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Name: TAYLOR PRICE   
 
Date of Degree: MAY, 2021 
  
Title of Study: EVALUATING THE EFFECTS OF STORAGE TIME ON GAS 

FORMATION FROM RETAIL GROUND MEAT 
 
Major Field: FOOD SCIENCE 
 
Abstract: The objective of this study was to evaluate greenhouse gas emissions (GHG), 
specifically carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from raw and 
cooked ground beef. Shoulder clods were ground, formed into loaves, and displayed in a 
retail case.  Following the retail display, the samples were collected for GHG analysis 
from raw and cooked samples (n = 4 replications). The samples were aged to either 7 or 
14 d. Following aging, ground beef loaves were displayed under retail conditions for 3 
days. Displayed samples were stored under dark at 4 °C (4, 8, and 11 days) to simulate 
meat storage conditions at home. Samples were cooked to 71.1 °C.  Aerobic samples 
were sealed with atmospheric oxygen, and anaerobic samples were flushed with 100% 
nitrogen gas. During retail display, objective color measurements of a* were recorded. 
Total plate count was conducted on days 4, 8, and 11. The aerobic condition had greater 
CO2, CH4, and N2O formation compared with the anaerobic condition. Dark storage time 
had a significant effect on CO2 formation, but not on CH4 and N2O. Aging time increased 
CO2 and CH4 formation (P < 0.05); however, the aging time had no effect on N2O 
formation. Raw meat had greater greenhouse gas formation than cooked meat. Bacterial 
characterization identified Carnobacterium divergens, Hafnia alvei, Lactobacillus sakei, 
Lactobacillus sakei, and Yersinia enterocolitica. N2O gas production was lesser from 
aged product, and cooked products had greater gas formation. The results suggest that 
incubation conditions, aging time, and storage time can impact GHG formation of ground 
beef products. 
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CHAPTER I 1 

 2 

 3 

INTRODUCTION 4 

  5 

 Enhancing the food system’s efficiencies is critical with the anticipated increase 6 

in global population combined with the need to source safe, healthy, and sustainable 7 

food. This tasks agriculturists and scientists to seek out new technologies and methods to 8 

prevent food waste. The demand for animal proteins will rise drastically with an expected 9 

3.5% increase in global Gross Domestic Product (GDP) and combined with a 34% world 10 

population increase by 2030 (Fiala, 2008). Not only are developing countries now able to 11 

afford more meat, but their rates of consumption are also predicted to increase. The total 12 

global protein demand, accounting for a population of 7.3 billion, is 202 million tons 13 

(Henchion et al., 2017). However, with an increase in the production and consumption of 14 

animal proteins, the issue of increased food waste, particularly meat waste, possesses a 15 

potential negative economic and environmental impact.  16 

 It has been estimated in the United States, Canada, Australia, and New Zealand, 17 

that approximately 22% of total meat and poultry production is discarded annually 18 

(Gunders, 2012). Wastage of meat can result from a variety of factors, including losses 19 

during fabrication and processing, cooking or serving a larger portion than is consumed, 20 

expiration or over-purchase in the home or in food service, or from a lack of 21 
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marketability due to discoloration or inability to fulfill color expectations for consumers.  22 

A recent report suggests that in 2020 the United States meat industry wasted 5.8 metric 23 

tons of meat due to discoloration (Maia Research Analysis, 2020). 24 

 Meat discoloration can occur from various of factors such as higher retail display 25 

case temperature, muscle-specific differences in stability, lipid oxidation, microbial 26 

growth, and exposure to oxygen (Ramanathan et al., 2020; Mancini & Hunt, 2005).  As a 27 

result, discolored meat is typically marked down, reground, or thrown into a landfill. It 28 

was reported in 2019 that meat waste due to discoloration resulted in a loss of $3 billion 29 

in the United States and $14.2 billion in loss globally (Maia Research Analysis, 2020).  30 

 While there are substantial economic impacts of meat loss, there is also a potential 31 

for irreversible environmental impacts. Various packaging types have made substantial 32 

progress in extending meat color in a retail setting. Recently, companies have started 33 

thinking about reducing the use of plastic in their packaging. For example, Perdue 34 

Farms® has made a switch to water dissolving biodegradable foam tray, and several other 35 

companies have replaced SytrofoamTM trays with recycled cardboard (Kavilanz, 2020). 36 

However, meat wastage can substantially contribute to greenhouse gas production in 37 

landfills. 38 

 The Environmental Protection Agency reported that landfill gas, a natural 39 

byproduct from the breakdown of organic matter, is composed of 50% methane and 50% 40 

carbon dioxide and 15.1% of total human methane production comes from municipal 41 

waste (United States Environmental Protection Agency, 2018). In comparison, various 42 
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studies have determined that pork production has generated 668 million tons of CO2 43 

equivalent, broiler chicken production accounts for 343 million tons of CO2 equivalent, 44 

and beef accounts for 2.9 gigatonnes of CO2 equivalent from the production lifecycle 45 

(MacLeod et al. 2013, Suszkiw, 2019). However, there is limited knowledge on the 46 

impact of meat waste on greenhouse gas production.  47 

 The objectives of this study were to determine the combined effects of aging, 48 

storage condition, and meat state (either raw or cooked) on greenhouse gas formation, 49 

specifically carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from ground 50 

beef loaves.  We anticipate the results will add missing details of greenhouse gas 51 

formation from meat in the life cycle analysis and also could bring greater awareness to 52 

consumers about meat waste. 53 
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CHAPTER II 54 

 55 

 56 

REVIEW OF LITERATURE 57 

 58 

Food Waste and Environmental and Energy Impact 59 

 Food waste is defined as food appropriated for human consumption that is 60 

discarded. It can occur at the pre-harvest level in fruit and vegetables, post-harvest steps, 61 

such as processing, transport, over-purchase, or at the consumer level, and it can post 62 

detrimental environmental and energy impacts (Food and Agriculture Organization, 63 

2013).  64 

 The United States Department of Agriculture Economic Research Service has 65 

estimated that 133 billion pounds out of the 430 billion pounds of edible food produced 66 

in the United States were not consumed in 2010. The retail and consumer losses were 43 67 

and 90 billion pounds, respectively (Buzby et al., 2019). These losses are valued at over 68 

$161.6 billion USD, with the highest monetary losses resulting from meat, poultry, and 69 

fish (Buzby et al., 2019). Consumers in the United States are losing approximately 1% of 70 

their average disposable income, essentially losing 0.80 pounds of food per day, 71 

equivalent to almost $1 a day (Buzby et al., 2019). The Food and Agriculture 72 

Organization of the United Nations has estimated one-third of global food production 73 



5 

 

deemed for human consumption is wasted every year (Food and Agriculture 74 

Organization, 2013). With the pressing need to feed an expected 9 billion people by the 75 

year 2050, the world cannot afford the massive amount of food waste, nor the 76 

environmental and energy impacts it can bring.  77 

 Wastage varies across the world with differing climates, soil types, economies, 78 

and food waste types. The overall quantity of wastage is not equally matched across the 79 

world. Bluewater footprints and carbon footprints have to be considered with varying 80 

threat levels globally. Bluewater footprints focus on the freshwater utilized to make a 81 

product, industrial or agricultural, while the carbon footprints broadly reference carbon 82 

production in greenhouse gases, whether they be from agricultural, industrial, or 83 

residential production (Hoekstra et al., 2011, Environmental Protection Agency, 2020).  84 

 Global food waste ranks as the third-highest total carbon footprint in the world 85 

and is only surpassed by the total carbon footprints of the United States and China (Food 86 

and Agriculture Organization, 2015). The highest contributor to the Food Supply Chain-87 

Food Waste carbon footprint, specifically evaluating carbon footprint equivalents from 88 

all stages of the supply chain such as production, processing, or retail, was found at the 89 

consumer level. The average carbon footprint from food waste is about 500 kg CO2 per 90 

capita per year (Food and Agricultural Organization, 2013). Global water footprints in 91 

2007, based on consumption and withdrawals, revealed the blue water footprint was 92 

approximately 250 km3, and compared to all other countries sampled, the blue water 93 

usage from food waste alone had the highest water footprint (Food and Agricultural 94 
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Organization, 2013). When focusing on arable land, land available for crops or suitable 95 

for grazing, food wastage in 2007 was at almost 1.4 billion hectares, almost equivalent to 96 

28% of total global agriculture land (Food and Agricultural Organization, 2013). With 97 

such losses, the potential for irreversible global environmental impacts could be faced 98 

(Food and Agriculture Organization, 2015). 99 

Meat Waste 100 

 Meat is a nutrient-dense food. With an expected annual Gross Domestic Product 101 

(GDP) increase of 3.5% and a 34% world population increase by the year 2030, it has 102 

been predicted the demand for animal proteins will also drastically rise. For example, 103 

beef is anticipated to have a 32% increase in demand, pork 73%, and chicken 110% by 104 

2030 (Fiala, 2008). It has been estimated that in the United States, Canada, Australia, and 105 

New Zealand, 22% of total meat production is wasted annually (Gunders, 2012). Wastage 106 

of meat can result from a variety of factors, including cooking or serving a larger portion 107 

than is consumed, expiration or over-purchase in the home or in food service, or from a 108 

lack of marketability due to discoloration. Globally, total meat loss due to discoloration 109 

or lacking color expectations for consumers for 2020 is anticipated to be over 5.8 metric 110 

tons (Maia Research Analysis, 2020). 111 

 Meat discoloration can occur from a variety of factors such as higher retail 112 

display case temperature, muscle-specific differences in stability, lipid oxidation, 113 

microbial growth, and exposure to oxygen (Elroy et al., 2015; Mitacek et al., 2019; 114 
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Mancini & Hunt, 2005).  It was reported in 2019 that meat waste due to discoloration 115 

resulted in a loss of $3 billion in the United States and $14.2 billion in loss globally 116 

(Maia Research Analysis, 2020).  117 

 Meat waste also poses a threat to the environment. Greenhouse gases are emitted 118 

throughout animal life cycles during production and processing. Since meat is organic, its 119 

wastage can result in greenhouse gases.  While packaging studies and packaging types 120 

have made substantial progress in extending meat color in a retail setting, meat and its 121 

packaging are still piling up in landfills. However, Perdue Farms has made the switch to 122 

water dissolving biodegradable foam tray, and several other companies have replaced 123 

SytrofoamTM trays with recycled cardboard (Kavilanz, 2020). Despite these efforts, meat 124 

wastage can substantially contribute to greenhouse gas production in landfills. 125 

 The estimated water footprint of meat was predicted to be almost one-third of the 126 

total agricultural water footprint, taking into account the production of feed, 127 

transportation, and yields of the animal (Gerbens-Leenes et al., 2013). Using beef as an 128 

example, applying the average dressing percentages and carcass weights, the estimated 129 

water usage in processing one beef carcass is 11 L per kilogram of boneless beef 130 

(Legesse et al., 2018). If annual meat waste is applied at 22% combined with the 131 

estimated demand for beef in metric tons by the year 2027, the world would lose not only 132 

12,090 metric tons of beef but would also be wasting over 860 million liters of water just 133 

in processing (Organization of Economic Co-operation Development and the Food and 134 

Agricultural Organization, 2018, Fiala, 2008). 135 
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Recent research has utilized artificial intelligence and eye-tracking technology to 136 

study consumer purchasing behavior to analyze time spent looking at the nutritional 137 

information, labeling claims, or the product as a whole. Samant and Seo (2016) reported 138 

participants with a high-level understanding of a meat product looked at sustainability 139 

and processing claims for longer amounts of time compared to those without any prior 140 

knowledge. Preferences and background knowledge can span gender, socioeconomic 141 

factors, as well as region or country of purchase. For example, in a Portuguese 142 

experiment, it was observed that females had a significantly higher attraction to beef 143 

steaks with less external fat compared to males (Banovic et al., 2016), and further 144 

research could prove significant to a greater understanding of global consumer habits. 145 

Greenhouse Gas Formation 146 

 Greenhouse gases can be defined as gases that trap heat in the atmosphere, and 147 

their typical composition consists of carbon dioxide (CO2), methane (CH4), nitrous oxide 148 

(N2O), and fluorinated gases such as hydrofluorocarbons, and each can pose different 149 

environmental threats or have specific effects (Environmental Protection Agency, 2020). 150 

The Environmental Protection Agency has reported that landfill gas, a natural byproduct 151 

from the breakdown of organic matter, is composed of 50% methane and 50% carbon 152 

dioxide, and 15.1% of total human methane production comes from municipal waste 153 

(United States Environmental Protection Agency, 2018). Many food items will produce a 154 

variety of greenhouse gases. The most commonly produced gases and those that are seen 155 



9 

 

in the greatest volumes are CO2, CH4, and N2O. Considering a full life cycle analysis for 156 

greenhouse gas formation, emissions from food wastage have been estimated to be 157 

approximately 2.7 gigatons of CO2 equivalent or Gt CO2e (Food and Agriculture 158 

Organization, 2014). Although the focus of previous research was on all food types, 159 

limited knowledge is currently available on the impact of meat on greenhouse gas 160 

formation.  161 

 CO2 is already present in the atmosphere; however, with human-related 162 

emissions, including the emissions from the breakdown of organic matter from food 163 

waste, emissions have been on a steady incline, increasing 5.8% from 1990 to 2018 164 

(Environmental Protection Agency, 2020). In 2018, CH4 accounted for approximately 165 

9.5% of all United States greenhouse gas emissions from human activities; however, 166 

manure, livestock, wetlands, and wastewater are large contributors to total CH4 emissions 167 

(Environmental Protection Agency, 2020). Pertaining to wetlands, manure, or food waste, 168 

bacteria breaking down the organic materials in the absence of oxygen will also produce 169 

methane. N2O accounts for approximately 6.5% of the United States greenhouse gas 170 

emissions from human activities, and can result from various agricultural fertilizers, 171 

manure management, or soil management, along with fuel combustion (Environmental 172 

Protection Agency, 2020).  173 

 The Environmental Protection Agency has stated that food is the largest category 174 

of waste in municipal landfills, where food waste emits a medley of greenhouse gases. In 175 

2017 alone, only 6.3% of the 41 million tons of food wasted were used for composting 176 
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(Environmental Protection Agency, 2020). A visual of gas resulting from food waste in a 177 

landfill would be similar to tying food in a plastic bag; the nutrients are never returned to 178 

the soil, and the rotting food can produce CH4 gas (Environmental Protection Agency, 179 

2020). 180 

When analyzing gas formation from municipal waste, temperature can also play 181 

an effect on the amounts of gas produced. A study observing the production of methane 182 

and nitrous oxide from compost consisting of municipal food waste at set temperatures of 183 

40, 55, and 67 °C found carbon dioxide equivalents from methane were higher than from 184 

nitrous oxide except for the composts run at 67 °C (Ermolaev et al., 2015). In another 185 

study, utilizing the EX-ACT, a model to account for multiple environmental practices, 186 

greenhouse gases, and carbon pools, it was found in those developing countries that 187 

processing, transport, and storage inefficiencies were responsible for the food waste. This 188 

suggests that their supply chain was more responsible for gas contribution in municipal 189 

waste, compared to more developed nations whose gases are a result of excess at the 190 

consumer and retail level (Galford et al., 2020).  191 

 NASA’s Global Climate Change has observed a simple molecule in the 192 

atmosphere, the hydroxyl O.H. radical can act as a self-recycling detergent in the 193 

atmosphere (Gray, 2018). CH4’s current atmospheric lifecycle is estimated to be nine 194 

years, but the lifecycle can be cut down and regulated by this detergent. Nitrogen oxides 195 

aid the detergent in the self-recycling process, as the breakdown of methane products 196 

react with the nitrogen oxides for the O.H. to be recycled back into the atmosphere (Gray, 197 
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2018). However, Global Warming Potentials (GWP) should be considered when 198 

calculating the given effect of gases in the atmosphere as it allows the comparison of 199 

different gases. A larger GWP is indicative that a given gas warms the Earth more 200 

compared to CO2, typically measured over a time span of 100 years (Environmental 201 

Protection Agency, 2020). Since CO2 is a reference gas, its GWP will remain at a 202 

constant of 1, and its increase in concentration can last thousands of years. CH4’s GWP is 203 

28-36 over 100 years due to its ability to absorb energy greatly, and N2O’s GWP is 265-204 

298 times that of CO2, remaining in the atmosphere for over 100 years (Environmental 205 

Protection Agency, 2020).  206 

 The Environmental Protection Agency has reported greenhouse gases (GHG) trap 207 

outgoing energy produced by the Earth and retain heat in the atmosphere which can 208 

disrupt the radiative balance of the Earth (Environmental Protection Agency, 2020). 209 

Greenhouse gases have the potential to alter climate and weather patterns, which is more 210 

commonly referred to as global warming (Environmental Protection Agency, 2020). With 211 

a minuscule change in overall global temperature, it has been predicted that sea levels 212 

could rise, population displacement and a disruption of the food supply could occur, as 213 

well as increased chances for flooding and infectious diseases (Feldscher, 2011). 214 

Bacteria in Meat 215 

 Spoilage bacteria assist in the breakdown of organic matter and can produce 216 

greenhouse gases. More specifically, carbon, nitrogen, and hydrogen atoms in organic 217 
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matter are utilized by bacteria in the decomposition process (Utah State University, 218 

2020). During decomposition, energy can be released through heat from oxidation of 219 

carbon. When materials are piled onto each other the temperature can range from 72.2- 220 

77.7 °C. A previous study observing temperature and moisture variations effect on the lag 221 

phase of the bacterial growth curve found higher temperatures, in this case, 30 °C, 222 

produced shorter lag periods even though it was not ideal for growth (Nicola & Baath,  223 

2019). However, if higher temperatures were investigated, there may have been a much 224 

shorter lag phase, as the USDA’s Food Safety and Inspection Service reports 225 

temperatures above 60 °C will destroy bacteria (United States Department of Agriculture 226 

Food Safety and Inspection Service, 2013). With temperatures exceeding 60 °C, it is 227 

possible to destroy bacteria’s growth that can assist in protein decomposition. However, 228 

thermophilic bacteria, which can withstand temperatures of over 80 °C, will breakdown 229 

proteins and can sustain growth in a landfill environment (Suzuki et al., 2006).  230 

 Animal-based proteins are much more difficult to degrade.  Incineration has 231 

previously been used to dispose meat products; however, some researchers have 232 

suggested shifting focus to thermophilic bacteria to assist in meat breakdown. Prions, 233 

extracellular matrix proteins, and keratins can be difficult to break down, and across 234 

multiple industries, their rigid structures resist proteases, but thermophilic bacteria are 235 

capable of breaking down their structural composition. With an elevated temperature 236 

range in which thermophiles thrive, proteins can be weakened and are made more 237 

susceptible to break down, and specific microbes with strong proteolytic activity spread 238 
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bacterial toxins over the proteins and can break through the extracellular matrix (Suzuki 239 

et al., 2006). Potential use for thermophilic degradative enzymes could decompose other 240 

pathways or mechanisms and could even be used in the treatment of neurological 241 

degenerative diseases (Suzuki et al., 2006). 242 

 When landfills reach their capacity, they are typically capped with a layer of clay, 243 

reducing the amount of water let in and oxygen exposure, creating an anaerobic 244 

environment. Anaerobic conditions can greatly slow decomposition, and with the CH4 245 

gas produced being trapped by the clay barrier, it must be burned or released to avoid 246 

hazards from its flammable and explosive properties (Utah State University, 2020). The 247 

production of CH4 and CO2 can result from fermentative microbes, referred to as 248 

acidogens, hydrogen producing acetogens, and methane producing methanogens. For 249 

hydrolysis and acidogenesis, sugars, amino acids, and fatty acids are results from 250 

microbial degradation of biopolymers that are metabolized by fermentation products and 251 

other enzymes from microbial species and can be fermented to produce carbon dioxide 252 

and hydrogen (Food and Agriculture Organization, 1997). Through anaerobic digestion, 253 

methanogens can produce methane utilizing acetate or hydrogen or carbon dioxide, and if 254 

they utilize hydrogen or carbon dioxide for their production, they can limit atmospheric 255 

carbon dioxide production (Food and Agriculture Organization, 1997). Through secretion 256 

of enzymes and hydrolyzing of polymeric materials, acetogenic bacteria will convert 257 

volatile fatty acids to hydrogen, CO2, or acetic acid, and methanogens will convert the 258 

previous products to either CH4 or CO2 (Food and Agriculture Organization, 1997). 259 
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Greenhouse Gas Quantification 260 

 While various studies have determined GHG emissions throughout meat animal 261 

and poultry production life cycles (MacLeod et al., 2013, Suszkiw 2019) there is limited 262 

knowledge on the impact of meat waste alone on GHG production. The greenhouse gas 263 

emission quantification differs across sectors, such as from industry or natural resources. 264 

There are several approved methods to measure and analyze gas composition. Direct 265 

emissions are defined as those of carbon dioxide from combustion fossil fuels as well as 266 

those of non-combustion from process emissions (Environmental Protection Agency, 267 

2008). Indirect emissions are measured as carbon dioxide emissions from the generation 268 

of electricity by the specific sector (Environmental Protection Agency, 2008).  269 

 Out of all sectors measured for GHG emissions food and beverage ranked sixth, 270 

with fossil fuel combustion and electricity posing the highest CO2 emission, and non-271 

combustion for CH4 emissions (Environmental Protection Agency, 2008). Utilizing fuel 272 

consumption from estimated and purchased electricity for production combined with 273 

emission factor data, the combustion, non-combustion, and purchased electricity gas 274 

generation was calculated. The data revealed over 50 million metric tons of CO2 275 

equivalents from fossil fuel combustion and purchased electricity was barely under 50 276 

million metric tons of CO2 equivalent (MMTCO2E) (Environmental Protection Agency, 277 

2008). 278 

 To quantify soil GHG emissions, a study by the University of Vermont calculated 279 

greenhouse gas emissions and tested the carbon storage capabilities of soil from a variety 280 
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of farms in Vermont. With manure present, N2O and CO2 emissions were increased with 281 

little impact from tillage, and high impact from temperature and nitrate levels in the soil 282 

(Goeschel, 2016). Farms selected varied in their soil management practices, including 283 

aerated, non-aerated, to-till, conventional, strip, vertical, and conventional tillage 284 

(Goeschel, 2016). This study utilized a 1412 infrared-photoacoustic-spectroscopy gas 285 

analyzer, and it was found that manure injection increased N2O fluxes and aeration 286 

decreased them, and no-till decreased CO2 the most (Goeschel, 2016). 287 

 Another method of GHG quantification revolves around metrics and calculations 288 

of GWP. The CO2 equivalent is also a metric used to compare gas emissions based on 289 

their GWP and convert amounts of gases to MMTCO2E. The GWP of CH4 is 28-36 and 290 

would indicate 1 million metric tons of CH4 is equivalent to 25-36 metric tons of CO2 291 

(Eurostat, 2017). The GWP of N2O is 265-298 times that of CO2 and would be equivalent 292 

to 265-298 metric tons of CO2 (Eurostat, 2017).  293 

The Varian gas chromatograph, a method for reading specific headspace 294 

concentration of any sample, manufactured by Agilent Technologies, has two methods of 295 

quantifying GHG emissions. The first method consists of single-channel that utilizes dual 296 

detectors for analysis of CO2, CH4, N2O and sulfur hexafluoride (SF6) in samples (Wang, 297 

2010). The second method uses two channels and three detectors for wide concentration 298 

levels, allowing for lower levels of CO2 to be converted to CH4 and higher levels to 299 

remain as CO2 in the samples (Wang, 2010). 300 
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The objectives of this study were to determine the effects of aging, storage 301 

condition, and meat state, either raw or cooked, on greenhouse gas formation, specifically 302 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from ground beef loaves. 303 

More specifically, the objectives were: 304 

(1) to determine the effects of aerobic and anaerobic conditions on greenhouse gas 305 

formation from raw ground beef loaves 306 

(2) to compare greenhouse gas formation from raw and cooked ground beef when 307 

incubated at aerobic conditions.       308 
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309 

CHAPTER III 310 

 311 

 312 

MATERIALS AND METHODS 313 

  314 

Product Collection and Storage 315 

 A flow-chart showing sample allocation is included in Figure 1. Eight beef 316 

shoulder clods (clods are considered a large muscle system and include infraspinatus, 317 

teres major, and triceps brachii, IMPS 114, North American Meat Processors 318 

Association, 2002) were purchased from Creekstone Farms in Arkansas City, Kansas. 319 

Clods were transported on ice to the Food and Agricultural Products Center at Oklahoma 320 

State University. The samples were purchased within 3 d of harvest and remained in 321 

vacuum bags in dark storage at 4 °C until 7 d postmortem. Of the eight clods, four clods 322 

were randomly assigned to 7-d aging, and the remaining four were assigned to 14-d 323 

aging.  324 

Grinding and Packaging 325 

 After 7 or 14 d aging, four clods packaged were opened, cut into chunks, and 326 

coarsely ground with a ½-inch stainless steel grinder plate (BIRO Model meat grinder, 327 
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Biro Manufacturing Co., Marblehead, OH). Proximate analysis was performed with a 328 

FOSS FoodScanTM (FOSS Analytics North America, in Eden Prairie, MN). The ground 329 

samples were hand-mixed to ensure lean and fat particles did not congregate.  After the 330 

desired protein fat ratio average was met (85% lean), meat from each clod was finely 331 

ground with a 3/16-inch grinder plate.  332 

Fine ground samples were hand-formed into eight loaves (approximate weight 333 

was 454 g; Mettler-Toledo scale, Mettler-Toledo, Columbus, OH). Meatloaves were 334 

placed into StyrofoamTM trays wrapped with a polyvinyl chloride (PVC) (oxygen-335 

permeable polyvinyl chloride fresh meat film; 15,500 to 16,275 cm3 O2/ m2/24 h at 336 

23°C, E-Z Wrap Crystal Clear Polyvinyl Chloride Wrapping Film, Koch Supplies, 337 

Kansas City, MO) and heat sealed (Intertek Heat Seal, model 600A, Intertek USA Inc., 338 

Houston, TX).  339 

pH 340 

The pH of the ground clods was measured on day 7 and 14 using a Hanna pH 341 

meter (model HI 99163, Hanna Instruments Inc., Smithfield, RI) by inserting the pH 342 

meter.  The pH measurements were recorded in triplicates and averaged for statistical 343 

analysis.  344 

Retail Display and Instrumental Color Analysis 345 

 Packaged trays were placed in a coffin style retail case (Hussmann IM1SL, 346 

Bridgeton MO) set at 2.5°C (average temperature of 3.13°C; EL-USB-2-LCD 347 
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temperature data logger, LASCAR Electronics Erie, PA). The product remained in the 348 

case for three days. The retail case was lit with Philips LED T8 Lamps (model number 349 

9290011240B-453597, Niles, OH). 350 

 Instrumental color readings were recorded in three random locations on the 351 

product’s surface every 24 h of retail display (0, 1, 2, and 3 d) using a HunterLab 352 

MiniScan spectrophotometer (HunterLab MiniScanE.Z. spectrophotometer, model 353 

4500L, Reston, VA). CIE L* and a* values were measured to represent lightness and 354 

redness. A greater L* value indicates a lighter product, and a greater a* values indicate a 355 

redder  product.  The instrument was standardized with white and black tiles before use. 356 

Sample Preparation for Greenhouse Gas Analysis 357 

 After 7- or 14-day aging (Figure 1) and 3 days of retail display, each loaf was 358 

divided into three sections and assigned to 4, 8, and 11 days for storage in Ziploc bags 359 

(to simulate storage of meat in the refrigerator at home). The days (4, 8, and 11) represent 360 

from the initial fine grind. The samples assigned to 4, 8, and 11 days were utilized for 361 

raw meat greenhouse gas analysis.  362 

For cooking, approximately sixteen 100 g patties were hand-formed from the 363 

eight loaves and cooked to an internal temperature of 71.1 °C using a George Foreman 364 

Grill (Model GRP99 B, Beachwood, OH). The internal temperature was monitored using 365 

a meat thermometer (Alpha Grillers, Instant Read Thermometer, Anchorage, AK). The 366 

cooked patties were allowed to cool at 21.5 °C (room temperature) for 1 h. Five grams of 367 
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cooked patties that contain both interior and exterior meat were placed in 20 mL glass 368 

vials headspace vials (Thermo ScientificTM, Waltham, MA). Tubes were sealed with 369 

atmospheric oxygen and were left at 21.5 °C to incubate for 24 h ± 0.50 h before analysis.   370 

The raw product from the loaves after 4, 8, and 11 days of storage, also comprised 371 

of a combination of interior and exterior meat, was weighed into either 5 g samples for 372 

gas readings or 11 g samples for aerobic plate count analysis. The meat samples were 373 

placed in vials and flushed with either nitrogen (to create anaerobic condition) or 374 

atmospheric condition. Nitrogen vials were flushed with certified 100% nitrogen 375 

(Stillwater gas, Stillwater, OK) gas for 30 s. Once gas tubes had been sealed and flushed, 376 

they were placed in a Ziploc baggie as designated and were left to incubate at 21.5 °C 377 

for 24 h ± 0.50 h.  378 

After incubation, cooked and raw tubes were analyzed using a headspace analyzer 379 

(Agilent Technologies Inc., Santa Clara, CA), to determine carbon dioxide (CO2), 380 

methane (CH4), and nitrous oxide (N2O). Standard tubes were filled with 10% and 4% 381 

CO2 gas combinations, and ambient air was also utilized for standardization against the 382 

samples being read.  383 

Total Aerobic Plate Count 384 

 The samples assigned to d 4, 8, and 11 were utilized for total aerobic plate count 385 

(APC). The samples were taken from vials incubated at 21.5 °C for 24 h ± 0.50 h. After 386 

open each vial, 10 g samples from each treatment were homogenized in 90 mL of sterile 387 
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0.1% peptone water in a sterile stomacher bag and paddled for 30 sec at 230 rpm utilizing 388 

a Stomacher 400 Circulator (Seward Laboratory Systems Inc., in Bohemia, NY). 389 

Microbial growth was determined by plating 1 mL of the sample homogenate (3M™ 390 

Petrifilm™ Aerobic Count Plate, St. Paul, MN, USA). The plates were incubated for 48 h 391 

at 37 °C and then counted, reporting the colony-forming units (CFU) per cm2. Plates 392 

were counted in accordance with the 3M™ Petrifilm™ Aerobic Count Plate 393 

Interpretation Guide. 394 

Statistical Analysis 395 

 The data were analyzed based on the objectives. A split-split-plot design was 396 

utilized to determine the effects of incubation conditions (aerobic vs. anaerobic) and 397 

effects of raw and cooked ground beef on greenhouse gas formation.  398 

Objective 1: The whole plot consists of eight shoulder clods randomly assigned to 399 

either 7 or 14 aging periods (n = 4 at each aging period) and ground beef loaves were 400 

repeatedly measured to determine color during retail display. Within the subplot, ground 401 

beef loaves were assigned to raw and cooked patties. Within the sub-sub plot, raw and 402 

cooked samples were assigned to 4, 8, and 11 days of dark storage at 4 C. During dark 403 

storage, samples were collected at each dark storage time point for greenhouse gas 404 

emission analysis. The fixed effects for the whole plot consist of aging period and the 405 

random effect included error A (aging x unit). The fixed effects for the subplot was raw 406 

or cooked and the random effect was error B (aging x state x unit). The fixed effects for 407 
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subsubplot include aging, state, dark storage, and their interactions. The unspecified 408 

residual error was used for the subsubplot random effect.  409 

Objective 2: The whole plot consists of eight should clod randomly assigned to 410 

either 7 or 14 aging periods (n = 4 at each aging period) and ground beef loaves were 411 

repeatedly measured to determine color during retail display. Within the subplot, raw 412 

samples were assigned to 4, 8, and 11 days of dark storage at 4 °C. During dark storage, 413 

samples were collected at each dark storage time point for greenhouse gas emission 414 

analysis. Within the subplot, raw ground beef samples were incubated at either aerobic or 415 

anaerobic conditions. The fixed effects for whole plot consist of aging period and random 416 

effect included error A (aging x unit). The fixed effects for subplot was dark storage time 417 

and the random effect was error B (aging x dark storage x unit). The fixed effects for 418 

subsubplot include aging, incubation conditions, dark storage, and their interactions. The 419 

unspecified residual error was used for the subsubplot random effect. 420 

For both objectives, Type-3 tests were performed using the Mixed Procedure of SAS 421 

(SAS 9.3; SAS Inst. Inc., Cary, NC). Least squares mean for the highest-order 422 

interactions determined to be significant will be presented. Least squares means were 423 

separated using the PDIFF option and were considered significant at P < 0.05. 424 

 425 

 426 

 427 

 428 
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CHAPTER IV 429 

 430 

 431 

RESULTS 432 

 433 

 434 

Proximate Analysis and pH 435 

There were no differences (P > 0.05) in the fat, protein, or moisture percentages 436 

between 7- and 14-days aged products (Table 1). The pH values on day 14 was greater (P 437 

< 0.05) than that of day 7 (Table 1).  438 

Color Analysis 439 

For 7 days aged, retail day 0 and 1 were significantly different (P < 0.05) from d 2 440 

and 3 (Table 2).  441 

Total Aerobic Plate Count and Microbial Classification  442 

There were no differences in APC between 14 d aged patties that were stored for 443 

4 d and the 14 d aged and stored for 8 d. However, samples stored for 11 d had greater (P 444 

< 0.05) APC than 4 and 8 d (Table 3).  445 

Bacteria in ground beef samples were characterized using a proteomic based 446 

approach (MALDI-Biotyper). Following bacteria were characterized under the aerobic 447 
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condition: Carnobacterium divergens (very large amount), Hafnia alvei and 448 

Lactobacillus sakei (small amounts), Lactobacillus sakei and Yersinia enterocolitica 449 

(trace amount) (Table 4). However, no anaerobic bacterial growth was detected in the 450 

culture.   451 

Effects of incubation condition (aerobic or anaerobic) on greenhouse formation 452 

Table 6 indicates a significant difference between dark storage d 4 and 8 for CO2. 453 

However, there was no difference in CO2 formation between dark storage 8 and 11. There 454 

were no differences observed for CH4 and N2O among dark storage time (Table 6).  455 

Aging time had an effect on CO2 and CH4 formation (P < 0.05); however, the 456 

aging time had no effect on N2O formation (Table 7). The aerobic condition had greater 457 

CO2, CH4, and N2O formation compared with the anaerobic condition (Table 8). There 458 

was a storage time and incubation time interaction for carbon dioxide (Table 9). Aerobic 459 

condition on day 4 had greater CO2 formation than an anaerobic condition on day 4. In 460 

both aerobic and anaerobic conditions, dark storage time increased CO2 formation.  461 

There was aging time and dark storage time interaction for CO2 formation (Table 462 

10). Ground beef aged for 7 days and displayed for 4 d had greater (P < 0.05) CO2 463 

formation than aged 14 d and stored for 4 d. In both d 7 and 14 aging, dark storage time 464 

increased CO2 formation.  465 

There was an aging time and condition of incubation interaction for CO2, CH4 466 

formation (Table 10). Ground beef aged 14 days and under aerobic conditions had greater 467 

(P < 0.05) CO2 and CH4 formation than aged 14 d and anaerobic condition. Aging time 468 
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did not increase CO2 and CH4 formation under anaerobic conditions but increased for the 469 

aerobic condition.  470 

There was a dark storage x aging x incubation condition interaction resulted for 471 

nitrous oxide formation. Ground beef aged for 7 days, stored for 4 days and incubated at 472 

aerobic condition had lower N2O than ground beef aged for 14 days and stored for 4 days 473 

under aerobic condition. Ground beef aged for 14 days, stored for 4 days and incubated at 474 

aerobic condition had greater N2O than ground beef aged for 14 days and stored for 11 475 

days under aerobic condition.  476 

Greenhouse gas formation from raw and cooked ground beef  477 

 The raw ground beef had lower CH4 than cooked when aged for 7 d. However, 478 

raw ground beef when aged for 14 d had greater CH4 formation than 7 d aged. There was 479 

a storage time x aging interaction resulted for N2O. When aged 14 d, there was no effect 480 

on storage time. However, the dark storage of 11 d had greater N2O compared with dark 481 

storage of 4 d for 7 d aged samples. Interestingly, cooked ground beef stored for 8 or 11 d 482 

had greater than 4 d stored samples.483 
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CHAPTER V 
 

 

DISCUSSION 

 

Effects of incubation conditions on greenhouse gas emissions from raw ground beef  

 With the effects of aging, storage day, and anaerobic and aerobic conditions, 

various results were seen in levels of gas production of CO2, CH4, and N2O.  It was 

hypothesized that anaerobic conditions would produce greater gas levels as the 

Environmental Protection Agency reported in anaerobic bioreactor landfills with 

moisture in the waste, as with the moisture of raw meat samples, biodegradation would 

occur anaerobically and produce greenhouse gases (Environmental Protection Agency, 

2019). However, for CO2, CH4, and N2O, aerobically conditioned samples produced 

greater levels of gas.  

 Anaerobic samples were flushed with 100% nitrogen gas. Pure nitrogen has been 

found to be bactericidal with Pseudomonas and Bacillus, common bacteria found in meat, 

and with the death of these bacteria, degradation and gas production during 

decomposition could have been reduced (Munsch-Alatossava, P., & Alatossava, T., 

2014). With the bactericidal capabilities of the nitrogen gas, the chances for growth and 

multiplication of these bacteria were very low. APC of this study revealed no significant 

differences (P > 0.05) in the aerobic or anaerobic conditions between the conditions of 
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aging period 7 and period 14, but the production between anaerobic 7 and 14 as well as 

aerobic 7 and 14 was statistically different (P < 0.05). Samples were anaerobically 

analyzed by the Oklahoma Animal Disease Diagnostic Laboratory and had no growth 

detected, while aerobic samples produced bacteria from a range of trace to very large 

(Table 4). Bacterial decomposition and no growth detected in anaerobic samples imply 

that the samples' state and bacterial community can play a large part in greenhouse gas 

production and is an indicator as to why the aerobic samples actually produced 

significantly higher levels of gas.  

 It was also observed the shortest aging time had greater gas production compared 

to the second and longer aging treatment in the production of CO2.  Although the 

mechanistic basis for lower gas production with aging time is not clear, it has well 

documented that an increased aging period will change metabolites (Mitacek et al., 2019) 

and increase proteolysis (Nair et al., 2018). Therefore, differences in the metabolite 

profile have favored less for gas production.  

Greenhouse gas formation from raw and cooked ground beef 

 In the current research, cooked meat had lower greenhouse gas formation. The 

USDA recommended cooking temperature to destroy bacteria present on the meat 

product could significantly affect total gas production and gas formulation (Wagner Jr., 

2008). The raw state was significantly higher in all gases except for CH4. The current 
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research suggests that raw meat waste can contribute more to greenhouse formation than 

cooked meat.  

Addressing food safety, the USDA designates the “danger zone” of meat to be 

between a temperature of 4.44 ° and 60 °C, and the bacteria found on the meat products 

at these temperatures can double in amount every 20 minutes with nutrients permitting 

(United States Department of Agriculture Food Safety and Inspection Service, 2011). 

When vials were incubated at room temperature, the meat both cooked and raw did have 

the potential for this great level of bacterial growth, however, with bacteria being 

destroyed by the cooking process, it is evident that raw product would have a greater 

amount of GHG formation resulting from high levels of bacteria.  

For storage of leftover raw and cooked products, the meat in this study was 

identically stored in a walk-in cooler at 4 °C until it was taken out for its next pull day. 

The USDA instructs post-cooking, meat should be cooled again and refrigerated within 2 

hours, which was performed in this study (United States Department of Agriculture Food 

Safety and Inspection Service, 2011). However, in future studies, cooked meat could be 

left out of the refrigerator to reintroduce bacteria to the product and imitate garbage 

conditions in order to see if this could affect gas production and have significant effects 

on all greenhouse gases that were analyzed in this study. 
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CHAPTER VI 

 

 

CONCLUSION 

 

 

With the need to feed the growing population with healthy and high-quality meat 

products, meat waste, and energy expenditures in its creation have to be reduced. The 

results of this study indicated that raw product in aerobic conditions produced higher 

levels of greenhouse gases (GHG) compared to anaerobic conditions and that raw product 

had greater gas formation compared to cooked products. Characterizing the factors 

influence greenhouse gas formation may help to minimize the impact of greenhouse 

gases on environment.
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Figure 1: Summary of various treatment allocations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shoulder clods aged to 

either 7 or 14 days (n = 4) 

Loaves retail 

displayed for 

3-d 

Cooked product 

analysis (patties) 

Raw product 

analysis (patties) 

Packaged in Ziploc bags 

(simulate refrigerator 

storage) and stored for 4, 

8, and 11 d post grind 

Packaged in Ziploc bags 

(simulate refrigerator 

storage) and stored for 4, 

8, and 11 d post grind 

Raw samples 

incubated in 

aerobic 

conditions 

Raw samples 

incubated in 

anaerobic 

conditions 

(flushed with 

nitrogen) 

Cooked samples incubated 

in aerobic conditions 

• 24 h incubation 

• Measure CO2, CH4, 

N2O 

• 24 h incubation 

• Measure CO2, CH4, N2O 

• Aerobic plate count 

• Bacteria characterization by 

MALDI-Biotyper (anaerobic 

and aerobic conditions) 



31 

 

Figure 2: Pictorial representation of days allocation  
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Table 1. Effects of aging on fat, protein, moisture, and pH from ground beef loaves.  

Aging Fat (%) Protein (%) Moisture (%) pH 

7 17.12 18.20 64.42 5.55a 

14 15.70 18.35 62.21 5.76b 
1Aging: 7- and 14-d postmortem aged shoulder clods 
Standard error: fat - 1.01, protein - 0.28, moisture - 0.71, pH - 0.03 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 2. Effects of retail display time and aging on a* values from ground beef loaves.  

 Aging2 

Retail Display1 7 14 

0 33.79d 33.09d 

1 24.46c 33.09d 

2 20.96ab 21.66b 

3 17.65 18.51b 

1Display: represents the displays of ground beef loaves in the retail display case 
2Postmortem aging time  
A greater a* value indicates more red color 
n = 4 shoulder clods with 2 loaves per clod 
Standard error of retail display × aging: 1.23 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 3. Effects of storage, aging, and incubation conditions on total aerobic plate 
count formation from ground beef loaves. 

 Storage1 

Aging2 Condition3 4 8 11 

7 Anaerobic 7.22 7.48 7.25 

7 Aerobic 7.23 7.46 7.27 

14 Anaerobic 4.98a 5.08ab 6.78bc 

14 Aerobic 4.92a 5.07ab 6.02abc 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days’ 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
3Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with 
atmospheric oxygen 
Unit: colony-forming units (CFU)  
n= 4 shoulder clods with 2 loaves per clod 
Standard error of storage × aging × condition: 0.73 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 4. Anaerobic and aerobic bacterial quantification and identification. 

Condition Organism ID 

Aerobic Carnobacterium divergens/+5 

Aerobic Hafnia alvei, Lactobacillus sakei/+2 

Aerobic 
Carnobacterium divergens, Lactobacillus 

sakei/+2 

Aerobic Yersinia enterocolitica/+1 

Anaerobic N/A 

Anaerobic N/A 

Muscle sample: 4 samples, 2 analyzed as anaerobic, 2 as aerobic 
Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with atmospheric 
oxygen 
Amount*: 0= no growth detected, +1= trace, +2= small, +3= medium, +4= large, +5= very 
large 
Unit: colony forming units (CFU)  
n= 4 shoulder clods 
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Table 5. Effects of storage time on carbon dioxide, methane, and nitrous oxide gas 
formation from ground beef loaves.  

Storage Carbon Dioxide Methane Nitrous Oxide 

4 92,591a 3.18 0.52 

8 117,329b 2.65a 0.54a 

11 124,660b 2.66a 0.33a 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days’ 
post grind 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 4,555.33, methane- 0.33, nitrous oxide- 0.15 
Least square means within a column with different letters are significantly different (P 
< 0.05)  
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Table 6. Effects of aging time on carbon dioxide, methane, and nitrous oxide gas 
formation from ground beef loaves. 

Age Carbon Dioxide Methane Nitrous Oxide 

7 139,207a 1.77a 0.15 

14 83,847b 3.89b 0.15 

1Aging: 7- and 14-d postmortem aged shoulder clods 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 4,729.13, methane- 0.37, nitrous oxide- 0.15 
Least square means within a column with different letters are significantly different (P 
< 0.05)  
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Table 7. Effects of incubation conditions on carbon dioxide, methane, and nitrous oxide 
gas formation from ground beef loaves.   

Condition Carbon Dioxide Methane Nitrous Oxide 

Anaerobic 50,480a 0.80a 0.30a 

Aerobic 172,574b 4.86b 0.63b 

1Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with 
atmospheric oxygen 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 3995.60, methane- 0.33, nitrous oxide- 0.14 
Least square means within a column with different letters are significantly different (P 
< 0.05)  
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Table 8. Effects of storage, aging, and incubation condition on carbon dioxide gas 
formation from ground beef loaves. 

 Storage1 
Aging2 Condition3 4 8 11 

7 Anaerobic 65,340b 81,264bc 81,059bc 

7 Aerobic 178,695e 221,996f 206,884f 

14 Anaerobic 22,253a 18,725a 34,237a 

14 Aerobic 104,078c 147,329d 176,460e 
1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
3Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with 
atmospheric oxygen 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of storage × aging × condition: 16,369.99 
Least squares mean with different letters are significantly different (P < 0.05) 
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Table 9. Effects of aging and incubation condition on methane gas formation from 
ground beef loaves.  

 Condition2 

Aging1 Anaerobic Aerobic 

7 0.48a 3.07b 

14 1.13a 6.64c 

1Aging: 7- and 14-d postmortem aged shoulder clods 
2Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with 
atmospheric oxygen 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error aging × condition: 0.43 
Least squares mean with different letters are significantly different (P < 0.05) 
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Table 10. Effects of storage, aging, and incubation condition on nitrous oxide gas 
formation from ground beef loaves.  

 Storage1 

Aging2 Condition3 4 8 11 

7 Anaerobic 0.11a 0.71bc 0.18a 

7 Aerobic 0.47abc 0.82cd 0.50abc 

14 Anaerobic 0.21abc 0.51abc 0.09a 

14 Aerobic 1.31d 0.01a 0.55abc 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
3Condition: anaerobic- flushed with 100% nitrogen gas, aerobic- sealed with 
atmospheric oxygen 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × aging × condition: 0.22 
Least squares means with different letters are significantly different (P < 0.05) 



42 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

Table 11. Effects of storage time on carbon dioxide, methane, and nitrous oxide gas 
formation from ground beef loaves. 

Storage Carbon Dioxide Methane Nitrous Oxide 

4 73,822a 4.96a 0.68a 

8 139,071b 4.43b 1.44b 

11 152,485c 4.29b 0.98a 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 5,814.97, methane- 0.32, nitrous oxide- 0.28 
Least square means within a column with different letters are significantly different (P 
< 0.05)  
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Table 12. Effects of aging time on carbon dioxide, methane, and nitrous oxide gas 
formation from ground beef loaves. 

Age Carbon Dioxide Methane Nitrous Oxide 

7 94,916a 3.69a 1.45b 

14 148,670b 5.43b 0.62a 

1Aging: 7- and 14-d postmortem aged shoulder clods 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 6,506.75, methane- 0.37, nitrous oxide- 0.31 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 13. Effects of incubation conditions on carbon dioxide, methane, and nitrous oxide 
gas formation from ground beef loaves.   

State Carbon Dioxide Methane Nitrous Oxide 

Cooked 71,025a 4.26a 0.63a 

Raw 172,560b 4.86a 1.44b 

1State: cooked- 71.1°C, raw- raw ground product  
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error: carbon dioxide- 6,506.74, methane- 0.31, nitrous oxide- 0.32 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 14. Effects of storage and aging on carbon dioxide gas formation from ground 
beef loaves.   

 Aging2 

Storage1 7 14 

4 91,871b 55,772a 

8 182,238d 95,904b 

11 171,899d 133,072c 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × aging: 8,223.24 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 15. Effects of display and incubation conditions on carbon dioxide gas formation 
from ground beef loaves. 

 State2 

Storage1 Cooked Raw 

4 6,271a 141,372d 

8 94,012b 184,129e 

11 112,792c 192,179e 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2State: cooked- 71.1°C, raw- raw ground product 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × condition: 8,223.45 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 16. Effects of storage, aging, and incubation states on carbon dioxide gas 
formation from ground beef loaves.   

 Storage1 

Aging2 State3 4 8 11 

7 Cooked 5,048a 143,155e 136,631de 

7 Raw 17,895fg 221,321h 207,437gh 

14 Cooked 7,494a 44,870b 89,224c 

14 Raw 104,050cd 146,938ef 176,920fg 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
3State: cooked- 71.1°C, raw- raw ground product  
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × aging × condition: 11,628.41 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 17. Effects of aging and incubation state on methane gas formation from ground 
beef loaves. 

 State2 

Aging1 Cooked Raw 

7 4.32b 3.07a 

14 4.21b 6.64c 

1Aging: 7- and 14-d postmortem aged shoulder clods 
2State: cooked- 71.1°C, raw- raw ground product  
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of aging × condition: 0.42 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 18. Effects of storage and aging on nitrous oxide gas formation from ground beef 
loaves. 

 Aging2 

Storage1 7 14 

4 0.46a 0.90a 

8 2.46c 0.41a 

11 1.43b 0.54a 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2Aging: 7 and 14 d postmortem aged shoulder clods 
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × aging: 0.36 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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Table 19. Effects of storage and incubation state on nitrous oxide gas formation from 
ground beef loaves. 

 State2 

Storage1 Cooked Raw 

4 0.46a 0.89ab 

8 2.41c 0.46a 

11 1.45b 0.52ab 

1Storage: samples of beef contained in airtight Ziploc baggies 4-, 8-, and 11-days 
post grind 
2State: cooked- 71.1°C, raw- raw ground product  
Unit: parts per million (ppm) 
n= 4 shoulder clods with 2 loaves per clod 
Standard error of display × condition: 0.36 
Least square means within a column with different letters are significantly different (P 
< 0.05) 
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