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Abstract: For an algebraic number α we denote by M(α) the Mahler measure of α. Mahler
measure is a height function on polynomials with integer coefficients. Moreover, as M(α) is
again an algebraic number (indeed, an algebraic integer), M(·) is a self-map on A(Sometimes
denoted Q), and therefore defines a dynamical system. The orbit size of α, denoted #OM(α),
is the cardinality of the forward orbit of α underM . In this thesis, we will start by introducing
the background of Mahler measure as a height and a dynamical system, we will review
previous results on the orbit sizes of lower degree algebraic integers and lower degree number
fields, then we discuss results on the orbit sizes of algebraic integers with degrees at least
3 and non-unit norm. After that, we will turn our focus to the behavior of algebraic units,
which are of interest in Lehmer’s problem. We will prove the results regarding algebraic
units of degree 4 and discuss that if α is an algebraic unit of degree d ≥ 5 such that the
Galois group of the Galois closure of Q(α) contains Ad, then the orbit size must be 1, 2
or ∞. Furthermore, we will show that there exist units with orbit sizes larger than 2. We
will also show a few experimental results on the behavior of (log(Mn(α))). In chapter five,
we will prove partial results on the classification of number fields based on the existence of
wandering point.
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CHAPTER I

INTRODUCTION

1.1 Background

In his 1933 paper [16], Lehmer tried to find large primes among the prime factors of Pierce

numbers ∆n =
∏d

i=1(αni −1), where the αi’s are the Galois conjugates of an algebraic integer

α. Since limn→∞ |∆n+1/∆n| is equal to the Mahler measure of α, denoted M(α), Lehmer

argued that the Mahler measure can be used to measure the rate of increase of the Pierce

numbers. Moreover, since it helped his search to choose algebraic integers such that ∆n does

not increase rapidly, Lehmer wanted to find Mahler measures that are very close to 1.

Inspired by this, D.H. Lehmer asked in 1933 if the Mahler measure for an algebraic

number which is not a root of unity can be arbitrarily close to 1. This question became

known as Lehmer’s problem. It is often suggested that the minimal value of Mahler measure

that is greater than 1 is a Salem number, namely τ = 1.17 . . ., which is the largest real root

of the polynomial f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, discovered by Lehmer

in his paper [16].

Although there has been much computational work performed in order to find irreducible

polynomials of small Mahler measure, remarkably, no polynomial of smaller nontrivial Mahler

measure has been found since Lehmer’s original 1933 work. Since that time, the best asymp-

totic bound towards Lehmer’s problem was discovered by Dobrowolski [9]. It is clear that

in considering the problem, one can reduce to considering the Mahler measure of algebraic

units. Smyth [29] found a lower bound for Mahler measures of non-reciprocal units. In

another direction, Borwein, Dobrowolski and Mossinghoff proved the Lehmer conjecture for
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polynomials with only odd coefficients [3].

One direction we can take to explore Lehmer’s problem is to investigate Mahler measure

as a dynamical system. The study of iteration of the Mahler measure began with questions

about which algebraic numbers are themselves Mahler measures. Adler and Marcus [1]

proved that every Mahler measure is a Perron number and asked if the Perron numbers

given by the positive roots of xn−x−1 are also values of the Mahler measure for any n > 3.

Recall that α is a Perron number if and only if α > 1 is a real algebraic integer such that

all conjugates of α over Q have absolute value < α. This notion of ‘Perron number’ was

introduced by Lind [17] who also proved several properties of the class of Perron numbers in

[18], including that they are closed under addition and multiplication and are dense in the

real interval [1,∞). Boyd [4] proved that the positive roots of xn − x − 1 for n > 3 were

not values of the Mahler measure, but Dubickas [11] showed that for every Perron number

β, there exists a natural number n such that nβ is a value of the Mahler measure. Dixon

and Dubickas [7] and Dubickas [13] established further results on which numbers are in the

value set of M . However, the question whether a given number is a Mahler measure of an

algebraic number is very hard to answer in general. For instance, it is an open question of

Schinzel [24] whether or not
√

17 + 1 is the Mahler measure of an algebraic number.

Dubickas [10] appears to have been the first to pose questions on the Mahler measure as

a dynamical system, introducing the concept of the stopping time of an algebraic number

under M , defined as the number of iterations required to reach a fixed point. We note that

the stopping time is one less than the cardinality of the forward orbit of the number under

iteration of M , which we will call the orbit size. Specifically, we set M (0)(α) = α and let

M (n)(α) = M ◦ · · · ◦M(α) denote the nth iteration of M . We define the orbit of α under M

to be the set:

OM(α) = {Mn(α) : n ≥ 0}. (1.1.1)

Then the orbit size of α is #OM(α), while the stopping time is #OM(α) − 1. It is easy to

see that for any algebraic number α, M(α) ≤M (2)(α), so M is nondecreasing after at least
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one iteration, and thus, the Mahler measure either grows, or is fixed.

In fact, by Northcott’s theorem, it is easy to see that if α is a wandering point of M ,

then M (n)(α) → ∞, as the degree of M (n)(α) can never be larger than the degree of the

Galois closure of the field Q(α). In particular, there are no cycles of length greater than 1;

each number α either wanders (that is, the orbit under M is infinite), or it is preperiodic

and ends in a fixed point of M . Dubickas claimed in [10] that ‘generically’ M (n)(α) → ∞,

however, he did not give an example or a proof of this. In my master’s thesis, I showed that

if [Q(α) : Q] ≤ 3, then #OM(α) <∞, and we will present an algebraic number α of degree

4 with minimal polynomial x4 + 5x2 + x− 1 such that M (2n)(α) = M (2)(α)2n−1
, proving that

M (n)(α)→∞ for this example.

Further, it is trivial to see that the fixed points of M correspond to natural numbers,

Pisot-Vijayaraghavan numbers, and Salem numbers. This raises several natural questions:

for example, can one show that the Lehmer problem could be reduced to the study of fixed

points of M? The answer to such a question might help establish the long held folklore con-

jecture that Salem numbers are indeed minimal for Lehmer’s problem. The fixed points for

the dynamical system induced by the multiplicative Weil-height have recently been classified

by Dill [6].

Dubickas posed several questions in [10], including whether one could classify all numbers

of stopping time 1 (that is, numbers which are not fixed by M , but for which M(α) is fixed),

and whether algebraic numbers of arbitrary stopping time existed. In a later paper [11], he

established, among other things, that for every k ∈ N, there exists a cubic algebraic integer

of norm 2 with stopping time k.

After the publishing of the paper by Paul Fili, Lukas Pottmeyer and me [15], Dubickas

posed the question that whether one could find all number fields K that do not contain

algebraic numbers with infinite orbit(private communication). It is clear that such fields

include all numbers fields K satisfying [K : Q] ≤ 3, but are there any other K with this

property? It appears that if the corresponding Galois group is big enough, then there will
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be a wandering unit in the extension, but what if the Galois group is small? We will explore

these questions and give partial results in chapter 5.

Part of this thesis is taken from the paper by Paul Fili, Lukas Pottmeyer and me [15],

and my master’s thesis. In particular, part of Chapter I is from [15] and my master’s thesis;

Part of Chapter II is from my master’s thesis; Chapter III is from [15]; Part of Chapter IV

is from [15].

1.2 Mahler measure, Lehmer’s problem and partial results

The Mahler measure was defined by Kurt Mahler [19] in 1962, but appeared earlier in a

paper of Lehmer [16] in an alternative form.

Definition 1 Let P (z) = a0z
d + ...+ ad = a0

d∏
i=1

(z − αi) be a non constant polynomial with

integer cofficients. The Mahler measure of P is defined to be

M (P ) = exp

(∫ 1

0

log |P (e2πit)| dt
)

which is the geometric mean of |P (z)| for z on the unit circle. We refer to m (P ) = logM (P )

as the logarithmic Mahler measure.

We first give a simple method to compute the Mahler measure, based on Jensen’s formula:

Lemma 1.2.1 We have

M (P ) = |a0|
d∏
i=1

max {1, |αi|} = |a0|
∏
|αi|≥1

|αi| = ±a0

d∏
i=1
|αi|>1

αi,

where α1, . . . , αn are the roots of P (z), that is, P (z) = a0

∏d
i=1(z − αi) ∈ Z[x].

Proof. First we will show that we can assume that P (0) 6= 0 so that we can apply Jensen’s

formula. Since P (z) = a0

d∏
i=1

(z − αi), notice that if one of the roots αi = 0, then P (z) =

a0 (z) (z − β1) (z − β2) ... (z − βd−1), where βi are the rest of d− 1 roots.
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Define P1 (z) = a0 (z − β1) (z − β2) ... (z − βd−1). observe that M (P ) = M (P1) by either

of the definitions. So we can avoid all the cases of P (0) = 0. Now P is an analytic function

on the complex plane, P (0) 6= 0, so by Jensen’s Formula,

log |P (0)| = log |a0α1 · · ·αd| =
∑
|αi|<1

log |αi|+
∫ 1

0

log |P (e2πit)| dt

Thus,

m (P ) = log

(
exp

(∫ 1

0

log
∣∣P (e2πit

)∣∣ dt))
= log |a0α1...αd| −

∑
|αi|<1

log |αi|

= log |a0|+ log |α1|+ ... log |αd| −
∑
|αi|<1

log |αi|

= log |a0|+
∑
|αi|≥1

log |αi|

= log

|a0|
∏
|αi|≥1

|αi|

 .

Since log is one-to-one on R,

exp

(∫ 1

0

log |P (e2πit)| dt
)

= |a0|
∏
|αi|≥1

|αi| = ±a0

d∏
i=1
|αi|>1

αi.

The last equality is because, if αi with |αi| > 1 is non-real, then some αj = αi is its conjugate.

Note that this gives |αj| = |αi| > 1, and αiαj is a real number. Therefore, the absolute value

signs can be dropped.

Definition 2 If α ∈ C is a root of a polynomial f(x) = adz
d + ad−1z

d−1 + . . . + a0 ∈ Z[z],

then α is called an algebraic number.

We let A ⊂ C denote the set of all algebraic numbers. It is well-known that A forms a

subfield of C.

Definition 3 For α ∈ A we define M (α) to be the Mahler measure of the minimal polyno-

mial Pα of α, that is, where Pα is a generator (unique up to sign) of the ideal:

Pα = {f (x) ∈ Z[x] : f (α) = 0} ⊂ Z[x].
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We note in passing that degPα = [Q (α) : Q].

Note that by construction, M(σα) = M(α) for any σ in the Galois group of the Galois

closure of Q (α).

Observe that, with the convention of Definition 3, M in fact defines a function

M : A→ A

In addition, the Mahler measure is actually a height function on polynomials with integer

coefficients because there are only a finite number of such polynomials of bounded degree

and bounded Mahler measure. In fact, by Mahler’s formula, the Weil height is related to

Mahler measure by the following equation:

h(α) =
1

degPα
logM(α)

The study of heights has led to the introduction of potential theoretic techniques in num-

ber theory and led to the resolution of classical problems like the Bogomolov conjecture, and

may help with many more related questions.

In this paper we explore the behavior of the Mahler measure as a dynamical system on

the set of algebraic numbers A. The inspiration for this study comes from the observa-

tion, proven in Theorem 17, that the fixed points of the Mahler measure contain a class of

algebraic numbers which in light of experimental evidence(we refer the reader to M. Moss-

inghoff’s website [20] for the latest tables of known polynomials, as well as the papers by

Mossinghoff [21] and Mossinghoff, Rhin, and Wu [22]) are widely believed to be minimal for

the Mahler measure, namely, Salem numbers. Inspired by the analogy with the definition of

the canonical height for rational maps, one might hope that a method might be found for

bounding the Mahler measure of points which are wandering. This result, together with a

better understanding of preperiodic points, may one day lead to a reduction of the Lehmer

problem to the class of Salem numbers. We will now introduce the basic background regard-

ing Lehmer’s problem which motivates this study. In Section 1.3 we will introduce dynamical
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systems and the particular questions which we will address in Chapter II. Finally in Section

1.5 we will state the main results of this thesis and the conjectures formed from our study

of the subject.

Lehmer sought large primes amongst the so-called Pierce numbers, given by

∆n(F ) =
d∏
i=1

(αni − 1) ,

where αi are the roots of a monic integral polynomial F (x). He proved that ∆n(F ) is more

likely to produce primes if it does not grow too rapidly, and measured the rate of growth by

∆n+1(F )
∆n(F )

, which is where the Mahler measure comes into play.

Lemma 1.2.2 For a monic F ∈ Z[x] with no roots on the unit circle,

lim
n→∞

∣∣∣∣∆n+1 (F )

∆n (F )

∣∣∣∣ =
d∏
i=1

max {1, |αi|} .

Proof. We can treat each term in the product separately:

lim
n→∞

∣∣∣∣αn+1
i − 1

αni − 1

∣∣∣∣ =

 |αi| if |αi| > 1

1 if |αi| < 1

The case when |αi| = 1 is excluded by the assumption that F has no roots on the unit

circle.

It follows that for such F ∈ Z[x],

lim
n→∞

∣∣∣∣∆n+1 (F )

∆n (F )

∣∣∣∣ = M(F ),

so that Lehmer’s search for prime numbers led naturally to the question of finding monic

polynomials with integer coefficients with Mahler measure close to (but not equal to) 1. This

question has since become known as Lehmer’s problem.

1.2.1 Lehmer’s Problem

Among those monic integer coefficients polynomials with M (P ) > 1, could the polynomials

be chosen with M (P ) arbitrarily close to 1? Today it is widely believed that this is impossible
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and that the values are bounded away from 1. This statement is commonly called Lehmer’s

conjecture. The smallest known value of M (P ) > 1 was actually found by Lehmer in his

1933 paper [16] and is M (P ) ≈ 1.17638..., where P (z) = z10+z9−z7−z6−z5−z4−z3+z+1.

Figure 1: Roots of P (z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

As shown in Figure 1, among the roots of P (z), 8 of the 10 lie on the unit circle, which

is very special. Lehmer’s conjecture seems to be a very deep problem and remains unsolved

till now, but there are versions of this problem for certain classes of polynomials have been

solved during these years.

1.2.2 Partial results towards Lehmer’s problem

There are several partial results towards Lehmer’s conjecture. Schinzel’s theorem gives

the lower bound of the Mahler measure of polynomials with all real roots. Smyth proved

that Lehmer’s conjecture is true for all polynomials that are not reciprocal, and in 1979,

Dobrowolski gave essentially the best known unconditional result towards the conjecture.

We will now review these results.

Now, if our setting is for polynomials with integer coefficients, then |a0| ≥ 1, so M (P ) ≥

1. In Lehmer’s conjecture, we only care about the case when M (P ) > 1, so when does

M (P ) = 1? The answer is when P (z) is a power of z times a product of cyclotomic

polynomial, which will follow from a lemma of Kronecker:
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Lemma 1.2.3 (Kronecker’s lemma) Suppose α1 6= 0 is an algebraic integer |α1| ≤ 1 and

the algebraic conjugates α2, α3, ...αd−1 of α all have modulus |αi| ≤ 1 then α1 is a root of

unity.

Proof. Consider the polynomial Pn (X) =
d∏
i=1

(X − αni ), then P1 is the minimal polynomial

for α1.

The coefficients of Pn are elementary symmetric functions of the nth powers of the roots

α1, α2, ...αd, so they are rational integers. Each of the coefficients is uniformly bounded for

every n by a combinatorial constant depending only on the degree d, since |αi| ≤ 1 for all

1 ≤ i ≤ d. So the collection of polynomials {Pn}n∈N is finite. Hence there exist positive

integers n1 < n2 such that Pn1 = Pn2 . Therefore

{αn1
1 , α

n1
2 , ..., α

n1
d } = {αn2

1 , α
n2
2 , ..., α

n2
d } .

Consider the permutation group Sd, define σ ∈ Sd to be the action on the set of roots such

that

αn1
i = αn2

σ(i).

Which gives

(αn1
i )n1 = (αn1

σ(i))
n2 .

But since

αn1

σ(i) = αn2

σ2(i)

α
n2
1
i = α

n2
2

σ2(i)

Similarly,

α
n3
1
i = α

n3
2

σ3(i)

...

So if σ has order r in Sd,

α
nr1
i = α

nr2
i

and therefore α
nr1
i

(
α
nr2−nr1
i − 1

)
= 0, since αi 6=0 , So α

nr2−nr1
i =1, αi is a root of unity.
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We now classify when the Mahler measure is trivial:

Theorem 4 Suppose F ∈ Z[x] is non-zero, non-constant, and that the coefficients of F have

no common factor other than 1. Then M(F ) = 1 if and only if all the zeroes of F are roots

of unity or 0. In particular, M(F ) = 1 if and only if there exist integers r ≥ 1, t ∈ {0, 1, .....}

and cyclotomic polynomials c1, . . . , cr such that f (z) = ±zt or f (z) = ±zt
∏r

i=1 ci (z).

Proof. Suppose all the zeros of F are roots of unity or 0, then F has a factor xt where

t ∈ {0, 1....}, and F
∣∣xt (xN − 1

)
for some N ≥ 1. Hence the leading coefficient of F must be

±1, so it follows that M(F ) = 1 by definition.

Now suppose that M(F ) = 1. It follows that F must be a polynomial with leading

coefficient ±1, so all of the zeroes are algebraic integers, and satisfy |αi| ≤ 1 for all 1 ≤ i ≤ n.

By the previous lemma, all the roots of F are roots of unity or zero.

For the second part of the theorem, we know from the argument above that if M(F ) = 1,

then all zeroes of f are roots of unity or 0. So the leading coefficient of f must be ±1,

and F has a factor zt where t ∈ {0, 1, .....}. Now if α is a root of unity, then an irreducible

polynomial c(z) is a factor of f for which α is a root, and c(z) is a cyclotomic polynomial. This

is because all the roots of a non-zero irreducible integral polynomial are Galois conjugates,

since αn = 1 then σn(α) = σ(αn) = σ(1) = 1. So all the conjugates (the other roots of the

irreducible polynomial) are roots of unity. A irreducible integral polynomial with roots that

are all roots of unity is a cyclotomic polynomial.

Hence each root of f (that is root of unity) will fix a irreducible factor of f , which is

a cyclotomic polynomial, and the product of these cyclotomic polynomials is a factor of f ,

the only other factor is ±zt (t ∈ {0, 1....}). The converse direction is immediate from the

definition of M .

We now state some of the partial results towards Lehmer’s conjecture that motivate our

study.

Theorem 5 (Schinzel [25]) Suppose that F ∈ Z [X] is monic with degree d, F (−1)F (1) 6=
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0 and F (0)= ±1. If the zeroes of F are all real then M (F ) ≥
(

1+
√

5
2

)d/2
with equality if and

only if F is a product of a power of x2 − x−1 and a power of 1− x− x2.

Before introducing Smyth’s theorem, we need the definition of reciprocal polynomials.

Definition 6 Suppose F ∈ C[x] has degree d; write F ∗ (x) = xdF (x−1). Then F is recipro-

cal if F = F ∗, and is non-reciprocal otherwise.

As an example, the polynomial x2 − x+ 1 is reciprocal. On the hand, if we let

f (x) = x3 − x− 1.

Then

x3
(
f
(
x−1
))

=
(
x−3 − x−1 − 1

)
x3 = 1− x2 − x3

So f (x) is not reciprocal.

Theorem 7 (Smyth [29]) If F (x) ∈ Z[x] is a non-reciprocal polynomial, and F (0)F (1) 6=

0 then m (F ) ≥ m (x3 − x− 1) = log (1.324 . . .) = 0.281 . . .

Note that F (0) 6= 0 ⇒ F is not divisible by x− 1. If F is reciprocal , then given F is of

degree d,

xd
(
F
(
x−1
))

= F (x)

Now define G (x) = F (x)F (x− 1) then G is of degree (d+ 1).

xd+1
(
G
(
x−1
))

= xd+1F
(
x−1
) (
x−1 − 1

)
= xdF

(
x−1
)
− xd+1F

(
x−1
)

= F (x)− xF (x)

= F (x) (1− x)

= −G (x)

So G (x) is not reciprocal. Hence condition about divisibility by x− 1 is required.

Lastly, we state a result of Dobrowolski, which gives essentially the best known asymptotic

lower bound.
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Theorem 8 (Dobrowolski [8]) Let α be algebraic number of degree d, then for d ≥ 2

M (α) > 1 +
1

1200

(
log log d

log d

)3

.

We note that the constant of 1/1200 in the above theorem has since been improved to 1/4

by Voutier [30].

Classical results for Mahler measure and partial results towards Lehmer’s problem are

extensively surveyed in Smyth’s paper [27].

1.3 Dynamical systems, the Northcott theorem

We mentioned at the beginning that the Mahler measure function maps algebraic numbers

into itself. This is a specific example of a dynamical system:

Definition 9 For a set X, let f be a function which maps X to itself, that is, f : X → X.

We call the pair (X, f) a dynamical system.

Loosely speaking, dynamics refers to the study of the behavior of the points in X under

iteration of the map f . We write

fn = f ◦ f ◦ f ◦ ...f︸ ︷︷ ︸
n iterations

A primary goal in the study of dynamic is to classify the points of X by the behavior of

their orbits, Of (α), where Of (α) = {α, f (α) , f 2 (α) , f 3 (α) , . . .}.

We will give some definitions to classify what the orbit of a point in X looks like under

iteration of f .

Definition 10 A point x ∈ X is called a periodic point for the dynamical system (X, f) if

there exists n > 0 such that fn(x) = f(f(· · · f(x)) = x.

Definition 11 A point x ∈ X is called a preperiodic point for the dynamical system (X, f)

if there exists n > m ≥ 0 such that fn(x) = fm(x).

12



We note that a number is preperiodic if and only if the orbit is finite:

Lemma 1.3.1 Let (X, f) be a dynamical system, x ∈ X. Then the orbit Of (x) is finite if

and only if x is preperiodic.

Proof. If x is preperiodic, then fn(x) = fm(x) for some n > m > 0. If n−m = d, fm+1(x) =

fn+1(x), fm+2(x) = fn+2(x), · · · fn(x) = fn+d(x) = fm(x) and as the iteration continue, the

numbers repeat, so the orbit Of (x) has no more than m+ d elements.

If Of (x) is finite, then, for some i ≥ 1, f i(x) = f j(x) for some j < i, otherwise we will get

infinitely many different outputs for the iteration, and Of (x) cannot be finite.

Definition 12 A point x ∈ X is a wandering point for a dynamical system (X, f) if it is

not preperiodic (equivalently, if the orbit is infinite).

The most basic questions we might ask about a dynamical system are the following:

1. What points are fixed by f?

2. What points are periodic?

3. What points are preperiodic?

Note that fixed points are periodic (of period n = 1), and periodic points are also preperiodic,

but that none of the converses necessarily hold.

We wish to study M : A → A as a dynamical system. To study problem (1), we begin

by prove that certain algebraic numbers are fixed points for M .

Proposition 13 Every n ∈ N ⊂ A is a fixed point of M .

Proof. The minimal polynomial of n is F (x) = x−n. By definition, M(F ) = |a0|
∏d

i=1 max{1, |αi|},

so M(n) = M(x− n) = n for all n ∈ N

As a convention throughout this section, for any α ∈ A, we let Pα(x) ∈ Z[x] be the

minimal polynomial of α, and denote the roots of Pα, that is, the Galois conjugates of α, by

α = α1, . . . , αn where n = degPα.
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Definition 14 We say that α ∈ A is a Pisot-Vijayaraghavan number if:

1. α is an algebraic integer.

2. α ∈ R and α > 1,

3. All Galois conjugates of α, α1, ..., αn, αi 6= α, satisfy |αi| < 1.

We note that vacuously, the set of natural numbers are Pisot-Vijayaraghavan.

Definition 15 We say that α ∈ A is a Salem number if

1. α is an algebraic integer.

2. α ∈ R and α > 1.

3. All Galois conjugates of α, α1, ..., αn, αi 6= α satisfy |αi| ≤ 1 and at least one conjugate

αm has |αm| = 1.

Notice that a Salem number must have degree at least 2 over Q.

Proposition 16 If α is Salem, then for any conjugate αi, the number α−1
i is also a Galois

conjugate of α, that is, α−1
i = αj for some 1 ≤ j ≤ n. In particular, the minimal polynomial

Pα is reciprocal.

Proof. If α is Salem, then there is one conjugate αi such that |αi| = 1 then αi is also a

conjugate of α, and αiαi = 1. Now, αj = σ(αi) for some σ ∈ Gal(Q(α1, ..., αd)/Q). Now

σ(αi)σ(αi = σ(αiαi) = σ(1) = 1.

So αj · σ(αi) = 1 ; σ(αi = α−1
j , and it is also a conjugate. That Pα is reciprocal now follows

immediately, as the roots of P ∗α are precisely the inverses of the roots of Pα.

We now classify the fixed points of M :

Theorem 17 Let α ∈ A \ {0, 1}. Then M(α) = α if and only if α is a Pisot number or a

Salem number.

14



Proof. Let the minimal polynomial of α be

f(z) =a0z
d + a1z

d−1 + · · ·+ ad

= a0

d∏
i=1

(z − αi) =
d∏
i=1

(z − ai)
(1.3.1)

Then M(f) =
∏d

n=1 max{1, |αi|}. If α is a Pisot number, then M(f) = |α| = α, since all

other roots have modulus less than 1. The proof is similar if α is a Salem number.

On the other hand , if M(α) = α, then

M(α) = |a0||α| = α > 1

So α must be a real number that is greater than 1, and a0 = ±1, that is, α is an algebra

integer.

α has no other conjugates with |αi| > 1, hence |αi| ≤ 1 for all conjugates αi other than α,

Therefore by definitions, α is either an Pisot number or a Salem number.

It is a folklore conjecture that Lehmer’s conjecture can be reduced to consideration of

Salem numbers (Pisot-Vijayaraghavan numbers are non-reciprocal and hence have Mahler

measure bounded away from 1 by Smyth’s theorem), and the above result suggests that this

may be true because of the special nature of such numbers under the iteration of M . For

more information on recent results and applications of this important class of numbers, the

readers may want to read Smyth’s survey article [28].

In regard to classifying the periodic points and the preperiodic points, we will now proceed

show the proof that, for degree no larger than 3 polynomials, the iteration of M : A→ A will

give the output that stabilizes eventually, those are examples of α ∈ A that are preperiodic.

There are many other questions that we are interested in, for example:

If we increase the degree of f(x), which is the initial input of the iteration, does the “tail”

length before stabilization increase? If we have the initial algebraic unit to be degree 6, will

it take more than 1 application of M to get to the stabilized output? Is it true that if the
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degree of the starting algebraic unit is d ≥ 4, then its orbit size is bounded by d−1? Can we

find algebraic units with arbitrarily long but finite orbits in large enough degree extensions?

And how large is “large enough” degree?

Remark 1.3.1 Note that Mn+1(α) ≥ Mn(α) for all algebraic number α, the iterates of

Mahler measure is non-decreasing(after one iteration), it is clear that we cannot have cycles

of length greater than 1, such as α→M(α)→M2(α)→ α.

As we will see later, it is possible to have either a wandering point, or a preperiodic point

with a long “tail” before reaching a fixed point.

One key theorem for the background of Mahler measure as a dynamical system is North-

cott Theorem.

Theorem 18 (Northcott [23]) For any T,D > 0, the set

{α ∈ A : M(α) ≤ T and degree of α ≤ D}

is finite.

If the orbit of α under M , OM(α) = {Mn(α) : n ≥ 0} is infinite, then either the degree

of the algebraic number Mn(α) tends to infinity as n → ∞ or the number Mn(α) → ∞ as

n → ∞ by Northcott’s theorem. In fact, it must be Mn(α) → ∞ as n → ∞. All values

of Mn(α) live in the field: Q(α1, ..., αn, |α1|, ..., |αn|), where α1, . . . , αn are all the Galois

conjugates of α, this is of finite degree over Q.

In the next section, we will introduce some important properties of M as a dynamical

system.

1.4 Properties of M as a dynamical system

In [7], Dixon and Dubickas gave their proofs for the properties presented in this section, and

I will rephrase their proofs.
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Definition 19 We say that α ∈ Q× is torsion-free(See [12] and [14]) if for any σ ∈

Gal
(
Q/Q

)
, if α 6= σ(α), then α

σ(α)
/∈ Tor(Q×).

Proposition 20 Suppose α ∈ Z, then M(α−1) = M(α).

Proof. This is immediate by Definition 1.

Proposition 21 Suppose α ∈ Z, let the minimal polynomial of α be f , let Gα be the Galois

group of f. Suppose that −α = σ(α) for some σ ∈ Gα then M(α2) = M(α).

Proof. Soppose there exists a Galois conjugate β such that β 6= −α and β 6= α. Then

there exists τ ∈ Gα such that τ(α) = β, but then τ(−α) = τσ(α) = −τ(α) = −β.

Hence −β is also a Galois conjugate of α. Now, let the complete set of conjugates of α

be {α1,−α1, α2,−α2, ..., αn,−αn}. Since the conjugates of α2 are the squares of the conju-

gates of α, M(α2) =
∏
|αi|≥1

|α2
i | = M(α) =

∏
|αi|≥1

|αi| |−αi|.

Proposition 22 Soppose α ∈ Z and β = M(α). let the minimal polynomial of β be f , let

Gβ be the Galois group of f. Then β is torsion-free and M(βn) = M(β)n for any n ∈ N.

Proof. We know that M (n)(α) is a Perron number [7], hence the conjugates of β are all less

than β in absolute value. Therefore, for any σ ∈ Gβ, if β 6= σ(β) then β
σ(β)
6∈ Tor(Q×),

thus β is torsion-free. Now, this implies that [Q(βn) : Q] = [Q(β) : Q]. Let the set

of conjugates of β be {β1, ..., βm}, then the set of conjugates of βn is {βn1 , ..., βnm}, hence

M(βn) =
∏
|βni |≥1

|βni | =
∏
|βi|≥1

|βi|n = (
∏
|βi|≥1

|βi|)n = (M(β))n.

Theorem 23 If α is torsion-free and M(α) = αn for some integer n > 1, then α is a

wandering point for M . In particular, if α is a Perron number, then it satisfies this conclusion

as well.

Proof. This is immediate from Theorem 22.
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1.5 Main results and conjectures

In this thesis, we will prove several other results regarding the stopping time of algebraic

numbers. Our first result is a direct generalization of Dubickas’s result:

Theorem 24 For any d ≥ 3, l ∈ Z \ {±1, 0} and k ∈ N there is an algebraic integer α of

degree d, N(α) = l and #OM(α) = k.

The proof of Theorem 24 will be given in §III below. To study the possible behaviour of

algebraic units under iteration of M is more delicate. It is clear that #OM(α) ≤ 2 for all

algebraic units of degree at most 3, and this result is (non-trivially) also true if the degree

is 4:

Theorem 25 Let α be an algebraic unit of degree 4. Then either #OM(α) ≤ 2 or #OM(α) =

∞. Moreover, if #OM(α) =∞, then M (3)(α) = M(α)2.

The first algebraic unit α with #OM(α) ≥ 3 we found has degree 6 and orbit size 5. It

is given by any root of x6− x5− 4x4− 2x2− 4x− 1. Despite an extensive search, we did not

find any unit of degree 5 of orbit size ≥ 3, nor a unit of degree 6 of finite orbit size ≥ 6.

It will follow from the proof of Theorem 25 that we have the following corollary:

Corollary 26 If α is an algebraic unit of degree 4, then the sequence (logM (n)(α))n∈N sat-

isfies a linear homogeneous recursion.

The proofs of Theorem 25 and Corollary 26 are given in §IV. We note that, in the

example of a degree 4 wandering point given by Zhang [31], the sequence (logM (n)(α))n∈N

satisfied the recursion relation xn = 2xn−2 for n ≥ 3. Based on the above corollary and

further experimental data, we make the following conjecture:

Conjecture 1 For every algebraic unit α, there exists a constant k such that the sequence

(log(M (n)(α)))n≥k satisfies a linear homogeneous recursion.
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We note that, in the case of a large Galois group, the behavior of units is particularly

simple. We prove that, if the Galois group contains the alternating group, then the orbit

of a unit must either stop after at most one iteration, or the unit wanders. Specifically, we

prove in §IV the following theorem:

Theorem 27 If α is an algebraic unit of degree d such that the Galois group of the Galois

closure of Q(α) over Q contains the alternating group Ad, then #OM(α) ∈ {1, 2,∞}.

More precisely, if α is as above, of degree ≥ 5, and such that none of ±α±1 is conjugate

to a Pisot number, then #OM(α) =∞.

One might be led by Theorems 25 and 27 to suspect that, in fact, algebraic units cannot

have arbitrarily large but finite orbits under M . However, we prove that this is not the case.

Theorem 28 Let S ∈ N be arbitrary, and let d ≥ 12 be divisible by 4. Then there exist

algebraic units of degree d whose orbit size is finite but greater than S.

The proof is given in Section IV. It would be interesting to know whether there are large

finite orbits of algebraic units in any degree less than 12.

We know that all numbers fields K satisfying [K : Q] ≤ 3 do not contain algebraic

numbers a with infinite orbit. But are they all such fields? No. We know that there are

quartic K that don’t have a wandering point, as Theorem 29 below shows.

Theorem 29 Let K/Q be of degree 4. If K is totally real, then it contains a wandering

point under iteration of M if and only if K is not biquadratic. If K is totally imaginary,

then there are no wandering points in K.

Note that the classification of the extensions of signature (2, 1) is still partially open.

In extensions of degree 5, there always exists an algebraic unit which is wandering under

iteration of M .

Theorem 30 Let K/Q be an extension of degree five. Then there exists an algebraic unit

in K which is wandering under iteration of the Mahler measure M .
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Furthermore, in chapter 5, we will discuss the complete classification of all the Abelian

extensions that don’t contain a wandering point:

Theorem 31 Let K/Q be an Abelian extension. Then K does not contain a wandering

point under iteration of M if and only if the maximal real subfield of K has Galois group

isomorphic to C1, C2, C2 × C2, or C3.
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CHAPTER II

LOWER DEGREE CASES

Part of this chapter is from my master’s thesis.

2.1 Orbit sizes of lower degree algebraic integers

Let α be an algebraic integer, that is, an algebraic number with minimal polynomial that

is monic, irreducible and with integer coefficients. The main result of this section is the

following:

Theorem 32 If the degree of α is at most 3, then the orbit of α under M is eventually fixed

(i.e., it stabilizes).

We break the proof down by degree.

2.1.1 Degree 1

Suppose that α is of degree 1. Then the minimal polynomial f(x) = x + b with b ∈ Z.

If b = 0, then M(α) =
∏
|αi|≥1

max{1, |αi|} = 1, with the minimal case being f(x) = x − 1,

and M(M(α)) = 1, stabilized. If b 6= 0, then M(α) =
∏
|αi|≥1

|αi| = |b| = ±b (with minimal

polynomial f(x) = x∓ b). Then M(M(α)) = M(|b|) = |b| = ±b and is stabilized.

2.1.2 Degree 2

Now suppose α is of degree 2. Let the minimal polynomial be x2 + ax + b ∈ Z[x]. Then

x2 + ax + b = (x − α)(x − α). If α 6∈ R, then |α| = |α| ≥ 1. Then |b| = |α||α| ≥ 1. So in

this case, M(α) =
∏
|αi|≥1

|αi| = |α||α| = |b|, so M(M(α)) = M(|b|) = |b|, stabilized. If α ∈ R,
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then we can’t have both |α|, |α| < 1, so at least one value is ≥ 1. If both |α|, |α| ≥ 1, then

again, M(α) = |α · α| = |b| and M(M(α)) = M(|b|) = |b|.

If |α| ≥ 1, but |α| < 1. Without loss of generality, M(α) = |α| = ±α and M(M(α)) =

M(±α) = |α|, so the Mahler measure stabilizes.

2.1.3 Degree 3

Now we suppose α = α1 is of degree 3,

f(x) = x3 + ax2 + bx+ c = (x− α1)(x− α2)(x− α3) where |c| ≥ 1.

Case 1: There is one real root and two complex roots. Without loss of generality, let

α1 ∈ R, α3 = α2 are complex numbers ( α3 = α2 is from complex conjugate root theorem).

So α2α3 ∈ R. Now, |α2α3| and |α1| cannot be both less than 1, so at least one of them

is ≥ 1.

1. If both ≥ 1, then |α2α3| = |α2| · |α3| ≥ 1. Since α3 = α2, |α2| = |α3|. Hence

|α2| = |α3| ≥ 1 and |α1| ≥ 1. Therefore,

M(α) =
∏
|αi|≥1

|αi| = |α1||α2||α3| = |c|, So M2(α) = M(|c|) = |c|. Thus stabilized,

minimal f(x) = x− |c|.

2. If |α2α3| ≥ 1 but |α1| < 1 then since |α2| = |α3|, |α2| ≥ 1, |α3| ≥ 1. Hence M(α) =

|α2||α3| = α2α3. Since α1α2α3 = −c, α2α3 =
−c
α1

∈ Q(α1). So the minimal polynomial

of α2α3 is of degree 3. degree [Q(α2, α3) : Q] = 3

τ : α1 → α3 → α2 → α1, τ(α2α3) = α1α2,τ(α1α2) = α3α1.

So the conjugates are: α3α1 and α1α2. Now if |α1α2| < 1 then |α3α1| = |α1α2| < 1.

Then M(α2α3) = α2α3, Stabilized.
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If |α1α2| ≥ 1, then both |α3α1| and |α2α3| ≥ 1. M(α2α3) = |α1α2| · |α2α3| · |α3α1| =

(α1α2α3)2 = c2. So Stabilized.

3. If |α2α3| < 1 but |α1| ≥ 1 then |α2| < 1, |α3| < 1, but |α1| ≥ 1. M(α1) = |α1| and

M(|α1|) = |α1|, Stabilized.

Case 2: All 3 roots, α1, α2, α3 are real.

Then |α1|, |α2|, |α3| cannot all be less than 1. Without loss of generality, we have three cases:

1. |α1|, |α2|, |α3| are all ≥ 1. Then M(α) =
∏
|αi|≥1

|αi| = |α1||α2||α3| = |c|. M2(α) =

M(|c|) = |c|. Stabilized.

2. |α1| ≥ 1 and |α2| < 1, |α3| < 1. Then M(α) =
∏
|αi|≥1

|αi| = |α1| and M2(α) = |α1|,

stabilized.

3. If |α1| ≥ 1, |α2| ≥ 1, and |α3| < 1, then M(α) =
∏
|αi|≥1

|αi| = |α1||α2| = |α1α2|.

σ(α1α2) = α2α3, τ(α1α2) = α1α3. So if |α2α3| < 1, |α1α3| < 1, then M(|α1α2|) =

|α1α2|. Stabilized.

If |α2α3| ≥ 1, |α1α3| ≥ 1, then M(|α1α2|) = c2, stabilized.

If |α2α3| ≥ 1, |α1α3| < 1, then M(|α1α2|) = |α1α
2
2α3| = |cα2|

Conjugates of |cα2| = ε · cα2, where ε ∈ {±1} are εcα1, εcα3.

Now, |εcα1| ≥ 1, |εcα2| ≥ 1. Now if |cα3| < 1, then M(|cα2|) = ±c2α1α2 = |c2α1α2| =

εc2α1α2. If εc2α1α3 < 1, then M(εc2α1α2) = |c4cα2|. Once again, |c4cα1| ≥ 1, |c4cα2| ≥

1. Now, if |c5α3| < 1, then continue the process until the power of c big enough to

make |cmα3| ≥ 1, and the output of M will be stabilized then;

Otherwise, if |c5α3| ≥ 1, then

M(|c4cα2|) = |c4cα2| · |c4cα1| · |c4cα3|

= |c15α1α2α3| = |c16|
(2.1.1)
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and M(|c16|) = |c16|, so stabilized. Similarly, if |α1α3| ≥ 1, |α2α3| < 1, the output of

M will stabilize eventually.

2.2 Number fields with degree less than 4

Theorem 33 Let K/Q be a number field satisfying [K : Q] ≤ 3, then K does not contain

algebraic numbers with infinite orbit.

Proof. Suppose that α is an element in K, then α is an algebraic number with degree n ≤ 3,

and α1, · · · , αn are the distinct Galois conjugates of α. Note that if c is a positive integer,

then the Galois conjugates of cα are among cα1, · · · , cαn. This, and a similar argument as

before, gives that #OM(α) <∞.

2.3 An example of degree 4 unit

Proposition 34 Let α be a root of f(x) = x4 + 5x2 + x − 1. Then {Mn(α) : n ∈ N} is

infinite.

Proof. Let the Galois conjugates of α be denoted α1, α2, α3, α4, where α1 and α2 are real,

α3 and α4 are complex, |α1| ≈ 0.5393, |α2| ≈ 0.3547, |α3| = |α4| ≈ 2.2859. Then M(α1) =

|α3||α4| since only α3 and α4 are outside or on the unit circle. Now consider M(α3α4). Note

that f(x) factors into irreducibles as (x+ 1)(x3 + x2 + 1) (mod 2), and f is irreducible mod

5. Therefore the Galois group of f contains a 3-cycle and a 4-cycle. This means that the

Galois group has order at least 12, and has an odd permutation, which implies that it is S4.

Those are all the permutations for 4 elements. So there are
(

4
2

)
= 6 combinations, α3α4 has

degree 6. When we check in Mathematica, only 3 roots of the minimal polynomial of α3α4

have absolute value ≥ 1. Again, if we check in Mathematica, those roots are α1α3, α1α4, and

α3α4.

Hence, M2(α1) = M(α3α4) = |α2
1α

2
3α

2
4| =

∣∣∣∣ 1

α2
2

∣∣∣∣.
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Conjugates of α1α3α4 with absolute value ≥ 1 are α1α3α4 and α2α3α4. Reciprocals of αi

are conjugates.

In fact, M3(α1) = M(|1/α2
2|) = M(|α2

2|) = M(|α2
1|) = |α2

3α
2
4|. ThenM4(α1) = M(α2

3α
2
4) =

|α4
1α

4
3α

4
4| since conjugates of α2

3α
2
4 that has modulus ≥ 1 are α2

1α
2
4, α

2
1α

2
3, α

2
3α

2
4. |α4

1α
4
3α

4
4| =∣∣∣∣ 1

α4
2

∣∣∣∣ .
Again, M5(α1) = M(| 1

α4
2
|) = M(|α4

2|) = M(|α4
1|) = |α4

3α
4
4|. Then M6(α1) = M(|α4

3α
4
4|) =

|α8
1α

8
3α

8
4| =

∣∣∣∣ 1

α8
2

∣∣∣∣ , and we can continue the process and Mn(α1) will be increasing(goes to

infinity) as n→∞, since |α2| < 1. We can prove by induction that M2n−1(α1) = M(α1)2n−1

and M2n(α1) = M2(α1)2n−1
.

We will prove M2n−1(α1) = M(α1)2n−1
. When n = 1, M(α1) = |α3α4|,M(α1)2n−1

=

|α3α4|. So M2n−1(α1) = M(α1)2n−1
holds for case n = 1. Suppose the case of n − 1 holds.

Then

M2(n−1)−1(α1) = M(α1)2(n−1)−1

M2n−3(α1) = M(α1)2n−2

then

M2n−2(α1) = M((M(α1))2n−2

)

= M(|α2n−2

3 α2n−2

4 |)

(2.3.1)

Conjugates of α2n−2

3 α2n−2

4 that have absolute value ≥ 1 are α2n−2

1 α2n−2

4 , α2n−2

1 α2n−2

3 and

α2n−2

3 α2n−2

4 .

So, M(|α2n−2

3 α2n−1

4 |) = |α2n−1

1 α2n−1

3 α2n−1

4 | =
∣∣∣∣ 1

α2n−1

2

∣∣∣∣ .
Now,

M2n−1(α1) = M(|1/α2n−1

2 |)

M(|α2n−1

2 |) = M(|α2n−1

1 |)

= |α2n−1

3 α2n−1

4 | = |α3α4|2
n−1

= M(α1)2n−1

(2.3.2)

Hence, the result holds for the case of n. Similarly, we can prove that M2n(α1) = M2(α1)2n−1

and thus the orbit of α under the Mahler measure tends to infinity (doubly exponentially).
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CHAPTER III

NON-UNITS ALGEBRAIC INTEGERS

This chapter is from [15].

3.1 A few isolated cases

In [11], Dubickas proved the case d = 3 and l = 2 (and k arbitrary). In order to prove

Theorem 24, we will start with a few examples.

Example 3.1.1 Since there are Pisot-Vijayaraghavan numbers of any degree and norm, we

know that for any d ∈ N and any l ∈ Z \ {±1, 0} there are algebraic numbers α of degree d,

norm l and orbit size 1. By Perron’s criterion, we may take the largest root of xd+ l2xd−1 + l.

Similarly, the polynomial xd + ldx + l has precisely one root β inside the unit circle and

all other roots are of absolute value > |l|. Hence, the polynomial is irreducible. Let α be the

largest root of this polynomial. Then M(α) = | l
β
|, which is a Pisot number. Thus, α has

norm l, degree d and orbit size 2.

Example 3.1.2 For any l ∈ Z \ {±1, 0} we consider f(x) = x3 − l2x + l. Let α1, α2, α3 be

the roots of f ordered such that |α1| ≥ |α2| ≥ |α3|.

If l ≥ 2 we have

f(−l − 1) = −2l2 − 2l − 1 < 0 f(−l) = l > 0

f(l − 1) = −2l2 + 4l − 1 < 0 f(l) = l > 0

f(1) = 1− l2 + l < 0 f(1
l
) = 1

l3
> 0

Hence, the three roots are real and none of them is an integer. If f is reducible, then

one of the factors must be linear, this is a contradiction since f is monic. Hence, f is
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irreducible and it follows α1 ∈ (−l − 1,−l), α2 ∈ (l − 1, l) and α3 ∈ (1
l
, 1). Therefore

we find M (0)(α1) = α1, M (1)(α1) = −α1α2 = l
α3

, M (2)(α1) = M( l
α3

) = l2

α2α3
= −α1l,

M (3)(α1) = M(−α1l) = α1lα2lα3l = l4 ∈ Z. These are all elements in the orbit of α1 under

iteration of M . Hence, α1 is an algebraic integer of degree 3, N(α1) = l and #OM(α1) = 4.

Moreover −α1 is an algebraic integer of degree 3, N(−α1) = −l and #OM(−α1) = 4.

In the same fashion one can prove that any root of the polynomial x3 + lx2− l is of degree

3, norm −l and orbit size 3.

Example 3.1.3 Again let l ∈ Z \ {±1, 0} be arbitrary and consider f(x) = x4− l2x2 + (l2−

l)x + l. The four roots of f are ordered as |α1| ≥ |α2| ≥ |α3| ≥ |α4|. A direct computation

shows that f is irreducible and #OM(α1) = 4 if l ∈ {−3,−2,−4}. If l 6∈ {−3,−2−1, 0, 1, 2},

then we show as in the last example that

α1 ∈ (−l − 1,−l), α2 ∈ (l − 1, l), α3 ∈ (1, 2), α4 ∈ (−1,− 1

l2
)

if l > 0, and

α1 ∈ (−l − 1,−l), α2 ∈ (l − 1, l), α3 ∈ (1, 2), α4 ∈ (1,
1

l2
)

if l < 0. Obviously f has no linear factor. Moreover, α4 and α1 must be Galois conjugates,

since the norm of α1 has to be a divisor of l. Hence, if f is not irreducible it factors into

g(x) = (x − α1)(x − α4) and h(x) = (x − α2)(x − α3). This can only occur if g and h are

in Z[x]. Comparing the size of the roots, the only possibilities are g(x) = x2 + (l + 1)x + 1

and h(x) = x2 − (l + 1)x + l. However, multiplying these two polynomials does not give f .

Hence, f is irreducible.

Now we calculate the orbit size of α1. We have M(α1) = − l
α4

, M (2)(α1) = ±l2α1,

M (3)(α1) = ±l9, and hence #OM(α1) = 4. We have shown, that any root α of f is an

algebraic integer of degree 4, norm l and orbit size 4.

Example 3.1.4 One can show with similar methods as above, that any root of xd− ld−2x+ l
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has orbit size 3, for all d ≥ 4 and l ∈ Z \ {±1, 0}: To this end, we note

| − ld−2z| = |l|d−2 > |l|+ 1 ≥ |zd + l| ∀ z ∈ C, |z| = 1, (3.1.1)

and

|zd| = |l|d > |l|d−1 + |l| ≥ | − ld−2z + l| ∀ z ∈ C, |z| = |l|. (3.1.2)

Now we apply Rouché’s theorem. Then (3.1.1) tells us that xd − ld−2x + l has precisely one

root αd inside the unit circle, and (3.1.2) tells us that all roots α1, . . . , αd of xd − ld−2x + l

have absolute value < |l|.

Before we proceed with calculating the orbit size of one of these roots, we need to show

that xd − ld−2x + l is irreducible. This is obviously the case if |l| is a prime number. So

in particular, we can assume that |l| ≥ 4. Using this assumption and d ≥ 4, the same

calculation as in (3.1.1) proves that there is precisely one root of xd − ld−2x + l of absolute

value ≤
√
|l| (necessarily αd).

It follows that no product of two or more of the elements α1, . . . , αd−1 can be a divisor

of l. Hence, the only possibility for xd − ld−2x + l to be reducible is, if it has a root a ∈ Z.

This a must be a divisor of |l| and it must satisfy ad = ld−2a − l. Hence, ad−1 | l which

implies |a|d−1 ≤ |l|. This is not possible, as we have just seen that |a| ≥
√
|l|. It follows that

xd − ld−2x+ l is indeed irreducible, and α1 is an algebraic integer of degree d, and norm l.

We then have:

• M (1)(α1) = α1 · · ·αd−1 = l
|αd|

/∈ Z,

• M (2)(α1) = M(± l
αd

) = ±
∏d

i=1
l
αi
∈ Z, and

• M (n)(α1) = M (2)(α1) for all n ≥ 2.

Hence α1 has orbit size 3.
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3.2 A generalization of Dubickas’s result on non-units

Proposition 35 Let d ≥ 3 be an integer and let α1, . . . , αd be a full set of Galois conjugates

of an algebraic integer α. Assume the following conditions:

i. |α1| > |α2| ≥ . . . ≥ |αd−1| > 1 > |αd|,

ii. |αi| ≤ |N(α)| for all i ∈ {2, . . . , d},

Then α is a pre-periodic point of M . More precisely, if we let

c(α) = min{min{k ∈ N : 2 | k and |αd ·N(α)bk | > 1},

min{k ∈ N : 2 - k and |α1| < |N(α)bk |}},

where we define b1 = 1, and bn = bn−1 · (d − 1) + (−1)n−1 for all n ≥ 2, then #OM(α) =

c(α) + 2.

Proof. First we note, that α cannot be an algebraic unit. Hence, |N(α)| ≥ 2 and bk ≥ 1

for all k. We claim that bk → ∞. To see this, notice that b1 = 1, b2 = d − 2 ≥ 1, and

we want to show that for n ≥ 3, bn ≥ (d − 2)(d − 1)n−2 + 1. Now, this is true for n = 3,

since b3 = (d − 2)(d − 1) + 1. By induction, suppose bn−1 ≥ (d − 2)(d − 1)n−3 + 1, then

bn ≥ ((d − 2)(d − 1)n−3 + 1)(d − 1) + (−1)n−1 = (d − 2)(d − 1)n−2 + (d − 1) + (−1)n−1 ≥

(d− 2)(d− 1)n−2 + 1, as desired. Therefore, bn ≥ 1 for all n, and bn →∞.

So the integer c := c(α) does indeed exist. We claim that for all k ≤ c we have

M (k)(α) =


±N(α)bk

αd
if 2 - k

±N(α)bk · α1 if 2 | k
(3.2.1)

Note that α1, αd ∈ R, since there is no other conjugate of the same absolute value. Therefore,

the sign in (3.2.1) has to be chosen such that the value is positive. We prove the claim by

induction.
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For k = 1, we calculate M (1)(α) = M(α) = ±α1 · . . . · αd−1 = ±N(α)
αd

= ±N(α)b1

αd
, by

assumption (i). Now assume, that (3.2.1) is correct for a fixed k < c. If k is even, then by

assumption (i) we have

M (k+1)(α) = M(±N(α)bk · α1) = ±N(α)bk·(d−1) · α1 · . . . · αd−1

= ±N(α)bk·(d−1)+1

αd
= ±N(α)bk+1

αd
.

Here we have used that k < c and hence |N(α)bk · αd| < 1.

If k is odd, then by assumption (ii) we have

M (k+1)(α) = M(±N(α)bk

αd
) = ±N(α)bk

αd
· N(α)bk

αd−1

· . . . · N(α)bk

α2

= ± N(α)bk·(d−1)

α2 · . . . · αd−1

= ±N(α)bk·(d−1)−1 · α1 = ±N(α)bk+1 · α1.

Here we have used that k < c and hence |N(α)bk

α1
| < 1. This proves the claim. Moreover, the

proof of the claim shows that M (k+1)(α) > M (k)(α1) for all k ∈ {0, . . . , c− 1}.

Now, we calculate M (c+1)(α). By definition of c, every conjugate of M c(α) is greater

than 1 in absolute value. Therefore, M c+1(α) ∈ N. It follows, that M (c+2)(α) = M (c+1)(α).

Hence, #OM(α1) = c+ 2 as claimed.

It remains to prove the existence of an algebraic number of degree d satisfying the as-

sumptions of Proposition 35 for an arbitrary c.

The strategy is as the following: We will prove the locations of the roots of a class

of irreducible polynomials satisfying assumptions (i) and (ii) from Proposition 35, then by

Proposition 35, show that any root of one of the polynomials in the class will have desired

degree, norm and orbit size.

We fix for the rest of this section arbitrary integers d ≥ 3, c ≥ 2 and l ∈ Z \ {±1, 0}.

Moreover, we define

fn(x) = x · (xd−2 − 2) · (x− n) + l

and denote the roots of fn by α
(n)
1 , . . . , α

(n)
d ordered such that

|α(n)
1 | ≥ |α

(n)
2 | ≥ . . . ≥ |α(n)

d |.
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Lemma 3.2.1 Let n ≥ |l| + 3 be an integer. With the notation from above we have α
(n)
1 ∈

(n− 1
n
, n+ 1

n
), α

(n)
d ∈ (− |l|

n
,− 1

2n
)∪( 1

2n
, |l|
n

), and |α(n)
i | ∈ (1, d−2

√
3− 1

d
) for all i ∈ {2, . . . , d−1}.

Moreover, α
(n)
d is negative if and only if α

(n)
1 < n.

Proof. We apply Rouché’s theorem and first prove the location of α
(n)
1 . Let z be any complex

number with |z| = n+ 1
n
. Then

|z · (zd−2 − 2) · (z − n)|

≥
∣∣∣∣n+

1

n

∣∣∣∣ · ∣∣∣∣(n+
1

n
)d−2 − 2

∣∣∣∣ · 1

n

=

∣∣∣∣1 +
1

n2

∣∣∣∣ · ∣∣∣∣(n+
1

n
)d−2 − 2

∣∣∣∣
> |l|

Hence by Rouché’s theorem, fn has exactly as many roots of absolute value < n + 1
n

as

x · (xd−2−2) · (x−n), so fn has d roots of absolute value < n+ 1
n
. Now, let z be any complex

number with |z| = n− 1
n
, suppose that n = |l|+m where m ≥ 3. Then

∣∣z · (zd−2 − 2) · (z − n)
∣∣

≥
∣∣∣∣n− 1

n

∣∣∣∣ · ∣∣∣∣(n− 1

n
)d−2 − 2

∣∣∣∣ · 1

n

≥
∣∣∣∣n− 1

n

∣∣∣∣ · ∣∣∣∣(n− 1

n
)− 2

∣∣∣∣ · 1

n

= (|l|+m− 1

|l|+m
)(|l|+m− 1

|l|+m
− 2) · 1

|l|+m

= (1− 1

(|l|+m)2
)(|l| − 1

|l|+m
+m− 2)

= |l| − |l|
(|l|+m)2

− 1

|l|+m
+ (m− 2) +

1

(|l|+m)3
− m

(|l|+m)2
+

2

(|l|+m)2
> |l|,

since m ≥ 3. Again by Rouché’s theorem, fn has d−1 roots of absolute value < n− 1
n
. Since

fn has no roots on the circle |z| = n− 1
n
, fn has a single root in (−n− 1

n
,−n+ 1

n
)∪(n− 1

n
, n+ 1

n
).
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Now, ∣∣∣∣(−n− 1

n
)((−n− 1

n
)d−2 − 2)(−2n− 1

n
)

∣∣∣∣
≥ (|l|+ 2)

∣∣∣∣(n+
1

n
)d−2 − 2

∣∣∣∣ (2n+
1

n
)

≥ (|l|+ 2)||l|(2(|l|+ 2))

≥ (|l|+ 2)||l|(2|l|+ 4)

≥ |l|2 > |l|.

Similarly, ∣∣∣∣(−n+
1

n
)((−n+

1

n
)d−2 − 2)(−2n+

1

n
)

∣∣∣∣ ≥ 2|l|2 > |l|.

Since

(−n− 1

n
)((−n− 1

n
)d−2 − 2)(−2n− 1

n
)

has the same sign as

(−n+
1

n
)((−n+

1

n
)d−2 − 2)(−2n+

1

n
),

fn(−n+ 1
n
) has the same sign as fn(−n− 1

n
). Therefore, since there is only one root in the

annulus |z| ∈ (n− 1
n
, n+ 1

n
), which is necessarily real, fn cannot have any root in the interval

(−n− 1
n
,−n+ 1

n
), thus fn has a single root in the interval (n− 1

n
, n+ 1

n
).

To prove the location of α
(n)
d , let z be any complex number with |z| = |l|

n
. Then,

|z · (zd−2 − 2) · (z − n)| ≥ |l|
n
· (2− |l|

n
) · (n− |l|

n
)

=2|l| − 2
|l|2

n2
− |l|

2

n
+
|l|3

n3
> 2|l| − 2

|l|2

n2
− |l|

2

n

≥2|l| − |l| |l|
2 + 4|l|

(|l|+ 2)2
> |l|.

By Rouché’s theorem, fn has exactly as many roots of absolute value < |l|
n

as the polynomial

x · (xd−2 − 2) · (x− n). This is, fn has exactly one root of absolute value < |l|
n

. This root is

necessarily real. A straightforward computation shows that fn(± 1
2n

) have the same sign as

fn(0). Hence fn cannot have any root in the interval (− 1
2n
, 1

2n
).
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To show the location of α
(n)
i for all i ∈ {2, . . . , d− 1}, let z be any complex number with

|z| = 1. Then,

|z · (zd−2 − 2) · (z − n)|

= |zd−2 − 2| · |z − n|

≥ n− 1 > |l|,

so fn has a single root of absolute value < 1. The argument above also shows that fn has no

roots on the circle |z| = 1. Now, let z be any complex number with |z| = d−2

√
3− 1

d
. Then,

|z · (zd−2 − 2) · (z − n)|

≥ (3− 1

d
)

1
d−2 · (1− 1

d
) · (n− (3− 1

d
)

1
d−2 ).

Notice that since n ≥ |l|+ 3, n− (3− 1
d
)

1
d−2 > |l|, hence it suffices to show that (3− 1

d
)

1
d−2 ·

(1− 1
d
) > 1. Indeed, by elementary calculus, (3− 1

d
)(1− 1

d
)d−2 > 1 for all d ≥ 3, which gives

|z · (zd−2 − 2) · (z − n)| > |l|, hence by Rouché’s theorem, fn has d − 1 roots of absolute

value less than d−2

√
3− 1

d
. Therefore, fn has exactly d− 2 roots with absolute values in the

interval (1, d−2

√
3− 1

d
).

The last part of the lemma is obvious, since x · (xd−2 − 2) · (x− n) changes the sign at 0

and at n in the same way.

Lemma 3.2.2 Let n ≥ |l|+ 3. Then fn is irreducible in Q[x] whenever l is odd.

Proof. From Lemma 3.2.1 we know α
(n)
1 > |l|. Hence, α

(n)
1 must be a conjugate of the only

root of fn which is less than 1 in absolute value. If fn would be reducible, then some product

of the elements α
(n)
2 , . . . , α

(n)
d−1 must be a divisor of l. But every such product lies strictly

between 1 and 3. Since 2 is no divisor of l by assumption, fn is necessarily irreducible.

Lemma 3.2.3 Let p be a prime and let f = xd + ad−1x
d−1 + . . . + a2x

2 + a1x + a0 ∈ Z[x]

such that p | ai for all i ∈ {0, . . . , d − 1} and p2 - a2. Then either f has a divisor of degree

≤ 2 or f is irreducible.
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Proof. This follows exactly as the classical Eisenstein criterion. Assume, that f = g ·h where

g(x) = xr + gr−1x
r−1 + . . .+ g0 and h(x) = xs + hs−1x

s−1 + . . .+ h0 ∈ Z[x]

with r, s ≥ 3. Since the reduction of g · h modulo p is equal to xd ∈ ZpZ[x] and ZpZ[x]

is an integral domain, we know that each coefficient of g and h is divisible by p. It follows

p2 | g0h2 + g1h1 + g2h0 = a2, which is a contradiction.

Lemma 3.2.4 Let n ≥ |l|+ 3 and |l| both be even. Then fn is irreducible.

Proof. We first note that fn does not have a factor of degree 1. Otherwise, some divisor a

of l would be a root of fn. But |a(a− n)| ≥ n− 1 ≥ |l|+ 1. Hence, in particular, fn(a) 6= 0

for all a | l. It follows, that fn is irreducible for d = 3. From now on we assume d ≥ 4.

If l and n are even, then fn(x) = x(xd−2 − 2)(x− n) + l = xd − nxd−1 − 2x2 + 2nx+ l is

– by Lemma 3.2.3 – irreducible if it does not have a factor of degree 2.

Since α
(n)
1 is larger than |l| (which is the absolute value of product of all roots of fn),

it must be conjugate to α
(n)
d which is the only root of absolute value ≤ 1. If α

(n)
d would

be the only conjugate of α
(n)
1 , then α

(n)
1 + α

(n)
d ∈ Z. This is not possible by Lemma 3.2.1.

This means, that there is no factor of degree 2, having α
(n)
1 or α

(n)
d as a root. This proves

that fn is irreducible for d = 4. For d ≥ 5 the only possibility of a divisor of degree 2

is x2 − (α
(n)
i + α

(n)
j )x + α

(n)
i α

(n)
j , for i 6= j ∈ {2, . . . , d − 1}. By Lemma 3.2.1, we have

|α(n)
i α

(n)
j | > 1 and |α(n)

i α
(n)
j | < d−2

√
3− 1

d

2

< 2. Hence, such polynomial is not in Z[x]. We

conclude that fn does not have a factor of degree ≤ 2 and therefore fn is irreducible.

Theorem 36 Let d ≥ 3 and l ∈ Z\{±1, 0} such that (d, l) /∈ {(3, 2), (3,−2)}. Moreover, let

b1, b2, . . . be the sequence from Proposition 35 and c ≥ 2 be an integer with c 6= 2 if d ∈ {3, 4}.

Then any root α of f|l|bc−1(x) = x(xd−2 − 2)(x− |l|bc−1) + l is an algebraic integer of degree

d, norm l, and orbit size c+ 2.

Proof. The cases we have to exclude, are those which violate assumption (ii) in Proposition

35 or satisfy |lbc−1| < |l|+ 3.
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In Lemmas 3.2.2 and 3.2.4, we proved that α has degree d. Moreover, by Lemma 3.2.1,

α satisfies assumptions (i) and (ii) from Proposition 35. As usual we denote with α1, . . . , αd

the full set of conjugates of α. Then by Lemma 3.2.1, we achieve |αdlbc | > |l|
2
≥ 1 and

|α1| < |lbc−1|+ 1 ≤ |lbc|.

Furthermore, we know |α1| > |l|bc−1− 1 ≥ |l|bc−1 and |αdlbc−1| < |l|bc−1+1

|l|bc−1 < 1. Again from

Lemma 3.2.1 we also have |αdlbc−2 | < 1 and |α1| > lbc−2 , if c ≥ 3.

What we have shown is that in the notation from Proposition 35, we have c(α) = c, and

hence #OM(α) = c+ 2.

A closed formula for the recursion b1, b2, . . . is bn = 1
d
((d − 1)n + (−1)n−1). So Theorem

36 is fairly effective.

Corollary 37 For any triple (d, l, k) of integers, with d ≥ 3, l /∈ {±1, 0}, and 1 ≤ k, there

are algebraic integers α with [Q(α) : Q] = d, N(α) = l and #OM(α) = k.

Proof. For (3, 2, k) and (3,−2, k) this is due to Dubickas [11] (note that he states the case

N(α) = 2, but then −α does the job in the case of negative norm). Together with Theorem

36 and the examples in 3.1, we conclude the corollary.
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CHAPTER IV

UNITS OF HIGHER DEGREES

Part of this chapter is from [15].

4.1 Orbit sizes of degree 4 units

In light of Theorem 24, one might ask if arbitrarily long but finite orbits occur for algebraic

units. In this section we will prove Theorem 25, which states that the orbit size of an

algebraic unit of degree 4 must be 1, 2, or ∞.

Let α be an algebraic unit of degree 4. If α is a root of unity, a Pisot number, a Salem

number or an inverse of such number we surely have #OM(α) ≤ 2. Hence, we may and will

assume for the rest of this section that the conjugates of α satisfy

|α1| ≥ |α2| > 1 > |α3| ≥ |α4|.

Denote the Galois group of Q(α1, α2, α3, α4)/Q by Gα. For any β ∈ Q(α1, α2, α3, α4) we

denote the Galois orbit of β by Gα · β.

Then M(α) = ±α1α2 and

Gα · (α1α2) ⊆ {α1α2, α1α3, α1α4, α2α3, α2α4, α3α4}.

Lemma 4.1.1 If |α1α4| = 1 or |α1α3| = 1, then we have either #OM(α) = 2 or #OM(α) =

∞.

Proof. If |α1α4| = 1, then also |α2α3| = 1, and if |α1α3| = 1, then also |α2α4| = 1. In both

cases we see

|α1| = |α2| ⇐⇒ |α3| = |α4|. (4.1.1)
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We first assume that α1 /∈ R. Then α2 = α1 and hence |α1| = |α2|. Obviously it is

M(α1) = α1α2. By our assumptions and (4.1.1), all values |α1α3|, |α1α4|, |α2α3|, |α2α4|,

|α3α4| are less or equal to 1. Hence M (2)(α1) = M(α1α2) = α1α2. Therefore, #OM(α1) = 2.

If α1 ∈ R and |α1| = |α2|, then α2 = −α1 and α4 = −α3. Hence, the only non-trivial

Galois conjugate of M(α1) = α2
1 is α2

3 and lies inside the unit circle. Therefore, M (2)(α1) = α2
1

and #OM(α1) = 2.

From now on we assume that |α1| 6= |α2|. Then, by (4.1.1), we have

|α1| > |α2| > 1 > |α3| > |α4|

and α1 must be totally real. Moreover, we see

αn1 , α
n
2 , α

n
3 , α

n
4 are pairwise distinct for all n ∈ N, (4.1.2)

and

(α1α2)n, (α3α4)n, (α1α3)n, (α2α4)n are pairwise distinct for all n ∈ N. (4.1.3)

We notice, that in this situation it is not possible that |α1α3| = 1, since otherwise |α2α4| < 1

which contradicts 1 = |α1α2α3α4|. Therefore, |α1α4| = 1, and α4 = ±α−1
1 . It follows that

also α3 = ±α−1
2 . This gives natural constraints on the Galois group Gα, namely

Gα ⊆ {id, (12)(34), (13)(24), (14)(23), (14), (23), (1342), (1243)} ⊆ S4.

In particular, since Gα is a transitive subgroup of S4 with order divisible by 4,

Gα = {id, (12)(34), (13)(24), (14)(23)} or {id, (1342), (14)(23), (1243)} ⊆ Gα.

In the first case, Gα · (α1α2) = {α1α2, α3α4}, which implies that α1α2 is a quadratic unit.

Hence #OM(α) = #OM(α1α2) + 1 = 2.

In the second case, Gα · (α1α2) = {α1α2, α3α4, α1α3, α2α4}. Note that α1α2 is still of

degree 4 by (4.1.3). Hence M (2)(α1) = M(α1α2) = ±α2
1α2α3 = α2

1. By (4.1.2) it follows

M (3)(α) = M(α2
1) = (α1α2)2 = M(α)2. Now, by induction and (4.1.3) and (4.1.2), it follows

M (n)(α1) = α2n

1 for all even n ∈ N. Hence #OM(α1) =∞.
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From now on, we assume:

|α1α4| 6= 1 6= |α1α3|. (4.1.4)

Lemma 4.1.2 Assuming (4.1.4), if αn1 = αn2 or αn3 = αn4 for some n ∈ N, then #OM(α1) =

2.

Proof. Let αn1 = αn2 for some n ∈ N. Then α1

α2
is a root of unity. Since none of the elements

α1

α3
, α1

α4
, α2

α3
, α2

α4
, α3

α1
, α3

α2
, α4

α1
, α4

α2
lies on the unit circle, we have Gα · (α1

α2
) ⊆ {α1

α2
, α2

α1
, α3

α4
, α4

α3
}.

Hence

Gα ⊆ {id, (12), (12)(34), (13)(24), (14)(23), (1324), (1423)}.

This implies M (2)(α1) = M(±α1α2) = ±α1α2 = M(α1), and hence #OM(α1) = 2. The

same proof applies if αn3 = αn4 .

Lemma 4.1.3 Assuming (4.1.4) and #OM(α1) > 2, then

a. |α1α2| > 1, |α1α3| > 1.

b. |α3α4| < 1, |α2α4| < 1.

c. one of the values |α1α4| and |α2α3| is < 1 and the other is > 1.

d. αn1 , αn2 , αn3 , αn4 are pairwise distinct for all n ∈ N.

e. (α1α2)n, (α3α4)n, (α1α3)n, (α2α4)n are pairwise distinct for all n ∈ N.

Proof. Obviously |α1α2| > 1 and |α3α4| < 1. Moreover, 1 6= |α1α3| ≥ |α2α4| and |α1α3| ·

|α2α4| = 1. This means |α1α3| > 1 and |α2α4| < 1, proving parts (a) and (b).

Since |α1α4| · |α2α3| = 1 and |α1α4| 6= 1, part (c) follows.

The elements α1 and α2 lie outside the unit circle, and α3 and α4 lie inside or on the unit

circle. Hence, the only possibilities for (d) to fail are αn1 = αn2 or αn3 = αn4 for some n ∈ N.

By the previous lemma, both implies #OM(α1) = 2, which is excluded by our assumptions.

Part (e) follows immediately from (a), (b) and (d).
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Lemma 4.1.4 If M (3)(α1) = M(α1)2 and #OM(α1) > 2, then #OM(α1) =∞.

Proof. This is true if assumption (4.1.4) is not satisfied, by Lemma 4.1.1. If we assume

(4.1.4), then by Lemma 4.1.3 (d) and (e), we are in the same situation as at the end of the

proof of Lemma 4.1.1. Hence, an easy induction proves the claim.

We now complete the proof of the statement that #OM(α1) ∈ {1, 2,∞}. It suffices to

prove this under the assumption (4.1.4). From now on we assume #OM(α) > 2 and show

that this implies #OM(α) =∞. By Lemma 4.1.3, we have

M (2)(α) ∈ {±α2
1α2α3,±α3

1α2α3α4,±α2
1α

2
2α

2
3,±α2

1α2α4,±α1α
2
2α3}

= {±α1

α4

,±α2
1,±

1

α2
4

,±α1

α3

,±α2

α4

} (4.1.5)

In two of these cases the orbit of α can be determined immediately:

• If M (2)(α) = ±α2
1, then (since we have #OM(α) > 2) it is αn1 6= αn2 for all n ∈ N.

Hence M (3)(α) = M(α)2 which implies #OM(α) =∞.

• Similarly, if M (2)(α) = ± 1
α2
4
, then (since #OM(α) > 2) it is αn3 6= αn4 for all n ∈ N.

Hence M (3)(α) = M(α2
4) = M(α)2 and again #OM(α) =∞.

We now study the other three cases.

4.1.1 The case M (2)(α) = ±α1

α4

This case occurs if α1α3 ∈ Gα · (α1α2), and

• |α1α4| > 1 but α1α4 6∈ Gα · (α1α2), or

• |α2α3| > 1 but α2α3 6∈ Gα · (α1α2).

In both cases the only possibilities for Gα are the following copies of the cyclic group C4

and the dihedral group D8:

(I) C4 = {id, (1342), (14)(23), (1243)}, or
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(II) D8 = {id, (1243), (14)(23), (1342), (12)(34), (13)(24), (14), (23)}.

In both cases a full set of conjugates of α1

α4
is {α1

α4
, α3

α2
, α4

α1
, α2

α3
}. It follows

M (3)(α) = M(
α1

α4

) = ±α1

α4

· α2

α3

= (α1α2)2 = M(α)2

Hence, by Lemma 4.1.4 we have #OM(α) =∞.

4.1.2 The case M (2)(α) = ±α1

α3

This case occurs if α1α3 6∈ Gα · (α1α2), and |α1α4| > 1, and α1α4 ∈ Gα · (α1α2).

Hence, the only possibilities for Gα are the following copies of the cyclic group C4 and

the dihedral group D8:

(I) C4 = {id, (1234), (13)(24), (1432)}, or

(II) D8 = {id, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)}.

In both cases a full set of conjugates of α1

α3
is {α1

α3
, α2

α4
, α3

α1
, α4

α2
}. It follows

M (3)(α) = M(
α1

α3

) = ±α1

α3

· α2

α4

= (α1α2)2 = M(α)2

Hence, again we have #OM(α) =∞ by Lemma 4.1.4.

4.1.3 The case M (2)(α) = ±α2

α4

This case occurs if α1α3 6∈ Gα · (α1α2), and |α2α3| > 1, and α2α3 ∈ Gα · (α1α2).

Hence, the only possibilities for Gα are the following copies of the cyclic group C4 and

the dihedral group D8:

(I) C4 = {id, (1234), (13)(24), (1432)}, or

(II) D8 = {id, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)}.
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In both cases a full set of conjugates of α2

α4
is {α2

α4
, α3

α1
, α4

α2
, α1

α3
}. It follows

M (3)(α) = M(
α2

α4

) = ±α2

α4

· α1

α3

= ±(α1α2)2 = M(α)2

Hence, also in this case we have #OM(α) =∞.

This concludes the proof of Theorem 25. We now prove Corollary 26:

Proof of Corollary 26. Let α be an algebraic unit of degree 4. We set

an = log(M (n)(α))

for all n ∈ N. If #OM(α) ≤ 2, then an+1 = an for all n ∈ N. If #OM(α) =∞, then Theorem

25 tells us a3 = 2a1. Moreover, M (4)(α) = M(M (3)(α)) = M(M(α)2) = M(M(α))2 =

M (2)(α)2. Hence, a4 = 2a2, and by induction we find an+1 = 2an−1, proving the claim.

4.2 Units with higher degree with restrictions

In this section we will prove Theorem 27. We know that #OM(α) ∈ {1, 2,∞} whenever α

is an algebraic unit of degree ≤ 4. (We note in passing that the orbit size for units of degree

less than 4 is trivially 1 or 2.) So we assume from now on that α is an algebraic unit with

[Q(α) : Q] = d ≥ 5. Denote by Gα the Galois group of the Galois closure of Q(α). We

assume that Gα contains a subgroup isomorphic to Ad, so Gα is either the full symmetric

group or the alternating group. Every self-reciprocal polynomial admits natural restrictions

on which permutations of the zeros are given by field automorphisms. Hence, α cannot be

conjugated to ± a Salem number (see [5] for more precise statements on the structure of

the Galois group Gα, when α is a Salem number). If one of ±α±1 is conjugated to a Pisot

number, then surely #OM(α) ∈ {1, 2}. Hence, we assume from now on that none of ±α±1

is conjugated to a Pisot number.

Hence, if we denote by α1, . . . , αd the Galois conjugates of α, we assume

|α1| ≥ |α2| ≥ . . . ≥ |αr| > 1 ≥ |αr+1| ≥ . . . ≥ |αd|, (4.2.1)

where r ∈ {2, . . . , d− 2} and 1 > |αd−1|.
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We identifyGα with a subgroup of Sd, by the action on the indices of α1, . . . , αd. In particular,

for any σ ∈ Ad and any f1, . . . , fd ∈ Z the element

σ · (αf11 · . . . · α
fd
d ) := αf1σ(1) · . . . · α

fd
σ(d)

is a Galois conjugate of αf11 · . . . · α
fd
d .

Lemma 4.2.1 Let i, j, k, l ∈ {1, . . . , d} be pairwise distinct, and let f1, . . . , fd ∈ Z. Then

a. (i, j, k) · (αf11 · · ·α
fd
d ) = αf11 · · ·α

fd
d ⇐⇒ fi = fj = fk.

b. (i, j)(k, l) · (αf11 · · ·α
fd
d ) = αf11 · · ·α

fd
d ⇐⇒ fi = fj and fk = fl.

Proof. In both statements, the implication ⇐= is trivial. Lets start with the other implica-

tion in (a). It is

(i, j, k) · (αf11 · · ·α
fd
d ) = αf11 · · ·α

fd
d =⇒ α

fi−fj
j · αfj−fkk · αfk−fii = 1

Since d ≥ 5, we may choose two conjugates of α not among αi, αj, αk – say αp and αq. Since

Gα contains Ad, the elements (i, j)(p, q), (i, k)(p, q), (j, k)(p, q), (i, j, k), and (i, k, j) are all

contained in Gα. Applying these automorphisms to α
fi−fj
j · αfj−fkk · αfk−fii = 1, yields

α
fi−fj
j · αfj−fkk · αfk−fii = 1 = α

fi−fj
j · αfj−fki · αfk−fik

α
fi−fj
i · αfj−fkj · αfk−fik = 1 = α

fi−fj
k · αfj−fkj · αfk−fii

α
fi−fj
k · αfj−fki · αfk−fij = 1 = α

fi−fj
i · αfj−fkk · αfk−fij .

Hence (
αi
αk

)2fk−fi−fj
= 1,

(
αi
αk

)2fi−fj−fk
= 1, and

(
αi
αk

)2fj−fk−fi
= 1.

But αi
αk

is no root of unity, since it is a Galois conjugate of α1

αd
, which lies outside the unit

circle. It follows 2fk − fi − fj = 2fi − fj − fk = 2fj − fk − fi = 0, and hence fi = fj = fk.

This proves part (a).
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Part (b) follows similarly: (i, j)(k, l) · (αf11 · · ·α
fd
d ) = αf11 · · ·α

fd
d implies

α
fj
i · α

fi
j · α

fl
k · α

fk
l = αfii · α

fj
j · α

fk
k · α

fl
l .

Without loss of generality, we assume fj ≥ fi and fk ≥ fl. Using that (i, l)(j, k) is an element

of Gα, we get (
αj
αi

)fj−fi
=

(
αk
αl

)fk−fl
and

(
αk
αl

)fj−fi
=

(
αj
αi

)fk−fl
.

Multiplying both equations yields(
αj
αi

)(fj−fi)+(fk−fl)

=

(
αk
αl

)(fj−fi)+(fk−fl)

,

and hence (
αj · αl
αi · αk

)(fj−fi)+(fk−fl)

= 1.

Again,
αj ·αl
αi·αk

is a Galois conjugate of α1·α2

αd−1·αd
, which lies outside the unit circle, and hence is

not a root of unity. Therefore (fj − fi) + (fk − fl) = 0. Since fj ≥ fi und fk ≥ fl, it follows

fj = fi and fk = fl, proving the lemma.

Lemma 4.2.2 Let f1, . . . , fd be pairwise distinct integers. Then [Q(αf11 · · ·α
fd
d ) : Q] = #Gα.

Proof. The proof is essentially the same as the proof of part (1) in Theorem 1.1 from [2].

Assume there is a σ−1 ∈ Gα ⊆ Sd such that αf11 · · ·α
fd
d = σ−1 · (αf11 · · ·α

fd
d ). Then

1 = α
f1−fσ(1)
1 · · ·αfd−fσ(d)d . (4.2.2)

If σ is an odd permutation, then Gα = Sd, then it was already proven by Smyth (see Lemma

1 of [26]) that fi = fσ(i) for all i, hence that σ = id. If σ is an even permutation, then

by repeated application of Lemma 4.2.1 to equation (4.2.2) above, this is only possible if

fi − fσ(i) is the same integer for all i ∈ {1, . . . , d}, say fi − fσ(i) = k.

Since σd! = id, it follows

f1 = k + fσ(1) = 2k + fσ2(1) = . . . = d! · k + fσd!(1) = d! · k + f1,
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and hence k = 0. Therefore we have fi = fσ(i) for all i ∈ {1, . . . , d}. But by assumption the

integers f1, . . . , fd are pairwise distinct, hence, we must again have σ = id. Since in either

case, σ = id, this means that the images of αf11 · · ·α
fd
d are distinct under each non-identity

element of Gα, so [Q(αf11 · · ·α
fd
d ) : Q] = #Gα.

Proposition 38 Let M (n)(α) = αe11 · . . . · e
ed
d such that the exponents e1, . . . , ed are pairwise

distinct. Then M (n+1)(α) > M (n)(α).

Proof. We denote by Z3 the set of 3-cycles in Gα ⊆ Sd. For any k ∈ {1, . . . , d}, the number

of 3-cycles which fix k is equal to (d−1)(d−2)(d−3)
3

. For any pair k 6= k′ ∈ {1, . . . , d}, the number

of 3-cycles sending k to k′ is (d− 2). Therefore,∣∣∣∣∣∏
τ∈Z3

τ ·M (n)(α)

∣∣∣∣∣
=

∣∣∣∣α (d−1)(d−2)(d−3)
3

e1+(d−2)
∑
k 6=1 ek

1 · . . . · α
(d−1)(d−2)(d−3)

3
ed+(d−2)

∑
k 6=d ek

d

∣∣∣∣ . (4.2.3)

Since α is an algebraic unit, we have
∏d

j=1 α
∑d
k=1 ek

j = ±1. Hence, the value in (4.2.3) is

equal to ∣∣∣∣∣
d∏
j=1

α
( (d−1)(d−2)(d−3)

3
−(d−2))ej

j

∣∣∣∣∣ = M (n)(α)
(d−1)(d−2)(d−3)

3
−(d−2) > M (n)(α).

The last inequality follows from our general hypothesis that d ≥ 5. Since e1, . . . , ed are

assumed to be pairwise distinct, it follows from Lemma 4.2.2 that the factors τ ·M (n)(α) in

(4.2.3) are also pairwise distinct conjugates of M (n)(α). In particular

M (n+1)(α) = M(Mn(α)) ≥

∣∣∣∣∣∏
τ∈Z3

τ ·M (n)(α)

∣∣∣∣∣ > M (n)(α)

which is what we needed to prove.

Lemma 4.2.3 Let n ∈ N and let M (n)(α) = αe11 · · ·α
ed
d . Then we have:

1. ei ≥ ei+1 for all but at most one i ∈ {1, . . . , d− 1}.

2. If ei < ei+1 for some i ∈ {2, . . . , d− 1}, then ei−1 > ei+1.
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3. If ei < ei+1 for some i ∈ {1, . . . , d− 2}, then ei > ei+2.

4. If ei < ei+1 for some i ∈ {1, . . . , d− 1}, then

e1 > e2 > · · · > ei−1 > ei+1 > ei > ei+2 > ei+3 > · · · > ed.

Proof. It is known that M (n)(α) is a Perron number, which means that M (n)(α) does not

have a Galois conjugate of the same or larger modulus (cf. [11] for this and other properties

of values of the Mahler measure). This fact will be used several times in the following proof.

To prove (1), we have two cases: there are three distinct elements 1 ≤ i < j < k ≤ d such

that ei < ej < ek, or else there exist 1 ≤ i < j < k < l ≤ d such that ei < ej and ek < el.

Assume first that there are three distinct elements 1 ≤ i < j < k ≤ d such that ei < ej < ek.

Recall that by definition we have |αi| ≥ |αj| ≥ |αk|. Therefore |αk|ek−ei ≤ |αj|ek−ei , which

implies

|αi|ei−ej︸ ︷︷ ︸
≤|αj |ei−ej

·|αj|ej−ek · |αk|ek−ei ≤ |αj|ei−ek · |αk|ek−ei ≤ 1

=⇒ |αeii · α
ej
j · α

ek
k | ≤ |α

ej
i · α

ek
j · α

ei
k |

=⇒ |M (n)(α)| ≤ |(i, k, j) ·M (n)(α)|.

By Lemma 4.2.1, (i, j, k) ·M (n)(α) 6= M (n)(α) is a Galois conjugate of M (n)(α). This con-

tradicts the fact that M (n)(α) is a Perron number. In particular, it is not possible that

ei > ei+1 > ei+2 for any i ∈ {1, . . . , d− 2}.

Now assume that we have 1 ≤ i < j < k < l ≤ d such that ei < ej and ek < el. Then

|αi| ≥ |αj| and |αk| ≥ |αl| imply

|αi|ej−ei · |αk|el−ek ≥ |αj|ej−ei · |αl|el−ek ,

and hence

|αeii · α
ej
j · α

ek
k · α

el
l | ≤ |α

ej
i · α

ei
j · α

el
k · α

ek
l |.
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This, however, is equivalent to |M (n)(α)| ≤ |(i, j)(k, l) ·M (n)(α)|, which is not possible by

Lemma 4.2.1, since M (n)(α) is a Perron number. This proves part (1) of the lemma.

In order to prove part (2), we assume for the sake of contradiction that ei < ei+1 but

ei−1 ≤ ei+1 for some i ∈ {2, . . . , d − 1}. By part (1), since we already have ei < ei+1, we

know that ei−1 ≥ ei. We have

(i− 1, i, i+ 1) · |αi−1|ei−1|αi|ei |αi+1|ei+1

= |αi|ei−1 |αi+1|ei |αi−1|ei+1

Now,

|αi−1|ei−1−ei+1|αi|ei−ei−1 |αi+1|ei+1−ei

= |αi−1|ei−1−ei+1|αi|ei−ei−1|αi+1|ei+1−ei−1|αi+1|ei−1−ei

≤ |αi−1|ei−1−ei+1|αi|ei−ei−1|αi−1|ei+1−ei−1|αi|ei−1−ei

= 1

Therefore,

|M (n)(α)| ≤ |(i− 1, i, i+ 1) ·M (n)(α)|,

giving a contradiction to M (n)(α) being a Perron number.

Similarly, if ei < ei+1 and ei ≤ ei+2, then we know by (a) that ei+1 ≥ ei+2. This implies

that |M (n)(α)| ≤ |(i, i+ 2, i+ 1) ·M (n)(α)|. This proves part (3).

So far we have proven that if ei < ei+1 for some i ∈ {1, . . . , d− 1}, then we have

e1 ≥ e2 ≥ . . . ≥ ei−1 > ei+1 > ei > ei+2 ≥ ei+3 ≥ . . . ≥ ed.

We need to show that all of the above inequalities are strict. Assume that this is not the

case, and that ek = ek+1. Then k, k + 1, i, i + 1 must be pairwise distinct. It follows, that

|(i, i + 1)(k, k + 1) ·M (n)(α)| = |(i, i + 1) ·M (n)(α)| > |M (n)(α)|, which is a contradiction.

The last inequality just follows from the fact that |αi|ei+1 · |αi+1|ei > |αi|ei · |αi+1|ei+1 .
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Lemma 4.2.4 Let f1 ≥ f2 ≥ . . . ≥ fk ≥ 0 be integers, with f1 ≥ 1, and let a1 ≥ a2 ≥ . . . ≥

ad > 0 be real numbers such that
∏k

i=1 ai > 1. Then
∏k

i=1 a
fi
i > 1.

Proof. We prove the statement by induction on k, where the base case k = 1 is trivial. Now

assume that the statement is true for k and that there are real numbers a1 ≥ . . . ≥ ak+1 > 0,

with
∏k+1

i=1 ai > 1, and integers f1 ≥ . . . ≥ fk+1 ≥ 0, with f1 ≥ 1. If f1 = fk+1, then the claim

follows immediately. Hence, we assume f1 > fk+1. Set f ′i = fi−fk+1 for all i ∈ {1, . . . , k+1}.

Then

f ′1 ≥ f ′2 ≥ . . . f ′k ≥ f ′k+1 = 0 and f ′1 ≥ 1.

Moreover,
∏k

i=1 ai is either greater than or equal to
∏k+1

i=1 ai > 1 (if ak+1 ≤ 1), or it is a

product of real numbers > 1. Hence, our induction hypothesis states
∏k

i=1 a
f ′i
i > 1. This

implies
k+1∏
i=1

afii =

(
k+1∏
i=1

ai

)fk+1

︸ ︷︷ ︸
≥1

·

(
k∏
i=1

a
f ′i
i

)
> 1,

proving the lemma.

Proposition 39 Let M (n)(α) = αe11 · · ·α
ed
d . If ei+1 ≤ ei for all i ∈ {1, . . . , d − 1}, then

M (n+1)(α) > M (n)(α).

Proof. We show that M (n)(α) has a non-trivial Galois conjugate outside the unit circle. This

immediately implies the claim.

Since α is an algebraic unit, we may assume that ed = 0. Note however, that this uses

our assumption ei+1 ≤ ei for all i. We set

s := max{i ∈ {1, . . . , d}|ei 6= 0}.

By Proposition 38 we may assume that we have ei = ei+1 for some i ∈ {1, . . . , d − 1}.

This i is not equal to s, since es 6= 0 = es+1 by definition. If i /∈ {s − 1, s + 1}, then

(i, i + 1)(s, s + 1) · M (n)(α) = αe11 · · ·α
es−1

s−1 α
es+1
s αess+1. If i = s − 1, then (s − 1, s + 1, s) ·
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M (n)(α) = αe11 · · ·α
es−2

s−2 α
es
s−1α

es+1
s α

es−1

s+1 = αe11 · · ·α
es−1

s−1 α
es+1
s αess+1. If finally i = s + 1, then

(s, s+ 1, s+ 2) ·M (n)(α) = αe11 · · ·α
es−1

s−1 α
es+2
s αess+1α

es+1

s+2 = αe11 · · ·α
es−1

s−1 α
es+1
s αess+1.

Since es+1 = 0, we see that in any case

αe11 · · ·α
es−1

s−1 α
es
s+1 is a non-trivial Galois conjugate of M (n)(α). (4.2.4)

We will prove that this Galois conjugate lies outside the unit circle. Again we distinguish

several cases.

If s ≤ r − 1, then all of the elements α1, . . . , αs+1 lie outside the unit circle. Hence

|α1 · · ·αs−1αs+1| > 1.

If s ≥ r+1, then |α1 · · ·αs−1αs+1| = |αsαs+2 · · ·αd|−1 > 1, since all of αs, . . . , αd lie inside

the closed unit disc and |αd| < 1.

Lastly, we consider the case 2 ≤ s = r ≤ d − 2. Then surely |α1 · · ·αr−1| ≥ |αr|

and |αr+1| ≥ |αr+2 · · ·αd|, where the first inequality is strict whenever r 6= 2, and the

second inequality is strict whenever r 6= d − 2. By our general assumption it is d ≥ 5

and hence |α1 · · ·αr−1αr+1| > |αrαr+2 · · ·αd|. Since the product of all αi is ±1, it follows

|α1 · · ·αs−1αs+1| > 1.

Hence, in any case we have |α1| · · · |αs−1| · |αs+1| > 1. From our assumption e1 ≥ . . . ≥ ed

it follows by Lemma 4.2.4 that |αe11 · · ·α
es−1

s−1 α
es
s+1| > 1. Therefore, M (n)(α) has a non-trivial

Galois conjugate outside the unit circle (see (4.2.4)). Hence M (n+1)(α) = M(M (n)(α)) >

M (n)(α).

We are now ready to prove Theorem 27.

Proof of Theorem 27. As stated at the beginning of this section, we may assume that d ≥ 5,

and that the elements ±α±1 are neither conjugates of a Pisot, nor a Salem number. Hence,

we may assume that the hypothesis (4.2.1) is met. Let n ∈ N be arbitrary. Then for some

e1, . . . , ed ∈ N0, we have M (n)(α) = αe11 · · ·α
ed
d . We have seen in Lemma 4.2.3, that one of

the following statements applies:

1. e1 ≥ e2 ≥ . . . ≥ ed, or
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2. the integers e1, . . . , ed are pairwise distinct.

In case (i), we haveM (n+1)(α) > M (n)(α) by Proposition 39. In case (ii), we haveM (n+1)(α) >

M (n)(α) by Proposition 38. Hence #OM(α) =∞.

4.3 The existence of units with orbit sizes greater than 2

Let d = 4k, with an integer k ≥ 3. Now, we will show that there exist algebraic units of

degree d with arbitrarily large orbit size, proving Theorem 28.

Proof of Theorem 28. Let α1, β1 be positive real algebraic units satisfying:

1. [Q(β1) : Q] = 2, β1 > 1,

2. α1 is a Salem number of degree 2k.

3. The fields Q(α1) and Q(β1) are linearly disjoint.

For any k ≥ 3 we can indeed find such α1 and β1. Since there are Salem numbers of any

even degree ≥ 4 we find an appropriate α1. Now, we take any prime p which is unrammified

in Q(α1), and let β1 > 1 be an algebraic unit in Q(
√
p). Note that if the above conditions

are met by α1 and β1, then they are met by α`1 and β`
′

1 , for any `, `′ ∈ N.

We denote the conjugates of α1 by α2, · · · , α2k, with α2k = α−1
1 , and the conjugate of

β1 is β2 = β−1
1 . Note that α2, · · · , α2k−1 all lie on the unit circle. By assumption (3) the

element α1β1 has degree 4k and a full set of Galois conjugates of α1β1 is given by

{αiβj : (i, j) ∈ {1, . . . , 2k} × {1, 2}}.

There are two cases. First, if β1 > α1, then |αiβ1| > 1 for all i ∈ {1, · · · , 2k} and

|αiβ2| < |αiα6| ≤ 1 for all i ∈ {1, · · · , 2k}, hence,

M(α1β1) =

∣∣∣∣∣
2k∏
n=1

αiβ1

∣∣∣∣∣ = β2k
1 (4.3.1)

49



For the second case, if β1 < α1, then

|αiβ1| > 1 ⇐⇒ i ∈ {1, · · · , 2k − 1}, and |αiβ2| > 1 ⇐⇒ i = 1.

Therefore

M(α1β1) = |α1β1| ·

∣∣∣∣∣
2k−1∏
n=2

αiβ1

∣∣∣∣∣ · |α1β2| = α2
1β

2k−2
1 . (4.3.2)

We now construct an algebraic unit of degree 4k of finite orbit size > S. Let ` ∈ N be

such that (α`1)2S > β
(2k−2)S

1 . Then by (4.3.2), we have M(α`1β1) = (α`1)2β2k−2
1 , M (2)(α`1β1) =

M((α`1)2)(β2k−2
1 )) = (α`1)22β

(2k−2)2

1 , · · · ,M (S)(α`1β1) = (α`1)2Sβ
(2k−2)S

1 . Hence, the orbit size

of α`1β1 is greater than S. However, there exists S ′ > S such that (α`1)2S
′
< β

(2k−2)S
′

1 . Assume

that S ′ is minimal with this property. Then we have

M (S′+1)(α`1β1) = (α`1)2S
′

β
(2k−2)S

′

1

(4.3.1)
= (β4S

′

1 )2k,

which is of degree 2. Therefore, the orbit size of α`1β1 is S ′ + 2 > S.
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CHAPTER V

CLASSIFICATION OF NUMBER FIELDS BY ORBIT SIZE

5.1 Fields of degree four

In this section, we will prove Theorem 29 and Proposition 42.

5.1.1 Totally imaginary extensions

We will show that

Proposition 40 If K/Q is a totally complex number field of degree 4, then all elements in

K are preperiodic under iteration of the Mahler measure.

Let α ∈ Q be of degree 4 and totally imaginary. Moreover, let a ∈ N be the leading

coefficient of its minimal polynomial (note, that we do not assume that α is an algebraic

integer). Denote the Galois conjugates of α by α1, α2, α3, α4, such that |α1| = |α2| > |α3| =

|α4|. Then the Mahler measure of α is one of the elements a, aα1α2, aα1α2α3α4.

Since a and aα1α2α3α4 =: e are in Z, our α is preperiodic, whenever M(α) 6= aα1α2.

Hence, from now on we assume

|α1| = |α2| > 1 > |α3| = |α4|.

The Galois conjugates of aα1α2 all lie in the set

{aα1α2, aα1α3, aα1α4, aα2α3, aα3α4}.

Before we proceed, we remark that aα1α2 is a Perron integer.

51



Lemma 5.1.1 If α1α3 = α2α4 (resp. α1α4 = α2α3), then α1α3 (resp. α1α4) is not a Galois

conjugate of α1α2.

Proof. Assume α1α3 = α2α4, then (α1α3)2 = α1α2α3α4 ∈ Q. Therefore, α1α3 cannot be a

Galois conjugate of the Perron number α1α2. The same argument applies if α1α4 = α2α3.

We proceed to prove Proposition 40:

Proof for Proposition 40. If all Galois conjugates of aα1α2 have absolute value ≥ 1, then

aα1α2 – and hence α – is surely preperiodic. So we assume that aα3α4 < 1.

Since in any case we have α1α3 = α2α4, it follows,

M (2)(α) = M(aα1α2)

∈{aα1α2, a
3α1α2α1α3α2α4, a

5α1α2α1α3α1α4α2α4α2α3}

={aα1α2, a
2eα1α2, a

3e2α1α2}

If |ae| = 1, which is precisely the case if α is an algebraic unit, then M (2)(α) = M(α) and

α is preperiodic. Assuming that |ae| > 1, and M (2)(α) 6= M(α), then the possible Galois

conjugates of M (2)(α) are

{aiejα1α2, a
iejα1α3, a

iejα1α4, a
iejα2α3, a

iejα3α4},

with (i, j) ∈ {(2, 1), (3, 2)}. As before, either |aiejα3α4| > 1, and we are done, or M (3)(α) is

an element from

{aiejα1α2, a
3i−1e3j+1α1α2, a

5i−2e5j+2α1α2}.

Since each iteration increases the power of the whole number in front of the α1α2, after

finitely many iterations, all Galois conjugates of some M (k)(α) lie outside the unit circle,

and it is fixed. Hence, α is preperiodic in all cases as claimed.

5.1.2 Biquadratic extensions

Let p, q ∈ Z be squarefree integers. We will prove, that all elements in K = Q(
√
p,
√
q) are

preperiodic under iteration of the Mahler measure. (By the last section, we can then assume
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that p and q are positive).

Let α ∈ K be arbitrary. Since K/Q is Galois, M(α) is still in K. Moreover, M(α) is an

algebraic integer. Hence, we may assume without loss of generality, that α is an algebraic

integer, with Galois conjugates

|α1| > |α2| ≥ |α3| ≥ |α4|.

If precisely one, or precisely four, conjugates of α lie outside the unit circle, then α is

obviously preperiodic. We assume first, that precisely three conjugates of α lie outside the

unit circle. Then M(α) = |α1α2α3| =
∣∣∣N(α)
α4

∣∣∣. Again, if one or four conjugates of N(α)
α4

lie

outside the unit circle, then α is obviously preperiodic. But if precisely three conjugates of

N(α)
α4

lie outside the unit circle, then α satisfies the assumptions of Proposition 35, and we

can conclude that α is preperiodic.

Hence, we are left with the case that precisely two conjugates of α or M(α) lie outside

the unit circle. Since, as before, M(α) is also an element from K, we may assume without

loss of generality that

|α1| > |α2| > 1 ≥ |α3| ≥ |α4|.

Since α = α1 ∈ K, there are a, b, c, d ∈ Q, such that α = a + b
√
p + c

√
q + d

√
pq. Then α2

must be one of the elements

a− b√p+ c
√
q − d√pq , a+ b

√
p− c√q − d√pq , a− b√p− c√q + d

√
pq.

In any case, M(α) = ±α1α2 is a quadratic integer, and hence α is preperiodic. This gives

the following proposition

Proposition 41 If K/Q is biquadratic, then all elements in K are preperiodic under itera-

tion of the Mahler measure.

Some extensions of signature (2,1) contain a wandering point:
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Proposition 42 If a, b, d ∈ Z are such that
√
a+ b

√
d generates a real number field K

of signature (2, 1), then every element in K is preperiodic under iteration of the Mahler

measure.

Proof. Let d ∈ N, and a, b ∈ Z, such that a + b
√
d > 0 and a − b

√
d < 0. Set K =

Q(
√
a+ b

√
d). Note, that the case a = 0, b = 1 gives a radical extension K = Q( 4

√
d).

Moreover, our assumptions guarantee that K has signature (2, 1). We aim to prove that all

elements in K are preperiodic under iteration of M .

Let α ∈ K be of degree four. Then there are r, s, t, u ∈ Q such that

α = α1 = r + s

√
a+ b

√
d+ t(a+ b

√
d) + u

(√
a+ b

√
d

)3

.

Since the degree of α is four, the Galois conjugates of α are

α2 = r − s
√
a+ b

√
d+ t(a+ b

√
d)− u

(√
a+ b

√
d

)3

α3 = r + s

√
a− b

√
d+ t(a− b

√
d) + u

(√
a− b

√
d

)3

α4 = r − s
√
a− b

√
d+ t(a− b

√
d)− u

(√
a− b

√
d

)3

.

Let a ∈ N denote the leading coefficient of the minimal polynomial of α. Then

M(α) ∈ {aα1, aα2, aα1α2, aα1α3α4, aα2α3α4, aα3α4, aα1α2α3α4}.

Note, that by assumption α3 = α4. Moreover, α3α4, α1α2 ∈ Q(
√
d), and K = Q(α1) =

Q(α2). Hence, M(α) ∈ K.

Therefore, we may assume that α = α1 is an algebraic integer in K of absolute value

> 1. If α2, α3, α4 lie all outside (or inside) the closed unit circle, α is surely preperiodic. So

we assume that one of α2, α3, α4 lies inside, and another lies outside the unit circle. Then

M(α) ∈ {α1α2, α1α3α4}.

If M(α) = α1α2 ∈ Q(
√
d), we are done, since then α is preperiodic. So we proceed with

M(α) = α1α3α4 = N(α)
α2
∈ K. As before we see, that if the number of Galois conjugates of
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N(α)
α2

outside the unit circle is equal to 1, 2 or 4, then α is preperiodic. But if this number is

equal to 3, then α satisfies the assumption of Proposition 35, and hence it is preperiodic in

this case as well. This proves Proposition 42.

The assumption on the signature is crucial, as the following example shows: The el-

ement α = 1
4

(
−1−

√
17−

√
2(17 +

√
17)

)
is an algebraic unit in the totally real field

Q
(√

2(17 +
√

17)

)
. This unit has precisely two conjugates outside the unit circle. The

first is α1 = α and the second is α2 = 1
4

(
−1 +

√
17 +

√
2(17−

√
17)

)
. Hence,

M(α) = α1α2 =
(−
√

17− 5)
√

34− 2
√

17

16
−
√

17

2
− 1.

Again, M(α) has precisely two conjugates outside the unit circle. Hence, M (2)(α) 6= M(α).

It follows, that the orbit of α contains at least three elements. Hence, by Theorem 25, α is

a wandering point.

5.1.3 Totally real extension of degree 4

Lemma 5.1.2 Let K be a totally real number field of degree 4. Suppose that K is embedded

in R, so K ⊂ R, and denote by σ1, σ2, σ3 the remaining non-trivial embeddings of K into R.

Then there exists an algebraic unit α ∈ K, such that

i. |α| > |σ1(α)| > 1,

ii. |σ2(α)|, |σ3(α)| < 1, and

iii. |ασi(α)| 6= 1 for all i ∈ {1, 2, 3}.

Proof. Let O∗K be the unit group of K. For α ∈ O∗K we define

L(α) = (log |α|, log |σ1(α)|, log |σ2(α)|, log |σ3(α)|).

By Dirichlet’s unit theorem L(O∗K) is a lattice of rank 3 in the hyperplane

{(x1, x2, x3,−x1 − x2 − x3)|x1, x2, x3 ∈ R} ⊆ R4.
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Let B ∈ R be larger than any vector spanning a fixed fundamental domain of the lattice

L(O∗K). Then there exists an element (x1, x2, x3, x4) ∈ L(O∗K) such that x1 > 2B, 0 <

x2 < B, and −B > x3 > −2B. It follows that x4 = −x1 − x2 − x3 < −2B + 2B = 0 and

x1 +x3 6= 0 6= x1 +x4. This means that any α ∈ O∗K such that L(α) = (x1, x2, x3, x4) satisfies

the statements (i), (ii), (iii) from the lemma.

Proposition 43 Let K/Q be totally real of degree four and let L be the Galois closure of K

over Q. If there is a σ ∈ Gal(L/Q) such that all embeddings of K are given by id, σ|K, σ2|K,

and σ3|K, then there is an algebraic unit in K, which is a wandering point under iteration

of the Mahler measure.

Proof. By Lemma 5.1.2 there is an algebraic unit α ∈ K such that the Galois conjugates of

α satisfy

|α| > |σ(α)| > 1 and |σ2(α)|, |σ3(α)| < 1 and |ασ3(α)| 6= 1. (5.1.1)

Now, the Mahler measure of α is M(α) = ±ασ(α). The elements

ασ(α) , σ(α)σ2(α) , σ2(α)σ3(α) , σ3(α)α

are pairwise distinct Galois conjugates of ασ(α). Moreover, since α is an algebraic unit, we

have

|σ(α)σ2(α)| · |σ3(α)α| = 1,

and by (5.1.1) |σ3(α)α| 6= 1. It follows, that precisely one of σ3(α)α and σ(α)σ2(α) lies

outside the unit circle. Hence M (2)(α) = M(ασ(α)) > M(α), and the orbit of α under

iteration of M contains at least three elements. It follows, that α is a wandering point.

Corollary 44 Let K/Q be totally real of degree four, and let L be the Galois closure of

K over Q. If Gal(L/Q) is isomorphic to the cyclic group with four elements C4 or to the

dihydral group D4, then there exists an algebraic unit in K which is wandering under iteration

of the Mahler measure M .
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Proof. If Gal(L/Q) ∼= C4, then L = K and the assumptions from Proposition 43 are met.

Hence, there is a wandering unit in this case. Now assume that Gal(L/Q) ∼= D4 = 〈σ, τ〉,

with σ of order 4 and τ of order 2. In particular K/Q is not Galois in this case!

If σ|K or σ3|K were the identity map, then K would be fixed by the group 〈σ〉 of order 4,

and hence [K : Q] ≤ 2, which is not possible. If σ2|K were the identity map, then K would

be the fixed field of 〈σ2〉. But 〈σ2〉 is normal in D4, and hence K/Q would be normal, which

is not the case.

It follows, that id |K , σ|K , σ2|K , and σ3|K are pairwise distinct embeddings of K. So

again the assumptions from Proposition 43 are met, and K contains a wandering unit.

Proposition 45 Let K/Q be totally real of degree four, and let L be the Galois closure of K

over Q. If Gal(L/Q) contains the alternating group A4, then there exists an algebraic unit

in K which is wandering under iteration of the Mahler measure M .

Proof. By Lemma 5.1.2 there is an algebraic unit α in K such that the Galois conjugates

α = α1, α2, α3, α4 satisfy

|α1| > |α2| > 1 > |α3| ≥ |α4| .

Again, M(α) = ±α1α2. Since Gal(L/Q) contains A4, the Galois conjugates of α1α2 are

precisely

α1α2 , α1α3 , α1α4 , α2α3 , α2α4 , α3α4.

(Consider the action of the group on the indexes). It is |α1α3| > |α2α4| and |α1α2α3α4| = 1.

Hence α1α3 is a Galois conjugate of α1α2 outside the unit circle. As before it follows that

the orbit of α under iteration of the Mahler measure contains at least three elements, which

implies that α is a wandering point.

At last, we have the following theorem:

Theorem 46 Let K/Q be totally real of degree four. Then there exists an algebraic unit

in K which is wandering under iteration of the Mahler measure M , if and only if K is not

biquadratic.
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Proof. If K is biquadratic, then there are no wandering points by Proposition 41. So let K

not be biquadratic. This means that the Galois group of the Galois closure L of K over Q

is not the Klein four-group. Since Gal(L/Q) must be a transitive subgroup of S4 with order

divisible by 4, it must be isomorphic to C4, D4, A4 or S4. In all these cases there exists a

wandering unit by Corollary 44 and Proposition 45.

Discussion in Section 5.1 gives us Theorem 29.

5.2 Fields of degree five

We will now show that in extensions of degree 5, there always exists an algebraic unit which

is wandering under iteration of M .

Lemma 5.2.1 Let K be a totally real number field of degree 5, which we assume is embedded

in R, hence K ⊂ R. Denote by σ1, σ2, σ3, σ4 the remaining embeddings of K into R. Then

there exists an algebraic unit α ∈ K, such that

i. |α| > |σ1(α)| > |σ2(α)| > 1 > |σ3(α)| > |σ4(α)|,

ii. |ασ4(α)| < 1, |σ2(α)σ3(α)| < 1, and

iii. |ασ4(α)| > |σ2(α)σ3(α)|.

Proof. Let O∗K be the unit group of K. For α ∈ O∗K we define

L(α) = (log |α|, log |σ1(α)|, log |σ2(α)|, log |σ3(α)|), log |σ4(α)|).

By Dirichlet’s unit theorem L(O∗K) is a lattice of rank 4 in the hyperplane

{(x1, x2, x3, x4,−x1 − x2 − x3 − x4)|x1, x2, x3, x4 ∈ R} ⊆ R5.

Let B ∈ R be larger than any vector spanning a fixed fundamental domain of the lattice

L(O∗K). Then there exists an element (x1, x2, x3, x4, x5) ∈ L(O∗K) such that 9B < x1 < 10B,

8B < x2 < 9B, 0 < x3 < B, −7B < x4 < −6B. therefore, −14B < x5 = −x1−x2−x3−x4 <
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−10B, and so x1 + x5 < 0, x3 + x4 < 0, x1 + x5 > x3 + x4. This gives that any α ∈ O∗K such

that L(α) = (x1, x2, x3, x4, x5) satisfies the statements (i), (ii), (iii) from the lemma.

Lemma 5.2.2 Let K be an extension of degree 5 with signature (3,1) that is embedded in R.

Denote by σ1, σ2 the remaining embeddings of K into R, and by σ3, σ4 the complex conjugate

pair of embeddings into C. Then there exists an algebraic unit α ∈ K, such that

i. |α| > |σ1(α)| > |σ2(α)| > 1 > |σ3(α)| = |σ4(α)|,

ii. |ασ4(α)| < 1, |σ2(α)σ3(α)| < 1, and

iii. |ασ4(α)| > |σ2(α)σ3(α)|.

Proof. Let O∗K be the unit group of K. For α ∈ O∗K we define

L(α) = (log |α|, log |σ1(α)|, log |σ2(α)|, 2 log |σ3(α)|).

By Dirichlet’s unit theorem L(O∗K) is a lattice of rank 3 in the hyperplane

{(−x2 − x3 − 2x4, x2, x3, 2x4)|x2, x3, x4 ∈ R} ⊆ R4.

Let B ∈ R be larger than any vector spanning a fixed fundamental domain of the lattice

L(O∗K). Then there exists an element (x1, x2, x3, 2x4) ∈ L(O∗K) such that 9B < x2 < 10B,

7B < x3 < 8B, −15B < x4 < −14B, therefore, 10B < x1 = −x2 − x3 − 2x4 < 14B. We see

that x1 + x4 < 0, x3 + x4 < 0, x1 + x4 > x3 + x4. This gives that any α ∈ O∗K such that

L(α) = (x1, x2, x3, 2x4) satisfies the statements (i)-(iii) from the lemma.

Lemma 5.2.3 Let K be an extension of degree 5 with signature (1,2) and assume that K

is embedded into R. Denote by σ1, σ2, and σ3, σ4 the complex conjugate pairs of embeddings

of K into C. Then there exists an algebraic unit α ∈ K, such that

i. |α| > |σ1(α)| = |σ2(α)| > 1 > |σ3(α)| = |σ4(α)|,

ii. |ασ4(α)| < 1, |σ2(α)σ3(α)| < 1, and
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iii. |ασ4(α)| > |σ2(α)σ3(α)|.

Proof. Let O∗K be the unit group of K. For α ∈ O∗K we define

L(α) = (log |α|, 2 log |σ1(α)|, 2 log |σ3(α)|).

By Dirichlet’s unit theorem L(O∗K) is a lattice of rank 2 in the hyperplane

{(−2x2 − 2x4, 2x2, 2x4)|x2, x4 ∈ R} = {(−x− y, x, y)|x, y ∈ R} ⊆ R3.

Let B ∈ R be larger than any vector spanning a fixed fundamental domain of the lattice

L(O∗K). Then there exists an element (x1, 2x2, 2x4) ∈ L(O∗K) such that 9B < x2 < 10B,

−17B < x4 < −16B, therefore, 12B < x1 = −2x2 − 2x4 < 16B. We see that x1 + x4 < 0,

x2 + x4 < 0, x1 + x4 > x2 + x4. This gives that any α ∈ O∗K such that L(α) = (x1, 2x2, 2x4)

satisfies the statements (i)-(iii) from the lemma.

Proposition 47 Let K/Q be totally real of degree five and let L be the Galois closure of

K over Q. If there is a σ ∈ Gal(L/Q) such that all embeddings of K are given by id, σ|K,

σ2|K, σ3|K,and σ4|K , then there is an algebraic unit in K, which is a wandering point under

iteration of the Mahler measure.

Proof. By Lemma 5.2.1, there is an algebraic unit α ∈ K such that the Galois conjugates of

α satisfy

1. |α| > |σ(α)| > |σ2(α)| > 1 > |σ3(α)| > |σ4(α)|,

2. |σ2(α)σ3(α)| < |ασ4(α)| < 1.

Now, M(α) = ±ασ(α)σ2(α) and

|σ(α)σ2(α)σ3(α)| =
∣∣∣∣ 1

ασ4(α)

∣∣∣∣ > 1, |σ2(α)σ3(α)σ4(α)| =
∣∣∣∣ 1

σ(α)α

∣∣∣∣ < 1,

|σ3(α)σ4(α)α| =
∣∣∣∣ 1

σ(α)σ2(α)

∣∣∣∣ < 1, |σ4(α)ασ(α)| =
∣∣∣∣ 1

σ2(α)σ3(α)

∣∣∣∣ > 1,
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and

|ασ(α)σ2(α)| =
∣∣∣∣ 1

σ3(α)σ4(α)

∣∣∣∣ > 1

are pairwise distinct Galois conjugates of |ασ(α)σ2(α)|.Therefore,

M (2)(α) = ±α2σ(α)3σ2(α)2σ3(α)σ4(α) = ±ασ(α)2σ2(α).

Now,

|ασ(α)2σ2(α)| =
∣∣∣∣ σ(α)

σ3(α)σ4(α)

∣∣∣∣ > 1, |σ(α)σ2(α)2σ3(α)| =
∣∣∣∣ σ2(α)

σ4(α)α

∣∣∣∣ > 1,

|σ2(α)σ3(α)2σ4(α)| =
∣∣∣∣ σ3(α)

ασ(α)

∣∣∣∣ < 1, |σ3(α)ασ4(α)2| =
∣∣∣∣ σ4(α)

σ(α)σ2(α)

∣∣∣∣ < 1,

and

|α2σ4(α)σ(α)| =
∣∣∣∣ α

σ2(α)σ3(α)

∣∣∣∣ > 1

are pairwise distinct Galois conjugates of M (2)(α).

We will show that when n ≥ 2, M (n)(α) = αiσ(α)jσ2(α)i for some i < j such that

j−i ≤ i, and that M (n)(α) has five distinct Galois conjugates, among which three conjugates

are outside of the unit circle while the other two lie inside of the unit circle, which gives that

α is a wandering point.

We will show this by induction. The case for n = 1 and n = 2 are as above. Suppose

that M (n−1)(α) = αiσ(α)jσ2(α)i for some i < j, then

|αiσ(α)jσ2(α)i| =
∣∣∣∣ σ(α)j−i

σ3(α)iσ4(α)i

∣∣∣∣ > 1,

|σ(α)iσ2(α)jσ3(α)i| =
∣∣∣∣σ2(α)j−i

σ4(α)iαi

∣∣∣∣ > 1,

|σ2(α)iσ3(α)jσ4(α)i| =
∣∣∣∣σ3(α)j−i

αiσ(α)i

∣∣∣∣ < 1,

|σ3(α)iαiσ4(α)j| =
∣∣∣∣ σ4(α)j−i

σ(α)iσ2(α)i

∣∣∣∣ < 1,

and

|αjσ4(α)iσ(α)i| =
∣∣∣∣ αj−i

σ2(α)iσ3(α)i

∣∣∣∣ > 1
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are pairwise distinct Galois conjugates of M (2)(α).

Since

σ3(α)j−iσ(α)iσ2(α)i < σ4(α)j−iαiσ(α)i

and

σ(α)j−iσ2(α)iσ3(α)i > αj−iσ3(α)iσ4(α)i,

the five absolute values above are pairwise distinct Galois conjugates of M (n−1)(α).

Therefore, M (n)(α) = αj+iσ(α)i+j+iσ2(α)i+jσ3(α)iσ4(α)i = αjσ(α)i+jσ2(α)j.

By the same proof as above, M (n)(α) has five distinct Galois conjugates, three of them

are strictly outside of the unit circle while the other two lie strictly inside of the unit circle.

This proves that α is a wandering point.

Corollary 48 Let K/Q be totally real of degree five, and let L be the Galois closure of K

over Q. If Gal(L/Q) is isomorphic to the cyclic group with five elements C5 or to the dihedral

group D5 or to the semidirect product Z4nZ5, then there exists an algebraic unit in K which

is wandering under iteration of the Mahler measure M .

Proof. If Gal(L/Q) ∼= C5, then L = K and the assumptions from Proposition 47 are satisfied.

Therefore, there is a wandering unit in this case. Now assume instead that Gal(L/Q) ∼= D5 =

〈σ, τ〉, with σ of order 5 and τ of order 2. Note that K/Q is not Galois in this case.

If σ|K or σ2|K or σ3|K or σ4|K were the identity map, then K would be fixed by the group

〈σ〉 of order 5, and hence [K : Q] ≤ 2, which is not possible.

Therefore, id |K , σ|K , σ2|K , σ3|K and σ4|K are pairwise distinct embeddings of K. So in

this case the assumptions from Proposition 47 are met, and K contains a wandering unit.

Now, assume that Gal(L/Q) ∼= Z4 nZ5 = 〈σ, τ〉, where σ is of degree 5 and τ is of degree

4. Notice that in this case K/Q is again not Galois. By the same argument as above, id |K ,

σ|K , σ2|K , σ3|K and σ4|K are pairwise distinct embeddings of K. Hence, once again, the

assumptions from Proposition 47 are met and K contains a wandering unit.
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Proposition 49 Let K/Q be totally real of degree five, and let L be the Galois closure of K

over Q. If Gal(L/Q) contains the alternating group A5, then there exists an algebraic unit

in K which is wandering under iteration of the Mahler measure M .

Proof. By Lemma 5.2.1, there is an algebraic unit α in K such that the Galois conjugates

α = α1, α2, α3, α4, α5 satisfy

|α1| > |α2| > |α3| > 1 > |α4| > |α5| .

Therefore, M(α) = ±α1α2α3. Since Gal(L/Q) contains A5, the Galois conjugates of α1α2α3

are precisely

α1α2α3 , α2α4α5 , α2α3α5 , α3α4α5 , α2α3α4 ,

α1α4α5 , α1α3α5 , α1α3α4 , α1α2α5 , α1α2α4 .

Notice that |α1α2α3α4α5| = 1 and |α1α2α4| > |α3α5|, which gives |α1α2α4| > 1.

Therefore the orbit of α under iteration of M contains at least 3 elements. By Theorem

27, α is a wandering unit.

To summarize, we get the following theorem:

Theorem 50 Let K/Q be totally real of degree five. Then there exists an algebraic unit in

K which is wandering under iteration of the Mahler measure M .

Proof. Since Gal(L/Q) must be a transitive subgroup of S5 with order divisible by 5, it must

be isomorphic to C5, D5, Z4 nZ5, A5 or S5. In all these cases there exists a wandering unit

by Corollary 48 and Proposition 49.

The proofs for signature (3,1) and (1,2) are similar.

Proposition 51 Let K/Q be of degree five with signature (3,1) and let L be the Galois

closure of K over Q. If there is a σ ∈ Gal(L/Q) such that all embeddings of K are given by

id, σ|K, σ2|K, σ3|K,and σ4|K , then there is an algebraic unit in K, which is a wandering

point under iteration of the Mahler measure.
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Proof. By Lemma 5.2.2, there is an algebraic unit α ∈ K such that the Galois conjugates of

α satisfy

1. |α| > |σ(α)| > |σ2(α)| > 1 > |σ3(α)| = |σ4(α)|,

2. |σ2(α)σ3(α)| < |ασ4(α)| < 1.

Then, by the same proof as above for the totally real case, α is a wandering point.

Corollary 52 Let K/Q be of degree five with signature (3,1), and let L be the Galois closure

of K over Q. If Gal(L/Q) is isomorphic to the dihedral group D5 or to the semidirect product

Z4 n Z5, then there exists an algebraic unit in K which is wandering under iteration of the

Mahler measure M .

Proof. Assume that Gal(L/Q) ∼= D5 = 〈σ, τ〉, where σ is of order 5 and τ order 2. By the

same proof as in Corollary 48, there is a wandering unit in K in this case.

Now assume that Gal(L/Q) ∼= Z4 n Z5 = 〈σ, τ〉 where σ is of order 5 and τ is of order

4. In this case, K also contains a wandering point by the same argument as in Corollary

48.

Proposition 53 Let K/Q be of degree five with signature (3,1), and let L be the Galois

closure of K over Q. If Gal(L/Q) contains the alternating group A5, then there exists an

algebraic unit in K which is wandering under iteration of the Mahler measure M .

Proof. By the same argument as in the proof for Proposition 49, in this case there exists an

algebraic unit which is wandering under iteration of M .

To summarize, we have

Theorem 54 Let K/Q be of degree five with signature (3,1). Then there exists an algebraic

unit in K which is wandering under iteration of the Mahler measure M .

Proof. Since Gal(L/Q) must be a transitive subgroup of S5 with order divisible by 5, it must

be isomorphic to C5, D5, Z4 n Z5, A5 or S5. Gal(L/Q) cannot be isomorphic to C5 since
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K is not Galois over Q. In all the rest of these cases there exists a wandering unit by the

corollary and proposition above.

Theorem 55 Let K/Q be of degree five with signature (1,2). Then there exists an algebraic

unit in K which is wandering under iteration of the Mahler measure M .

Proof. By Lemma 5.2.3, there is an algebraic unit α ∈ K such that the Galois conjugates of

α satisfy

1. |α| > |σ(α)| = |σ2(α)| > 1 > |σ3(α)| = |σ4(α)|,

2. |σ2(α)σ3(α)| < |ασ4(α)| < 1.

Then, once again, the rest of the proof is essentially the same as the proof for the totally

real case.

Finally, altogether, we have Theorem 30.

5.3 Abelian extensions

5.3.1 Multiquadratic fields

For any r ∈ N we call a field extension K/Q r-quadratic, if there are d1, . . . , dr ∈ Z such

that K = Q(
√
d1, . . . ,

√
dr) and [K : Q] = 2r.

Let K be r-quadratic, then K/Q is Galois and hence K is either totally real or totally

complex. Moreover, any proper subfield of K is r′-quadratic with r′ < r.

We first consider totally real 3-quadratic fields K = Q(
√
d1,
√
d2,
√
d3). For each i ∈

{1, 2, 3} choose a fundamental unit βi ∈ Q(
√
di) with |βi| > 1. Moreover, let n1, n2, n3 be

positive integers, and set αi = βnii . Denote with σi the nontrivial element in the Galois

group of Q(
√
di)/Q. Then |αiσi(αi)| = 1 for all i ∈ {1, 2, 3}. The Galois conjugates of

α = αn1
1 α

n2
2 α

n3
3 are

α1α2α3 σ1(α1)α2α3 α1σ2(α2)σ3 α1α2σ3(α3)

σ1(α1)σ2(α2)α3 σ1(α1)α2σ3(α3) α1σ2(α2)σ3(σ3) σ1(α1)σ2(α2)σ3(α3)
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By choosing the exponents ni’s such that |βn1
1 | ≈ |βn2

2 | ≈ |βn3
3 |, we can ensure that |βn1

1 | ≥ 2,

and |βn2
2 | ,|βn3

3 | ∈
(
|βn1

1 | − 1
2
, |βn1

1 |+ 1
2

)
, and we have

• |α1α2α3|, |α1|3 > 1,

• |σ1(α1)α2α3|, |α1σ2(α2)σ3|, |α1α2σ3(α3)|, |α1| > 1,

• |σ1(α1)σ2(α2)α3|, |σ1(α1)α2σ3(α3)|, |α1σ2(α2)σ3(σ3)|, |α1|−1 < 1,

• |σ1(α1)σ2(α2)σ3(α3)|, |α1|−3 < 1.

In particular, α is a Perron number (and hence torsion-free) of degree 8, and the Mahler

measure of α is

M(α) = |α1α2α3σ1(α1)α2α3α1σ2(α2)σ3α1α2σ3(α3)| = |α2
1α

2
2α

2
3| = α2.

Since α is torsion-free, it is M (2)(α) = M(α2) = M(α)2 = α4. More generally, for any n ≥ 1

it is M (n)(α) = α2n , which immediately implies that α is wandering under iteration of M .

We have just seen:

Proposition 56 Let K be a totally real 3-quadratic field. Then there are wandering units

under iteration of the Mahler measure.

This gives:

Corollary 57 Let K be a r-quadratic field. If K is totally real and r ∈ {1, 2}, or if K is

totally imaginary and r ∈ {1, 2, 3}, all elements in K are preperiodic under iteration of the

Mahler measure. In all other cases there are wandering units under iteration of the Mahler

measure.

Proof. Assume first that K is totally real. By Proposition 41, all elements of K are prepe-

riodic, if r ∈ {1, 2}. If r ≥ 3, then it contains a 3-quadratic subfield. By Proposition 56, K

contains a wandering unit.
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Now, let K be totally imaginary. If r ∈ {1, 2, 3}, then for any α ∈ K it is M(α) ∈ K ∩R.

This is M(α) lies in a totally real (r − 1)-quadratic subfield of K (where a 0-quadratic field

is just Q). By the first part of the proof, we conclude that α, and hence all elements in K

are preperiodic. If r ≥ 4, then K ∩R is a totally real (r− 1)-quadratic subfield of K. Again

by the first part of the proof, there is a wandering unit in K.

A totally imaginary 3-quadratic field gives an example of a field of degree 8 in which all

elements are preperiodic. Similarly, any totally imaginary Galois extension of degree 6 has

this property: The Mahler measure of any element in such a field is real and must live in a

proper subfield. This implies that the Mahler measure of an element in our field is of degree

1, 2, or 3. Hence, any element is preperiodic.

We are now ready to prove the following theorem:

Theorem 58 Let K/Q be an abelian 2-extension. Then K does not contain an element

wandering under iteration of M , if and only if the maximal real subfield of K has Galois

group isomorphic to C1, C2 or C2 × C2. In all other cases, K contains a wandering unit.

Proof. Let α ∈ K be arbitrary. Then M(α) is a real algebraic number in K (since K/Q is

Galois). By assumption K/Q is abelian and hence all subfields are Galois over Q as well. It

follows that M(α) lies in the maximal real subfield of K. If this maximal real subfield is a

trivial or a quadratic extension of Q, then surely there are no wandering elements in K. If

it is a C2 × C2 extension, it does not contain a wandering point by Proposition 41.

In all other cases, K contains a totally real field of Galois group isomorphic to C4 or

isomorphic to C2 × C2 × C2. Both yields the existence of wandering units by Corollary 44

and Proposition 56.

From now on we will only consider abelian extensions. We aim to classify all the Abelian

extensions that do not contain a wandering point. Let us start with the smallest remaining

degree.
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5.3.2 Abelian extensions of degree six

Proposition 59 Let K/Q be an abelian extension of degree 6. Then there exists an element

in K that is wandering under iteration of M if and only if K is totally real.

Proof. If K/Q is totally imaginary, then M(α) – as a real element – must lie in a proper

subfield of K for all α ∈ K. This means that M(α) is of degree 1, 2, or 3. In all cases α is a

preperiodic point. Hence for the rest of this proof we assume that K is totally real. We will

show that K contains a wandering unit.

For any α ∈ K, we set α1 = α and αi+1 = σ(αi) for all i ∈ N, where σ is a generator of

Gal(K/Q).

By Dirichlet’s unit theorem there is an algebraic unit α ∈ K, such that

|α1| > |α6| > |α2| > 1 > |α5| > |α3| > |α4|. (5.3.1)

Then M(α) = |α1α6α2|. In particular, we get

|β1| = |α1α6α2|, |β2| = |α2α1α3|, |β3| = |α3α2α4|

|β4| = |α4α3α5|, |β5| = |α5α4α6|, |β6| = |α6α5α1|.

We will see in a moment that β satisfies the same distribution of Galois conjagates as α in

(5.3.1). Then, inductively, it follows that α is a wandering point. By using the table above

and (5.3.1) we immediately get

|β1| > |β6|, |β6| > |β2|, |β2| > |β5|, |β5| > |β3|, |β3| > |β4|.

Since α is an algebraic unit, we have |β2| · |β5| = |α1α2α3α4α5α6| = 1. We have already

noticed, that |β2| > |β5|. Hence, we have |β2| > 1 > |β5|. We have shown that M(α) = β

has the same distribution of Galois conjugates as α. As noticed above, this implies that α

is a wandering point.
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5.3.3 Abelian extensions of degree nine

We proceed with studying abelian extensions, and whether they contain wandering points

or not.

Proposition 60 Let K/Q be an abelian extension with Galois group isomorphic to C3×C3.

Then there are wandering units in K.

Proof. By Galois theory, we can write K as the compositum of two linearly disjoint fields

K1 and K2, both of degree 3. Since K is Galois and of odd degree, it must be totally real.

In particular K1 and K2 are totally real.

Let α be a Pisot unit in K1 and let β be a Pisot unit in K2 (recall that any real number

field of degree greater than 1 contains a Pisot unit). Denote by α1, α2, α3 the Galois

conjugates of α, and by β1, β2, β3 the Galois conjugates of β, ordered such that

|α1| > 1 > |α2| > |α3| and |β1| > 1 > |β2| > |β3|.

Since K1 and K2 are linearly disjoint, the Galois conjugates of α1β1 are precisely

α1β1, α1β2, α1β3, α2β1, α2β2, α2β3, α3β1, α3β2, α3β3.

Since powers of α and β are also Pisot units, we may raise α and β to some power to assume

that α and β satisfy

|α1β3| > 1 and |β1α3| > 1.

Then we find

M(α1β1) = |(α1β1)(α1β2)(α1β3)(α2β1)(α3β1)| = |α2
1β

2
1 | = (α1β1)2.

By construction α1β1 is a Perron number, and hence torsion free. It follows from the last

displayed formula, that Mn(α1β1) = (α1β1)2n for all n ∈ N. Hence α1β1 ∈ K is a wandering

unit.
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5.3.4 Cyclic extensions of odd degree ≥ 5

We define for all integers a the integer a, with a ≡ a mod n and a ∈ {1, . . . , n}. Let n ≥ 5

be an odd integer and we fix any Galois extension K/Q with Gal(K/Q) ∼= Cn. Let σ be a

fixed generator of this Galois group. For any element α ∈ K, we set α(i) = σi−1(α) for all

i ∈ {2, . . . , n}. This implies

σ(α(i)) = α(i+1) and σ(α(n)) = α(1) = α.

Note that K is necessarily totally real, as a Galois extension of odd degree.

We break such cyclic extensions into two cases: n ≡ 3 mod 4 and n ≡ 1 mod 4.

Assume first that n ≡ 3 mod 4.

Lemma 5.3.1 Let α ∈ K be such that

∣∣α(1)
∣∣ > ∣∣α(n)

∣∣ > ∣∣α(2)
∣∣ > ∣∣α(n−1)

∣∣ > ∣∣α(3)
∣∣ > ∣∣α(n−2)

∣∣ > ∣∣α(4)
∣∣ > . . . (5.3.2)

In other words, we assume that

a.
∣∣α(i)

∣∣ > ∣∣α(n+1−i)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}, and

b.
∣∣∣α(n+2−i)

∣∣∣ > ∣∣α(i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
}.

Assume that precisely n+1
2

conjugates of α lie outside the unit circle. Then the conjugates of

β = M(α) are precisely distributed as the following

∣∣β(1)
∣∣ > ∣∣β(2)

∣∣ > ∣∣β(n)
∣∣ > ∣∣β(3)

∣∣ > ∣∣β(n−1)
∣∣ > ∣∣β(4)

∣∣ > ∣∣β(n−2)
∣∣ > . . . , (5.3.3)

that is,

c.
∣∣β(i)

∣∣ > ∣∣β(n+2−i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
}, and

d.
∣∣∣β(n+2−i)

∣∣∣ > ∣∣β(i+1)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}.

and M(α) has either precisely n+1
2

or precisely n−1
2

conjugates outside the unit circle.
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Proof. We have

β = M(α) =
∣∣∣α(1) · α(2) · · ·α(n+1

4
)
∣∣∣ · ∣∣∣α(n) · α(n−1) · · ·α( 3n+3

4
)
∣∣∣

=
∣∣∣α( 3n+3

4
) · α( 3n+3

4
+1) · α( 3n+3

4
+2) · · ·α( 3n+3

4
+n−1

2
)
∣∣∣ .

Note that β is a Perron number, hence we β(1) = β is the largest conjugate of β. Now, define

for all i ∈ {0, . . . , n−1
2
},

γi =

∣∣∣α( 3n+3
4
−i) · α( 3n+3

4
+1−i) · · ·α( 3n+3

4
+n−1

2
−i)
∣∣∣∣∣∣α( 3n+3

4
+i) · α( 3n+3

4
+1+i) · · ·α( 3n+3

4
+n−1

2
+i)
∣∣∣ =

∣∣∣β(1−i)
∣∣∣∣∣β(1+i)
∣∣ .

Notice that we have γ0 = 1. Further, we have

γi = γi−1 ·

∣∣∣α( 3n+3
4
−i) · α( 3n+3

4
+(i−1))

∣∣∣∣∣∣α( 3n+3
4

+n−1
2

+i) · α( 3n+3
4

+n−1
2
−(i−1))

∣∣∣ = γi−1 ·

∣∣∣α( 3n+3
4
−i) · α( 3n−1

4
+i)
∣∣∣∣∣∣α(n+1

4
+i) · α(n+5

4
−i)
∣∣∣ (5.3.4)

for all i ∈ {1, . . . , n−1
2
}. By assumption (a) on the α(j)’s we find that for all i ∈ {1, . . . , n−3

4
}

we have ∣∣∣α( 3n+3
4
−i)
∣∣∣ < ∣∣∣α(n+1

4
+i)
∣∣∣ and

∣∣∣α( 3n−1
4

+i)
∣∣∣ < ∣∣∣α(n+5

4
−i)
∣∣∣ .

This shows that 1 = γ0 > γ1 > . . . > γn−3
4

. For all i ∈ {n+5
4
, . . . , n−1

2
}, we have∣∣∣α(n+1

4
+i)
∣∣∣ < ∣∣∣α( 3n+3

4
−i)
∣∣∣ and

∣∣∣α(n+5
4
−i)
∣∣∣ < ∣∣∣α( 3n−1

4
+i)
∣∣∣ .

Hence, γn+5
4
< γn+9

4
< . . . < γn−1

2
. For i = n+1

4
, we have∣∣∣α(n+1

4
+i)
∣∣∣ =

∣∣∣α( 3n+3
4
−i)
∣∣∣ and

∣∣∣α(n+5
4
−i)
∣∣∣ =

∣∣∣α( 3n−1
4

+i)
∣∣∣ .

Therefore, γn−3
4

= γn+1
4

.

Since we have

γn−1
2

=

∣∣∣α(n+5
4

) · · ·α( 3n+3
4

)
∣∣∣∣∣∣α(n+1

4
) · · ·α( 3n−1

4
)
∣∣∣ =

∣∣∣α( 3n+3
4

)
∣∣∣∣∣∣α(n+1

4
)
∣∣∣

(a)
< 1,

we have that γi < 1 for all i ∈ {1, . . . , n−1
2
}. This means∣∣∣β(1+i)

∣∣∣ > ∣∣∣β(1−i)
∣∣∣ =

∣∣∣β(n+1−i)
∣∣∣ =

∣∣∣β(n+2−(1+i))
∣∣∣ ∀ i ∈

{
1, . . . ,

n− 1

2

}
.
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Hence, ∣∣∣β(i)
∣∣∣ > ∣∣∣β(n+2−i)

∣∣∣ ∀ i ∈
{

2, . . . ,
n+ 1

2

}
.

This proves assumption (c) for the β(i)’s. Now we prove that β(i)’s satisfy the condition (d).

Define for all i ∈ {1, . . . , n−1
2
},

µi =

∣∣∣∣α( 3n+3
4
−(i−1)

)
· α

(
3n+3

4
+1−(i−1)

)
· · ·α

(
3n+3

4
+n−1

2
−(i−1)

)∣∣∣∣∣∣∣∣α( 3n+3
4

+i
)
· α

(
3n+3

4
+1+i

)
· · ·α

(
3n+3

4
+n−1

2
+i
)∣∣∣∣ =

∣∣∣β(2−i)
∣∣∣∣∣β(i+1)
∣∣ .

Note that µ1 =
|β(1)|
|β(2)| > 1. Now,

µi+1 = µi ·

∣∣∣∣α( 3n+3
4
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣∣∣∣∣α( 3n+3

4
+n−1

2
+(i−1)

)∣∣∣∣ · ∣∣∣∣α( 3n+3
4

+n−1
2
−(i−1)

)∣∣∣∣ (5.3.5)

= µi ·

∣∣∣∣α( 3n+3
4
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣∣∣∣∣α( 5n+5

4
+i
)∣∣∣∣ · ∣∣∣∣α( 5n+5

4
−i
)∣∣∣∣ (5.3.6)

= µi ·

∣∣∣∣α( 3n+3
4
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣∣∣∣∣α(n+5

4
+i
)∣∣∣∣ · ∣∣∣∣α(n+5

4
−i
)∣∣∣∣ , (5.3.7)

for all i ∈ {1, . . . , n−1
2
}. By assumption (b) on the α(j)’s, for all i ∈ {1, . . . , n−3

4
}, we have∣∣∣∣α( 3n+3

4
−i
)∣∣∣∣ > ∣∣∣∣α(n+5

4
+i
)∣∣∣∣ , and

∣∣∣∣α( 3n+3
4

+i
)∣∣∣∣ > ∣∣∣∣α(n+5

4
−i
)∣∣∣∣ .

This implies that 1 < µ1 < µ2 < . . . < µn+1
4

. For all i ∈ {n+5
4
, . . . , n−1

2
},∣∣∣∣α(n+5

4
+i
)∣∣∣∣ > ∣∣∣∣α( 3n+3

4
−i
)∣∣∣∣ , and

∣∣∣∣α(n+5
4
−i
)∣∣∣∣ > ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣ .

Hence, µn+5
4
> . . . > µn−1

2
. Since

µn−1
2

=

∣∣∣∣α(n+9
4

)
· · ·α

(
3n+7

4

)∣∣∣∣∣∣∣∣α(n+1
4

)
· · ·α

(
3n−1

4

)∣∣∣∣ =

∣∣∣∣α( 3n+3
4

)
· α

(
3n+7

4

)∣∣∣∣∣∣∣∣α(n+1
4

)
· α

(
n+5
4

)∣∣∣∣
(b)
> 1.
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We then have that µi > 1 for all i ∈ {1, . . . , n−1
2
}. This means∣∣∣β(n+2−i)

∣∣∣ =
∣∣∣β(2−i)

∣∣∣ > ∣∣∣β(i+1)
∣∣∣ ,

for all i ∈ {1, · · · , n−1
2
}. This completes the proof of assumption (d) for the β(i)’s.

By the distribution of the conjugates of β, we have

. . .︸︷︷︸
n−3
2

-roots

>
∣∣∣β( 3n+7

4
)
∣∣∣ > ∣∣∣β(n+5

4
)
∣∣∣ > ∣∣∣β( 3n+3

4
)
∣∣∣ > . . .︸︷︷︸

n−3
2

-roots

.

Hence, we need to show that we have
∣∣∣β( 3n+7

4
)
∣∣∣ > 1 and

∣∣∣β( 3n+3
4

)
∣∣∣ < 1.

We have
∣∣∣β( 3n+7

4
)
∣∣∣ =

∣∣∣α(n+3
2

) · α(n+5
2

) · · ·α(1)
∣∣∣. Assume that this is ≤ 1. Then by (b)

∣∣α(2)
∣∣ · ∣∣∣α(n+1

2
) · α(n−1

2
) · α(n−3

2
) · · ·α(2)

∣∣∣ < 1.

However,

∣∣α(2)
∣∣ · ∣∣∣α(n+1

2
) · α(n−1

2
) · α(n−3

2
) · · ·α(2)

∣∣∣ · ∣∣∣α(n+3
2

) · α(n+5
2

) · · ·α(1)
∣∣∣︸ ︷︷ ︸

=|N(α)|=1

< 1,

which is a contradiction. Hence,
∣∣∣β( 3n+7

4
)
∣∣∣ > 1. We argue similarly for

∣∣∣β( 3n+3
4

)
∣∣∣ < 1. Assume∣∣∣β( 3n+3

4
)
∣∣∣ =

∣∣∣α(n+1
2

) · α(n+3
2

) · · ·α(n)
∣∣∣ ≥ 1.

Now by (a), ∣∣∣α(n+1
2

)
∣∣∣ · ∣∣∣α(1)α(2) · · ·α(n−1

2
)
∣∣∣ > 1,

which implies that,∣∣∣α(n+1
2

)
∣∣∣ · ∣∣∣α(1)α(2) · · ·α(n−1

2
)
∣∣∣ · ∣∣∣α(n+1

2
) · α(n+3

2
) · · ·α(n)

∣∣∣ > 1.

But this implies that
∣∣∣α(n+1

2
)
∣∣∣ > 1, a contradiction. This proves the lemma.

Lemma 5.3.2 Let α ∈ K be such that

∣∣α(1)
∣∣ > ∣∣α(2)

∣∣ > ∣∣α(n)
∣∣ > ∣∣α(3)

∣∣ > ∣∣α(n−1)
∣∣ > ∣∣α(4)

∣∣ > ∣∣α(n−2)
∣∣ > . . . , (5.3.8)

that is,
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a.
∣∣∣α(n+2−i)

∣∣∣ > ∣∣α(i+1)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}.

b.
∣∣α(i)

∣∣ > ∣∣α(n+2−i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
}.

Assume that precisely n+1
2

conjugates of α lie outside of the unit circle. Then the conjugates

of β = M(α) are precisely distributed as the following

∣∣β(1)
∣∣ > ∣∣β(n)

∣∣ > ∣∣β(2)
∣∣ > ∣∣β(n−1)

∣∣ > ∣∣β(3)
∣∣ > ∣∣β(n−2)

∣∣ > ∣∣β(4)
∣∣ > . . . (5.3.9)

That is,

c.
∣∣β(i)

∣∣ > ∣∣β(n+1−i)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}, and

d.
∣∣∣β(n+2−i)

∣∣∣ > ∣∣β(i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
},

and M(α) has either precisely n+1
2

or precisely n−1
2

conjugates outside the unit circle.

Proof. We have

β = M(α) =
∣∣∣α(1) · α(2) · · ·α(n+5

4
)
∣∣∣ · ∣∣∣α(n) · α(n−1) · · ·α( 3n+7

4
)
∣∣∣

=
∣∣∣α( 3n+7

4
) · α( 3n+7

4
+1) · α( 3n+7

4
+2) · · ·α( 3n+7

4
+n−1

2
)
∣∣∣ .

Note that β is a Perron number, so β(1) = β is the largest conjugate of β. Define for all

i ∈ {0, . . . , n−1
2
},

γi =

∣∣∣α( 3n+7
4

+i) · α( 3n+7
4

+1+i) · · ·α( 3n+7
4

+n−1
2

+i)
∣∣∣∣∣∣α( 3n+7

4
−i) · α( 3n+7

4
+1−i) · · ·α( 3n+7

4
+n−1

2
−i)
∣∣∣ =

∣∣∣β(1+i)
∣∣∣∣∣β(1−i)
∣∣ .

Notice that we have γ0 = 1. Now, we have

γi = γi−1 ·

∣∣∣α( 3n+7
4

+n−1
2
−(i−1)) · α( 3n+7

4
+n−1

2
+i)
∣∣∣∣∣∣α( 3n+7

4
+(i−1)) · α( 3n+7

4
−i)
∣∣∣ = γi−1 ·

∣∣∣α(n+9
4
−i) · α(n+5

4
+i)
∣∣∣∣∣∣α( 3n+3

4
+i) · α( 3n+7

4
−i)
∣∣∣ (5.3.10)

for all i ∈ {1, . . . , n−1
2
}. By assumption (a) on the α(j)’s we see that for all i ∈ {1, . . . , n−3

4
}

we have ∣∣∣α(n+9
4
−i)
∣∣∣ < ∣∣∣α( 3n+3

4
+i)
∣∣∣ and

∣∣∣α(n+5
4

+i)
∣∣∣ < ∣∣∣α( 3n+7

4
−i)
∣∣∣ .
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This shows that 1 = γ0 > γ1 > . . . > γn−3
4

. For all i ∈ {n+5
4
, . . . , n−1

2
}, we have∣∣∣α( 3n+3

4
+i)
∣∣∣ < ∣∣∣α(n+9

4
−i)
∣∣∣ and

∣∣∣α( 3n+7
4
−i)
∣∣∣ < ∣∣∣α(n+5

4
+i)
∣∣∣ .

Hence, γn+1
4
< γn+5

4
< . . . < γn−1

2
.

Now, we have

γn−1
2

=

∣∣∣α(n+5
4

) · α(n+9
4

) · · ·α( 3n+3
4

)
∣∣∣∣∣∣α(n+9

4
) · α(n+13

4
) · · ·α( 3n+7

4
)
∣∣∣ =

∣∣∣α(n+5
4

)
∣∣∣∣∣∣α( 3n+7

4
)
∣∣∣

(a)
< 1,

we have that γi < 1 for all i ∈ {1, . . . , n−1
2
}. This means∣∣∣β(1+i)

∣∣∣ < ∣∣∣β(1−i)
∣∣∣ =

∣∣∣β(n+1−i)
∣∣∣ ∀ i ∈

{
1, . . . ,

n− 1

2

}
.

Hence, ∣∣∣β(i)
∣∣∣ < ∣∣∣β(n+2−i)

∣∣∣ ∀ i ∈
{

2, . . . ,
n+ 1

2

}
.

This proves assumption (d) for the β(i)’s. Now we prove that β(i)’s satisfy the condition (c).

Define for all i ∈ {1, . . . , n−1
2
},

µi =

∣∣∣∣α( 3n+7
4

+(i−1)
)
· α

(
3n+7

4
+1+(i−1)

)
· · ·α

(
3n+7

4
+n−1

2
+(i−1)

)∣∣∣∣∣∣∣∣α( 3n+7
4
−i
)
· α

(
3n+7

4
+1−i

)
· · ·α

(
3n+7

4
+n−1

2
−i
)∣∣∣∣ =

∣∣∣β(i)
∣∣∣∣∣β(1−i)
∣∣ .

Note that µ1 =
|β(1)|
|β(n)| > 1. Now,

µi+1 = µi ·

∣∣∣∣α( 3n+7
4

+n−1
2
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+7

4
+n−1

2
+i
)∣∣∣∣∣∣∣∣α( 3n+7

4
+(i−1)

)∣∣∣∣ · ∣∣∣∣α( 3n+7
4
−(i+1)

)∣∣∣∣ (5.3.11)

= µi ·

∣∣∣∣α(n+5
4
−i
)∣∣∣∣ · ∣∣∣∣α(n+5

4
+i
)∣∣∣∣∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣ · ∣∣∣∣α( 3n+3

4
−i
)∣∣∣∣ , (5.3.12)

for all i ∈ {1, . . . , n−1
2
}. By assumption (b) on the α(j)’s, we see that for all i ∈ {1, . . . , n−3

4
},

we have ∣∣∣∣α(n+5
4
−i
)∣∣∣∣ > ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣ , and

∣∣∣∣α(n+5
4

+i
)∣∣∣∣ > ∣∣∣∣α( 3n+3

4
−i
)∣∣∣∣ .
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This implies that 1 < µ1 < µ2 < . . . < µn+1
4

. For all i ∈ {n+5
4
, . . . , n−1

2
},∣∣∣∣α(n+5

4
−i
)∣∣∣∣ < ∣∣∣∣α( 3n+3

4
+i
)∣∣∣∣ , and

∣∣∣∣α(n+5
4

+i
)∣∣∣∣ < ∣∣∣∣α( 3n+3

4
−i
)∣∣∣∣ .

Hence, µn+5
4
> µn+9

4
> . . . > µn−1

2
. Since

µn−1
2

=

∣∣∣∣α(n+1
4

)
· α

(
n+5
4

)
· · ·α

(
3n−1

4

)∣∣∣∣∣∣∣∣α(n+9
4

)
· α

(
n+13

4

)
· · ·α

(
3n+7

4

)∣∣∣∣ =

∣∣∣∣α(n+1
4

)
· α

(
n+5
4

)∣∣∣∣∣∣∣∣α( 3n+3
4

)
· α

(
3n+7

4

)∣∣∣∣
(b)
> 1.

We then have that µi > 1 for all i ∈ {1, . . . , n−1
2
}. This means∣∣∣β(i)

∣∣∣ > ∣∣∣β(1−i)
∣∣∣ =

∣∣∣β(n+1−i)
∣∣∣ ,

for all i ∈ {1, · · · , n−1
2
}. This completes the proof of assumption (c) for the β(i)’s.

Recall the distribution of the conjugates of β(i)’s, we have

. . .︸︷︷︸
n−3
2

-roots

>
∣∣∣β(n+1

4
)
∣∣∣ > ∣∣∣β( 3n+3

4
)
∣∣∣ > ∣∣∣β(n+5

4
)
∣∣∣ > . . .︸︷︷︸

n−3
2

-roots

.

Hence, we need to show that we have
∣∣∣β(n+1

4
)
∣∣∣ > 1 and

∣∣∣β(n+5
4

)
∣∣∣ < 1.

We have
∣∣∣β(n+1

4
)
∣∣∣ =

∣∣∣α(1) · α(2) · · ·α(n+1
2

)
∣∣∣. Assume that this is ≤ 1, then by (b),

∣∣α(2)
∣∣ · ∣∣∣α(n+2−2) · α(n+2−3) · · · ·α(n+2−n+1

2
)
∣∣∣ =

∣∣α(2)
∣∣ · ∣∣∣α(n) · α(n−1) · · · ·α(n+3

2
)
∣∣∣ < 1.

This gives, ∣∣α(2)
∣∣ · ∣∣∣α(n) · α(n−1) · · ·α(n+3

2
)
∣∣∣ · ∣∣∣α(1) · α(2) · · ·α(n+1

2
)
∣∣∣︸ ︷︷ ︸

=|N(α)|=1

< 1.

A contradiction. Hence,
∣∣∣β(n+1

4
)
∣∣∣ > 1. We now argue similarly for

∣∣∣β(n+5
4

)
∣∣∣. Assume∣∣∣β(n+5

4
)
∣∣∣ =

∣∣∣α(2) · α(3) · · ·α(n+3
2

)
∣∣∣ ≥ 1.

Now by (a),∣∣∣α(n+2−1)α(n+2−2) · · ·α(n+2−n−1
2

)
∣∣∣ · ∣∣∣α(n+1

2
)
∣∣∣ =

∣∣∣α(1)α(n) · · ·α(n+5
2

)
∣∣∣ · ∣∣∣α(n+1

2
)
∣∣∣ > 1,
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But then, ∣∣∣α(n+1
2

)
∣∣∣ · ∣∣∣α(1)α(n) · · ·α(n+5

2
)
∣∣∣ · ∣∣∣α(2) · α(3) · · ·α(n+3

2
)
∣∣∣ > 1.

Since
∣∣∣α(n+1

2
)
∣∣∣ < 1, this is a contradiction. This proves

∣∣∣β(n+5
4

)
∣∣∣ < 1, so the lemma is

proved.

Proposition 61 Let n ≥ 7 be such that n ≡ 3 mod 4. Moreover, let K/Q be a Galois

extension with Galois group isomorphic to the cyclic group Cn. Then K contains a wandering

unit under iteration of the Mahler measure.

Proof. We fix a generator σ of Gal(K/Q) and use the notations as above. By Dirichlet’s

unit theorem, we find an algebraic unit α ∈ K such that α satisfies the assumptions from

Lemma 5.3.1. If β = M(α) has n−1
2

conjugates outside the unit circle, then β−1 has precisely

n+1
2

conjugates outside the unit circle. These are distributed as

(β(n+3
2

))−1 > (β(n+1
2

))−1 > (β(n+5
2

))−1 > (β(n−1
2

))−1 . . .

Let (β(n+3
2

))−1 = γ, then we have

γ(1) > γ(n) > γ(2) > γ(n−1) > γ(3) > . . .

Now, γ satisfies the assumptions of Lemma 5.3.1, and we have M2(α) = M(β) = M(γ).

Suppose thatM(γ) has precisely n−1
2

conjugates outside the unit circle. Then, as before, some

conjugate of M(γ)−1 satisfies the assumptions of Lemma 5.3.1, and M3(α) = M(M(γ)) =

M(M(γ)−1). Now, either M3(α) satifies the assumptions of Lemma 5.3.1 or Lemma 5.3.2,

or some conjugate of M3(α)−1 satisfies Lemma 5.3.1 or Lemma 5.3.2, and the argument

continues. To summarize, for any iterate M j(α), either it satifies the assumptions of Lemma

5.3.1 or Lemma 5.3.2, or some conjugate of M j(α)−1 satisfies Lemma 5.3.1 or Lemma 5.3.2.

This implies that α is a wandering unit.

Now, instead, assume n ≡ 1 mod 4. As a reminder, we define for all integers a the integer
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a, with a ≡ a mod n and a ∈ {1, . . . , n}.

Lemma 5.3.3 Let α ∈ K be such that

∣∣α(1)
∣∣ > ∣∣α(2)

∣∣ > ∣∣α(n)
∣∣ > ∣∣α(3)

∣∣ > ∣∣α(n−1)
∣∣ > ∣∣α(4)

∣∣ > ∣∣α(n−2)
∣∣ > . . . (5.3.13)

Then we have

a.
∣∣α(i)

∣∣ > ∣∣α(n+2−i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
}, and

b.
∣∣∣α(n+2−i)

∣∣∣ > ∣∣α(i+1)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}.

Assume further that precisely n+1
2

conjugates of α lie outside the unit circle. Then the

conjugates of β = M(α) are precisely distributed as in (5.3.13) and M(α) has either precisely

n+1
2

or precisely n−1
2

conjugates outside the unit circle.

Proof. Our assumptions guarantee that we have

β = M(α) =
∣∣∣α(1) · α(2) · · ·α(n+3

4
)
∣∣∣ · ∣∣∣α(n) · α(n−1) · · ·α(n−n−5

4
)
∣∣∣

=
∣∣∣α( 3n+1

4
+1) · α( 3n+1

4
+2) · · ·α( 3n+1

4
+n+1

4
)
∣∣∣ .

As a Mahler measure, β is a Perron number, and hence we know that β(1) = β is the largest

conjugate of β. In order to prove that the β(i) satisfy the assumption (a) from the lemma,

we define for all i ∈ {1, . . . , n−1
2
}

γi =

∣∣∣α( 3n+5
4

+i) · α( 3n+5
4

+1+i) · · ·α( 3n+5
4

+n−1
2

+i)
∣∣∣∣∣∣α( 3n+5

4
−i) · α( 3n+5

4
+1−i) · · ·α( 3n+5

4
+n−1

2
−i)
∣∣∣ =

∣∣∣β(i+1)
∣∣∣∣∣β(1−i)
∣∣ .

Obviously, we have γ0 = 1. Moreover, we see

γi = γi−1 ·

∣∣∣α( 3n+5
4

+n−1
2

+i) · α( 3n+5
4

+n−1
2
−(i−1))

∣∣∣∣∣∣α( 3n+5
4

+(i−1)) · α( 3n+5
4
−i)
∣∣∣ = γi−1 ·

∣∣∣α(n+3
4

+i) · α(n+7
4
−i)
∣∣∣∣∣∣α( 3n+1

4
+i) · α( 3n+5

4
−i)
∣∣∣ (5.3.14)

for all i ∈ {1, . . . , n−1
2
}. By assumption (a) on the α(j)’s we find that for all i ∈ {1, . . . , n−1

4
},

we have ∣∣∣α(n+3
4

+i)
∣∣∣ > ∣∣∣α( 3n+5

4
−i)
∣∣∣ and

∣∣∣α(n+7
4
−i)
∣∣∣ > ∣∣∣α( 3n+1

4
+i)
∣∣∣ .
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This proves 1 = γ0 < γ1 < . . . < γn−1
4

. For all i ∈ {n+3
4
, . . . , n−1

2
} assumption (a) yields∣∣∣α( 3n+1

4
+i)
∣∣∣ > ∣∣∣α(n+7

4
−i)
∣∣∣ and

∣∣∣α( 3n+5
4
−i)
∣∣∣ > ∣∣∣α(n+3

4
+i)
∣∣∣ .

Hence, we have γn+3
4
> γn+7

4
> . . . > γn−1

2
. Since we have

γn−1
2

=

∣∣∣α(n+3
4

) · · ·α( 3n+1
4

)
∣∣∣∣∣∣α(n+7

4
) · · ·α( 3n+5

4
)
∣∣∣ =

∣∣∣α(n+3
4

)
∣∣∣∣∣∣α( 3n+5

4
)
∣∣∣

(A)
> 1,

we find γi > 1 for all i ∈ {1, . . . , n−1
2
}. This means∣∣∣β(1+i)

∣∣∣ > ∣∣∣β(1−i)
∣∣∣ =

∣∣∣βn+2−(1+i)
∣∣∣ ∀ i ∈

{
1, . . . ,

n− 1

2

}
or equivalently ∣∣∣β(i)

∣∣∣ > ∣∣∣β(n+2−i)
∣∣∣ ∀ i ∈

{
2, . . . ,

n+ 1

2

}
.

This proves assumption (a) for the β(j)’s. Assumption (b) can be proven similarly: For all

i ∈ {1, . . . , n−1
2
}, define

µi =

∣∣∣∣α( 3n+9
4
−i
)
· α

(
3n+9

4
+1−i

)
· · ·α

(
3n+9

4
+n−1

2
−i
)∣∣∣∣∣∣∣∣α( 3n+5

4
+i
)
· α

(
3n+5

4
+1+i

)
· · ·α

(
3n+5

4
+n−1

2
+i
)∣∣∣∣ =

∣∣∣β(2−i)
∣∣∣∣∣β(i+1)
∣∣ .

Note that µ1 =
|β(1)|
|β(2)| > 1. We have

µi+1 = µi ·

∣∣∣∣α( 3n+9
4
−i−1

)∣∣∣∣ · ∣∣∣∣α( 3n+5
4

+i
)∣∣∣∣∣∣∣∣α( 3n+9

4
+n−1

2
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+5

4
+n−1

2
+i+1

)∣∣∣∣ (5.3.15)

= µi ·

∣∣∣∣α( 3n+5
4
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+5

4
+i
)∣∣∣∣∣∣∣∣α( 5n+7

4
−i
)∣∣∣∣ · ∣∣∣∣α( 5n+7

4
+i
)∣∣∣∣ (5.3.16)

= µi ·

∣∣∣∣α( 3n+5
4
−i
)∣∣∣∣ · ∣∣∣∣α( 3n+5

4
+i
)∣∣∣∣∣∣∣∣α(n+7

4
−i
)∣∣∣∣ · ∣∣∣∣α(n+7

4
+i
)∣∣∣∣ , (5.3.17)

79



for all i ∈ {1, . . . , n−1
2
}. By assumption b on the α(j)’s, for all i ∈ {1, . . . , n−5

4
},∣∣∣∣α( 3n+5

4
+i
)∣∣∣∣ > ∣∣∣∣α(n+7

4
−i
)∣∣∣∣ , and

∣∣∣∣α( 3n+5
4
−i
)∣∣∣∣ > ∣∣∣∣α(n+7

4
+i
)∣∣∣∣ .

For i = n−1
4

, ∣∣∣∣α( 3n+5
4

+i
)∣∣∣∣ > ∣∣∣∣α(n+7

4
−i
)∣∣∣∣ , but

∣∣∣∣α( 3n+5
4
−i
)∣∣∣∣ =

∣∣∣∣α(n+7
4

+i
)∣∣∣∣ .

Therefore, above gives 1 < µ1 < µ2 < . . . < µn+3
4

. For all i ∈ {n+3
4
, . . . , n−1

2
} assumption (b)

gives ∣∣∣∣α(n+7
4
−i
)∣∣∣∣ > ∣∣∣∣α( 3n+5

4
+i
)∣∣∣∣ , and

∣∣∣∣α(n+7
4

+i
)∣∣∣∣ > ∣∣∣∣α( 3n+5

4
−i
)∣∣∣∣ ,

which implies that µn+3
4
> µn+7

4
> . . . > µn−1

2
. Now, by (b),

µn−1
2

=

∣∣∣∣α(n+11
4

)
· · ·α

(
3n+9

4

)∣∣∣∣∣∣∣∣α(n+3
4

)
· · ·α

(
3n+1

4

)∣∣∣∣ =

∣∣∣∣α( 3n+9
4

)
· α

(
3n+5

4

)∣∣∣∣∣∣∣∣α(n+3
4

)
· α

(
n+7
4

)∣∣∣∣ > 1.

Hence, µi > 1 for all i ∈ {1, . . . , n−1
2
}. We conclude that

∣∣∣β(n+2−i)
∣∣∣ =

∣∣∣β(2−i)
∣∣∣ > ∣∣∣β(i+1)

∣∣∣ ,
for all i ∈ {1, · · · , n−1

2
}. This completes the proof of assumption (b) for the β’s.

By the distribution of the conjugates of β we get

. . .︸︷︷︸
n−3
2

-many

>
∣∣∣β(n+3

4
)
∣∣∣ > ∣∣∣β( 3n+5

4
)
∣∣∣ > ∣∣∣β(n+7

4
)
∣∣∣ > . . .︸︷︷︸

n−3
2

-many

.

Hence, in order to prove the lemma, we have to show that we have
∣∣∣β(n+3

4
)
∣∣∣ > 1 and

∣∣∣β(n+7
4

)
∣∣∣ <

1. But this is almost obvious once we have written the β(i)’s in terms of the α(i)’s.

We have
∣∣∣β(n+3

4
)
∣∣∣ =

∣∣∣α(1) · · ·α(n+1
2

)
∣∣∣. Assume that this is ≤ 1. Then by (a) also

∣∣α(2)
∣∣ · ∣∣∣α(n+2−2)α(n+2−3) · · ·α(n+2−n+1

2
)
∣∣∣

=
∣∣α(2)

∣∣ · ∣∣∣α(n)α(n−1) · · ·α(n+3
2

)
∣∣∣ < 1.
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Multiplying both terms ≤ 1 gives∣∣α(2)
∣∣ · ∣∣∣α(n)α(n−1) · · ·α(n+3

2
)
∣∣∣ · ∣∣∣α(1) · · ·α(n+1

2
)
∣∣∣︸ ︷︷ ︸

=|N(α)|=1

≤ 1.

This is a contradiction. Hence,
∣∣∣β(n+3

4
)
∣∣∣ > 1. To show that

∣∣∣β(n+7
4

)
∣∣∣ < 1, we argue in the

same way. Assume ∣∣∣β(n+7
4

)
∣∣∣ =

∣∣∣α(2) · · ·α(n+3
2

)
∣∣∣ ≥ 1.

Then by (b) (and (a) for the last estimate) we also have∣∣∣α(n+2−1)α(n+2−2) · · ·α(n+2−n−1
2

)
∣∣∣ · ∣∣∣α(n+1

2
)
∣∣∣ =

∣∣∣α(1)α(n) · · ·α(n+5
2

)
∣∣∣ · ∣∣∣α(n+1

2
)
∣∣∣ > 1.

However, multiplying both terms and applying that the norm of α has absolute value one,

we get
∣∣∣α(n+1

2
)
∣∣∣ > 1, which is nonsense. This proves the lemma.

Lemma 5.3.4 Let α ∈ K be such that∣∣α(1)
∣∣ > ∣∣α(n)

∣∣ > ∣∣α(2)
∣∣ > ∣∣α(n−1)

∣∣ > ∣∣α(3)
∣∣ > ∣∣α(n−2)

∣∣ > ∣∣α(4)
∣∣ > . . . (5.3.18)

In other words,

a.
∣∣α(i)

∣∣ < ∣∣α(n+2−i)
∣∣ ∀ i ∈ {2, . . . , n+1

2
} and

b.
∣∣∣α(n+1−i)

∣∣∣ < ∣∣α(1)
∣∣ ∀ i ∈ {1, . . . , n−1

2
}.

Assume further that precisely n+1
2

conjugates of α lie outside the unit circle. Then the

conjugates of β = M(α) are precisely distributed as in (5.3.18) and M(α) has either precisely

n+1
2

or precisely n−1
2

conjugates outside the unit circle.

Proof. This can be proved by an argument similar to those in the proofs of Lemma 5.3.1,

5.3.2 and 5.3.3. Note that all we have done is to replace i by 2 + n− i for all i ∈ {1, . . . , n}

in Lemma 5.3.3. This does not affect the result.

Proposition 62 Let n ≥ 5 be such that n ≡ 1 mod 4. Moreover, let K/Q be a Galois

extension with Galois group isomorphic to the cyclic group Cn. Then K contains a wandering

unit under iteration of the Mahler measure.
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Proof. We fix once and for all a generator σ of Gal(K/Q) and use the notation as above.

By Dirichlet’s unit theorem, we find an algebraic unit α ∈ K such that α satisfies the

assumptions from Lemma 5.3.3. If β = M(α) has n−1
2

conjugates outside the unit circle,

then β−1 has precisely n+1
2

conjugates outside the unit circle. These are distributed as

(β(n+3
2

))−1 > (β(n+1
2

))−1 > (β(n+5
2

))−1 > . . .

Setting (β(n+3
2

))−1 = γ, then this is nothing but

γ(1) > γ(n) > γ(2) > γ(n−1) > γ(3) > . . .

In other words, γ satisfies the assumptions of Lemma 5.3.4. Moreover, we have M2(α) =

M(β) = M(γ). Assume that M(γ) has precisely n−1
2

conjugates outside the unit circle.

Then, as before, some conjugate of M(γ)−1 satisfies the assumptions of Lemma 5.3.3, and

M(M(γ)) = M(M(γ)−1). We conclude, that any iterate Mk(α) either satisfies the assump-

tions of Lemma 5.3.3 or of Lemma 5.3.4. In particular, no iterate of α is a fixed point and

hence α is a wandering unit.

Altogether, we have the following proposition:

Proposition 63 Let K/Q be a cyclic extension of odd degree n ≥ 5 with Galois group

isomorphic to Cn. Then there are wandering units in K.

5.3.5 Classification of Abelian extensions

Table 1 on the next page shows the results so far on Abelian extensions.

In conclusion, we have Theorem 31.

Proof for Theorem 31. Suppose that the maximal real subfield of K has Galois group iso-

morphic to C1, C2, C2 × C2, or C3, then M(α) as a real number must lie in a totally real

subfield of K with Galois group isomorphic to C1, C2, C2 ×C2, or C3, but we know that all

elements in such fields are preperiodic. We assume now that the maximal real subfield of
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Galois group of maximal real subfield Contains Wandering point

C1, C2, or C2 × C2 No

C3 No

Contains C4 or C2 × C2 × C2 Yes

Contains Cn, where n ≥ 5 is odd Yes

Contains C6 Yes

Contains C3 × C3 Yes

Table 1: Classification of Abelian extensions

K has Galois group that is not isomorphic to one of C1, C2, C2 × C2, or C3, then its Galois

group has to contain one of the following:

(a) C4

(b) C2 × C2 × C2

(c) Cn, where n ≥ 5 is odd

(d) C6

(e) C3 × C3

Then, K has a totally real subfield with Galois group isomorphic to one of (a)-(e). By the

results we proved in this chapter, such a subfield contains a wandering unit, this proves the

forward direction.
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