RADIATION DAMAGE IN $\mathrm{KMgF}_{3}: \mathrm{Mn}^{\text {AND }} \mathrm{NaMgF}_{3}$

By
MARK ALLEN YOUNG
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1972

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1976

$$
\begin{aligned}
& \text { Thesin } \\
& 19760 \\
& \text { Y74R } \\
& \text { cop. } 2
\end{aligned}
$$

RADIATION DAMAGE IN $\mathrm{KMgF}_{3}: \mathrm{Mn}$ AND NaMgF_{3}

964021

The author is indebted to many friends and associates without whose constant assistance and advice this work could not have been realized. To Dr. E. E. Kohnke, Thesis Chairman, go a special thanks for his constant encouragement and for providing numerous stimulating discussions throughout the course of this study. Gratitude is further expressed to Dr. L. E. Halliburton who aided immensely in the analysis and interpretation of the ESR data and who was constantly available for consultation and advice in this regard. Financial support in the way of a Research Assistantship in conjunction with the Radiation Safety Program throughout the course of the graduate work is also gratefully acknowledged.

Finally, the author wishes to express his deepest gratitude and appreciation to his family and closest friends for their moral support throughout his university endeavors.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. EXPERIMENTAL PROCEDURE 21
A. Crystals 21
B. Irradiation Procedure 22
C. ESR Measurements 23
D. Thermoluminescence Measurements 26
III. EXPERIMENTAL RESULTS 29
A. The $\mathrm{Mn}^{2+}-$ Fluorine Vacancy Center 29
B. Intrinsic V_{K} Centers in NaMgF_{3} 45
IV. ANALYSIS AND DISCUSSION 66
A. Analysis of the Mn^{2+}, - Fluorine Vacancy Center 66
B. Analysis of Intrinsic V_{K} Centers in NaMgF_{3} 74
[110]-Type V_{K} Centers 74
[100]-Type $\mathrm{V}_{\mathrm{K}}^{\mathrm{K}}$ Centers 97
Thermoluminescence 102
V. SUMMARY 104
SELECTED BIBLIOGRAPHY 107
APPENDIX A. Mn^{2+}-FLUORINE VACANCY CENTER FITTING PROGRAM 111
APPENDIX B. PROGRAM USED IN PREDICTING LINE POSITIONS FOR THE $\mathrm{Mn}^{2+}-\mathrm{FLUORINE}$ VACANCY CENTER 116
APPENDIX C. [110]-TYPE V_{K} CENTER FITTING PROGRAM 120
APPENDIX D. PROGRAM USED IN PREDICTING LINE POSITIONS FOR THE [110]-TYPE V_{K} CENTER 126
APPENDIX E. DIAGONALIZATION SUBROUTINES 133

LIST OF TABLES
Table Page
I. Corrected Field Positions (in Gauss) of Resonant Lines of the Mn^{2+}-Fluorine Vacancy Center ESR Spectrum. 36
II. Corrected Field Positions (in Gauss) of Resonant Lines for the ESR Spectra Arising From the Intrinsic Self-Trapped Holes in NaMgF_{3} 58
III. Classes of [110]-Type V_{K} Centers in NaMgF_{3} 80
IV. Spin Hamiltonian Parameters for the Intrinsic Self-Trapped Hole in KMgF_{3}. 81
V. Predicted Line Positions (in Gauss) for the [110]-Type V_{K}Centers in NaMgF_{3} Using $\mathrm{KMgF}_{3} \mathrm{~V}_{\mathrm{K}}$ Center Spin HamiltonianParameters : 82
VI. Initial Calculation of Spin Hamiltonian Parameters for Each of the Six Classes of [110]-Type V_{K} Centers in NaMgF_{3} 85
VII. Calculation of the Tilt Angles for the Octahedra in NaMgF_{3} Based on an Analysis of the V_{K} Center ESR Spectra. . . 3 92

LIST OF FIGURES

Figure

1. The Structure of the (a) V_{K} Center and (b) H Center in the Alkali Halides 5
2. The Structure of the (a) F, (b) M, and (c) R Centers in the Alkali Halides 6
3. Crystal Structure of KMgF_{3}. 11
4. Crystal Structure of NaMgF_{3} 14
5. The Tilting of Octahedra in NaMgF_{3} Compared to the Ideal Perovskite Structure 16
6. Variation in the Dimensions of the Pseudocubic Cell in NaMgF_{3} as a Function of Temperature 18
7. The Structure of the Self-Trapped Hole in KMgF_{3} 19
8. Liquid Nitrogen Finger Dewar Used in Conjunction With the Varian V-4531 Rectangular ESR Cavity. 24
9. Holder Used in ESR Measurements of V_{K} Centers in NaMgF_{3} 25
10. Dewar Used for Thermoluminescence Measurements 28
11. Cubic Mn^{2+} ESR Spectrum 30
12. (a) Mn^{2+}-Fluorine Vacancy ESR Spectrum (Low Field) 32
(b) Mn^{2+}-Fluorine Vacancy ESR Spectrum (High Field) 33
13. Stick Diagram for the Mn^{2+}-Fluorine Vacancy ESR Spectrum. 35
14. The Two Lowest Field Sets of Hyperfine Lines for the $\mathrm{Mn}^{2+}{ }^{2+}$ Fluorine Vacancy [100] ESR Spectrum Illustrating the Difference in the Superhyperfine Patterns for Groups I and II 38
15. Saturation Study of the Mn^{2+} Fluorine Vacancy Center 39
16. Pulse Anneal Study of the Mn^{2+} Fluorine Vacancy Center 41

LIST OF FIGURES (Continued)

Figure Page
17. Regeneration of the Mn^{2+}-Fluorine Vacancy Center ESR Spectrum 42
18. Thermoluminescence of $\mathrm{KMgF}_{3}: \mathrm{Mn}$. 44
19. Unidentified ESR Spectrum Obtained After Electron Irradi- ation at 77 K Followed by Warming to Room Temperature 46
20. ESR Spectrum for NaMgF ${ }_{3}$ Obtained Following Electron Irradiation at $77 \mathrm{~K} .\left.\mathrm{H}\right|^{3} \mid$ [010], Typical Twinned Crystal. .47
21. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Tem- perature. $\mathrm{H}|\mid[010]$, Typical Twinned Crystal. 49
22. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Tem-perature. $\mathrm{H}|\mid$ [010], Typical Twinned Crystal--Differ-ent Domain Structure.50
23. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Tem- perature. $\mathrm{H}|\mid[100]$, Typical Twinned Crystal. 51
24. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Tem- perature. $\mathrm{H}\left|\mid\left[010^{3}\right]\right.$, Single Domain Crystal. 52
25. ESR Spectrum for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K} . \mathrm{H}| |$ [010], Single Domain Crystal. 54
26. ESR Spectrum for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K} . \mathrm{H}| |$ [100], Single Domain Crystal. 56
27. Pulse Anneal Study of the Intrinsic V_{K} Centers Produced in NaMgF_{3} by an Electron Irradiation at 77 K . (a)Thermal Decay of the [110]-Type V_{K} Center; (b) ThermalDecay of the $[100]$-Type V_{K} Center60
28. Thermoluminescence Obtained for NaMgF_{3} Following Electron
Irradiation at 77 K :
(a) $100 \mathrm{~K} \rightarrow 273 \mathrm{~K}$ 62
(b) $273 \mathrm{~K} \rightarrow 485 \mathrm{~K}$ 63
(c) $485 \mathrm{~K} \rightarrow 600 \mathrm{~K}$ 64
29. Thermoluminescence Obtained for NaMgF_{3} Following Electron Irradiation at 77 K and Application of uv Light (100 K- $273 \mathrm{~K})$. 65

LIST OF FIGURES (Continued)

Figure Page
30. Defect Model for the Mn^{2+}-Fluorine Vacancy Center. 73
31. The Four Types of Octahedra in the Crystal Structure of NaMgF_{3} 76
32. The Two Inequivalent Octahedra in NaMgF_{3} Necessary for theAnalysis of the [110]-Type V_{K} Center ESR Spectra 79
33. The ESR Spectrum for V_{K} Centers in RbCaF_{3} for H Parallel to the Unique Axis 90
34. The ESR Spectrum for V_{K} Centers in RbCaF_{3} for H Perpendicular to the Unique AXis. 91
35. Model for the [100]-Type V_{K} Center in NaMgF_{3}. 99

CHAPTER I

INTRODUCTION

The study of radiation damage in insulating materials has become an important part of solid state physics. The interest in this field was originally stimulated by the need to comprehend the problems introduced by radiation effects in fission reactors. In recent years, the feasibility of producing power from controlled-thermonuclear fusion has grown, and with this development will come a renewed need to understand the characteristic radiation problems involved (1).

Interest in radiation damage extends well outside the realm of reactor technology, however. The potential use of radiation induced defects for information storage has been considered (2). Somewhat more exotically, the radiation damage features in lunar dust grains have been analyzed to yield information concerning the past and present activity of the Sun (3).

In order to fully understand the effects produced by the interaction of radiation with matter so that potential uses of these effects may be efficiently explored, a thorough comprehension of the underlying physics is mandatory. Furthermore, investigations of radiation effects for their own sake are important since such work can lead to insights into the properties of imperfections in solids.

Investigations of radiation damage in ionic crystals, and in particular the alkali halides, have been carried out extensively (4,5).

This has come about primarily because such crystals are easily studied by the experimental techniques employed in optical spectroscopy and electron spin resonance (ESR). Such investigations have yielded a wealth of knowledge concerning the defects formed by radiation.

The irradiation of ionic crystals results in producing defects which may be grouped into three broad classes (6): (A) electronic defects, which are associated with changes in valence states; (B) ionic defects, which involve displacement of lattice ions; and (C) gross imperfections, such as dislocation loops and voids. ' In the present study, emphasis was placed on defects which fall into the first two classes, and a further description of these defects will now be given.

Changes in valence states may occur for impurities introduced into the crystal intentionally (doped) or inadvertently in the growth process. These are the simplest radiation end products, and many examples may be found in the literature (7-12). The change of valence of impurities arises from capture of electrons or holes and may vary considerably depending on the type of impurity and the particular host lattice.

The electronic defect which is of importance in the investigation being reported here is the self-trapped hole or V_{K} center. The electronic structure of the V_{K} center in the alkali halides was first analyzed by Castner and Känzig (13). From the analysis of the V_{K} center ESR spectra, the configuration was found to consist of two nearest-neighbor <ll0> halide ions that have given up an electron (trapped a hole) and have subsequently moved together to form a halide $\left[\mathrm{x}_{2}^{-}\right]$molecular ion. The electron will then be trapped at some other defect within the crystal, commonly at an impurity. Thus the impurity
(electron trap) concentration within a crystal can greatly alter the number of V_{K} centers formed. Optical absorption bands associated with the V_{K} center have also been identified (14-16).

However, the study of V_{K} centers has not been limited to the alkali halides. Self-trapped holes have also been investigated in a number of other compounds, including the ammonium halides (17), cubic alkaline earth halides $(18,19)$, and $\mathrm{KMgF}_{3}(20)$. Furthermore, the study of hole centers is now being extended to materials with lower symmetry crystal structures such as tetragonal MgF_{2} (21).

Ionic defects consist mainly of vacancies, vacancy aggregates, and interstitials. Extensive work has been carried out on negative-ion vacancies in ionic compounds. The anion vacancy that contains an electron is referred to as the F center. Spin resonance measurements on this center were first performed by Hutchison (22). The hyperfine interaction of the F center with surrounding nuclei can be resolved by means of ENDOR (electron nuclear double resonance), first developed by Feher (23). This technique yields detailed information concerning the spatial dependence of the charge density.

Prolonged irradiation, special heat treatment, or optical bleaching will produce vacancy aggregates. The basic F center aggregates have been designated M centers (two F centers) and R centers (three F centers). No direct observations have been made on positive-ion vacancy aggregates in halide compounds.

Displacing a lattice atom or ion from its normal lattice site will result in the production of both a vacancy and an interstitial. The combined defect is referred to as a "Frenkel defect". The interstitial species which has been studied extensively in the alkali halides is
referred to as the H center. The electronic structure of the H center was first analyzed in detail by Känzig and Woodruff (24). It was found that the fundamental interstitial produced in the alkali halides is a halide atom which has bonded to a lattice halide ion, thus sharing a single lattice site. The resulting center takes on the form of a molecular ion reminiscent of the V_{k} center. The structure of the H center in KMgF_{3} has been determined, and a model has been developed based on a molecular ion configuration similar to that found for the alkali halides (25). The structures of the fundamental defects produced in halide materials are illustrated in Figures 1 and 2 for a NaCltype lattice. A comprehensive review of the properties of electron and hole centers has been given by Klick (26) and Kabler (27) respectively. Having introduced the basic defects produced by the irradiation of halide crystals, it now remains to discuss the basic mechanisms by which these defects are formed.

At the outset of the formulation of the theory of radiation damage, before the identities of all the defects had been firmly established, there existed some controversy as to whether the primary defects formed in halide compounds were Frenkel defects or Schottky pairs consisting of cation and anion vacancies. The Schottky pair model originated from a suggestion by Seitz (28) that electronic deexcitation would occur at dislocations resulting in an "evaporation" of cation and anion vacancies from the dislocation. This model was subsequently rejected following the identification and characterization of the H center (24) and after simultaneous measurements of the expansion of a crystal and its increase in lattice constant yielded results which were inconsistent with a model based on the production of Schottky pairs (29). Thus Frenkel defects

Figure 1. The Structure of the (a) V_{K} Center and
(b) H Center in the Alkali Halides

$$
\begin{aligned}
& -+-+- \\
& +-+-+ \\
& -+ \text { © }+- \\
& +-+-+ \\
& -+-+- \\
& \text { (a) } \\
& -+-+ \\
& + \text { © }+- \\
& -+ \text { © }+ \\
& +-+- \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

Figure 2. The Structure of the (a) F, (b) M, and (c) R Centers in the Alkali Halides
are the primary radiation damage products.
In the alkali halides defect production has been found to proceed quite efficiently, with Frenkel defects being formed through the mere application of ultraviolet light (30). Thus defect production must proceed through a conversion of electronic excitation energy into a form suitable for producing lattice defects, rather than by means of elastic collisions. Such a "radiolysis" process must then proceed through three basic steps: (I) an electronic excitation resulting in the production of a charged electronic defect in the lattice, (II) the conversion of this energy into kinetic energy of a lattice ion, and (III) the motion and final stabilization of the ion.

The initial electronic excitation leading to the production of a charged defect in the lattice is provided by the absorption of energy from the radiation field. When the source of radiation is high energy electrons, there will be a scattering of the incident electrons with the electrons of the crystal. An outline of the processes by which this energy is ultimately dissipated in the crystal may be found in nuclear physics texts (31) and will not be discussed here.

One of the first attempts to explain Frenkel defect production through radiolysis in the alkali halides was made by Varley (32) who suggested that the initially charged defects consisted of doubly ionized halide ions. If the doubly charged states had sufficiently long lifetimes, then the ions could be electrostatically ejected from their lattice positions into interstitial positions. However, calculated production efficiencies were too low compared with the experimental production rate for Frenkel defects at liquid helium temperatures (33). Furthermore, it is doubtful that the double-ionization state has a long
enough lifetime to allow ions to move before an electron is recaptured (34).

The presently accepted model for defect production in the alkali halides was arrived at through the observation that there existed a relationship between electron-hole recombination and the production of ionic defects. The so-called fundamental luminescence which arises through recombination of self-trapped holes with electrons during irradiation with ultraviolet light or x-rays was observed in $K I$ to cease at a temperature ($\sim 100 \mathrm{~K}$) at which F center production increased by an order of magnitude (35). This anticorrelation between fundamental luminescence and F center production has also been observed for a number of other alkali halides (36). The definitive experiment showing that electron-hole recombination does in fact produce Frenkel pairs was performed by Keller and Patten (37). In this experiment electrons trapped at impurities (Tl) in KCl were released at low temperature (25 K) by bleaching into the impurity absorption band, and the subsequent recombination with $\left[\mathrm{Cl}_{2}^{-}\right]$centers resulted in the formation of H centers in direct proportion to the number of self-trapped hole centers destroyed.

Thus radiolysis proceeds through the initial formation of electronhole pairs (excitons). The formal theory for the excitonic production of defects in the alkali halides was originally put forth independently by Pooley (38) and Hersh (39). The theory assumes that the excitons take on the molecular ion configuration $\left(X_{2}{ }_{2}^{*}\right)$. Their formation may be understood in terms of an initial ionic excitation:

$$
\begin{equation*}
x^{-}+h \nu \rightarrow x^{-*} \tag{1}
\end{equation*}
$$

followed by the formation of the self-trapped exciton.

$$
\begin{equation*}
\mathrm{x}^{-*}+\mathrm{x}^{-} \rightarrow \mathrm{x}_{2}=* \tag{2}
\end{equation*}
$$

The $\mathrm{X}_{2}{ }_{2}^{*}$ molecule may then deexcite through several distinct channels. The most important deexcitation paths are:

$$
\begin{equation*}
x_{2}^{=*} \rightarrow 2 x^{-}+h \nu \tag{3}
\end{equation*}
$$

- restoring the lattice and yielding luminescence;

$$
\begin{equation*}
x_{2}{ }_{2}^{*} \rightarrow 2 x^{-}+h \nu_{p} \tag{4}
\end{equation*}
$$

- resulting in phonon emission,

$$
\begin{equation*}
x_{2}^{=*} \rightarrow x_{\text {int }}+x^{-}+F \text { center } \tag{5}
\end{equation*}
$$

- resulting in the production of Frenkel defects. Note that in the last deexcitation path it is the uncharged Frenkel pair that is produced (interstitial atom and F center) rather than the charged pair (interstitial ion and α center (halide vacancy)). This is supported by the experiments done by Ueta and co-workers (40) on the production of F centers in KCl through application of short (30 nsec) pulses of high energy electrons and then comparing the results for both virgin and preirradiated samples.

The interstitial atom moves from the vacancy (F center) via a replacement sequence along close-packed rows (<ll0> directions). Experiments have been performed (41) which show the importance of having focusing directions within the crystal so that the replacement sequence may proceed efficiently.

Radiation damage studies have been extended beyond the alkali halides to include such materials as the alkaline earth fluorides $(42,43), \mathrm{KMgF}_{3}(44)$, and $\mathrm{RbMgF}_{3}(45)$, where again the basic photochemical damage processes found for the alkali halides appear to be operative.

The presence of significant concentrations of impurities in halide compounds can affect the production rate of radiation-induced Frenkel defects in these materials (6). The production rate at lower temperatures may be enhanced through increased interstitial stabilization (46) and near room temperature may be suppressed as a result of "short-circuiting" of the excitonic production mechanism (47). Transition metal impurity ions are expected to suppress the damage rate since electronhole recombination energy may be transferred to these ions resulting in excitation of the 3d optical transitions. The influence of transition metal ions on the defect production rate in the alkali halides has not been extensively studied because of the complexities introduced by the necessity for charge compensation (cation vacancies), although a paramagnetic center associated with Mn^{2+} in NaCl has been investigated by Itoh and co-workers and attributed to a Mn^{2+}-interstitial ion complex (48) .

In KMgF_{3} divalent transition metal ions may be introduced without the need for charge compensation. This compound is therefore more suitable for investigating the effect of 3 d impurity ions on the excitonic radiation damage mechanism. As shown in Figure 3, KMgF_{3} has the ideal (cubic) perovskite crystal structure. Based on their ionic sizes, transition metal ions are expected to substitute exclusively for Mg^{2+}

Figure 3. Crystal Structure of KMgF_{3}
in this material.*

In order to investigate the suppression of radiation damage in halide compounds due to the presence of transition metal impurities, Sibley and'co-workers have conducted a series of radiation damage studies on KMgF_{3} doped with Mn^{2+}. The initial study (50) confirmed that the presence of Mn^{2+} will partially suppress F center production in KMgF_{3}. This work also resulted in the characterization of an optical absorption band which was tentatively attributed to Mn^{2+} ions perturbed by an adjacent F center. The defect was shown to have <l00> symmetry and could be selectively destroyed, but not reoriented, with optical bleaching. In a subsequent investigation (51), a detailed analysis of the luminescence associated with this center was performed, and it was determined that the oscillator strengths of the optical transitions for the perturbed Mn^{2+} ions were enhanced by approximately three orders of magnitude over those observed in KMnF_{3}. Recently, a second $\mathrm{Mn}^{2+}-\mathrm{F}$ center type complex has been reported in KMgF_{3} (52). This second center differs from the initially reported defect both in luminescence and optimum production conditions. The initially reported defect is produced primarily at 77 K or below and is currently believed to be a Mn^{2+} F center-interstitial complex. The recently observed center is produced primarily at room temperature and is thought to be a $\mathrm{Mn}^{2+}-\mathrm{F}$ center pair. One objective of the present study was to use ESR to investigate radiation induced defects associated with Mn^{2+} in KMgF_{3} in an effort to substantiate the defect models set forth by Sibley and co-workers, and

[^0]thereby contribute to the present understanding of the suppression of radiation damage in halide compounds through the inclusion of transition metal impurities. These investigations were successful in identifying the ionized form of the $\mathrm{Mn}^{2+}-\mathrm{F}$ center pair $\left(\mathrm{Mn}^{2+}-f l u o r i n e\right.$ vacancy center). In a later section of this report, a complete analysis of the ESR spectrum associated with this defect will be given, together with details of its production and thermal decay characteristics. A treatment of the thermoluminescence obtained following the same irradiation procedure that produced the Mn^{2+}-fluorine vacancy cenier will also be given.

A further objective of this study was to determine the structure of the intrinsic self-trapped hole centers in NaMgF_{3} as part of the extension of investigations of radiation damage in lower symmetry materials. NaMgF_{3} is a pseudo-perovskite structured material strictly isomorphic with the original perovskite CaTiO_{3} (53). The compound occurs naturally as the mineral neighborite and was first identified in the dolomitic oil shale of the Eocene River formation of South Ouray, Uintah County, Utah. Synthetic crystals were used in the present study.

X-ray powder diffraction patterns taken at different temperatures have shown (53) that NaMgF_{3} is cubic above $900^{\circ} \pm 25^{\circ} \mathrm{C}$ with $\mathrm{a}=3.955 \mathrm{~A}^{\circ}$, tetragonal from $760^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ with $\mathrm{a}=3.942 \AA^{\circ}$ and $\mathrm{c}=3.933 \AA^{\circ}$ (at $760^{\circ} \mathrm{C}$), and orthorhombic below $760^{\circ} \mathrm{C}$ with unit cell dimensions at room temperature of $a=5.363 \AA, b=7.676 \AA$, and $c=5.503 \AA$. The room temperature crystal structure of NaMgF_{3} is shown in Figure 4 (after Megaw (54). It can be seen that the structure is an orthorhombic tilt system. The underlying reason for this tilting, when compared to KMgF_{3}, may be understood upon examination of the ionic radii of the Na^{+}ions (.95A)

Figure 4. Crystal Structure of NaMgF_{3}
compared to that of $\mathrm{K}^{+}(1.33 \AA$). As a result of the smaller ionic radius, the Na^{+}ions fail to fill the cavities between the octahedra. This results in a tilting of the octahedra in order to minimize the volume occupied by the Na^{+}ion. The bonding in NaMgF_{3} is ionic and the MgF_{6} octahedra are therefore expected to remain regular at all temperatures (53). The layer of octahedra above and below the plane shown in figure 4 are mirror images of the layer depicted, thus yielding a rather complex crystal structure. The tilting of the octahedra may be envisioned as occurring in two steps relative to the ideal perovskite structure and are illustrated in Figure 5. There is first a rotation (ω) about a tetrad axis perpendicular to the plane of the Figure (b). An example of a structure exhibiting this kind of tilting is the low temperature (<198 K) tetragonal form of RbCaF_{3} (55). This is followed by a rotation (ϕ) about a diad axis for NaMgF_{3} (c). In Figure 4, the orthorhombic unit cell is represented by dashed lines and the pseudocubic subcell is represented by full lines. It can be seen that the pseudocubic cell is determined roughly by the eight Na^{+}ions surrounding each octahedron. The relationship between the dimensions of the unit cell and the pseudocubic cell may be represented in matrix form as:

$$
\left[\begin{array}{l}
a * \tag{6}\\
b * \\
c^{*}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Thus, at room temperature $a *=3.792 \AA, b^{\circ} *=3.838 \AA$, and $c^{*}=3.891 \AA$. The variation in the dimensions of the pseudocubic cell as a function of

Figure 5. The Tilting of Octahedra in NaMgF_{3} Compared to the Ideal Perovskite Structure
temperature is shown in Figure 6 (after Chao, et al. (53)). No determination of the crystal structure below room temperature has been made, but thermal conductivity data obtained below room temperature gave no evidence for any phase changes (56). The tilt angles of the octahedra may be related to the lattice parameters through the equations:

$$
\begin{align*}
& \omega=\cos ^{-1}\left(\frac{\sqrt{2 a}}{b}\right) \tag{7}\\
& \phi=\cos ^{-1}\left(\frac{a}{c}\right) \tag{8}
\end{align*}
$$

or in terms of the pseudocubic dimensions:

$$
\begin{align*}
& \omega=\cos ^{-1}\left(\frac{a^{*}}{b^{*}}\right) \tag{9}\\
& \phi=\cos ^{-1}\left(\frac{a^{*}}{c^{*}}\right) \tag{10}
\end{align*}
$$

The predicted tilt angles at room temperature assuming that the octahedra remain regular are $\omega=8.88^{\circ}$, (about the tetrad axis) and $\phi=12.95^{\circ}$ (about the diad axis).

As a starting point for the study of V_{K} centers in this material, one should make use of the knowledge that has already been obtained for V_{K} centers in KMgF_{3} which is also characterized by MgF_{6} octahedra, but possesses no tilting. In KMgF_{3}, the self-trapped holes form along <ll0> directions (20), and there is a bent bond which arises primarily from the repulsion of the effective positive charge of the hole by the Mg^{2+}. The structure of this center is shown in Figure 7. It was then reasonable to expect that a similar bent bond would also be present in the V_{K} centers found in NaMgF_{3}. A new type of V_{K} center which results

Figure 6. Variation in the Dimensions of the Pseudocubic Cell in NaMgF_{3} as a Function of Temperature

Figure 7. The Structure of the Self-Trapped Hole in KMgF_{3}
from the peculiar tilting of the octahedra in NaMgF_{3} and which possesses
~ [100]-type symmetry was also analyzed. An additional result obtained from the analysis of the V_{K} center ESR spectra involved a determination of the tilt angles of the octahedra at low temperature (77 K).

A complete analysis of the intrinsic self-trapped holes in NaMgF_{3} will be presented. The production and thermal decay characteristics will be correlated with complementary thermoluminescence measurements.

EXPERIMENTAL PROCEDURE

A. Crystals

Investigations of radiation damage in $\mathrm{KMgF}_{3}: \mathrm{Mn}$ were carried out primarily on single crystals obtained from Oak Ridge National Laboratory. They were grown by the Stockbarger technique and were doped with approximately 400 ppm manganese. Additional crystals were grown in the Oklahoma State University Crystal Growth Laboratory by means of a modified Bridgman-Stockbarger technique and contained approximately. 8000 ppm manganese. All samples were found to cleave along <l00> planes.

Crystals of NaMgF_{3} used in this study were also grown at Oklahoma State University by the Bridgman-Stockbarger technique. No impurity analysis was made, but ESR data taken at high gain for virgin crystals revealed the presence of Mn^{2+} as a trace impurity. Typical crystals possessed a characteristic twinning which conplicated the analysis of ESR data. Such twinning is common for compounds with tetragonal or orthorhombic crystal structures. For example, several types of twinning have been observed in isomorphous CaTiO_{3} (57). Only one type of twinning was discernable in NaMgF_{3} based on the inalysis of V_{K} center ESR data. This domain structure was believed to be similar to that found in orthorhombic $\operatorname{SmAlO}_{3}(58)$. For this type of twinning the pseudocubic c* axis would be coincident in every domain whereas the $a *$ and $b *$ axes
alternatively interchange from one domain to the next. This proposed domain structure is consistent with that evident in the ESR data and will be discussed further in the experimental results. When samples were annealed, it was found that quenching to room temperature too rapidly resulted in cleavage into several fragments. One such crystallite was found to be essentially single, i.e., no discernable twinning was present from an initial observation of the ESR data. This sample was thus used for the detailed analysis of the ESR spectra. Samples could be cleaved parallel to any of the three pseudocubic faces.

For ESR measurements, the crystal dimensions were generally limited by the diameter of the inner quartz tubing of the finger dewar (Section C). Various sample sizes were used, but volumes were typically $50-100 \mathrm{~mm}^{3}$. Samples of comparable size were used for thermoluminescence measurements.

B. Irradiation Procedure

Samples were irradiated primarily with 1.5 MeV electrons from a Van de Graaff accelerator at beam currents ranging from 5 to $15 \mu \mathrm{~A}$. Typical irradiation times ranged from 10 to 30 minutes. For irradiations at room temperature samples were wrapped in aluminum foil and mounted on the face of an aluminum block which acted as a heat sink. The combination was then placed approximately 2 inches from the end of the accelerator tube. For irradiations at 77 K , samples were placed in an eight-ounce styrofoam cup filled with liquid nitrogen. The cup was positioned approximately 1 foot from the end of the accelerator tube, and an aluminum shield $\sim 1 \mathrm{~mm}$ thick was placed in front of the cup in order to protect the accelerator tube window from any hazards which
might be introduced through the build-up of ozone in the liquid nitrogen. Such dangers were also reduced by limiting the irradiation time to 5 minutes per cup of liquid nitrogen. When smaller dose rates were desired, a ${ }^{60}$ co γ cell ($\sim 10^{5} \mathrm{R} / \mathrm{hr}$) was used. Bleaching with ultraviolet light was accomplished through the use of a 100 watt Hanovia low pressure Hg lamp.

C. ESR Measurements

Two methods were employed for mounting the samples in preparation for the ESR measurements. For all of the work done on $\mathrm{KMgF}_{3}: \mathrm{Mn}$, samples were mounted by a cleavage plane onto the end of a copper rod .125 inches long using silicon high vacuum grease. The rod-sample combination was then screwed into a $3 / 16^{\prime \prime} \times 7$ " stainless steel rod and lowered into a 5 mm I.D. finger dewar filled with liquid nitrogen (see Figure 8). Using this method, samples had to be mounted prior to irradiation at 77 K . Although irradiation of the grease at 77 K was found to produce radicals which gave rise to ESR lines near $g=2$, this did not hamper the investigations of $\mathrm{KMgF}_{3}: \mathrm{Mn}$ since the cubic Mn^{2+} signals always present in the samples were in this same region of the spectrum.

The work done on NaMgF_{3} did require an alternative method of mounting since ESR lines necessary in the analysis of the V_{K} center spectra were obscured by the spurious grease lines. This was accomplished by replacing the copper rod arrangement with stainless steel tubing equipped with an adjustable spring insert (see Figure 9). Samples could then be spring-loaded to a desired tension, thus by-passing the need for an adhesive agent. Using this technique, irradiations could be performed directly with unmounted crystals.

Figure 8. Liquid Nitrogen Finger Dewar Used in Conjunction
With the Varian V-4531 Rectangular ESR Cavity

Figure 9. Holder Used in ESR Measurements of V_{K} Centers in NaMgF ${ }_{3}$

Following this initial procedure, the finger dewar was placed in a Varian V-4531 rectangular cavity, and an ESR measurement was subsequently performed. All ESR measurements were made at 77 K . The ESR spectrometer was of the X -band homodyne variety and utilized 100 KHz field modulation. The static magnetic field was supplied by a Varian sixinch magnet. For pulse anneal studies, a Varian Variable Temperature Accessory was used in conjunction with the Varian V-4531 cavity. A more detailed description of both the spectrometer and variable temperature system may be found in reference 59.

The measurement of magnetic fields was accomplished through the use of an NMR (proton) probe. Several probes were constructed which were used in conjunction with a marginal oscillator (59). The source of protons for these probes was pure white glycerin, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$. Using different probes, measurements of magnetic field from ~ 1780 gauss to ~ 7210 gauss could be achieved. In order to convert from the measured NMR resonance frequency to magnetic field the following relationship was used (60).

$$
\begin{equation*}
\mathrm{H}(\text { gauss })=234.87 v(\mathrm{MHZ}) \tag{11}
\end{equation*}
$$

Corrections had to be made for the fact that the sample position and probe position were not coincident. This correction was assumed to vary linearly with the magnetic field. Additional corrections were made to account for possible shifts in the microwave frequency occurring during the course of the field measurements.

D. Thermoluminescence Measurements

All TSL measurements were performed in the dewar shown in Figure
10. This dewar was designed for measurements following electron irradiation near liquid nitrogen temperature. Samples were mounted by means of a brass clamp onto a cold finger positioned within a stainless steel hull fitted with brass bellows and two windows. One window was made of aluminum and was positioned in front of the sample during electron irradiation. The other window was made of sapphire and was positioned in front of the sample during TSL measurements or during bleaching. The windows could be mechanically interchanged at any temperature $\geq 77 \mathrm{~K}$ by means of the bellows mechanism. All irradiations and TSL measurements were performed using a roughing pump vacuum to insure against condensation on the sapphire window. Luminescence was detected by means of a RCA lP28 photomultiplier tube. Sample temperatures were measured by means of a copper-constantan thermocouple wedged between the sample and brass clamp. The TSL data was recorded by means of a Mosely 135 XY Recorder where the Y axis indicated the photomultiplier tube current (luminescence intensity) and the X axis gave the sample thermocouple voltage (temperature).

Figure 10. Dewar Used for Thermoluminescence
Measurements

EXPERIMENTAL RESULTS

In this chapter the results of ESR and TSL measurements will be presented. The findings for $\mathrm{KMgF}_{3}: \mathrm{Mn}$ and NaMgF_{3} will be treated in two separate sections with the first section centering on experiments related to the Mn^{2+}-fluorine vacancy center. The second section will be devoted primarily to the ESR results obtained for the intrinsic selftrapped holes in NaMgF_{3} and will also include a presentation of complementary TSL measurements. The detailed analysis of this data will be given in the following chapter.
A. The Mn^{2+}-Fluorine Vacancy Center

Prior to electron or γ irradiation, ESR measurements taken for single crystals of $\mathrm{KMgF}_{3}: \mathrm{Mn}$ (400 ppm) yielded an intense and highly resolved spectrum which was recognized as arising from Mn^{2+} at sites of octahedral symmetry. This spectrum has been analyzed in detail by Ogawa and Yokozawa (61) and is shown in Figure 11. The complexity of the spectrum arises for several reasons. The octahedral crystal field splits the six-fold degeneracy of the ${ }^{6} S_{5 / 2}$ ground state of the Mn^{2+} ion into a quartet and a doublet. The origin of this zero field splitting is not completely understood at present, but a comprehensive review of the theory is given in reference (62). The Zeeman splitting will then lift the remaining degeneracy of the energy levels correspond-

ing to the magnetic substates defined by $m_{S}=-5 / 2,-3 / 2,-1 / 2,1 / 2$, 3/2, and 5/2. There is a further hyperfine splitting of these energy levels arising from interaction of the unpaired electrons with the ${ }^{55} \mathrm{Mn}$ nucleus. The corresponding nuclear spin I is $5 / 2$, and therefore the associated magnetic substates are given by $m_{I}=-5 / 2,-3 / 2,-1 / 2$, $1 / 2,3 / 2$, and 5/2. Finally, there is a superhyperfine splitting originating from interactions between the unpaired electrons and the six equivalent surrounding ${ }^{19}$ F nuclei $(I=1 / 2)$. The ESR selection rules for the transitions between energy levels are $\Delta m_{S}= \pm 1$ and $\Delta m_{I}=0$, and there are a total of 210 lines in the spectrum (including superhyperfine structure). For the case of octahedral symmetry, the hyperfine splitting is approximately one order of magnitude greater than the crystal field splitting. Thus considerable overlapping of lines occurs in the spectrum which consequently takes on the appearance of a six-line hyperfine group.

When crystals were electron irradiated at room temperature up to 30 minutes at $10 \mu \mathrm{~A}$ no new spectra were observed to grow in, and no discernable change in the cubic Mn^{2+} spectrum was detected. However, if following the room temperature irradiation the sample was exposed to an unfiltered mercury lamp at 77 K , then a new spectrum was generated. A typical spectrum obtained for an orientation of the static magnetic field parallel to a [100] direction is shown in Figure 12. Both the maximum splitting of the lines and the best resolution of the superhyperfine structure occurs for this orientation of the magnetic field. This spectrum was generated after a room temperature electron irradiation of 30 minutes at $10 \mu \mathrm{~A}$ followed by a 77 K uv bleach for 2 hours. The spectrum was characterized by division into six-line hyperfine groups and

Figure 12. (a) Mn^{2+}-Fluorine Vacancy ESR Spectrum (Low Field)

was thus attributed to Mn^{2+}. The range of the spectrum was found to extend roughly from less than 1000 gauss to nearly 6000 gauss which was indicative of a large crystal field splitting. This also indicated that the Mn^{2+} was at a site departing significantly from octahedral symmetry. The analysis of this spectrum, to be discussed in the next chapter, resulted in a model in which the initial room temperature irradiation creates an F center adjacent to a Mn^{2+} ion, and the subsequent uv excitation at 77 K removes the F electron leaving a Mn^{2+}-fluorine vacancy center. A further consequence of the analysis was that the crystal field did not possess perfect [100] axial symmetry, but was determined to have a rhombic contribution. As a result, the spectrum was broken up into three distinct groups of lines. One group (I) arises for orientations of the magnetic field parallel to the defect axis defined by the Mn^{2+}-fluorine vacancy. The other two groups (II and III) arise from orientations of the magnetic field perpendicular to the defect axis. A stick diagram of the complete spectrum constructed after the computer analysis of the data is shown in Figure 13. Due to complications introduced by the overlapping of lines from different groups and the presence of the cubic Mn^{2+} spectrum, not all of the line positions in the [100] spectrum were measured. Furthermore, lines occurring at field positions of less than ~ 1780 gauss were outside the range of the proton probe. Thus values of magnetic field for 22 line positions were measured and are indicated in the stick diagram. The corrected experimental field values together with those calculated in the analysis are shown in Table I. The microwave frequency during the course of these measurements was 9.242362 GHz . No magnetic field measurements were taken for any orientations of the magnetic field other than <l00>.

Figure 13. Stick Diagram for the Mn^{2+}-Fluorine Vacancy ESR Spectrum

TABLE I

CORRECTED FIELD POSITIONS (IN GAUSS) OF RESONANT LINES OF THE Mn^{2+}-FLUORINE VACANCY CENTER ESR SPECTRUM

Group I

Line	Experimental	Calculated
4	4395.18	4392.72
5	4495.40	4493.06
6	4598.11	4597.85
7	4703.17	4703.91
13	5585.55	5583.93
14	5680.71	5678.34
15	5782.47	5780.01
16	5888.71	5887.38
17	1864.03	1861.37
18	1972.47	1971.66
19	2079.56	2079.94

Group II

Line	Experimental	Calculated
1	3855.09	3853.90
2	3951.40	3952.13
3	4048.39	4049.47
8	4935.09	4930.49
9	5024.57	5022.81
10	5120.81	5120.88
11	5223.90	5225.81
12	5334.91	5336.47
20	2418.31	2416.17
21	2510.05	2510.60
22	2603.20	2605.17

This was due to the fact that both broadening and increased overlapping of the lines made it difficult to make absolute assignments for the transitions.

The superhyperfine structure, which arises through an interaction of the unpaired electrons with the five nearest neighbor fluorine nuclei, is only partially resolved. However the resolution is sufficient to distinguish group I resonances from group II since the superhyperfine structure on each hyperfine line differs for different orientations of the Mn^{2+}-fluorine vacancy center relative to the applied magnetic field. The two lowest field sets of hyperfine lines are shown in Figure 14.

Data was also obtained for the more heavily doped $\mathrm{KMgF}_{3}: \mathrm{Mn}$ crystals (8000 ppm). However, no resolved superhyperfine structure could be observed in the ESR spectra generated using these crystals.

Band pass filters were used in order to determine the approximate wavelength of light necessary to produce the ESR spectrum. It was found that the spectrum could be easily produced using filters with transmissions centered at $2536 \AA$ and $3130 \AA$, but using a $4000 \AA$ filter with comparable bleaching time the intensity of the spectrum was reduced by more than a factor of three. Thus an upper limit on the wavelength of light necessary for efficient production of the spectrum would lie in the range $3500-4000 \AA$.

The results of a saturation study of the production of the ESR spectrum are shown in Figure 15 for an initial electron irradiation of 20 minutes at $10 \mu \mathrm{~A}$. The temperature of the crystal was maintained at 77 K throughout the course of this saturation study. The data indicates that the Mn^{2+}-fluorine vacancies initially grow in very rapidly, then taper off to nearly a linear growth until saturation is achieved.

Figure 14. The Two Lowest Field Sets of Hyperfine Lines for the Mn^{2+}-Fluorine Vacancy [100] ESR Spectrum Illustrating the Difference in the Superhyperfine Patterns for Groups I and II

Figure 15. Saturation Study of the Mn^{2+} Fluorine Vacancy Center

Abstract

Mn^{2+}-fluorine vacancy centers could also be generated by room temperature ${ }^{60}$ Co γ irradiation (plus 77 K uv excitation), but this required irradiation times of \sim one day in order to produce enough $\mathrm{Mn}^{2+}-\mathrm{F}$ center pairs to be observable.

Direct electron irradiation of virgin or annealed crystals at 77 K could also produce Mn^{2+}-fluorine vacancy centers. This procedure was not as effective in producing the centers compared to the previously described procedure. For example, electron irradiation for 45 minutes at 77 K produced a spectrum $\sim 1 / 4$ as intense as that found for an electron irradiation of 30 minutes at room temperature followed by 2 hours of uv bleaching at 77 K . ESR signals arising from intrinsic V_{K} centers were also observable in the spectrum obtained for direct electron irradiation at 77 K . However, when crystals were warmed through the first TSL glow peak (115 K) which corresponds to the thermal decay of the V_{K} centers, the intensity of the Mn^{2+}-fluorine vacancy spectrum remained unchanged.

The results of a pulse anneal study of the Mn^{2+}-fluorine vacancy spectrum are shown in Figure 16. This data was obtained by three minute pulse anneals at progressively higher temperatures. The monitoring temperature (i.e., the temperature of the nitrogen gas used in conjunction with the Varian Variable Temperature Accessory) was $\sim 96 \mathrm{~K}$. This study indicates that the thermal decay of the $\mathrm{Mn}^{2+}-f l u o r i n e ~ v a c a n c y ~$ center occurs at ~ 185 K .

After annealing to room temperature, the $\mathrm{Mn}^{2+}-$ fluorine vacancy centers can be regenerated by an additional uv bleach at 77 K . This regeneration effect is shown in Figure 17. In Figure $17(\mathrm{a})$, the sample was bleached for one hour at 77 K following the initial room temperature

Figure 16. Pulse Anneal Study of the : Mn^{2+} Fluorine Vacancy

Figure 17. Regeneration of the Mn^{2+}-Fluorine Vacancy Center ESR Spectrum
electron irradiation after which the ESR intensity was measured (column 1). Columns 2, 3, and 4 represent the ESR intensity obtained by consecutively warming the sample to room temperature and rebleaching for one hour at 77 K without additional room temperature irradiation. In Figure $17(\mathrm{~b})$, the sample was treated the same as in Figure $17(\mathrm{a})$ except the initial uv bleach was nine hours. The large relative difference between columns 1 and 2 indicates that the longer initial uv bleach destroyed a much larger percentage of $\mathrm{Mn}^{2+}-\mathrm{F}$ center pairs in (b) than in (a).

Thermoluminescence (TSL) was generated between 77 K and room temperature using the same irradiation procedure that produced the Mn^{2+} fluorine vacancy centers. The TSL is obtained only if crystals are electron irradiated prior to uv bleaching, i.e., uv bleaching of annealed or virgin crystals at 77 K will yield no TSL. Typical TSL data is shown in Figure 18 for an initial room temperature electron irradiation of 20 minutes. The solid curve was taken following an initial one hour uv bleach at 77 K . Each of the dashed curves were obtained without additional room temperature irradiation by warming the sample to room temperature and then rebleaching at 77 k in a manner similar to Figure 17(a). Thus the TSL exhibits a regeneration property similar to that found for the Mn^{2+}-fluorine vacancy centers. However, no TSL glow peaks ($140 \mathrm{~K}, 160 \mathrm{~K}, 205 \mathrm{~K}, 236 \mathrm{~K}$) coincide with the thermal decay of the Mn^{2+}-fluorine vacancy ESR spectrum. No detailed spectroscopic analysis was performed of the TSL emission, but visual observation of the emission indicated that the light was primarily 590 nm (63), characteristic of cubic Mn^{2+}.

When crystals of $\mathrm{KMgF}_{3}: \mathrm{Mn}$ (400 ppm) were electron irradiated at

Figure 18. Thermoluminescence of $\mathrm{KMgF}_{3}: \mathrm{Mn}$

77 K and then warmed to room temperature, an additional rather weak ESR spectrum remained which was of unknown origin. This data could not be generated solely by electron irradiation at room temperature, and only the low field portion of the spectrum was examined. This spectrum is shown in Figure 19 and possesses well defined hyperfine structure. The spectrum is centered at ~ 850 gauss and shows no significant angular dependence for rotations of the magnetic field as much as $\pm 20^{\circ}$ off <l00> directions. There appear to be l0-11 hyperfine lines in the spectrum with an associated splitting of ~ 50 gauss which is approximately half the hyperfine splitting for isolated Mn^{2+}. The spectrum could originate in Mn^{2+} pairs, since this would reduce the hyperfine splitting by approximately $1 / 2$ and increase the number of hyperfine lines from 6 to 11. However, since irradiation was necessary to produce the spectrum, then isolated Mn^{2+} pairs are unlikely. This data was not analyzed in detail in this study, but is included here for the sake of completeness.

B. Intrinsic V_{K} Centers in NaMgF_{3}

When typical crystals of NaMgF_{3} were electron irradiated at 77 K and an ESR measurement was subsequently performed, a complex spectrum was observed for an arbitrary orientation of the applied magnetic field. Through a consideration of results obtained for other halide compounds subjected to similar irradiation treatments, this spectrum was believed to arise from V_{K} centers. If crystals were oriented so that the applied magnetic field was approximately perpendicular to one of the pseudocubic faces, then the spectrum would exhibit a fairly high degree of symmetry. One such spectrum is shown in Figure 20 following electron irradiation for 20 minutes ($10 \mu \mathrm{~A}$) at 77 K . Upon warming the crystal to room tem-

~ 50 GAUSS

Figure 19. Unidentified ESR Spectrum Obtained After Electron Irradiation at 77 K Followed by Warming to Room Temperature

Figure 20. ESR Spectrum for NaMgF_{3} Obtained Following Electron Irradiation at 77 K . H || [010], Typical Twinned Crystal
perature and then performing another ESR measurement at 77 K , there remained a spectrum which exhibited [100]-type symmetry, i.e., the maximum splitting of the lines occurred for an orientation of the applied magnetic field perpendicular to one of the pseudocubic faces. This spectrum is shown in Figure 21. The analysis of this data, given in the next chapter, yielded a model for the center giving rise to this spectrum (Figure 2l) as originating in a self-trapped hole with its molecular axis aligned parallel to an [010] direction in the crystal. Note that lines 1 and 2 in the spectrum are not the same intensity as lines 3 and 4. In fact, these intensities were found to vary considerably from sample to sample as may be seen in Figure 22 , which depicts a spectrum obtained in the same way as for Figure 21 , but using a different arbitrarily chosen crystal. The lines arise from two mutually perpendicular orientations of the V_{K} center molecular axes, i.e., one orientation is approximately parallel to the magnetic field and the other orientation is approximately perpendicular to the magnetic field. This was verified experimentally by rotating the crystal 90° about an axis perpendicular to the magnetic field and observing that the line positions interchanged (Figure 23). The variation in intensities was attributed to twin related domains in the crystal. Only one type of domain structure was discernable in the ESR spectra.

As described in Chapter II, a crystal was found which was determined to be essentially a single domain, i.e., there was no evidence of twinning as reflected in the V_{K} center ESR spectra. For this single domain crystal, the spectrum generated through the same irradiation procedure as for Figure 21 is shown in Figure 24 . It can be seen that there is but one orientation of the center in this crystal as was ex-

Figure 22. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Temperature. H || [010], Typical Twinned Crystal--Different Domain Structure

Figure 24. ESR Spectrum for NaMgF_{3} Following an Anneal to Room Temperature. $\mathrm{H}\|\|$
Single Domain Crystal Single Domain Crystal
pected. The other mutually perpendicular orientation would have originated in the other domain had it been present. Because of its symmetry, the defect giving rise to this spectrum will henceforth be referred to as a [100]-type V_{K} center. The existence of the $[100]$-type V_{K} center allowed the magnetic field to be aligned unambiguously parallel to an [010] orientation of the cyrstal which is also parallel to the tetrad axis of rotation (see Chapter I), since the greatest splitting of the lines occurs when the magnetic field is parallel to the molecular axis of this defect. This experimental fact further aided the analysis of the spectrum generated immediately following electron irradiation at 77 K . The spectrum obtained following electron irradiation for 10 minutes at $16 \mu \mathrm{~A}$ using the single domain crystal is shown in Figure 25. Lines 1 and 14 arise from the $[100]$-type V_{K} center, thus verifying that this defect was produced by the initial irradiation at 77 K . The analysis (Chapter IV) of the other resonances in the spectrum (Figure 25) yielded the result that lines $2,4,6,8,9,11$ and 13 arise from V_{K} centers of the same type as those found in KMgF_{3} in that they are formed between fluorines on the same octahedron. These will be referred to as [110]-type V_{K} centers. Lines 3, 5, 7, 10 and 12 arise from fluorine molecular ions, but no precise model has been developed, for these centers in this study. ESR measurements taken for 77 K electron irradiation times ranging from 20 seconds to 20 minutes invariably yielded the same spectrum, i.e., the ESR lines associated with all the V_{K} centers were observed to grow in simultaneously. For example, in Figure 25 the ratio of the intensity of line 13 (part of the [110]-type V_{K} spectrum) to line 14 (part of the $[100]$-type V_{K} spectrum) was always ~ 4.8 if the sample temperature

Figure 25. ESR Spectrum for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K} . \mathrm{H} \|$ || D (010]] Single Crystal Domain Crystal
was maintained at 77 K . No detailed production study of the V_{K} centers was performed, but the intensity of the spectrum was found to saturate for electron irradiations of $10-20$ minutes at 77 K .

The spectrum shown in Figure 25 is for an orientation of the applied magnetic field parallel to an [010] direction since, as stated previously, the maximum splitting of the lines associated with the [100]-type V_{K} center occurs for this orientation. The acuity of the lines associated with the [110]-type V_{K} center in this spectrum was not arrived at easily, i.e., fine adjustments of the magnet orientation and waveguide tilt were necessary before a precise alignment was obtained. If after generating this spectrum (Figure 25) the crystal was rotated 90° about an axis perpendicular to the applied magnetic field and a subsequent ESR measurement performed, the spectrum shown in Figure 26 was obtained. This data represents an orientation of the magnetic field parallel to a [100] direction and, as may be observed, is inequivalent to the spectrum obtained for the [010] orientation. This result was expected since these two orientations are crystallographically inequivalent, i.e., one orientation ([010]) was parallel to the tetrad axis of rotation and the other orientation ([100]) was perpendicular to this axis.

In this spectrum (Figure 26), lines $15,16,18,19,20,21,22$, 23, 24, 25, 27, and 28 arise from the [110]-type V_{K} center, and the other lines (17 and 26) arise from unidentified fluorine molecular ions. For this orientation, the molecular axis of the $[100]$-type V_{K} center will be perpendicular to the magnetic field and will therefore give rise to lines in the center portion of the spectrum, i.e., underneath lines 21, 22, and 23.

Figure 26. ESR Spectrum for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K} . \mathrm{H}| |$ [100], Single Domain Crystal

The influence of the domain structure in typical crystals may now be understood upon reexamination of Figure 21 . If the spectrum shown in Figure 26 is superimposed onto that shown in Figure 25, the spectrum of Figure 21 will then be obtained upon adjusting the line intensities to account for the fact that the crystal was composed primarily of the domain associated with Figure 25.

The corrected experimental field values together with those calculated in the analysis are given in Table II for the resonances numbered in Figures 25 and 26. The microwave frequency during the course of these measurements was 9.1819680 MHz . No magnetic field measurements were performed for the resonances associated with the isolated [100]type V_{K} center spectrum obtained after the $[110]$-type V_{K} centers were eliminated by warming to room temperature. This was due to the fact that an exact alignment of this center relative to the applied magnetic field could not be made with absolute certainty, somewhat paradoxically, because of the great simplicity of the spectrum, i.e., the acuity of the lines associated with the [110]-type V_{K} center was the strong criterion for exact alignment in the spectra obtained immediately after electron irradiation at 77 K , and this criterion was lost after warming the sample beyond the thermal decay temperature of the [110]-type V_{K} center.

When a sample was electron irradiated at 77 K and then exposed to the unfiltered output of a mercury lamp for ~ 5 minutes, a, subsequent ESR measurement revealed that the V_{K} centers had been bleached, i.e., no V_{K} center resonances were observed. This behavior is typical for intrinsic V_{K} centers and is due to the release of electrons from traps annihilating the self-trapped holes. All types of V_{K} centers bleached

TABLE II

> CORRECTED FIELD POSITIONS (IN GAUSS) OF RESONANT LINES FOR THE ESR SPECTRA ARISING FROM THE INTRINSIC SELF-TRAPPED HOLES IN NaMgF 3

| H \|| [010] | | | $\mathrm{H}\|\mid[10$ | | 100] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Experimental | Calculated | Line | Experimental | Calculated |
| 1 | 4201.44 | --- | 15 | 4011.44 | 4016.98 |
| 2 | 3980.69 | 3952.38 | 16 | 3947.07 | 3949.23 |
| 3 | 3592.14 | --- | 17 | 3612.84 | --- |
| 4 | 3415.59 | 3431.85 | 18 | 3556.78 | 3562.98 |
| 5 | 3333.70 | --- | 19 | 3402.93 | 3422.89 |
| 6 | 3251.17 | --- | 20 | 3333.75 | --- |
| 7 | 3157.62 | --- | 21 | 3251.90 | --- |
| 8 | 3137.10 | --- | 22 | 3161.69 | --- |
| 9 | 3082.14 | --- | 23 | 3108.94 | 3089.21 |
| 10 | 2890.11 | --- | 24 | 2871.50 | 2873.97 |
| 11 | 2859.61 | 2866.48 | 25 | 2740.35 | 2750.64 |
| 12 | 2717.42 | --- | 26 | 2705.71 | ---- |
| 13 | 2473.99 | 2504.12 | 27 | 2494.56 | 2506.23 |
| 14 | 2344.96 | --- | 28 | 2457.31 | 2468.71 |

equally at 77 K . After warming a sample to room temperature following a 77 K electron irradiation so that all that remained were the [100]type V_{K} centers and then applying uv light after the sample had been recooled to 77 K , it was found that bleaching of the [100]-type V_{K} centers alone was not as effective as bleaching the entire spectrum obtained directly following the 77 K electron irradiation. This result was anticipated, since in the process of warming the sample to room temperature a large share of the trapped electrons which would have been bleached by the light were annihilated by the thermally activated [110]-type hole centers.

The results of a pulse anneal study of the V_{K} centers formed through electron irradiation at 77 K are shown in Figure 27. This data was obtained by pulse annealing for three minutes at progressively higher temperatures. The monitoring temperature was 89 K . The figure is divided into two parts. In Figure $27(a)$ the thermal decay of the [110]-type V_{K} center spectrum is depicted and shows that this center becomes thermally unstable at approximately 120 K . In Figure 27 (b) it can be observed that at this same temperature (120 K) the [100]-type V_{K} center spectrum, which was present initially at 77 K , increases in intensity and does not become thermally unstable until near room temperature (~ 295 K). Tolerances of at least $\pm 10 \mathrm{~K}$ must be placed on these transition temperatures due to the fact that in the transfer of the crystal from the liquid nitrogen bath to the microwave cavity, which was maintained at ~ 89 K by flowing nitrogen gas, the crystal temperature rose beyond the transition temperature as could be ascertained by comparing the intensity of the [llo]-type V_{K} center spectrum to that of the $[100]$-type V_{K} center, and this could have influenced the temperature

Figure 27. Pulse Anneal Study of the Intrinsic V_{K} Centers Produced in NaMgF_{3} by an Electron Irradiation at 77 K . (a) Thermal Decay of the [110]-Type V_{K} Center; (b) Thermal Decay of the K [100]-Type V_{K} Center
of maximum change in the intensity of the spectra. Furthermore, the thermal decay temperature of the $[100]$-type V_{K} center (295 K) was not explicitly obtained in the pulse anneal study, but was arrived at in consideration of the fact that a few of these centers could still be detected if crystals were allowed to remain at room temperature in darkness up to 10 minutes.

Thermoluminescence was also obtained between 77 K and 600 K following electron irradiation at 77 K . A typical TSL measurement is shown in Figures 28(a), (b), and (c) following a 77 K electron irradiation of 5 minutes at $10 \mu \mathrm{~A}$. TSL glow peaks were found to occur at temperatures of $133 \mathrm{~K}, 180 \mathrm{~K}, 212 \mathrm{~K}, 246 \mathrm{~K}, 286 \mathrm{~K}, 317 \mathrm{~K}, 365 \mathrm{~K}, 402 \mathrm{~K}$, and 573 K . The glow peak at 133 K , which was by far the strongest peak in the TSL data, is associated with the thermal decay of the $[110]$-type V_{K} centers, and the luminescence thus competes with the conversion of these holes into [100]-type V_{K} centers.

A reduction in the TSL intensity was found to occur if following the 77 K electron irradiation samples were exposed to the unfiltered output of a mercury lamp. In Figure 29 is shown the TSL obtained between 77 K and room temperature following a 77 K electron irradiation for 5 minutes at $10 \mu \mathrm{~A}$ followed by application of $u v$ light for $30 \mathrm{~min}-$ utes. As a result of the uv bleach, the TSL intensity was reduced by more than two orders of magnitude, but was still easily discernable. This result was indicative of the high relative sensitivity of the TSL technique, since only 5 minutes of $u v$ bleaching was required to completely annihilate the V_{K} center ESR spectra under comparable experimental conditions.
(a)

Figure 28. Thermoluminescence Obtained for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K}:(\mathrm{a}) 100 \mathrm{~K} \rightarrow 273 \mathrm{~K}$
(b)

Figure 28. Thermoluminescence Obtained for NaMgF_{3} Following Electron Irradia-
tion at 77 K : (b) $273 \mathrm{~K} \rightarrow 485 \mathrm{~K} \quad$ (b) $273 \mathrm{~K} \rightarrow 485 \mathrm{~K}$
(c)

Figure 28. Thermoluminescence Obtained for NaMgF_{3} Following Electron Irradiation at $77 \mathrm{~K}:(\mathrm{c}) 485 \mathrm{~K} \rightarrow 600 \mathrm{~K}$

Figure 29. Thermoluminescence Obtained for NaMgF_{3} Following Electron Irradiation at 77 K and Application of uv Light (100 K - 273 K)

CHAPTER IV

ANALYSIS AND DISCUSSION

A complete analysis of the experimental results will be given in this chapter. As in the previous chapter, this presentation will be divided into two separate parts with the first section being devoted to an analysis of the Mn^{2+}-fluorine vacancy ESR spectrum and a discussion of the complementary TSL measurements. The second part will be concerned primarily with an analysis of the ESR spectra associated with self-trapped holes in $\mathrm{NaMgF}_{3}{ }^{\circ}$
A. Analysis of the $\mathrm{Mn}^{2+}-$ Fluorine Vacancy Center

In the as-grown $\mathrm{KMgF}_{3}: \mathrm{Mn}$ crystals only the cubic Mn^{2+} ESR spectrum was present, and no additional spectra were observed to grow in as a result of room temperature electron irradiation. However, following the room temperature irradiation, a new spectrum appeared (Figure 12) when samples were exposed to an unfiltered mercury lamp at 77 K . This data was immediately recognized as arising from Mn^{2+} since the spectrum was characterized by a division into six-line hyperfine groups with an associated splitting of ~ 100 gauss typical for this ion. Since irradiation of a crystal was necessary to produce the spectrum, then it could not have arisen simply from a change in the electronic structure of a nearby associated defect, present in the crystal prior to irradiation, otherwise a perturbed Mn^{2+} ESR spectrum would have been observed
prior to irradiation. The spectrum required relatively large doses to produce and slowly increased in intensity with increasing duration of the initial room temperature electron irradiation. This indicated that it could not be due to a straight ionization process but must have its origin in an intrinsic defect growing in slowly with irradiation. This was further substantiated by the fact that the spectrum could be generated in the more heavily doped (8000 ppm) crystals so that the defect responsible for the spectrum was characteristic of $\mathrm{KMgF}_{3}: \mathrm{Mn}$ crystals in general and not a peculiarity of the more lightly doped (400 ppm) boule. Furthermore, the spectrum was shown to have [100] symmetry, since the maximum splitting of the lines was observed to occur for orientations of the applied magnetic field parallel to [100] directions. This fact indicated that the defect associated with the Mn^{2+} ion was situated in a $[100]$ direction relative to the Mn^{2+}.

The above observations were consistent with a model in which the initial room temperature irradiation creates an F center next to a Mn^{2+} ion, and the subsequent uv bleach at 77 K removes the F electron leaving a Mn^{2+}-fluorine vacancy center. The proposed model also explained the necessity of pre-irradiating at room temperature since exposure to uv light alone will not produce F centers in this material. Since the formation of F centers was necessary, then any irradiation procedure . which produced F centers should have led to the production of the observed ESR spectrum. This was supported by the fact that γ irradiation at room temperature followed by a 77 K uv bleach as well as direct electron irradiation at 77 K would produce the ESR spectrum. The direct production at 77 K was not nearly as efficient as the combined room temperature irradiation and 77 K bleach, but this was expected since in
this irradiation procedure both F center production and ionization were necessary to produce the fluorine vacancies.

The ESR pulse anneal study yielded a thermal decay temperature of approximately 185 K for the Mn^{2+}-fluorine vacancy spectrum (Figure 16). From a study of M center formation in KMgF_{3}, Riley (64) has shown that fluorine vacancies become mobile in the temperature range $180 \mathrm{~K}-200 \mathrm{~K}$. The results of the present study provide independent confirmation of this fact when one interprets the thermal decay of the Mn^{2+}-fluorine vacancy center as resulting from movement of the vacancy away from the Mn^{2+} ion. Thus the study of similar defects in other halide compounds may be of use in the determination of unknown vacancy mobility temperatures.

Following an anneal to room temperature, the $\mathrm{Mn}^{2+}-f l u o r i n e ~ v a c a n c y ~$ ESR spectrum could be regenerated if an additional uv bleach was performed at 77 K (Figure 17). This regeneration effect was in fact due primarily to an incomplete ionization of the originally produced $\mathrm{Mn}^{2+}-\mathrm{F}$ center pairs. However, since after attaining the saturation ESR intensity and then warming the sample to room temperature, approximately 10% of the maximum ESR intensity could be regenerated by a subsequent 1 hr . 77 K uv bleach, then a partial reformation of F centers in the process of warming the sample to room temperature could occur.

Thermoluminescence was generated following the same irradiation procedure that produced the Mn^{2+}-fluorine vacancy ESR spectrum and possessed a similar regeneration behaviour (Figure 18). However, none of the TSL glow peaks coincided with the thermal decay temperature (185 K) of the Mn^{2+}-fluorine vacancy ESR spectrum. This lack of correlation implies that no significant electron-hole recombination accom-
panies the disappearance of the ESR spectrum and thus lends further support to the proposed vacancy migration mode of thermal decay. The TSL glow peaks occurring below the thermal instability temperature of the Mn^{2+}-fluorine vacancy center must be associated with a hole release process, since thermally released electrons would have partially annihilated the Mn^{2+}-fluorine vacancy ESR spectrum and this was not observed. The ESR spectrum associated with the Mn^{2+}-fluorine vacancy center exhibits a strong crystal field splitting. The two more widely split groups of lines in Figure 13 were observed to have turning points for <l00> orientations of the applied magnetic field. The <l00> orientations also gave the best resolution of the superhyperfine structure (Figure 14). These results implied that the principal axes of the crystal field interaction must be the three mutually perpendicular <l00> crystalline directions. In the initial ESR analysis of the $\mathrm{Mn}^{2+}-\mathrm{fluo}-$ rine vacancy spectrum, it was assumed that the crystal field symmetry was perfectly axial. However, a good fit of the experimental line positions to a simple axial spin Hamiltonian could not be achieved. For a complete description of the ESR spectrum, the following spin Hamiltonian was necessary:

$$
\begin{align*}
H & =g \beta \vec{H} \cdot \vec{S}+\frac{a}{6}\left[S_{x}^{4}+S_{y}^{4}+S_{z}^{4}-\frac{1}{5} S(S+1)\left(3 S^{2}+3 S-1\right)\right] \\
& +D\left[S_{z}^{2}-\frac{1}{3} S(S+1)\right]+E\left[S_{x}^{2}-S_{y}^{2}\right]+\frac{F}{180}\left[35 S_{z}^{4}-30 S(S+1) S_{z}^{2}\right. \\
& \left.+25 S_{z}^{2}-6 S(S+1)+3 S^{2}(S+1)^{2}\right]+A \vec{I} \cdot \vec{S} \tag{12}
\end{align*}
$$

The first term is the Zeeman splitting, and the terms involving the parameters a, D, E, and F arise from the splitting of the ${ }^{6} S_{5 / 2}$ ground
state of Mn^{2+} by the crystalline electric field. The parameter a represents the cubic field contribution while D and F represent the axial field contributions of second and fourth degree respectively. The parameter E represents the non-zero rhombic contribution for symmetries lower than axial. The last term, $A \vec{I} \cdot \vec{S}$, gives the hyperfine interaction between the unpaired electrons and the manganese nucleus.

Rewriting the spin Hamiltonian in terms of the operators S_{z}, S_{+}, and S_ gives:

$$
\begin{align*}
H & =g \beta H_{z} S_{z}+\frac{(a+2 F / 3)}{120}\left[35 S_{z}^{4}-\frac{475}{2} S_{z}^{2}+\frac{2835}{16}\right] \\
& +D\left[S_{z}^{2}-\frac{35}{12}\right]+\frac{a}{48}\left[S_{+}^{4}+S_{-}^{4}\right]+\frac{E}{2}\left[S_{+}^{2}+S_{-}^{2}\right] \tag{13}\\
& +\frac{1}{2} g \beta\left[H_{x}-i H_{y}\right] S_{+}+\frac{3}{2} g \beta\left[H_{x}+i H_{y}\right]_{-} \\
& +\frac{A}{2}\left[I_{+} S_{-}+I_{-} S_{+}\right]+A I_{z} S_{z}
\end{align*}
$$

where H_{x}, H_{y}, and H_{z} are the components of the magnetic field along the principal axes of the center. Note that the term $\frac{a}{48}\left[s_{+}^{4}+s_{-}^{4}\right]$ connects states which are well separated in energy and results in only a small perturbation on the energy levels. The significant fourth order parameter is $(a+2 F / 3)$ which can be determined with much greater certainty than either a or F individually.

Twelve transformations were necessary in order to take the principal axes for the crystal field interaction into the fixed crystal axes. These transformations were

$$
\begin{align*}
& T=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right], \\
& {\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right],} \tag{14}\\
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .}
\end{align*}
$$

The crystal axes were then transformed into the magnetic field system for an arbitrary orientation of H through the use of

$$
R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta \sin \phi & \sin \theta \cos \phi \tag{15}\\
0 & \cos \phi & \sin \phi \\
-\sin \theta & -\cos \theta \sin \phi & \cos \theta \cos \phi
\end{array}\right]
$$

The spin Hamiltonian was expressed in the form of a 36×36 matrix by using the $\mid m_{S}, m_{I}>$ basis set where $S=5 / 2$ and $I=5 / 2$. The determination of the parameters was accomplished through repeated diagonalization of the 36×36 matrix (Appendix E). The computer program (Appendix A) was designed to systematically increment the Hamiltonian para-
meters until a "best" fit to experimentally measured line positions in the $[100]$ spectrum was obtained. The values for the calculated parameters are:

$$
\begin{align*}
\mathrm{g} & =2.0018 \pm 0.001 \\
\mathrm{D} & =-588.4 \pm 1 \text { gauss } \\
|\mathrm{E}| & =115.5 \pm 0.5 \text { gauss } \tag{16}\\
\mathrm{a}+2 \mathrm{~F} / 3 & =3.5 \pm 1 \text { gauss } \\
\mathrm{A} & =-100.3 \pm 1.5 \text { gauss }
\end{align*}
$$

The signs of the parameters were determined by assuming that A was negative. The tolerances were arrived at by assuming that the magnetic field measurements were accurate to within ± 1 gauss. A separate program (Appendix B) was used to predict line positions.

The most striking feature of the Mn^{2+}-fluorine vacancy ESR spectrum is the deviation from purely axial symmetry. Such a deviation is not unreasonable when one considers the degree of openness in the cubic perovskite structure (Figure 3). The effective charge of the fluorine vacancy exerts a repulsive electrostatic force on the Mn^{2+} ion. This in turn causes the axial fluorine on the opposite side of the Mn^{2+} ion from the vacancy to be displaced slightly in one of four equivalent <l00> directions at right angles to the defect axis. These four equivalent <100> directions are relatively open in the cubic perovskite structure and thus easily allow such displacements. This suggested structural model is illustrated in Figure 30. Further investigation of the partially resolved fluorine superhyperfine structure by means of the ENDOR technique may provide additional evidence to support the proposed model.

Figure 30. Defect Model for the Mn^{2+}-Fluorine Vacancy Center
B. Analysis of Intrinsic V_{K} Centers in NaMgF_{3} [110]-Type V_{K} Centers

As stated in Chapter I, the MgF_{6} octahedra in NaMgF_{3} are expected to remain regular with fluorine-fluorine separations comparable to those found for octahedra in KMgF_{3}. One therefore would expect V_{K} centers to be formed in NaMgF_{3} which are morphologically the same as those found in KMgF_{3} in that they are formed between fluorines on an octahedron. This has been confirmed by the analysis, which is given in this section of the experimental data obtained following electron irradiation at 77 K ; and the self-trapped holes so formed are labeled [1l0]-type V_{K} centers by analogy with the symmetry of comparable defects in the ideal structure $\left(\mathrm{KMgF}_{3}\right)$. Before discussing the details involved in the diagonalization of the matrix representation of the spin Hamiltonian and the sophisticated computer programming techniques used therein, a presentation of the evolution of the logic which resulted in the final model for the spectra will be given.

In the crystal structure of NaMgF_{3} (see Chapter I), the tilting of the individual octahedra may be understood in terms of a resolution of the resultant tilt into two distinct rotations. The initial rotation (ω) is about a tetrad axis parallel to an [010] direction. This is followed by a rotation (ϕ) about a diad axis of the octahedron. In a specific layer of octahedra in an (010) plane of the crystal, there are two inequivalent octahedra distinguishable by the sense (\pm) of each component rotation relative to the ideal (untilted) structure. The octahedra in a mirror layer above or below this specified layer will individually have the same sense of rotation about the tetrad axis
([010]), but respectively opposite rotations about a diad axis. Thus there are four distinguishable octahedra which are individually characterized by the sense of each rotation. These four octahedra are shown in segregated form in Figure 31. The labels A^{++}and B^{--}are assigned to the dissimilar octahedra found in the layer illustrated in Figure 4, and the labels C^{+-}and D^{-+}are assigned to the inequivalent octahedra in the mirror layer directly above (or below) this layer. The first superscript to the right of each letter indicates the sense (\pm) of the tetrad rotation, and the second superscript indicates the sense of the diad rotation. For example consider the A^{++}type of octahedron. The rotation about the tetrad axis perpendicular to the plane of the figure is counterclockwise (+). This is followed by the diad rotation (+) which lifts two fluorines out of the plane of the figure (denoted by +) and lowers two fluorines through the plane of the figure (denoted by -). In the orthorhombic crystal structure, the C^{+-}type of octahedron is found directly above the A^{++}type and has the same tetrad rotation, but the diad rotation is constrained, by the octahedra above and below the C^{+-}, to have an opposite sense (-).

Of the twelve possible [ll0]-type V_{K} centers that can potentially be formed on an octahedron, there are at most six that can be inequivalent for an arbitrary orientation of the applied magnetic field, i.e., there can be no more than six different angles between the applied magnetic field and the twelve V_{K} center molecular axes. This simplification enables one to consider without loss of generality only those V_{K} centers formed on the upper half of each octahedron. These six inequivalent V_{K} centers are labeled 1-6 in Figure 31.

Note that for orientations of the applied magnetic field parallel

Figure 31. The Four Types of Octahedra in the Crystal Structure of NaMgF_{3}
to the tetrad axis, which is perpendicular to the plane of Figure 31, that the magnitude of the tetrad rotation (ω) will have only second order effects on the angles between the magnetic field and the V_{K} center molecular axes. Thus the ESR spectrum obtained for this orientation of the magnetic field will contain no information pertinent to the evaluation of ω. Furthermore, all four types of octahedra (A, B, C, D)* will be equivalent for this orientation of the magnetic field so that in the analysis of the ESR data it is necessary to consider only one octahedron. This equivalency may be explicitly expressed in terms of the individual V_{K} centers on each octahedron as:

$$
\begin{gather*}
H \|[010] \\
1 A=1 B=1 C=1 D \\
2 A=3 B=3 C=2 D \\
3 A=2 B=2 C=3 D \\
4 A=5 B=5 C=4 D \tag{17}\\
5 A=4 B=4 C=5 D \\
6 A=6 B=6 C=6 D
\end{gather*}
$$

where the $=\operatorname{sign}$ is interpreted to mean the same angle between the V_{K} center molecular axis and the magnetic field. An additional simplification occurs since, for example, on the A-type octahedron $2 \mathrm{~A}=5 \mathrm{~A}$ and $3 A=4 A$ for orientations of the magnetic field parallel to [010]. For orientations of the magnetic field perpendicular to the tetrad axis and parallel to [100] (or [001] equivalently), the A-type octahedra

[^1]will be equivalent to the C-type octahedra, and the B-type octahedra will be equivalent to the D-type octahedra. In terms of the individual V_{K} centers, these equivalencies may be written:

н || [100]

$A=C$	$B=D$
$1 A=1 C$	$1 B=1 D$
$2 A=3 C$	$2 B=3 D$
$3 A=2 C$	$3 B=2 D$
$4 A=5 C$	$5 B=4 D$
$5 A=4 C$	$6 B=6 D$

Thus it is necessary to consider only the A and B-type octahedra in the analysis of the ESR data for orientations of the magnetic field parallel to the $[100]$ or [010] pseudocubic directions. The analysis of the ESR spectra was restricted to these two orientations, since any other orientations would have not only yielded extremely complicated spectra, but also would have supplied no significant additional information. Consider now the structures of the octahedra (A and B) of interest in the analysis relative to their specific placements within the environment of the pseudocubes defined by the Na^{+}ions (Figure 32). It is clear that not all of the V_{K} centers that can potentially be formed will have the same environment with respect to the Na^{+}ions or nearest fluorine ions. However, the defects may be grouped together or subdivided into classes in which the environments are essentially the same. There will be six such classes as given in Table III. This class scheme was devised in anticipation of the expected result that the

Figure 32. The Two Inequivalent Octahedra in NaMgF_{3} Necessary for the Analysis of the [110]-Type V_{K} Center ESR Spectra
values of the spin Hamiltonian parameters would be slightly different for each class. Having made this division of V_{K} centers, the method will now be given by which the correspondence was made between the individual lines in the ESR spectra and the classified defects.

TABLE III

CLASSES OF [110]-TYPE V_{K} CENTERS IN NaMgF 3

Class	I	$I I$	$I I I$	$I V$	V	$V I$
Elements	$1 A, 1 B$	$6 A, 6 B$	$2 A, 3 B$	$3 A, 2 B$	$4 A, 5 B$	$5 A, 4 B$

The spin Hamiltonian appropriate for the analysis of ESR spectra associated with self-trapped holes is given by (13)

$$
\begin{equation*}
\hat{H}=\beta \cdot \vec{H} \cdot \overleftrightarrow{g} \cdot \overrightarrow{\mathrm{~S}}+\overrightarrow{\mathrm{I}}_{1} \cdot \overleftrightarrow{A}_{1} \cdot \overrightarrow{\mathrm{~S}}+\overrightarrow{\mathrm{I}}_{2} \cdot \overleftrightarrow{A}_{2} \cdot \overrightarrow{\mathrm{~S}}-g_{N F} \beta_{N} \overrightarrow{\mathrm{H}} \cdot\left(\overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
\beta^{\prime}= & \text { Bohr magneton }=9.274096 \times 10^{-21} \frac{\mathrm{erg}}{\mathrm{Gauss}} \\
\overrightarrow{\mathrm{~S}}= & \text { the spin operator } \\
\overleftrightarrow{\mathrm{g}}= & \text { the } g \text { tensor } \\
\overrightarrow{\mathrm{H}}= & \text { the direction and magnitude of the applied magnetic field } \\
\overleftrightarrow{\mathrm{A}_{\mathrm{i}}}= & \text { the hyperfine tensor representing primarily dipole-dipole } \\
& \text { interaction between the unpaired spin and the two fluo- } \\
& \text { rine nuclei, as well as an isotropic Fermi contact inter- } \\
& \text { action }
\end{aligned}
$$

$$
\begin{aligned}
\overleftrightarrow{I}_{i}= & \text { the nuclear spin operator } \\
g_{N F} \beta_{N}= & \text { the gyromagnetic ratio pertinent to fluorine nuclei times } \\
& \text { Plank's constant } h \text { divided by } 2 \pi=2.654144 \times 10^{-20} \mathrm{erg} /
\end{aligned}
$$

and

$$
\left|\overleftrightarrow{A}_{1}\right|=\left|\overleftrightarrow{A}_{2}\right| \text { by symmetry }
$$

The values of the spin Hamiltonian parameters obtained for the intrinsic V_{K} center in $\mathrm{KMgF}_{3}(20)$ are given in Table IV.

TABLE IV
SPIN HAMILTONIAN PARAMETERS FOR THE INTRINSIC SELF-TRAPPED HOLE IN KMgF_{3}

$g_{x}=2.024$	$A_{x}=160 \mathrm{MHz}$
$g_{y}=2.018$	$A_{y}=160 \mathrm{MHz}$
$g_{z}=2.0024$	$A_{z}=2479 \mathrm{MHz}$
(Bent Bond) $=7^{\circ}$	

If one initially assumes that values of the spin Hamiltonian parameters for the [110]-type V_{K} centers in NaMgF_{3} are equal to those for the intrinsic self-trapped holes in KMgF_{3}, then the ESR spectra arising from the [110]-type defects may be roughly predicted if one uses the estimated room temperature tilt angles of $\omega=8.88^{\circ}$ and $\phi=12.95^{\circ}$. The results of this initial calculation are given in Table V for

TABLE V

PREDICTED LINE POSITIONS (IN GAUSS) FOR THE [110]-TYPE V_{K} CENTERS IN NaMgF ${ }_{3}$ USING $\mathrm{KMgF}_{3} \mathrm{~V}_{\mathrm{K}}$ CENTER SPIN HAMILTONIAN PARAMETERS

| V_{K} | H \|| [100] | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 |
| 1A | 2663.47 | 3167.86 | 3335.41 | 3690.36 |
| 2A | 2683.60 | 3163.59 | 3337.02 | 3659.62 |
| 3A | 2511.86 | 3202.34 | 3322.93 | 3937.68 |
| 4A | 2938.45 | 3236.83 | 3250.75 | 3351.72 |
| 5A | 3091.34 | 3144.20 | 3235.44 | 3287.08 |
| 6A | 2530.69 | 3197.79 | 3324.49 | 3904.69 |
| 1B | 2517. 34 | 3200.36 | 3323.93 | 3927.86 |
| 2B | 2532.39 | 3196.73 | 3325.17 | 3901.57 |
| 3B | 2657.76 | 3168.42 | . 3335.46 | 3699.01 |
| 4B | 2951.40 | 3234.70 | 3250.24 | 3339.75 |
| 5B | 3095.47 | 3140.48 | 3236.71 | 3285.53 |
| 6B | 2673.77 | 3164.99 | 3336.75 | 3674.34 |
| | $\mathrm{H}\|\mid[010]$ | | | |
| 1A,1B | 3105.91 | 3130.13 | 3235.28 | 3286.44 |
| 2A, 3B | 2521.63 | 3199.79 | 3323.89 | 3920.44 |
| 3A, 2B | 2672.04 | 3165.85 | 3336.23 | 3677.13 |
| 4A, 5B | 2672.02 | 3165.85 | 3336.23 | 3677.16 |
| 5A, 4B | 2521.64 | 3199.79 | 3323.89 | 3920.41 |
| 6A,6B | 2940.56 | 3237.19 | 3250.06 | 3350.61 |

orientations of the magnetic field parallel to [010] and [100]. If one focuses attention on the farthest split lines associated with each V_{K} center, i.e., neglecting columns 2 and 3, the outer lines in the ESR spectra (Table II, lines $2,3,4,11,12,13,15,16,17,18,19,23$, 24, $25,26,27$ and 28) may be roughly matched to the predicted line positions. Consider first lines 2, 3, 4, 11,12 , and 13 in the spectrum obtained (Figure 25) for orientations of the magnetic field parallel to the tetrad axis ([010]). The following correspondence can be made:

	$(\mathrm{H} \\|[010])$
V_{K}	
1A,1B	ESR Lines
2A, 3B	(indeterminate)
3A,2B	2,13
$4 \mathrm{~A}, 5 \mathrm{~B}$	3,12
5A,4B	3,12
6A,6B	2,13

Since the $1 A$ and $1 B V_{K}$ center molecular axes remain perpendicular to the magnetic field for this orientation, they will give rise to lines in the center portion of the spectrum and therefore no definite initial correspondence could be made. Next, consider lines 15, 16, 17, 18, 19, 23, $24,25,26,27$, and 28 in the spectrum obtained for orientations of the magnetic field perpendicular to the tetrad axis (Figure 26). The correspondence here is not as obvious as for the previous case, but a close comparison of Table V with the measured field values will yield the following initial assignments:

	$(\mathrm{H} \\|[100])$	
V_{K}		
1A		
1B		
2A	17,26	
2B	15,28	
3A	18,25	
3B	16,27	
4A	15,28	
4B	17,26	
5A	19,24	
5B	19,24	
6A	23	
6B	23	
		16,27
		18,25

Thus using these correspondences, the outer lines in the ESR spectra for orientations of the applied magnetic field parallel and perpendicular to the tetrad axis were fitted to exactly by varying the spin Hamiltonian parameters and the two tilt angles. This fitting was performed for each V_{K} center class separately since the values of the adjusted parameters were expected to vary from class to class. The results of these calculations are given in Table VI. In order to insure that sufficient information was provided in the fitting calculations to properly determine the parameters, the number of parameters was effectively reduced from eight to six by setting the x and y components of the \vec{g} and \vec{A} tensors equal to each other within the iteration scheme used in the calculations. This was a reasonable assumption since these components are typically quite close in value (65). In particular for class I, these parameters $\left(g_{x}, g_{y}, A_{x}, A_{y}\right)$ were held constant since only four lines were fitted to. It is immediately discernable from Table VI that there is generally poor agreement between results obtained for the different classes. Furthermore, the values obtained for some parameters border on being unphysical, i.e., they are vastly different from

TABLE VI

INITIAL CALCULATION OF SPIN HAMILTONIAN PARAMETERS FOR EACH OF THE SIX CLASSES OF [110]-TYPE

$$
\mathrm{V}_{\mathrm{K}} \text { CENTERS IN NaMgF } 3
$$

$\begin{array}{r} \mathrm{V}_{\mathrm{K}} \mathrm{C} \\ \mathrm{Cl} \end{array}$	ster	Lines Fitted to	$g_{x}=g_{y}$	g_{z}	$\begin{gathered} A_{x}=A \\ (M H z) \end{gathered}$	$\begin{gathered} \mathrm{A}_{z} \\ (\mathrm{MHz}) \end{gathered}$	ω	ϕ
I:	$\begin{aligned} & 1 A \\ & 1 B \end{aligned}$	$\begin{aligned} & 17,26 \\ & 15,28 \end{aligned}$	2.0250 (Not Varied)	2.0000	100 (Not Varied)	2557	$14.35{ }^{\circ}$	$16.85{ }^{\circ}$
II:	$\begin{aligned} & 6 A \\ & 6 B \end{aligned}$	$\begin{aligned} & 4,11,16,27 \\ & 4,11,18,25 \end{aligned}$	2.0250	2.0076	110	2499	$15.6{ }^{\circ}$	$18.45{ }^{\circ}$
III:	$\begin{aligned} & 2 \mathrm{~A} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 2,13,18,25 \\ & 2,13,17,26 \end{aligned}$	2.0241	2.0047	97	2534	$6.85{ }^{\circ}$	$22.45{ }^{\circ}$
IV:	$\begin{aligned} & 3 \mathrm{~A} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3,12,15,28 \\ & 3,12,16,27 \end{aligned}$	2.0250	2.0040	135	2532	10.55	20.05°
V :	$\begin{aligned} & 4 A \\ & 5 B \end{aligned}$	$\begin{aligned} & 3,12,19,24 \\ & 3,12,23 \end{aligned}$	2.0160	2.0200	70	2572	$9.15{ }^{\circ}$	$20.85{ }^{\circ}$
VI:	$\begin{aligned} & 5 A \\ & 4 B \end{aligned}$	$\begin{aligned} & 2,13,23 \\ & 2,13,19,24 \end{aligned}$	2.0140	2.0030	~ 0	2602	14.35°	$16.85{ }^{\circ}$

the values obtained for other V_{K} centers (65). For example, the value of g_{z} for class V is significantly larger than that found for any other fluorine molecular ions. Note also that the values of the tetrad rotations (ω) calculated for classes III, IV, and V are approximately the same or less than the value of this angle calculated from room temperature lattice parameters $\left(8.88^{\circ}\right)$. However, in consideration of the fact that a continuous increase in the tilting of the octahedra occurs simultaneously with the decreasing size of the pseudocubic cell (Figure 6), a larger value for the 77 K tetrad rotation was expected. Finally, it must be noted that the simplicity of the ESR spectra made it necessary to assume a number of fortuitous degeneracies. For example, the 4 A and 4B V_{K} centers are members of different classes (V and VI , respectively) and are therefore assumed to have slightly different spin Hamiltonian parameters, and yet both are assumed to give rise to lines 19 and 24 in the [100] ESR spectrum (Figure 26). Such degeneracies are expected to occur rather infrequently, and the number required to explain the spectrum was, therefore, unsatisfying. These results posed a dilemna which had to be resolved before confidence in the calculated parameters could be realized.

The first step in the resolution of the cited inconsistencies involved a reevaluation of the importance of the difference in the relative intensities of the lines in the ESR spectra. The constructed correspondence between the specific V_{K} centers and their line positions (Eq. 20) in the ESR spectrum indicated that the intensities of lines 2, 3, 12 , and 13 should be identical and individually twice as intense as lines 4 and 11. As can be observed (Figure 25) this is not the case. Furthermore, lines 3, 5, 7 and 12 are broadened with linewidths ranging
from ~ 16 gauss to ~ 20 gauss, whereas the other lines in the spectrum are sharper with linewidths of less than ~ 15 gauss. Lines 17 and 26 in the [100] ESR spectrum (Figure 26) are also broadened and occur at nearly the same positions of magnetic field as lines 3 and 12 (Table II). The line broadening was not an orientation effect since the spectra reproduced exactly for a number of different measurements. The most logical explanation consistent with these facts was to assume that the broadened lines were not part of the [110]-type V_{K} center ESR spectra, but belong to other fluorine molecular ions which are formed as a consequence of the lower symmetry crystal structure. No model has been developed for these centers in this study. The loss of the broadened lines $(3,5,7$, 12, 17, and 26) for use in interpreting the [110]-type V_{K} center ESR spectra imposed the requirement that certain V_{K} center orientations were missing, since the only alternative would involve assuming an increase in the "accidental" degeneracies. The logic behind the assignments of the missing orientations will now be given.

For classes IV and V (see Table VI), lines 3 and 12 in the [010] ESR spectrum were the only possible choices for the assignments of the transitions associated with the $3 A, 2 B, 4 A$, and $5 B V_{K}$ centers (compare Tables II and V). Thus if lines 3 and 12 are not part of the [110]type V_{K} center ESR spectrum, then classes IV and V must be missing, i.e., the $3 A, 2 B, 4 A$, and $5 B V_{K}$ centers are not present. If lines 17 and 26 in the [100] ESR spectrum are not associated with [110]-type V_{K} centers, then it would initially appear that classes I and III are missing. However, lines 15, 26, and 28 must be accounted for and therefore both classes cannot be absent. In fact, since lines 15 and 28 are associated with class I only, then this class must be present, and the
assignment of lines 17 and 26 to the $1 A V_{K}$ must be modified. This can be done if one observes that this assignment was not as absolute as for the previously considered cases, and assignments of lines 18 and 25 to the lA V_{K} are equally valid. Further justification for the choice of class I over class III may be obtained through a reexamination of Figure 25 and noting that lines 8 and 9 arise from V_{K} centers with their molecular axes \sim perpendicular to the applied field. The 1 A and $1 \mathrm{~B} \mathrm{~V}_{\mathrm{K}}$ centers are the only possible defects which will exhibit this behaviour since, as can be seen in Figure 31, only the tetrad rotation will affect these V_{K} centers relative to orientations of the magnetic field parallel to [010] or [100].

Thus it is concluded that only three of the possible six classes of [110]-type V_{K} centers are present in NaMgF_{3} crystals following electron irradiation at 77 K . Even though only half of the V_{K} center orientations are present, all the outer lines in the spectra may be accounted for and only one degeneracy is assumed, namely the assignment of lines 1.8 and 25 to both $1 A$ and $6 B V_{K}$ centers. The missing orientations may be explained by considering the fact that the Na^{+}ions are shifted in the distorted low temperature crystal structure from their high symmetry positions in the cubic structure $\left(\geq \sim 900^{\circ} \mathrm{C}\right)$. These small relative displacements may be sufficient to make some V_{K} center orientations preferentially unstable due to the repulsion of the effective positive charge of the self-trapped holes by the shifted Na^{+}ions. Thus when a [ll0]-type V_{K} center is formed at 77 K in one of the less stable orientations, it immediately makes a single jump to an orientation of lower energy on the octahedron. This reorientation must be limited to the octahedron on which the V_{K} center is initially formed since the relative
intensities of the ESR lines for the [110] and [100]-type V_{K} centers are always the same. Similar thermal reorientation behaviour has been observed to occur at $\sim 120 \mathrm{~K}$ for V_{K} centers in RbCaF_{3} (66). That compound has a tetragonal crystal structure at low temperatures, and the intrinsic self-trapped holes are divided into two classes. The ESR spectra associated with the intrinsic V_{K} centers in this latter material for orientations of the magnetic field parallel and perpendicular to the unique (tetrad) axis are shown in Figures 33 and 34.

The fact that only three classes of [110]-type V_{K} centers were present in crystals of NaMgF_{3} indicated that certain unknown distortions accompanying the formation of self-trapped holes in this material might exist. This may have been reflected in the result that realistic spin Hamiltonian parameters could not be calculated, however, the tilt angles calculated for the existing classes were not unreasonable (Table VI). It was further recognized that the fitting calculations could not independently distinguish between small changes of A_{z}, ω, and ϕ.

Thus, since the spin Hamiltonian parameters were not expected to depart significantly from those obtained for V_{K} centers in KMgF_{3}, then these values (Table IV) were used in a final set of fitting calculations with only the tilt angles being allowed to vary. The results of these calculations are given in Table VII. The tilt angles for classes II and VI which gave the best prediction of the experimental line positions based on the preceding assumptions were determined first, and an average value for the diad rotation of 18.5° was obtained. Since the class I V_{K} centers were expected to be insensitive to the value of ϕ, then the average value (18.5°) was assumed to be correct for this class and only the tetrad rotation was allowed to vary. The tilt angles calculated in

Figure 33. The ESR Spectrum for V_{K} Centers in $R_{\text {AxCaF }}$ for H Parallel to the Unique

Figure 34. The ESR Spectrum for V_{K} Centers in RbCaF $_{3}$ for H Perpendicular to the
Unique Axis

TABLE VII
CALCULATION OF THE TILT ANGLES FOR THE OCTAHEDRA IN NaMgF ${ }_{3}$
BASED ON AN ANALYSIS OF THE V_{K} CENTER ESR SPECTRA

$\begin{gathered} \mathrm{V}_{\mathrm{K}} \text { Center } \\ \text { Class } \end{gathered}$	Lines Fit to	(Effective)	$\begin{gathered} \phi \\ \text { (Effective) } \end{gathered}$
I: $\begin{aligned} & 1 A \\ & 1 B\end{aligned}$	$\begin{aligned} & 18,25 \\ & 15,28 \end{aligned}$	$17.1{ }^{\circ}$	$18.5{ }^{\circ}$
II: $\begin{aligned} & 6 A \\ & 6 B\end{aligned}$	$\begin{aligned} & 4,11,16,27 \\ & 4,11,18,25 \end{aligned}$	$15.5{ }^{\circ}$	18.55°
$\mathrm{VI}=\begin{aligned} & 5 A \\ & 4 B\end{aligned}$	$\begin{aligned} & 2,13,23 \\ & 2,13,19,24 \end{aligned}$	$15.3{ }^{\circ}$	$18.45{ }^{\circ}$
	Crystalline Tilt Angles:	$=16.0^{\circ} \pm 3^{\circ}$	$=18.5^{\circ} \pm 3^{0}$

this way were "effective" values since they also contained the inherent influence of distortions of the V_{K} center molecular axes away from the true lines of fluorine ions (i.e. [110]-type directions) within the octahedra. Thus the average values of these calculated angles were assumed to be representative of the true crystalline tilt angles, and liberal tolerances $\left(\pm 3^{\circ}\right.$) were placed on these values to account for the effect of the local distortion created by the V_{K} center itself. Using the tilt angles for each V_{K} center class separately, the line positions were predicted and are given in Table II (Chapter III). It can be seen that the agreement with the experimental field values is far from perfect but for a given resonance is generally within a linewidth (~15 gauss).

At the heart of the calculations used in the analysis of the [110]type V_{K} center ESR spectra is the spin Hamiltonian (Eq. 19) and the diagonalization of its matrix representation. There were five coordinate systems necessary for a complete treatment. These are defined as:

$$
\begin{aligned}
& x_{g}, y_{g}, z_{g}: g \text { tensor principal axis system } \\
& x_{1}, y_{1}, z_{1}: \text { nucleus } 1 \text { hyperfine principal axis system } \\
& x_{2}, y_{2}, z_{2}: \text { nucleus } 2 \text { hyperfine principal axis system } \\
& x_{u}, y_{u}, z_{u}: \text { "untilted" crystal axes } \\
& x, y, z: \text { magnetic field system }
\end{aligned}
$$

Rewriting the Hamiltonian in the various coordinate systems:

$$
\begin{align*}
H & =\beta^{\prime}\left(H_{x_{g}} g_{x} S_{x_{g}}+H_{y_{g}} g_{y} S_{g}+H_{z_{g}} g_{z} S_{z_{g}}\right) \\
& +I_{x_{1}}^{1} A_{x} S_{x_{1}}+I_{y_{1}}^{1} A_{y} S_{y_{1}}+I_{z_{1}}^{1} A_{z} S_{z_{1}} \\
& +I_{x_{2}}^{2} A_{x} S x_{2}+I_{y_{2}}^{2}{ }^{A} S_{y_{2}}+I_{z_{2}}^{2} A_{z} S_{z_{2}} \tag{22}\\
& -g_{N F} \beta_{N} H\left(I_{z}^{1}+I_{z}^{2}\right)
\end{align*}
$$

where the superscripts denote nuclei 1 and 2. It was then necessary to reexpress the Hamiltonian in the magnetic field system. This was accomplished through the use of the five different transformation matrices defined by:

$$
\mathrm{BB}=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \tag{23}\\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]
$$

which transforms the nucleus 1 hyperfine system into the g tensor system ($\beta \equiv$ bent bond),

$$
\mathrm{BBB}=\left[\begin{array}{ccc}
\cos \beta & 0 & -\sin \beta \tag{24}\\
0 & 1 & 0 \\
\sin \beta & 0 & \cos \beta
\end{array}\right]
$$

which transforms the nucleus 2 hyperfine system into the g tensor system,

$$
\begin{align*}
& \mathrm{G}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 / 2 & \sqrt{2} / 2 & -1 / 2 \\
-\sqrt{2} / 2 & 0 & -\sqrt{2} / 2 \\
-1 / 2 & \sqrt{2} / 2 & 1 / 2
\end{array}\right], \quad\left[\begin{array}{ccc}
-1 / 2 & \sqrt{2} / 2 & 1 / 2 \\
\sqrt{2} / 2 & 0 & \sqrt{2} / 2 \\
1 / 2 & \sqrt{2} / 2 & -1 / 2
\end{array}\right], \\
& {\left[\begin{array}{ccr}
-1 / 2 & \sqrt{2} / 2 & -1 / 2 \\
-\sqrt{2} / 2 & 0 & \sqrt{2} / 2 \\
1 / 2 & \sqrt{2} / 2 & 1 / 2
\end{array}\right],\left[\begin{array}{ccc}
1 / 2 & \sqrt{2} / 2 & 1 / 2 \\
\sqrt{2} / 2 & 0 & -\sqrt{2} / 2 \\
-1 / 2 & \sqrt{2} / 2 & -1 / 2
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]} \tag{25}
\end{align*}
$$

which transforms the g tensor system for V_{K} centers 1 through 6 (see Figure 3l) into the g tensor system of V_{K} occupying position $1\left(V_{K} 1\right)$,

$$
T=\left[\begin{array}{ccc}
\cos \phi \cos \omega & \sin \phi & \cos \phi \sin \omega \tag{26}\\
-\sin \phi \cos \omega & \cos \phi & -\sin \phi \sin \omega \\
-\sin \omega & 0 & \cos \omega
\end{array}\right]
$$

which transforms the g tensor system of V_{K} l into the "untilted" crystal axes $(\omega=$ tetrad rotation, $\phi=$ diad rotation), and

$$
R=\left[\begin{array}{ccc}
\cos \phi & \sin \theta \sin \alpha & -\sin \theta \cos \alpha \tag{27}\\
0 & \cos \alpha & \sin \alpha \\
\sin \theta & -\cos \theta \sin \alpha & \cos \theta \cos \alpha
\end{array}\right]
$$

which transforms the "untilted" axis system into the magnetic field system for an arbitrary orientation of H. The complete transformation was thus of the form:
$(G)(T)(R)=G T R$
$(\mathrm{BB})(\mathrm{G})(\mathrm{T})(\mathrm{R})=\mathrm{BBGTR}$

$$
(\mathrm{BBB})(\mathrm{G})(T)(\mathrm{R})=\text { BBBGTR }
$$

For example,

$$
I_{x_{1}}^{1}=\operatorname{BBGTR}(1,1) I_{x}^{1}+\operatorname{BBGTR}(1,2) I_{y}^{1}+\operatorname{BBGTR}(1,3) I_{z}^{1}
$$

After the Hamiltonian had been reexpressed in the magnetic field system, it was then necessary to introduce raising and lowering operators given by :

$$
\begin{array}{ll}
S_{x}=\left(S_{+}+S_{-}\right) / 2 & I_{x}=\left(I_{+}+I_{-}\right) / 2 \tag{29}\\
S_{y}=\left(S_{+}-S_{-}\right) / 2 i & I_{y}=1 / 2 i\left(I_{+}-I_{-}\right)
\end{array}
$$

The matrix representation of the spin Hamiltonian was then constructed using the eight basis vectors defined by:

$$
\left|\mathrm{m}_{S} \mathrm{~m}_{I_{1}} \mathrm{~m}_{2}\right\rangle
$$

where

$$
\begin{aligned}
& m_{S}= \pm \frac{1}{2} \\
& \left.\begin{array}{l}
m_{I_{1}}=\text { spin magnetic quantum no's. }^{m_{1}} \\
m_{I_{2}}= \pm \frac{1}{2}
\end{array}\right\} \begin{array}{l}
\text { nuclear magnetic quantum no's. } \\
\text { for nuclei } 1 \text { and } 2
\end{array}
\end{aligned}
$$

which yields an 8×8 matrix of the form:

The eigenvalues of this hermitian matrix were calculated using the diagonalizing subroutines (Appendix E) since the matrix is hermitian only the lower half was needed in the calculations.

The eight energy eigenvalues obtained from this diagonalization could then be used to determine the magnetic field positions associated with the four transitions for each V_{K} center in the ESR spectra. One program (Appendix D) was used to predict the line positions assuming constant values of the eight parameters $\left(g_{x}, g_{y}, g_{z}, A_{x}, A_{y}, A_{z}, \omega\right.$, and ϕ). In another "fitting" program (Appendix C'), each parameter was adjusted independently until a "best" fit to measured field values, comprising part of the program input, was obtained.

```
[100]-Type \mp@subsup{V}{K}{}
```

As described in Chapter III, when crystals of NaMgF_{3} were electron irradiated at 77 K and then warmed to room temperature, a subsequent ESR measurement revealed that a spectrum remained which possessed [100]-type symmetry, i.e., the maximum splitting of the lines occurred for orientations of the static magnetic field perpendicular to a pseudo-
cubic face. For the single domain crystal, the presence of only three resonances in the spectrum (Figure 24) with an intensity ratio of approximately 1:2:l was indicative of an interaction with two spin $\frac{1}{2}$ nuclei. Furthermore, the roughly measured hyperfine splitting of ~ 2600 MHz was typical for fluorine molecular ions. These facts suggested that the defect giving rise to this spectrum was a V_{K} center with its molecular axis parallel to a pseudocubic direction. The simple three-line pattern indicated that there was only one orientation of this V_{K} center within the crystal. This self-trapped hole has been labeled a [100]type V_{K} center because of its observed symmetry.

A careful study of the assumed 77 K crystal structure for NaMgF_{3} resulted in the conclusion that only one possible model could be constructed for this defect consistent with the crystal symmetry and the restriction that a unique orientation of this center existed in the crystal. This structural model is depicted in Figure 35 which shows two octahedra for <010> pseudocubic directions. This type of V_{K} center is capable of forming as a result of the diad tilts (ϕ) which bring the fluorine ions, specified in the figure, into close enough proximity for the V_{K} centers to be formed. Note that since the two octahedra have the same tetrad rotation (ω), then the fluorines that could potentially form these V_{K} centers will still be aligned parallel to an [010] pseudocubic direction. No other relatively simple defect model could be envisioned which would yield only one possible orientation for the V_{K} center molecular axes in the crystal.

The distance between the fluorines prior to formation of the [100]type V_{K} center may be calculated from the value obtained for the diad rotation (18.5°) in the [110]-type V_{K} center analysis. Upon examining

Figure 35. $\begin{gathered}\text { Model for } \\ \mathrm{NaMgF}_{3}\end{gathered}$
the geometry of the tilted octahedra in the plane perpendicular to the axis of the diad rotation, the following equation may be arrived at which relates the diad rotation (ϕ) to the intra-octahedral fluorinefluorine separation (ℓ) and the distance (s) between the two interoctahedral fluorine ions potentially giving rise to the [100]-type V_{K} center:

$$
\begin{equation*}
\sin \left(45^{\circ}-\phi\right)=\frac{s}{2 \ell} \tag{30}
\end{equation*}
$$

and for $\phi=18.5^{\circ}$ this gives $s=.892 \ell$. Thus the fluorine-fluorine separation for $[100]$-type V_{K} centers is comparable to and in fact slightly less than that for [110]-type V_{K} centers.

This simple calculation would initially appear to be inconsistent with the experimental result that the $[100]$-type V_{K} center has a greater thermal stability than the [110]-type V_{K} center, since larger ionic separations are expected to provide an increase in the amount of lattice distortion available and therefore allow a deeper self-trapping of the hole. However, since the analysis of the [ll0]-type V_{K} center ESR spectra indicated that some distortions arising from the shifted Na^{+} ions and the presence of the self-trapped hole itself were present, then it is reasonable to assume that similar effects may contribute to increasing the thermal stability of the [100]-type V_{K} centers.

The values of the parameters A_{z} and g_{z} associated with this defect were calculated directly from the experimental line positions (Table II) and were determined to be:

$$
\begin{equation*}
A_{z}=2602 \mathrm{MHz} \quad g_{z}=2.0034 \tag{31}
\end{equation*}
$$

No determination of the other components of the hyperfine and \overleftrightarrow{g} tensors was attempted, since this would have required a measurement of the magnetic field positions associated with the isolated spectrum for an exact alignment of the applied magnetic field parallel to [100]. Such a measurement was not possible because, as argued in Chapter III, exact alignments of the magnetic field for the isolated spectra could not be achieved. The values of A_{z} and g_{z} were determined solely from the measurement of lines 1 and 14 in the spectrum obtained following direct electron irradiation at 77 K (Figure 25).

It is interesting to speculate that the $[100]$-type V_{K} center may be preferred over the [110]-type V_{K} center in regard to the production of defects by way of the Pooley-Hersh (excitonic) mechanism (Chapter I). This conjecture arises from the fact that the lines of fluorine ions are uniform in the direction of alignment of the [100]-type V_{K} center molecular axes but are staggered in the direction of alignment of the [110]-type V_{K} center molecular axes. Thus, after formation of the selftrapped excitons, the subsequent dissociation and ionic replacement sequence may proceed more efficiently for those $X_{2}^{=*}$ molecular ions formed at [100]-type V_{K} center sites. Verification of this speculation could possibly be realized by way of an experiment similar to that performed by Keller and Patten (Chapter I) once the interstitial molecular ions in NaMgF_{3} are characterized.

Finally, it should be pointed out that the structure of the [100]type V_{K} center has to our knowledge no precedent among the self-trapped holes studied in various halide materials in the sense that it is formed as a consequence of the particular tilting of the octahedra in NaMgF_{3}. This suggests that similar centers may also be found to occur in other
compounds with tilted octahedra such as the low temperature $\left(\leq 25^{\circ} \mathrm{C}\right)$ form of KMgCl_{3} (67).

Thermoluminescence

Following electron irradiation of NaMgF_{3} at 7.7 K , thermoluminescence was found to occur continuously from 77 K to 600 K and was characterized by a number of well defined glow peaks (Figure 28). The strongest glow peak occurred at $\sim 133 \mathrm{~K}$ and was believed to be associated with the thermal decay $(120 \pm 10 \mathrm{~K})$ of the $[110]$-type V_{K} centers. This interpretation is supported by the results obtained for KMgF_{3} in which a relatively sharp and intense glow peak was found to occur at approximately the same temperature as that corresponding to the thermal decay of the intrinsic V_{K} centers in that compound. A specific model for the origin of the luminescence involves assuming that electron-hole recombination occurs at an impurity ion which in the process changes valence state. The recombination energy is then transferred to the impurity ion which subsequently deexcites through the emission of a photon, thus yielding the luminescence. The luminescence will therefore be characteristic of the impurity ion in the newly formed valence state. This model has been found to agree well with results obtained in a comprehensive study of TSL in rare earth doped CaF_{2} obtained following irradiation with x-rays at low temperatures (68).

ESR measurements taken after samples had been warmed through the first TSL glow peak and then subsequently recooled to 77 K revealed the presence of weak spectra associated with fluorine molecular ions other than [100]-type V_{K} centers. These centers were assumed to be perturbed defects and were not analyzed in this study. However, the thermal decay
of these centers may have been responsible for the weaker glow peaks ($212 \mathrm{~K}, 246 \mathrm{~K}$, and 286 K) in the TSL data since only [100]-type V_{K} centers were observed with ESR to be present after samples had been warmed completely to room temperature. The thermal decay of the [100]-type V_{K} center cannot be unambiguously correlated with a TSL glow peak due to the presence of several peaks in the temperature range of thermal instability for this center.

The TSL generated above room temperature may originate in inter-stitial-F center recombination near an impurity. This explanation differs from the electron-hole recombination model proposed for the low temperature TSL in that it does not specifically require any changes in impurity valence states. Such a model has been suggested previously (69) for the high temperature TSL observed in KMgF_{3} following electron or γ irradiation at room temperature.

No detailed spectroscopic analysis of the TSL emission was performed, but visual observation of the emission revealed a predominantly blue luminescence for the TSL emission in all temperature ranges. This emission is most likely associated with a transition metal ion such as v^{2+}.

CHAPTER V

SUMMARY

This study has resulted in the ESR identification and characterization of several defects produced by irradiation in crystals of $\mathrm{KMgF}_{3}: \mathrm{Mn}$ and NaMgF_{3}. The production and thermal decay of these defects have been correlated with complementary thermoluminescence measurements.

In $\mathrm{KMgF}_{3}: \mathrm{Mn}$, the ESR identification of the ionized form of the $\mathrm{Mn}^{2+}-\mathrm{F}$ center pair (Mn^{2+}-fluorine vacancy center) has been made, and a defect model has been proposed based on the analysis. This study has provided independent verification that the increase in oscillator strengths of the optical transitions for the defect associated Mn^{2+} ions in KMgF_{3} is a result of exchange interaction rather than a change in site symmetry. A list of further radiation damage studies related to those performed for KMgF_{3} : Mn which would be useful might include:
(1) An ESR investigation of the $\mathrm{Mn}^{2+}-\mathrm{F}$ center pairs directly. Such a study may provide more information concerning the exchange interactions between the two defects.
(2) An ENDOR study of the Mn^{2+}-fluorine vacancy center may provide a more detailed and accurate model for this defect.
(3) A more complete study of the TSL generated at low temperatures (<295 K) following room temperature electron irradiation and 77 K UV bleaching is in order. In particular, the correlation between ESR results obtained for the pure samples following this same irradiation
procedure should be performed since a brief ESR investigation indicated that fluorine molecular ions grew in under such irradiation treatments.
(4) The study of $\mathrm{Mn}^{2+}-\mathrm{F}$ center type defects may be extended to such halide compounds as MgF_{2} and RbMgF_{3} and the same series of experiments performed.
(5) A determination of the concentration of $\mathrm{Mn}^{2+}-\mathrm{F}$ center pairs in the crystal would be useful in determining if a preferential production of F centers next to Mn^{2+} occurs.
(6) A more complete study of the unknown ESR spectrum that remained after electron irradiating at 77 K and subsequently warming to room temperature (Chapter III) may provide more information about the electron traps in this compound.

A study of NaMgF_{3} electron irradiated at 77 K revealed the existence of two distinct and yet both intrinsic self-trapped holes in this material. The two fluorines sharing the hole were found to be on the same octahedron for one V_{K} center ([110]-type V_{K}) and on adjacent octahedra for the other V_{K} center $\left([100]\right.$-type V_{K}). The thermal decay of the [110]-type V_{K} center was found to be accompanied by both a strong thermoluminescence glow peak and a conversion into [100]-type V_{K} centers. The analysis of the ESR spectra associated with the [110]type V_{K} center yielded values for previously undetermined 77 K octahedral tilts of 16.0° about a tetrad axis and 18.5° about a diad axis. All the low temperature TSL in NaMgF_{3} is associated with a hole release process since the $[100]$-type V_{K} center remains stable throughout the low temperature luminescence range (77 K to room temperature).

The following topics are suggested for future study in NaMgF_{3} :
(1) An ESR investigation of fluorine molecular ions which are pro-
duced by electron irradiation at room temperature followed by a 77 K uv bleach. These defects are most likely interstitial centers.
(2) An ESR investigation of NaMgF_{3} electron irradiated at $\sim 4.2 \mathrm{~K}$ should have all classes of [110]-type V_{K} centers formed. This would thus be a test of the thermal reorientation behaviour assumed in the analysis.
(3) More precise measurements of the thermal decay temperatures for the intrinsic self-trapped holes are needed to establish the relationship with the TSL more precisely.
(4) The optical absorption bands associated with the intrinsic radiation induced defects in NaMgF_{3} are in need of absolute identification.

SELECTED BIBLIOGRAPHY

1. Holmes-Siedle, A., Nature 251, 191 (1974).
2. Schneider, I., Appl. Opt. 6, 2197 (1967).
3. Borg, J., J. Mat. Sci. 8, 484 (1973).
4. Schulman, J. H. and W. D. Compton, Color Centers in Solids (Pergamon, N. Y., 1971).
5. Fowler, W. B., The Physics of Color Centers (Academic Press, N. Y., 1968) .
6. Crawford, J. H., and L. M. Slifkin, eds. Point Defects in Solids, Volume 1: New York: Plenum Press, 1972. Chapter 4 by E. Sonder and W. A. Sibley.
7. Hayes, W. and J. W. Twidwell, J. Chem. Phys. 35, 1521 (1961).
8. McClure, D. S. and Z. J. Kiss, J. Chem. Phys. 39, 3251 (1963).
9. Sabisky, E. S., Phys. Rev. 141, 352 (1966).
10. Davidge, R. W., J. Mat. Sci. 2, 339 (1967).
11. Delbecq, C. J., W. Hayes, M. C. M. O'Brien, and P. H. Yus'ter, Proc. Roy. Soc. 271A, 243 (1963).
12. Delbecq, C. J., A. K. Ghosh, and P. H. Yuster, Phys. Rev. 151, 599 (1966).
13. Castner, T. G., and W. Känzig, J. Phys. Chem. Solids 3, 178 (1957).
14. Delbecq, C. J., W. Hayes, and P. H. Yuster, Phys. Rev. 121, 1043 (1961).
15. Jones, G. D., Phys. Rev. 150, 539 (1966).
16. Murray, R. B., and F. J. Keller, Phys. Rev. 153, 993 (1967).
17. Patten, F. W., and M. J. Marrone, Phys. Rev. 142, 513 (1966).
18. Hayes, W., and J. W. Twidell, Proc. Phys. Soc. 79, i295 (1962).
19. Beaumont, J. H., W. Hayes, D. L. Kirk, and G. P. Summers, Proc. Roy. Soc. London A315, 69 (1970).
20. Hall, T. P. P., Brit. J. Appl. Phys. 17, 1011 (1966).
21. Norman, C. D. and L. E. Halliburton (private communication).
22. Hutchison, C. A., Phys. Rev. 75, 1769 (1949).
23. Feher, G., Phys. Rev. 114, 1219 (1959).
24. Känzig, W. and T. O. Woodruff, J. Phys. Chem. Solids 9, 70 (1958).
25. Rose, B. H., J. E. Rhoads, and L. E. Halliburton (accepted by Phys. Rev. B).
26. Crawford, J. H. and L. M. Slifkin, eds. Point Defects in Solids, Volume 1: New York: Plenum Press, 1972. Chapter 5 by C. C. Klick.
27. Crawford, J. H. and L. M. Slifkin, eds. Point Defects in Solids, Volume 1: New York: Plenum Press, 1972. Chapter 6, by M. N. Kabler.
28. Seitz, F., Phys. Rev. 79, 529 (1950).
29. Balzer, R., H. Peisi, and W. Waidelich, Phys. Letters 27A, 31 (1968).
30. Parker, J. H., Phys. Rev. 124, 703 (1961).
31. Kaplan, E. Nuclear Physics. Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, copyright 1962.
32. Varley, J. H. O., Nature 174, 886 (1954).
33. Ritz, V. H., Phys. Rev. 142, 505 (1966).
34. Dexter, D. L., Phys. Rev. 118, 934 (1960).
35. Pooley, D., Proc. Phys. Soc. 87, 245 (1966).
36. Hughes, A. E., D. Pooley, H. V. Rohman, and W. A. Runciman. AERE R 5604 (1967).
37. Keller, J. F. and F. W. Patten, Solid State Comm. 7, 1603 (1969).
38. Pooley, D., and W. A. Runciman, Solid State Comm. 4, 351 (1966).
39. Hersh, H. N., Phys. Rev. 148; 928 (1966).
40. Ueta, M., Y. Kondo, M. Hirai, and T. Yoshinary., J. Phys. Soc. Japan 26, 1000 (1969).
41. Still, P. B., and D. Pooley, Phys. Stat. Sol. 32K, 147 (1969).
42. Hayes, W., and R. F. Lambourn, J. Phys. C. 7, 2429 (1974).
43. Sibley, W. A., and O. E. Facey, Phys. Rev. 174, 1076 (1968).
44. Riley, C. R., and W. A. Sibley, Phys. Rev. Bl, 2789 (1970).
45. Koumvakalis, N. and W. A. Sibley (private communication).
46. Sonder, E., Phys. Stat. Sol. 35, 523 (1969).
47. Pooley, D., Proc. Phys. Soc. 89, 723 (1966).
48. Ikeya, M., N. Itoh and T. Suita, J. Phys. Soc. Japan 26, 291 (1969).
49. Al'tshuler, N. S., E. Kh. Ivoilova, L. D. Livanova, V. G. Stepanov, and A. L. Stolov, Sov. Phys. Solid State 15, 1973 (1974).
50. Vehse, W. E. and W. A. Sibley, Phys. Rev. B6, 2443 (1972).
51. Sibley, W. A., S. I. Yun, and W. E. Vehse, J. Phys. C6, 1105 (1973).
52. Yun, S. I., K. H. Lee, W. A. Sibley, and W. E. Vehse, Phys. Rev. B10, 1665 (1974).
53. Chao, E. C. T., H. T. Evans, and B. J. Skinner, Amer. Mineral. 46, 379 (1961).
54. Megaw, H. D., Crystal Structures: A Working Approach. W. B. Saunders Company, Philadelphia, Pennsylvania, Copyright, 1973.
55. Modine, F. A., E. Sonder, and W. P. Unruh, Phys. Rev. Blo, 1623 (1974).
56. Martin, J. J. (private communication).
57. Kay, H. F., and P. C. Bailey, Acta Cryst. 10, 219 (1957).
58. Marezio, M., P. D. Dernier, and J. P. Remeika, J. Sol. State Chem. 4, 11 (1972).
59. Rhoads, J. E., Ph.D. Thesis (Oklahoma State University, 1974).
60. Abragam, A. and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).
61. Ogawa, S., and Y. Yokozawa, J. Phys. Soc. Japan 14, 1116 (1959).
62. Newman, D. J., and W. Urban, Advances in Physics 24, 793 (1975).
63. Riley, C. R., S. I. Yun, and W. A. Sibley, Phys. Rev. B5, 3285 (1972).
64. Riley, C. R., Ph.D. Thesis (University of Tennessee, 1970).
65. Schoemaker, D., Phys. Rev. B7, 786 (1973).
66. Halliburton, L. E. (private communication).
67. Brynestad, J., H. L. Yakel, and G. P. Smith, J. Chem. Phys. 45, 4652 (1966).
68. Mertz, J. L., and P. S. Persham, Phys. Rev. 141, 352 (1966).
69. MacInerney, J. A., Ph.D. Thesis (Oklahoma State University, 1974).

APPENDIX A

$\mathrm{Mn}^{2+}-$ FLUORINE VACANCY CENTER FITTING PROGRAM

```
                    -1 MAIN
```



```
    P(1)=2.0.270+0
```



```
    P(4)=5021760+02
        FO}=9.7E+30/60.260+0
```



```
        NV:=36
    :OO 90 LL = 1,6
    2 % J K = = l
    2, (1) T, {60,5,6,60,60,60,60,11,00,13,50,
    4HO,LE,=7,05,00,60,21,60,50,24,001,J
    GOTM
    5 H=5.00071D+03
    l
        I}=
    7H=5.38.371D+03
    I}=
    8H = 4.395130+03
    10}=\=
    G GOTU 20
        I}=4
        (G) T1:26
        H=4.39811D+03
        1: H=4.702170+03
        I}=1,12, <1; 2
    :< }\begin{array}{l}{GOTHM,20}\\{H=?,07950N+C3}
```



```
I;,)}=T\mp@subsup{i}{2}{2}2
```



```
    i;i}=T\mp@code{\
I#H=4.jコ2こ3(1+)2
```



```
ler}=\mp@code{I}=
```



```
    GC
```



```
GO TG 27
2 Hi}=4.048390+0
GC TE 27
H}=2.003200+0
G% TG 27
I= i!i
```



```
TR (1,3)}=0.00+0
TP(3,3)=1.00+00
TO(1,3)=0.0D+00
        Tr.( , ,3) = = .00 +00
29 WI = P(1)*8*H*TR(2,3)/2.0D+00
        W2=P(1)*R*H*TR(3,3)
        DO <9 K =
        A=(k,L)
    29AI(K,L)=U:OD+OO
        AL(k,k)=,50+00*(W2-P(6)*(K-1))+5.0D-01*W3
    +1(C[+N1*P(3)13.00+U0+6.250+0U*P(o)
        AK}(7,<)=,50+00*p()C+CO)*W
        AR (O,3) = SOQRT(1.0D+01)*P(6)
        AR(1C,5)= =iK(2, +0)*LSNHT}(5.00+00)*P(6
        AR(11,0) = AR(7,2)
        t.n(12+K,k)=0S2KT(1.00+01)#P(4)
    *K(E+K,j+k)=, (-50+00*(m}2-w3-0(6)*(K-1)
        I(i)+k,0+kI-:0U+J0+3.750+00*P(5
    A)(IL,O)=
```


AR $(12+K, 12+K)=5 \cdot 0 D-01 *(W 2-P(6) *(K-1))$
$C+W 3-8 . O D+0 U * P(3) / 3 \cdot O D+00+1.25 D+00 * P(6)$
$A I(18+K, 12+K)=3.00+00 * W I$
$A K(20,15)=3 \cdot 00+00 * D S O R T(2.0 D+00) * P(6)$
$\triangle F(21,15)=4 \cdot 50+00 * P(6)$
$A E(23,18)=A R(19,14)$

10. $+0 \cup-1.250+20 \neq p(6)$ $(24+K, 18+K)=2 \cdot 00+00 * D S Q R T(2 \cdot 00+00) * W I$
$24+K, 24+K)=1.50+00 *(P(6) *(K-1)-W 2-W 3)$
$C / 3.0 \Gamma+00-3.75 D+00 * P(6) \quad(6) *(K-W 2-W 3)-2.00+00 * P(3)$
$(+130+K, 30+K)=2.5 D+00 *(P(6) *(K-1)-W 2)+5.00-01 * W 3$

$\Delta R(26,21)=4.00+00 \div P(0)=P(0)$
$\operatorname{AF}(27,22)=3000+00 * D \operatorname{SQR} T(2.00+00) * P(6)$
Ar $(29,34)=A 2\left(25,0^{2}\right)$

$(34,2 y)=A \cdot 50+0 C+956 \pi 7(5000+00) \div P(5)$
F $(\underset{2}{2}, 30)=A R(31,26)$

$70 J=J+1=r \operatorname{FiO} 0$
1 (G) $\left(J-2 \frac{2}{3}\right) 31,31,32$
\therefore SUN $=13 \cdot 00+00$

SUM2 $=$ SUMA ${ }^{4}$, ム上)
$\operatorname{SUM}^{4}=$ SULA 25,3:

$0=1.00+10$
$4: \begin{array}{lll}\mathrm{GC} & \mathrm{T} & 4< \\ \mathrm{B} & =10+90 \\ \mathrm{TO} & 42\end{array}$

APPENDIX B

PROGRAM USED IN PREDICTING LINE POSITIONS FOR THE Mn^{2+}-FLUORINE VACANCY CENTER


```
AIU:
```

25 AR AI(12+K,0+K)=2.01)+00*OSORT(2.00+0J)*W1R

```
25 AR AI(12+K,0+K)=2.01)+00*OSORT(2.00+0J)*W1R
\DeltaN (12, Si=SSUPTi 1000+O1)*P(S)
\DeltaN (12, Si=SSUPTi 1000+O1)*P(S)
\DeltaF}(14,9)=4.\capC+00%P(6
\DeltaF}(14,9)=4.\capC+00%P(6
        AK(15.10)=3.00+00*CSORT(2.00+00)*P(6)
        AK(15.10)=3.00+00*CSORT(2.00+00)*P(6)
        \F (1, 1, 11)=AL (14,9)
        \F (1, 1, 11)=AL (14,9)
        CO
        CO
        AF (1, O+K,0+K)=2.OD+00*DSORT(2.0D+00)*P(4)
        AF (1, O+K,0+K)=2.OD+00*DSORT(2.0D+00)*P(4)
        AR (1C+K,6+K)=ЭS,DRT(5,OD+JO)*P(2)/2.0D+0
        AR (1C+K,6+K)=ЭS,DRT(5,OD+JO)*P(2)/2.0D+0
        (3)
        (3)
        AF(1O+K,1 + +K)=250*P(6)
        AF(1O+K,1 + +K)=250*P(6)
    2t. A1(1N+K, 1人+K)=3.00+00*W1
    2t. A1(1N+K, 1人+K)=3.00+00*W1
    AF(17, 4 ) =1.50+00#NSQRT (5.00+00)*P(6)
```

 AF(17, 4) =1.50+00#NSQRT (5.00+00)*P(6)
    ```


```

 AR(< 1, 6) =4,50+00*F(6)
    ```
        AR(< 1, 6 ) =4,50+00*F(6)
        AP}(22,17)=AF(20,15
        AP}(22,17)=AF(20,15
        Q27 K=1,0
        Q27 K=1,0
        AL}(24+K,\mp@code{1}+2+K)=2.00+U0*0S(0)T(2.00+00)*P(4
        AL}(24+K,\mp@code{1}+2+K)=2.00+U0*0S(0)T(2.00+00)*P(4
    13.0r+k, 1 + +k)=5-0E-0i*(P(6)*(K-1)-w2)+w2-8.00+00*P(3)
```

 13.0r+k, 1 + +k)=5-0E-0i*(P(6)*(K-1)-w2)+w2-8.00+00*P(3)
    ```


```

 AI(2L+K,18+K)=2.0L+00*USQRT(2,00+00)*W1.I
    ```
        AI(2L+K,18+K)=2.0L+00*USQRT(2,00+00)*W1.I
    C/3001)+U:-j.7550+00)%P(6)
    C/3001)+U:-j.7550+00)%P(6)
        AI (20+K,: 4+K)=0)SNET (5000+J0) *w1K
        AI (20+K,: 4+K)=0)SNET (5000+J0) *w1K
        AI(20+K,24+K)=0SQFT(5:00+00)*N1NT
```

 AI(20+K,24+K)=0SQFT(5:00+00)*N1NT
    ```


```

 LF}(25,2J)=150PT(1.C0+01)*P(6
    ```
```

 LF}(25,2J)=150PT(1.C0+01)*P(6
    ```


```

 AF(27, 2) =3:0D+00*DSQRT(2.0D+00)*P(6)
    ```
        AF(27, 2) =3:0D+00*DSQRT(2.0D+00)*P(6)
        AR (20,33)=AR(26,21)
        AR (20,33)=AR(26,21)
        A=(31,?5) = ) 50+00*P
        A=(31,?5) = ) 50+00*P
        AR (32,27)=0C0<T(1.0N+01) *P(6)
        AR (32,27)=0C0<T(1.0N+01) *P(6)
        A+(3,1,0)=1.30+30*SSQRT(5.00)+00)*P(6)
```

 A+(3,1,0)=1.30+30*SSQRT(5.00)+00)*P(6)
    ```


```

 MLHTEIDI (N#,V,AR,AI,D,E,E2,TAU)
    ```
        MLHTEIDI (N#,V,AR,AI,D,E,E2,TAU)
        M, (V,D,t,IEFK)
        M, (V,D,t,IEFK)
    FK=(H=T(1+0
    FK=(H=T(1+0
    #k(0)=2(1+0)-[(1)
    #k(0)=2(1+0)-[(1)
    ) FF(I)=i,
    ) FF(I)=i,
    (0)TH3-HO
```

 (0)TH3-HO
    ```


```

 0!f (1-3)) 31,3?,32
    ```
    0!f (1-3)) 31,3?,32
    H=O+9+1! +0, 
    H=O+9+1! +0, 
    GO TO-??
    GO TO-??
    ?2 WHITF(!,33) (FF(I),I=1,30)
```

 ?2 WHITF(!,33) (FF(I),I=1,30)
    ```


APPENDIX C
[110]-TYPE \(\mathrm{V}_{\mathrm{K}}\) CENTER FITTING PROGRAM




G3
SUM \(=0 . O D+00\)
SUM = SUM+(FREQ(J)-FREQQ)**2 GO TO
SUM2
(38, SUM
SUM
SO
IF (LL-1)39,39,40
GD \(=10(75,75,41,75,75,42,85,86), 1 L\) \(\mathrm{GO}=143\)
\(G 0 T 0.43\)
\(D D=0.050+00\)
\(D D=0.05 D+00\)
\(P(L L)=P=P(L L)+D D\)
70 IF (SUM-SU
\(K K=K \bar{K}+1(L L)-2.0 D+00 * D D\)
GO TO?
45 P(1L)=SUM2) 75,45,45
CONTINUE
SUM2 = SUM \(146,47,47\)
```



```
48 CONTINUE
50 FORMAT(:0 , F22.5)
51 FORMAT (10, 4F17.4)
FORMAT (: \(0: 18 \mathrm{Fi} 3: 2\) )
STOP
STOP
ENE
```

APPENDIX D

PROGRAM USED IN PREDI'CTING LINE POSITIONS FOR THE [110]-TYPE V_{K} CENTER

APPENDIX E

DIAGONALIZATION SUBROUTINES

0002
0003
0004
3005
0006
0902
C
(NM, AOR,AL,
INTEGES I $J, K, L, N, I I, N M, J P I$
$R E A L B A R(N M, N), A I(N M, N), D I$
COMPLEX*16 DĆNPLX
THIS SUBROUTINE IS A TRANSLATION OF A COMPLEX ANALOGUE OF BY MAKTIN, REINSCH, ANO WILKINSON. VOLINEAR ALGEBRA, 212-226(1971) THIS SUBROUTINE REDUCES A COMPLEX HERMITIAN MATRIX UNI TARY SIMILARITY TRANSFORMATIONS.
ON INPUT:
NM MUST BE SET TO THE ROW DIMENSION OF TWOD DIMENSIONAL DIMENSIUN STATEMENT;
N IS THE ORDER OF THE MATRIX:
AR AVD AT CCNTAIN THE REAL AND IMAGINARY PARTS, QESY THE LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
CN CUTPIUT
84210033
84210034
84210035
84210035
84210036
84210037
84210038
84210039
84210040
84210041
84210042
84210043
84210044
84210045
84210046
84210047
84210048
84210049
84210050
84210051
84210052
84210053
84210054
84210055
84210056
84210057
84210058
84210059
34210060

VITA
 Mark Allen Young
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: RADIATION DAMAGE IN $\mathrm{KMgF}_{3}: \mathrm{Mn}$ AND NaMgF_{3}
Major Field: Physics

Biographical:

Personal Data: Born at Stillwater, Oklahoma, July 22, 1950 the son of Melvin T. and Clara Jean Young.

Education: Graduated from C. E. Donart High School in 1968; received Bachelor of Science degree from Oklahoma State University, Stillwater, Oklahoma, in July, 1972; completed the requirements for the degree of Doctor of Philosophy at Oklahoma State University, Stillwater, Oklahoma in July, 1976.

[^0]: *Although the rare earth ion Eu^{2+} has been found to substitute primarily for K^{+}(49).

[^1]: The superscripts (\pm) serve no further explanatory purpose and will henceforth be deleted.

