 1985. The PDB statistics 

for total protein entries and unique membrane proteins were obtained from 

www.rcsb.org/stats/growth/growth-protein and www.blanco.biomol.uci.edu/mpstruc, 

respectively. 
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Even though subunits of yeast OST were identified, cloned and sequenced over 36 years 

ago, there is a gap in our knowledge and understanding of the individual role and most 

important function of each subunit of OST in the N-glycosylation protein modification 

reaction. The major obstacle in membrane protein research is the heterologous expression 

and purification of pure, homogenous integral membrane proteins (IMPs) and their 

reconstitution in a suitable membrane mimetic. As a result, biochemical, biophysical and 

high-resolution structural characterizations of IMPs remain challenging. 

 

The heterologous expression and purification of recombinant Ost4 have already been 

reported from our laboratory (3). In this chapter, the overexpression, purification, 

reconstitution and biophysical characterization of a functionally important mutant protein, 

Ost4V23D will be reported. Additionally, a comparison of the secondary structure and 

conformation of Ost4V23D with Ost4 suggests that the mutation affects both secondary 

and tertiary structure of the wild type protein. 

 

2.2 Materials and methods 

2.2.1 Transformation of GB1 – Ost4 into E. coli bacterial cell 

GB1 – Ost4 was transformed into E. coli BL21DE3pLysS cells according to following 

procedures. The GB1 – OST4 plasmid from a -20 ºC freezer and BL21DE3pLysS 

competent cells from a -80 ºC freezer were thawed on ice for 45 minutes. 2 µL of the 

thawed plasmid was added to the e-tube containing competent cells followed by incubation 

for 45 minutes on ice. The heat shock for 45 sec was given by keeping the mixture of the 

plasmid and the competent cells on water bath at 42 ºC. The culture was incubated for 
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another 45 minutes on ice. Exactly 200 µL of SOC (super optimal broth with catabolite 

repression) media was added to the e-tube containing the mixture of plasmid and cells 

followed by incubation for 20 minutes at 37 ºC with shaking. At the end, 20 µL of the 

bacterial cell culture was plated on an LB (Liquid Broth) plate containing ampicillin 

antibiotic. The plate was then incubated overnight at 37 ºC. The plating was generally 

performed in the evening so as to obtain fully grown bacterial colonies by the next day 

morning. Once the bacterial colony were fully grown on the plate, the plate was stored at 

4 ºC in the cold room for later use. 

 

2.2.2 Preparation of overnight culture of GB1 – Ost4 transformed E. coli cells 

For 1 L of expression culture, 25 mL of overnight culture was prepared. For the preparation 

of overnight culture, 25 µL  of  100 mg/mL of ampicillin was added to a conical flask 25 

mL of LB media. A single isolated colony was selected from the LB ampicillin plate and 

the colony was picked up by using a sterile pipette tip added into the conical flask 

containing the LB media and ampicillin antibiotic. The culture was allowed to grow 

overnight.  

 

2.2.3 Expression of GB1 – Ost4 protein 

6X-His-tagged GB1-Ost4 was expressed in E. coli BL21DE3pLysS cells following the 

previously described procedure (3). For expression, the overnight culture of the GB1-Ost4 

transformed E. coli cells were diluted to OD600 of 0.06 using M9 media containing 4 

g/L 13C-glucose, 1.2 g/L 15N–NH4Cl, 1 mg/L thiamine, 100 µg/mL ampicillin 2 mM 
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MgSO4, 50 µM CaCl2, and 100 µM trace elements. Generally, 1 L of expression media 

was prepared at a time using four flasks each containing 250 mL of M9 media. The 

following amount of ingredients (Table 2.1) were added for 250 ml of M9 media to produce 

a 13C, 15N double-labelled protein. 

Table 2.1: The concentration and volume of ingredients added for 250 ml of double-

labelled protein expression M9 media.   

SN Ingredient Amount added Final concentration 

1 13C glucose 5 mL 4 g/L 

2 Trace elements 250 µL 100 µM 

3 Thiamine 1.25 mL 1 mg/L 

4 MgSO4 500 µL 2 mM 

5 CaCl2 125 µL 50 µM 

6 Ampicillin 250 µL 100 µg/mL 

7 Yeast extract 500 µL 0.2 g/L 

 

The expression was induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 

OD600 of 0.4-0.6 and grown at 30 ºC for 8 hr. The cells were then harvested by 

centrifugation at 9000 rpm for 25 min at 4 ºC. The supernatant liquid was discarded and 

the cell lysate was stored at 4 ºC freezer for purification when needed. 

2.2.4 Purification of GB1 – Ost4 protein 

For the purification of GB1 – Ost4 protein, the harvested cells from 250 mL of cell culture 

were suspended in 15 mL of lysis buffer containing 50 mM sodium phosphate buffer, pH 
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7.4, 200 mM sodium chloride, 0.01% sodium azide). The cells were lysed by sonicating 

the mixture solution using a 6-second sonication pulse followed by a 1-minute equilibration 

on the ice water bath 8 times. The cell debris was separated from the protein solution by 

centrifugation at 12000 rpm for 20 minutes. The cell debris was discarded and the 

supernatant liquid was collected for further purification of GB1 – Ost4 protein.  

 

Since the recombinant GB1 – Ost4 protein contained a 6X-His-tag at the C-terminus, the 

protein was purified to homogeneity by using Ni – NTA chromatography (ThermoFisher 

Scientific) For the purification, 10 mM imidazole and 300 mM NaCl were added to the 

supernatant liquid containing 6X-His-tagged GB1-Ost4. To each column, 4 mL of Ni-NTA 

resin was added followed by extensive washing of the resin with nano pure water to remove 

the ethanol used for storing the resin. Each column was equilibrated 3 times with 

equilibration buffer (20 mM sodium phosphate buffer, pH 7.5, 500 mM sodium chloride, 

0.01% sodium azide and 10 mM imidazole). During equilibration, each time 4 mL of 

equilibration buffer was added followed by equilibration for 1 h at room temperature with 

shaking. Then, 4 ml of cell lysate was loaded added to each column followed by washing 

10 times with wash buffer (20 mM sodium phosphate buffer, pH 7.5, 500 mM sodium 

chloride, 0.01% sodium azide and 50 mM imidazole). For washing purpose, 1 mL of wash 

buffer was added and equilibrated for 1 h with shaking. Finally, the protein was eluted with 

elution buffer (20 mM sodium phosphate buffer, pH 7.5, 500 mM sodium chloride, 0.01% 

sodium azide and 500 mM imidazole). For eluting the protein, 500 µL of elution buffer 

was added followed by equilibration for 1 h with shaking. The elution was monitored by 
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measuring OD280 of the eluted protein and was considered completed once OD280 of the 

elute reached ~ 0.05. The eluted protein was stored at 4 ºC for further purification of Ost4.  

 

2.2.5 Removal of GB1 – tag from GB1 – Ost4  

The purified GB1 – Ost4 was buffer exchanged with 1X cleavage buffer (25 mM Tris-HCl 

buffer, pH 7.4, 150 mM NaCl and 2.5 mM CaCl2) 3 times. Each time, 10 mL of 1X 

cleavage buffer was added to a 15 mL 3K molecular weight cutoff ultrafiltration unit 

containing 2 mL of protein. Finally, the centrifugation was carried out until the final 

volume reached ~800 µL. From the stock of 800 µL protein, 200 µL of protein was used 

for setting up one cleavage reaction. Therefore, multiple cleavage reactions were set up at 

the same time. The cleaving capacity of the thrombin enzyme (VWR) was 100 µg/unit. 

The concentration of available thrombin enzyme was 1 unit/µL. Therefore, 80 µL of the 

thrombin was used which could cleave about 8 mg of GB1 – Ost4 protein. Since only 200 

µL of GB1 – Ost4 which would contains about 6.68 mg of protein, 80 µL of thrombin is 

sufficient to complete the cleavage reaction.  Each cleavage reaction was set by adding the 

components as listed in Table 2.2.  

Table 2.2: Reaction components for the removal of GB1 tag from GB1 – Ost4 protein  

Component Volume 

GB1 – Ost4 Protein 200 µL (6.68 mg) 

10X cleavage buffer 18 µL 

Thrombin (VWR) 80 µL  
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0.1% SDS 2.8 µL 

Total volume 300.8 µL 

 

After mixing the reaction components in a 1.5 mL Eppendorf tube, the reaction mixture 

was incubated for 5 days with shaking at room temperature (RT). Upon completion of the 

cleavage reaction, the supernatant containing the GB1 tag was separated from the protein 

pellet by using centrifugation. The Ost4 pellet was washed with nano pure water 4 times. 

Each wash was carried out by adding 200 µL of water followed by suspending the pellet 

by pipetting, centrifugation for 15 minutes and removal of supernatant water. The protein 

pellet was dried by using a speedvac vacuum concentrator. The dried powder of Ost4 

protein was stored at 4 ºC for later use.   

 

2.2.6 Production of GB1 – Ost4V23D protein 

2.2.6.1 Mutagenesis of OST4 gene to obtain OST4V23D 

OST4 gene was previously cloned into GEV 2 vector (3). The mutagenesis of OST4 to 

obtain Ost4V23D mutant was carried out previously in Dr Mohanty’s laboratory. The 

Ost4V23D mutant was already available for my project. Briefly, the mutation of valine 23 

to aspartate was carried out by using the Quickchange Site-Directed Mutagenesis Kit from 

Stratagene. The following forward and reverse primer were used:  5’ 

GTGATGATGACTTTAATTGACATTTACCATGCTGTTGACTCC 3’ (forward) and 5’ 

GGAGTCAACAGCATGGTAAATGTCAATTAAAGTCATCATCAC 3’ (reverse). The 

PCR amplified reaction mixture was treated with an enzyme DpnI to digest the template 

DNA.  The incorporation of the mutation was verified by DNA sequencing. 
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2.2.6.2 GB1 – Ost4V23D expression 

Similar to the expression procedure of Ost4 protein, unlabeled and 15N labeled GB1 – 

Ost4V23D mutant proteins were produced in E. coli BL21DE3pLysS cells (Strategene). 

Expression of the Ost4V23D in the GEV2 vector was under the control of an IPTG 

(isopropyl β-D-thiogalactopyranoside) inducible promoter. Briefly, the overnight starter 

culture was diluted to an OD600 of 0.06 in fresh LB medium containing 100 µg/mL 

ampicillin and grown at 37 oC to an OD600 of 0.4-0.6. At that point, the temperature was 

reduced to 30 oC and the expression of the protein was induced by the addition of IPTG to 

a final concentration of 1 mM. After 4 hours, the cells were harvested by incubating on ice 

for 30 minutes followed by centrifugation at 9000 rpm for 20 min at 4 oC. The cell pellet 

was frozen at -20 oC until needed. For NMR studies, 15N uniformly labeled protein was 

produced by using M9 minimal media containing 15N ammonium chloride (Cambridge 

Isotope Laboratories, MA). The cell culture was grown for 8 hours after induction with 

IPTG and the cells were harvested the same as unlabeled protein. The protein expression 

was verified by Tris-Tricine gel electrophoresis. 

 

2.2.6.3 GB1 – Ost4V23D purification 

2.2.6.3.1 Lysis of GB1 – Ost4V23D cells 

Prior to lysis of the GB1 – Ost4V23D cells, the cell pellet was freeze-thawed six times, by 

freezing it in liquid nitrogen for 5 minutes and thawing on ice. The cell pellet was 

suspended in lysis buffer (50 mM sodium phosphate buffer, pH 6.5, 200 mM sodium 
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chloride, 0.01% sodium azide) and sonicated eight times with a 6-sec pulse followed by 

incubating 1 minute on the ice water bath. The cell debris was separated from cell lysate 

by centrifuging at 12000 rpm for 20 minutes at 4 oC. The cell lysate containing GB1-

Ost4V23D was stored at 4 °C for further purification. 

 

2.2.6.3.2 Purification of GB1 – Ost4V23D by Ni- NTA chromatography 

The purification of GB1 – Ost4V23D protein followed a similar procedure as explained 

for GB1 – Ost4 protein. Briefly, Ni-NTA affinity chromatography was used for the 

purification of GB1 – Ost4V23D protein. The protein was purified as follows under 

gravity. For 4 mL Ni -NTA (ThermoFisher Scientific) resin was packed into one column 

for 4 mL of cell lysate. Each column was washed with nano-pure water 10 times to remove 

storage ethanol. The column was equilibrated with binding buffer (50 mM sodium 

phosphate buffer, pH 6.5, 200 mM sodium chloride, 0.01% sodium azide and 10 mM 

imidazole). A 4 mL GB1 – Ost4V23D of cell lysate containing 10 mM imidazole was 

loaded onto the column. The binding of the protein to the resin was continued overnight in 

a shaker. The unbound proteins in the lysate were removed by letting the unbound protein 

solution flow through the column. The impurities were removed with wash buffer (50 mM 

sodium phosphate buffer, pH 6.5, 200 mM sodium chloride, 0.01% sodium azide and 30 

mM imidazole) several (10) times. The bound protein was eluted with elution buffer (50 

mM sodium phosphate buffer, pH 6.5, 200 mM sodium chloride, 0.01% sodium azide and 

500 mM imidazole). Completion of the protein elution was monitored by measuring 

OD280 of the protein. 
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2.2.6.3.3 Cleavage of GB1 Tag from Ost4V23D protein 

The removal of the GB1 – tag from GB1-Ost4V23D protein was carried out by following 

a procedure similar to that as described for Ost4 protein. Briefly, the pure GB1-Ost4V23D 

protein was concentrated and the buffer was exchanged with cleavage buffer (25 mM Tris-

HCl buffer, pH 7.4, 150 mM NaCl and 2.5 mM CaCl2). The cleavage of GB1 – Ost4V23D 

was carried out as reported previously (24) except for minor changes in the buffer 

conditions. In the previous study, the cleavage was performed using a buffer containing 20 

mM Tris-HCl buffer, pH 8.4, 150 mM NaCl, 2.5 mM CaCl2, and 0.01% SDS. Here, the 

cleavage was carried out using a cleavage buffer containing 25 mM Tris-HCl buffer, pH 

7.4, 150 mM NaCl, 2.5 mM CaCl2, and 0.01% SDS. The cleavage reaction was set by 

following a procedure similar to that done for the Ost4 protein as shown in Table 2.2. The 

cleavage reaction mixture was incubated for 5 days at RT with shaking. The completion of 

the cleavage reaction was monitored by SDS PAGE. Soluble GB1 was removed from 

insoluble Ost4V23D protein by centrifugation of the reaction mixture at 13200 rpm at room 

temperature after the completion of the reaction. The protein pellet was washed with nano-

pure water to remove any contaminating GB1 protein. Pure Ost4V23D containing the 6x 

– Histidine tag was reconstituted in an appropriate concentration of either unlabeled or 

deuterated dodecylphosphocholine (DPC) micelles at a suitable buffer condition for 

biophysical characterization using CD and NMR as described below. 

 

2.2.7 Circular dichroism  

2.2.7.1 Sample preparation for Circular Dichroism (CD) experiments: 
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Approximately 6.7 mL of 15 mM sodium phosphate buffer (pH 6.5) was diluted with 3.3 

mL of nano pure water to obtain 10 mL of 10 mM phosphate buffer (pH 6.5). To 10 mL of 

this buffer, 351 mg of unlabeled dodecylphosphocholine (DPC, MW 351.5 g/mol) was 

added and dissolved completely yielding a CD buffer (10 mM phosphate (pH 6.5) 

containing 100 mM DPC micelles). 1.7 mg and 1.2 mg of dry pellets of unlabeled Ost4 and 

Ost4V23D, respectively, were dissolved in 1 mL of CD buffer (10 mM phosphate buffer, 

pH 6.5 containing 100 mM DPC micelles) yielding a stock solution of 1.7 mg/mL (343.5 

µM) Ost4 and 1.2 mg/mL (242.5 µM) Ost4V23D. The molecular weights of Ost4 and 

Ost4V23D were 5.3501 kDa and 5.3657 kDa, respectively. The stock solution of each 

protein was separately diluted with 10 mM phosphate buffer (pH 6.5) containing 100 mM 

DPC micelles to a final concentration of 48.5 µM for all CD experiments. 

 

2.2.7.2 CD experiments 

All circular dichroism (CD) experiments except for the Ost4 were carried out with a Jasco 

J – 810 automatic recording spectropolarimeter in our laboratory in the Department of 

Chemistry at Oklahoma State University (Stillwater, OK). The Ost4 data were collected on 

a Jasco J – 715 in the Department of Biochemistry and Molecular Biology at Oklahoma 

State University (Stillwater, OK). All CD data were collected at room temperature with a 

0.05 cm quartz cell. During data acquisition, the data were averaged over 5 scans with a 

response time of 4 seconds and with a scan speed of 50 nm/min. All spectra were corrected 

by subtracting the blank spectra (buffer containing an appropriate amount of DPC). CD 

ellipticity values were converted to normalized values (mean molar ellipticity per residue) 

by the standard method available in the spectra manager software of the CD instrument. 
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The secondary structure contents of Ost4 and Ost4V23D were quantified through 

deconvolution of CD spectra by using CDSSTR, CONTINLL and SELCON3 programs 

incorporated in the CDPro software package (4). 

 

2.2.8 NMR experiment 

2.2.8.1 NMR sample preparation 

NMR samples were prepared by dissolving 1.2 mg and 1.3 mg of dry pellet of Ost4 and 

Ost4V23D proteins, respectively in 500 µL of NMR buffer (50 mM phosphate buffer, pH 

6.5 containing 1 mM EDTA, 0.01% NaN3) containing 100 mM deuterated DPC micelles. 

The weight of dry protein pellet was obtained by  measuring the weight of empty e-tube 

and subtracting the weight of the empty e-tube from the weight of the e-tube containing 

dry protein pellet. The protein pellet was suspended in the NMR buffer by vortexing and 

then water bath sonicated at 35 ºC until all the protein completely dissolved in the NMR 

buffer containing DPC micelles. The water bath temperature was maintained < 45 ºC by 

adding ice to the water bath throughout the sonication process. Approximately all protein 

dissolved in the NMR buffer in about 24 hours. Finally, the protein solution was 

centrifugated at 13200 RPM for 15 minutes to remove any undissolved particles. The 

supernatant liquid containing reconstituted protein was transferred into a Shigemi tube for 

NMR data acquisition. 

 

2.2.8.2 NMR data acquisition and processing 
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All the NMR experiments were collected using the Varian INOVA 600 MHz spectrometer 

equipped with an effective three-channel system with linear amplifiers, waveform 

generators, Z pulsed-field gradient capability, and FTS chiller for temperature control at 

Oklahoma State University. The NMR samples used for [1H, 15N] HSQC experiments 

consisted of 400 µL of 0.750 -1.3 mM of uniformly 15N labeled wild type Ost4 or 

Ost4V23D mutant protein in 50 mM phosphate buffer, pH 6.5 containing 1 mM EDTA, 

0.01% NaN3, 100 mM DPC, and 5% D2O (used as a lock solvent) in a Shigemi tube. 2D 

[1H, 15N] heteronuclear single quantum coherence (HSQC) spectra were collected for Ost4 

and Ost4V23D protein samples at 35 °C. The HSQC spectra for both the proteins were 

collected with 256 and 2048 complex points in the 15N dimension (t1 time domain) and 1H 

dimension (t2 time domain), respectively. The data were zero filled to 512 x 4096 and 

apodized using a Gaussian window function. Finally, the data was Fourier transferred for 

the spectra analysis. The NMR data were processed by using Nmrpipe (5) and analyzed 

with Sparky(6). 
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2.3 Results 

2.3.1 Overexpression and purification of GB1-Ost4 protein 

GB1-Ost4 protein was successfully overexpressed and purified by following a previously 

published protocol (3). The expression, purification, and cleavage of wildtype protein were 

monitored by SDS page gel as shown in Figure 2.2. 

Figure 2.2: SDS-PAGE gel picture of the expression and purification profile of 15N-labeled 

Ost4. Lane 1: protein marker, lane 2: cell lysate at the time of induction (T
0
), lane 3:  cell 

lysate after 8 hours of induction (T
8
) with 1mM IPTG (10 µL), lane 4: cell lysate after 8 

hours of induction (T
8
) with 1mM IPTG (25 µL), lane 5: Flow-through after binding, lane 

6: empty column, lane 7: eluted GB1-Ost4 (5 µL), lane 8: eluted GB1-Ost4 (25 µL), lane 

9: Initial wash, lane 10: cell lysate after 8 hours of induction (T
8
) with 1mM IPTG (5 µL). 
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2.3.2 Mutagenesis, overexpression and purification of GB1-Ost4V23D 

The pGEV2-Ost4V23D mutant plasmid was constructed from the pGEV2-Ost4 vector by 

site-directed mutagenesis. The incorporation of mutation was confirmed by DNA 

sequencing (Figure 2.3).  Native as well as mutant plasmids were transformed into E. coli 

BL21 (DE3) pLysS cells. Protein expression was optimized by altering temperatures and 

IPTG concentrations. The GB1-Ost4V23D mutant protein was expressed as a soluble 

protein. The mutant protein was successfully purified using 50 mM sodium phosphate 

buffer (pH 6.5) 200 mM NaCl and an appropriate amount of imidazole using Ni-NTA 

column chromatography. The recombinant GB1-Ost4V23D was found to be very stable 

under these conditions and could be purified to homogeneity (Figure 2.4 a and b). Pure 

Ost4V23D was obtained when the GB1 tag was cleaved successfully with thrombin (Figure 

2.4 c). In the cleavage reaction, Ost4V23D separated as a white precipitate leaving the GB1 

tag in solution eliminating the necessity for further purification. The addition of 0.01% 

SDS was found to be necessary for efficient cleavage of GB1 from Ost4V23D. The C-

terminal 6X-His-tag was not cleaved from either Ost4 or Ost4V23D. A total of 21.5 mg  

and 18.2 mg of pure GB1-Ost4 and GB1-Ost4V23D proteins, respectively, were obtained 

from one L of cell culture.  
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Figure 2.3: Nucleotide (top) and corresponding amino acid (bottom) sequences of GB1-

Ost4V23D. Amino acid sequences of GB1 protein are represented by blue letters. Amino 

acids in red are the first amino acids in the GB1 or Ost4 sequence. Amino acids in green 

background represent thrombin cleavage site. Amino acids in yellow background are those 

which are not present originally in Ost4 sequence including the hexa-histidine tag. The 

mutation site is represented by yellow letter highlighted in red. 

 ATG CAG TAC AAG CTT GCT CTG AAC GGT AAA ACC CTG AAA GGT GAA ACC ACC ACC GAA GCT GTT GAC   
  M        Q     Y      K      L      A      L      N      G       K     T       L     K       G       E      T      T      T       E      A     V     D 
GCT GCT ACC GCG GAA AAA GTT TTC AAA CAG TAC GCT AAC GAC AAC GGT GTT GAC GGT GAA TGG ACC  
  A       A       T      A       E      K     V      F     K      Q      Y      A     N       D      N      G      V      D      G       E     W     T 
TAC GAC GAC GCT ACC AAA ACC TTC ACG GTA  ACC GAA CTG GTT CCG CGT GGA TCC ATG ATC TCT 
  Y        D     D      A      T      K       T      F      T       V       T      E      L       V      P      R      G      S      M      I     S 
GAT GAA CAG CTG AAC TCC TTG GCC ATC ACC TTC GGT ATT GTG ATG ATG ACT TTA ATT GAC ATT TAC     
   D      E     Q       L      N      S      L       A      I        T      F      G      I       V      M      M     T      L     I        D      I      Y     
CAT GCT GTT GAC TCC ACC ATG TCT CCT AAG AAC CGC CTC GAG CAC CAC CAC CAC CAC CAC TGA    
  H       A      V      D      S      T      M      S      P      K      N      R      L      E       H      H      H      H      H     H     Stop 
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a 

b 
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Figure 2.4: SDS-PAGE gel picture of the expression (a), purification (b), and cleavage (c) 

profile of 
15

N-labeled Ost4V23D. The protein marker lane is labeled in the figure. In panel 

(a), lane 1: cell lysate at the time of induction (T
0
), lane 2:  cell lysate after 8 hours of 

induction (T
8
) with 1 mM IPTG. In panel (b), lanes 1-4: Washings of cell lysate loaded on 

Ni-NTA, lane 5: eluted protein. In panel (c), lane 1: pallet wash, lane 2: pallet after 

cleavage, lane 3: supernatant liquid after cleavage,  lane 4: eluted protein before cleavage. 

 

The C-terminus of the chemically synthesized Ost4 is disordered and has not been shown 

to have any functional or structural significance (7). Therefore, the tag was left intact in 

the recombinant Ost4 and Ost4V23D proteins. 

 

 

c 
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2.3.3 Characterization of the Ost4 and Ost4V23D by far-UV CD spectroscopy  

Far UV-CD spectroscopy was carried out to explore the secondary structure of Ost4 and 

Ost4V23D under identical conditions. DPC is a mild detergent that generally does not 

denature proteins (8). DPC has been used as a membrane mimetic for the determination of 

NMR structures of OmpA (177 residues) (9), outer membrane enzyme PagP (164 residues) 

(10), phospholamban (52 residues) (11) and CHIF (a member of Na+-, K+-ATPase 

regulatory membrane proteins, 67 residues) (12) etc. To determine optimal DPC 

concentration, the far UV-CD region was used for detergent screening. Far-UV CD spectra 

on Ost4 and Ost4V23D were collected at 50 mM, 100 mM, 200 mM, 300 mM and 400 

mM of DPC concentration (Figure 2.5).  

Figure 2.5: Far UV-Circular dichroism (CD) spectroscopic analysis of the Ost4 (wild type) 

at different 50 mM, 100 mM, 200 mM, 300 mM and 400 mM DPC micelle concentrations 
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respectively. The protein concentration was 48.5 µM in each of the DPC micelle 

concentrations. Characteristic minima at 208 and 222 nm in these DPC micelle 

concentrations show that Ost4 is in a well-folded state in all of the above DPC 

concentrations but 100 mM DPC is the best concentration having high helical content.  

CD data demonstrate that Ost4 and Ost4V23D are helical in DPC micelles with two 

characteristic minima at 208 and 222 nm (Figure 2.6).  

Figure 2.6: Far UV-circular dichroism (CD ) spectroscopic analysis of the Ost4 (red) and 

Ost4V23D (green) mutant protein in 100 mM DPC micelle concentration. The protein 

concentration for both the proteins was 48.5 µM. Characteristic minima at 208 and 222 nm 

indicate that Ost4 protein has lower alpha-helical content than Ost4V23D. 

The CD spectra of Ost4 were very similar when the DPC concentration was varied from 

50 - 400 mM suggesting that Ost4 maintains its structure under various DPC concentrations 

(Figure 2.5). The CD spectra for Ost4V23D (Figure 2.5) were identical for 50 mM, 100 

mM, and 200 mM DPC but the helicity was reduced when the DPC concentration was 
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increased to 400 mM.  Based on the CD data, 100 mM DPC was chosen as the condition 

for further characterization of these proteins. To investigate the structural impact of the 

Val23 to Asp mutation in Ost4, biophysical characterization with far UV-CD was carried 

out under identical conditions. The far UV-CD spectra (Figure 2.6) indicated that although 

Ost4V23D had a typical α-helical structural characteristic in 100 mM DPC micelle, it was 

quite different from Ost4 under similar conditions. The Ost4V23D mutant protein had more 

helical propensity than the wild type protein under identical conditions suggesting that 

there was a significant change in secondary structure with the point mutation of Val23 to 

Asp (Figure 2.6). 

 

2.3.4 Characterization of Ost4 and Ost4V23D by NMR 

The 2D [1H, 15N] HSQC is a very sensitive NMR experiment correlating 15N with the 

attached amide proton for each residue in the protein backbone except for the prolines. The 

2D HSQC spectrum essentially manifests the fingerprint region of a protein providing 

information on its conformation under the experimental conditions (13-17). Any changes 

in the experimental conditions such as pH or salt or titration of a ligand or mutation/s etc. 

can cause changes in the resonance positions of amino acid residue/s in the fingerprint 

region of the protein. A change in chemical shift positions in HSQC is an indication of 

conformational change in the protein due to the perturbation in its environment. These 

conformational changes can either be global or local. The global conformational change 

includes several residues and local conformational change includes a few residues. The 2D 

[1H, 15N] HSQC spectra were collected on both Ost4 and Ost4V23D (Figures 2.7 a and 

2.7b) under identical conditions. Both spectra display well-dispersed peaks indicating both 
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proteins are properly folded in DPC micelles. However, it is clear from Figure 2.7C that 

there is a drastic change in the fingerprint region indicating that the wild type and the V23D 

mutant proteins have distinct conformations. 

 

 

 

 

 

 

a 
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b 
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Figure 2.7: 2D [1H, 15N]-heteronuclear single quantum coherence (HSQC) spectrum of 

15N-labeled Ost4 and Ost4V23D. (a) HSQC spectrum of 15N-labeled Ost4 in 100 mM DPC 

micelle containing 5% D2O at pH 6.5. (b) HSQC spectrum of 15N-labeled Ost4V23D in 

100 mM DPC micelle containing 5% D2O at pH 6.5. The peaks were well dispersed for 

both 15N Ost4 (a) and 15N-Ost4V23D (b) indicating that both the proteins were well-folded. 

The spectra of Ost4 (c) and Ost4V23D (b) indicate both the proteins are helical proteins 

due to narrow dispersion in the amide proton regions, which is typical for helical proteins. 

c 
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(c) Overlay of [1H 15N] HSQC of wild type Ost4 and its point mutant Ost4V23D. The 

movement of peaks in the fingerprint region of Ost4 and Ost4V23D is an indication of 

crucial changes in the 3D structure of the protein when the point mutation is performed. 

 

2.4 Discussion 

Even though N-glycosylation is an essential and highly conserved protein modification 

reaction in all eukaryotic organisms, mechanistic details of eukaryotic OST subunits and 

their role is not yet clear. The key reason is the difficulties with the heterologous expression 

and production of milligram quantities of IMPs for structural and functional 

characterization. E. coli, which is most frequently used for the production of large 

quantities of recombinant proteins, has very limited success for the recombinant expression 

of IMPs (18). Therefore, very few methods for expression of recombinant IMPs in E.coli 

are reported. 

 

The overexpression, purification, reconstitution, and biophysical characterization of 

Ost4V23D protein and its comparison with the WT Ost4 protein have been discussed in 

this chapter. The V23D mutation results in impaired cell growth and in vitro OST activity 

(19, 20). The effect of V23D mutation on the structure and function of Ost4 can be well 

understood by performing a comparative study on Ost4 and Ost4V23D proteins. The 

successful expression and purification for the production of the wild type Ost4 in high yield 

have been reported previously (3). The expression of the Ost4V23D follows the same 

protocol as the WT, except the cell culture were incubated for 4 h at 30 ºC after induction 

with IPTG for optimum expression as opposed to 37 ºC for 4 h for the WT. Surprisingly, 
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Ost4V23D does not bind to the Ni-NTA column under the same conditions of pH and NaCl 

concentration as used for Ost4. After many trials, we were able to optimize the pH and 

sodium chloride concentration necessary for effective binding of Ost4V23D to Ni-NTA 

resin. Ost4 binds effectively to the Ni-NTA column at pH 7.4 and 500 mM NaCl 

concentration whereas Ost4V23D binding occurs at pH 6.5 and 200 mM salt. 

 

Circular dichroism (CD) is a very simple and reliable technique for the characterization of 

protein secondary structure and stability under various buffer conditions. CD was used to 

screen detergents as well as to compare the secondary structures of Ost4 and Ost4V23D 

under identical conditions. CD data collected on these proteins showed that both these 

proteins are helical when reconstituted in DPC micelles (Figure 2.5 and 2.6). Quantification 

of secondary structure content through deconvolution of CD spectra from various programs 

showed that Ost4 and Ost4V23D have approximately 30% and 62% helicity, respectively. 

Therefore, the CD data has shown that Ost4V23D has higher helical content than WT 

protein under identical conditions indicating that there is a significant impact in the tertiary 

structure of Ost4 when Val23 is mutated to Asp. The 2D [1H, 15N] HSQC is a very effective 

technique that indicates whether a protein is properly folded or not (8, 13). The suitability 

of a detergent micelle to be a surrogate for the natural membrane is determined based on 

various factors including solubility, the stability of the reconstituted membrane protein and 

the quality of the 2D-HSQC spectrum. 2D-HSQC is a very sensitive NMR experiment that 

correlates the amide proton to its corresponding nitrogen atom for each amino acid residue 

in a protein except proline and provides a map of the fingerprint region. The peaks of a 

well-folded protein are generally well-dispersed in an HSQC spectrum (8, 9). Thus, HSQC 
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can be used to monitor if the protein under study is well-behaved under provided 

experimental conditions such as pH, temperature, salt concentration etc. In addition, 2D 

HSQC is an excellent experiment to track the conformational change of a protein due to 

substrate binding or mutation/s or change in any other experimental conditions such as 

temperature or pH etc. Thus, change in the fingerprint region of a 2D HSQC spectrum of 

a protein due to any of the above reasons, is an indication of either local or global 

conformational change. The 2D [1H, 15N] HSQC spectra of Ost4 and Ost4V23D 

reconstituted in 100 mM DPC is well-dispersed suggesting that both the proteins are 

properly folded having stable tertiary structures. However, the fingerprint region of the 

Ost4V23D mutant is significantly different than that of Ost4 (Figure 2.6) suggesting that 

the mutation of Val23 to Asp affects the tertiary structure of the protein. The dispersion of 

resonances in the HSQC of the Ost4V23D is significantly narrower than that of the Ost4, 

which is an indication of higher helical content in the mutant protein. This observation is 

consistent with CD data as well. It is clear from both NMR and CD data that Ost4V23D 

has a distinct structure. Detailed structural analysis of both Ost4 and Ost4V23D can unravel 

the mechanism of Ost4 function and mode of interactions with Ost3 and Stt3 subunits. Ost4 

subunit bridges the catalytic subunit, Stt3 with Ost3 in the Stt3-Ost4-Stt3 sub-complex (19, 

20). These pieces of evidence show that Ost4V23D has a distinct structure from WT Ost4 

and a detail structural study of Ost4V23D can provide the molecular basis of Ost4 function. 

 

2.5 Conclusion 

In this chapter, the overexpression, purification and biophysical characterization of Ost4 

and Ost4V23D have been reported. The mini-membrane mutant protein, Ost4 was 
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expressed and purified successfully. Similarly, the critical mutant of Ost4, Ost4V23D, was 

successfully overexpressed as a soluble fusion protein in BL21DE3pLysS cells when fused 

to GB1 on its N-terminus along with a 6X-His-tag at its C-terminus. GB1 – tagged Ost4 

and Ost4V23D recombinant proteins were purified using Ni-NTA column 

chromatography. The GB1 – tag was successfully cleaved off by thrombin enzyme yielding 

an insoluble protein precipitate. The pure insoluble Ost4 or Ost4V23D was efficiently 

separated from soluble GB1 – tag by centrifugation requiring no further purification step. 

The precipitated Ost4V23D was reconstituted using DPC micelles. Ost4V23D is a highly 

helical protein based on far UV-CD data.  In fact, it is more helical than the wild type 

protein. The well-dispersed peaks in the 2D-HSQC data demonstrate that the protein is 

well-folded in DPC micelles and their structure can be determined in this membrane 

mimetic system. The 2D HSQC spectra of Ost4 and Ost4V23D suggest that mutation of 

Val23 to Asp affects either the conformation or the environment of the Ost4. 
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CHAPTER 3 

 
BACKBONE AND SIDE CHAIN RESONANCE ASSIGNMENTS AND 

SECONDARY STRUCTURE CALCULATION OF YEAST 

OLIGOSACCHARYLTRANSFERASE SUBUNIT Ost4 AND ITS FUNCTIONALLY 

IMPORTANT MUTANT Ost4V23D 

3.1 Introduction 

 
About two-thirds of all the drug targets are membrane proteins. Therefore, membrane 

proteins are very important in the biomedical and biotechnology field. However, the 

number of membrane protein structures in the protein data bank (PDB) is significantly low 

due to various limiting factors and technical difficulties. One of the reasons for very few 

membrane protein structures in the PDB is the difficulty in the crystallization of these 

proteins. The membrane proteins are also difficult to purify to homogeneity due to 

proteolytic degradation and the presence of various impurities. Several efforts have been 

made to increase the yields from membrane protein expression in both prokaryotes and 

eukaryotic eukaryotes (1, 2). Additionally, the membrane proteins are comparatively more 

flexible than soluble proteins and have conformational heterogeneity and a high 

concentration of detergent is often used to extract and purify them which makes them 

difficult to crystallize (3). Therefore, solution NMR is the technique of choice for the 

determination of high-resolution structures of membrane proteins. Atomic resolution
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 structure of proteins by solution NMR requires several steps to be completed before we 

can determine the final refined structure. Such steps can be categorized as (a) preparation 

of 13C and 15N isotopically labeled protein samples, (b) acquisition of multidimensional 

homonuclear multinuclear to NMR data and NMR  data processing, (c) backbone and 

sidechain resonance assignments followed by NOE assignment, (d) restraints generation 

such as NOE restraints, dihedral angle restraints, H-bond restraints, and (e) structure 

calculation, refinement and energy minimization using different computer programs.  

Once all NMR data for a protein sample are collected and processed, the first step is to 

assign the backbone resonances by walking through the backbone sequence. This step 

follows the side – chain  resonance assignment by using different TOCSY experiments. 

The final step of the resonance assignment is the NOE assignment. The assignment of NOE 

cross-peaks unambiguously is very important because NOE provides the structural 

constraints that are used for structure generation. Theoretically, the NOE cross-peaks can 

be assigned by using chemical shifts of backbone and side – chain resonances.  

This chapter includes the backbone and side – chain resonances assignments of Ost4 and 

its functionally important mutant Ost4V23D. 

 

3.2 Backbone assignments of Ost4 protein 

3.2.1 Introduction 

The initial step of the protein structure determination by NMR begins with the 

interpretation and assignment of NMR data for the protein.  In the backbone assignment, 

the resonances of protein backbone nuclei such as amide H and the attached N, Ca, Cb, 



 87 

and Ha are assigned. Despite recent advances towards automated assignments, the 

assignments for membrane proteins by these programs are often not possible.  

The backbone assignment of a protein can be accomplished by following the sequential 

assignment strategy. This strategy was developed by the Wüthrich group using a set of 2D 

NMR experiments on unlabeled protein samples about 35 years back (4).   For larger 

globular proteins and membrane proteins, the sequential backbone assignment requires 

uniformly 13C and 15N-labeled protein samples to record various necessary and 

complimentary 3D NMR experiments (5). The most commonly used 3D NMR experiments 

for protein backbone assignment are HNCA, HN(CO)CA, HNCO, HN(CA)CO, CBCANH 

and CBCA(CO)NH. All of these 3D heteronuclear correlation experiments use one-bond 

13CO(i-1) – 15N(i), 15N(i)-13Cα(i) and 13Cα(i)-13CO(i), as well as two-bond 13Cα(i-1)-15N(i) 

scalar couplings. Therefore, the backbone resonances of its own (i), the preceding (i-1) 

residue or just residue (i) are correlated with the amide group of residues (i). And, the 

sequential assignment is accomplished and confirmed by connecting the resonances of one 

residue with those of its adjacent neighbor through a number of independent pathways (Cα, 

Cβ, and CO). The backbone resonances are correlated with amide groups because the 

amide groups are usually the best-resolved set of signals. Figure 3.1 shows the strategy of 

sequential backbone resonance assignment by linking one NH group next into a long chain 

and walking through the backbone of a protein by using HNCACB and CBCA(CO)NH 

pair of 3D experiments. 
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 Figure 3.1: Schematic representation of the strategy for sequential backbone assignment 

by using 3D HNCACB and 3D CBCA(CO)NH pair of spectra. 
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In actual practice, the strip plot of HNCACB and CBCA(CO)NH spectra together will be 

as shown in Figure 3.2.  

Figure 3.2: Schematic representation of a strip plot of HNCACB and CBCA(CO)NH pair 

of spectra. Ca (green) connectivity is shown with solid lines and Cb (red) connectivity are 

shown with dotted lines.  
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Once the protein backbone resonances are assigned, the secondary structure of the protein 

can be calculated by using backbone chemical shift values by using TALOS+ and CSI 

(Chemical Shift Index) method developed by Wishart et al. (6, 7). The backbone chemical 

shift values of protein contain information about the secondary structure of proteins (8-12). 

From the CSI method, the secondary structure of proteins can be predicted with about 92% 

accuracy (6). However, the other programs such as TALOS+ (13), PSICSI (14, 15), CSI, 

and SSP (16) can also be used to derive the secondary structure information about the 

protein from the backbone chemical shift values. 

 

In this section, the backbone resonance assignment of yeast oligosaccharyltransferase 

subunit Ost4 will be discussed.  

 

3.2.2 Materials and methods 

3.2.2.1 13C, 15N – labeled protein overexpression and purification 

Construction of GB1-OST4 has been reported previously (17). Ost4 was expressed and 

purified by following previously described methods (17). The details of production and 

purification of unlabeled and 15N – labeled (single labeled) Ost4 protein has been described 

in Chapter 2. For backbone and side-chain assignment, 13C, 15N – labeled (double labeled) 

Ost4 protein was overexpressed and purified by following the same procedure as described 

in Chapter 2. This chapter describes overexpression and purification of 13C, 15N – labeled 

(double labeled) protein. Figure 3.3 demonstrates a summary of overall steps followed 

during the expression process of the double–labeled protein.  
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Figure 3.3: Schematic representation of steps followed for the expression of double 

labeled GB1 – Ost4 protein. 
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Briefly, GB1-Ost4 was transformed in E. coli BL21DE3pLysS cells (Stratagene). The 

overnight culture of each expression was diluted to an OD600 of 0.06 using fresh M9 media 

supplemented with 4 g/L 13C-glucose, 1.2 g/L 15N-NH4Cl, 1mg/L thiamine, 100 µg/mL 

ampicillin 2 mM MgSO4, 50 µM CaCl2, and 100 µM trace elements. The culture was then 

incubated at 37 ºC until OD600 reached between 0.4-0.6. Expression was induced at 30 ºC 

by the addition of 1mM isopropyl-b-D-thiogalactopyranoside (IPTG). After 8 hours, the 

cells were harvested by centrifugation at 9000 rpm. Approximately 2.0 g of cell pellet was 

obtained from 500 mL of cell culture. The cell pellets from a 500 mL of cell culture were 

resuspended in 15 mL of lysis buffer (50 mM sodium phosphate buffer (pH 7.4) 200 mM 

sodium chloride, 0.01% sodium azide). Then a 6-second sonication pulse followed by 1-

minute incubation on ice water bath was performed to lyse the cells. After lysis by 

sonication, the cell debris was separated from the supernatant liquid by centrifugation for 

20 minutes at 4 ºC. The purification of GB1 – Ost4 was done by using Ni – NTA affinity 

chromatography. For 4 mL of cell lysate, a column was packed with 4 mL of Ni – NTA 

resin. Prior to loading the cell lysate, the column was washed with nano pure water 10 

times to remove the 20 % ethanol used for storage. The column was equilibrated 

sufficiently with an equilibration buffer. The cell lysate being in the same buffer as the 

equilibration buffer loaded onto a pre-equilibrated Ni-NTA column for purification taking 

advantage of the C-terminal 6X-His-tag. Finally, GB1 – Ost4  protein eluted under the flow 

of gravity by using elution buffer containing 500 mM imidazole. Completion of the elution 

was monitored by measuring the A280 of each elution. The elution was considered 

complete once the OD280 of the protein reached ~ 0.050 AU. The eluted protein was 

concentrated and the buffer exchanged with 1X cleavage buffer for the removal of the GB1 
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– tag from the protein. The removal of the GB1 tag from the protein was carried out by 

using thrombin cleavage as described in Chapter 2. A total of 21.5 mg of 13C, 15N double 

labeled Ost4 protein was obtained from 1 L of cell culture. The completion of the cleavage 

was monitored by SDS-PAGE gel electrophoresis.  

 

3.2.2.2 NMR sample preparation 

The NMR samples used for NMR experiments for sidechain and backbone assignments 

consisted of 400 µL of 0.400 – 0.750  mM of uniformly 13C, 15N labeled protein in 50 mM 

phosphate buffer (pH 6.5) containing 1 mM EDTA, 0.01% NaN3, 100 mM DPC. The dried 

pellet of 2 – 4 mg pure protein was dissolved in  600 – 800 µL of NMR buffer containing 

100 mM DPC micelles. The protein pellet was suspended in the buffer followed by water 

batch sonication until all the pellet dissolved in the buffer. Finally, the solution of Ost4 

protein in NMR buffer containing 100 mM DPC micelles was centrifugated at 13200 rpm  

for 15 minutes to get rid of any undissolved impurities. Approximately 400 µL of 

supernatant liquid containing reconstituted Ost4 in DPC micelle was mixed with 10% D2O 

(used as a lock solvent) and loaded in a Shigemi tube for NMR data collection.  

 

3.2.2.3 NMR data collection 

All NMR data were acquired using either a Bruker 800 MHz (Avance II) spectrometer 

having a 5 mm triple resonance pulsed-field gradient TCI cryoprobe at the National High 

Field Magnetic Laboratory, Tallahassee, Florida, or Varian Inova 600 MHz or 900 MHz 

spectrometers equipped with cryoprobes at the Department of Pharmacology, University 
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of Colorado School of Medicine, Colorado, or a Bruker 600 MHz (Avance III) or a Varian 

Inova 900 MHz spectrometers with cryoprobes at the University of Minnesota NMR 

center. The following NMR experiments were performed: 2D [1H,15N]- HSQC, 2D [1H, 

13C]-HSQC, 3D HNCACB, 3D CBCACONH, 3D HNCA, 3D HN(CO)CA, 3D HNHAHB, 

3D HBHA(CO)NH, 3D 13C-edited (H)CCH-TOCSY, 3D (H)CCONH-TOCSY, and 3D 

15N-edited HSQC-TOCSY experiments were performed for backbone and sidechain 

assignment of Ost4. All the NMR data were acquired at 35 ºC. Additionally, 3D 15N-edited 

Trosy-HSQC-NOESY and 15N-edited HSQC-NOESY were collected for the structure 

calculation of this protein. The list of experiments with the important parameters used for 

data collection are listed in the Table 3.1. 

Table 3.1: Summary of experiments with important parameters used for the data 

collection for Ost4 protein 

Experiment Dimension Isotope 
Carrier 

Frequency 
(ppm) 

Spectral 
width 
(ppm) 

Number 
of data 
points 

Number 
of scans 

2D [1H,15N]- 
HSQC 1 1H 4.70 15.00 2048 32 

  2 15N 117.00 36.00 512   
2D [1H, 13C]-

HSQC 1 1H 4.68 16.08 2048 32 

  2 13C 41.65 70.00 256   
  1 1H 4.68 15.00 1536   

3D HNCACB 2 15N 117.81 36.23 100 32 
  3 13C 47.70 70.00 60   
  1 1H 4.68 15.00 1534   

3D 
CBCACONH 2 15N 117.81 36.23 64 32 

  3 13C 47.70 70.00 132   
  1 1H 4.68 15.00 1534   

3D HNCA 2 15N 117.81 36.23 68 32 
  3 13C 47.70 75.00 192   
  1 1H 4.68 15.00 1534   
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3D HN(CO)CA 2 15N 117.81 36.23 100 32 
  3 13C 47.70 70.00 60   
  1 1H 4.70 11.71 2048   

3D HNHAHB 2 15N 117.00 24.00 82 8 
  3 1H 4.70 5.85 256   
  1 1H 4.70 11.71 2048   

3D 
HBHA(CO)NH 2 15N 117.00 24.00 82 8 

  3 1H 4.70 5.85 128   
  1 1H 4.70 11.71 2048   

3D 13C-edited 
(H)CCH-
TOCSY 

2 13C 38.00 76.00 140 2 

  3 13C 38.00 76.00 200   
  1 1H 4.70 11.71 2048   

3D 
(H)CCONH-

TOCSY 
2 15N 117.81 36.00 62 8 

  3 13C 40.00 76.00 200   
  1 1H 4.70 13.02 2048   

3D 15N-edited 
HSQC-TOCSY  2 15N 117.49 34.00 32 128 

85 ms 3 1H 4.70 13.02 128   
  1 1H 4.70 10.06 2048   

15N – edited 
Trosy HSQC – 

NOESY  
2 15N 115.00 30.00 44 88 

120 ms 3 1H 4.70 10.06 128   
  1 1H 4.70 12.00 2048   

15N – edited 
HSQC – 
NOESY  

2 15N 117.98 36.00 64 16 

120 ms 3 1H 4.70 12.00 180   
 

 

3.2.2.4 Data processing 

The NMR data were processed by using NMR pipe (18). During the data processing, the 

residual water signal was minimized by a time domain deconvolution process. Prior to the 
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application of apodization with a cosine-bell window function and Fourier transformation, 

the time domain data in the 15N dimension of all the spectra were doubled using mirror 

image linear prediction. Similarly, the time domain 13C dimension of all of the spectra were 

doubled using mirror-image linear prediction and then apodised with cosine squared 

window functions. The linear prediction was performed only after all of the other spectral 

dimensions were Fourier transformed. The spectral width of the transformed data sets was 

decreased to include only the regions of interest. Finally, the data were converted to a 

SPARKY readable file and analyzed using the NMRFAM-SPARKY program (19). 

 

3.2.3 Results and discussion 

3.2.3.1 Backbone assignment of Ost4 protein 

The backbone resonances of the protein were assigned sequentially by using HNCAB and 

CBCA(CO)NH 3D NMR experiments. HNCACB and CBCA(CO)NH experiments 

together provided the connectivity among the Ca and Cb atoms of both (i) and (i-1) 

residues of the peptide chain (Figure 3.4 and 3.5).  By using this pair of 3D NMR 

experiments, it was possible to walk through the backbone sequence of the protein. In 

addition, a HNCA 3D experiment was used to resolve any ambiguity that arose from 

overlap in the Ca of the (i) and (i-1) residues. This experiment provided connectivity only 

between Ca atoms of both (i) and (i-1) residues (Figure 3.6). The CBCA(CO)NH 

experiment provided only Ca and Cb atoms of the (i-1) residues. This helped to reconfirm 

the assignments of the HNCACB experiment. The peak intensity of the (i-1) residue of the 

HNCACB spectrum was almost the same as that of the (i-1) residue of CBCA(CO)NH 
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spectrum (Figure 3.4 and 3.5). However, more often the peak intensity of the (i-1) residue 

of the HNCACB experiments is less than that of the (i-1) residue of CBCA(CO)NH 

 

Figure 3.4: Strip plot of HNCACB and CBCACONH for sequential backbone assignment 

for residues M1 to Q6. Only Ca of the residues was connected with black lines to show 

the connectivity. Positive signals are shown in green and negative signals are shown in red 

color. The Ca was made positive and Cb was made negative during data processing. 

 

experiment due to the difference in the transfer of magnetization in these two different 

experiments. This feature provides an added confidence for the unambiguous identification 

of Ca and Cb atoms of (i) and (i-1) residues of HNCACB. All these assignments were 

accomplished by continuously referring to the table of statistics calculated for all chemical 
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shifts from atoms of the 20 common amino acids (biological magnetic resonance data bank, 

BMRB, http://www.bmrb.wisc.edu/) which is always updated. The backbone chemical 

shifts were assigned using HNCACB and CBCA(CO)NH pair using a continuous 

connectivity strategy. Figure 3.5 demonstrates the Ca connectivity of residues Leu10 – 

Asp29 in HNCACB and CBCA(CO)NH pair.  



 99 

Figure 3.5: Strip plot of HNCACB (green) and CBCA(CO)NH (red) for sequential 

backbone assignment for residues Leu10 – Asp29.  The figure demonstrates the Ca 

connectivity of the residues present in the transmembrane domain of the protein. The 

resonances that exist at lower contour level are indicated by * in the plots. 

 

Figure 3.6: Strip plot of the HNCA 3D experiment for sequential backbone assignment 

for residues Met1 – Gln6. 
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Once the sequential assignment was completed, the [1H, 15N]-HSQC spectrum was 

assigned by using the information from the sequential assignment (Figure 3.7). Well-

resolved resonances in the 2D [1H, 15N]- HSQC of the protein indicated that the proteins 

were well-folded in 100 mM DPC micelles (Figure 3.7). The 1H, 15N, and 13C resonance 

assignments for Ost4 have been deposited into BMRB (http://www.bmrb.wisc.edu) with 

accession number 50159. The protein is composed of 45 residues including nine additional 

residues in the C-terminus. Besides the 6X-His- tag (His40-His45), both the proteins contain 

three additional residues:  R37, L38, and E39.  

 

The assignment of the backbone resonances (1H, 15N, 13Ca, and 13Cb)  of Ost4 was 

completed for all residues except 1H and 15N of T13, T20, and H26 in addition to Cb for 

I12 in the primary sequence (Met1-Asn36). In the [1H, 15N]-HSQC spectrum, the resonances 

1H and 15N of T13, T20, and H26 were absent due to the exchange of the free amide protons 

with the deuterated solvent (10 % D2O. The only proline residue at position 34 is present 

in both the cis and trans forms. Thus, two sets of resonances for residues S33 and K35 were 

observed for Ost4 and Ost4V23D in the 2D [1H, 15N]-HSQC spectra (Figure 3.7).   
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Figure 3.7: 2D [1H, 15N]-HSQC spectra of Ost4 at pH 6.5 at 35 ºC. The proteins contain 45 

amino acid residues including nine additional residues in the C-terminal 6X-His-tag. Only 

the terminal histidine (H45) of the hexahistidine tag was assigned. The residues from Met1 

- Asn36 belong to Ost4 and Ost4V23D. The residues that do not belong to the proteins are 

R37, L38, E39, and His40-His45 in the C-terminus. 
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3.2.3.2 Chemical shift index (CSI) and the secondary structure of the protein 

The secondary structures of Ost4 were calculated using backbone chemical shifts by using 

TALOS+ (13) and SSP programs (16). The deviation of the 13Ca and 13Cb chemical shift 

from their mean random coil values was evaluated and the secondary structure was 

determined by using the secondary structure propensity (SSP) program (16). As shown in 

Figure 3.8, DdCa and DdCa-DdCb were plotted against the protein sequence. Both 

programs predicted a single helix encompassing residues Asp4 - Met32 for Ost4 (Figure 

3.8). 

 

Figure 3.8: TALOS+ predicted secondary structure, DdCa-DdCb, and DdCa secondary 

chemical shifts of Ost4. The TALOS+ predicted secondary structures of each protein are 

shown on the top. Positive values in secondary chemical shifts indicate a-structure 

propensity and negative values indicate b-structure or random coil propensity. The 

secondary chemical shifts were derived by using the SSP program (16). The residues R37, 
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L38, and E39 (highlighted in yellow) along with the C-terminal 6xHis-tag tag (highlighted 

in red) do not belong to Ost4.  

3.2.3.3 Side chain assignment of the Ost4 

 

Once the backbone assignments are complete, the next and essential step is the assignment 

of the side chain resonances of the amino acid residues in the protein. For the side chain 

assignment of the resonance for which backbone amide proton and nitrogen atoms are 

already assigned, we can use various TOCSY experiments such as 15N HSQC TOCSY, 

HCCH TOCSY, HC(CO)NH TOCSY experiments. 

 

The side chain protons of the (i) residue were assigned by using the 15N HSQC TOCSY 

experiment. In these experiments, the side chain protons of the (i-1) residue could appear 

with a negative signal. HC(CO)NH TOCSY experiment provides a side chain proton of the 

(i-1) residue. The side chain carbon atoms can be found by using the (H)C(CO)NH TOCSY 

experiment (Figure 3.9). This experiment provides side-chain carbon atoms that belong to 

the (i-1) residues as shown in Figure 3.9.  
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Figure 3.9: Strips of the (H)C(CO)NH TOCSY experiment for residues I2, Q6, I12, and 

G15. This experiment provides side chain carbon atoms of preceding residues.  
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For large proteins, it is better to use the [1H, 15N] HSQC TOCSY and H(CCO)NH TOCSY 

experiments together to assign the side chain 1H resonances. However, for small proteins, 

the side chain 1H resonances of the backbone residues can be accomplished by using either 

of these two experiments. Figure 3.10 provides an example of side chain 1H resonance 

assignments for I2, E5, and V23  residues by using [1H, 15N] HSQC TOCSY. Another 

experiment to assign the side chain is HCCH TOCSY. Figure 3.11 shows strips for residues 

I2 and V28 as an example of HCCH TOCSY. This HCCH TOCSY experiment is used to 

assign the all the side chain proton from 13C resonances. Apart from the HCCH TOCSY, 

15N-edited HSQC-NOESY or 13C-edited HSQC-NOESY experiments can also be used to 

assign the degenerate protons occasionally. Additionally, [1H, 13C]-HSQC was used to 

assign and confirm the 1H and 13C side chain resonances of the protein residues. By using 

the above-mentioned experiments, it was possible to assign 91% of all the side chain 

resonances.  
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Figure 3.10: Strips of I2, E5, and V23 residues from the HCCH TOCSY experiment. This 

provides a side chain proton of the (i) residue.  



 107 

 

 Figure 3.11: Strips of I2 and V28 residues from the HCCH TOCSY experiment. This 

provides a side chain proton of the (i) residue.  
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3.3 Backbone assignment of Ost4V23D protein 

In this section, the backbone resonance assignment of yeast oligosaccharyltransferase 

subunit Ost4V23D will be reported. 

 

3.3.1 Mutagenesis 

The OST4 gene was previously cloned into a GEV 2 vector (17). The mutagenesis of the 

OST4 gene to obtain the OST4V23D gene has been previously described in Chapter 2. 

  

3.3.2 GB1- Ost4V23D expression 

Unlabeled and 15N labeled GB1-Ost4V23D mutant proteins were produced in E. coli 

BL21DE3pLysS cells (Strategene) and details have been discussed in Chapter 2. The 

production and purification of 13C, 15N double labeled Ost4V23D will be explained in this 

chapter. Expression of the Ost4V23D in the GEV2 vector was under the control of an IPTG 

(isopropyl β-D-thiogalactopyranoside) inducible promoter. Briefly, the overnight starter 

culture was diluted to an OD600 of 0.06 in fresh LB medium containing 100 µg/mL of 

ampicillin and grown at 37 oC to an OD600 of 0.4-0.6. At that point, the temperature was 

reduced to 30 oC and protein production was induced by the addition of IPTG to a final 

concentration of 1 mM. After 4 hours, the cells were harvested by incubating on ice for 30 

minutes followed by centrifugation at 9000 rpm for 20 min at 4 oC. The cell pellet was 

frozen at -20 oC until needed. For NMR studies, 15N uniformly labeled protein was 

produced by using M9 minimal media containing 15N ammonium chloride (Cambridge 

Isotope Laboratories, MA). The cell culture was grown for 8 hours after induction with 
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IPTG and the cells were harvested in the same fashion as unlabeled protein. The protein 

expression was verified by Tris-Tricine gel electrophoresis. 

 

3.3.3 13C, 15N labeled GB1- Ost4V23D purification 

The cell pellet from 13C, 15N labeled expression was freeze-thawed six times, by freezing 

it in liquid nitrogen for 5 minutes and thawing on ice. The cell pellet was suspended in lysis 

buffer (50 mM sodium phosphate buffer, pH 6.5, 200 mM sodium chloride, 0.01% sodium 

azide) and sonicated eight times with a 6-sec pulse followed by incubating 1 minute on the 

ice water bath. The cell debris was separated from cell lysate by centrifuging at 12000 rpm 

for 20 minutes at 4 ºC. The cell lysate containing GB1-Ost4V23D was stored at 4 °C 

pending further purification. 

 

Ni-NTA affinity chromatography was used for the purification of the GB1-Ost4V23D 

protein. The protein was purified as follows under gravity. The column was packed with 

Ni-NTA resin (Thermo Fisher Scientific) and washed with nano-pure water several times. 

The column was equilibrated with binding buffer (50 mM sodium phosphate buffer, pH 

6.5, 200 mM sodium chloride, 0.01% sodium azide and 10 mM imidazole). Cell lysate 

containing 10 mM imidazole was loaded to the column. The binding of the protein to the 

resin was continued overnight in a shaker. 

 

The unbound proteins in the lysate were removed by draining the column. The impurities 

were removed with wash buffer (50 mM sodium phosphate buffer, pH 6.5, 200 mM sodium 

chloride, 0.01% sodium azide and 30 mM imidazole) several times. The bound protein was 
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eluted with elution buffer (50 mM sodium phosphate buffer, pH 6.5, 200 mM sodium 

chloride, 0.01% sodium azide and 500 mM imidazole). 

 

3.3.4 Cleavage of GB1 tag from Ost4V23D protein 

The pure 13C, 15N labeled GB1-Ost4V23D protein was concentrated and buffer exchanged 

with cleavage buffer (25 mM Tris-HCl buffer, pH 7.4, 150 mM NaCl and 2.5 mM CaCl2). 

The cleavage of GB1-Ost4V23D was carried out as reported previously except for minor 

changes in the buffer conditions. Completion of the cleavage reaction was monitored by 

SDS PAGE after the completion of the reaction. Soluble GB1 was removed from insoluble 

Ost4V23D protein by centrifugation of the reaction mixture at 13200 rpm at room 

temperature. The protein pellet was washed with nano-pure water to remove any 

contaminating GB1 protein. A total of 9.2 mg of pure 13C, 15N labeled Ost4V23D protein 

was obtained from 500 mL of cell culture. Pure Ost4V23D protein containing the 

hexahistidine tag was stored for later use.  

 

3.3.5 NMR spectroscopy 

For the NMR data collection, the NMR sample of Ost4V23D protein was prepared by 

dissolving 2 – 4 mg of dry pellet into 600 – 800 µL of NMR buffer (50 mM phosphate 

buffer, pH 6.5 containing 1 mM EDTA, 0.01% NaN3) containing 100 mM deuterated DPC 

micelles. This yielded an NMR sample having concentration of 400 – 750 µM. 

Approximately 400 µL of NMR sample was transferred into a Shigemi tube for the NMR 

data collection. All NMR data used for backbone and side chain assignments of Ost4V23D 
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protein were collected using a Bruker 800 MHz (Avance II) spectrometer equipped with a 

5 mm triple resonance pulsed-field gradient TCI cryoprobe at the National High Field 

Magnetic Laboratory, Tallahassee, Florida. Some of the data such as  3D H(CCO)NH-

TOCSY and 13C-edited HCCH-TOCSY were acquired using either a Varian Inova 600 

MHz or 900 MHz spectrometer equipped with cold probes at the Department of 

Pharmacology, University of Colorado School of Medicine, Colorado, or a Bruker 

600MHz (Avance III). Similar to the NMR experiments acquired for Ost4 protein, 2D 

[1H,15N]- HSQC, 2D [1H, 13C]-HSQC, 3D HNCACB, 3D CBCACONH, 3D HNCA, 3D 

13C-edited HCCH-TOCSY, 3D H(CCO)NH-TOCSY, and 3D 15N-edited HSQC-TOCSY 

experiments were performed for backbone and side chain assignment of Ost4V23D at 35 

ºC. Additionally, 3D 15N-edited HSQC-NOESY experiments were acquired for the 

structure calculation of this protein. The list of experiments with the important parameters 

are listed in Table 3.2. 

 

Table 3.2: Summary of experiments with important parameters used for the data 

collection for Ost4V23D protein 

Experiment Dimensio
n Isotope 

Carrier 
Frequenc
y (ppm) 

Spectral 
width 
(ppm) 

Number 
of data 
points 

Number 
of scans 

2D [1H,15N]- 
HSQC 1 1H 4.70 15.00 2048 32 

  2 15N 117.00 36.00 512   
2D [1H, 13C]-

HSQC 1 1H 4.68 16.08 1314 144 

  2 13C 75.32 48.35 512   
  1 1H 4.68 12.00 1024   

3D 
HNCACB 2 15N 117.81 36.20 64 64 
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  3 13C 47.70 70.00 160   
  1 1H 4.68 15.00 1534   

3D 
CBCACON

H 
2 15N 117.81 36.23 64 88 

  3 13C 47.70 70.00 132   
  1 1H 4.68 15.00 1536   

3D HNCA 2 15N 117.81 36.23 64 32 
  3 13C 51.32 75.00 80   
  1 1H 4.68 15.00 1534   

3D 
HN(CO)CA 2 15N 117.81 36.23 100 32 

  3 13C 47.70 70.00 60   
  1 1H 4.68 13.62 1786   

3D 13C-
edited 

HCCH-
TOCSY 

2 1H 4.68 7.34 4 16 

  3 13C 35.02 80.02 1217   
  1 1H 4.68 15.61 2048   

3D 
H(CCO)NH-

TOCSY 
2 15N 117.02 25.23 2 24 

  3 1H 4.68 11.56 2448   
  1 1H 4.70 13.02 2048   

3D 15N-
edited 

HSQC-
TOCSY  

2 15N 117.49 34.00 32 128 

85 ms 3 1H 4.70 13.02 128   
  1 1H 4.68 15.61 2048   

15N – edited  
HSQC – 
NOESY  

2 15N 117.02 25.23 1400 24 

90 ms 3 1H 4.68 11.48 4   
  1 1H 4.68 15.61 2048   
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15N – edited 
HSQC – 
NOESY  

2 15N 117.03 25.23 1678 24 

120 ms 3 1H 4.68 11.48 4   
 

 

3.3.6 Data processing 

The data processing was performed by using the same procedures as described for Ost4 

protein. 

 

3.3.7 Results and discussions 

3.3.7.1 Backbone assignment of Ost4V23D protein 

Similar to that of Ost4, the backbone resonances of the protein were assigned sequentially 

by using HNCAB and CBCA(CO)NH 3D NMR experiments. The HNCACB 3D 

experiment provided the connectivity among the Ca and Cb atoms of both the (i) and (i-1) 

residues of the peptide chain (Figure 3.12).  By using this pair of 3D NMR experiments, it 

was possible to walk through the backbone sequence of the protein. In addition, a 3D 

HNCA experiment was used to resolve any ambiguity that arises from overlap in the Ca 

of the (i) and (i-1) residues. This experiment provides connectivity only between Ca atoms 

of both the (i) and (i-1) residues. The CBCA(CO)NH experiment provides only Ca and Cb 

atoms of the (i-1) residues. This helped to reconfirm the assignments from the HNCACB 

experiment. The peak intensity of the (i-1) residue of the HNCACB spectrum is almost the 

same as that of the (i-1) residue of the CBCA(CO)NH spectrum. 
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Figure 3.12: Strip plot of the HNCACB for sequential backbone assignment for residues 

Thr20 to Ser30. The Ca (bottom) and Cb (top) of the residues are connected with black 

lines to show the connectivity. Positive signals are shown in green and negative signals 
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are shown in red. The Ca was made positive and Cb was made negative during data 

processing. 

All these assignments were accomplished by continuously referring to the table of statistics 

calculated for all chemical shifts of atoms from the 20 common amino acids (biological 

magnetic resonance data bank, BMRB, http://www.bmrb.wisc.edu/) which is always 

updated.  

Once the sequential assignment was completed, the [1H, 15N]-HSQC spectrum was 

assigned easily (Figure 3.13). Well-resolved resonances in 2D [1H, 15N]- HSQC of the 

protein indicate that the proteins are well-folded in 100 mM DPC micelles (Figure 3.13). 

The 1H, 15N and 13C resonance assignments for Ost4 has been deposited into BMRB 

(http://www.bmrb.wisc.edu) with accession number 50160. The protein is composed of 45 

residues including nine additional residues in the C-terminus. Besides the 6xHis- tag (H40-

H45), both the proteins contain three additional residues:  R37, L38, and E39.  
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Figure 3.13: 2 D [1H, 15N]-HSQC spectra of Ost4V23D at pH 6.5 at 308 K. The proteins 

contain 45 amino acid residues including nine additional residues in the C-terminal 6X-

His-tag. Only the terminal histidine (H45) of the hexahistidine tag was assigned. The 

residues from Met1  - Asn36 belong to Ost4 and Ost4V23D. The residues that do not belong 

to the proteins are R37, L38, E39, and His40-His45 in the C-terminus. 

In Ost4V23D, backbone resonance (1H, 15N, 13Ca, and Cb) assignments were completed for 

all residues except 1H, 15N, 13Ca of T13 in the primary sequence (Met1-Asn36). The only 

proline residue at position 34 is present in its cis and trans forms. Thus, two sets of 
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resonances for residues S33 and K35 were observed for Ost4V23D in the 2D [1H, 15N]-

HSQC spectra (Figure 3.13). 

3.3.7.2 Secondary structure determination of OstV23D protein 

The secondary structures of Ost4V23D were calculated using backbone chemical shifts by 

using TALOS+ (13) and SSP programs (16). The deviation of the 13Ca and 13Cb chemical 

shifts from their mean random coil values was evaluated and the secondary structure was 

determined by using the secondary structure propensity (SSP) program (16). As shown in 

Figure 3.13, DdCa and DdCa-DdCb were plotted against the protein sequence. The 

secondary chemical shift values were derived by using the SSP program. Both programs 

predict a single helix encompassing residues Asp4-Met32 for Ost4V23D (Figure 3.14). 

 

 

Figure 3.14: TALOS+ predicted secondary structure, DdCa-DdCb, and DdCa secondary 

chemical shifts of Ost4. The TALOS+ predicted secondary structure of the protein are 
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shown on the top. Positive values in secondary chemical shifts indicate a-structure 

propensity and negative values indicate b-structure or random coil propensity. The 

secondary chemical shifts were derived by using the SSP program (16). The residues R37, 

L38, and E39 (highlighted in yellow) along with the C-terminal 6X-His-tag (highlighted in 

red) do not belong to Ost4V23D. The mutated residue, D23, is highlighted in a purple 

background. The figure was adapted from reference (20). 

3.3.7.3 Side chain assignment of the Ost4V23D 

Along with the backbone chemical shift, we have reported the side chain chemical shift 

assignment of Ost4V23D protein (20). The side chain chemical shift assignment of proteins 

is a bit easier and more straight-forward if the backbone chemical shifts are successfully 

assigned for a protein.  Various TOCSY experiments such as 15N HSQC TOCSY, HCCH 

TOCSY, HC(CO)NH experiments are used to assign the side chain chemical shifts. 

The side chain protons of the (i) residue were assigned by using the 15N HSQC TOCSY 

experiment. In these experiments, the side chain protons of the (i-1) residue could appear 

with the negative signal. HC(CO)NH TOCSY experiment provides a side chain proton of 

the (i-1) residue. The strips of residues Ile2-Leu10 are providing resonances of their 

preceding residues are shown in Figure 3.15.  
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Figure 3.15: Strips of residues Ile2-Leu10 of HC(CO)NH TOCSY spectrum. This spectrum 

provides the 1H side chain resonances of the (i-1) residues. The side chain resonances that 

did not appear in the spectrum are indicated by *.  

 

In the spectrum of HC(CO)NH TOCSY, some of the resonances may not appear (indicated 

by * in Figure 3.15). The missing resonances were assigned successfully by using the 

HCCH TOCSY experiment (Figure 3.16). 
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Figure 3.16: Strips of residues I2, D4, Q6, and L7 from 3D HCCH TOCSY experiment. 

This experiment provides the side chain 1H resonances of the (i) residue.  

3.3.7.4 Comparison of backbone resonances and secondary structures of Ost4 and 
Ost4V23D 

The backbone chemical shifts of the Ost4 protein, derived from various 2D and 3D data 

sets, changed significantly upon V23D mutation in the protein (Figure 3.17 a, b, and c). 

This chemical shift deviation was throughout the protein sequence with large deviations 

at the proximity of V23 residue. This indicates that the two proteins, the wild type and the 

V23D mutant, either have a structural difference or are in a different environmental 

setting. 
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Figure 3.17: Comparison of solution NMR (a) Ha, (b) Ca, and (c) Cb chemical shift 

differences upon mutation of the V23 residue to D in Ost4 protein.  

 

b 

c 
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Figure 3.18 shows the overlay of [1H, 15N]-HSQC spectra of Ost4p and Ost4pV23D with 

resonance assignments. Well-resolved resonances in the [1H, 15N]-HSQC of both the 

proteins indicate that the proteins are well-folded in 100 mM DPC micelles 

Figure 3.18: Overlaid 2D [1H, 15N] -HSQC spectra of Ost4p (green) with Ost4V23D (red) 

at pH 6.5 at 35 ºC. The protein contains 45 amino acid residues including six histidine 

residues. Only the terminal histidine (H45) of the 6X-His-tag was assigned. The residues 

from Met1-Asn36 belong to the actual protein. The residues that do not belong to the protein, 

R37, L38, E39, and six histidine residues, are part of the C-terminal tag. These residues are 

indicated by * in the spectrum.  An expanded view of the central region of the HSQC 

spectrum is shown on the lower right corner of the spectrum. 
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The backbone and side chain resonance assignments were completed for 95% and 91% 

respectively for Ost4 as well as 98 % and 87.6% for Ost4V23D. The lone proline residue 

at position 34 is present in the cis and trans forms for both of the proteins. Thus, two sets 

of resonances for residues S33 and K35 were observed for Ost4 and Ost4V23D in the 2D 

[1H, 15N]-HSQC spectra.  

 

The secondary structures of Ost4 and Ost4V23D were determined independently using 

chemical shifts in TALOS+ (13) and SSP (16). As shown in Figures 3.8 and 3.14, both 

programs predict a single helix encompassing residues Asp4-Met32 for Ost4 and 

Ost4V23D.  The predictions from both the programs were supported by Ha secondary 

chemical shifts (DdHa) of both the proteins (Figure 4.19). In addition, single residue-

specific secondary structure propensity (SSP) scores were calculated for both the proteins 

separately by using their 13Ca and 13Cb chemical shifts (Figures 3.8 and 3.14). The SSP 

scores shown in Figure 3.20 illustrate the difference in secondary structure propensities 

between Ost4 and Ost4V23D proteins more prominently than the DdCa and  DdCa-

DdCb plots shown in Figures 3.7 and 3.14. On the basis of the SSP scores, the overall 

propensities for a- structure of Ost4 and Ost4V23D are ~ 47% and ~ 60% respectively. 

This observation is consistent with what we reported previously (30% and 62% helicity for 

Ost4 and Ost4V23D respectively) using circular dichroism (21). Since Ost4 and Ost4V23D 

have significantly different a-structure propensity, their 2D [1H, 15N]-HSQC spectra are 

distinct (Figure 3.18).  
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Figure 3.19: DdHa secondary chemical shift of Ost4 (top) and Ost4V23D (bottom). The 

TALOS+ predicted secondary structures of each protein are shown on the top. Negative 

values in secondary chemical shifts indicate a-structure propensity and positive values 

indicate b-structure or random coil propensity. The secondary chemical shifts were 

derived by using the SSP program (16). Residues R37, L38, and E39 (highlighted in green) 

along with the C-terminal 6xHis-tag tag (highlighted in yellow) do not belong to 

Ost4V23D. The mutated residue, D23, is highlighted in a purple background. 

 

The distinct 2D [1H, 15N]-HSQC spectra of Ost4 and Ost4V23D along with significant 

differences in their helical structure suggests that mutation of V23 to D changes the 

environment around the protein, thus affecting the stability and function of the OST 
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enzyme.  Structure-function studies of OST enzyme complex are critical in elucidating the 

mechanism of N-linked glycosylation. 

 

 

Figure 3.20: Secondary structure propensities (SSP) for wildtype Ost4 (green line) and 

mutant Ost4V23D (red line). The SSP for each protein was calculated using the 13Ca and 

13Cb chemical shifts with an SSP limit of 1.2. Ost4V23D mutant protein contains a higher 

overall a-structural propensity than that of wildtype Ost4.  

 

3.4 Conclusion 

Backbone and side chain resonances of Ost4 and Ost4V23D protein were assigned 

successfully by using various 2D and 3D solution NMR data sets. A significant deviation 

of backbone chemical shifts, specifically near the V23 residue of Ost4, upon V23D 

mutation indicated that the two proteins may either have a structural or an environmental 

difference. The shifting of amide (NH) resonances in HSQC spectra upon V23D mutation 
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is another indication of changes in the chemical environment. Secondary structures of both 

the proteins were assessed by using assigned backbone chemical shifts. Although the 

secondary structure of both the proteins was similar, their SSP was significantly different 

suggesting the difference in their a-helical propensity. Therefore, the V23D mutation 

might affect the local environment of the protein thereby affecting the OST activity and 

function. The complete backbone and side chain assignment opened the door for NOE 

assignment and 3D structure calculation to get insight into the structure and function of 

Ost4 in the OST enzyme. 
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CHAPTER 4 

SOLUTION NMR AND MOLECULAR DYNAMICS STUDIES OF YEAST 

OLIGOSACCHARYLTRANSFERASE SUBUNITS Ost4 AND ITS CRITICAL 

MUTANT, Ost4V23D 

4.1 Introduction 

 
The NMR structure of protease inhibitor IIA was the first structure determined by using 

solution NMR structure and was reported in 1985 (1). Since then the recent advancements 

in the NMR field have made substantial improvements to provide atomic resolution 

structures of macromolecules including protein and protein complexes. In addition to 

providing structural information, NMR is able to provide information about the molecular 

motions, or dynamics, which could influence the protein function.  Solution NMR is the 

only technique that allows 3D structure determination of biomolecules in solution, under 

physiological condition and without affecting the native protein conformation.  Although 

the environment of the protein in solution NMR may not be identical to its native in vivo 

environment, but the sample condition for NMR can often be made in near-to-native 

environment conditions (2-5). 

The solution NMR structure of a small/macromolecule is calculated by using distance 

restraints derived from proton-proton cross-relaxation called the nuclear Overhauser effect 

(or NOE). NOE distance restraints are generated from the assigned cross-peaks in a nuclear 

Overhauser effect (NOE) spectrum. The overall outline of the steps for 3D structure
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 determination of a membrane protein by using solution NMR is represented by the 

flowchart provided below (Figure 4.1). Generally, the NOESY cross-peaks are assigned on 

the basis of backbone and side-chain chemical  shift assignments. The backbone and side-

chain assignments have been previously discussed in Chapter 3.  

Figure 4.1: A schematic representation of 3D solution NMR structure determination. 
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Proteins are nanomolecular machines having various types of local and global motions. 

Knowledge about only the three-dimensional structure of the protein is not sufficient to 

understand various protein motions and their roles in protein folding and stability. NMR is 

the best analytical tool to study molecules and macromolecules such as proteins in their 

native-like environment. Additionally, the applied magnetic field in NMR is too weak to 

affect the molecular structure and motions. NMR is the most suited technique to study the 

motions of proteins (6). The measurement of 15N relaxation rates is very important for 

gaining protein dynamic information since the nuclei relaxation is caused predominantly 

by the dipolar interaction with the connected protons. Spin – lattice relaxation time T1, 

spin-spin relaxation time T2, and 1H – 15N heteronuclear NOEs can provide information 

about protein dynamic events occurring over a wide range of NMR time scales. 

 

In this chapter, the NOE assignments, 3D structure calculation, backbone dynamics, and 

molecular dynamics studies of Ost4 and Ost4V23D proteins in DPC micelles, a membrane 

mimicking system will be discussed. 

 

4.2 Materials and methods 

4.2.1 GB1 – Ost4 and GB1 – Ost4V23D protein expression and purification 

GB1 – Ost4 and GB1 – Ost4V23D proteins were expressed and purified by following the 

procedure as described previously (7, 8) and have been explained in Chapter 2.  

4.2.2 NMR data acquisition 

The NMR data for this work were recorded using either a Bruker Avance 800 MHz 

spectrometer with a triple resonance 1H/13C/15N TCI cryoprobe equipped with z-axis 
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pulsed-field gradients at the National High Field Magnetic Laboratory, Tallahassee, 

Florida, a Bruker Neo 700 MHz or 800 MHz spectrometers at Bruker BioSpin Corporation, 

Switzerland, or Varian Inova 600 MHz or 900 MHz spectrometer equipped with cold 

probes at the Department of Pharmacology, University of Colorado School of Medicine, 

Colorado. Some of the NMR data were collected on a Bruker Avance 600 MHz or a Varian 

Inova 900 MHz spectrometers with cryoprobes at the University of Minnesota NMR 

center. The samples between 300 µM and 1 mM of uniformly 15N/13C – labeled Ost4p or 

Ost4V23D in 50 mM phosphate buffer at pH 6.5 containing 1 mM EDTA, 0.01% NaN3, 

100 mM DPC and 5% D2O were prepared for the backbone and side chain chemical shift 

assignment and structure determination. The backbone and side-chain assignments of Ost4 

and Ost4V23D were performed using the NMR data sets as mentioned in Chapter 3. The 

raw data size for 2D 1H, 15N – HSQC, and  1H, 13C – HSQC was 2048 x 256 in the 1H and 

15N/13C dimensions. NOE distance restraints were collected from 3D 15N – edited HSQC 

– NOESY (9, 10) with mixing times of 90 ms and 120 ms. The raw data size for 15N – 

edited HSQC – NOESY was 2048 x 64 x 180 in 1H (f3), 15N (f2), and 1H (f1) dimensions. 

 

4.2.3 NMR data processing 

All data were processed using either Topspin or NmrPipe (11) by following the procedure 

described in Chapter 2. The data were analyzed using NMRFAM – SPARKY (12) or 

NMRviewJ (13). 
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4.2.4 Resonance assignment of Ost4 and Ost4V23D 

The backbone and side chain resonance assignment of Ost4 and Ost4V23D have been 

reported and discussed in Chapter 3 (14). The NOE cross-peaks in 3D 15N-edited NOESY 

spectra were assigned successfully by making use of previously assigned backbone and 

side chain chemical shift values. A total of 217 and 254 NOE cross-peaks for Ost4 and 

Ost4V23D, respectively, were manually assigned by using NMRFAM – SPARKY (12).  

 

4.2.5 3D Structure calculation of Ost4 and Ost4V23D 

To calculate the 3D structure of Ost4 and Ost4V23D proteins, the CYANA 3.98beta 

program (15) was used. The initial step of the 3D structure calculation of proteins from 

NMR data is to generate the input files. The required input file for structure calculation is 

the primary sequence of the protein (*.seq), chemical shift list file (*.prot), dihedral angle 

restraint file (*.aco), and distance restraint file (*.peaks). The sequence file and chemical 

shift list file were used as input to CYANA to generate *.tab file to be used by TALOS+ 

to produce dihedral restraints file (*.aco) (Figure 4.2).  
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 Figure 4.2: The steps of procuring dihedral angle restraints file by using CYANA 3.98beta 

and TALOS+ programs. The input files are listed on the left panel and the output files are 

listed on the right panel. * indicates possible preceding or following letters.  

 

The distance restraint files (*.peaks) were generated from assigned NOE cross-peaks in 

XEASY format. The assignments were confirmed and/or corrected with the NOEASSIGN 

module of CYANA 3.98beta (15) using the standard protocol of eight iterative cycles of 

NOE assignment and structure calculation (Figure 4.3). During the iterative assignment 

process, 28 and 59 NOE peaks were removed due to overlap, ambiguity, or redundancy 

yielding a total of 182 and 195 experimental upper distance restraints, for Ost4 and 

Ost4V23D, respectively. The experimental upper distance limits were derived from the 

intensities of the assigned NOE cross-peaks using CYANA 3.98beta. A total of 68 dihedral 
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angle restraints for Ost4 and 62 dihedral angle restraints for Ost4V23D were derived from 

the assigned chemical shifts and primary sequences by using TALOS+ (16). In addition, 

27 hydrogen bond restraints (two restrains per bond) for Ost4p and Ost4V23D were 

separately generated from the CSI by TALOS+.  The prepared files were used as input in 

the program CYANA 3.98beta and eight iterative cycles of NOE assignment and structure 

calculation were run using the NOEASSIGN module. After each CYANA run, the 

generated output file was checked for further improvement of structure in the next run. The 

list of violations in *.ovw files was checked and the violations were fixed either by 

changing the assignment of by increasing the distance between the resonances (Figure 4.3). 

The violations along with energy functions (indicated by target function) were checked 

followed by the removal of suspicious upper limits of distance constraints. This process 

provided lesser violations, lower energy functions of the calculated structures. After several 

runs of the iterative process by checking and correcting the assignments, a final *.upl file 

containing correct distance restraints was used which generated *.pdb files of the structures 

having no violations and lowest energy function (Figure 4.3). 

 

A total of 100 random structures were calculated and 20 structures with the lowest target 

functions were selected for solvent refinement using CNS (17). The 20 structures having 

the lowest energy and the best Ramachandran statistics were assessed by PROCHECK (18) 

and selected to represent the 3D structures of Ost4p and Ost4V23D in DPC micelles. The 

statistics of NMR structures of Ost4p and Ost4V23D proteins are shown in Table 4.1. The 

structures were visualized with Chimera (19), VMD (20), and Pymol (21). Figures were 

prepared either with Molmol (22) or Chimera. 
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Table 4.1: Structural statistics of the solution NMR structure of Ost4 and Ost4V23D. The 

table was adapted from reference (23). 

Distance restraints  Ost4 Ost4V23D 

Unambiguous                                        189 195 

    Intra residue, |i-j|=0                                            54    46 

    Sequential, |i-j|<=1                                               73   74 

    Medium range, 1<|i-j|<5                                        62 75 

    Long range, |i-j|>=5                                                                0 0 

    Hydrogen bond restraints                      27      27 

    Dihedral angle restraints                            68 62 

Interresidue distance restraints violations   

   Violations    0   0 

RMSD to average structures, Å   

   Backbone (residues 4-32) 0.24 0.20 

   Heavy atoms (residues 4-32) 0.89 0.90 

Ramachandran plot outliers, %   

   Residues in most favored regions  97.1  91.4 

   Residues in additionally allowed regions 2.9   8.6  

   Residues in generously allowed regions  0  0 

   Residues in disallowed regions 0 0 
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Figure 4.3: Iterative cycle for the procurement of an enriched upl file for the final step of 

structure calculation (a), and input and output files at the end of the structure calculation 

process (b). * denotes  possible preceding or following letters. 
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4.2.6 Relaxation experiments 

15N T1, T2, and heteronuclear NOEs spectra were recorded using a Bruker 800 MHz 

(Avance Neo) spectrometer equipped with CP-TCI 1H/13C/15N 5 mm inverse triple 

resonance high-resolution cryoprobe at Department of Chemistry, Oklahoma State 

University, Stillwater, OK. 15N T1, T2, and heteronuclear NOE measurement data were 

recorded using pseudo-three-dimensional pulse programs provided by Dr Youlin Xia, 

Director of Structural Biology Department at St. Jude Children’s Research Hospital, 

Memphis, TN. In all the relaxation measurement experiments, 128 x 2048 real data 

matrices in the t1 x t2 time domain were employed with spectral widths of 2919.86 and 

12500 Hz, respectively.  15N T1 and T2 measurement experiments were recorded with 8 

scans and NOE measurement experiments were recorded with 32 scans per t1 increment. 

T1 values were acquired using eight relaxation delays of 20, 100, 200, 300, 400, 500, 600, 

and 800 ms. T2 values were recorded using eight relaxation delays of 16.9, 33.8, 50.7, 67.6, 

101.4, 135.2, 169, and 202.8 ms. Steady-state 1H – 15N NOE values were determined from 

the ratio of peak height in a pair (I/I0) of NMR spectra recorded in the presence (NOE) and 

absence (NONOE) of a proton saturation period of 5 s. All the data were processed using 

the NmrPipe software package (11). The relaxation data analysis was performed using 

NMRFAM Sparky (12). Overall correlation time (tc) for Ost4 and Ost4V23D proteins were 

calculated from T1, and T2 data using the Tensor2 software package (24).  

 

4.2.7 Molecular dynamics simulation 

4.2.7.1 Molecular dynamics simulation of Ost4 and Ost4V23D in DPC micelles 
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All molecular dynamics (MD) simulations were performed using the GROMACS 

simulation package version 5.1.5 (25). Initial protein micelle systems for Ost4 and 

Ost4V23D were derived by using the web version membrane builder module of the 

CHARMM-GUI (26, 27). The protein-micelles systems were built using 65 DPC detergent 

molecules. The systems were solvated with the 6729 molecules of the TIP3P water model 

and neutralized by adding Na+ ions yielding a cubic box system of dimension 9.484 Å x 

9.484 Å x 9.484 Å. All bonds were constrained using the LINCS algorithm (28). An 

integration time step of 2 fs was used during the MD simulation. The temperature was kept 

constant at 35 ºC using Nose-Hoover coupling (29) with a 1 ps coupling time constant. The 

pressure was maintained constant at 1 bar using Parrinello-Rahman coupling (30, 31) with 

a 5 ps coupling time constant. A cutoff of 1.2 nm was applied for van der Waals 

interactions. Particle mesh Ewald (PME) (32) was applied to treat the electrostatic 

interactions. The systems were subjected to <1000 steps of steepest descent energy 

minimization using the CHARMM36 (33) force field. For protein-micelles systems, 1 ns 

of NPT (constant number of particles, pressure, and temperature) equilibration was 

performed after NVT (constant number of particles, volume, and temperature) 

equilibration. Finally, MD simulations of 150 ns for protein-micelle systems were carried 

out under similar conditions of NPT equilibration. The last 40 ns were used for analyses. 

Analyses were performed using GROMACS inbuilt tools. The number of DPC-tail to 

protein contacts and backbone root mean squared deviation (RMSD) were assessed 

using GROMACS inbuilt tools (distance and rms). Some of the computing for this 

project was performed at the OSU High-Performance Computing Center at Oklahoma 

State University.  
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4.2.7.2 Molecular dynamics simulation of Ost4 and Ost4V23D in bilayers  

To understand the impact of mutations in a cell, we carried out molecular dynamic 

simulation of both Ost4 and Ost4V23D in the OST complex in a bilayer.  The simulation 

was carried out using the OSU High-Performance Computing Center at Oklahoma State 

University by Dr. Martin McCullagh (23). 

 

Membrane-bound systems of the WT and Ost4V23D system consisted of Ost4, Stt3, Ost1, 

Ost3, and Ost5.  The systems were generated from the initial cryoEM structure (34) using 

the CHARMM GUI. The bilayer of dipalmitoylphosphatidylcholine (DPPC) lipids 

containing 307 lipid molecules in the upper leaflet and 320 lipid molecules in the lower 

leaflet was used. TIP3P water with a buffer size of 2.0 nm was added along with 0.1 M 

NaCl yielding a box of initial dimension 15 x 15 x 12.4 nm. The systems were simulated 

using the GPU accelerated Amber 18 software (35). The simulations were carried out in 

the NPT ensemble with anisotropic pressure coupling using the constant surface area.  

Combined, this system was 240K atoms and the simulation of each system exceeded 600 

ns.   

Solvent accessible surface area (SASA) calculations were performed using the VMD 

tool. The fraction of hydrophobic and hydrophilic surface areas in the peptide that is 

exposed to water was calculated. The selection of hydrophobic residues consists of 

residues in the transmembrane domain (residues Leu10-Val28). Hydrophilic residues such 

as Thr13, Thr20, Asp23, His26 in the transmembrane range were chosen for the hydrophilic 

SASA calculation. 
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4.3 Results 

 

4.3.1 Chemical shift perturbation upon mutation 

 
By using far-UV circular dichroism (CD) and [1H, 15N] HSQC spectroscopy, we have 

previously reported that Ost4 and Ost4V23D in DPC micelles are well folded and it is 

feasible to determine the 3D structures of these proteins in DPC micelles (7). The 

recombinant Ost4 and Ost4V23D proteins were expressed, purified and reconstituted in 

100 mM deuterated DPC micelles for NMR data collection. Although Ost4 is a very small 

(~5 kDa) membrane protein, it behaves like a ~21 kDa protein in DPC micelles. Therefore, 

3D NMR experiments were used for complete resonance assignments. We have previously 

reported the backbone and side chain resonance assignments of Ost4 and Ost4V23D 

proteins (36). The 1H, 13C, and 15N resonances in Ost4V23D protein were reassigned by 

using various 3D NMR data sets. The reassignment was essential because nearly all 

backbone resonances in Ost4V23D shifted either slightly or significantly as shown by the 

chemical shift perturbation in Figure 4.4a and Figure 4.4b.  In Ost4V23D, the amide 

backbone resonance of L21, I22, D23, Y25 and A27 residues shifted dramatically (Figure 

4.4a and Figure 4.4b). The changes in chemical shifts were quantified as 

Ö0.5[dH2+(0.3dN2)], where dH and dN are observed chemical shift changes for 1H and 15N 

shifts in ppm, respectively. The change in chemical shifts of these residues was observed 

to be > 0.5 ppm (Figure 4.4b).  
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Figure 4.4: (a) Overlay of 2D [1H, 15N] HSQC of Ost4 (purple) with Ost4V23D (black). 

The C-terminal tag residues that do not belong to Ost4 or Ost4V23D protein are indicated 

by * in the spectrum. (b) The plot of the chemical shift perturbations (CSP) upon mutation 

of valine at position 23 to aspartate. The resonances close to the mutation site for residues 

L21, I22, D23, and A27 are perturbed significantly showing CSP of  >0.5 ppm. Residue 

number Met1-Asn36 belongs to Ost4 and Ost4V23D. The mutated residue D23 is 

highlighted red in yellow background. The C-terminal tag residues Arg37-His45 

(highlighted white in blue background) do not belong to Ost4 or Ost4V23D. 
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4.3.2 NOE assignment and structure calculation of Ost4 and Ost4V23D proteins 

The final and the most important stage of the resonance assignment is the NOE assignment 

because the NOE constraints are utilized to generate inter proton distance restraints that are 

required for structure determination.  

The secondary structures of Ost4 and Ost4V23D determined by using the TALOS+ and 

SSP program indicated that both the proteins have a single a-helix encompassing residues 

Asp4-Met32 (36). Once the backbone and side chain resonances are assigned, the very next 

step before structure calculation is the NOE cross-peak assignment. The NOE peaks 

provide the necessary distance constraints required for the structure determination. For 

both the proteins, NOE cross-peaks in 15N-edited HSQC spectra were assigned for the 

generation of distance constraints. Figure 4.5a and 4.5b demonstrate strips of NOE 

assignments for Ost4V23D protein residues A11, I12, F14, G15, I16, V17, and L21 to H26. 

Although the NOE assignment appears to be straight-forward to assign the proton cross-

peaks in the NOE spectra, the assignment is quite challenging because of either overlap 

between peaks or absence of expected peaks. During the process of NOE assignments, dNN 

connectivity were used to resolve any ambiguity in the assignment (Figure 4.6). 

Additionally, extra care needs to be taken during NOE assignment to avoid picking up 

noise and not omitting useful NOE peaks. 



 144 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 



 145 

 

Figure 4.5: Strips of NOE assignment of Ost4V23D protein (a) for residues Ala11, Ile12, 

Phe14, Gly15, Ile16, and Val17and (b) for residues Leu21-His26. 

b 
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Figure 4.6: Strips showing sequential connectivity dNN (i,i+1) and dNN (i,i-1) in the Ost4 

protein. The dNN (i,i+1) and dNN (i,i-1) for residues Leu21-His26 can be observed in Figure 

4.5.  

 

A total of 217 peaks for Ost4 and 254 peaks for Ost4V23D were assigned manually using 

NMRFAM SPARKY. The assigned and unassigned NOEs were utilized by the NOE assign 

module of CYANA to assign the NOEs, correct the incorrectly assigned NOEs, and generate 

the upper distance limit necessary for structure calculation. Finally, 189 and 195 distance 

restraints were generated and used for structure determination of Ost4 and Ost4V23D, 

respectively. A summary of the NOE connectivity of Ost4 and Ost4V23D proteins, along 

with their secondary structural elements, is illustrated in Figure 4.7. Identification of the 

secondary structural elements was based on the secondary chemical shift Dd13Ca, Dd13Ca-

Dd13Cb, and TALOS+ (14). 
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Figure 4.7: Predicted secondary structure, sequence, and summary of sequential NOE 

contacts of Ost4 (a) and Ost4V23D (b). The secondary structural elements were based on 

the secondary chemical shift Dd13Ca, Dd13Ca-Dd13Cb, and TALOS+ (14). The residue 

in yellow highlighted in purple is the mutated residue in Ost4V23D. The residues Arg37-

Glu39 (highlighted in cyan) and C-terminal 6X-His-tag (highlighted in red) do not belong 

to Ost4 or Ost4V23D.  
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For structure calculation, dihedral angles were derived from backbone chemical shifts 

using the TALOS+ program incorporated in NmrPipe. The energetically allowed regions 

for backbone dihedral angles y against F the Ost4 (Figure 4.8) and Ost4V23D (Figure 

4.9) residues were  

 

Figure 4.8: Ramachandran plots of Ost4. This plot validates the energetically allowed 

regions of dihedral angles of protein residues in a protein.  
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Figure 4.9: Ramachandran plot of Ost4V23D. This plot validates the energetically 

allowed regions of dihedral angles of protein residues in a protein.  
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visualized and validated by using the Ramachandran plot. The prediction results from the 

TALOS+ (Figure 4.2) was opened by invoking the Ramachandran plot visualization script 

rama+ incorporated into an interactive display and refinement of predictions software 

RAMA+. The display window of  the Ramachandran plot, random coil index (RCI) and 

secondary structure, residue-wise dihedral angle result, and secondary shit distribution was 

opened by using rama+ command (Figure 4.10). The residue-wise dihedral angles were 

visualized and validated by selecting the residues using residue window (Figure 4.10b). 

The residues containing good, ambiguous, dynamic, and bad dihedral angles were 

classified by using this window (Figure 4.10a to 4.10e). The dihedral angles that were in 

the allowed region of the plot were selected for the 3D structure calculation. All the 

distance restraints used for structure calculation were derived from a combination of 

different NOE experiments such as 3D 15N – edited HSQC – NOESY with 90 ms mixing 

time and 3D 15N – edited HSQC – NOESY with 120 ms mixing time. 

 

All these NOE restraints along with the dihedral angle restraints enabled us to calculate the 

3D structures of Ost4 and Ost4V23D. The ensemble of the 20 lowest energy structures of 

Ost4 (Figure 4.11) and Ost4V23D (Figure 4.12) were very tight with a backbone RMSD 

of 0.24 Å and 0.20 Å, respectively. The structures were independently calculated using 

different NOE restraint sets for each protein. Surprisingly, 3D structures of both Ost4 

(Figure 4.13) and its critical mutant Ost4V23D (Figure 4.14) were found to be nearly 

identical in DPC micelles with a backbone RMSD of 0.75 (Figure 4.15) for all the residues. 

Each of them had a single a-helix spanning residues Asp4-Met32. The N-terminal residues 

Met1-Ser3 and the C-terminal residues Ser33-Asn36 were random coils.  
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Figure 4.10: The interactive display and prediction window of the RAMA+ displaying 

the Ramachandran plot (a), predicted RCI and secondary structure (b) residue wise 

selection window (c), predicted dihedral angle results for the triplet (d), and TALOS+ 

secondary shift distributions for the selected residue. 
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 Figure 4.11: Ensembles of the 20 lowest energy NMR structures of Ost4 after solvent 

refinement. 
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Figure 4.12: Ensembles of the 20 lowest energy NMR structures of Ost4V23D after 

solvent refinement. 
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Figure 4.13: 3D structure of Ost4 protein in DPC micelles. It contains a straight single 

helix encompassing residues Asp4-Met32. 
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Figure 4.14: 3D structure of Ost4V23 protein in DPC micelles. It contains a straight 

single helix encompassing residues Asp4-Met32. 
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Figure 4.15: Overlay of the 3D structure of Ost4 (green) with that of Ost4V23D (red). 

Their 3D structures fit on each other with an RMSD of 0.75 Å for all residues. 
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4.3.3 Comparison of Ost4 structures determined in  different membrane mimetic 

systems  

The solution NMR structures of yeast and human Ost4 proteins, determined on chemically 

synthesized proteins in chloroform, methanol, and water solvent system, were reported to 

contain a kink in the transmembrane domain of the helix (Figure 4.16) (37, 38). 

 

Figure 4.16: NMR structures of chemically synthesized yeast Ost4 (PDB ID 1RKL) and 

human Ost4 (PDB ID 2LAT) in mixed aqueous organic solvents. Both the structures have 

a kinked helix. 
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The NMR structure of the recombinant Ost4 determined in DPC micelles, reported here, 

has an RMSD (helical region) of 2.92 Å and 2.47 Å relative to the NMR structure of yeast 

Ost4 and human Ost4, respectively. The kinks in the structures of chemically synthesized 

yeast and human Ost4 proteins can be observed when compared to the NMR structure in 

DPC micelles reported in this dissertation (Figure 4.17 a and b).  

 

 

Figure 4.17: Overlay of NMR structure of Ost4 in DPC micelles (green) with solution 

NMR structure of yeast Ost4 shown in red (a) and human Ost4 shown in cyan (b) in a 

mixed aqueous organic solvent. NMR structure of yeast Ost4 and human Ost4 proteins 

show a kink in a mixed aqueous organic solvent.   
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The structure of the Ost4 subunit from the OST complex determined by the cryo-EM 

method in either nanodisc or digitonin (34, 39) (Figure 4.18) is depicted to be a single 

straight helix.  

 

Figure 4.18: Cryo-EM structures of yeast OST in nanodisc (PDB ID 6EZN) (left panel) 

and yeast OST in digitonin (PDB ID  6C26) (right panel) depicting Ost4 (middle) as a 

single straight helix. 

 

The Ost4 structure in both cases lacks the kink. The Ost4 structure in DPC micelles 

reported here, aligns very well to the Ost4 structure in yeast OST complex with an RMSD 

(helical region) of 0.68 and 1.04 Å determined in nanodisc and digitonin, respectively  

(Figure 4.19) (23, 34, 39). Recently high-resolution cryo-electron microscopy structures of 

human OST-A and OST-B complexes have been reported (40). The structures of the Ost4 

subunit from both isoforms of human OST, OST-A and OST-B, showed a single helix 

(Figure 4.20). In both the isoforms, the Ost4 structures lack the kink. The helical region of 
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the Ost4 structure, in this report, aligns with the Ost4 subunit from the human OST-A 

complex and OST-B with an RMSD of 0.46 Å and 0.76 Å, respectively (Figure 4.21). 

     

 Figure 4.19: Overlay of the NMR structure of Ost4 in DPC micelles (green) with (a), the 

Ost4 structure (purple) from the cryo-EM structure of yeast OST determined in nanodisc 

and (b), the Ost4 structure (yellow) from the cryo-EM structure of yeast OST determined 

in digitonin. The Ost4 structures from yeast OST complex determined either in nanodisc 

or in digitonin fit well with the Ost4 structure reported in this dissertation.  



 161 

 

Figure 4.20: Cryo-EM structures of human OST-A (PDB ID 6S7O) and OST-B (PDB ID 

6S7T) showing the Ost4 subunit as a single straight helix. These structures were 

generated by using chimera. 
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Figure 4.21: Overlay of the NMR structure of Ost4 in DPC micelles (green) with (a), the 

Ost4 structure (purple) from the cryo-EM structure of human OST-A complex and (b), the 

Ost4 structure (white) from the cryo-EM structure of human OST-B complex. The Ost4 

structures from yeast OST complex determined either in nanodisc or in digitonin fit well 

with the Ost4 structure reported in this dissertation.  
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4.3.4 Analysis of Ost4 and Ost4V23D dynamics data 

The information about the dynamics of residues in Ost4 and Ost4V23D proteins were 

obtained from the 15N T1, T2, and steady-state 1H – 15N heteronuclear NOE relaxation 

experiments. In Ost4, the T1 values and 1H – 15N heteronuclear NOE, for the majority of 

residues, are relatively higher and T2 values are relatively lower than that of Ost4V23D 

protein (Figure 4.22 a, b and c), indicating that the WT protein is more rigid. In Ost4V23D, 

the motions of residues change revealing increased flexibility of the residues upon V23D 

mutation. The average T1 and T2 values were 1125.7 ms and 66.7 ms for Ost4 and 907.5 

ms and 78.2 ms for Ost4V23D, respectively. 

The average correlation times (tc) of Ost4 and Ost4V23D proteins were calculated from 

the NMR T1/T2 ratios by using the Tensor2 program. A decrease of overall tc from a value 

of 12.6 ns for Ost4 to a value of 10.5 ns for Ost4V23D was observed (Figure 4.23 a and 

b). This indicates a faster tumbling of Ost4V23D compared to Ost4 in DPC micelles. Based 

on tc values compiled for known monomeric Northeast Structural Genomics Consortium 

 (NESG) targets (Table 4.2) (41), the molecular weights of Ost4 and Ost4V23D proteins 

in DPC micelles are approximately 21 kDa and 17 kDa, respectively. The observed 

decrease in molecular weight of the V23D mutated protein in DPC micelle indicates the 

protein could be in association with a smaller number of DPC molecules than in the WT 

protein.  
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Figure 4.22: Comparison of (a) T1 values, (b) T2 values, and (c) 1H – 15N heteronuclear 

NOE of Ost4 (green) and Ost4V23D (red). 
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Figure 4.23: Plots of correlation time vs R1/R2 ratio of Ost4 (a) and Ost4V23D (b) 

obtained from Tensor2 program. 

a 

b 

Ost4 

Ost4V23D 
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Table 4.2: Rotational correlation time values compiled for known monomeric 

NESG targets. The table was adapted from reference (41). 

 

NESG target (isotope 
labeling) 

MW 
(kDa) 

15N T1 (ms) 15N T2 (ms) τc (ns) 

PsR76A  (NC5) 7.2 478 128 5.1 
VfR117 (NC) 11.2 605 119 6.3 
SyR11 (NC5) 12.4 630 104 7.1 

ER541-37-162 (NC5) 15.8 729 66.5 10 
ER540 (NC5) 18.8 909 66.5 11.3 
SoR190 (NC) 13.8 697.5 100.9 7.7 
TR80 (NC5) 10.5 612.8 102.9 7 

Ubiquitin (NC) 9 441.8 144.6 4.4 
HR2873B (NC) 10.7 492 115 5.7 
B-domain (NC) 7.2 423.5 153.3 4.05 
BcR97A (NC) 13.1 705.8 80.6 8.8 
PfR193A (NC) 13.6 733.9 80.9 9 
MvR76 (NC) 20.2 1015 64.5 12.2 

DvR115G (NC) 10.9 608.7 115.6 6.5 
MrR110B (NC5) 11.8 707 99.2 7.8 
VpR247 (NC5) 12.5 661.2 88.3 8.05 
BcR147A (NC) 11.9 645 104 7.2 
WR73 (NC5) 21.9 1261 41.3 13 

NsR431C (NC5) 16.8 855.5 71.2 10.6 
StR82 (NC) 9.2 537.3 100.4 6.6 
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4.3.5 Molecular dynamics simulation and behavior of proteins in the membrane 

To understand the behavior of wildtype Ost4 and mutant Ost4V23D in the membrane, we 

performed MD simulation for both the proteins separately in DPC micelles. The MD 

simulations for both the proteins were carried out under identical conditions. The initial 

system for both contains protein partly inserted into preformed DPC micelles of 65 

molecules and surrounded by 6729 molecules of TIP3P water (Figure 4.24). Both the 

systems were stable within the time scale of the simulation. Both the systems, Ost4-DPC 

and Ost4V23D-DPC, were energy minimized. The energy minimization was successful as 

indicated by negative potential energy in the order of 105-106 for both the systems (Figure 

4.25). The energy minimization step was followed by equilibration under constant 

temperature (Figure 4.26) and constant pressure conditions (Figure 4.27). The average 

backbone RMSDs of the proteins indicated that the WT protein attained equilibrium after 

40 ns (Figure 4.28a) while Ost4V23D reached the equilibrium after 110 ns of MD 

simulation (Figure 4.28b). The RMSD of DPC molecules relative to the system was 

Figure 4.24: The initial system of Ost4 (left) and Ost4V23D (right) surrounded by 65 DPC 

molecules (cyan lines) and solvated with 7629 molecules of water (red dots). 
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calculated to confirm whether the DPC molecules reached the equilibrium state in the MD 

simulation. The RMSD plot (Figure 4.29 a and b) shows that not only protein but also the 

DPC molecules reached the equilibrium in MD simulation.  For comparative study, the 

trajectories 110 ns to 150 ns were used for analyses. Although the NMR structures of Ost4 

and Ost4V23D are nearly identical in DPC micelles, MD simulations of these proteins in 

 

Figure 4.25: Energy diagram for energy minimization of Ost4-DPC (left) and Ost4V23D-

DPC system (right). The negative potential energy on the order of 105-106 kJ/mole is an 

indication of a successful energy minimization step. 
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Figure 4.26: Energy diagram of equilibration under constant number, volume and 

temperature (NVT) condition. The NVT equilibration was carried out at 35 ºC.  
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Figure 4.27: Energy diagram of equilibration of the Ost4-DPC (left) and Ost4V23D 

(right) systems under a constant number of molecules, pressure, and temperature 

conditions. This NPT equilibration was carried out at 1 bar pressure for 1 ns time. 

Figure 4.28: Backbone RMSD fluctuation of Ca of (a) Ost4 and (b) Ost4V23D showing 

the simulation attained equilibrium during a 150 ns MD run. For both the proteins, the 

MD was carried out by inserting proteins in 65 DPC micelles.   
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Figure 4.29: RMSD fluctuation of DPC micelles in (a) Ost4-DPC and (b) Ost4V23D-

DPC systems showing the DPC molecules were at equilibrium during the 150 ns MD run.  

 

DPC micelles resulted in an interesting outcome. At the end of the MD run, the WT Ost4 

remained surrounded by DPC molecules where the protein sits at the core of micelles 

(Figure 4.30 a and b).  
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Figure 4.30: MD simulation results (a) side view and (b) top view of Ost4 in DPC 

micelles depicting protein inserted at the center of micelles.  



 173 

Interestingly, mutant (Ost4V23D) protein showed an unexpected behavior. The mutant 

protein settled in such a way that the DPC micelles did not surround the protein from all  

sides. At the end of the MD simulation, the mutant protein was exposed to the solvent on 

one side while the other side was surrounded by DPC molecules (Figure 4.31 a and b).  
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Figure 4.31: MD simulation results (a) side view and (b) top view of Ost4V23D in DPC 

micelles showing the protein to be moved towards the interface of micelles and solvent. 

Analysis of residues shows that the hydrophilic residues expose to the hydrophilic 

solvents.  

The residues Leu10-Val28 of the a-helix inserted in the DPC micelles exposing N-terminal 

Met1-Ser9 residues and C-terminal Asp29-Glu39 residues out to the solvent (Figure 4.32). A 

more detailed analysis of the simulation results revealed that the hydrophilic residues of 

the helix are exposed to solvent while hydrophobic residues are buried in the micellar 

environment (Figure 4.31 a).  

Figure 4.32: Schematic representation of the position of Ost4 in the DPC micelle (left) 

and membrane (right). 

 

The Solvent Accessible Surface Area (SASA) of transmembrane residues (Leu10-Val28) of 

both proteins were quantified. SASA provides the surface area of the solvent-exposed 

residues and is defined as the ratio between the water exposed surface area and the total 

surface area of a given section of the peptide. The SASA fraction of hydrophobic and 
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hydrophilic residues of Ost4 were 0.0662 ± 0.0003 and 0.1718 ± 0.0009, respectively. 

Similarly, the SASA fraction of hydrophobic and hydrophilic residues of Ost4V23D were 

0.2023 ± 0.0007, and 0.428 ± 0.001, respectively (Figure 4.33). The hydrophobic and 

hydrophilic SASA of Ost4 were smaller than that of Ost4V23D. Additionally, the number 

of interactions between DPC tails and residues Leu10- Val28  were calculated for both 

proteins. About 64 ± 12 contacts were found between Ost4 residues Leu10-Val28 and the 

DPC tails, whereas only 16 ± 6 contacts were observed between the same region of the 

Ost4V23D protein and the DPC tails (Figure 4.34). 
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Figure 4.33: Solvent accessible surface area (SASA) of Ost4 and Ost4V23D. The 

hydrophilic and hydrophobic SASA of these proteins is labeled in the figure. The figure 

was adapted from reference (23). 

 

 

Figure 4.34: Number of DPC-tails that make contacts with the transmembrane domain of 

Ost4 and Ost4V23D. 

 

4.3.6 Molecular dynamics simulation of membrane – bound OST complex 

To investigate the structural perturbations of the Ost4V23D mutation, MD Simulations of 

membrane – bound OST complex containing TM helices Ost1, Ost3, Ost4/Ost4V23D, 
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Ost5, and the TMHs Stt3 other than TMH 9 were performed. The membrane-bound OST 

complex for the simulations was built by embedding the components from the CryoEM 

structure 6EZN (34) in a membrane of dipalmitoylphosphatidylcholine (DPPC) lipids.  The 

simulation continued up to 600 ns. During the simulation, both the WT and Ost4V23D 

mutant remained embedded in the membrane. The analysis of MD trajectories of 

membrane-bound OST complex for WT simulation revealed several hydrophobic contacts 

between Ost4V23 (brown) with Stt3 TM12, residue F425 and TM13 (red), residues I456 

and L459, and with lipid tails (cyan) (Figure 4.35a).  A single contact between Ost4D23 

and Stt3 I456 was maintained in the OstV23D. The formation of a new stable salt bridge 

with Stt3 K448 and the carboxylate functional group of the aspartate was observed in the 

mutant simulation (Figure 4.35b). The representative snapshots of the WT and mutant 

complex showed the local structural perturbations due to the Ost4V23D mutation (Figure 

4.35a and b). 

The increased hydrophilicity of the Ost4V23D mutant was quantified by calculating the 

average SASA of the V23 and D23 residue in the WT and the Ost4V23D, respectively 

(Figure 4.35c). The average SASA of D23 in the mutant was 0.15 nm2 and that of V23 

residue in the WT simulation was approximately zero indicating penetration of water in the 

mutant protein to a greater degree than in the WT. The increased solvent exposure in the 

mutant was due to the destabilization of the buried hydrophobic pocket as shown in Figure 

4.35a. The hydrophobic contacts between the mutated D23 and the lipid tails were not 

observed. 
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Figure 4.35: Molecular dynamics simulations of the OST complex in a 

dipalmitoylphosphatidylcholine (DPPC) membrane. (a) A representative snapshot of the 

WT simulation with highlighted Ost4V23 (brown) residue and associated hydrophobic 

contacts from Stt3 TM 12 and 13 (red), and lipid molecules (cyan). (b) Representative 

snapshot from Ost4V23D simulation with Ost4D23-Stt3 K448 salt-bridge highlighted. (c) 

SASA of residue 23 from 600 ns of simulation for both WT and mutant simulation. The 

Figure was adapted from reference (23). 

 

4.4 Discussion 

N-glycosylation is an essential and highly conserved post-translational protein 

modification in all domains of life. The high-resolution structures of both yeast and human 

OST complexes have been reported recently (34, 39, 40), however, the role of the 

requirement of the multiple subunits for this protein modification in eukaryotes is not yet 

clear. The major limitations have been the difficulty in the production of homogenous and 

pure recombinant proteins in milligram quantities along with their reconstitution in a 

suitable membrane mimicking environment. Once a suitable membrane mimetic system 

has been determined, it is possible to obtain atomic resolution structures of membrane 

proteins (42). In previous NMR structural studies of yeast and human Ost4, a mixture 
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containing 4:4:1 of chloroform, methanol, and water (37, 38) was used to mimic the 

membrane environment. Although such a solvent system is a marginal approximation of a 

non-polar membrane surrounded by an aqueous environment, phospholipid micelles are 

considerably better mimetics of biological membranes. They contain a completely 

nonpolar core region of a similar thickness to a membrane that is surrounded by a layer of 

charges at the water interface similar to that of the lipid bilayer. DPC is a zwitterionic 

detergent that has a structure similar to phospholipid bilayers and has been extensively 

used for NMR structure determination of membrane proteins (43, 44).  

 

The isolation, purification to homogeneity, and initial NMR assignments of the smallest 

OST subunit, Ost4 and its critical point mutant, Ost4V23D have been discussed in Chapter 

2 and 3. These chapters present the atomic resolution structures of recombinant wildtype 

Ost4 and its critical point mutant, Ost4V23D determined in DPC micelles with solution-

state NMR . The effect of a point mutation that introduces a negative charge into the 

transmembrane helix of Ost4 is discussed.  As shown in Figure 4.4, the mutation of Val23 

to Asp in Ost4 caused chemical shift perturbation of almost all of the residues in the WT 

protein.  The perturbation in the chemical shifts could be due to one or more reasons. The 

first possibility could be that the protein underwent a structural rearrangement. The second 

possibility could be due to a change in the chemical environment around the protein.  The 

third possibility could be a structural rearrangement in a new chemical environment. Since 

the 3D structures of both Ost4 and Ost4V23D are nearly identical as calculated from 

completely separate NMR data sets, it became clear that the chemical environment around 

the mutant protein had changed. Each protein is composed of a single a-helix 
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encompassing residues Asp4-Met32. This structure is quite similar to the straight single 

helix that was reported for Ost4 as part of the OST complex solved in nanodisc using cryo-

EM (34, 39).  However, it was different than the structures of chemically synthesized Ost4 

form both yeast and human that were solved in a mixture of chloroform/methanol/water 

(4:4:1) and was reported to contain a kinked helix (Figure 4.14) (37, 38). Ost4 structure in 

DPC micelles has an RMSD of 0.68 Å with the structure in nanodisc and digitonin. 

However, 2.92 Å when compared to the Ost4 structure determined in mixed organic 

solvents system . The observed kink in the Ost4 structure in mixed organic solvents can 

possibly  a structural artifact most likely attributable to the thickness of the non-polar to 

polar interface within the mixed solvent system. These observations are consistent with a 

previous report on the Step 2 protein receptor fragment that had different behavior and 

helical tendencies in DPC micelles and organic-aqueous solvents (45).  They likewise 

concluded that the DPC micelles provide an environment that appears closer to that of a 

membrane bilayer than organic-aqueous solvents for observing the conformational 

preferences of small membrane proteins (45). The hydrophobic thickness of a  micelle 

composed of 65 molecules of DPC in an MD simulation was 30 ± 4 Å (46) which fits well 

with an observed hydrophobic length of ~25 Å for Ost4 and the average hydrophobic width 

is usually ~ 25-35 Å (47). It was previously reported that lipid rearrangement can occur to 

completely cover the hydrophobic region of OmpX, a small membrane protein in a similar 

micelle environment (48). The similarity of DPC micelles to the actual membrane thickness 

and the flexibility of DPC micelles to adjust with the width of the hydrophobic TM stands 

in contrast to a mixed solvent system that appears to have a narrower width and less 

flexibility in accommodating the transmembrane helix from Ost4.  Therefore, the structure 
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of Ost4 in DPC micelles is likely closer to the structure in the native environment. This 

work also suggests that DPC provides a quite reasonable membrane-like environment. 

 

Molecular dynamics simulations of Ost4 and Ost4V23D in DPC micelles was carried out 

to understand the effect of V23D mutation on the structure and function of Ost4. Molecular 

dynamics simulations have been frequently used to investigate the structural dynamics and 

orientation of membrane proteins in membrane environments (49-52). Although the 

structures of both the proteins were similar, the two proteins were in a different chemical 

environment as suggested by the CSP (Figure 4.4).  The observed CSP due to mutation 

was justified by the molecular dynamics results. Both proteins were modeled in a starting 

configuration at the center of the DPC micelle.  For the WT Ost4, the positioning was 

shown to be very stable in the center of the micelle (Figure 4.30 a and b). The simulation 

result showed that residues Leu10-Val28 remained embedded in the micelles indicating these 

residues to be the part of the protein that transverses the membrane. Therefore, based on 

the established orientation of Ost4, the N-terminal residues Met1-Ser9 of the Ost4 subunit 

remain in ER lumen, while the C-terminal residues Asp29-Asn36 are exposed to the cytosol 

with residues Leu10-Val28 forming the transmembrane domain. This result is in perfect 

agreement with the hydrophobicity profile and a previous report (38). The molecular 

dynamics simulation of Ost4V23D in DPC micelles also began with the protein in the 

center of the micelle, but over time, the simulation indicated that the position of the protein 

shifted towards the interface of DPC micelles and the solvent before stabilizing (Figure 31 

a and b). This result suggests that the V23D mutation greatly destabilizes the protein with 

the negative charge from the aspartic acid seeking access to an aqueous environment. The 
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Ost4V23D mutation could lead to the disruption of important hydrophobic interactions 

resulting in the destabilization of the Stt3-Ost4-Ost3 sub-complex and impacting the 

function of the entire enzyme complex. The level of interaction of Ost4 and Ost4V23D 

proteins with the DPC micelles was determined by measuring the hydrophilic SASA and 

hydrophobic SASA of the transmembrane residues. The hydrophobic and hydrophilic 

SASA of Ost4 residues was smaller than that of Ost4V23D indicating that the Ost4 

V23D transmembrane acts like an amphipathic helix.  

 

MD simulations of both WT and Ost4V23D, with the neighboring membrane-spanning 

portion of the OST complex, were carried out to understand the impact of this amphipathic 

helix in the OST complex. The MD results indicated that the amphipathic helix did not 

dissociate from the Stt3 membrane-bound complex during the simulation time of the 

Ost4V23D mutant. However, disruption of the local hydrophobic contacts was observed in 

the WT complex for the mutant complex (Figure 4.35a and b). Additionally, the D23 

residue of Ost4V23D protein formed a stable salt bridge with K448 of Stt3 TM13 as 

depicted in Figure 4.35b.  This salt bridge formation is possible only when the D23 residue 

dislodges from the hydrophobic pocket. As a consequence of D23 dislodging, the observed 

contacts in the WT complex made to F425 of TM12 as well as L459 and I456 of TM13 

from Stt3 and two specific lipid molecules from the membrane as shown in Figure 4.35a 

are broken resulting in destabilization of the complex. As evident from SASA of residue 

V23/D23, the hydrophilic aspartate residue becomes more solvent accessible. 

The recent structures of the yeast and human OST complex demonstrate that the Ost4 

subunit is stacked inside the transmembrane helices of the catalytic subunit, Stt3 (39). The 
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MD simulations of the membrane-bound complex of the WT and V23D mutated proteins 

demonstrated that the V23D mutation in Ost4 disrupts the hydrophobic interactions, and 

forms a new salt bridge increasing the solvent exposure of Ost4V23D (Figure 4.35) that 

results in the disruption of the N-linked glycosylation process.  

 

4.5 Conclusion 

The structure, and mechanism of function for individual subunits in the  OST complex can 

be fully understood with the help of information gained from several approaches. In this 

study, NMR showed that the V23D mutation has minimal impact on  the structure. 

However, MD simulation of both the proteins either isolated or in complex with other 

nearby subunits provides essential information on the role of the V23 residue in the 

stabilization of the catalytic subcomplex. This study could open a door for future research 

to understand the function of each subunit of the OST enzyme in the N-glycosylation 

pathway. 
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CHAPTER 5 

SOLID-STATE NMR (13C, 15N) RESONANCE ASSIGNMENT AND ATOMIC 

RESOLUTION STRUCTURE DETERMINATION OF Ost4 AND Ost4V23D IN LIPID 

BILAYER  

 

5.1 Introduction 

Membrane proteins are involved in various essential life processes such as signal and 

energy transduction, cell signaling, ion and nutrient transport, and biochemical reaction 

catalysis (1).  As a consequence, nearly 25% of the genes encode for membrane proteins. 

Since membrane proteins are associated with a wide variety of diseases such as cancer, 

cystic fibrosis disorders, developmental delay, liver dysfunction, hypoglycemia, 

neurological disorders etc., 70 % of the membrane proteins are drug targets and 50% of 

them are new drug targets (2, 3). Membrane proteins perform their functions in the cell 

membrane environment and it’s best to study their structure and function in their native 

environment. However, the complex nature of the membrane and its interactions with the 

other elements of the membrane create difficulty in interpretation of the results. Synthetic 

lipid bilayers provide the membrane-like environment for elucidating structural and 

functional aspects of the membrane proteins. Therefore, the reconstitution of membrane 

proteins into the native membrane-like system has become an essential step to study the 

structure and function of membrane proteins in a native membrane-like environment.
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Study of the membrane protein in a lipid bilayer ensures that the protein sample represents 

a biologically relevant protein conformation. The 3D structure determinations of Ost4 and 

Ost4V23D in DPC micelles by using solution NMR have been discussed in Chapter 4. 

However, detergent micelles cannot provide the same near-native lipid bilayer environment 

as can be achieved by using phospholipid. The 3D structure of these membrane proteins 

can be determined in a near-native lipid bilayer environment by using solid-state NMR 

spectroscopy. The comparison of the structure of the same molecule determined in micelles 

and lipid bilayers has shown that the structure is quite different in the two different 

environments (4). Therefore, it is important to determine the structure of the membrane 

protein in a native-like lipid bilayer environment to know the actual structure and behavior 

of the protein in the real membrane.  

 

The solution NMR requires the sample to be in the solution phase for data acquisition. The 

structure determination by solution NMR is based on isotropic interactions, such as 

isotropic chemical shift, J couplings, and relaxation information (T1, T2, and NOEs). 

Solution NMR provides much better resolution with line widths a hundred times narrower 

and much stronger signal intensity because of the rapid molecular tumbling (5, 6). Solution 

NMR has become the most frequently used technique for structure determination of 

biomolecules. However, its application is limited by the fact that the sample should be in a 

solution state. The solid-state NMR can be used to determine the structure of solid protein 

samples reconstituted in an appropriate membrane mimetic system. 
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To determine the structure of a membrane protein, its production and purification is the 

key step followed by reconstitution in an appropriate membrane mimetic system. 

Membrane protein production and purification to homogeneity have always been 

challenging. However, once the desired membrane protein is successfully expressed and 

purified to homogeneity, the next crucial step is the reconstitution of the protein into a 

membrane-like environment. The key goal of reconstitution is to incorporate the protein of 

interest into the lipid bilayers, a membrane-like environment. The synthetic lipid bilayers 

such as: POPC/POPE (1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine/ 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphoethanolamine), DMPC/DMPG (1,2-dimyristoyl-sn-glycero-

3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol), POPC/POPG 

(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/ 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-(1'-rac-glycerol)), and DOPC/DOPE (1,2-dioleoyl-sn-glycero-3-phosphocholine/ 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) can be used for the reconstitution of 

membrane proteins (7-10). The mixture of either lipid provides a net negative charge on 

the lipid bilayer. The lipid bilayer contains both cylindrical head group provided by 

phosphocholine (PC) head groups and conical lipid head groups provided by 

phosphoethanolamine (PE) or phosphoglycerol (PG) head groups. A variety of molar ratio 

for the mixture of lipids can be used to obtain the required thickness for the lipid bilayer.  

 

Another important parameter for a good reconstitution is the protein to lipid molar ratio. 

The appropriate protein to lipid molar ratio is dependent on molecular weight and the type 

of solid-state NMR experiments. Generally, the protein to lipid molar ratio should be low 

enough (1:80 to 1:100) to obtain a high degree of sample alignment, however, for smaller 
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protein and MAS solid-state NMR, the protein to lipid molar ratio of about 1:30 or even 

lower would be better (7). Once an appropriate protein to lipid ratio is determined for 

reconstitution, preparation of a large unilamellar vesicle (LUV) followed by the removal 

of detergent molecules used for the solubilization of the protein is an essential step. It is 

very important to remove the excess detergent while transferring the membrane protein 

into LUV, otherwise, the excess detergent can alter the structure of membrane protein (11, 

12). In the detergent-based reconstitution process, the protein solubilized in detergent is 

transferred to the LUV dissolved in an appropriate buffer followed by the removal of 

excess detergent by using hydrophobic beads. The protein reconstituted in lipid vesicles is 

obtained either by ultra-centrifugation or by filtration using a molecular cutoff filter unit. 

 

Although X-ray crystallography, Cryo-EM, and solution NMR techniques are frequently 

used for the determination of protein structures, solid-state NMR (ssNMR) is the most 

suited application used to study membrane proteins in a near native-like membrane 

environment, the lipid bilayers.  

 

In this chapter, the reconstitution of Ost4 and Ost4V23D in a POPC/POPE lipid bilayer, 

3D structure determination by using solid-state NMR, and molecular dynamics simulation 

results of Ost4 and Ost4V23D will be discussed. Additionally, the topology and behavior 

of the proteins are assessed by molecular dynamics simulation in membrane environments. 

Moreover, the comparison of structures of both the proteins in a variety of membrane 

mimicking systems is made to conclude the best-suited system to study the structural 

impacts of Ost4 and its critical mutant Ost4V23D protein. 
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5.2 Materials and methods 

 

5.2.1 Protein expression and purification of Ost4 and Ost4V23D 

Expression and purification of the proteins were carried as described previously in Chapter 

2 and Chapter 3.  

 

5.2.2 Reconstitution procedure 

Both the proteins (Ost4 and Ost4V23D) were reconstituted in the synthetic lipid bilayer of 

a mixture of POPC and POPE in a 3:2 molar ratio. The initial four rounds of reconstitution 

out of seven reconstitutions were carried out in Dr. Donghua Zhou’s lab in the physics 

department with the help of Dr. Hem Moktan. The first step of the reconstitution is the 

preparation of liposome or large unilamellar vesicles (LUV). LUV is prepared by the 

extrusion process as described below.  

  

5.2.2.1 Preparation of LUV by the extrusion process 

POPC and POPE powder (Avanti Polar Lipids, Inc.) was weight in the ratio of 3:2 in a 50 

ml clean and dry round-bottomed flask and dissolved in 2 mL of chloroform. The bulk of 

chloroform was removed by evaporating the mixture under a flow of N2 gas with gentle 

rotation. The film was incubated under a flow of nitrogen gas for 3 additional hours. The 

formed thin film of lipid mixture was then left overnight under vacuum to get rid of any 

traces of chloroform. The lipid film was then dissolved in 2 mL of NMR buffer (50 mM 

sodium phosphate, pH 6.5, containing 1mM EDTA and 0.01% NaN3) by flushing with the 
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help of a pipette. The mixture of lipids in NMR buffer was then subjected to 10 freeze 

/thaw cycles by alternatively placing the sample e-tube in a -80 0C freezer and 40 0C warm 

water bath. 

The freeze-thawed sample was loaded into one of the gas-tight syringes and was placed at 

one end of the Mini-Extruder (Avanti Polar Lipids, Inc.). Prior to the extrusion process, all 

the parts of the Mini-Extruder were soaked in water and the syringes were pre-wet by NMR 

buffer to reduce any dead volume. The empty gas-tight syringe was placed into the other 

end of the Mini-Extruder. A preassembled extruder apparatus containing a 0.1 

µm membrane was inserted into the extruder stand. The plunger of the syringe containing 

lipid solution was pushed gently until all the solution was transferred to the syringe at the 

other end of the extruder. The alternate syringe was pushed back gently and the whole lipid 

solution was transferred to the initial syringe. This process was repeated 11 times. The 

prepared LUV was stored at 4 0C for later use.  

The purified dry proteins were solubilized in 15 mM CHAPS (3-[(3-cholamidopropyl) 

dimethylammonio]-1-propanesulfonate) (Avanti Polar Lipids) detergent maintaining 

CHAPS: Lipids mass ratio to 1:1.2. The CHAPS solubilized proteins were then 

reconstituted into an LUV of POPC-POPE by detergent removal using Bio-beads SM-2 

(Bio-Rad).  

 

5.2.3 Optimization of protein reconstitution 

Initially, 1.8 mg of unlabeled Ost4 protein was reconstituted in 12.5 mg of POPC+POPE 

(3:2 w/w ratio) containing 7.5 mg of POPC and 5 mg of POPE. This yielded a protein to 

lipid molar ratio of 1:30. The lipid to CHAPS (w/w) ratio was maintained to 1.2:1 by adding 
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a total of 925 µL of 15 mM CHAPS (MW 614.88 g/mol) solution in NMR buffer. A 1 mL 

of LUV was prepared by using 12.5 mg of POPC+POPE by following the procedure 

described above. Ost4 pellet (1.8 mg)was dissolved 330 µL of CHAPS solution. 595 µL of 

15 mM CHAPS was mixed with 1 mL LUV and incubated for 45 minutes at room 

temperature. The protein solution in CHAPS and LUV CHAPS solutions were mixed 

together followed by 2 h incubation at 4 ºC. 50 mg of prewet hydrophobic beads were 

added and incubated for 2 h at 4 ºC. In the next step, 50 mg of hydrophobic beads were 

added and incubated for 2 h at 4 ºC. Now, 125 mg of the hydrophobic beads were added 

and incubated for another 2 h at 4 ºC. The solution was drawn out into a separate e-tube 

using a syringe to separate the hydrophobic beads. The solution was centrifuged at 70000 

rpm for 2 h at 4 ºC. The pellet containing Ost4 reconstituted in the LUV was separated 

from the supernatant liquid and dried by using a speedvac. During the reconstitution 

process, the supernatant liquid was observed to contain an additional pellet even after final 

centrifugation. The observed pellet was assumed to be LUV containing reconstituted Ost4 

protein. Therefore, any leftover pellet in the supernatant liquid was recovered by filtering 

through a 10K molecular cutoff filter for 20 minutes at 16000 rcf. The success of 

reconstitution was confirmed by Tris-Tricine gel (Figure 5.1). Since the supernatant liquid 

after centrifugation (Figure 5.1, lane 8) showed a significant amount of residual Ost4 

protein and was recovered after filtration (Figure 5.1, lane 9), the filtration procedure was 

performed for further reconstitution. The ultracentrifugation (centrifugation at 70K rpm) 

step was not performed to avoid the loss of reconstituted sample. Instead, the solution was 

filtered through a 3K molecular cut-off filter for the reconstitution of 13C, 15N labeled Ost4 
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and Ost4V23D in LUV. And, the protein to lipid molar ratio was 1:16 for the reconstitution 

of double labeled proteins. 

 

Figure 5.1: SDS-PAGE gel picture of reconstitution of unlabeled Ost4 in LUV. The 

information about lanes is labeled. 

5.2.4 Reconstitution of 13C, 15N – labeled Ost4 and Ost4V23D in LUV 

A total of 12 mg and 9.2 mg of Ost4 and Ost4V23D proteins were reconstituted in 42 mg 

(25.2 mg POPC + 16.8 mg POPE) and 33.2 mg (20.4 mg POPC + 12.8 mg POPE) of LUV, 
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respectively. For the reconstitution of Ost4 protein, LUV was prepared in two round-

bottomed (RB) flasks. To each RB flask containing 13 mg POC and 8 mg POPE, 2 mL of 

chloroform was added. The RB flask was rotated under a gentle flow of N2 gas until all the 

chloroform evaporated and a thin film of lipid was formed on the wall of the RB flasks. 

The thin film was incubated for another 3 h under the flow of N2 gas. The RB flask 

containing formed thin film of lipid mixture  was connected to the vacuum line and sealed 

airtight with a piece of parafilm.  The film of the lipid mixture was then left overnight 

under vacuum to get rid of any traces of chloroform. The lipid film was then dissolved in 

2 mL NMR buffer (50 mM sodium phosphate, pH 6.5, containing 1 mM EDTA and 0.01% 

NaN3) by pipetting the solution up and down. The lipid mixture was incubated for 1 h at 

room temperature with shaking. The mixture of lipids in NMR buffer was then subjected 

for 10 freeze /thaw cycles by alternatively placing the sample e-tube in a -80 ºC freezer and 

40 ºC warm water bath. LUV was prepared by an extrusion process as described earlier in 

this chapter. The extrusion procedure was performed four times which yielded a total of 

3.5 mL of LUV. Figure 5.2 demonstrates the steps followed for the LUV preparation and 

reconstitution of the protein into LUV. 

A total of 3.8 mL of 15 mM CHAPS was needed to maintain a lipid to CHAPS ratio of 

1.2:1 for Ost4 reconstitution. 12 mg of dry pellet of 13C, 15N labeled Ost4 protein was 

dissolved in 2.3 mL of 15 mM CHAPS by vortexing followed by bath sonication. The 

reconstitution was carried out in 5 e-tubes. To each e-tube containing 700 µL LUV, 300 

µL 15 mM CHAPS was added and incubated for 45 minutes at RT. And 460 µL of CHAPS 

containing dissolved Ost4 was added to the e-tube containing 700 µL of LUV and 300 µL 



 200 

15 mM CHAPS followed by 2 h incubation with shaking at RT. 100 mg of wet hydrophobic 

beads were added and incubated for 2 h at RT with shaking. Another 100 mg of  

 

Figure 5.2: The flowchart demonstrating the steps of LUV preparation by extrusion 

process; (a) The LUV was prepared in two RB flasks. The steps show the amounts used 
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for one of the RB flasks. Reconstitution of Ost4 protein in the LUV; (b) The reconstitution 

was performed in five e-tubes. The figure shows the amounts used in one of the e-tubes.  

hydrophobic beads were added and incubated for 2 h with shaking. Finally, 200 mg of 

hydrophobic beads was added to each e-tubes followed by 2 h incubation. The solution was 

separated from hydrophobic beads by using a syringe. The solution was filtered by using a 

3K molecular weight cut off filter at 3000 rpm. The filtrate was discarded and the residue 

on the filter was transferred into a pre-weighed e-tube. The solid residue was dried 

overnight by using a SpeedVac. By following a similar procedure for Ost4 protein, 9.2 mg 

Ost4V23D protein was reconstituted in 33.2 mg of POPC-POPE lipid bilayer. A total of 

27.8 mg and 22.7 mg of dry samples of 13C, 15N double labeled Ost4 and Ost4V23D, 

respectively, were obtained for NMR data collection. 

 

5.2.5 Packing of samples of Ost4 and Ost4V23D in the rotor 

A total of 13 mg and 16.9 mg dry samples of Ost4 and Ost4V23D, respectively, were added 

packed in two 3.2 mm sapphire rotors. 4 µL (~4 mg) and 4 µL (~5.1 mg) of water (30% 

w/w) was added to the rotor containing the Ost4 and Ost4V23D samples, respectively. The 

rotors were then spun at 1000 rpm for two minutes to complete the hydration of the samples 

in the rotors. The rotors were capped with a vessel cap. The rotor packing for ssNMR data 

collection was performed by Dr. Jochem Struppe, a senior application scientist at Bruker 

BioSpin Corporation.  
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5.2.6 Solid-state NMR data collection 

All solid-state NMR (ssNMR) experiments were acquired using a 3.2 mm sapphire rotor 

and triple resonance (1H, 13C, 15N) probe head, either at a static magnetic field of 14.1 T 

corresponding to 600 MHz proton resonance frequency or at a static magnetic field of 16.4 

T corresponding to 700 MHz proton resonance frequency at Bruker Biospin Corporation, 

Billerica, MA, USA. All the ssNMR data were acquired by Dr Jochem Struppe, a senior 

application scientist at Bruker Biospin Corporation, Billerica, MA, USA. The backbone 

resonances were assigned using a combination of 2D and 3D correlation experiments. 2D 

[13C-13C] CC2D (13) experiments for both the proteins were performed with 50 ms DARR 

mixing time. The raw data size for Ost4 2D [13C-13C] experiment and Ost4V23D 2D [13C-

13C] were 2048 x 1100 and 4096 x 1124, respectively. The 3D[15N,13CA-CX] (14), 3D 

[15N,13CO-CX] (14), and 3D [13CA,15N,13CO-CX] (15) for both the proteins were recorded 

with 13Ca-13CX , 13CO-13CX, and 13CO-13CX DARR mixing time of 50 ms, respectively. 

The 3D[15N,13CA-CX] for Ost4 and Ost4V23D were recorded with a raw data size of 2048 

x 160 x 50 and 2048 x 88 x 42, respectively, in the 13C, 13C, and 15N dimensions. Similarly, 

the raw data size for the Ost4 and Ost4V23D 3D [15N,13CO-CX] experiment were 2048 x 

58 x 56 and 2048 x 58 x 56, respectively, in 13C, 15N, and 13C dimensions. The raw data 

sizes for the 3D [13CA,15N,13CO-CX ] experiments for Ost4 and Ost4V23D were 2048 x 

50 x 58 and 2048 x 32 x 128, respectively, in the 13C, 15N, and 13C dimensions. For 1H-1H 

distance measurement, 2D CHHC (16) for each protein were recorded with a 1H-1H mixing 

time of 300 ms and 13C-1H and 1H-13C cross polarization (CP) contact time of 150 ms. 

Similarly, 2D NHHC (16) experiments for each protein were collected with a 1H-1H mixing 

time of 300 ms. The raw data size for the 2D CHHC experiments for Ost4 and Ost4V23D 
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were 2048 x 750 and 2048 x 175, respectively. Similarly, the raw data size for the 2D 

NHHC experiments for Ost4 and Ost4V23D were 2048 x128 and 2048 x 58, respectively. 

Tables 5.1 and 5.2 demonstrate the list of experiments for Ost4 and Ost4V23D, 

respectively, with the important parameters used during the ssNMR data acquisition. All 

the experiments were performed at 12.5 kHz MAS at either 10 0C or -43 0C with 1H 

decoupling power of -22.8 dB during acquisition. All the spectra were processed by using 

NmrPipe (17) and analyzed by using CcpNmr V2.1 (18). 

 

Table 5.1: List of experiments for Ost4 with the important parameters used during the 

ssNMR data acquisition 

Experiment
s 

Dimensio
n 

Isotop
e 

Carrier 
Frequenc
y (ppm) 

Spectra
l width 
(ppm) 

Numbe
r of 
data 

points 

Numbe
r of 

scans 

Mixing 
time 

CC2D 1 13C 100.273 298.87
7 2048  48 13C-13C 

  2 13C 100.235 213.48
3 1100   50 ms 

  1 13C 101.935 298.87
7 2048   

13Ca-
13CX  

NCACX 2 13C 56.981 70.983 160 128  50 ms 
  3 15N 121.103 40.010 50     

  1 13C 102.015 298.87
7 2048   

13CO-
13CX 

NCOCX 2 13C 177.000 23.661 58 128  50 ms 
  3 15N 120.008 40.010 56     

  1 13C 100.000 298.87
7 2048   

13CO-
13CX  

CaNCOCX 2 15N 120.000 40.010 50 256  50 ms 
  3 13C 100.000 23.661 58     

CHHC 1 13C 56.670 298.89
0 2048 96  1H-1H  

  2 13C 56.717 141.97
3 750   300 µs 



 204 

NHHC 1 13C 54.919 298.89
0 2048 512  1H-1H  

  2 13C 122.204 58.714 128   300 µs 
 

Table 5.2: List of experiments for Ost4V23D with the important parameters used during 

the ssNMR data acquisition  

Experimen
t 

Dimensio
n 

Isotop
e 

Carrier 
Frequenc
y (ppm) 

Spectra
l width 
(ppm) 

Numbe
r of 
data 

points 

Numbe
r of 

scans 

Mixing 
time 

CC2D 1 13C 100.400 298.87
6 2048  16 13C-13C 

  2 13C 100.400 212.98
3 1124   50 ms 

  1 13C 99.345 298.87
6 2048   13Ca-13CX  

NCACX 2 13C 57.298 35.492 88  128 50 ms 
  3 15N 120.003 44.036 42     

 
1 13C 100.015 298.87

6 2048   
13CO-
13CX 

NCOCX 2 13C 175.015 20.000 58  128 50 ms 
  3 15N 120.008 40.000 56     

  1 13C 100.000 298.87
7 2048   

13CO-
13CX  

CaNCOC
X 2 15N 120.000 44.036 32  64 50 ms 

  3 13C 100.000 70.983 128     

CHHC 1 13C 45.000 298.89
3 2048  128 1H-1H  

  2 13C 45.000 70.987 175   300 µs 

NHHC 1 13C 55.195 298.89
0 2048  512 1H-1H  

  2 13C 118.635 58.714 58   300 µs 
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5.2.7 13C, 15N resonances assignment 

The processed ssNMR spectra such as 2D [13C-13C] CC2D, 3D[15N,13CA-CX], 3D 

[15N,13CO-CX],  3D [13CA,15N,13CO-CX] , 2D CHHC, and 2D NHHC of Ost4 and 

Ost4V23D were opened in the “Analysis” software package integrated with CcpNmr V2.1. 

The protein contains only one glycine residue present at position 15 of the protein 

sequence. The glycine residue contains only Ca with a chemical shift around 45 to 47 ppm. 

Therefore, the Ca Chemical shift of  G15 was identified and the corresponding 15N and 

13CO chemical shifts were identified in CC2D and 3D[15N,13CA-CX] spectra. The 

3D[15N,13CA-CX] provides 15N, and 13C resonances belonging to a single (i) residue and 

3D [15N,13CO-CX] links 15N of its own (i) residue to 13CO and other 13C resonances of the 

previous (i-1) residue in the protein sequence. Therefore, once the 15N ppm of G15 was 

identified, the 13CO, Ca and Cb chemical shifts of its previous residue F14 were identified 

in the [15N,13CO-CX] spectrum. Again, in the 3D[15N,13CA-CX] spectrum the Ca and 

Cb chemical shifts of F14 and the corresponding 15N chemical shift were identified. The 

same 13C resonances were identified and confirmed in the CC2D spectrum as well. To find 

the 15N, and 13C peaks of the I16 (i+1) residue, the 13CO, and the 13Ca of G15 were searched 

in 3D[15N,13CO-CX] at difference 15N ppm values. Once 15N ppm was identified, the 13C 

resonances of the I16 residue were identified in 3D[15N,13CA-CX] spectrum. In this way, 

the backbone 13C, 15N resonances of Ost4 and Ost4V23D protein sequence were assigned 

by using CC2D and connecting 15N ppm of the (i) and (i-1) residues using 3D[15N,13CA-

CX] and 3D[15N,13CO-CX] spectra. The lists of chemical shifts of Ost4 and Ost4V23D 

proteins obtained from the assignment project are provided in Tables 5.3 and 5.4, 

respectively. 
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Table 5.3: Chemical shifts of Ost4 protein obtained from ssNMR assignment 

Residue 
number Residue N CO Ca Cb Cg Cd 

1 Met  - - - -  - - 
2 Ile - - - -  - - 
3 Ser - 178.04 57.98 66.03  - - 
4 Asp 121.34 178.07 58.05 41  - - 
5 Glu 119.3 177.53 59.5 29.05 33 - 
6 Gln 119.58 177.39 58.86 31.62 33 - 
7 Leu 122.08 178.05 58.09 41.82 26 - 
8 Asn 117.7 177.73 56.22 34.09  - - 
9 Ser 114.27 176.96 60.91 63.35  - - 
10 Leu 122.5 173.86 58.01 41.85 26 21.39 
11 Ala 125.6 174.59 55.35 18.66  - - 
12 Ile 120.3 176.72 66.17 38.04 30.7 17.33 
13 Thr 119.11 175.48 67.48 68.23 22 - 
14 Phe 121.59 176.2 61.9 39.5 -  - 
15 Gly 106.31 174.3 47.62 -  - - 
16 Ile 121.55 177.15 66.1 38.02 29.3 17.56   
17 Val 122.5 177.9 66.99 31.26 21 - 
18 Met 119.37 177.14 57.16 31.32 -  - 
19 Met 118.12 176.63 56.27 31.31 -  - 
20 Thr 117.19 175.93 67.31 68.77 21 - 
21 Leu 119.06 174.4 55.56 37.03  - 22.93 
22 Ile 121.87 176.59 65.38 38.22 17 - 
23 Val 118.75 175.51 67.56 31.35 21 - 
24 Ile 119.69 177.26 65.46 38.18 17 - 
25 Tyr 119.69 176.89 56.61 39.69  - - 
26 His 115 175.23 55.91 30.08  - - 
27 Ala 123.12 179.07 55.4 18.49 -  - 
28 Val 117.49 175.98 67.9 34.83 21 - 
29 Asp 121.27 177.35 56.43 41.64 -  - 
30 Ser 113.49 176.6 60.66 62.82  - - 
31 Thr 116.31 176.56 67.93 68.56 21 - 
32 Met 119.75 176.57 56.77 32.59 29 - 
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33 Ser 118.18 177.2 59.32 60.28  - - 
34 Pro 120 177.19 67.11 31.37 22 51.24 
35 Lys 120.31 178.14 57.53 35.72 26 28.65 
36 Asn 117.81 177.56 56.18 34.1  - - 
37 Arg 127.19 174.17 59.89 34.97 27 42.35 
38 Leu 126.88 177.27 58.26 41.53 -  - 
39 Glu 125.63 174.27 53.85 32.28 33 - 

 

Table 5.4: Chemical shifts of Ost4V23D protein obtained from ssNMR assignment 

Residue 
number Residue N CO Ca Cb Cg Cd 

1 Met - - - - - - 
2 Ile - - - - - - 
3 Ser 121.86 174.39 59.96 60.59 - - 
4 Asp 120.61 177.28 56.35 40.42 - - 
5 Glu 119.99 176.89 57.28 28.65 - - 
6 Gln 119.74 177.34 56.71 30.71 - - 
7 Leu 121.6 177.14 56.2 39.71 - 24.15 
8 Asn 117.82 175.67 55.36 39.37 - - 
9 Ser 115.66 174.42 60.8 61.13 - - 

10 Leu 121.55 177.04 55.9 39.13 24.76 - 
11 Ala 122.6 177.53 53.2 15.97 - - 
12 Ile 118.54 177.3 58.05 39.78 15.29,25.43 12.42 
13 Thr 116.66 175.21 66.22 67.12 19.2 - 
14 Phe 119.47 174.64 63.67 36.36 - - 
15 Gly 105.69 172.42 45.86 - - - 
16 Ile 121.52 175.83 65.32 39.69 28.83,1 6.43 
17 Val - 175.98 65.02 28.93 21.90,21.42   
18 Met 118.9 175.64 54.61 28.54 - - 
19 Met 117.34 176.22 54.41 30.38 - - 
20 Thr 117.34 173.2 65.95 68.14 20.16 - 
21 Leu 120.46 177.09 55.98 39.72 - 24.24 
22 Ile 119.84 175.39 64 40.1 28.89 15.57 
23 Asp 122.1 176.12 55.75 40.13 - - 
24 Ile 118.9 176.32 63.72 35.53 29.51,15.54 15.24 
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25 Tyr 120.46 175.24 59.81 39.05 - - 
26 His 115.28 - 59.12 29.08 - - 
27 Ala 121.97 177.16 52.9 17.45 - - 
28 Val 120.72 175.86 64.65 29.25 21.71 - 
29 Asp 119.67 175.97 55.61 39.77 - - 
30 Ser 115.61 175.59 60.44 61.04 - - 
31 Thr 116.66 175.72 65.67 66.11 18.58 - 
32 Met 116.33 175.61 54.02 31.65 - - 
33 Ser 115.04 175.89 60.28 61.16 - - 
35 Lys 126.04 172 57.88 33.37 19.68 - 
36 Asn 126.66 172.17 57.86 40.74 - - 
37 Arg 126.35 171.7 58.53 32.8 - - 
38 Leu 120.41 176.25 55.94 39.21 - 24.88 
39 Glu 127.91 171.7 58.69 33.01 - - 

 

5.2.8 Resonance assignment of 2D CHHC and 2D NHHC spectra 

Once the chemical shift values of 13C, 15N backbone and side-chain resonances were 

assigned, the 13C – 13C cross-peaks in the 2D CHHC and the 13C – 15N cross-peaks in 2D 

NHHC spectra were assigned either manually or by copying the assignment by using the 

“Copy Assignment” module integrated into the CcpNmr software. A total of 80 and 32 

cross-peaks were assigned in the 2D CHHC and 2D NHHC spectra of Ost4. A similar 

strategy was used to assign 13C – 13C cross-peaks in the 2D CHHC and 13C – 15N cross-

peaks in the 2D NHHC spectra of Ost4V23D protein.  A total of 67 and 40 cross-peaks 

were assigned in the 2D CHHC and 2D NHHC of Ost4V23D. 

 

5.2.9 Structure determination of Ost4 and Ost4V23D proteins in the lipid bilayer 

The torsion angles – phi (F) and psi (Y) – of the residues of the protein define the geometry 

of attachment of a residue to its two adjacent residues. This torsion angle is also known as 
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the dihedral angle. The dihedral angle restraints are required as input in the structure 

calculation software for structure determination of the protein. The dihedral (F and Y) 

angle restraints were derived by using Dihedral Angles from Global Likelihood Estimates 

(DANGLE) (19) integrated into the CcpNMR program using 15N, 13Ca, 13Cb, and 13C’ 

resonances. Only the dihedral angles that existed in a good global likelihood estimates 

region were used as dihedral restraints for structure calculation. A Ramachandran plot is 

used to determine the permitted torsion angles to obtain insight into the protein structure. 

The good global likelihood estimates of dihedral angles of the residues of Ost4 and 

Ost4V23D proteins were assessed by using the Ramachandran plot (Figure 5.3 and 5.4). 

The Ramachandran statistics of the Ost4 and Ost4V23D proteins (Figure 5.3 and 5.4) show 

that all the residues have good global likelihood estimates of dihedral angles. The CcpNmr 

generated dihedral angle restraints were converted into CYANA readable format by using 

the Format Converter macro integrated into the CcpNmr software package. 
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Figure 5.3: Ramachandran plot of the Ost4 protein. This plot is used to analyze the good 

global likelihood estimates of dihedral angles.  
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Figure 5.4: Ramachandran plot of the Ost4V23D protein. This plot is used to analyze the 

good global likelihood estimates of dihedral angles.  
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Although 13C – 13C and 15N – 13C cross-peaks in the 2D CHHC and 2D NHHC are assigned, 

they encode information about the 1H – 1H distances of the protons attached to the 

corresponding 13C or 15N nuclei. Therefore, 1H-1H distance restraints were derived from 

the assignments of the 2D CHHC and NHHC experiments. The  1H-1H distance restraints 

were generated from the assigned peaks of  the CHHC and NHHC experiments by using 

the Distance bins function of the Restraint Distance Params section of CcpNMR. By using 

this function, the NOE peak intensities were related to the distance bounds of the generated 

distance restraints and the upper bound limit was defined as 5.0 Å. The interhelical 

hydrogen-bond restraints were generated for residues having a helical structure based on 

chemical shift and TALOS+. The distance between the Hi+4 donor proton and the Oi 

acceptor oxygen was set to 1.8- 2.5 Å. A general scheme of structure calculation and 

refinement from solid state NMR data is outlined in Figure 5.5. 

 

The structures of the Ost4 and Ost4V23D proteins were determined through simulated 

annealing procedure by using the CYANA program version 3.98.13 (20). During structure 

calculation, a total of 62 and 71 unambiguous distance restraints, 60 and 68 dihedral angle 

restraints, and 25 and 25 H-bonds were used for the Ost4 and Ost4V23D proteins, 

respectively. A total of 100 conformers were calculated using the standard simulated 

annealing schedule with 8000 torsion angle dynamics steps per conformer. Finally, the 20 

conformers containing the lowest final target (energy) function values were analyzed using 

software packages Pymol (21), VMD(22), and Chimera (23). The quality of the Ost4 and 

Ost4V23D structures were evaluated using PROCHECK (24). The statistical parameters 

of the ssNMR structures of both the proteins are provided in Table 5.5.  
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Figure 5.5: A schematic representation of the steps followed for the calculation of Ost4 

and Ost4V23D structures by using ssNMR data. 
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Table 5.5: Structural statistics and experimental NMR restraints for 20 lowest energy 

conformers of Ost4 and Ost4V23D in the lipid bilayer 

 

 

 

 

NOE Ost4 Ost4V23D 

Total 62 72 

    Intra residue, |i-j|=0                                            6 16 

    Sequential, |i-j|<=1                                               19 23 

    Medium range, 1<|i-j|<5                                        37 32 

    Long range, |i-j|>=5                                                                0 1 

Hydrogen bond restraints                      25 25 

Dihedral angle restraints                            60 64 

Inter residue distance restraints violations 0 0 

RMSD to average structures, Å   

  Backbone (residues 4-32) 0.17 ± 0.05 0.43 ± 0.15 

  Heavy atoms (residues 4-32) 0.69 ± 0.07 0.99 ± 0.09 

Ramachandran plot outliers, %   

  Residues in most favored regions             95 % 86.4 % 

  Residues in additionally allowed regions 4.4 % 13.3 % 

  Residues in generously allowed regions      0.6 % 0.3 % 

  Residues in disallowed regions 0 % 0 % 
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5.2.10 Computational details of Ost4 and Ost4V23D 

5.2.10.1 System preparation 

The protein-bilayer systems of the Ost4 and Ost4V23D proteins were built with the 

membrane builder module of the web-based graphical interface of CHARMM-GUI (25, 

26) by using model 1 of the ssNMR ensemble and POPC-POPE lipids. During the 

preparation of the Ost4- and Ost4V23D-bilayer systems, the ratio of POPC-POPE was 

maintained to 3:2 to comply with the bilayer composition used for ssNMR experiments. 

This yielded the bilayer of a system containing 310 lipid molecules in the upper leaflet and 

310 lipid molecules in the lower leaflet. The systems having the box dimensions of 10.08 

Å x 10.08 Å x 9.96 Å were then solvated with 18627 TIP3P water molecules (27). The 

sodium ions were then randomly added by the solvent replacement method to neutralize 

the systems. The systems were then energy minimized by using 500 steps of the steepest 

descent method and CHARMM36 forcefield (28) using GROMACS (Version 2018) (29). 

 

5.2.10.2 Molecular dynamics simulations  

The molecular dynamics simulation for each system was performed under the isothermal-

isobaric (NPT) periodic boundary conditions using the GROMACS simulation package 

version 2018 (29). A cutoff distance of 1.2 nm was used for nonbonded interactions and 

particle mesh Ewald summation method was applied to treat the long-range electrostatic 

interactions (30). All covalent bonds involving hydrogen atoms were constrained using the 

LINCS algorithm (31). The temperature was controlled at 303.15 K using Nose-Hoover 

coupling (32) with a 1ps coupling time constant and the pressure was controlled at 1 bar 

Parrinello-Rahman coupling (33, 34) with a pressure-relaxation time of 5 ps. A simulation 
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time step of 2 fs was used throughout the MD simulation to maintain the stability of the 

simulation with the protein bilayer system. After NVT equilibration, each system was NPT 

equilibrated by subjecting them to three steps of restrained MD simulations at 303.15 K 

without any restrain. Finally, each system was simulated for 250 ns under NPT 

equilibration condition. The molecular dynamics trajectories of each simulation were saved 

every 50 ps. The last 30 ns of each simulation were extracted from the whole trajectory for 

analysis. The root mean square deviation (RMSD) and the number of protein-lipid 

hydrogen bonds were used to verify the stability of the protein-lipid bilayer systems. Some 

of the computing for this project was performed at the OSU High Performance 

Computing Center at Oklahoma State University. 

 

5.3 Results and Discussion 

5.3.1 Reconstitution of Ost4 and Ost4V23D into the lipid bilayer 

Lipid vesicles (liposomes) contain an enclosed lipid bilayer. Lipid bilayers have been 

frequently used to reconstitute membrane proteins. A variety of membrane proteins such 

as rhodopsin (35), P Protein kinase C (36), and G protein (37), have been successfully 

reconstituted into lipid bilayers. However, it has been difficult to control the concentration 

of inserted protein due to limited available area in the liposome. The factors: lipid/protein 

ratio, detergent concentration, and pH of the buffer for reconstitution were optimized. The 

pH of the buffer for solubilization of the protein into CHAPS detergent was set at 6.5. The 

CHAPS/lipid mass ratio was kept at 1:1.2. As shown in Figure 5.6, the reconstitution of 

both the proteins was successfully performed in four steps: preparation of large 

unilamellar vesicles, a saturation of preformed liposomes by CHAPS detergent, the 
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addition of CHAPS solubilized proteins into CHAPS saturated liposomes, and CHAPS 

detergent removal by using hydrophobic Bio beads. 

 

 

Figure 5.6: Schematic representation of steps of reconstitution of Ost4 and Ost4V23D 

proteins into liposome of POPC-POPE lipids by using Bio beads of CHAPS detergent 

removal. Large unilamellar vesicles of POPC-POPE lipids mixture in 3:2 ratio was 

prepared by an extrusion process using 0.1 µm membrane. The steps of reconstitution are 

labeled. 
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5.3.2 Backbone chemical shift assignment of Ost4 and Ost4V23D by ssNMR  

For the characterization of Ost4 and Ost4V23D proteins, the backbone and sidechain (15N 

and 13C) chemical shifts were assigned by using 2D and 3D ssNMR experimental data sets. 

The assignments were completed by using ccpNMR  Backbone and side-chain chemical 

shifts of Ost4 and Ost4V23D proteins have been provided in Table 5.3 and 5.4, 

respectively. Figure 5.7a and 5.7b show the results of 2D [13C-13C] DARR correlation 

experiments recorded on [13C, 15N] labeled Ost4 and Ost4V23D proteins. Intra-residue 

correlations in the 2D [13C-13C] experiments are labeled. As a representative, the strip plot 

displayed in Figures 5.8 and 5.9  provides a correlation between the resonances of the 

residues in the helical region of Ost4 and Ost4V23D, respectively. All the resonances of 

residues Met1 and Ile2 and the 15N resonance of Ser3 in Ost4 were not identified. The 

backbone 15N chemical shifts of Val17 and 13CO chemical shifts of His26, and all the 

chemical shifts of Pro34 in Ost4V23D were not identified (Figure 5.10 a and b). 

 

The secondary structures of Ost4 and Ost4V23D were accessed independently by using 

CcpNmr V2.1 (18) and the secondary chemical shifts DdCa and DdCa-DdCb. The 

secondary chemical shifts DdCa, and DdCa-DdCb for both the proteins were derived by 

using the SSP program (38). The chemical shifts of Ost4 deviated significantly upon 

mutation of Val23 residue to Asp (Figure 5.11 a and b). The deviation of chemical shift 

upon V23D mutation in Ost4 indicates that the environment and 3D structures of these two 

proteins in the lipid bilayer might be different. The deviations in the chemical shifts 

between ssNMR and solution-NMR were observed throughout the sequences of both the 

proteins (Figure 5.12 a, b, c, and d). The analysis of secondary chemical shift resulted in a 
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similar backbone fold that was observed in solution-NMR (39) except that the helical 

portion in the ssNMR was a little longer in both the proteins. Comparison of the secondary 

structure of these proteins derived from the DdCa and DdCa-DdCb secondary chemical 

shifts and predicted from CcpNmr results in a profile indicating a similar secondary 

structure with a minor variation in the helical pattern (Figure 5.13a and b). 
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Figure 5.7: 2D [13C-13C] DARR correlation spectra of (a) Ost4 and (b) Ost4V23D with a 

DARR mixing time of 50 ms. The MAS ssNMR spectra were acquired on the samples 

prepared by reconstitution of these proteins into the POPC-POPE lipid bilayer system. 
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Figure 5.8: Representative strip plot of NCACX (green) and NCOCX (red) spectra of 

Ost4 protein for residues Thr20-Tyr25 showing the sequential connectivity. The spectra 

were recorded at 700 MHz with 12.5 kHz MAS, and 50 ms DARR mixing time. 
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a 
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Figure 5.9: Representative strip plot of NCACX (teal) and NCOCX (magenta) spectra of 

Ost4V23D protein for residues Leu10-Val17 (a) and residues Leu21-Tyr25 (b) showing the 

sequential connectivity. The spectra were recorded at 700 MHz with 12.5 kHz MAS, and 

50 ms DARR mixing time. 

 

 

 

 

 

 

 

b 
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Figure 5.10: Assignment graph of Ost4 (a) and Ost4V23D (b) generated from CcpNMR 

software. The only resonances highlighted with black circles were identified by using 2D 

and 3D ssNMR data sets. 
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Figure 5.11: Comparison of ssNMR (a) Ca and (b) Cb chemical shifts differences upon 

mutation of V23 residue to D in Ost4 protein. A significant deviation of Ca and Cb 

chemical shifts upon mutation is an indication of the presence of either structure or 

environment variation due to mutation.  
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Figure 5.12: Comparison of chemical shift differences in (a) Ca, (b) Cb of Ost4 (c) Ca, 

and (d) Cb of Ost4V23D obtained by solution-state and solid-state NMR spectroscopy 

methods. 
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The difference in the helical propensities has been reported previously (39, 40). The 

analysis of helical propensity based on secondary chemical shifts indicates that the helical 

structure in these two proteins are different. However, the overall helical region in both the 

proteins spanned from Asp4-Asn36 (Figure 5.13a and b). Excluding 1H and the backbone 

resonances of the residues that do not belong to either Ost4 or Ost4V23D, a total of 93.5% 

and 89.8% of backbone assignments were obtained for Ost4 and Ost4V23d proteins, 

respectively. The chemical shift lists for the Ost4 and Ost4V23D proteins assigned by 

ssNMR 2D and 3D experiments are demonstrated in Tables 5.3 and 5.4, respectively. 
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Figure 5.13: CcpNMR derived secondary structure, protein sequence, DdCa, and DdCa-

DdCb secondary chemical shifts: (a) Ost4 and (b) Ost4V23D. The secondary chemical shift 

values were obtained by using the SSP program (38). The residues that do not belong to 

Ost4 and Ost4V23D are highlighted in cyan. The mutated residue, D23, in the Ost4V23D 

protein is highlighted in yellow. 
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Solid-state NMR spectroscopy is well suited for the structure determination of membrane 

proteins in lipid bilayers. The membrane protein structures in the native-like system, the 

lipid bilayer, reflects the biologically relevant structure. Our results from ssNMR on the 

Ost4 and Ost4V23D proteins could provide a significant reference for correlating structural 

and functional implications of these proteins in a membrane environment.  

 

5.3.3 Magic angle spinning ssNMR spectroscopy 

The uniformly (13C, 15N)-labeled dry samples of Ost4 and OstV23D proteins reconstituted 

in a POPC-POPE lipid bilayer were packed into a 3.2 mm rotor for structure determination 

by MAS ssNMR. A combination of different multidimensional MAS ssNMR experiments 

was acquired, processed, and analyzed to solve the 3D structures of these proteins. The 

assignments of the 13C, 15N backbone and sidechain resonance of these proteins have been 

discussed earlier in this chapter. The distance restraints for structure determination were 

derived from a combination of 2D 13C-detected DARR CHHC (carbon-proton-proton-

carbon) experiments and 2D 13C, 15N-detected DARR NHHC (nitrogen-proton-proton-

carbon) experiments (16). The NHHC and CHHC spectral resolutions of both proteins were 

sufficiently good for obtaining intra- and inter-residue distance restrains generation (Figure 

5.14 and 5.15). The significant deviation of backbone and sidechain 13C, 15N chemical 

shifts were detected upon the V23 to D mutation in Ost4 indicating a significant change in 

wither protein structure or environment. 
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Figure 5.14: Parts of 2D [13C, 13N] DARR NHHC (a) and [13C, 13C] DARR CHHC (b) 

spectra of Ost4 acquired with a mixing time of 300 µs. The cross-peaks corresponding to 

inter- and intra-residue restraints of the protein are labeled. The peaks of the residues that 

do not belong to protein (R37, L38, E39, and H40-H45) are not labeled.   
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Figure 5.15: Parts of 2D [13C, 15N] DARR NHHC (a) and [13C, 13C] DARR CHHC (b) 

spectra of Ost4V23D acquired with a mixing time of 300 µs. The cross-peaks 

corresponding to inter- and intra-residue restraints of the protein are labeled. The peaks of 

the residues that do not belong to protein (R37, L38, E39, and H40-H45) are not labeled. 
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The secondary structure propensity (SSP) scores for individual residues in each protein 

were calculated using 13Ca and 13Cb chemical shift values using the SSP program (38) 

(Figure 5.16). The SSP scores of these proteins demonstrated 48.9% and 57.6%  

a-structure propensity for Ost4 and Ost4V23D protein, respectively. This observation was 

consistent with the previously reported helical content for these proteins in micelles as seen 

by CD and solution-state NMR (39, 40). The consistency in the similar helical propensities 

for Ost4 and Ost4V23D proteins observed from different approaches indicates these 

proteins have similar behavior in a variety of membrane mimicking systems, however, 

Ost4 is either present in a different environment or has a different structure than Ost4V23D. 

 

Figure 5.16: Residue-specific secondary structure propensities of Ost4 (green bars) and 

Ost4V23D (red bars). The SSP scores were calculated using 13Ca and 13Cb chemical shift 

values with an SSP limit of 1.2. Overall helical content of Ost4 (48.9%) was increased to 

57.6% upon mutation of V23 to D in the Ost4 protein. This observation was consistent with 

the previously reported results (39, 40). 
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5.3.4 Structure of Ost4 and Ost4V23D in the lipid bilayer 

The atomic resolution structures of the Ost4 and Ost4V23D proteins were determined in 

the lipid bilayer by using 13C-13C and 13C-15N distance restraints which encodes 

information about 1H-1H distances attached to 13C, and 15N atoms from 2D [13C, 13C] 

CHHC and 2D [13C, 15N] NHHC MAS ssNMR experiments, respectively. The intra- and 

inter-residue distance restraints were generated from the 13C-13C and 13C-15N cross-peaks 

of these spectra by using the Make Distance Restraints module of the CcpNMR software 

package. All the distance restraints were combined and converted to CYANA format by 

using the “Format Converter” module of CcpNMR. The dihedral angle restraints were 

extracted using DANGLE. Additionally, hydrogen bonds between the backbone oxygen 

atom of the residue i and the backbone amide proton of the residue (i+4) were employed, 

as semirigid bodies, to improve the convergence of the structure. The structure of the Ost4 

and Ost4V23D proteins were calculated by using these restraints in the structure 

determination program CYANA 3.98.13 (20).  

 

The 20 best structures having the lowest energy functions were selected for analysis. Ost4 

and Ost4V23D displayed backbone and heavy atoms (for residue Asp4-Met32) RMSDs of 

0.17 ± 0.05 and 0.43 ± 0.15 Å and 0.69 ± 0.07 and 0.99 ± 0.09 Å, respectively (Table 5.5) 

indicating a tight ensemble of the 20 best representative structures. Figure 5.17 a, b, and c 

and d, e, and f display ensembles of the 20 conformers with the lowest energy function, 

ribbon representations of one the conformers, and helix orientations of Ost4 and Ost4V23D 

proteins, respectively. As shown in Figure 5.17, The structures calculated with all the 

restraints displayed a well-defined a-helical protein for both the proteins. Ost4 displayed 
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a straight a-helix spanning from residue 4-31 (Figure 5.18). This structure of Ost4 was 

consistent with the structure of Ost4 from the yeast OST complex determined in either 

nanodisc or digitonin by cryo-EM method (41, 42). This result indicates that the structure 

of Ost4 obtained from ssNMR data in the POPC-POPE bilayer can represent the structure 

present in the whole OST complex. In contrast to Ost4, which contained a well-defined 

straight a-helix (Figure 5.17b), the Ost4V23D ssNMR structure displayed a bent helix 

(Figure 5.17e) with a bent angle of 135.6º (Figure 5.17f). Although the helix in Ost4V23D 

started bending at the V23 mutation site (Figure 5.18), the helix angle was measured at 

H26. This suggests that V23D mutation is capable of creating a kink in the wildtype (WT) 

protein resulting in the disruption of important interactions of WT Ost4 to near 

transmembrane helix (TMH) of the Stt3 protein. The kinking due to the V23D mutation 

may be a key reason for the breakage of almost all the hydrophobic interaction that have 

been reported recently (43). In addition to a kink formation, the length of a-helix of 

Ost4V23D was calculated to be longer than that of Ost4. The helix in Ost4V23D mutated 

protein encompassed residues 3-35 (Figure 5.18). This result of an increase in helical 

content upon V23D mutation was consistent with the previously reported results (39, 40).  
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Figure 5.17: Atomic resolution NMR structural models of Ost4 and Ost4V23D determined 

by MAS solid-state NMR. Superposition of 20 conformations of Ost4 (a) and Ost4V23D 

(d) having the lowest target function. Ribbon representation of one of the structures of Ost4 

(b) and Ost4V23D (c). Helix orientations of Ost4 (c) and Ost4V23D (f). The mutation of 

V23 to D in Ost4 results in bending the helix by 135.6º. The helix angle was measured by 

using the Pymol software package (21).  

135.6º 
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Figure 5.18: Ribbon representations of ssNMR structure of Ost4 (a) and Ost4V23D (b) 

proteins displaying the helix length and bending to helix upon mutation of V23 residue to 

D. Ost4 contains a straight a-helix encompassing from residue 4-31 and Ost4V23D 

contains a bent helix encompassing residues 3-35. The beginning, place of mutation, and 

ending of the Ost4 a-helix and the beginning, mutated residue, and ending residues of the 

Ost4V23D helix are highlighted with stick and dot representation. 
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5.3.5 Comparison of structures of Ost4 and Ost4V23D in lipid bilayer to that in 

micelles  

Recent solution-state NMR structures of yeast Ost4 and Ost4V23D on recombinant 

proteins have shown both proteins to contain a straight a-helix encompassing residues 

Asp4-Met32 (Figure 5.19a and b) (43).  In contrast, structures of chemically synthesized 

yeast and human Ost4 in a mixed aqueous organic solvent system was reported to contain 

a kink in the transmembrane helix (Figure 5.19c and d) (44, 45). The recent solution NMR 

structure of yeast Ost4 in micelles contained a straight a-helix formed by residues Asp4-

Met32. The present MAS solid-state NMR structure of Ost4 in the bilayer is also a straight 

a-helix formed by residues Asp4-Thr31 (Figure 5.18). Thus, the helix in the ssNMR 

structure was shortened by one residue in the C-terminal end. However, this ssNMR 

structure of Ost4 was identical to the Ost4 structure extracted from the yeast OST complex 

that contained a straight a-helix with the same residues (Asp4-Thr31) (Figure 5.19e and f). 

The ssNMR structure of Ost4V23D determined in a lipid bilayer was quite different from 

the solution-state NMR structure determined in DPC micelles (43). While the solution 

NMR structure of Ost4V23D reconstituted in DPC micelles contained a straight a-helix 

formed of residues Asp4-Met32, solid-state NMR structure of the same protein determined 

in a lipid bilayer contained a bent helix formed of residues Ser3-Lys35 (Figure 5.18 and 

5.19b). The differences in the micelle and bilayer structures for Ost4V23D protein could 

be due to the difference in the hydrophobic environment of DPC micelles from the lipid 

bilayer. The lipid bilayer can provide a near native membrane-like environment.  
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Figure 5.19: Ribbon representations of structures of Ost4 determined in different 

membrane mimetic systems using various techniques. Solution-state NMR structures of 

yeast Ost4 (PDB ID 6XCR) (a) and Ost4V23D (PDB ID 6XCU) (b) in DPC micelles 

contain a straight a-helix spanning residues 4-32. Solution-state NMR structures of yeast 

Ost4 (PDB ID 1RKL) (c) and human Ost4 (PDB ID 2LAT) (d) in mixed aqueous organic 

solvent system displayed a kinked helix. Structures of the Ost4 protein extracted from 
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cryo-EM structures of the yeast OST complex determined in nanodisc (PDB ID 6EZN) 

(e)  in digitonin (PDB ID 6C26) (f) show a straight a-helix encompassing residues 4-31. 

  

5.3.6 Molecular Dynamic studies of Ost4 and Ost4V23D in the lipid bilayer 

Characterization of the topological properties of the Ost4 and Ost4V23D proteins in a 

native membrane-like environment is crucial for understanding the biological behavior of 

these proteins. In order to probe the structure function of Ost4 and Ost4V23D in the lipid 

bilayer, the MD simulations of these proteins were performed in the lipid bilayer system 

of the POPC-POPE lipid mixture for 250 ns. Since the protein-bilayer systems were 

equilibrated sufficiently, the average backbone RMSD of both the proteins exhibited a 

minimal fluctuation (~0.2 nm) until the end of the simulation time indicating a stable 

simulation system (Figure 5.20a). The number of H-bond formated between protein and 

lipid molecules was calculated by setting the hydrogen donor and acceptor distance of £ 

3.5 Å. The number of stronger H-bonds between protein and lipid bilayer in Ost4 were 

higher than those of the Ost4V23D-lipid bilayer system (Figure 5.20b) suggesting that Ost4 

favors being inside the hydrophobic environment of the lipid bilayer.  

MD simulations of the Ost4-lipid bilayer system and Ost4V23D-lipid bilayer systems 

resulted in interesting outcomes. The Ost4 protein crossed the lipid bilayer in an a-helical 

conformation maximizing the hydrogen bonding between the peptide bonds following the 

unique orientation of the transmembrane proteins in the membrane. The Ost4 protein 

traversed through the lipid bilayer with a tilt angle of 23º with respect to the bilayer normal. 

The protein maintained the property of a regular a-helix (Figure 5.21a and b) during the 
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simulation time. Indeed, the helix length of Ost4 protein increased up to residue M32 

(Figure 5.22a). The solution-state NMR structure of Ost4 in DPC micelles also contained 

a straight helix formed by residues Asp4 – Met32. This result indicated that DPC micelles 

can serve as an alternative membrane mimicking system to characterize small membrane 

proteins. The Ost4V23D protein exhibited a unique behavior in the lipid bilayer. At the 

end of the simulation, the V23D mutated protein underwent a dramatic structural 

transformation. The protein in the lipid bilayer existed perpendicular to the membrane 

plane. However, the kink that was seen in the ssNMR structure of the Ost4V23D protein 

disappeared at the end of the MD simulation. The a-helical part of the protein formed by 

residues His26-Lys35 transformed into a random coil structure (Figure 5.21c, d, and Figure 

5.22b). The helix uncoiling of the Ost4V23D protein, resulting from MD simulation, could 

be another reason for the disruption of several hydrophobic interactions between Ost4 and 

TMH12 and TMH13 of Stt3 that are responsible for maintaining the stability of the OST 

complex. 
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Figure 5.20: Backbone RMSD (a) and number of H-bonds (b) of Ost4 and Ost4V23D 

plotted along the 250 ns of MD simulation.  
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Figure 5.21: Topology of Ost4 and Ost4V23D in a POPC-POPE lipid bilayer. A snapshot 

of the last frame of the Ost4-lipid bilayer MD simulations (a), representation of Ost4 in 

lipid bilayer displaying tilt angle of the transmembrane domain (b), a snapshot of the last 

frame of the Ost4V23D-lipid bilayer MD simulations (c), and the orientation of Ost4V23D 

in the lipid bilayer. The a-helical regions of the proteins are labeled. 
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Figure 5.22: Ribbon representation of Ost4 (a) and Ost4V23D (b) indicating the structural 

transition upon performing MD simulations in the lipid bilayer of POPC-POPE. The 

starting and ending of helices are indicated by residue letter codes and sphere 

representations for the residues. The left panel and right panel contain the structure of the 

proteins prior to and after the MD simulations, respectively. 
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The bilayer thickness of each simulation system and helix lengths at the end of the 

simulations were measured to gain further insight into membrane behavior and protein 

topology in the membrane-like environment. The lipid bilayer thickness of the Ost4-bilayer 

and the Ost4V23D-bilayer systems were identical (4.0 nm) (Figure 5.23a) indicating that 

both the membranes were stable and behaved similar to each of the proteins during the 

simulation time. The helix length of Ost4 protein (3.7 nm) increased by one residue after 

simulation (Figure 5.23b). In contrast, the helix length of Ost4V23D after simulation was 

shortened and measured to be 2.8 nm (Figure 5.23c) due to helix unfolding. In order to 

further study the conformational behavior of these two proteins in the lipid bilayer, the MD 

trajectories were analyzed at different time points of the simulations. The initial states of 

the Ost4-bilayer and the Ost4V23D-bilayer systems show that the Ost4V23D protein 

contains higher helical content.  
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Figure 5.23: Analysis of bilayer thickness in MD simulations of Ost4-bilayer and 

Ost4V23D-bilayer systems of the Ost4 and the Ost4V23D proteins (a), Ost4 helix length 

(b), and Ost4V23D helix length (c) at the end of the simulation.  

 

The initial a-helix of Ost4 was observed to be intact indicated by MD trajectories and 

secondary structure profile (Figure 5.24a and b). On the other hand, the Ost4V23D protein 

unfolded during the MD simulations and lost about 30% of its initial helicity (Figure 5.24c 

and d). This helix unfolding is an indication of an unfavorable a-helical structure of 

Ost4V23D in the membrane bilayer. This helix unfolding could result in the disruption of 

appropriate interactions of Ost4 to TMHs of Stt3 protein responsible for the stability of the 

Ost3 – Ost4 – Stt3 catalytic subcomplex and formation of inappropriate interactions 

thereby making the V23D mutant a temperature-sensitive phenotype in eukaryotes.   
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Figure 5.24: Analysis of the trajectories of Ost4 and Ost4V23D for the study of 

conformational changes of these proteins in the lipid bilayer. Snapshots of trajectories at 

five different time points in the MD simulation run of Ost4 (a) and Ost4V23D (c). The 

proteins are displayed by ribbon representations. The phosphorus atoms of POPC-POPE 

lipids are represented by spheres (orange color) to show the bilayer surface. The water 

molecules and other atoms of lipids are not shown for clarity purpose. The secondary 

structure profiles of Ost4 (b) and Ost4V23D (d) as a function of simulation time in the x-

axis are also shown. 
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5.4 Conclusions  

In this chapter, the reconstitution, ssNMR structures, MD simulation, and comparison of 

structures for Ost4 and its critical mutant Ost4V23D of yeast oligosaccharyltransferase 

have been discussed. The integral membrane protein Ost4 of catalytic subcomplex (Stt3-

Ost4-Ost3/Ost6) and its critical mutant Ost4V23D were successfully reconstituted into the 

lipid bilayer of POPC-POPE mixtures. Since the functional activities of membrane proteins 

depend on the structure of the lipid molecules around the proteins, structural and functional 

aspects of the membrane proteins can be studied in a model membrane system that closely 

resembles the natural lipid bilayer. In addition to reconstitution in large unilamellar 

vesicles, the two proteins are characterized by ssNMR in a near native-like lipid bilayer 

setting. The 13C and 15N backbone side-chain resonances of Ost4 and Ost4V23D proteins 

were successfully assigned as a prerequisite for atomic resolution structure determination.  

 

From the assigned 13C and 15N backbone and side-chain resonances, the distance restraints 

necessary for the structure calculation were generated. The ssNMR structures of Ost4 and 

Ost4V23D in the POPC-POPE lipid bilayer represent the structures in a membrane-like 

system. The ssNMR and MD simulation results of Ost4 and Ost4V23D in the lipid bilayer 

explained that V23D mutation creates structural deformation either by kink formation or 

by helix unfolding. The kinking or helix unfolding could be the key reason for the 

disruption of several hydrophobic interactions of Ost4 to TM12 and TM13 of the Stt3 

protein.  Our results open the door to investigate the structural and functional impact of 

Ost4V23D mutation in a natural membrane-like environment.   
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Appendix Tables 

Appendix Table A-1: Chemical shift values of nuclei obtained from assignment by using 

solution NMR experiments of Ost4 protein 

SN 
Chemical 

Shift 
(ppm) 

Chemical 
shift 

Deviation 
from 

average 

Resonance Residue 
Number Residue 

1 122.254 0.176 N 1 Met 
2 8.917 0.008 H 1 Met 
3 57.246 0.093 CA 1 Met 
4 4.422 0.018 HA 1 Met 
5 34.095 0.393 CB 1 Met 
6 2.087 0.019 QB 1 Met 
7 2.622 0.032 QG 1 Met 
8 116.424 0.125 N 2 Ile 
9 7.792 0.019 H 2 Ile 
10 60.23 0.544 CA 2 Ile 
11 4.373 0.018 HA 2 Ile 
12 39.082 0.343 CB 2 Ile 
13 1.869 0.016 HB 2 Ile 
14 1.155 0.029 QG2 2 Ile 
15 17.684 0 CG2 2 Ile 
16 27.355 0 CG1 2 Ile 
17 1.488 0.019 QG1 2 Ile 
18 0.91 0.016 QD1 2 Ile 
19 13.055 0 CD1 2 Ile 
20 120.699 0.145 N 3 Ser 
21 8.585 0.01 H 3 Ser 
22 58.249 0.129 CA 3 Ser 

23 4.517 0.021 HA 3 Ser 
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24 64.34 0.303 CB 3 Ser 
25 4.206 0.008 HB2 3 Ser 
26 3.911 0.03 HB3 3 Ser 
27 122.16 0.114 N 4 Asp 
28 8.607 0.008 H 4 Asp 
29 56.838 0.158 CA 4 Asp 
30 4.417 0.031 HA 4 Asp 
31 41 0.224 CB 4 Asp 
32 2.672 0.019 QB 4 Asp 
33 120.055 0.138 N 5 Glu 
34 8.648 0.014 H 5 Glu 
35 59.2 0.088 CA 5 Glu 
36 4.155 0.017 HA 5 Glu 
37 29.543 0.037 CB 5 Glu 
38 2.028 0.027 QB 5 Glu 
39 2.341 0.022 QG 5 Glu 
40 119.589 0.166 N 6 Gln 
41 7.948 0.021 H 6 Gln 
42 58.177 0.067 CA 6 Gln 
43 4.177 0.021 HA 6 Gln 
44 29.514 0.345 CB 6 Gln 
45 2.044 0.027 QB 6 Gln 
46 35.909 0.71 CG 6 Gln 
47 2.28 0.027 QG 6 Gln 
48 111.055 0.01 NE2 6 Gln 
49 7.595 0.002 HE21  6 Gln 
50 6.764 0 HE22  6 Gln 
51 120.736 0.159 N 7 Leu 
52 8.242 0.014 H 7 Leu 
53 57.925 0.066 CA 7 Leu 
54 4.082 0.016 HA 7 Leu 
55 41.856 0.23 CB 7 Leu 
56 1.749 0.023 QB 7 Leu 
57 0.988 0.016 QQD 7 Leu 
58 117.457 0.11 N 8 Asn 
59 8.218 0.016 H 8 Asn 
60 56.511 0.042 CA 8 Asn 
61 4.435 0.02 HA 8 Asn 
62 38.683 0.127 CB 8 Asn 
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63 2.941 0.012 HB2 8 Asn 
64 2.758 0.032 HB3 8 Asn 
65 114.425 0.124 N 9 Ser 
66 7.979 0.016 H 9 Ser 
67 61.829 0.118 CA 9 Ser 
68 4.409 0.018 HA 9 Ser 
69 65.043 1.252 CB 9 Ser 
70 4.209 0.014 HB2 9 Ser 
71 4.005 0.019 HB3 9 Ser 
72 124.404 0.191 N 10 Leu 
73 8.365 0.024 H 10 Leu 
74 58.181 0.074 CA 10 Leu 
75 4.088 0.026 HA 10 Leu 
76 42.102 0.135 CB 10 Leu 
77 1.874 0.025 QB 10 Leu 
78 29.232 0 CG 10 Leu 
79 1.665 0.015 HG 10 Leu 
80 24.983 0 CD1 10 Leu 
81 24.457 0 CD2 10 Leu 
82 121.434 0.117 N 11 Ala 
83 8.458 0.025 H 11 Ala 
84 55.993 0.07 CA 11 Ala 
85 4.029 0.026 HA 11 Ala 
86 1.539 0.02 QB 11 Ala 
87 19.042 0.461 CB 11 Ala 
88 116.233 0.204 N 12 Ile 
89 8.036 0.028 H 12 Ile 
90 65.386 0.23 CA 12 Ile 
91 3.711 0.019 HA 12 Ile 
92 2.059 0.014 HB 12 Ile 
93 17.596 0 CG2 12 Ile 
94 1.95 0.029 QG1 12 Ile 
95 0.988 0 QD1 12 Ile 
96 61.741 0 CA 13 Thr 
97 4.29 0.009 HA 13 Thr 
98 68.351 0.036 CB 13 Thr 
99 3.77 0.035 HB 13 Thr 

100 1.131 0.01 QG2 13 Thr 
101 21.573 0.034 CG2 13 Thr 
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102 120.212 0.131 N 14 Phe 
103 8.788 0.012 H 14 Phe 
104 61.747 0.162 CA 14 Phe 
105 4.058 0.019 HA 14 Phe 
106 39.165 0.085 CB 14 Phe 
107 3.157 0.02 QB 14 Phe 
108 106.494 0.15 N 15 Gly 
109 8.622 0.019 H 15 Gly 
110 47.834 0.068 CA 15 Gly 
111 3.632 0.007 QA 15 Gly 
112 121.267 0.15 N 16 Ile 
113 8.407 0.025 H 16 Ile 
114 65.404 0.09 CA 16 Ile 
115 4.24 0.004 HA 16 Ile 
116 38.815 0.56 CB 16 Ile 
117 1.886 0.013 HB 16 Ile 
118 1.211 0 QG2 16 Ile 
119 1.522 0.005 QG1 16 Ile 
120 0.84 0.025 QD1 16 Ile 
121 122.705 0.163 N 17 Val 
122 8.404 0.014 H 17 Val 
123 67.832 0.128 CA 17 Val 
124 3.423 0.011 HA 17 Val 
125 32.349 0.75 CB 17 Val 
126 2.111 0.025 HB 17 Val 
127 21.265 0 CG1 17 Val 
128 20.423 0 CG2 17 Val 
129 0.98 0.019 QQG 17 Val 
130 117.194 0.155 N 18 Met 
131 8.464 0.015 H 18 Met 
132 58.201 0.045 CA 18 Met 
133 4.082 0.012 HA 18 Met 
134 32.437 0.784 CB 18 Met 
135 2.13 0.021 QB 18 Met 
136 30.839 0 CG 18 Met 
137 2.538 0.029 QG 18 Met 
138 116.501 0.152 N 19 Met 
139 8.352 0.019 H 19 Met 
140 58.694 0 CA 19 Met 
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141 4.066 0.01 HA 19 Met 
142 33.399 0.262 CB 19 Met 
143 2.134 0.012 QB 19 Met 
144 30.802 0 CG 19 Met 
145 2.656 0 QG 19 Met 
146 60.8 0 CA 20 Thr 
147 4.308 0.021 HA 20 Thr 
148 68.502 0.036 CB 20 Thr 
149 3.657 0.026 HB 20 Thr 
150 1.096 0.022 QG2 20 Thr 
151 21.545 0 CG2 20 Thr 
152 119.574 0.155 N 21 Leu 
153 8.509 0.014 H 21 Leu 
154 55.102 0.234 CA 21 Leu 
155 3.963 0.009 HA 21 Leu 
156 42.709 0.333 CB 21 Leu 
157 1.647 0.007 QB 21 Leu 
158 26.595 0 CG 21 Leu 
159 24.271 0 CD1 21 Leu 
160 0.948 0.023 QQD 21 Leu 
161 115.874 0.161 N 22 Ile 
162 8.105 0.02 H 22 Ile 
163 60.959 0 CA 22 Ile 
164 4.061 0.036 HA 22 Ile 
165 40.207 0.998 CB 22 Ile 
166 2.011 0.026 HB 22 Ile 
167 1.054 0.032 QG2 22 Ile 
168 17.036 0.021 CG2 22 Ile 
169 26.611 0.122 CG1 22 Ile 
170 1.552 0.022 HG12 22 Ile 
171 1.23 0.016 HG13 22 Ile 
172 0.807 0.02 QD1 22 Ile 
173 13.662 0.202 CD1 22 Ile 
174 118.53 0.174 N 23 Val 
175 8.098 0.015 H 23 Val 
176 67.112 0.712 CA 23 Val 
177 3.695 0.018 HA 23 Val 
178 31.269 0.17 CB 23 Val 
179 2.387 0.011 HB 23 Val 
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180 0.999 0.018 QG1 23 Val 
181 1.128 0 QG2 23 Val 
182 21.132 0 CG1 23 Val 
183 119.155 0.176 N 24 Ile 
184 8.676 0.015 H 24 Ile 
185 57.984 0.174 CA 24 Ile 
186 3.991 0.029 HA 24 Ile 
187 42.016 0.135 CB 24 Ile 
188 1.94 0.036 HB 24 Ile 
189 1.706 0.024 QG2 24 Ile 
190 1.781 0.014 QG1 24 Ile 
191 0.847 0.025 QD1 24 Ile 
192 118.647 0.144 N 25 Tyr 
193 8.244 0.022 H 25 Tyr 
194 56.619 0.135 CA 25 Tyr 
195 4.706 0.024 HA 25 Tyr 
196 38.877 0.078 CB 25 Tyr 
197 2.846 0.03 QB 25 Tyr 
198 57.38 0.522 CA 26 His 
199 4.126 0.023 HA 26 His 
200 30.873 0.368 CB 26 His 
201 3.184 0.017 HB2 26 His 
202 3.125 0.029 HB3 26 His 
203 122.039 0.18 N 27 Ala 
204 8.547 0.018 H 27 Ala 
205 54.573 0.441 CA 27 Ala 
206 4.121 0.019 HA 27 Ala 
207 1.511 0.021 QB 27 Ala 
208 19.159 0.351 CB 27 Ala 
209 116.636 0.088 N 28 Val 
210 8.127 0.023 H 28 Val 
211 61.61 0 CA 28 Val 
212 3.809 0.015 HA 28 Val 
213 32.654 0.554 CB 28 Val 
214 2.174 0.023 HB 28 Val 
215 0.943 0.02 QG1 28 Val 
216 1.046 0.033 QG2 28 Val 
217 20.592 0 CG1 28 Val 
218 19.708 0 CG2 28 Val 
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219 121.21 0.163 N 29 Asp 
220 8.255 0.014 H 29 Asp 
221 55.928 0.057 CA 29 Asp 
222 4.381 0.01 HA 29 Asp 
223 42.051 0.112 CB 29 Asp 
224 2.518 0.032 QB 29 Asp 
225 113.228 0.173 N 30 Ser 
226 8.074 0.018 H 30 Ser 
227 60.327 0.061 CA 30 Ser 
228 4.274 0.032 HA 30 Ser 
229 63.642 0 CB 30 Ser 
230 3.877 0.034 QB 30 Ser 
231 114.056 0.136 N 31 Thr 
232 7.936 0.014 H 31 Thr 
233 64.123 0.506 CA 31 Thr 
234 4.227 0.027 HA 31 Thr 
235 69.43 0.036 CB 31 Thr 
236 4.083 0 HB 31 Thr 
237 1.268 0.012 QG2 31 Thr 
238 21.958 0 CG2 31 Thr 
239 119.704 0.23 N 32 Met 
240 8.031 0.029 H 32 Met 
241 55.889 0.028 CA 32 Met 
242 4.439 0.018 HA 32 Met 
243 33.838 0.663 CB 32 Met 
244 2.103 0.019 QB 32 Met 
245 2.575 0.028 QG 32 Met 
246 116.057 0.254 N 33 Ser 
247 7.928 0.014 H 33 Ser 
248 56.468 0 CA 33 Ser 
249 4.276 0.02 HA 33 Ser 
250 63.423 0 CB 33 Ser 
251 3.881 0.006 QB 33 Ser 
252 63.878 0.217 CA 34 Pro 
253 4.261 0.011 HA 34 Pro 
254 31.886 0.002 CB 34 Pro 
255 2.228 0.037 QB 34 Pro 
256 120.067 0.325 N 35 Lys 
257 8.282 0.02 H 35 Lys 
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258 57.557 0.188 CA 35 Lys 
259 4.207 0.031 HA 35 Lys 
260 33.288 0.543 CB 35 Lys 
261 1.85 0.02 QB 35 Lys 
262 24.798 0.06 CG 35 Lys 
263 1.44 0.018 QG 35 Lys 
264 29.157 0 CD 35 Lys 
265 1.725 0.018 QD 35 Lys 
266 42.28 0 CE 35 Lys 
267 3.014 0.007 QE 35 Lys 
268 118.062 0.247 N 36 Asn 
269 8.179 0.018 H 36 Asn 
270 54.344 0.535 CA 36 Asn 
271 4.481 0.023 HA 36 Asn 
272 38.838 0.07 CB 36 Asn 
273 2.855 0.009 HB2 36 Asn 
274 2.783 0.002 HB3 36 Asn 
275 120.568 0.199 N 37 Arg 
276 8.124 0.023 H 37 Arg 
277 56.391 0.17 CA 37 Arg 
278 4.338 0.014 HA 37 Arg 
279 30.661 0.139 CB 37 Arg 
280 1.86 0.016 HB2 37 Arg 
281 1.939 0.005 HB3 37 Arg 
282 1.767 0.015 HG2 37 Arg 
283 1.645 0.017 HG3 37 Arg 
284 123.261 0.204 N 38 Leu 
285 8.248 0.013 H 38 Leu 
286 55.323 0.141 CA 38 Leu 
287 4.367 0.016 HA 38 Leu 
288 42.407 0.227 CB 38 Leu 
289 1.654 0.006 QB 38 Leu 
290 27.094 0 CG 38 Leu 
291 1.061 0 HG 38 Leu 
292 24.861 0 CD1 38 Leu 
293 23.699 0 CD2 38 Leu 
294 0.918 0 QQD 38 Leu 
295 125.863 0.128 N 39 Glu 
296 7.729 0.012 H 39 Glu 
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297 57.929 0.123 CA 39 Glu 
298 4.139 0.009 HA 39 Glu 
299 31.309 0 CB 39 Glu 
300 1.935 0.03 QB 39 Glu 
301 2.179 0 QG 39 Glu 
302 55.9 0 CA 44 His 
303 30.09 0 CB 44 His 
304 125.3 0.062 N 45 His 
305 8.056 0.009 H 45 His 
306 57.14 0 CA 45 His 
307 4.395 0 HA 45 His 
308 30.33 0 CB 45 His 
309 3.061 0 QB 45 His 

 
 
 Appendix Table A-2: Chemical shift values of nuclei obtained from assignment by using 

solution NMR experiments of Ost4V23D protein  

SN 
Chemical 

Shift 
(ppm) 

Chemical 
shift 

Deviation 
from 

average 

Resonance Residue 
Number Residue 

1 122.383 0.065 N 1 Met 
2 8.972 0.013 H 1 Met 
3 57.365 0.12 CA 1 Met 
4 4.352 0.008 HA 1 Met 
5 33.709 0.055 CB 1 Met 
6 2.579 0.008 QB 1 Met 
7 2.652 0.003 QG 1 Met 
8 115.77 0.077 N 2 Ile 
9 7.695 0.008 H 2 Ile 
10 59.753 0.084 CA 2 Ile 
11 4.447 0.007 HA 2 Ile 
12 39.988 0.05 CB 2 Ile 
13 1.829 0.006 HB 2 Ile 
14 1.192 0.011 QG2 2 Ile 
15 1.544 0.007 QG1 2 Ile 
16 0.918 0.012 QD1 2 Ile 



 263 

17 121.57 0.042 N 3 Ser 
18 8.713 0.011 H 3 Ser 
19 57.656 0.005 CA 3 Ser 
20 4.335 0.013 HA 3 Ser 
21 65.31 0.013 CB 3 Ser 
22 3.979 0.009 QB 3 Ser 
23 122.05 0.031 N 4 Asp 
24 8.802 0.012 H 4 Asp 
25 57.626 0.009 CA 4 Asp 
26 4.523 0.019 HA 4 Asp 
27 40.466 0.117 CB 4 Asp 
28 2.647 0.021 QB 4 Asp 
29 119.632 0.066 N 5 Glu 
30 8.686 0.011 H 5 Glu 
31 59.855 0.065 CA 5 Glu 
32 4.095 0.007 HA 5 Glu 
33 29.438 0.007 CB 5 Glu 
34 2.052 0.022 QB 5 Glu 
35 2.356 0.02 QG 5 Glu 
36 120.224 0.035 N 6 Gln 
37 7.878 0.009 H 6 Gln 
38 58.719 0.027 CA 6 Gln 
39 4.125 0.006 HA 6 Gln 
40 28.98 0.041 CB 6 Gln 
41 2.412 0 QB 6 Gln 
42 3.063 0 QG 6 Gln 
43 120.563 0.017 N 7 Leu 
44 8.343 0.02 H 7 Leu 
45 58.342 0.131 CA 7 Leu 
46 4.032 0.015 HA 7 Leu 
47 41.33 0.029 CB 7 Leu 
48 1.743 0.014 QB 7 Leu 
49 1.446 0 HG 7 Leu 
50 0.899 0.007 QQD 7 Leu 
51 117.175 0.064 N 8 Asn 
52 8.227 0.012 H 8 Asn 
53 56.489 0.012 CA 8 Asn 
54 4.431 0.008 HA 8 Asn 
55 38.799 0.05 CB 8 Asn 
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56 2.858 0.017 QB 8 Asn 
57 114.43 0.035 N 9 Ser 
58 7.915 0.01 H 9 Ser 
59 61.742 0.033 CA 9 Ser 
60 4.264 0.004 HA 9 Ser 
61 62.921 0.003 CB 9 Ser 
62 4.03 0.004 QB 9 Ser 
63 123.137 0.026 N 10 Leu 
64 8.293 0.01 H 10 Leu 
65 58.332 0.166 CA 10 Leu 
66 4.05 0.026 HA 10 Leu 
67 41.918 0.058 CB 10 Leu 
68 1.932 0.016 QB 10 Leu 
69 1.587 0.004 HG 10 Leu 
70 0.856 0 QQD 10 Leu 
71 121.402 0.044 N 11 Ala 
72 8.354 0.007 H 11 Ala 
73 55.803 0.091 CA 11 Ala 
74 4.027 0.017 HA 11 Ala 
75 1.58 0.01 QB 11 Ala 
76 18.382 0.02 CB 11 Ala 
77 118.362 0.041 N 12 Ile 
78 8.003 0.021 H 12 Ile 
79 59.411 0 CA 12 Ile 
80 4.011 0.016 HA 12 Ile 
81 38.152 0.047 CB 12 Ile 
82 2.063 0.016 HB 12 Ile 
83 1.27 0.011 QG2 12 Ile 
84 1.799 0.014 QG1 12 Ile 
85 0.939 0.004 QD1 12 Ile 
86 4.251 0.014 HA 13 Thr 
87 67.518 0 CB 13 Thr 
88 1.765 0.006 QG2 13 Thr 
89 120.496 0.032 N 14 Phe 
90 8.963 0.009 H 14 Phe 
91 61.712 0.035 CA 14 Phe 
92 3.169 0.011 HA 14 Phe 
93 38.942 0.04 CB 14 Phe 
94 2.696 0 QB 14 Phe 
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95 106.719 0.045 N 15 Gly 
96 8.3 0.012 H 15 Gly 
97 47.794 0.041 CA 15 Gly 
98 4.005 0.011 HA2 15 Gly 
99 3.712 0.006 HA3 15 Gly 

100 122.078 0.06 N 16 Ile 
101 7.932 0.008 H 16 Ile 
102 64.792 0.111 CA 16 Ile 
103 3.862 0.021 HA 16 Ile 
104 2.072 0.017 HB 16 Ile 
105 1.179 0.03 QG2 16 Ile 
106 0.929 0.014 QD1 16 Ile 
107 122.677 0.028 N 17 Val 
108 8.281 0.009 H 17 Val 
109 67.096 0.033 CA 17 Val 
110 3.514 0.009 HA 17 Val 
111 31.481 0.123 CB 17 Val 
112 2.229 0.009 HB 17 Val 
113 0.874 0.011 QG1 17 Val 
114 1.038 0.017 QG2 17 Val 
115 21.285 0.028 CG1 17 Val 
116 117.751 0.079 N 18 Met 
117 8.443 0.006 H 18 Met 
118 58.451 0.028 CA 18 Met 
119 4.091 0.027 HA 18 Met 
120 31.873 0.032 CB 18 Met 
121 1.962 0.02 QB 18 Met 
122 32.111 0.029 CG 18 Met 
123 2.286 0.013 QG 18 Met 
124 116.21 0.065 N 19 Met 
125 8.17 0.013 H 19 Met 
126 58.413 0.037 CA 19 Met 
127 4.181 0.011 HA 19 Met 
128 32.031 0.079 CB 19 Met 
129 2.199 0.011 QB 19 Met 
130 2.699 0.013 QG 19 Met 
131 116.639 0.047 N 20 Thr 
132 7.943 0.008 H 20 Thr 
133 4.282 0 HA 20 Thr 
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134 67.041 0 CB 20 Thr 
135 4.382 0.009 HB 20 Thr 
136 1.786 0.006 QG2 20 Thr 
137 121.081 0.037 N 21 Leu 
138 8.23 0.011 H 21 Leu 
139 58.379 0.112 CA 21 Leu 
140 4.023 0.015 HA 21 Leu 
141 41.272 0.051 CB 21 Leu 
142 1.427 0.01 QB 21 Leu 
143 1.249 0.009 HG 21 Leu 
144 0.838 0.016 QQD 21 Leu 
145 119.199 0.052 N 22 Ile 
146 8.153 0.011 H 22 Ile 
147 65.745 0.04 CA 22 Ile 
148 3.597 0.015 HA 22 Ile 
149 37.809 0.077 CB 22 Ile 
150 1.828 0.012 HB 22 Ile 
151 0.905 0.016 QD1 22 Ile 
152 120.548 0.043 N 23 Asp 
153 7.853 0.016 H 23 Asp 
154 57.799 0.002 CA 23 Asp 
155 4.269 0.008 HA 23 Asp 
156 40.525 0.124 CB 23 Asp 
157 1.547 0 QB 23 Asp 
158 121.19 0.095 N 24 Ile 
159 8.294 0.012 H 24 Ile 
160 65.267 0.002 CA 24 Ile 
161 3.761 0.013 HA 24 Ile 
162 37.918 0.17 CB 24 Ile 
163 2.036 0.017 HB 24 Ile 
164 1.268 0 QG2 24 Ile 
165 1.569 0.014 QG1 24 Ile 
166 0.883 0.011 QD1 24 Ile 
167 120.678 0.04 N 25 Tyr 
168 8.498 0.01 H 25 Tyr 
169 61.694 0.084 CA 25 Tyr 
170 4.131 0.018 HA 25 Tyr 
171 38.487 0.299 CB 25 Tyr 
172 3.216 0.023 QB 25 Tyr 
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173 115.11 0.077 N 26 His 
174 8.357 0.015 H 26 His 
175 58.438 0.351 CA 26 His 
176 4.042 0.022 HA 26 His 
177 28.994 0.025 CB 26 His 
178 3.004 0.014 QB 26 His 
179 122.845 0.093 N 27 Ala 
180 8.033 0.017 H 27 Ala 
181 54.208 0.026 CA 27 Ala 
182 4.302 0.011 HA 27 Ala 
183 1.551 0.012 QB 27 Ala 
184 18.992 0.106 CB 27 Ala 
185 117.825 0.048 N 28 Val 
186 8.047 0.014 H 28 Val 
187 64.676 0.029 CA 28 Val 
188 4.417 0.014 HA 28 Val 
189 31.849 0.169 CB 28 Val 
190 2.136 0.008 HB 28 Val 
191 1.007 0.02 QG1 28 Val 
192 0.935 0.007 QG2 28 Val 
193 22.25 0 CG1 28 Val 
194 22.25 0 CG2 28 Val 
195 121.444 0.079 N 29 Asp 
196 8.284 0.016 H 29 Asp 
197 56.05 0.127 CA 29 Asp 
198 4.358 0.032 HA 29 Asp 
199 41.846 0.006 CB 29 Asp 
200 2.564 0.009 HB2 29 Asp 
201 2.417 0.005 HB3 29 Asp 
202 113.709 0.076 N 30 Ser 
203 8.112 0.017 H 30 Ser 
204 60.037 0.001 CA 30 Ser 
205 3.946 0.021 HA 30 Ser 
206 63.506 0.02 CB 30 Ser 
207 4.312 0 QB 30 Ser 
208 115.09 0.069 N 31 Thr 
209 7.937 0.017 H 31 Thr 
210 64.028 0.025 CA 31 Thr 
211 4.248 0.024 HA 31 Thr 
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212 69.435 0.04 CB 31 Thr 
213 2.659 0 QG2 31 Thr 
214 119.973 0.097 N 32 Met 
215 8.008 0.018 H 32 Met 
216 55.925 0.025 CA 32 Met 
217 4.444 0.005 HA 32 Met 
218 33.062 0.024 CB 32 Met 
219 2.583 0 QB 32 Met 
220 116.167 0.104 N 33 Ser 
221 7.948 0.01 H 33 Ser 
222 56.46 0 CA 33 Ser 
223 4.688 0.012 HA 33 Ser 
224 63.477 0 CB 33 Ser 
225 3.861 0.016 QB 33 Ser 
226 63.587 0.166 CA 34 Pro 
227 4.427 0.013 HA 34 Pro 
228 31.943 0 CB 34 Pro 
229 2.042 0.017 QB 34 Pro 
230 2.29 0 QG 34 Pro 
231 119.959 0.076 N 35 Lys 
232 8.274 0.014 H 35 Lys 
233 57.033 0.01 CA 35 Lys 
234 4.194 0.008 HA 35 Lys 
235 32.843 0.088 CB 35 Lys 
236 1.762 0.002 QB 35 Lys 
237 118.318 0.058 N 36 Asn 
238 8.176 0.01 H 36 Asn 
239 53.566 0.012 CA 36 Asn 
240 38.881 0.005 CB 36 Asn 
241 2.784 0 QB 36 Asn 
242 120.72 0.066 N 37 Arg 
243 8.137 0.02 H 37 Arg 
244 56.489 0.01 CA 37 Arg 
245 4.251 0 HA 37 Arg 
246 30.7 0.001 CB 37 Arg 
247 1.868 0 QB 37 Arg 
248 1.577 0 QG 37 Arg 
249 3.154 0 QD 37 Arg 
250 121.981 0.058 N 38 Leu 
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251 8.12 0.009 H 38 Leu 
252 55.324 0.004 CA 38 Leu 
253 4.27 0.006 HA 38 Leu 
254 42.252 0.047 CB 38 Leu 
255 1.57 0 QB 38 Leu 
256 1.599 0.002 HG 38 Leu 
257 0.865 0.01 QQD 38 Leu 
258 120.743 0.094 N 39 Glu 
259 8.155 0.022 H 39 Glu 
260 56.513 0 CA 39 Glu 
261 4.046 0.028 HA 39 Glu 
262 30.598 0 CB 39 Glu 
263 1.898 0.017 QB 39 Glu 
264 55.91 0 CA 44 His 
265 30.13 0 CB 44 His 
266 3.091 0 QB 44 His 
267 125.4 0.067 N 45 His 
268 8.012 0.013 H 45 His 
269 57.26 0 CA 45 His 
270 4.395 0 HA 45 His 
271 30.48 0 CB 45 His 
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