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Abstract: The United States CDC reported between 1.6 and 3.8 million participants in sports 
and recreational activities sustain a concussion annually. Sports related concussion (SRC) 
management requires a blend clinical judgement and an analysis of symptomatology, cognition, 
and physical performance. This retrospective study examines the relationship between return to 
play trajectory (RTPt) and three common clinical measures, symptoms, balance, and reaction 
time. Methods: Student athletes (30 males, 39 females), age, M = 14.2, SD = 2.2 years, medical 
records were reviewed. Pre-treatment concussion symptom scale (PCSS), balance (mBESS) and 
simple reaction time (RT) measures were compared to RTPt. Pearson’s coefficients were 
calculated for independent variables PCSS, mBESS, RT against RTPt. Male and female 
differences were assessed through independent t-tests. The alpha was set at p < .05. Hedge’s g 
calculated the effect size. Findings There was a moderate positive association between PCSS 
and RTPt, (r = .323, p = .003), a moderate positive association between time till treatment (TTT) 
and RTPt ( r = .471, p < .000) a small negative correlation between mBESS and RTPt (r = -.147, 
p = .114) and a weak negative association between RT and RTPt (r = -.023, p = .426). Sex 
differences for RTPt, mBESS and RT were not statistically significant. Females on average took 
almost two weeks longer to recover than males, M =13.6, SD ±10.6, days longer (p = .202). A 
loss of conscious (LOC), accounted for 17.3% of athletes and this group had a longer RTPt, (M = 
14.5, SE ±13.9 days) than negative for LOC. These differences were not significant. Sixty-six 
percent of athletes were positive for visual ocular-motor screen with differences in RTPt for 
athletes positive for VOMS were not statistically different to athletes who were negative (p = 
.300).  Regression model for PCSS on RTPt revealed an adjusted R2 of 9.1% (p = .009) and for 
TTT and PCSS on RTPt an R2 of 42.7%, and an adjusted R2 of 41% (p < 001). Conclusions: 
TTT and PCSS have a moderate association with RTPt in a population of sub-acute and chronic 
SRCs. PCSS as a predictor of RTPt indicated a .655-day increase in RTPt for every 1-point 
increase in PCSS. There was 1.01-day increase in RTPt for every 1-day increase in TTT.  
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CHAPTER I 
 

 

INTRODUCTION 

 Concerns regarding Sports Related Concussion (SRC) have evolved in the United States 

since the emergence of college football in the early 1900’s. In a 1903 speech, President Roosevelt 

defended college football stating; “I believe in rough games and in rough, manly sports. I do 

not feel any particular sympathy for the person who gets battered about a good deal so long as 

it is not fatal” (Roosevelt, 1904, p. 1). On  November 26, 1905, The Chicago Sunday Tribune 

reported the death of nineteen football players in a single season, the paper called for the game 

to be abolished if there were no major reforms (Roosevelt, 1905). Clearly, young college age 

football players were dying every year, most from internal injuries, broken necks and spines 

(Zezima, 2014). On October 9, 1905, New York University chancellor H.M. McCracken 

assembled coaches and administrators from the big three collegiate powers (Harvard, Yale, and 

Princeton) to discuss the future of college football. The Washington meeting called for the 

schools to set an example of “fair play" for gridiron nationally (Zezima, 2014). This standard 

of “fair play” or “do no harm” speaks to importance of developing best practices for 

recognizing and treating concussion and the need for objective reliable measures.
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The National Association of College Athletics (NCAA) was formed in 1910 on the 

urging of President Roosevelt after he expressed concerns about 19 game related deaths in 

college football over a single season (Fleisher, Goff, & Tollison, 1992). The core objectives 

of the NCAA were originally based on providing public benefit through the reduction of injury 

and rule standardization. The NCAA, and other sports governing bodies, have undergone 

increasing levels of scrutiny in recent years regarding liability and overall duty of care for 

Traumatic Brain Injuries (TBIs) (Greenhow, 2011; Harris, 2015). This is particularly true for 

high school and collegiate sports, as well as professional and semi-professional sport, such as the 

National Football League (NFL), Major League Soccer (MLS), Australian Football League 

(AFL), and the Australian National Rugby League (NRL) (Greenhow, 2011; Holm & 

McNamee, 2009).  

A. The Prevalence of Concussion   

 The United States Center for Disease Control reported that between 1.6 to 3.8 million 

participants in sports and recreational activities sustain a concussion each year (Langlois, 

Rutland-Brown, & Wald, 2006). In 2009, US legislation mandated concussion education 

programs and professional management of concussion for high school and college sports 

(Harvey, 2013).  Unfortunately, these laws do not consider primary prevention and instead focus 

on the diagnosis, treatment and risk reduction for a repeated concussion. While concussion 

education and management laws have been a major catalyst for the increase in Athletic Trainers 

(ATs) at the secondary school level, only about half of secondary school athletic programs in 

the US have an AT present at practices and competitions (Guskiewicz, 2015).  Furthermore, 

high school concussion management programs remain focused on post injury protocols rather 

than education and prevention. Additional evaluation of these programs is required to assess 
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their effectiveness in reducing the risk for a SRC (Harvey, 2013). 

 A recent study by the Concussion and Research Education (CARE) consortium, 

compared SRC clinical management and return to play (RTP) practices for NCAA athletes from 

1999-2001 (n=184) to CARE data from 2014-2017 (n=701). Investigators found that clinical 

practices over the past 15 years have reduced the prevalence of a same season second concussion 

by extending the symptom free rest period from a median of  2 days to 5.9 days (McCrea et al., 

2020). The increase of symptom free rest allows more time for the athlete to achieve a complete 

recovery. The extended recovery of six-days is more aligned with 7–10-day period of metabolic 

dysfunction typical seen after a SRC which will be further discussed in the literature review.  A 

key point here is the importance of establishing a culture around an appropriate time interval for 

RTP after a SRC. In addition, all diagnostic tests must be reliable (test-retest repeatability), 

sensitive (detects the impaired patient), specific (no false positives or negatives) and valid 

(measures true impairment present) (Mayers & Redick, 2012). A multi-disciplinary approach is 

best, with no single test used to make a clinical decision on the RTP status of an athlete. (Collins 

et al., 2016; Meehan, d’Hemecourt, Collins, & Comstock, 2011).    

B. The Culture of Concussion  

 Decisions made by clinicians should always consider the best interest of the athlete 

above the team’s interests or any other secondary gain (Holm & McNamee, 2009; Partridge & 

Hall, 2014). Clearly, a conflict of interest can arise when coaches or parents are involved in 

return to school, RTP or subsequent SRC treatment options.  The traditional patient-doctor 

relationship can be burdened by a third-party influence, (e.g. coach, team owner, manager, 

peers or parents). This burden may encourage a premature return to sport and increased risk 

for a SRC or other injuries (Master, Gioia, Leddy, & Grady, 2012).  In some cases the  
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athletes themselves may deny having any symptoms at all, when clearly, there are objective 

indications that something is wrong (Kroshus, Garnett, Hawrilenko, Baugh, & Calzo, 2015; 

Meier et al., 2015). Kroshus et al. (2015), in a recent study, reported approximately 25% of 

collegiate athletes’ experienced external pressure to continue playing after a SRC. 

Furthermore, Kroshus and colleagues (2015), found about two-thirds of physicians had 

experienced pressure from athletes to return to play prematurely.  These external influences 

are problematic regarding effective management of a SRC, as the physician-patient 

relationship may no longer be bound by trust and verification.  

 For contact sports, most governing bodies have implemented same-day rules that 

prevent a concussed player from returning to play immediately on the day of injury (Heptig, 

2016; NRL, 2017).  However, these rules may in fact discourage the team physician from 

either assessing a player or determining a diagnosis of concussion for fear of having to 

immediately remove the athlete from the game (McNamee, Partridge, & Anderson, 2016).  

Compared to professional sports, recreational or non-professional contact sport organizations 

have a greater potential for underreporting and recognizing SRC. The increased potential for a 

missed diagnosis may be due to limited sports medical resources, poor administrative 

oversight, inexperienced coaches and parents ignorant of the potential issues.  (Brennan & 

Khojasteh, 2020; McNamee et al., 2016).    

C. Study Purpose   

 Physicians and other healthcare providers are responsible for making clinical 

decisions regarding the evaluation and treatment of an SRC and the athlete’s subsequent 

trajectory for return to play. Most coaches, parents and athletes are interested in the length 

of time an athlete may need for recovery before safely returning to play. As such, this 
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study involved  a multi-modal approach to assessment of a SRC and RTP utilizing 

common clinical metrics symptoms, balance and simple reaction time. 

 The return to play return to trajectory (RTPt) was defined as the number of days 

between the date of injury (DOI) and the date of return to play (RTP). The main purpose 

of this study was to evaluate the relationship between post-concussion symptomatology, 

balance and reaction time and the RTP. There were four primary research questions in 

this study.    

i. Are RTP trajectories positively associated with symptom scores?  

ii. Are RTP trajectories positively associated with balance performance scores? 

iii. Are RTP trajectories negatively associated with simple reaction time 

performances scores?  

iv. Are RTP trajectories (number of days), symptoms, balance scores and reaction time 
scores significantly different between sexes?  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 The writings of Hippocrates refer to the term concussion as, “commotion cerebri” 

or shaking, yet it is not clear if he was describing the mechanism of injury, loss of 

consciousness or a broad labeling of a traumatic head injury (McCrory & Berkovic, 2001). 

The first clear separate recognition of concussion was made by the Persian physician, 

Rhazes, in the 10th century (McCrory & Berkovic, 2001).  By the end of the 16th century a 

clinical description defining concussion across several clinical stages was developed 

which included  ringing in the ears, falls, swooning, slumbering, dazzling eyes and 

transient giddiness (Read, 1687).    

A. Defining Concussion 

 In general, position statements or guidelines addressing the diagnosis and  

treatment of traumatic brain injury (TBI) or mild transient traumatic brain injury (mTBI) 

rely on a blend of expert opinion and current research. Most, if not all position 

statements, focus on distinguishing concussion as an mTBI as opposed to the more severe 

TBI (Alla, Sullivan, McCrory, & Hale, 2011).  There are numerous position statements 

on the management of sports concussion emanating from an abundance of both 

international and national medical professional groups (Alla et al., 2011; Giza et al., 

2013; Harmon et al., 2019; McCrory et al., 2017). 
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Most of these groups are interested in presenting a working definition for the 

diagnosis of a SRC. For instance, the American Medical Society for Sports Medicine 

position statement defines concussion as “a traumatically induced transient disturbance 

of brain function that involved a complex pathophysiological process...a subset of mTBI 

which is classified based on acute injury characteristics at the less severe end of the 

braining injury spectrum” (Harmon et al., 2019, p. 213).   A second group, the American 

Academy of Neurology, defines concussion as  “An injury resulting from a blow to the 

head, causing an alteration in mental status and one or more symptoms of headache, 

nausea, vomiting dizziness/balance problems, fatigue, difficulty sleeping, drowsiness, 

sensitivity to light or noise, blurred vision, memory difficulty and difficulty 

concentrating” (Giza et al., 2013, p. 2253).   

Another professional organization, the Concussion in Sport Group (CISG) recently 

published the Fifth Consensus Statement. Experts in the field of Neurology, Sports 

Medicine, Neuropsychology and Athletic Training convene every 4 years to discuss and 

determine best practices for the diagnosis and management of SRC. The CISG has also 

develop recommendations for the management of SRC that emphasize rest, followed by 

symptom limited progressive physical activity, and when appropriate, vestibular 

rehabilitation and neuropsychological counseling. This current statement evolved from 

principles outlined in four previous statements published since 2001. The  2016 

consensus also reflects the CISG’s consistent focus on sport specific concussion over the 

past 20 years (McCrory et al., 2017). Alla et al. (2011), reviewed citations of published 

statements on SRC from 2000-2009. Investigators found that the highest number of 

citations came from the CISG consensus statements and that the greatest number of 
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citations for any one year occurred in 2009.  According to the CISG statement a SRC “A 

complex pathophysiological process affecting the brain which can be characterized by 

immediate and transient neurologic dysfunction induced by biomechanical forces, either 

a direct or indirect blow that may or may not involve loss of consciousness”  (McCrory et 

al., 2017, p. 2).   

Pathophysiology of Concussion.  

The human brain consists of an interconnection of billions of small neurons 

(Webbe, 2006). This vast neural network serves to receive, sort, store and transmit 

neurological signals throughout the body. Neural networks interlace in a gelatin like 

substance that offer a protective infrastructure. Suspended inside a hard bony skull, the 

brain is susceptible to the consequences of blunt trauma or rapid acceleration-deceleration. 

Anatomically, the brain has four distinct sections: the brain-stem, cerebral cortex, 

thalamus and cerebrum. Each section has a specialized role in overall neurological 

function, as well as a unique vulnerability to damage from linear and rotational forces 

following a concussion (Webbe, 2006). The following is a brief overview of the functional 

anatomy of the brain and those structures that are susceptible to excessive force following 

a concussion.  

Brainstem. Made up of the medulla oblongata, the pons and the mid brain, the primary 

function of the brainstem is to control vital functions, such as breathing, heart rate, blood 

pressure and digestion. Injury to the brainstem can cause speech impairment, breathing 

difficulties, sleep apnea and difficulty swallowing. In acute cases, there may be personality 

changes and memory loss, for severe cases, the result can be loss of consciousness (LOC), coma 

and paralysis (Webbe, 2006). 
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Arbogast et al., examined animal models representing the structural geometry of the 

central nervous system and found high tissue strains in the region of the brainstem and corpus 

callosum after a mTBI. The mechanical properties of these regions increase tissue sensitivity to 

rotational stressors (Arbogast & Margulies, 1998).  The brainstem and the corpus callosum are 

different from the other CNS regions in that they have a less random structure, and a longitudinal 

arrangement of axonal fibers. By comparison, with similar tests on cerebral tissue, the brainstem 

displays a stiffer biomechanical response then cerebral tissue (Gennarelli et al., 1987).  

Cerebellum. The cerebellum is located posterior to the brain stem and responsible for 

motor coordination, motor planning and behavior. Spanos et al. (2007) utilized quantitative 

Magnetic Resonance Imaging (MRI) to measure cerebellar white and gray matter and lesion 

volumes in children aged nine to sixteen over a 10-year period. Researchers found that cerebellar 

white and gray matter volume in the mTBI group consistently showed smaller volumes than the 

non mTBI group and these differences were associated with significant changes in cognitive 

performance and behavior (Spanos et al., 2007). These results are consistent with evidence from 

previous studies that support the vulnerability of the cerebellum to high tissue strains, (and its 

related projection areas) to neurodegeneration including; Diffuse Axonal Injury (DAI), fiber 

degeneration, a loss of Purkinje cells (Arbogast & Margulies, 1998; Fukuda et al., 1996) and 

marked activation of microglia (Mautes, Fukuda, & Noble, 1996).  This injury results from a 

shearing of the axonal projections at the white and grey matter borders. Tissue shearing is due to 

extreme rotational forces and is typically associated with LOC and significant post injury 

cerebral edema. These forces result in cerebellar damage due to an activation of Microglia and 

subsequent Purkinje cell death. The mechanisms for Purkinje cell loss are not well understood 

but can result in long-term cognitive dysfunction beyond and acute SRC.    
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  Thalamus. The thalamus lies superior to the brain stem and inferior to the cerebral 

cortex. Described as a router or central relay station, the thalamus connects to the entire cerebral 

cortex and plays a vital role in the movement of information between the sensory and motor 

function of the brain. Pathological studies have shown that the anterior limb and genu regions of 

the internal capsule of the thalamus are related to disorders of attention and executive 

functioning (Sherman & Guillery, 2009), poor visuospatial memory, and reduced perceptional-

motor skill. (Tatemichi, Desmond, Cross, Gropen, & Mohr, 1992).  Considerable evidence links 

the activity of cholinergic neurons to arousal and REM sleep through their projections to the 

thalamus and medial pontine reticular formations (Leonard, Rao, & Sanchez, 1995). A TBI 

results in early axonal injury, followed by an associated ventral basal complex neurological 

degradation. Destruction of these thalamic “neural circuits” could be the underlying cause of 

several common post mTBI cognitive dysfunctions, including but not limited to attention 

deficits, diminished motor performance and executive function (Mittl et al., 1994). 

Cerebrum. The cerebrum has a right hemisphere and a left hemisphere, separated by a 

deep groove known as the longitudinal fissure. The right half of the cerebrum controls the left 

side of the body and the left half controls the right side of the body. Five lobes make up the 

cerebrum: the frontal, parietal, temporal, occipital, and insula lobes.  As the largest section of the 

brain, the cerebrum is responsible for the integration of neural information. The cerebrum 

contains both gray and white matter. The gray matter makes up the cerebral cortex, a 2-4mm 

outer surface on the cerebrum (Webbe, 2006). The cerebrum contains over ten billion nerve 

cells, accounts for about 80% of brain weight and is the site of most of the brain’s neural activity. 

Based on function or activity, the regions of the cerebral cortex can be divided into three general 

categories, the motor cortex (movement), the sensory cortex (sound, vision, tactile), and the 
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associative cortex (high order cognitive function) (Webbe, 2006).   White matter makes up most 

of the deep parts of the brain and consists of glial cells and myelinated axons that connect the 

various grey matter areas. The cerebrum may be particularly sensitive to repetitive “micro 

impacts” over time and these impacts may contribute to development of more serious permanent 

brain injury even decades after the athlete stops participation (Stern et al., 2011).      

Mechanism of Injury  

 The mechanisms of injury associated with a SRC are heterogenic in nature, and result in a 

broad spectrum of injury responses. There is significant evidence to support that most 

concussions result from inertial (acceleration) loading and that linear type of collisions tend to be 

associated with a more serious skull fracture and epidural bleeding (Cepeda et al., 2016; Denny-

Browne, 1941; Gennarelli et al., 1987; Hirad et al., 2019; Meaney & Smith, 2011; Ommaya & 

Gennarelli, 1974; Webbe, 2006). Concussions are associated with a direct impact or impulse 

force to the brain and may or may not involve a skull fracture or penetration. Concussive forces 

typically result in a coupling effect of acceleration  (coup), followed by a deceleration force 

occurring on the opposite side of the brain (counter-coup) (Cepeda et al., 2016; Webbe, 2006).  

Two types of forces can insult the brain during a concussive event, linear and rotational (Webbe, 

2006). Linear or straight-line forces usually result from a direct collision and a sudden restraint on 

forward momentum (Meaney & Smith, 2011; Webbe, 2006). Rotational forces however, typically 

result from a blow to the side of the head and result in high angular velocities (Webbe, 2006).  

These forces  may result in damage to the marginal areas of grey-white matter and possibly the 

brain stem resulting in a loss of consciousness  (Meaney & Smith, 2011; Webbe, 2006).  

 Theoretical constructs for the mechanisms of concussion have evolved and continue to 

represent the “current knowledge” of the time (McCrory et al., 2013).  Most theories on the 
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mechanism of concussion attempt to link tissue damage with symptom characteristics, severity 

and persistence.  Advances in imaging and other emergent technologies has afforded the clinician 

to match concussion pathology with emergent symptomatology and objective physical 

performance deficits. The following section present several theories on mechanism of injury in 

concussion. 

Vascular Theory. One early hypothesis, the Vascular Theory, proposed by Symonds 

(1935), attributed concussion to a temporary ischemia, resulting in vasoconstriction, and 

decreased cerebral blood flow. Furthermore, Symonds’ 1935 theory supported the notion that a 

loss of consciousness (LOC) results in a gradual recovery and the rate of recovery is inversely 

proportional to the depth of the tissue insult.  Thus, concussions may still occur without LOC 

and that recovery time will still depend on the severity of ischemia and the return of cerebral 

blood flow.  

The Reticular Theory. An early theory proposed by Denny-Brown and Russel (1941), 

expanded upon the previous theory by Symonds explained the immediate effects of a concussion 

(Denny-Browne, 1941). This theory was rooted in the concept that the brainstem plays a major 

role in the loss of consciousness . The brainstem serves as a critical relay station controlling the 

communication between the spinal cord and the brain. A loss of conscious may be due to a loss 

of this communication secondary to acute tissue trauma, Unfortunately, this theory does not 

account for some of the immediate symptomatology or any of the protracted effects of amnesia 

that may be evident after a concussion (Webbe, 2006).  

The Centripetal Theory. A third hypothesis; the Centripetal Theory, emerged in the early 

1970’s and was similar to the earlier reticular theory of axonal shearing. The Centripetal Theory 

hypothesized that concussion was the result of rotational forces rather than linear forces and 
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LOC and the severity of the concussion are directly related. (Ommaya & Gennarelli, 1974). 

However, this  theory fails to explain the genesis of other concussion symptoms that are 

independent of brainstem and LOC anomalies (Webbe, 2006).    

The Convulsive Theory. Another proposed theory related to mechanism of injury, the 

Convulsive Theory, which portrays some clinical signs and symptoms of an acute concussion as 

similar to those seen in epileptic seizures (Webb, Humphreys, & Heath, 2018; Webbe, 2006). 

One immediate observation after a concussion is the potential behavior called “posturing”. While 

all concussions do not result in this malady posturing, typically results from a high impact event, 

where a player freezes into a rigid protective posture for a few seconds, then returns to normal 

posture, not unlike a mild epileptic seizure. The theoretic construct of Convulsive Theory 

however is limited to a specific acute event and not inclusive of a broader spectrum of protracted 

post-concussion symptomatology.  However, this theory may offer promise for future EEG 

studies comparing concussed brains with those in epileptic patients.    

 Regardless of which theory one may ascribe to, there are specific biological changes that 

occur due to trauma. Giza and Hovda (2001) described the biological changes within the brain 

after a concussion as a combination of axonal shearing, and an associated neuro-metabolic 

cascade (Giza & Hovda, 2001). This progressive biological collapse results in an immediate 

neuronal depolarization, followed by a release of excitatory neurotransmitters, a rapid change in 

ionic balance, decreased glucose metabolism, augmented cerebral blood-flow, and diminished 

axonal function. Post-concussion metabolic cascade can be associated with a period of increased 

vulnerability for further injury and neuro-behavioral anomalies. A Diffuse Axonal Injury (DAI) 

is a more a severe mTBI and is correlated with an injury resulting from rapid rotational 

acceleration, as well as repetitive sub-concussive impacts (Hirad et al., 2019). DAI’s result in 
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significant white matter changes in the mid-brain and are proportional to the amount of rotational 

impact exposure (Hirad et al., 2019). Computer Tomography (CT) or traditional Magnetic 

Resonance Image (MRI) scans are not sensitive to DAI’s and should not be a part of the 

diagnostic process for this injury. While histochemical staining of brain white matter remains a 

standard invasive tool for detecting a DAI, diffusion tensor imaging (DTI) and  blood samples 

for specific biomarkers are emerging as a possible proxies for confirming a DAI or tau 

pathologies in mTBI and CTE (Hirad et al., 2019; Stern et al., 2011; Toledo et al., 2012).   

These theories highlight the fact that no one single theory can explain the broad 

heterogenic neurological dysfunction presented after a concussive event (McCrory & Berkovic, 

2001). Each theory was uniquely influenced by the current knowledge and technology available 

at the time of their inception. The aforementioned theories vary, yet they do provide a practical 

framework to describe the nature and severity of the concussion.   Theories on the management 

of concussion will continue to evolve, influenced by a blend of professional judgment and 

emergent medical technology (Aubry et al., 2002; McCrory & Berkovic, 2001; McCrory et al., 

2017; McCrory et al., 2013). This section has primarily presented the acute response to a SRC, 

the next section will illuminate the effects sub-concussive trauma and the possible link to a more 

serious condition, Chronic Traumatic Encephalopathy. 

B. Chronic Traumatic Encephalopathy  

 An insidious neuro degenerative disease of the brain, Chronic Traumatic 

Encephalopathy (CTE) is associated with motor function deficits, emotional control 

disorders and diminished cognitive function including memory deficits, disorientation, 

confusion, intermittent headaches and dizziness (McKee et al., 2009). Overwhelming 

evidence shows that CTE is the result of repeated sub-concussive forces that often occurs 
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well before the development of clinical pathology (Baugh et al., 2012; Belanger, 

Vanderploeg, & McAllister, 2016; Gavett, Stern, & McKee, 2011; Tsushima, Geling, 

Arnold, & Oshiro, 2016). Repeated micro-trauma is of particular concern to college and 

professional athletes who may play a contact sport for 15-20 years and remain unaware of 

the progressive structural damage that occurs after an accumulation of thousands of micro 

impacts over an extended time-frame (McKee et al., 2009).  

 Unfortunately, present conformation of a diagnosis of CTE relies on a post-mortem 

dissection of the brain. While advances in imaging are promising, at present, there is no 

definitive test, scan or biomarker currently available that can reliably differentiate 

between other neurodegenerative diseases that may be occurring as a part of the normal 

primary aging process versus CTE. (Hartman et al., 2002; McKee et al., 2009).  As CTE 

progresses, additional symptoms emerge, including impaired judgement, diminished 

insight and dementia.  In severe cases symptoms may include poor muscular 

coordination, ataxic gait patterns, speech impediments, tremors, vertigo, and hearing 

deficits (Millspaugh, 1937). CTE is a distinct, slowly progressive disease. Common gross 

pathology includes; a small reduction in overall brain weight, an expansion of the lateral 

and third ventricles, a thinning of the corpus colosseum, cavum septum damage and 

scaring of the cerebella tonsils (Webbe, 2006). At a cellular level CTE results in 

extensive tau-immuno-reactive neurofibrillary tangles (NFTs), astrocyte tangles, and 

threadlike neurites dispersion throughout the superficial cortical layers and deposits of 

globular neurites (McKee et al., 2009).  

Hartman et al. (2002), examined lateral cortical impact after a concussion and its 

effect on mice with the Apo lipoprotein E4 (APOe4) gene (Hartman et al., 2002). Hartman 
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concluded that APOe4 and mTBI are both risk factors for the development of Alzheimer 

Disease (AD) pathology. These factors could act together in the progression of CTE and 

related pathophysiology and CTE may share some features of AD. In addition, individuals 

with the gene APO4 are more likely to develop dementia after a TBI. (Hartman et al., 

2002). Development of CTE is a serious health condition that has profound effect on 

quality of life, particularly with regard to poor memory and physical or emotional 

function. Athletes considering a long-term career in contact sports must evaluate the risks 

of CTE against the benefits of participation.  Currently CTE and second impact syndrome 

are the two most pressing issues for healthcare providers and administrators of contact 

sports. The next section will discuss second impact syndrome and why, it is an important 

issue in sport.   

C. Second Impact Syndrome.  

The importance of removing an athlete suspected of sustaining a SRC cannot be 

over emphasized, particularly when one considers the pressure on the healthcare provider 

to return the athlete to competition and the consequence of catastrophic injury. Early re-

entry into participation may place the athlete at high risk for a second concussion and 

possibly second impact syndrome.    Considerable controversy exists regarding risk 

factors for a second concussion, and with few prospective studies available, more work is 

required to establish a possible cause-and-effect relationship (Weinstein, Turner, Kuzma, 

& Feuer, 2013). While rare, Second Impact Syndrome (SIS) is usually fatal and more 

likely to occur in the young developing brain (Khurana & Kaye, 2012). The 

pathophysiology of SIS is associated with an interruption of the brain's blood supply and 

the subsequent increase in intracranial pressure and possible herniation. While not well 
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understood, animal models examining SIS have revealed that two or more concussions 

within a short period of time results in synergistic damage and impairment that would be 

greater than that seen in a single impact  (Bowen, 2003; Weinstein et al., 2013). 

Conversely, Iverson et al.(2006), examined  Impact™ memory, reaction time, processing 

speed, and post-concussion symptom composite scores and found no significant 

measurable effect of one or two previous concussions on athletes’ preseason 

neuropsychological test performance or symptom reporting (Iverson, Brooks, Lovell, & 

Collins, 2006). These findings raise reliability issues regarding the sensitivity of 

standardized neuropsychological tests and their efficacy in measuring cognitive 

impairment after a second concussion.  Memory, reaction time, processing speed and 

post-concussion symptoms are important measures for determining the severity of a 

concussion yet may lack the level of specificity and sensitivity to detect those at high risk 

for SIS and death.  

Approximately 80% of repeat SRC’s occur within ten days of the original SRC with the 

overall risk of a repeat concussion in the same season being relatively low at just 3.8%. 

(McCrea et al., 2020; McCrea et al., 2009). Recovery from a second concussion is often 

delayed or incomplete compared to the initial concussion. A second concussion may require a 

more conservative and rigorous approach to recovery and RTP. A prospective study by McCrea 

et al. (2009), examined the effect of a symptom free waiting period in high school and college 

athletes and found that a symptom free waiting period had no bearing on clinical recovery, nor 

the risk of a repeat concussion occurring in the same season (McCrea et al., 2009).  Mounting 

evidence suggests that accumulation of three or more concussions is associated with impaired 

neurophysiology, an increase in post-concussion symptoms, decreased neurocognitive 
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performance and a higher probability of experiencing a future concussion (Guskiewicz, 2015; 

Stern et al., 2011).   

D. Comorbidities of Concussion. 

 Studies on pediatric concussion patients have shown that post-concussion symptoms are 

more prevalent and persistent in children with mTBI than an extra-cranial type injury. A  

prospective study by Bartow et al. (2010), compared 670 children seen in the emergency room 

with concussion (mTBI), to 197 controls with a TBI or other factors (i.e. a traumatic event, 

preexisting psychosocial problems, or previous medical conditions) (Barlow et al., 2010). The 

most common symptoms for both groups at one-month post injury were fatigue, headache, 

emotional instability and irritability. At three-months post injury, 11% of children with mTBI 

remained symptomatic compared to less than 1% of TBI controls. The prevalence of persistent 

symptoms at one year was 2.3% in the mTBI group and 0.01% in the TBI group.  Protracted 

retrograde amnesia or confusion has been associated with longer RTP trajectories and increased 

risk of prolonged Post-Concussion Syndrome (PCS) (Blume & Hawash, 2012). PCS is associated 

with a broad spectrum of symptomatology with considerable variability occurring among 

individuals presenting with mTBI or TBI (Blume & Hawash, 2012; Merritt, Meyer, & Arnett, 

2015; Truss et al., 2017).  Post-concussion syndromes fit into four major domains or symptom 

clusters. The following is a brief description of each as described in Blume et al. (2012, p. 725). 

i. “Physical Domain; (e.g. headache, pressure in the head, photophobia, phono 

phobia, vision anomalies, nausea, vomiting and balance deficits). 

ii. Sleeping Domain; (e.g. insomnia, excessive sleep, fatigue and drowsiness). 

iii. Cognitive Domain; (e.g. memory deficits, slow processing, feeling “foggy”, poor 

mental  concentration, attention deficits.  
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iv. Emotional Domain; (e.g. irritability, anxiety, depression, changes in mood and/or 

personality)”.   

Lagretta et al, in a retrospective study of 154 high school athletes with documented SRC, 

determined that a positive Family Psychiatric History (FPH) and Personal Psychiatric History 

(PPH) increased risk for PCS when compared to non-concussed controls and found that those 

with FPH had an increased risk of PCS (Legarreta, Brett, Solomon, & Zuckerman, 2018). 

Concussed high school athletes with FPH and PPH were 5 times more likely to develop PCS, 

while athletes with FPH only were over 2.5 times more likely to develop PCS than controls. A 

FPH of anxiety or bipolar disorder is associated with an increased risk for developing PCS 

(Legarreta et al., 2018). Both FPH and PPH should be considered as factors for developing PCS 

and possible protracted return to play trajectories.   

Kuehl et al. (2010), investigated self-reported concussion history’s effect on Health-

Related Quality of Life (HRQOL) in intercollegiate athletes (Kuehl, Snyder, Erickson, & 

Valovich McLeod, 2010). Athletes (210 males, 92 females) were placed in groups in 

accordance to number of SRCs, zero concussions (55.4%), 1-2 concussions (30.7%) and 3+ 

concussions (13.1%). Most SRC (52.7%) occurred more than 12 months before the survey. 

Outcome measures included the SF-36, a thirty-six item instrument to access HRQOL across 

eight sub-scales, and the Head Impact test (HIT-6). Significant differences we found between 

groups for body pain, vitality and social function, with the 3+ concussed group having lower 

scores, indicative of a greater impact of the SRC on the athlete’s mental health status (Kuehl et 

al., 2010). Another instrument, The Profile of Mood States saw similar results when utilized to 

measure mood disturbances in college and retired NFL players with mild traumatic brain injury 

(mTBI) (Kuehl et al., 2010). It is important to recognize that after three or more SRCs there is 
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significant negative impact on the athlete’s mental health and quality of life.   

E. Age and Sex Differences  

 Intuitively, one would expect sex differences exist between prevalence and injury response 

in male and female athletes after an SRC. Overall, males are more likely to sustain a SRC from a 

contact sport  (Coronado et al., 2015) and experience LOC, confusion or amnesia (Tanveer, 

Zecavati, Delasobera, & Oyegbile, 2017). Males have twice the rate of  RTP protocol non-

compliance than females (Yard & Comstock, 2009).  On the other hand,  females have an 

increased risk of sustaining neck injury after a SRC (Sutton et al., 2019) and are more likely to 

have both more severe and prolonged post-concussion symptoms (N. S. King, 2014; Tanveer et al., 

2017). Headaches are common and persistent in SRC regardless of age or sex, with females more 

likely than males to seek treatment for this symptom (Tanveer et al., 2017). Females, aged 9-18 

years, often demonstrate a performance degradation in inhibitory control, cognitive dynamics (Lax 

et al., 2015), memory (Colvin et al., 2009) and processing speed (Sufrinko et al., 2017) than males.  

The influence of sex on RTP trajectory is inconclusive with several studies suggesting females take 

longer to recover (Berz et al., 2013; Sicard, Moore, & Ellemberg, 2019; Zuckerman et al., 2014), 

while another study reported females return to baseline performance levels over shorter time 

frames than males (Lax et al., 2015). 

 Sex differences were identified when utilizing balance as a measure.  Female athletes 

performed significantly better than males on baseline balance tests (Brett, Zuckerman, Terry, 

Solomon, & Iverson, 2018; Moran, Meek, Allen, & Robinson, 2020; Nedović, Adamović, & 

Sretenović, 2019).   Brett et al. (2018), retrospectively examined age and sex differences in 3,763 

youth aged 9 to 21 years after completing an instrumented balance and reaction time protocol and 

a multivariate analysis of variance confirmed significant age and sex differences for balance and 
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reaction time scores. (p < .001).  Post hoc analyses revealed that older groups (adolescents) 

generally had better scores than younger groups (children) on all balance comparisons (p < .001) 

and reaction a significant number of time comparisons (p < .001). Overall, females performed 

better than males on balance (p < .001) and males had faster reaction time scores (p < .001). (Brett 

et al., 2018).  

Recently, a retrospective study by Anderson et al. (2019), determined balance and reaction 

time scores significantly differed by age, with older  (13-18 years) groups generally having better 

scores than younger groups (< 13 years) on all balance (p < .001) and many reaction time 

comparisons (Anderson, Gatens, Glatts, & Russo, 2019). Females performed better when 

compared to males on balance tasks (p < .001) and males had significantly faster reaction times 

(p < .001). Sex effects on balance are present in single-leg stances, with females again 

outperforming males.  Reaction times were faster in males and improved with age, peaking from 

13-17 years old and slowing in 18-year-olds (Anderson et al., 2019).   

Age specific evaluation and treatment guidelines are important considerations for both 

children (5-12 years) and adolescents (13-18 years). Most children recover from an SRC after 

four weeks, while most adults may only require 7-10 days to recover (McCrory et al., 2017; 

Meehan et al., 2011). Symptom rating scales, neuro-cognitive tests and other clinical tests or 

norms must be reconsidered in light of age specific norms and subsequent utility and reliability 

of the diagnostic tools (McCrory et al., 2017). Clearly, student athletes should have regular 

follow up healthcare provider visits after sustaining a SRC to effectively manage both academic 

and physical recovery.  

Recently, a large study by McCrory et al. (2017), determined that preadolescent children 

should be considered as a “distinct” group and that adult or adolescent responses to a SRC are 
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unlike those seen in preadolescent child after an SRC (McCrory et al., 2017). Overall, as expected 

males are stronger, quicker and are more likely to sustain a SRC than females. Females on the other 

hand have superior balance and are more compliant with their treatment plan when compared to 

males. Unfortunately, current published guidelines for the management of concussion do not 

consider sex differences despite evidence that suggest males and females have different treatment 

needs (Tanveer et al., 2017). Nevertheless, males and female difference in presentation of symptoms 

and response to treatments are considered in the overall treatment plan.  

F. Epidemiology of Concussion  

 In The United States, over 150 million students participate in high school sport and almost 

nine-million participate in college sport (Daneshvar, Nowinski, McKee, & Cantu, 2011). Male 

participation rates are approximately double that of females for both high school and college sports. 

An estimated 300, 000 SRCs , occur each year in the United States and these injuries are second 

only to motor vehicle accidents as a leading cause of mTBI among people aged 15-24 years 

(Gessel, Fields, Collins, Dick, & Comstock, 2007). Unfortunately, not all SRCs are likely to be 

reported by players and in fact SRC estimates may fall short of the true prevalence of SRCs 

United States contact sport (Faul, Xu, Wald, & Coronado, 2010; Langlois et al., 2006; Meier et 

al., 2015).  A cross sectional study by Meehan, et al. (2013), reported about one- third of athletes 

evaluated at a sports medicine clinic had sustained a previous undiagnosed concussion(Meehan, 

Mannix, O'Brien, & Collins, 2013). Furthermore, unreported concussed athletes had a significantly 

(p < .004) higher mean post-concussion symptom scores and were more likely to have lost 

consciousness.  From 1995-1997 the National Association of Athletic Trainers conducted a large 

study of 4.4 million athletic exposures in 235 high schools across ten sports (football, male-female 

basketball male -female soccer, female volley ball, softball, baseball, wrestling and field hockey).  
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An Athletic Exposure (AE) equals one athlete participating in one game or practice. Of a total of 

1,219 sports injuries, 5.5% were concussions, with football making up 63.4% of  total concussions 

and tackling being the most prevalent concussive event with six subdural hematomas and intra-

cranial injury (Powell & Barber-Foss, 1999).  This study estimated 62,816 cases of concussion 

occur in the US each year across the ten sports examined, and for football estimated an average of 

only two SRC’s per team per year (Powell & Barber-Foss, 1999).  Other studies on high velocity 

elite contact sports, such as Rugby League or Australian Rules have reported significantly higher 

rates of SRCs at five to seven per team per season (Brennan & Khojasteh, 2020; Khurana & Kaye, 

2012; NRL, 2017).  Clearly, reported concussions may not represent the true prevalence of 

concussion in contact sport, mostly due to a systemic under reporting by athletes and the inherent 

bias of a very competitive high school and college sport culture (Meier et al., 2015; Williamson & 

Goodman, 2006).  

Meehan et al (2011), utilized the High School Reporting Information Online (HSRIO) injury 

surveillance system, and assessed 1,056 athletes, across 20 sports, for school year 2009-2010 who 

had at least one affiliated NATA athletic trainer (AT). All concussions occurred during practice or 

competition and resulted in medical care or the attention of an AT.  Of the 7,257 total sports related 

HSRIO injuries reported, 14.6% were concussions, of those , 88.6%  were new injuries and 11.4% 

recurrent SRCs. Male sports of football, hockey and lacrosse had the highest exposure to 

concussions at 76.9, 61.9 and 46.6 per 100,000 exposures respectively. Concussions distribution 

was even across freshman (21.1%), sophomore (26.4%), and juniors (22.7%) but rose for varsity 

players (53.2%). The most common reported symptoms of concussion in this group were headache 

(93%), dizziness or unsteadiness (75%), difficulty concentrating (53.9%) confusion disorientation 

(44.0%) and visual disturbances/sensitivity (34%). Loss of consciousness (LOC) was rare, making 
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up only 4.2% of all concussions (Meehan et al., 2011). One out of four athletes (23.5%) had a 

resolution of their concussion within 24 hours, 77% resolved symptoms within 7 days and 19.2% 

resolved between 1 week and 1 month. Only 2.8% of concussed high school athletes had symptoms 

lasting longer than 1 month (Meehan et al., 2011).  

A  2006 NCAA study on contact sports found an all sport concussion rate of approximately 

2.5 concussions for every 10,0 00 athletic exposures, up from 1.7 per 10,000 athletic exposures 

recorded in 1988 (Guerriero, Proctor, Mannix, & Meehan, 2012). This increased rate may actually 

represent a broader awareness of concussion and duty of care among  medical teams and sport 

administrators (Daneshvar et al., 2011; Greenhow, 2011).  Another  descriptive study by Marar et al 

(2012), reported an overall concussion rate of 2.5 per 10,000 AEs across twenty high school sports. 

Football related concussion in this study was responsible for 47% of the total all sport concussions, 

with female soccer second at only 8.2% of all reported concussions. Male youth hockey had the 

greatest number of concussions proportionally, with 22% of all ice hockey injury categorized as a 

concussion  (Marar, McIlvain, Fields, & Comstock, 2012). Overall concussion rates across all sports 

were higher in competition (6.4 per 10,000 AEs) than in practice (1.1 per 10,000 AEs).  Table 1 

shows concussion prevalence rates for two different studies one from 2005-2006 and the other from 

2008-2010. Male and Female soccer players had the highest practice to competition ratio at 13.5 

and 11.7 per 10,000 AEs respectively. 
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Table 1. 

High School Sports Concussion Rates per 10, 000 AEs  

   2005-2006a        2008-2010b   

Sport              Practice    Game    Practice          Game Ratio Ratec 

Football  2.1    15.5       3.1           22.9 7.4 (6.5-8.4)   

Girls Soccer  0.9    9.7       0.8  9.2 11.6 (7.6-17.6) 

Girls Basketball 0.6    6.0       0.6  5.5 9.2 (5.5-14.1) 

Boys Soccer  0.4    5.9       0.4  5.3 13.5 (7.8-23.3) 

Boys Wrestling 1.3    6.1       1.3  4.8 3.6 (2.5-5.2) 

Boys Basketball 0.6    1.1        0.6  3.9 6.8 (4.3-10.7) 

Girls Softball  0.7    0.9        0.9  2.9 3.2 (1.9-5.4) 

Boys Baseball  0.3    0.8         0.1  1.1 11.0 (3.0-26.1) 

Girls Volleyball 0.5    0.5         0.5  1.0 2.1 (1.04-4.3)  

____________________________________________________________________ 

Source: a (Daneshvar et al., 2011) b (Marar et al., 2012). c Means 95% CI with practice as the referent 
group.  

 Several other studies have also reported higher instances of concussion during competition 

compared to practice (Bartley et al., 2017; Daneshvar et al., 2011; Powell & Barber-Foss, 1999).  In 

twenty high school sports, concussions represented 13% of all reported injuries, up from 5.5 % 

reported over the prior decade (Marar et al., 2012; Powell & Barber-Foss, 1999). Player to surface 

contact was most prevalent in female volleyball, male wrestling, female gymnastics, track and 

diving. Female field hockey and lacrosse athletes had the highest level of collisions with equipment 

(Marar et al., 2012). 

G. Diagnostics  

 Diagnosis of an acute SRC requires the assessment of clinical symptoms, physical 



  

26 
 

signs, cognitive impairment, neurobehavioral, sleep disturbances and a detailed concussion 

history. A SRC can be assumed if one or more of the following clinical domains are 

present; somatic issues, cognitive dysfunction, emotional changes, physiologic 

impairment, (e.g. loss of consciousness, amnesia, neurological deficits and balance 

anomalies), behavioral changes, cognitive impairment (slowed reaction time) and sleep 

disturbance (Harmon et al., 2019; McCrory et al., 2017).   

 Clinicians have previously used grading systems to help define the severity of a 

concussion (Cantu, 2001, 2006; Iverson, Lovell, & Collins, 2005). For example, a grade one 

(Mild) concussion, results in no loss of conscious, yet retrograde amnesia may be present. 

For a grade two concussion (Moderate), the injury may involve a brief loss of concussion 

and accompanied by retrograde amnesia. A grade three concussion (Severe) concussion, 

involves a prolonged loss of conscious (>5 min) and prolonged retrograde amnesia (>25 

hours) (Cantu, 2001).  Most healthcare providers do not use the grading system for the 

diagnosis and subsequent treatment of concussion due to the heterogenetic nature of the 

injury and a lack of agreement on grading scales.  For example, Kelly et al. (2014), examined 

the concussion management practices of several hundred NCAA Division I. ATs and 

revealed only about a third (36%) ATs surveyed utilized a multi-level grading system for 

side-line and acute management of SRC .  

 Following an SRC, a rapid but brief period of neurological dysfunction occurs that may 

emerge over a number of minutes to hours. Acute clinical signs and symptoms of concussion 

mirror the functional disturbance of the brain more so than evidence of a structural injury. 

Structural injury is usually not evident on standard structural neuroimaging studies. Furthermore, 

SRCs result in a broad spectrum of symptoms that may or may not involve loss of consciousness 
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and in some athletes, these symptoms may be prolonged (McCrea et al., 2013).  The clinical 

signs and symptoms of a SRC are viewed in the context of related injuries (e.g. cervical 

fracture), drug or alcohol use and other medical issues (e.g. prescription medications or 

vestibular dysfunction). Psychological factors can also influence symptom expression and may 

be more associated with psychiatric factors, particularly in those cases that have prolonged post-

concussion syndrome. (Belanger, Barwick, Kip, Kretzmer, & Vanderploeg, 2013). The 

subjective nature of self-reported SRC symptoms present a significant challenge to the health 

care provider with regard to verifying a clinical diagnosis, healing and return to play status of the 

athlete.  Furthermore, symptom expression can mimic those seen in other health issues not 

related to concussion. Best practices calls for objective tests that can support or refute self-

reported symptomatology. The next section will discuss the importance of multi-facet 

neurocognitive assessments and symptomatology.  

Neurocognitive Assessments  

 Neurocognitive (NC) tests are common tools used in the diagnosis and management of 

concussion across elementary school, high school, college and professional sports (Barth et al., 

1989; Kelly, Jordan, Joyner, Burdette, & Buckley, 2014; Patricios et al., 2017). Clinically, NC 

assessments typically measure cognitive abilities, psychological function and sensory-motor 

function. In most cases, NC evaluations supplement a patient’s clinical history, neuroimaging 

and blood work. Healthcare providers can draw conclusions from NC evaluations regarding the 

prevalence and nature of a brain disorder (i.e. Developmental or SRC acquired).  

 The NC test is a well-established method for quantifying both immediate and residual 

cognitive or behavioral deficits that may result after sustaining a mTBI.  These tests have shown 

to be sensitive to cognitive decline associated with a SRC (Iverson et al., 2005; Mark R. Lovell 
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& Collins, 1998; Randolph, McCrea, & Barr, 2005).  Neurocognitive evaluations for sport differ 

from clinical neurological assessment, in that they often administered to a large group of people, 

over short time frames.  NC tests have evolved from clinical application to use in sports and 

measure certain aspects of memory, cognitive processing speed, working memory or executive 

function, typically effected by a brain injury.  

 Standard pencil and paper NC tests rarely accomplish a high test-retest coefficient of .90 

required for making observations in individual change. A study by Barr on high school athletes 

revealed test re-test stability coefficients between 0.39 -0.79, all below what is considered the 

required standard for test retest reliability (Barr, 2003).  Each SRC patient must be treated 

individually, taking into account a large number of factors, many of which may be independent 

of NC individual test results at hand. Furthermore, NC tests results provide only one data point 

for RTP consideration (Barr, 2003; Iverson et al., 2005).  

 The Automated Neuropsychological Assessment Metric (ANAM), CogSport™, 

HeadMinder™ and the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT™) 

have emerged as popular instruments for measuring NC function and symptoms after a SRC. 

Randolph et al,  reviewed these instruments against paper and pencil test for reliability, 

sensitivity, validity, change score rates and clinical utility and found that despite their popularity, 

none met all of the criteria necessary for routine clinical application. Several studies have called 

for the establishment of durable test-retest coefficients (≥.90) through prospective controlled 

studies that establish reliability, sensitivity, specificity, reliable change scores and detect 

concussion in the absence of SRC symptomatology (Randolph, 2011; Randolph et al., 2005).  

 Guskiewicz, et al, (2001) reported small, observed effects in a controlled study of four 

neurocognitive tests (Hopkins verbal learning, Weschsler Digit Span, Stroop Color word, and 
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Trail Making).  Repeated measures analysis of variance at one, three and seven days post-

concussion revealed three of the seven univariate variable were significant on day one only 

(Guskiewicz, 2001).  These results bring into question the reliability and utility of these tests 

beyond the early stages of the return to play trajectory. A subsequent controlled stability 

reliability study by Broglio et al (2007), had participants complete three commercial 

computerized NC tests (Impact™, Concussion Sentinel™, and Headminder™) at baseline, day-

45, and day-50. Intra-class correlation coefficients (test-retest), calculated for each computer 

program and from baseline to day forty-five ranges were low to moderate at .15 to .39 for 

ImPACT, .23 to .64 for Concussion Sentinel™, and .15 to .66 for the Concussion Resolution 

Index. At day-45 through day-50 correlation coefficients estimates again were low to moderate 

ranging from .39 to .61 for ImPACT, .39 to .66 for Concussion Sentinel™, and .03 to .66 for the 

Concussion Resolution Index. These evaluation inconsistencies in reliability may confound 

treatment or return to play decisions due to low specificity and sensitivity and the increased 

potential for false positives and false negatives.  

 ImPact™ exemplifies the genesis of sports NC testing in the United States. In general, the 

instrument has a legacy of wide spread adoption, without robust test reliability across a broad 

spectrum of RTP trajectories and time points (Mayers & Redick, 2012; Randolph et al., 2005).  

ImPACT™ consists of a demographic/health history questionnaire, the 22 item Post Concussion 

Symptom Scale (PCSS) and five neurocognitive tests (memory, attention, learning, processing 

speed and reaction time). ImPACT™ evaluations are predominantly administered by a qualified 

physician, neuro-psychologist or mid-level provider (Kelly et al., 2014).  A brief interview is 

used to access vestibular-oculomotor status including; vestibular symptoms, impairment, 

dizziness and balance. The modified Dizziness Handicap Inventory (DHI), a seven point Likert 
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scale instrument is part of the overall ocular motor evaluation and provides a total dizziness score. 

 Iverson et al, used an ImPACT™ computerized NC test battery to examine attention and 

processing speed of 72 amateur athletes who had sustained a SRC within the previous 21 days. 

The Symbol Digit Modalities Test (SDMT), which measures processing speeds, reaction time, 

verbal and visual memory scores, was compared to ImPACT™ scores and was found to be 

highly correlated with regards to test processing speeds and reaction time measures (Iverson et 

al., 2005). Another study by Mayers et al (2012), deconstructed the levels of acceptance by 

researchers and practitioners utilizing the ImPACT™ tool. A key point in Mayers and Redicks 

paper is the importance of establishing a proper time interval for RTP, one driven by data and best 

practices. Multiple measures of test-retest reliability would be desirable and that other metrics 

such as reliable change indices (RCIs) and regression based methods (RBM) may be relevant for 

individual RTP decisions following a SRC (Lau, Collins, & Lovell, 2012). These approaches 

could provide a more robust assessment of neurocognitive function and selection of certain test 

at specific across within the return to play trajectory.  

 Variations in human performance over time (practice effect), and the current position of 

the ImPACT™ protocol, who recommends testing every two years, is somewhat problematic 

when using ImPACT™ as a non-concussed or preseason baseline measure.  According to Mayers 

et al. (2012), practice effects on ImPACT™ verbal and visual memory, processing speed and 

reaction time complicate baseline comparisons after a SRC. The sensitivity of the ImPACT™ 

instrument may be questionable as one in five concussed athletes were classified incorrectly as 

normal while approximately one in three non-concussed athletes incorrectly classified as 

concussed (Mayers & Redick, 2012). In view of the high risk of sustaining a second concussion 

within two weeks of a previous SRC, RTP protocols and recovery may require at least four to six 



  

31 
 

weeks. Clearly, for evaluation and RTP decisions after a concussion ImPACT™ is not a stand-alone 

tool for clinical judgement (Mayers & Redick, 2012; McCrory et al., 2017; Partridge & Hall, 2014).  

 A recent prospective study by Henry and colleagues, presents the characteristics of post-

concussion recovery at one-week time intervals utilizing multiple variables including 

symptomatology, neurocognitive and vestibular- oculomotor outcomes (Henry, Elbin, Collins, 

Marchetti, & Kontos, 2016). This prospective study examined 55 participants between the ages of 

14 and 22 years (63% males, 36.4% females). The ImPACT™ tool was used to access SRC 

outcome measures including neuro-cognitive composite scores, total symptom scores, dizziness and 

vestibular-oculomotor responses at subsequent one-week interval post SRC over four weeks. Fisher 

exact test and repeated-measures ANOVA assessed neurocognitive composite scores, total symptom 

score, dizziness and vestibular-oculomotor scores. A cox proportional hazards model was used for 

sex as a between group factor (p <.05). Total symptoms scores demonstrated the greatest change 

across the four-week time period and symptom improvement at each one-week interval (p< .001). 

Males had significantly lower scores than females at week two after a SRC. For neurocognitive 

symptoms, both verbal memory and visual memory improved across all four weeks. There were no 

significant differences between weeks three and four post injury, suggesting a gradual improvement 

from week one to three and a plateau effect between week three and four. There were no significant 

sex differences across weeks one through four with regard to neurocognitive scores. Vestibular-

oculomotor dizziness scores decreased significantly after SRC when comparing week one with 

weeks two, three, and four. (p < .001) (Henry et al., 2016). These results reinforce the importance of 

utilizing a multi-modal comprehensive assessment of SRC, one that includes symptoms, 

neurocognitive testing, and vestibular-oculomotor outcomes (balance).  Recovery from a SRC is not 
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a simple singular trajectory but a composite of symptoms and dysfunctions, each with their own 

variable trajectory (Henry et al., 2016).  

 Recently, Sicard et al. (2019), recommended using raw scores over clinical variables to 

increases the sensitivity of the Cogstate™ NC test battery (Sicard et al., 2019). The Cogstate™ 

test measures processing speed, attention, verbal and visual learning, working memory, visual 

motor function, executive function and social cognition. This study looked at evidence of long-

term alterations in higher cognition after a SRC and that these changes may not have been 

evident had the researchers relied on automated published clinical norms alone.  

 Alterations in sleep patterns are common after a concussion or other traumatic event and 

may in fact influence performance on a neurocognitive test. A recent cross-sectional 

retrospective study by Kosttyn et al. (2015), investigated the relationship between self-reported 

sleep characteristics and recovery from a SRC of 545 outpatient adolescent athletes. Patients (Age 

11-18 years) completed a neurocognitive test within 90 days of sustaining a SRC. Of the 520 

athletes, 320 reported zero SRCs, 148 had one previous concussion, 53 had two and 23 athletes 

had three of more. Composite scores on the ImPACT™ test, including the PCSS, were collected to 

measure neurocognitive function. Athletes, who perceived their sleep as disrupted, reported a 

greater number of total concussion symptoms on the PCSS than patients who did not perceive 

sleep disturbance symptoms throughout their recovery from a SRC. Patients reporting sleep 

disturbances on the first ImPACT™ test averaged a PCSS score of 25 compared to an average 

score of nine for asymptomatic patients. For a second ImPACT™ test the average score for self- 

reported sleep disturbance patients dropped 16 points, significantly different from those patients 

who were asymptomatic for sleep disturbances. Patients who received fewer than 7 hours of sleep 
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scored higher on the PCSS than those who get an adequate amount of sleep regardless of the 

presence of a SRC (Kostyun, Milewski, & Hafeez, 2015).  

 Sleep disturbances are important considerations when establishing neurocognitive baseline 

testing. This is of particularly concern for the adolescent athlete impacted by a history of sleep 

disturbances that may be unrelated to a SRC. Additional sleep studies utilizing wearable 

technology (e.g. accelerometers, cloud-based biosensors, heart rate monitors) are required to define 

objectively, the relationship between sleeping patterns and recovery from an SRC.     

Vestibular Ocular Motor Screening (VOMS) 

  Ocular motor dysfunction is common after a SRC and presents significant challenges 

with regard to evaluation of postural stability and post-concussion symptomatology. Health care 

providers consistently utilize the VOMs as an expedient evaluation tool to determine vestibular 

system dysfunction (Kelly et al., 2014). The vestibular system consists of the inner ear sensory 

organs, the brain stem, the cerebellum, cerebral cortex, ocular system and postural muscles. Two 

distinct sub-system exists within that system, the vestibular-ocular sub-system (i.e. visual 

stability during head movement) and the vestibular-spinal (i.e. postural control, balance). These 

two sub-systems do not share the same neural circuits (central versus peripheral) and thus one 

can be disabled independently from the other (Allum, 2012; Cullen, 2012).  This is an important 

clinical distinction for assessment of concussion.  

 Visual Ocular Motor Screen (VOMS) is a symptom provocation-screening tool used to 

evaluate both vestibular, and ocular motor deficits following a SRC. Visual or ocular motor 

deficits can present as blurred vision, diplopia, impaired eye movements, reading difficulties, 

dizziness, headaches, eye pain, and poor visual focus.  The VOMS consists of five ocular motor 

performance categories; Smooth Pursuit, Saccades (horizontal and vertical), Convergence (near 
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point measure), Vestibular Ocular Reflex (VOR) and the Visual Motion Sensitivity Test.  On 

completion of each task, athletes subjectively rate symptoms for headache dizziness, nausea, 

and fogginess on a zero (no symptoms) to ten (severe symptoms) Likert scale (Mucha et al., 

2014). A study by Kontos et al. (2012), reported dizziness in approximately half of concussed 

athletes. Dizziness may be  clinically indicative of vestibular or ocular motor issues and is highly 

predictive of a RTP trajectory greater than 21 days(Kontos et al., 2012).   

 A controlled study by Mucha et al (2014), reported symptom provocation on sixty-one 

percent of high school athletes after performing at least one VOMS item within 5 days of 

sustaining a SRC and positively correlated with PCSS scores. The VOR (OR, 3.89; p <.001) and 

VOMS (OR, 3.37; p <.01) components of the VOMS were most predictive of an athlete being in 

the concussed group. The VOMS has an advantage over static balance measures (e.g. mBESS) as 

it measures the dynamic aspects of vestibule-ocular control and function (Mucha et al., 2014).  

Sensory and vestibular evaluations may help the clinician better understand the specific 

functional deficit presented (vision, hearing or vestibular) for each individual case and craft a 

more appropriate, individualized post SRC rehabilitation plan (Moore, Kay, & Ellemberg, 2018). 

Despite the fact that VOMs is accepted by most healthcare providers as a best practice clinical 

diagnostic tool, additional research is required to verify the specificity and sensitivity   

characteristics across the RTP trajectory.  

Balance Assessments  

 A disturbance in balance is a common symptom of concussion.  Of the estimated 

300,000 SRC’s sustained in the US each year, approximately 30% have balance disturbances 

(L. A. King et al., 2014). An examination of multiple balance assessment tools used in the 

evaluation of a SRC revealed that balance and dizziness are two related symptoms of 
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concussion. These symptoms have been observed to return to normal as early as 72 hours after 

a SRC, with some cases lasting significantly beyond seven days post injury (Murray, Salvatore, 

Powell, & Reed-Jones, 2014).  

 Post- concussion disturbances in the vestibular system are reflected in an athlete’s 

inability to maintain postural stability or balance. Murray et al. (2014), examined five common 

balance assessment methods for SRC 1) the Clinical Test of Sensory Organization and Balance 

(CTSIB), 2) the Sensory Organization and Balance Test (SOT), 3) the Balance Error Scoring 

System (BESS), 4) the Romberg Scale (RS) and 5) the NCAA sponsored Wii-Fit (WF) 

postural control measures. The CTSIB, BESS, and Romberg test are subjective measures of 

balance and rely on “trained evaluators” to determine balance deficits. Tests are performed 

across four conditions, 1) eyes open firm surface, 2) eyes closed firm surface, 3) eyes open 

foam surface and 4) eyes closed foam surface resulting in the calculation of an index for each 

condition. The BESS protocol calls for three stances, double leg stance, single leg stance and 

tandem. Balance errors included hands off iliac crest, opening eyes, stepping, stumbling or 

falling, lifting forefoot or heel and out of test position longer than 5sec. Maximum error was 

ten, total BESS scores calculations required the summing of the errors from all six stances. 

Mean total BESS scores for pre and post testing were calculated.  The simpler Romberg 

evaluation requires the subject to stand on a firm surface with feet together and the eyes open. 

The subject is then asked to maintain balance for up to thirty seconds. The test is performed a 

second time with the eyes closed. Test interpretation is based time until a loss of balance. The 

SOT is a high tech computerized protocol and through six different conditions challenges 

visual, vestibular somatic sensor function. Again the test is performed both eyes open and 

closed. The Wii-Fit test requires the use of commercially produced mat sensor to measure and 
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transmit data to a host computer. The Wii-fit software provides test instructions to challenge 

the subjects balance and weight distribution until they experience a loss of balance. 

Investigators found no reliability, validity, sensitivity or specificity data exists to support the 

use of the CTSIB, and SOT tests. (Murray et al., 2014). The Romberg and Wi-Fit tests were 

reliable for elderly populations. Given the multitude of balance test available, clinicians must 

be aware of test validity and appropriately match tests to specific populations of interest.   

The BESS test had high reliability (0.87) high specificity (0.96) but low sensitivity 

(0.34). Low test sensitivity is most likely due to low inter-rater reliability due the subjectivity of 

the assessment. The BESS test, a common standardized tool for post SRC across multiple 

populations, has moderate to high reliability for evaluation of a post SRC balance anomalies 

(Murray et al., 2014). One limitation of the standard BESS include an inability of the test to 

detect balance deficits at seven days post SRC. Furthermore the test may be more appropriate 

for use as a pre-screening “side-line” test and/or in the later stages of concussion management 

and return to play (Murray et al., 2014). Improvements in inter-rater and intra-rater reliability 

measures for the BESS must rely on objective instrumented measurement of postural sway. 

Use of tri-axial accelerometers and other motion sensors are precise tools that can consistently 

measure small differences in balance over time after a SRC, particularly when comparing 

baseline measures to concussed values (Patterson, Amick, Pandya, Hakansson, & Jorgensen, 

2014a).  

Burk et al. (2013) evaluated the changes in BESS scores after a competitive athletic 

season. This study had three specific concerns regarding the reliability of the BESS; 1) inter 

and intra-rater reliability, 2) the influence of fatigue on performance and 3) functional ankle 

stability. Two other confounding variables that might improve BESS score (decreased balance 
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error scores) are repeated test performance (learning effect) and the effect of concurrent 

neuromuscular balance training. Fifty-eight NCAA Division I college female student athletes 

from Soccer (n=18) Volleyball (n=15) and physically active controls (n=17) participated in the 

study. A three-level one-way ANOVA’s determined group differences between pre and post 

season scores.  For BESS score changes between pre and post-tests, there was no interaction 

between group and time. There was a significant main effect for time on BESS for all 50 study 

subjects for pre (M = 9.00, SD ±2.9) and post (M = 7.29, SD ±2.8) season error scores, with a 

medium (0.38) effect size. The primary finding of this study was a statistically significant 

improvement in BESS over a season, suggesting even at 90 day intervals a practice effect may 

influence the BESS (1.08 error improvement) (Burk, Munkasy, Joyner, & Buckley, 2013). 

Additionally, strength and conditioning programs as part of the regular season training may play 

a role in a post season reduction in balance errors scores (improvement). According to Burk et 

al (2013), this may confound return to play (RTP) decisions resulting in a clinician incorrectly 

classifying an impaired athlete as healthy (improved BESS score) and ready for RTP.   

 Powers et al, (2014), utilized Center of Pressure (COP) measures during static balance to 

determine if balance impairments have resolved or persisted on return to play (RTP) after a 

SRC.  (Powers, Kalmar, & Cinelli, 2014). Measures of the COP provides an indirect objective 

measure of movement of the center of mass during postural control. A force plate connected to 

a computer use used to measure small changes in balance. Nine concussed varsity football 

players were matched by age and position with nine non- concussed controls. Exclusion criteria 

included no medications or other injury that would influence balance or gait. The control group 

was negative for a concussion within the last 12-months. Concussed subjects were tested during 

the acute phase (symptomatic but able to perform task) and at RTP. Static balance testing 
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required subjects to stand on a force plate with feet together hand by their sides. Force plate 

samples were set at 50Hz for three trials of 60 seconds duration for both eyes open and closed 

with the order of visual conditions randomized. Root Mean Squares (RMS) of the COP for both 

displacement (mm) and velocity (mm/sec), as well as anterior/posterior (A/P) and medial-

lateral (M/L) planes, were calculated. During the acute phase, concussed athletes had a greater 

COP displacement with eyes closed than eyes open when compared to non-concussed controls 

(Powers et al., 2014). COP displacement was not different between visual conditions for 

controls. For COP AP velocity, concussed athletes were higher with eyes closed compared to 

eyes open and athletes had faster adjustment velocities than controls with closed eyes. This 

supports the notion that vestibular function is impaired and the athlete cannot make the 

adjustments to maintain postural stability.   

On average concussed players in this study returned to play in 26.4 days, SD = 14, after 

a SRC. At RTP, concussed players had higher COP velocities than controls, across M/L and 

A/P conditions, and COP velocity was greater with eyes closed compare to eyes open. 

Researchers also found that balance control in concussed athletes, was not fully restored upon 

RTP. For the acute post concussive phase, impaired vestibular and visual CNS input increased 

COP displacement. This study revealed, for concussed players, COP displacement recovered, 

but COP velocity remained elevated at RTP (persistent vestibular impairment). Furthermore, 

balance deficits were more profound for the A/P direction measures than medial lateral motion. 

Symptom evaluation and subjective balance tests (no-instrumented) may not be sufficient in 

terms of sensitivity to SRC across the RTP trajectory (Powers et al., 2014).  There is a need for 

an objective (instrumented) balance assessment tool to avoid a player returning to play with 

any sensory motor impairment.  
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The US National Institute of Health has recently encouraged the use of “instrumented” 

Balance Error Scoring System (BESS) to assess general balance through the measurement of 

postural sway (L. A. King et al., 2014). King and colleagues (2014) examined BESS scores and 

the clinicians’ ability to classify the patient’s TBI status. Twenty-six TBI patients were 

diagnosed by a sports medicine physician with a TBI (n=13). The average post-injury duration 

was five months (SD ±3.3). Four primary measures were involved; 1) BESS, 2) modified 

BESS (mBess), 3) instrumented BESS and 4) the instrumented mBESS. The mBESS test 

involves five standardized standing postures (feet together, tandem left and right, single leg 

stance left and right). Unlike the standard BESS, the mBESS is performed with eyes closed 

only and while standing on a firm surface.  An inertial sensor was used to measure 

lateral/medial and anterior/posterior postural sway. Root mean Squares (RMS) calculated 

around the mean acceleration, showed a loss of balance (LOB) reflected in a larger RMS 

value. Scores on the non-instrumented BESS/mBESS were similar across time points but were 

significantly different for the instrumented measure for BESS/mBESS. The addition of foam 

during the full BESS for both instrumented and non-instrumented did not improve the test 

ability to identify the difference between TBI or control subjects. Using the instrumented 

modified mBESS resulted in highest degree of diagnostic accuracy by reducing classification 

error (L. A. King et al., 2014). Study limitations included, small sample size, no external 

criterion standard for “abnormal” balance, and that “self-reported data” can often result in 

“under-reporting” of a TBI.  Finally, the investigators were privy to subject’s diagnosis, 

representing a risk for examiner bias limitations. The limitation was reported as non-

significant by the authors. This study emboldened the clinical value of utilizing inertial 

sensors to objectively measure specific domains of balance in adolescents who sustained a 
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mTBI.  A subsequent study by King et al. (2017) utilizing accelerometers, compared fifty-

two college athletes in the acute phase of concussion and seventy-six non-concussed 

controls. The instrumented mBESS measures significantly out-performed the clinical error 

count measures or manual mBESS (p < .001 and p = .06 respectively) when distinguishing 

concussed from non-concussed athletes (L. A. King et al., 2017).    

Reaction Time Assessments  

 Numerous studies support the notion of a prolonged reaction time (RT) immediately after 

sport-related concussion and that prolongation is typically, followed by a progressive 

improvement in RT with an eventual return to baseline (Collie, Makdissi, Maruff, Bennell, & 

McCrory, 2006; Collins et al., 2003; Eckner, Kutcher, & Richardson, 2010; Warden et al., 2001). 

In addition to a prolonged RT, individual response variability have shown to increase after 

concussion. Two studies suggest the importance of base line testing for RT prior to participating 

in contact sports (Eckner et al., 2010; Hugenholtz, Stuss, Stethem, & Richard, 1988). One 

study had some limitations including small sample size, lack of multiple measures over time for 

RT and the study failed to control for performance motivation (Eckner et al., 2010). Other 

studies have reported a prolonged nature of RT after concussion and that RT seems to mirror the 

trajectory of post-concussive symptoms (Collie et al., 2006; Collins et al., 2003). Additionally, 

Warden et al. (2001) concluded that it is possible that a “slowed” RT may remain despite a full 

resolution of self-reported symptoms and return to sport based on clinical evaluation criteria 

(Warden et al., 2001). These findings suggest that RT values may increase sensitivity to the 

clinical assessment of concussion compared with self-reported symptoms and a general physical 

examination alone. Additional study is required to determine whether RT is sensitive to the 

known effects of concussion and whether this test is feasible for concussed athletes on the 
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sideline, in the training room immediately after an injury and across the RTP trajectory (Eckner et 

al., 2010).  

Sideline Assessments 

Recognizing a SRC typical involves a rapid assessment by the healthcare provider.  

It is important that the on-field evaluation of player after a possible concussive event 

begin with a cervical spine evaluation to rule out a structural cervical injury. Following 

an SRC, a brief period of neurological dysfunction occurs that may emerge over a 

number of minutes to hours. Acute clinical signs and symptoms of concussion mirror 

functional disturbance as opposed to structural injury, and the injury is often not evident 

on standard structural neuroimaging studies (McCrory et al., 2017) . When a player 

presents with signs and symptoms of a SRC, an evaluation by a qualified healthcare 

professional for a cervical injury is imperative. If no healthcare professional provider is 

available, the player should be immediately and carefully, removed from the game. 

Sideline evaluation should include a brief neuro-psychological evaluation with the goal of 

recognizing an emergent SRC through screening rather than working on a differential 

diagnosis (McCrea et al., 2020; McCrory et al., 2017). 

The Sports Concussion Assessment Tool, 5th edition (SCAT5), is a common 

accessible paper based sideline assessment tool that can help distinguish between a 

concussed and non-concussed player immediately after the injury. The tool was 

developed by CISG, and designed for use by physicians or licensed healthcare providers. 

(Davis et al., 2017; Echemendia et al., 2017; McCrory et al., 2017). Intended to 

supplement the ImPACT™ test, SCAT5 has a stepwise approach to acute management of 

an SRC. The SCAT5 identifies “red flags”, including observable signs of concussion, a 
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memory assessment, the Glasgow Coma Scale, a cervical spine assessment, a 22-item 

symptom evaluation post-concussion symptom scale (PCSS), cognitive screen and the 

non-instrumented mBESS. The diagnosis of a SRC is a clinical judgment by the 

healthcare professional and the SCAT5 is not designed as a stand-alone tool for a 

diagnosis of a SRC. Other limitations include test administration time, subjective nature 

of the test items (e.g. subjective scoring system for mBESS) and limited access to paper 

based records (Guskiewicz, 2001; Kelly et al., 2014).  

In SRCs, it is common for the concussed athlete to deny symptoms even when they are 

present and obvious to the health care provider (Meier et al., 2015). The SCAT 5 is a rapid and 

cost effective SRC sideline evaluation tool. This tool is particularly useful for game day or side- 

line assessments and provides important information to the clinician regarding the return to play 

question and need for additional medical care. Unfortunately, the SCAT5 utility begins to 

decrease after three to five days post-injury. The concussion symptom checklist does however 

provide clinical utility beyond that time point (Echemendia et al., 2017; Giza et al., 2013; 

McCrory et al., 2017).  

After the initial sideline assessment, an in office re-evaluation should be performed 

by a qualified healthcare provider with 24-48 hours. This procedure includes a 

comprehensive patient history, detailed neurological examination, cognitive function 

assessment, sleep pattern assessment, Visual Ocular Vestibular Screen (VOMS) and an 

assessment of signs and symptoms status (improvement or worse since injury) (McCrory 

et al., 2017). The clinician should also consider the need for any neuroimaging to rule out 

a possible structural injury or more serious TBI.  
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Instrumented Assessments 

In 2010 Sway™ Medical, a small medical technology concern introduced a cell phone 

application that utilizes a tri-axial accelerometer and proprietary algorithm to access 

symptomatology, balance and reaction time after a SRC.  The application can transmit cognition 

and balance performance data to a secure cloud based server, and allows for an easy comparison of 

post SRC values to pre-season non-concussed baseline values. Age and sex specific normative data 

are also accessible for additional comparison.  A secure internet portal allows healthcare providers 

easy access to an athlete’s data for analysis across the RTP trajectory. The Sway™ application has 

approval from the FDA as a medical device.     

The Sway™ Sports Plus protocol contains four cognitive tests, memory (delayed recall, 

working memory), inspection time (differentiation of line length), impulse control (go, no go) and 

simple reaction time (go). The clinician can exclude or include any specific component of the 

sports testing protocol depending on the evaluations main purpose (e.g. sideline assessment 

clinical assessment, RTP status). Variables are scored from 0-100, with 100 being a perfect 

performance or no error. Reaction time values are in milliseconds or on a 0-100 scale.  The use of 

a smart-phone based accelerometer to measure reaction time significantly reduces response 

latency to just 9.2-11.3 milliseconds compared to greater than 44 milliseconds latency typically 

seen in touch screens or mouse clicks (Jota, Forlines, Leigh, Sanders, & Wigdor, 2014).  

The balance portion of the Sway™ application utilizes an instrumented version of the 

modified Balance Error Scoring System (mBESS) eliminating both soft surface and eyes open 

portions of the original BESS test. The instrumented mBESS and has a strong inverse correlation 

(r = -.767, p < .01) with the manual mBESS. Patterson et al. (2014) found a mean manual 

mBESS score of was 5.93, SD ±4.45, and the mean Sway™ score was 81.8, SD ±4.1.  The 
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Sway™ balance score significantly predicted the manual mBESS score (p < .0001), where the 

Sway™ balance score accounted for 36.1% of the variance observed in the mBESS score 

(Patterson et al., 2014a).  

The Sway™ instrumented mBESS sports protocol consists of five test stances; bipedal 

(feet together), tandem stance (left foot forward), tandem stance (right foot forward), single leg 

stance (right), and single leg stance (left). Unlike the BESS, the mBESS stances are on a firm 

surface only, with eyes closed for a period of 10 seconds. Patterson et al., (2014) compared 

Sway™ balance assessments with an industry standard clinical balance system. (Patterson, 

Amick, Thummar, & Rogers, 2014b).  Thirty healthy college aged individuals balanced on a 

Biodex™ balance system while concurrently activating the Sway™ phone based system. A 

significant correlation between the two data sets was found with a mean difference of (0.030 ± 

0.713) (r = 0.632, p < 0.01). Despite the small sample size, these balance measures were 

considered consistent (Patterson et al., 2014b) This study does provide external concurrent 

validation of a smart phone based measuring system with an industry standard balance 

measuring system.     

Burghart et al (2017),  concluded that lower Sway™ balance scores were associated with 

instability, and that these scores provide a valid and reliable tool for the evaluation of college age 

populations.  Mean Sway™ balance scores ranged from 86.9 to 89.9. A repeated measures 

ANOVA revealed no significant mean difference between Sway™ balance scores for the 

experimental trials, F (5,115) 0.673; p < 0.65, with inter-class correlation (ICC) for re-test 

reliability of  0.76 (SEM 5.39) (Burghart, Craig, Radel, & Huisinga, 2017).  This study also 

recommends a familiarization trial at the beginning of each testing session to eliminate novel 

task errors. Finally, Sway™ balance scores may demonstrate a ceiling effect when assessing 
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balance improvements in those who already demonstrate good balance (e.g. gymnasts or 

cheerleaders) (Burghart et al., 2017).  

Simple reaction time (RT) portion of Sway™ is recorded as an average of five trials and 

is computed as a raw score in milliseconds (a low score is good) or normalized score 0-100 (high 

score indicates a fast RT). (Patterson et al., 2014b).  Sway™ balance scores are compared to pre-

season non-concussed baseline score or age and sex appropriate norms. (Brett et al., 2018).  The 

Sway™ instrumented protocol provides a more comparable score, without the inherent bias of 

the test administrator or low rater reliability, typically associated with a non-instrumented BESS 

(Amick, Chaparro, Patterson, & Jorgensen, 2015). This smart phone application is a particularly 

effective sideline tool due to test brevity and ability to provide objective balance and reaction 

time measures, through a simple user interface (Burghart et al., 2017).  

Treadmill Stress Tests   

A treadmill evaluation to determine exercise tolerance after a SRC provides 

valuable prognostic information on symptom response to exercise. In fact, this evaluation 

will lead to a safer, more precise return to physical activity. A controlled randomized trial 

by Leddy et al. (2018) compared the effect of exercise testing one-week after an SRC and 

found no significant difference in symptoms between those who performed the exercise 

testing and those who did not.  For the treadmill group, those who had a low symptom 

provocation threshold for exercise (<135 beat per min) had longer recovery trajectories 

(J. Leddy et al., 2018). Another study by Cordingley et al, (2016) evaluated the safety and 

clinical application of treadmill testing in one-hundred and forty-one pediatric SRC 

patients and found no serious side effects after exercise testing. Furthermore, treadmill 

testing confirmed physiological recovery in 96% of patients evaluated, and proved to be 
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safe, tolerable and useful in the management of SRC (Cordingley et al., 2016). Clearly 

graded treadmill tests negative for symptom provocation can provide objective 

locomotion (dynamic balance) information valuable in the overall assessment of the 

athlete’s recovery status.    

H. Provider Evaluation Practices   

The need for careful coordination of evaluation, treatment and RTP trajectories by all 

healthcare providers is paramount. Sports medicine physicians, ER physicians, primary care 

physicians, neuropsychologists, physical therapists, exercise physiologists and ATs all have a 

specific role as part of a multi-discipline team approach to recovery from a SRC (McCrory et al., 

2017; McCrory et al., 2013). The collective measures of balance, cognition, neuro-physical 

performance and SRC symptomatology have high sensitivity rates (0.96) for detecting a 

concussion while no single independent measures exceed moderate (0.70) sensitivity rates 

(Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007; Register-Mihalik, Mihalik, & 

Guskiewicz, 2008).  Recently, Patricios et al. (2017) reported high sideline evaluation sensitivity 

and specificity for PCSS and multi-modal assessments. Balance and cognitive tests had low 

sensitivity but high specificity for side line evaluation (Patricios et al., 2017). These sensitivity 

ratings speak to the importance of RTP decisions not relying on a single test alone. Sound clinical 

judgement considers the examination of all tests within the context of each individual SRC case. 

It is beyond the scope of this paper to discuss the roles and responsibilities of every clinical 

discipline involved in the management of SRC. This section will present information on two 

important providers, athletic trainers, and physicians.   
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Athletic Trainers  

A cross-sectional study by Kelly et al (2014) surveyed the evaluation practices of 610- 

experienced NCAA Division I ATs. The survey included respondent’s institutional demographics 

as well as SRC assessment, recovery and RTP practices. Most ATs reported utilizing at least 

three different standardized SRC evaluation tools across pre-season baseline (71.2%), acute 

evaluation (79.2%) and RTP evaluation (66.9%). Additionally, the number of standardized tests 

performed were positively correlated (r = 0.851, p < .01) for baseline and acute measures, 

slightly less for baseline and RTP (r =0.468, p < .01) and acute and RTP (r = 0.460, p < .01) 

measurement time points (Kelly et al., 2014).  By far, the most common post SRC balance tests 

used by ATs in this study was the mBESS (73.9%). Very few ATs used the computerized force 

plate test (1.3%) or the SOT (0.2%) evaluation methods. NC evaluations were used by 90% of 

ATs surveyed and typically involved a physician (63%) for interpretation or consultation. Only 

9.7% ATs reported utilizing neuropsychologists as part of the provider mix (Kelly et al., 2014).  

 A large portion of ATCs (93.6%) utilized a SRC symptom checklist with a clinical 

examination (96.6%). A little over a third (36%) of ATs reported the use of a multi-level 

concussion grading scale as part of their assessment during the acute assessment time point. The 

most common clinical elements were cognitive screening questions including the Standardized 

Assessment of Concussion (SAC).  Both mBESS and SAC are excellent sideline assessment 

tools when they are compared to baseline values, yet few (10-20%), of ATs in this study, 

depending on the test platform, had access to electronic recorded baselines (Kelly et al., 2014). 

Clearly, lack of access to paper based baseline data makes it impractical for timely baseline to 

post SRC sideline comparisons.    
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A study by Meehan et al. (2011), reported that ATs assessed 94% of concussed athletes, 

primary care physicians accessed a little over half (58%), with 67% of SRC’s accessed by both 

providers. In terms of return to play, physicians as opposed to AT’s were more likely to use 

computerized neuropsychological testing (52% vs 35%) and an MRI study (5.5% vs 0.6%) yet, 

CT scans are most likely ordered if the  assessment is performed by an emergency physician 

(75% vs 20.2%) or neurologists (72% vs 19.9%). Decisions for RTP were mostly made by a 

physician (50.1%) or an AT (46.2%).  However, about 2.5% of athletes were returned to play by 

non-medical personnel (i.e. coaches/parents) (Meehan et al., 2011).  

Primary Care Providers  

Pleacher and Dexter (2006) surveyed physician interest in utilizing neuropsychological 

testing for SRC assessments as a part of their overall clinical judgement.  An 11-item 

questionnaire sent to 723-providers via email, resulted in a 50.8% (367/732) response rate.  The 

respondents included family practice physicians (56.9%), pediatricians (27.8%), nurse 

practitioners (8.4%) and physician’s assistants (6%). Slightly more than half of the respondents 

had treated one to four concussion. Of note, only a small number (6%) of primary care providers 

were  involved in sideline medical coverage for sports events (Pleacher & Dexter, 2006).  

An examination of clinical directives for concussion revealed 68.4% of respondents used 

published guidelines for the management of concussions, with the majority (55.4%) of physicians 

utilizing the American Academy of Neurology Guidelines. Unfortunately, only 16% of the 

respondents said they could access neuropsychological testing within a week of the injury. 

Overall, 55.8% of the surveyed respondents indicated they would be likely to use 

neuropsychological testing in the future. The most frequent reported reason for physicians not 

using the standard concussion guidelines was, lack of awareness that they exist as well as 
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considerable barriers with regard to cost, availability and ease of deployment of recommended 

tests (Pleacher & Dexter, 2006).  

Arbogast et al. (2013) surveyed 89 primary care providers regarding pediatric treatment 

practices for cognitive rest and recovery from a SRC (Arbogast et al., 2013). The providers 

reported 10-18% of concussion patients demonstrated cognitive performance difficulties at 

school (e.g., poor concentration, fatigue, feeling in a fog, and vision problems). Most patients 

(63-85%) reported having a headache during on either the initial or the follow-up visit. These 

symptoms significantly influenced academic performance with approximately 30% of their SRC 

patients reporting a decline in school performance or attendance. The majority (64%) of 

providers identified cognitive rest as important component of concussion management yet few 

provided written recommendations for return to academic activities (Arbogast et al., 2013).  

Additional efforts are required to make the primary care provider more aware of the 

concussion assessment and treatment guidelines, including the limitations of neuropsychological 

and other tests.  The use of objective multi-faceted, cloud-based evaluation tools provide an array 

of data that enhances “clinical judgement” and improves post-concussion recovery outcomes 

across the RTP trajectory (Buckley, Burdette, & Kelly, 2015; McCrory et al., 2017; Schneider et 

al., 2017). Healthcare providers specializing in concussion should continue to build multi-

disciplinary injury management teams to address the individual needs of concussed athletes. 

Teams should span a broad spectrum of health care disciplines including physicians, ATs, 

physical therapists, exercise physiologists, nutritionists and neuro-psychologists. A multi-

disciplinary approach to the treatment of SRC will be an important component of improving 

recovery outcomes.       
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I. Treatment  

Physical and cognitive rest is the most widely used treatment strategies for treating 

a SRC, particularly for the initial 24 to 48-hour post injury period (McCrory et al., 2017).  

Appropriate rest, typically reduces symptomatology during the acute phase of recovery 

and can have significant impact on minimizing cerebral energy demand in the initial 

stages of recovery (Giza et al., 2013; McCrory et al., 2017).  There are conflicting 

findings regarding the efficacy of complete rest as opposed to a progressive increase in 

symptom limited physical and cognitive activity (Collins et al., 2016; Harmon et al., 

2019; McCrory & Berkovic, 2001; McCrory et al., 2017; Schneider et al., 2017). The 

majority of concussion consensus statements recommend that athletes limit activity until 

they become symptom free (Harmon et al., 2019; McCrory et al., 2017). While this would 

help mitigate symptoms during the very early acute phase of an SRC, there is sufficient 

evidence to support complete rest as being less effective than a progressive symptom 

limited physical and cognitive activity (Haider et al., 2021; J. J. Leddy et al., 2019; 

McCrea et al., 2009; Thomas, Apps, Hoffmann, McCrea, & Hammeke, 2015).  Clearly, 

the heterogenic nature of SRC requires a multitude of treatment options, carefully crafted 

and considerate of each individual athlete’s clinical presentation.  

Rehabilitation 

After sufficient rest, athletes are encouraged to increase progressively both physical 

and cognitive workloads provided there is no symptom exacerbation (Giza et al., 2013; 

McCrea et al., 2003).  For prolonged (> 14 days) symptoms or impairment after a SRC,  

psychological, cervical and vestibular rehabilitation may be effective treatment options 

(McCrory et al., 2017).  A systematic review by Schneider et al. (2017) considered 
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nineteen SRC treatment studies, and found moderate evidence that cervical and vestibular 

therapies are more effective than rest alone. These studies revealed minimal evidence 

supporting improved outcomes after cognitive behavioral therapy or pharmacological 

intervention and were of low methodological quality (Schneider et al., 2017).  

Exercise, applied at the right time, and appropriate intensity, has shown to improve 

neurological function, advance neural repair, and increase cerebral blood flow (Alderman, 

Arent, Landers, & Rogers, 2007).  Functional MRI studies have support the notion that 

moderate aerobic exercise (60% of maximum), improved brain cortical activity, thus, 

adding support to concept of a positive effect of exercise on recovery after a SRC 

(Colcombe, Kramer, McAuley, Erickson, & Scalf, 2004).  Several studies have reported 

progressive, symptom limited cardiovascular exercise as having a positive effect on 

symptom reduction, as well as an overall reduction in recovery time (Grool et al., 2016; J. 

Leddy et al., 2018; J. J. Leddy & Willer, 2013; Schneider et al., 2017). The CISG has 

endorsed a 5 stage critical path for the progressive application of exercise across the RTP 

trajectory (McCrory et al., 2013).  If symptoms persist longer than 4 weeks in children and 

greater than 10-14 days for adults, a referral for a detailed clinical evaluation is 

appropriate. The main objective prior to referral, is to differentiate between the primary 

clinical issues and possible secondary pathologies that might involve post-traumatic stress 

and related symptomatology (McCrory et al., 2017). Prolonged post-concussion symptoms 

can be ascribed to a combination of pre-exiting conditions, individual biological resilience 

and psych-social disposition (Blume & Hawash, 2012). 

Truss et al (2017), reported that sixteen percent of children (age 8-18 years) had 

clinically significant post-traumatic stress symptoms (PTSS) two weeks post injury and 
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that this number was reduced to six percent by three months post injury. Age, sex, 

mechanism of injury, loss of consciousness, previous health history and previous diagnosis 

of anxiety and depression were significant predictors of a prolonged recovery from 

concussion. An appropriate and timely provider referral for PTSS is critical for the 

resolution of related symptoms and a safe return to school or sport.  

Return to Play and Academics 

 According to the CISG consensus statement, the most reliable predictor of a 

protracted recovery time after an SRC is the initial severity of symptomatology. Minimal 

symptoms typically correspond with a shorter recovery time frames whereas, longer time 

frames, are associated with persistent symptoms and a greater probability of PTSS 

(McCrory et al., 2017; Truss et al., 2017).  Recovery after a SRC should begin with a brief 

period (24-48 hours) of cognitive and physical rest. Following a brief rest period, the 

athlete should embark upon a tailored progressive increase in schoolwork, and physical 

activity. Initially, return to school should be the primary objective, RTP the secondary 

objective, both follow a written plan. (Arbogast et al., 2013; McCrory et al., 2013).  Tables 

2 and 3 present examples of progressive return to school and RTP plans. Academic 

accommodation can include frequent cognitive breaks (in a quiet place), preprinted class 

notes, protracted assignment due dates, elimination of nonessential work (including make-

up work) and the provision of tutors. No academic exams should be attempted prior to the 

athlete tolerating a full day of school without symptom provocation (Master et al., 2012). 

Focusing on returning to school, does not exclude low intensity exercise provided there is 

no significant symptom provocation during or after exercise.   
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Table 2 
Staged Return to Academics Protocol: Activity and Objectives  

Stage:  Activity: Objective 
No Activity  Complete cognitive rest 

No school, homework, 
reading, texting, video 
games, computer.  

Cognitive Recovery 

 
Reintroduction 
of Cognitive 
activity  

 
Revoke previous 
restrictions 
Short exposure times 
(5-15 min) per 
tolerance 

 
Gradual controlled 
increase in sub-
symptom threshold 
cognitive activities 
 

 
Homework  
 

 
Home work (at home) 
in longer increments 
(20-30 minutes) 

 
Increase cognitive 
stamina through short 
periods of self-pace 
cognitive activity 
 

School re-entry Partial day of school 
after toleration of 1-2 
cumulative hours of 
homework (at home) 

Re-entry into school 
with accommodations 
to control sub-
symptom threshold 
increases in cognitive 
load  

 
Gradual 
reintegration 
into school   

 
Increase to full day of 
school 

 
Accommodations 
decrease  
 

 
Resumption of 
full cognitive 
workload 
 

 
Introduce testing  
Catch up with essential 
school work 
 

 
Full return to school. 
Can begin phase 2 of 
RTP protocol 

(Source: Master et al, 2012)  
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Table 3. 
Staged Return to Play Protocol: Activity and Objectives 

Stage  Activity Objective 
 
Symptom 
Limited 
Activity 
 

 
Complete physical and 
cognitive rest until 
Medical clearance 

 

 
Recovery - gradual 
re-introduction of 
school or work 

 
Light Aerobic 
  

 
Symptom limited walking 
or stationary cycling (< 
70% max HR for 15 min) 
NO! resistance training 
  

 
Progressive increase 
in training Heart 
Rate 

 
Sport 
Specific 
Exercise  
 

 
Running, skating, cycling, 
drills (<80% max HR for 
45 min) 
NO! head impact activities 

 
Introduce sport 
specific movements 

 
Non-contact 
Training 
Drills 
 

 
Higher intensity drills (e.g. 
passing drills) (<90% max 
HR) Start resistance 
training  
 

 
Exercise 
coordination 
Improved cognition 

 
Full Contact 
Practice 
 

 
After medical clearance 
return to full PRACTICE 
activity 

 
Restoration of 
player confidence, 
functional 
assessment by 
coaches 
 

Return to 
Play 
 

Normal game play Return to pre-injury 
performance 
 

Source:  Consensus Statement on Concussion in Sport: the 3rd International Conference 
on Concussion in Sport (Cantu, 2009)  Note: HR = Age predicted maximal heart rate  
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Risk Reduction 

The reduction of risk for a SRC begins with a pre-participation evaluation by a 

trained healthcare provider. The importance of a pre-season a physical examination, 

injury history, base line neurocognitive and physiological testing cannot be overstated. 

This data can provide valuable information for categorizing the risk status of an 

individual athlete prior to exposure to a contact sport. Possible modifiable risk factors 

should be identified, evaluated and when possible implemented. Unfortunately, current 

research on preventative strategies for SRC remain inconclusive, lack robust design 

characteristics and are inflicted with inherent study bias (McCrory et al., 2017; Partridge 

& Hall, 2014).  

Protective equipment such as helmets, pads and mouth-guards offer some impact 

protection from an open head injury or cranial facture. However, they do not provide 

protection against intracranial impulse forces (brain shake), particularly for SRC resulting 

from high velocity rotational forces (Benson, Hamilton, Meeuwisse, McCrory, & Dvorak, 

2009). Helmet technology currently focuses on developing an array of tri-axil 

accelerometers and other sensors that measure helmet impact (impulse) forces during a 

collision and the number of collisions over time (Bailes, Petraglia, Omalu, Nauman, & 

Talavage, 2013).  

Animal and segregate brain model studies have reported mixed results for a direct 

linkage between measured impact forces and structural or functional changes in the brain 

(Meaney & Smith, 2011). These devices have potential to measure sub-concussive 

thresholds and may be useful for understanding the role of long-term repetitive micro-

impacts and CTE (Bailes et al., 2013) Clearly sub-concussive impact are not reported and 
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are remain both difficult and expensive to detect in situ. Future studies should require the 

use of technology that considers both cost and ease of deployment to larger populations.   

 

Figure 1. The Q-Collar™-   (Smith et al., 2012) 

 

 

One innovated protective device, the Q-Collar™, is made of high tensile plastic 

designed to apply very mild pressure on the jugular vein. This device may actually reduce 

the amount of brain “shake” associated with a SRC. The specially designed and fitted 

collar worn during play. The collar increases intra-cranial blood volume and thus 

decreases intra-cranial movement (slosh effect) during a concussion related event. Animal 

models have shown that a small increase in cerebral vascular pressure compliance for 

those animals fitted with the Q-collar™ had no negative effect on physical performance 

(Smith et al., 2012). Furthermore, axonal injury was reduced by >80% in animals wearing 

the collar.  Several Q-Collar™ human studies on football, soccer and hockey players have 

shown a reduction white matter post season changes for those wearing the Q-collar™ 

compared to controls, despite similar impact exposure (Dudley et al., 2020; Myer et al., 

2019; Myer et al., 2016; Yuan et al., 2018).  The Q-collar™ may prove to be an effective 

cost effective device that could reduce the incidence and the severity of a SRC by reducing 
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the slosh effect. Larger, controlled studies looking at player (team) compliance and the Q-

collar’s influence on sports performance are required. 

 Finally, the prognostic value of genetic information for the management of 

concussion has yet to be determined. According to a study by Hartman et al., (2002), the 

presence of the gene, Apo lipoprotein E (APOE) and a history of TBI are both risk factors 

for the development of Alzheimer’s disease  (Hartman et al., 2002; Merritt & Arnett, 

2016).  In the case of a SRC, these factors may act synergistically by negatively 

influencing post-concussion neurodegenerative cascade, and increasing the severity of 

symptomatology (Merritt & Arnett, 2016).  Additional human studies are required to 

clarify the possible predictive role of genetics in management of SRC and CTE.   

In summary, defining a SRC remains difficult due to differences in terminology, 

and the lack of clear standardization among researchers. Furthermore the 

pathophysiology of concussion is complexed and the response to tissue injury extremely 

diverse across and gender. Key issues such second impact syndrome and CTE will 

continue to put pressure on healthcare providers to adopt best practices through ongoing 

robust research. Healthcare providers are consistently seeking out the best clinical and 

diagnostic techniques to improve the diagnosis of SRC. Finally, emergent technology will 

drive objective innovated approaches to the diagnosis and treatment of a SRC across the 

RTP trajectory.     
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CHAPTER III 
 

 

METHODOLOGY 

A. Research Design  

 This study was a retrospective analysis of clinical measures of symptoms, balance 

(mBESS), and reaction time across return to play trajectories. This study had the approval of The 

University of Oklahoma Institutional Review Board (IRB) and Oklahoma State University IRB.   

Sixty-nine (30 males, 39 Females, age: M = 14.6 ±2.5 years) student athletes, were 

selected from an original cohort of 187 patients who sought out evaluation and treatment for a 

Sports Related Concussion (SRC) by a sports medicine physician from The University of 

Oklahoma Sports Medicine Department in Tulsa. Oklahoma during the period from January 1, 

2017, through December 31, 2019. These subjects were individuals who sustained a concussion 

and either did not have access to an AT or had extended post-concussive symptoms and were 

referred for further evaluation and treatment.  

Exclusion Criteria 

Athletes with a history of psychological or behavioral disorders or a previous clinical 

history of concussion within the last 6 months were not included in the study.
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 Other exclusions included, athletes taking medications that might influence balance or 

reaction time (e.g. narcotics, tricyclic, gamma-aminobutyric acid drugs, anti-epileptic drugs and 

barbiturates), those who had no return to play date (lost to follow up) and those with a RTPt 

greater than 200 days from date of injury. Figure 1 depicts study exclusion criteria. 

Figure 2.  

Exclusion Criteria Flow Chart  
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Included (n=133)                                                                       

 

 

Included (n=119)                                                                       

 

 

Included (n=109)                                                                       

 

 

            Included (n=69) 

Evaluated and treated for 
Concussion (2017-2019) 

(n=187) 
 

 

 

Lost to follow up (LTFU)  
(n=40) 

 

 

Previous TBI within 6 months 
(n=9)  

 

 

Non-SRC cases  
(n=45) 

 

 

RTPt > 200 days 
(n=14) 

 

 

 Confounding Medications  
(n=10) 
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Evaluation and Treatment Criteria  

Athletes were evaluated and treated in accordance with the standards contained in the 

CISG 4th Consensus statement on the management of SRC (McCrory et al., 2017).  All four 

treating physicians from the University of Oklahoma (OU) sports medicine team followed the 

CISG 4th consensus guidelines in the development of their SRC treatment plans. Figure 3 

presents a flow chart for the key clinical interactions throughout the RTPt.  

Figure 3. Clinical Management Model for SRC - University of Oklahoma Center for Concussion.    

 

Initial Encounter. All athletes completed a standardized OU Sports Medicine History 

and Physical Form (HPF). The HPF included self-reported information on family and personal 

health history, symptomology, symptom provocation characteristics, medications, allergies, 

health behaviors, review of physiological systems and measurement of vital signs including:  

i. Vital signs, resting blood pressure (BP), heart rate (HR) 

ii. A “concussed baseline” measure for instrumented mBESS test and simple reaction 

tests  

Initial 
Injury 
(DOI)

Diagnosis

Initial 
Encouter 
(Baseline 

Measures)

Serial 
Measures
Stages 1-5

RTP
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iii. Completion of the PCSS 22 item symptom check list resulting in a total symptom 

score (0-132) and symptom number (0-22)  

iv. Instructional session for monitoring cognitive workloads including a progressive plan 

for return to school within the limits of current symptom response to cognitive load 

(See table 3) 

Subsequent Encounters. Follow-up visits typically occurred at 2–4-week intervals 

depending on the availability of the physician and athlete or the severity of symptoms. Each 

subsequent visit followed a similar protocol of assessment and directives as listed below:  

i. Vital signs (resting HR, BP, O2-pulse, temperature)  

ii. Completion of the PCSS 22 item symptom check list resulting in a total 

 symptom score (0-132) and symptom number (0-22) 

iii. Pre treadmill Instrumented mBESS test and simple reaction time tests 
 

iv.  Treadmill Graded Exercise Test (GXT) to determine appropriate symptom limited 

intensity and duration of exercise during recovery.  After a brief warm up at 1.7 mph 

patients began walking at 2.5 mph increasing their velocity by 0.5 mph every two-

minutes until HR reach approximately 80% of age predicted maximal HR. At that 

point, the subsequent stages reduced to one-minute duration until exhaustion. 

Treadmill Elevation remained at zero throughout the test. Tests termination criteria 

included any apparent cardiac or respiratory anomaly (e.g., chest pain, breathing 

difficulties), dizziness, or significant increase (> 2 points for any PCSS item). Peak 

treadmill speed, HR and Rating of Perceived Exertion were utilized in determine 

training workloads. 

v. Post exercise instrumented (Sway™) mBESS, simple reaction tests and PCSS  
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vi. Exercise prescription, a two-to-four-week individualized program including, target 

heart rates, speeds, duration, and progression.  

vii. Exercise programs designed in the context of the athlete’s level of symptom 

provocation during and after a GXT. 

Return to Play Criteria. 

 The RTP criteria was congruent with recommendations contained in the 2016 CISG 

consensus statement, as well as each individual OU sports medicine physician’s clinical 

judgement for RTP.  Several common variables determined an athletes RTP status:     

i. Low PCSS (< 8).   

ii. No significant balance (mBESS), reaction time or cognitive deficits. 

iii. No significant increase in post PCSS, or no significant decrease (5 points) in mBESS 

and RT performance 10 minutes post exercise (>90% max predicted HR). 

iv. The athlete demonstrated tolerance for full academic load without any significant 

exacerbation of post SRC symptom (e.g., headache, dizziness, photo-phono phobia, 

nausea, memory). 

v. The athlete demonstrated tolerance for full contact in a practice setting and expresses 

intrinsic confidence in their fitness levels, cognitive status and overall ability to return 

to play.  

No single variable determined clinical decisions regarding treatment options and 

subsequent RTP trajectories. The dependent measure or outcome measure was RTP trajectory 

(number of days between date of injury and RTP).  PCSS, mBESS and reaction time (RT) were 

independent predictor variables. All Measures occurred during multiple clinical visits across the 

RTP trajectory.  Final RTP decisions were those of the individual treating physician and closely 



  

63 
 

followed the stepwise approach endorsed by the CISG RTP guidelines previously mentioned in 

the literature review section of this manuscript (McCrory et al., 2017).  

B. Medical Records 

 Electronic medical records were reviewed for the following information: Date of 

Injury (DOI), date Returned to Play (RTP), clinical diagnosis, previous concussion 

history, pre-exiting conditions, SRC treatment history (balance or vestibular training) and 

medications that would confound performance on a balance or reaction time test and 

exclude an athlete for this study.  

 Sway™ Balance application installed on smart phone collected serial measures of 

PCSS, mBESS and RT. The Sway™ application uses a smart phone bases tri-axial 

accelerometer to determine a balance (stability) and simple RT score. The measurement 

units representing the balance and RT score are interpretations of the acceleration of 

deflection within the accelerometers, and are also determined by undisclosed calculations 

from Sway™ Medical (Patterson et al., 2014b). The Sway™ application is an FDA 

approved medical device designed to record SRC symptoms and objectively measure 

balance and reaction time.  

Symptom Scores 

Symptom composite score (PCSS) were determined by the Sum of scores on a 

six- point Likert scale (mild 1-2, moderate 3-4 and Severe 5-6) across 22 common 

concussion symptoms. Symptomatology included  headache, pressure in the head, neck 

pain, nausea or vomiting, dizziness, blurred vision, balance problems, sensitivity to light, 

sensitivity to noise, feeling slowed down, feeling like “in fog, don’t feel right, difficulty 

concentrating, difficulty remembering, fatigue or low energy, confusion, drowsiness, 
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trouble falling asleep, more emotional, irritability, sadness and nervous or anxious (Mark 

R. Lovell et al., 2006).  

Balance and Simple Reaction Time 

The Sway™ application applies a proprietary algorithm to calculate a composite 

score (0-100) and simple reaction time (milliseconds) over three individual trials. The 

first trial serves as a familiarization period, the last two trials used for the determination 

of a pre-treatment baseline score. A higher score for mBESS indicates better balance 

control a lower score on the RT indicates faster reaction time (cognition) (Patterson et al., 

2014b). 

Tests for mBESS involved five standardized standing postures (feet together, 

tandem left and right, single leg stance left and right). The eyes remain closed throughout 

each test while and the phone held with both hand flat against the chest to avoid any 

unnecessary motion. Sample duration was 10 seconds for each posture (see figure 2) and 

the application provides auditory cues for starting and finishing each segment of the test. 

The RT score is an average of five responses and computed as a raw score in 

milliseconds. As part of the treatment protocol, clinicians compared mBESS and RT 

performance data to either pre-season non-concussed baseline (when available) or age 

and sex dependent normative data developed by Brett et al. (Brett et al., 2018).  Total 

symptom score, number of symptoms, mBESS and RT scores were recorded for each 

visit using the Sway™ smart phone application.  

C. Statistical Analysis 

 Descriptive statistics for age, sex, sport, height weight, BMI, concussion history, RTP 

trajectory and other clinical metrics (e.g., medications, nystagmus status, balance training, 
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vestibular training, and physical therapy) were calculated. A single outcome variable, return to 

play trajectory (RTPt), was examined against three predictor variables PCSS (total symptom 

score), mBESS (Sway™ score) and RT (milliseconds). Four hypothesizes were tested: 

H1 – RTPt is positively associated with pre-treatment PCSS.  

H2 – RTPt is positively associated with pre-treatment mBESS performance.  

H3 - RTPt is negatively associated with pretreatment RT performance.   

H4 - Female RTPt, PCSS, mBESS, and RT are significantly different when compared 

to Male RTPt PCSS, mBESS and RT.   

 Pearson’s correlation coefficients determined the relationship of the outcome 

variable RTPt to all three independent variables (PCSS, mBESS and RT). A multiple 

regression model was calculated for predictor variables PCSS, mBESS and RT against the 

outcome variable RTPt. Independent t-tests assessed differences in RTPt, for PCSS, 

mBESS and RT. An alpha of < .05 and CI of 95% was established unless otherwise stated. 

For effect size, Hedges’ g correction was used to adjust for sample mean bias related to 

small and different sample sizes (Hedges & Olkin, 1985). Calculated effect size were 

classified as Small = 0.2, medium = 0.5 and large = 0.8 (Cohen, 1988).  
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CHAPTER IV 
 

 

FINDINGS 

A. Participant Demographics 

This study reviewed one hundred and eighty-seven concussed athlete’s electronic medical 

records. Exclusions included, 45 non-sports related cases, nine athletes who had sustained a 

previous concussion within the last six months, 14 athletes with RTPt > 200 days and 10 athletes 

who were prescribed confounding medications including: tricyclic (n = 5), gamma-aminobutyric   

acid (n = 2), anti-epileptic drug (n = 1) and barbiturates (n = 1). These drugs may have negative 

influences on clinical measures of balance or reaction time.  

Forty athletes were lost to follow-up (LTFU) and were not included in the primary data 

analysis. Tables 4A and 4B present the characteristics of LTFU athletes, those athletes included 

in the analysis for raw, and Log 10 transformed data, respectively. Time-till treatment, PCSS, 

mBESS, and RT were log10 transformed to address skewness and kurtosis violations. 

Independent t-tests for LTFU and athletes included in the analysis were calculated for mean TTT 

height, weight, age, BMI, mBESS and RT.  A Bonferroni Correction (α = .0125) was applied to 

control for family wise Type I error for PCSS, mBESS, RT and TTT. Homogeneity of variance 

was assumed for TTT, F(107) = .002, p = .965, PCSS, F(107) = .1.637, p = .129, mBESS, 

F(107) = .056, p = .814 and RT F(107) = .636, p = .427.  
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Table 4A.   
A. Descriptive Characteristics Included (n=69) and LTFU (n=40) Raw Data   
 Cohort M (SD) 95% CI Skew Kurtosis p  ES (g)  
Age Included 14.2 (2.24) 13.6,14.8 .211 0.183 .288 0.223 

(Years) LTFU 14.7 (2.23) 14.1,15.4 .514 0.782   

Height Included 64.9 (4.8) 63.7,66.1 -.142 .226 .244 0.248 

(Inches) LTFU 66.0 (3.7) 64.8,67.1 .042 .046   

Weight Included 134.3 (38.3) 125.1,143.6 .887 2.402 .418 0.144 

(Pounds) LTFU 140.7 (41.5) 127.2,154.3 .972 1.411   

TTT Included 15.9 (17.4) 11.7,20.1 2.326 7.23 .002* 0.107 

(Days) LTFU 36.8 (38.1) 24.6,48.9 1.954 4.863   

PCSS Included 19.1 (21.4) 13.9,24.2 1.646 2.641 .017 0.510 

(Score) LTFU 30.8 (25.3) 22.1,38.3 .866 .044   

mBESS Included 81.2 (14.3) 77.8,84.7 -1.278 1.366 .146 0.286 

(1-100) LTFU 77.2 (13.3) 72.9,81.4 -.528 -.044   

RT Included 298 (92.1) 276.3,320.6 .933 .532 .589 0.107 

(Milliseconds) LTFU 287.7 (110.5) 252.4,323.1 2.399 6.478   

 

Table 4B    

  

 

 

Log 10 Descriptive Characteristics: Included (n=69), LTFU (n=40)   
 Cohort M (SD) 95% CI Skew Kurtosis p   

TTTlog10 Included 0.97 (.50) 0.80,1.05 -.278 -.799 .001*  

(Days) LTFU 1.32 (.54) 1.42,1.50 -.607 -.122   

PCSSlog10 Included 11.9 (3.3) 8.8,16.2 -.392 -.655 .014  

(Score) LTFU 1.34 (.47) 1.18,1.49 -1.01 .424   

mBESSlog10 Included 1.90 (.09) 1.88,1.92 -1.96 4.79 .233  

(1-100) LTFU 1.88 (.08) 1.85,1.90 -1.05 1.33   

RTlog10 Included  2.45 (.14) 2.42,2.49 .394 -.463 .438  

(Milliseconds) LTFU  2.44 (.13) 2.39,2.48 1.092 1.092 2.245  

Note: LTFU = Lost to follow-up, TTT = Time-till Treatment (Days from DOI to treatment), 
PCSS = post-concussion symptom score, mBESS = modified Balance Error Scoring System 
Score, RT = reaction time, M = Mean, SD = standard deviation, CI = 95% confidence intervals, * 
significant at p < .013 
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The LTFU group mean for TTT was 10 days longer, t(107) = 3.598, p <.001, g = 3.707 than the 

group included in the study analysis. Mean LTFU PCSS, mBESS and RT values were not 

statistically significantly different when compared to the inclusive group of athletes.   

B. Statistical Analysis 

Descriptive and inferential statistics were calculated utilizing IBM SPSS Statistics 

software, Version 25.0 (Armonk, NY, IBM Corporation). Sixty-nine student athletes (30 males 

and 39 females), M = 14.2, SD = ±2.2 years of age, were included in the analysis. These subjects 

are individuals who at the initial injury did not have access to a healthcare provider or had 

extended post-concussive symptoms that led to a referral to a physician.  A show in Table 5, 

RTPt was on average 60.4, SD = ±43.8, days with only 8.6% athletes (6/69) returning to play in 

less than two weeks. Participants were drawn from 11 different sports. Soccer players 

represented the greatest number of concussions at 37.6% (26/69. Football and basketball players 

accounted for 23.1% (16/69) and 14.4% (10/69) of SRC injuries respectively.  Collectively, 

cheerleading, gymnastics and strength training were responsible for 14.3% (10/69) of SRCs and 

9.8% (7/69) with the remaining SRCs attributed to lacrosse, cross-country, motor-cross, rodeo, 

volleyball, and an unknown category.  Across sports, females playing soccer and basketball had 

higher incidence of SRC than males at 80% (8/10) and 73% (18/26) respectively. There were no 

male SRCs for gymnastics and no female SRCs for lacrosse.  

The study population (n=69) outcome variable (RTPt) and predictor, variables (PCSS, 

mBESS, and RT) were log10 transformed to address skewness and kurtosis. Shapiro-Wilk tests 

for normality were not significant (α < 0.05) for RTPt, F(69) = .982, p = .405, mBESS, F(69) = 

975, p = .174 and RT, F(69) = 974, p = .161. For PCSS Shapiro-Wilks was significant F(69) = 

.960, p = .026 and a Kolmogorov-Smirnov test was applied and verified normal distribution, 
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D(69) = 0.084, p = 0.200. Assumptions for skewness and (±1.0) and kurtosis (±2) were satisfied. 

Residual error plots met the requirements of homogeneity of variance.  Scatter plots reviewed  

Figure 4.  
Distribution of Concussion by Sport (n=69) 

 

Table 5  
Study Population (n=69) Descriptive statistics for Raw (A) and Log 10 transformed (B)    
A. Raw Data 

 

 Min Max M SD Skewness Kurtosis     p value  
RTPt 6 197 60.4 43.8 1.305  1.48 <.0011 

PCSS 0 98 19.1 21.4 1.64  2.64 <.0011 

mBESS 31.9 99.1 81.2 14.8 -1.27  1.0 <.0012 

RT  169 573 298.4 92.1 2.39  0.53 >.052 

 
B. Log 10 Data        

  

 Min Max M SD Skewness Kurtosis    p value   
RTPt-Log10 .78 2.29 1.66 .338 -.408  -.106            .4051  
PCSSLog10 .00 2.00 1.04 .535 -.388  -.639            .2002  
mBESSLog10 .00 1.83 1.14 .365 -.565   .495            .1741  
RTLog10 2.23 2.76 2.45 .126  .383  -.448            .1611 

 
1 Shapiro-Wilks, 2 Kolmogorov-Smirnov, RTPt (days), PCSS (Score), mBESS (1-100)  
RT (milliseconds) 

0 5 10 15 20 25 30 35 40
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Visually and confirmed linear relationships between the outcome variable and predictor 

variables. Table 5a and 5b depicts descriptive statistics for raw data and log-10 transformed 

RTPt, PCSS, mBESS and RT variables, respectively. 

Pearson’s correlational coefficients were calculated to test hypotheses one, two, and three 

and to examine the relationship between TTT and RTPt. When compared to mBESS and RT, 

both TTT (r = .471, p =.000) and PCSS (r = .369, p =.001)  had the highest correlation with 

RTPt. Paired sample t-tests derived the differences between pre-treatment and post treatment 

values for RTPt, PCSS, mBESS and RT. Multiple linear regression determined the predictive 

value of TTT, PCSS, mBESS and RT on RTPt. Three prediction models are presented. For 

hypothesis four, sex differences, independent t-tests determined sex differences for RTPt, PCSS, 

mBESS, and RT variables.  Data is presented in both raw and log-10 format to aid in 

interpretation.  

Hypothesis I.  

Bivariate correlation determined the strength of the relationship between pre-treatment 

PCSS and RTPt. A moderate positive correlation was found between PCSS and RTPt. Pearson’s 

r(69) = .323, p = .003, and the null hypothesis was rejected. Log-10 transformed data, PCSSlog10, 

however had a smaller positive correlation with RTPt-log10, Pearson’s r(69) = .231, p = .056.  

The difference between mean pre-treatment (M = 19.3, SD± 21.1) and post treatment 

values (M = 2.0, SD ± 3.5) for PCSS was statistically significant, with a mean reduction of 17.2 

points, SD ±20.5, CI 12.2, 22.1, t(68) = -6.952, p <.001, g = 1.13. There was a large effect size 

for PCSS.   
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Hypothesis II.  

Bivariate correlation determined the relationship between mBESS and RTPt. A small 

negative correlation was found between the mBESS and RTPt, Pearson’s r (69) = -.147, p = .114.  

The relationship between mBESS and RTPt, was not statistically significant.  Log-10 

transformed data, mBESSlog10, also showed a small statistically non-significant negative 

correlation for mBESSlog10 and RTPt-log10, Pearson’s r(69) = -.065 , p = .596. The null hypothesis 

was retained. 

There was a very small, but statistically significant difference, between pre-treatment 

mBESS values (M = 81.1, SD ± 14.4) and mBESS post treatment values (M = 84.6 SD ± 10.2) 

for mBESS with a mean difference of - 3.5 points, SD ±13.9, CI -6.88,-0.19, t(68) = -2.107, p = 

.039, g = 0.283.  A small effect size was observed for pre-treatment post-treatment changes in 

mBESS.  

Hypothesis III   

Bivariate correlation determined the relationship between RT and RTPt. A weak negative 

correlation was found between the variables, Pearson’s r(69) = -.023, p = .426, The relationship 

between RT and RTPt, was not statistically significant. Log10 transformed RT data revealed a 

weak, statistically non-significant positive correlation for RTlog10 and RTPt-log10, Pearson’s r(69) 

= .037 , p = .761. The null hypothesis was retained. 

There was a significant difference between mean pre-treatment RT (M = 298.5, SD ± 

92.1) and post treatment RT (M = 247.3 SD ± 59.5) for RT, with a reduction of M = 51.1, SD 

±13.9 milliseconds, CI 31.6, 70.5, t(68) = -2.107, p <.001, g = 0.659. A medium effect size was 

determined for changes in RT across the RTPt.   
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Regression Equations  

Multiple linear regression was used to develop three prediction models for RTPt. Model 1 

utilized three predictor variables; PCSS, mBESS and RT. Assumptions were met for linearity of 

PCSS, mBESS, RT and RTPt. Tolerance, variance inflation factor (VIF) and Pearson’s r were 

within normal limits confirming no multi-collinearity for all model variables. Model-1 was 

significant for the prediction of RTPt, F(3,65) = 2.922, p = .038 but not for RTPt-Log10, F(3,62) = 

2.416, p = .075 as shown in the ANOVA in Table 6A (Raw data) and Table 6B (Log 10 data) 

respectively.  

Table 6A 
 
Raw Data ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression 15743.460 3 5247.820 2.968 .038b 
Residual 114923.352 65 1768.052   
Total 130666.812 68    

2 
 

Regression 13632.174 1 13632.174 7.804 .007c 
Residual 117034.638 67 1746.786   
Total 130666.812 68    

 
Table 6B  
Log10 Transformed ANOVAa   

Modellog10 

Sum of 
Squares df Mean Square F Sig. 

1 Regression .424 3 .141 1.249 .0299b 
Residual 7.350 65 .111   
Total 7.774 68    

2 Regression .416 1 .416 3.787 .056c 
Residual 7.358 67 .110   
Total 7.74 68    

a. Dependent Variable: RTPt-Log10 b. Predictors: (Constant), RTlog10, mBESSLog10, 
PCSSlog10 c. Predictors: (Constant), PCSSlog10 
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The model had only one statistically significant predictor variable, PCSS (t = 2.676, p = 

.009, β = .318). PCSSlog10 (t = 1.884, p = .070, β = .229). mBESS (t = -.853, p = .397, β = -.101), 

mBESSLog10 (t = -.252, p = .802, β = -.031), RT(t = -.398, p = .692, β = -.051) and RTLog10 (t = -

.110, p = .913, β = -.014 were not statistically significant predictors of RTPt  or RTPt-Log10. Tables 

7A and 7B present regression coefficients for RTPt and RTPt-Log10. 

The following regression equations were derived:  

RTPt = 85.59 + .655 (PCSS) - .332 (mBESS) - .037 (RT) and  

RTPt-log10 = 2.835 + .137 (PCSSLog10) - .144 (mBESSLog10) - .036 (RTLog10) 

A second regression model excluding mBESS and RT revealed an R2 of 10.4%, and an 

adjusted R2 of 9.1%. As shown in Table 7A and Table 7B, the second single predictor (PCSS) 

model remained a significant predictor, t = 2.794, p = .007, β = .323 when regressed on RTPt but 

not for PCSSlog10 on RTPt-Log10 (t = 1.946, p = .056, β = .231). The predictive value of Model-2 

was close to those described previously in model one. The following regression equations were 

derived using model 2 for PCSS on RTPt and PCSSlog10 on RTPt-Log10:    

RTPt = 47.59 + .655 (PCSS) and RTPt-log10 = 2.527 + .138 (PCSSLog10) 

Table 7A:  
Regression Co-efficients for PCSS, mBESS and RT 

Model 
Coefficients  

t Sig. 
95% CI Correlations  

B SEM   β Lower  Upper  Partial     Part 
1 (Constant) 85.591 35.5  2.406 .019 14.54 156.63   

PCSS .655 .244 .318 2.683 .009* .168 1.142 .316 .312 
mBESS -.332 .360 -.109 -.922 .360 -1.050 .386 -.114 -.107 
RT -.037 .056 -.077 -.652 .517 -.148 .075 -.081 -.076 

2 (Constant) 47.595 6.811  6.988 .000 34.000 61.190   
 PCSS .665 .238 .323 2.794 .007* .190 1.141 .323 .323 

a. Dependent Variable: RTPt, *Significant p < .01. 
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Table 7B:  
Regression Co-efficient for PCSSlog10, mBESSlog10 and RTLog10 

Model 
Coefficients  

t Sig. 
95% CI Correlations  

B SEM   β Lower  Upper  Partial     Part 
1 (Constant) 2.835 1.243  2.280 .026 .351 5.318   

PCSSLog10 .137 .074 .229 1.884 .070 .-.011 .286 .223 .222 
mBESSLog10 -.114 .452 -.031 -.252 .802 -1.018 .789 -.031 -.030 
RTlog10 -.036 .331 -.014 -.110 .913 -.698 .625 -.014 -.013 

2 (Constant) 2.527 .080  31.621 .000* 2.367 2.686   
 PCSSlog10 .138 .071 .231 1.946 .056 -.004 .280 .231 .231 

a. Dependent Variable: RTPt-Log10, *Significant p < .001. 
 

A third regression model utilizing two predictor variables, TTT and PCSS on RTPt 

revealed an R2 of  42.7%, and an adjusted R2 of 41.% (p < 001). Both TTT and PCSS had 

moderate correlation with RTPt at r(69) = 0.471, p = .000 and r(69)= 0.369, p = .001) 

respectively and were considered more robust predictors of RTPt  than mBESS and RT. The 

model had significant improvement in fit when compared to models 1 and 2. Table 7A and 7B 

shows regression coefficients for TTT, PCSS, TTTlog10, PCSSlog10 respectively. Model-3 had two 

statistically significant predictor variable, TTT (t = 5.787, p = .000, β = .318) and PCSS (t = 

1.884, p = .000, β = .229). The following regression equations were derived using Model-3 for 

TTT and PCSS on RTPt and TTTlog10 and PCSSlog10 on RTPt-Log10 respectively:   RTPt = 9.66 + 

1.379 (TTT) + 1.005 (PCSS) and RTPt-log10 = 2.020 + 0.407 (TTTlog10) + 0.241 (PCSSLog10) 

Table 8a:  
Regression Co-efficientsa for TTT and PCSS. 

Model 
Coefficients  

t Sig. 
95% CI Correlations  

B SEM   β Lower  Upper  Partial     Part 
3 (Constant) 9.66 7.073  2.781 .007* 5.546 33.789   

TTT 1.379 .238 .547 5.787 .000* .903 1.855 .580 .539 
PCSS 1.005 .360 -.109 -.922 .000* .592 1.418 .513 .415 

a. Dependent variable: RTPt * significant p < .001 
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Table 8B:  
Regression Co-efficientsa for TTTlog10, and PCSSlog10,  

Model 
Coefficients  

t Sig. 
95% CI Correlations  

B SEM   β Lower  Upper  Partial     Part 
3 (Constant) 2.020 1.00  20.184 .000* 1.820 2.220   

TTTlog10 0.407 .066 .591 6.190 .000* .276 .539 .624 .590 
PCSSlog10 0.241 .0.66 .350 3.670 .001* .109 .372 .428 .350 

a. Dependent variable: RTPt-log10 * significant p < .001 

Symptoms and Return to Play 

 The positive slope for PCSS as a predictor of RTPt indicated a .655-day increase in RTPt 

for every 1-point increase in PCSS. For Model-1, the squared semi-partial coefficient (.312) 

estimated that RTPt was predicable from PCSS, with 31.2% of the variance in RTPt uniquely 

accounted for by PCSS when mBESS and RT are controlled.  For model two, the squared semi-

partial coefficient (.323) estimated that RTPt was predicable from PCSS, with 32.3% of the 

variance in RTPt uniquely accounted for by PCSS. The results for model two were comparable to 

model one. For model three, the squared semi-partial coefficient (.539) estimated that RTPt was 

predicable from PCSS with 41.5% of the variance in RTPt uniquely accounted for by PCSS when 

accounting for TTT. The positive slope for PCSS as a predictor of RTPt indicated a 1.01-day 

increase in the RTPt. for every 1-point increase in PCSS. The results for Model-3 were superior 

to Model-1 and Model-3.  

Hypothesis IV 

Independent t-tests (2-tailed) were conducted to explore sex differences for Age, RTPt, 

TTT, PCSS, mBESS, and RT. An initial alpha of .05 was set. TTT, PCSS, mBESS and RT. 

Variables were log 10 transformed to address skewness and kurtosis. Levine’s test revealed 

homogeneity of variance for age, RTPt, F(1,67) = 2.927, p = .092, PCSS, F(1,67) = 0.045, p = 

.832, mBESS, F(1,67) = 1.402, p = .241, and RT, F(1,67) = 0.499, p = .482.  Equal variances 
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were not assumed for TTT, F(1, 67) = 6.311, p = .014. Tables 8A and 8B show group means, 

standard deviations, confidence intervals and p values by sex for raw and log10 transformed 

data, respectively.   

Sex differences for RTPt, mBESS and RT had small effect sizes and were not statistically 

significant. For RTPt, females on average took almost two weeks longer to recover than males, 

M =13.6, SD ±10.6, days longer, t(67) = 1.289, p = .202, g = 0.357, RTPt-Log 10 t(67) = .807, p = 

.442. For TTT, females took slightly longer than males to seek treatment, M = 3.25, SD ±5.1, 

days difference, t(67) = 0.655, p = .514, g = 0.159, TTTLog10 t(65.9) = -.944, p = .349.  

Differences in female PCSS scores (symptoms) were marginally higher than males, M =3.25, SD  

±5.1, points, t(67) = 0.628, p = .532, g = 0.170, PCSSLog10 t(67) = 1.846, p = .069.  For mBESS, 

female balance scores were marginally higher than males, M = 4.9, SD ± 3.4 points difference, 

t(67) = 1.426, p = .158, g = 0.323, mBESSLog10 t(67) = 1.447, p = .152 . Male RT scores were 

faster than females, M = 42.1, SD ±21.9 milliseconds quicker, t(67) = 1.197, p = .059, g = .465, 

RTLog10 t(67) = 2.028, p = .047. Overall, effect sizes for sex were small for RTPt, PCSS, mBESS 

and RT. For TTT, there was a medium effect size for sex.   

 Male and female paired t-test for pre-treatment and post-treatment across PCSS, 

mBESS and RT variables are presented in Figure 5. For PCSS scores females decreased by M 

18.3, SD ±20.4, points t(38) = 5.589, p < .001, g = 1.204 and were statistically significant and 

had a large effect size. Male PCSS scores decreased by M 15.8, SD ±21.1, points t(30) = 4.124, p 

< .001, g = 1.025 and were also statistically significant and had a large effect size.  For RT 

females improved by M 58.7, SD ±80.0 milliseconds t(39) = 4.582, p < .001, g = 0.729 and 

males improved by M 41.2, SD ±82.5 milliseconds, points t(30) = 2.736, p = .011, g = 0.587. 

Effect sizes were moderate to large (see Table 9A).  There were no significant differences 
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between pre-treatment and post treatment mBESS for either females (M -3.51, SD ±11.6, points t 

(38) = -1.890, p = .066, g = 0.318 or males (M -3.55, SD ±16,6, points t(29) = -1.168, p = .252, g 

= 0.264. Effect sizes were small.  
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 Table 9A  
Raw Descriptive Statistics (Males n= 30, Females n = 39) 
 Sex M    (SD) 95% CI Skew Kurtosis p  ES  
Age Female 14.2 (2.8) 13.3, 15.1  .350 .340 .937 0.020 

(Years) Male 14.3 (2.1) 13.4, 15.0 -.214 -.787   

RTPt 

(Days) 

Female 65.7 (47.5) 50.2,81.1 1.038 .636 .202 0.357 

Male 52.7 (38.3) 38.3,67.0 1.875 4.370   

TTT 

(Days) 

Female 17.1 (21.1) 10.3,24.0 2.17 5.178 .514 0.159 

Male 14.3 (11.1) 10.2,18.5 1.014 .525   

PCSS 

(Score) 

Female 20.6 (21.1) 13.8,27.5 1.820 3.888 .832 0.170 

Male 17.4 (21.6) 8.2, 22.0 1.685 2.678   

mBESS 

(1-100) 

Female 83.1 (12.8) 79.3,87.5 -1.262 .802 .188 0.323 

Male 78.5 (16.0) 72.5,84.4 -1.196 1.342   

RT 

(Milliseconds) 

Female 316.7 (96.3) 285.5,348.0 .975 .318 .059 0.465 

Male 274.7 (81.9) 244.1,305.2 1.014 .525   

Table 9B:  
Log 10 Descriptive Statistics (Males n= 30, Females n = 39) 
 Sex M    (SD) 95% CI Skew Kurtosis   p  
RTPt-Log10 

(Days) 

Female 2.69 (0.36) 2.57,2.81 -.626 -.222 .422 

Male  2.60 (2.1) 2.47,2.73 -.086 -.202  

TTTLog10 

(Days) 

Female  0.90 (0.56) 0.71,1.09 -.126 -1.148 .349 

Male 0.96 (0.39) 0.80,1,12 -.586 .283  

PCSSLog10 

(Score) 

Female 1.082 (0.51) 0.91,1,25 -.463 -.367 .163 

Male 0.834 (0.62) 0.60,1.06 -.085 -.367  

mBESSLog10 

(1-100) 

Female 1.91 (0.07) 1.88,1.93 -1.48 -1.15 .349 

Male 1.88 (0.11) 1.84,1.93 -.2.11  5.44  

RTLog10 

(Milliseconds) 

Female 2.48 (0.12) 2.44,2.52 .364 -.496 .047 

Male 2.42 (1.3) 2.37, 2.47 .328 -.709   

 
Legend: RTPt = Return to play trajectory, TTT = Time till treatment, PCSS = pre-treatment 
symptom score, mBESS = pre-treatment balance score, RT = pre-treatment, reaction time score, 
95% CI = confidence levels, ES = effect size (Hedges g) 
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Figure 5.  
Pre-treatment and Post-treatment Mean and Standard Deviation 
for Symptoms, Balance and Re-action Time. Males (n =30) and Females (n = 39).  
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C. Secondary Data Analysis  

Secondary data analysis included examination of two important clinical measures, loss of 

conscious (LOC) and vestibular ocular motor sensory (VOMS) dysfunction and their influence 

on RTPt. PCSS, mBESS and RT. The LOC group, accounted for 17.3% (12/69) of athletes and 

this group had a longer RTPt, M =14.5, SE ±13.9, days than those who did not experience a 

LOC.  A Bonferroni correction (α = .0125) was applied to control for family wise Type-I error. 

Table 9 shows group statistics for athletes positive for LOC and those negative for LOC. Group 

mean differences were not statistically significant for RTPt, t(67) = 1.044, p = .300, g = 0.364, 

PCSS, t(67) = 0.420, p = .676, g = 0.133, mBESS, t(67) = 0.548, p = .585, g = 0.173, and RT, 

t(67) = 0.125, p = .901, g = 0.044. Effect size for LOC on RTPt was small, for mBESS and RT 

and was extremely small (< 0.1).  

When looking at VOMS dysfunction sixty-six percent of athletes (46/69) were positive 

for dysfunction. Breaking VOMS down, 27.5% (19/69) of athletes were positive for nystagmus 

only, 31% (21/69) were positive for both nystagmus and convergence and 7.2% (5/69) tested 

positive for convergence only. Independent t-tests for RTPt, PCSS, mBESS and RT determined 

the influence of vestibular dysfunction on these variables. A Bonferroni correction (α = .0125) 

was applied to control for family wise Type-I error. Mean differences for athletes positive for 

VOMS dysfunction were not statistically significantly different for RTPt, t(67) = - 0.894, p = 

.300, g = 0.228, PCSS, t(67) = - .183, p = .676, g = 0.046, mBESS, t(67) = - 2.301, p = .024, g = 

.646 and RT t(67) = 1.044, p = .901, g = 0.001. Effect size was moderate for mBESS, small for 

RTPt and exceedingly small for PCSS and RT.   
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Table 10. 
 Loss of Conscious Group Statistics  No LOC (n=57),  LOC (n =12) 

 LOC M  SD  95% CI 
RTPt 

(Days) 
- 57.8 42.3 46.6,69.1 
+ 72.4 50.3 40.4,104.4 

PCSS 
(Score) 

- 19.7 22.5 13.8,25.8 
+ 16.9 13.9 8.0,25.8 

mBESS 
(1-100) 

- 81.5 14.3 77.7,85.3 
+ 79.0 14.8 69.6,88.4 

RT 
(msec.) 

- 299.1 88.2 299.1,322.5 
+ 295.4 113.5 223.2,367.5 

 
Table 11. 
Group Statistics; VOMS positive (n = 46), VOMS negative (n = 23) 
 
 VOMS M SD   95% CI    
RTPt 
(days) 

- 53.7 42.3 35.4,72.0   
+ 63.8 44.6 50.5,77.0   

PCSS 
(Score) 

- 18.6 22.7 8.7,28.4   
+ 19.6 20.7 13.4,25.7   

mBESS 
(1=100) 

- 75.6 16.2 68.6,82.6   
+ 83.8 12.6 80.1,87.6   

RT 
(msec.) 

- 298.3 86.6 260.9,335.9  
+ 298.5 95.7 298.5,326.9  

 
Note: LOC = Loss of conscious, VOMS = Vestibular Ocular-motor Screen 
RTPt = Return to Play Trajectory, PCSS = Post Concussion Symptom Score  
mBESS = Modified Balance Error Scoring System, RT = Reaction Time  
95% CI = Confidence intervals,   
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CHAPTER V 
 

 

CONCLUSIONS 

The primary objective of this study was to examine the relationship between post- 

concussion RTPt and three independent clinical variables, PCSS, (symptoms), mBESS (balance) 

and RT (reaction time). Post-concussion symptoms, mBESS and RT are common variables used 

in the clinical evaluation and treatment of SRC. The sample population’s RTPt was elongated, 

(M = 60.4, SD = 43.8, days) when compared to previous studies. Previous research has shown 

RTPt for most athletes is between 7-28 days (Blume & Hawash, 2012; Henry et al., 2016). In the 

sample population only 8.6% athletes (6/69) returned to play in less than two weeks. This 

difference may be due to the fact that previous research included patients that were seen by a 

healthcare provider on the initial date of injury versus the delayed TTT (M = 15.9 SD ±17.4 

days) seen in this study.  Thus, the findings of this study may more applicable to those athletes 

who have suffered from sustained post-concussive symptoms rather than generalized to the 

overall concussion population.    

A. Symptoms 

There was a moderate positive association between PCSS and RTPt, (r = .323, p = 

.003). PCSS had a small, but significant influence on the number of days it takes to 

recover from an SRC, with 10.4% of variability in RTPt explained by the variability in  
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PCSS. The positive slope for PCSS as a predictor of RTPt indicated a .655-day increase in RTPt 

for every one-point increase in PCSS. This result was expected. The study population’s pre-

treatment PCSS (M = 19.1 ±21.4) and were similar to PCSS values reported by Custer et al 

(2016), M = 21.2 ± 17.4) and slightly had higher than PCSS values (Median = 13 (4-29) reported 

in a pediatric population study by Ellis et al (2015)(Custer et al., 2016; Ellis et al., 2015). 

Previous studies have associated prolonged recovery time after SRC in athletes with high 

symptom scores and a wide spectrum of symptoms. (Lau et al., 2012; McCrea et al., 2013).  

PCSS is a useful, statistically significant (p = 0.026) predictor of RTPt (Zuckerman et al., 2012). 

Furthermore, athletes with a personal and/or family history of mood disorders, other psychiatric 

illness, and/or migraine headaches have higher mean PCSS scores (33 v. 25; p < 0.004) than 

those who have not sustained a previous concussion (Meehan et al., 2013). These variables can 

be potential “symptom inflators” and should be by considered by health care providers when 

accessing the influence of PCSS scores on RTPt.  

B. Balance 

 Balance (mBESS) had a weak negative association with RTPt, with only 2.1% of 

variability in RTPt explained by the variability in mBESS scores. One explanation for this 

association could be that athletes included in the study had considerable time lag between their 

date of injury (DOI) and time-till treatment (TTT) (M = 15.9, SD ±17.4 days). Some limitations 

of the mBESS may be present, including an inability of the instrument to detect changes in 

balance beyond the acute stage of a SRC. Previous research by Murray et al. (2014) suggests a non-

instrumented BESS test fails to detect balance deficits beyond 7 days post SRC and that this tool 

is more applicable as pre-screening “side-line” test or evaluation in the early stages of 

concussion management (Murray et al., 2014). McCrea et al, (2005) reported balance 
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impairments on a non-instrumented BESS for 36% of concussed college athletes compared to 

5% for non-concussed controls immediately following a SRC. By day seven post-injury, only 

9% of concussed athletes demonstrated balance impairments (McCrea et al., 2005). Clinician’s 

must recognize the temporal limitations of evaluative tools for balance and their respective 

measurement reliability across the RTP trajectory.   

C. Reaction Time  

Reaction time (RT) had a very weak negative association with RTPt. The weakness of the 

relationship was unexpected. Again, an average two-week time lag between DOI and TTT may have 

influenced pre-treatment RT values. Unlike this study, previous studies had reported slowed RT after 

a SRC and changes in RT tend to mirror the trajectory of post-concussive symptoms throughout 

the RTPt (Collie et al., 2006; Collins et al., 2003). Conversely, it is possible for a slowed RT to 

remain, despite a full resolution PCSS scores (McCrea et al., 2005; Warden et al., 2001). As a 

predictor for RTPt, RT may be more reflective of this specific cognitive dysfunction, when measured 

in the early stages (1-7 days) of recovery from a SRC and less reflective beyond that specific time- 

frame. Clinicians must consider the changes in RT test sensitivity and specificity across the RTPt .    

D. Sex Differences  

 In the sample population females on average, when compared to males, required almost two 

weeks longer to recover from a SRC, had slightly higher baseline PCSS scores, marginally better 

mBESS scores and slower RT scores. Sample population sex differences were not statistically 

significant for TTT, RTPt, PCSS, mBESS and RT.  Previous studies on sex and RTPt trajectories are 

conflicting, several studies confirmed that females overall take longer to recover than males (Berz et 

al., 2013; Sicard et al., 2019; Zuckerman et al., 2014). Conversely, another study reported females 

returning to pre-concussion baseline performance levels over shorter time frames than males (Lax et 
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al., 2015).  King et al, and Tanveer et al, found females more likely to have severe and prolonged 

post-concussion symptoms than males (N. S. King, 2014; Tanveer et al., 2017).  

For balance, several studies have reported significantly better balance composite scores in 

non-concussed females when compared to non-concussed male scores (Brett et al., 2018; Moran et 

al., 2020; Nedović et al., 2019). Brett et al (2018) determined non-concussed female athletes 

performed better than males on balance (p < .001). Conversely, males had faster reaction time 

scores (p < 0.001) than females. Finally, balance scores may have a ceiling effect for certain 

populations, particularly when assessing balance improvements in those who already 

demonstrate good balance (e.g. gymnasts or cheerleaders) (Burghart et al., 2017). Clinicians 

must consider the differences in male and female balance performance. Post SRC balance 

measures should be compared to non-concussed baseline scores. If non-concussed base-line 

scores are unavailable, then gender and age specific norms would be the appropriate comparison.   

E. Secondary Data  

 Almost one-fifth (17.3%) of athletes in the sample population experienced a LOC. The 

portion of athletes in the study population who suffered a LOC was considerably higher than the 

4.2% reported previously by Meehan and colleagues in 2011.  Athletes from the study population 

experiencing a LOC on average, had an RTPt two weeks longer than athletes who did not 

experience a LOC. These values were not clinically significant (ES = 0.364) or statistically 

significant (p = .300). There were no statistically significant differences between those athletes 

positive for LOC and those negative for LOC, for PCSS (p = .676), mBESS (p = .585) and RT (p 

= .901). Lavell et al., (1999) in a larger study (n =383) did not find a relationship between LOC 

and severity of injury. The study concluded that clinicians should not use guidelines that rely 

heavily on LOC in making return-to-play decisions (M. R. Lovell, Iverson, Collins, McKeag, & 
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Maroon, 1999). Conversely, in an earlier study, Ommaya et al (1974) posit a direct link between 

LOC and the severity of the concussion and the potential for a protracted RTP   Meehan et al, 

(2013), found that unreported concussed athletes overall, had a significantly (p < 0.004) higher 

mean post-concussion symptom scores and were more likely to have lost consciousness. The 

small difference in RTPt. in the LOC group for the current study’s sample population may not be 

reflective of the severity of the injury alone.  Psychological factors can also influence symptom 

expression and may be more associated with psychiatric factors, particularly in those cases that 

have prolonged post-concussion syndrome (Belanger et al., 2013). While not statistically 

significant clinicians must acknowledge that LOC may result in slightly longer RTPt in some 

athletes.  

 A substantial number (66%) of athletes in the sample population were positive for 

vestibular ocular-motor screening (VOMS) dysfunction. Mucha et al (2014) in a previous study 

reported 61% of concussed patients experienced symptom provocation after completing the 

VOMS. Athletes’ positive for VOMS had on average, a RTPt ten days longer than those without 

VOMS dysfunction. There were no statistically significantly differences between VOMS 

positive and VOMS negative athletes for RTPt (p = .300), PCSS (p = .676), mBESS (p = .024), 

and RT (p = .901). Effect size was moderate for mBESS, small for RTPt and very small for 

PCSS and RT. The VOMS may have  one  advantage over static balance measures mBESS in 

that it measures the dynamic aspects of vestibule-ocular control and function (Mucha et al., 

2014).  Sensory and vestibular evaluations may also help the clinician better understand the 

specific functional deficit presented (vision, hearing or vestibular) for each individual case and 

craft a more appropriate, individualized post SRC rehabilitation plan (Moore et al., 2018).  The 
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VOMs appears to be an appropriate tool for determining vestibular-ocular dysfunction. However, 

a positive VOMs did not significantly influence the RTPt.    

F. Study Limitations:  

For the study sample population, only 23% of athletes seen in the clinic had an RTPt 

of less than thirty days duration. Most athletes (77%), in the study population, had an RTPt 

beyond the previously mentioned acute status window of 30 days. Furthermore, mean TTT 

duration for the sample population was on average two-weeks, resulting in a significant time 

lag between DOI and the initial clinical evaluation. A delayed post SRC clinical evaluation 

most likely resulted in lower symptom presentation with cognitive and balance tests that are 

not representative of the early stages of the injury.  

A second and related study limitation was the lack of access by the clinician to non-

concussed baseline data for each individual athlete. Many schools in Oklahoma and adjacent 

states currently perform pre-season baseline evaluations for PCSS, mBESS and RT. 

Baseline scores are potentially accessible through cloud-based servers. For this study, non-

concussed preseason baselines were either not performed or were inaccessible due to 

institutional barriers related to protected health information policies. Access to pre-season 

PCSS, mBESS and RT baseline data allows for direct comparison of individual’s 

performance for sideline management, clinical assessment, and evaluation throughout the 

RTPt (Guskiewicz, 2001; McCrory et al., 2017). 

 This study confirmed a modest association between PCSS and RTPt and a strong 

association between TTT and RTPt, r (69) = 0.471, p = .000, in a population of sub-acute 

and chronic SRCs. For the sample population, mBESS and RT pre-treatment scores were 

not robust predictors of RTPt.  The protracted TTT, M = 15.9 ± 17.4, and RTPt characteristics 
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of the sample population may be more representative of a chronic rather than acute SRC. 

Non-concussed preseason base line and DOI sideline evaluation scores for PCSS, mBESS 

and RT were not included in the overall clinical evaluation and treatment process and were a 

significant study limitation. Sex, LOC and VOMs did not significantly influence RTPt 

duration for the sample population.  

Clinicians will continue to embrace objective multi-faceted, cloud based evaluation 

tools as they provide a wide array useful cognitive and physiologic performance data. These 

tools can improve SRC sideline management, SRC diagnostics, RTPt and overall post-

concussion recovery outcomes only if they meet generally accepted standards of reliability, 

specificity and sensitivity (> .80). The heterogenetic nature of symptomatology, cognitive 

performance, and mental status of a concussed athlete calls for an individualized approach to 

treatment and their subsequent RTPt. Addressing heterogeneity will require the use of a 

multi-disciplinary team of ATs, Physicians, Physical Therapists, Exercise Physiologists, 

Neuro-psychologists, nutritionists and other providers that are aligned with the matched . 

Use of Multi-disciplinary teams can create challenges with regard to timely access to clinical 

data and coordinating care, particularly if the team resides across multiple medical 

organizations.   

 Finally, healthcare providers through “duty of care” are charged to reduce the incidence 

of concussion in sports and provide best practices in care. Pre-participation examinations and 

non-concussed baselines should be mandatory. Concussion education programs should meet the 

diverse needs of coaches, athletes and parents and subsequently change the “culture” around 

concussion and poor decisions with regard to RTP. Sensible rule changes and appropriate 

strength and conditioning techniques may help to limit the impact forces experienced by the head 
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and neck. Properly trained coaches, athletic trainers, and medical staff are on the front line in 

concussion education, diagnosis and management, and will be crucial to reducing the incidence 

and severity of concussions.  
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