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Major Field: PHOTONICS 

 

Abstract: In this dissertation, we demonstrate a novel sensing technique for enhancing the 

sensitivity of dip-depth based dissipative sensing.  First, we introduce two different sensing 

techniques (dispersive and dissipative) related to sensors based on optical whispering 

gallery mode (WGM) microresonators and show analytically that in an adiabatic tapered 

fiber coupled microresonator system, where a single mode is incident on the 

microresonator, the dissipative sensing based on the dip depth change can provide better 

sensitivity than dispersive sensing based on frequency shift measurements.  However, the 

sensitivity can be further improved by making multiple fiber modes incident on the 

microresonator using an asymmetric tapered fiber.  Next, the process of fabricating of 

asymmetric tapered fiber is explained and then an empirical model which predicts the 

radius of the fabricated asymmetric tapered fiber is developed.  Based on the beat length 

measurements, the empirical model is validated and the correct delineation curve which 

determines the adiabaticity criteria is decided.  Next, a simplified model which explains 

the behavior of an asymmetric tapered fiber coupled microresonator system is developed.  

Based on two experimentally determined input parameters, the model predicts the 

enhancement factor.  In addition, the model allows us to compare the two dissipative 

sensing mechanisms, (based on fractional change in linewidth and fractional change in dip 

depth) and the absolute sensitivity of an asymmetric tapered fiber coupled microresonator 

system with multiple modes incident on the microresonator to the absolute sensitivity of 

an ideal adiabatic tapered fiber coupled microresonator system with a single mode incident 

on the microresonator.  Finally, we show the experimental results which validate our model 

predictions; three orders of magnitude enhancement in dip depth sensing, two orders of 

magnitude more sensitivity in the dip depth based dissipative sensing signal compared to 

dissipative sensing signal based on the relative change in the linewidth, and the absolute 

sensitivity of an asymmetric tapered fiber coupled microresonator system with a quality 

factor (Q~107) is found to be comparable to the absolute sensitivity of an ideal adiabatic 

tapered fiber coupled microresonator system with a Q approximately equal to 109. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1. Whispering-gallery mode sensors 

 

Optical whispering-gallery mode (WGM) microresonators have proven their ability to 

enhance light-matter interaction and hence have been widely used for sensing various physical 

quantities.  Owing to their high sensitivities and low detection limits, chemical sensors based on 

optical whispering gallery mode microresonators enable the detection of various chemicals and, 

thereby, are of great importance for many practical applications such as environmental monitoring.  

From an operational point of view, most optical WGM sensors are based on either the shift in 

resonant mode frequency (dispersive) or change in the linewidth (dissipative) of the mode of 

interest.  However, previously it was demonstrated that WGM sensors based on the relative change 

in the resonant throughput dip depth (dissipative) could offer better sensitivity under certain 

conditions while being more immune to environmental perturbations.  In this dissertation, we 

propose and demonstrate a novel method for enhancing the sensitivity of resonant throughput dip 

depth based dissipative sensing.  Traditionally a symmetric (adiabatic) tapered fiber is used to 

couple light into a microresonator and hence a single fiber mode is incident on the microresonator.
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An enhancement in dip depth sensitivity by approximately three orders of magnitude is achieved 

by having multiple modes incident on a microresonator using an asymmetric (non-adiabatic) 

tapered fiber.  In addition, with the multimode input, the dissipative sensing signal based on the 

relative change in throughput dip depth was found to be approximately 40-100 times (nearly two 

orders of magnitude) more sensitive than the dissipative sensing signal based on the relative change 

in the linewidth.   In general, the absolute sensitivity of a tapered fiber coupled microresonator 

system will depend on the interacting WGM mode fraction f and the quality factor Q of the WGM.  

For an ideal adiabatic tapered fiber coupled microresonator system where a single fiber mode is 

incident on the microresonator, in order to have equal absolute sensitivity with that of the absolute 

sensitivity of an asymmetric tapered fiber coupled microresonator, the minimum intrinsic quality 

factor Qi needs to be approximately of the order of 109 which is extremely hard to achieve in a fused 

silica microresonator without taking any extraordinary measures.  

During the past few decades, the photonics industry has witnessed a revolution in terms of 

new materials and devices which can enhance the light-matter interaction.  The devices which allow 

confinement of light into small volumes have become vital parts of any photonics design.  

Whispering gallery mode based optical dielectric resonators are devices with tiny mode volume, 

very narrow linewidth, and a high power density.  Hence these devices have been attracting 

scientists from various disciplines.  In 1910, Lord Rayleigh first explained WGMs for the sound 

waves at St. Paul’s Cathedral in London [1].  A bit earlier, in 1909, the equations for resonant 

eigenfrequencies of free metallic and dielectric spheres were derived by Debye [2].   A study by R. 

D. Richtmyer [3] in 1939 pointed out the possibility of the existence of modes with high quality 

(Q) factor in axially symmetric open dielectric resonators.  In 1961, the first experimental 

observation of optical whispering gallery modes was reported in a spherical sample of CaF2: Sm++ 

[4].  Revolutionary work on fabricating a microresonator (silica microsphere) which can support 

WGMs with high Q, was demonstrated in 1989 by Braginsky, Gorodetsky and Ilchenko [5].  This 
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work stimulated a series of rigorous scientific explorations of WGM microresonators which 

eventually led to the development of various cutting edge technologies based on WGM 

microresonators.  

The light coupled into a microresonator will be confined, and it will circulate along the 

circumference of the microresonator by successive total internal reflections.  Resonances are 

achieved when the effective path length is equal to an integral number of wavelengths.  These 

resonances are the whispering gallery modes. 

Optical resonators are devices which trap the light in such a way that light can travel in a 

closed path.  They are among the major components of lasers, some interferometers, and optical 

parametric oscillators.  Optical resonators are designed and fabricated in such a manner that they 

have a significant quality factor, Q.  The quality factor is defined as 2π times the ratio of stored 

energy to energy loss per optical period.  There are different types of whispering gallery 

microresonators, based on the geometry of the resonator, as shown in Fig. 1.1.  They are mainly 

classified as microspheres, microtoroids, microdiscs, microrings, bottle resonators, hollow bottle 

resonators, and microbubble resonators.  
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Figure 1.1. Different types of WGM microresonators. A) Microbottle, B) 

Microsphere, C) Fabry-Perot, D) Microring, E) Microtoroid, F) Microdisk 

[6]. 

 

 

One significant application of optical resonators is sensing.  The hollow bottle resonator 

(HBR) was identified as a good candidate for sensing purposes [7-9].  WGMs inside an HBR can 

be defined in terms of three mode numbers m, p, q, and the polarization of the mode, TE for 

polarization parallel to the surface (axial direction) and TM for polarization normal to the surface 

(radial direction).  The azimuthal mode number m specifies the number of wavelengths around the 

equator of the HBR.  The mode number p represents the number of intensity maxima along the 

radial direction.  The mode number q specifies the number of field nodes in the axial direction.  The 

radial field distribution of the fundamental WGM of an HBR is shown in Fig. 1.2.  Many of these 

resonators employ the technique of evanescent coupling to couple light into and out of the WGMs 

of the resonator.  In addition to enabling the coupling of light into and out of the WGMs of the 



5 
 

microresonator, the evanescent fraction of a WGM also enables the interaction of light with the 

surrounding medium.   

 

Figure 1.2. The radial intensity distribution of the fundamental TE (p = 1, q = 0) WGM 

of an HBR.  Here the wavelength λ = 1550 nm, the outer boundary is at 

175 μm, and the inner boundary is at 170 μm.  The red (external) portion 

of the profile is nonzero near the outer boundary, representing the external 

evanescent fraction.  The blue (internal) portion is zero so there is no 

internal evanescent fraction in this case. 

 

Tapering an optical fiber to a diameter of few microns or less provides an efficient way to 

couple light into whispering gallery mode resonators.  The coupling of light is made possible by 

using the evanescent fractions of fiber modes of a tapered optical fiber.  Light injected at one end 

of the tapered fiber from a frequency scanned diode laser is evanescently coupled into WGMs of a 

microresonator, and the throughput spectrum is detected at the other end.  A Lorentzian dip with 

finite linewidth ( )  is observed in the throughput spectrum corresponding to each excited WGM.  

The linewidth of a dip is proportional to the total round-trip loss suffered by light circulating in that 

WGM.  There are two types of loss, namely intrinsic and extrinsic loss.  The former includes surface 

scattering, absorption, and radiation loss whereas coupling loss is the extrinsic loss.  The fractional 

dip depth M  depends on the ratio of extrinsic loss to intrinsic loss. 
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In general, fiber tapers can be broadly classified as adiabatic or non-adiabatic [10].  If the 

light propagating in the tapered fiber remains in the local fundamental mode at any point along the 

taper transition, then such a taper is known as an adiabatic taper; however, for a non-adiabatic taper, 

in addition to the local fundamental mode, higher order fiber modes are also excited, and hence 

light gets distributed among local fundamental and higher order modes as it travels along the 

tapered fiber.  Different fiber modes will have different spatial profiles, different evanescent 

fractions, different effective indices, and different propagation constants [11-14].  The throughput 

spectral profile of a resonator mode is no longer a symmetric Lorentzian dip when a non-adiabatic 

tapered fiber (or multimode waveguide) is used for coupling light to a microresonator [15-21].  The 

throughput spectral profile depends on the relative strength and phase of the fiber modes as they 

couple into a single resonator mode. 

WGM based optical sensors are highly sensitive because of their high quality factors and 

small mode volumes.  In recent times, WGM based optical sensors have been used for sensing 

various quantities [22-24] such as pressure, temperature, weak force, chemicals, biomolecules, 

magnetic field, electric field, and so on.  From the operational point of view, optical WGM sensors 

detect through the registration of changes in their spectral response due to perturbations in the 

surrounding environment.  The sensing mechanism of an optical WGM sensor can be categorized 

as dispersive or dissipative.  Dispersive sensing relies on measuring the shift in WGM resonance 

frequency with a change in the refractive index of the surrounding medium [25-28].  Dissipative 

sensing is predominantly studied by monitoring the change in linewidth [29-31] of a WGM induced 

by a lossy (absorbing) analyte.  However, in addition to the change in linewidth, the introduction 

of a lossy analyte into the surrounding environment of an optical WGM sensor will also induce a 

change in the resonant throughput dip depth.  Thus a comprehensive study on dissipative sensing 

can be performed by detecting the change in the resonant throughput dip depth of a WGM [32,33]. 
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Previously it was shown that under certain conditions the response to dissipative sensing 

based on change in relative dip depth can be more sensitive than dispersive response [34].  

However, the sensing protocol of most of the optical WGM mode sensors has been dispersive.  

Lately, studies on dissipative sensing based on the transmittance dip for two different 

configurations, a waveguide side coupled to a circular microresonator [35] and self-interference 

microring resonator [36-39] has once again attracted scientific interest due to their potential to 

achieve better results than dispersive sensing.  In all dissipative sensing configurations discussed 

to date, the input to the microresonator consists of a single waveguide mode or fiber mode.  In this 

dissertation, we demonstrate, both theoretically and experimentally, a novel method for enhancing 

the sensitivity of resonant transmittance dip based dissipative sensing using multimode input to the 

microresonator.  The enhancement demonstrated in this dissertation is relative to the change in 

resonant transmission dip depth that would be observed if only one fiber or waveguide mode were 

incident on the microresonator. 

1.2.  Dissertation organization 

An outline of this dissertation is as follows.  In the rest of Chapter 1, an overview of WGM 

based sensing is provided, especially absorption sensing using an adiabatically tapered fiber where 

only the fundamental fiber mode is incident on the microresonator.  

In Chapter II, a detailed discussion about adiabatic and non-adiabatic tapered fibers is 

provided.  The use of non-adiabatic tapered fibers to couple light into the microresonator is the 

highlight of all the experiments described in this dissertation.  Hence an empirically useful 

treatment of design of the non-adiabatic tapered fiber is presented.  Chapter III sets out to provide 

a theoretical framework for calculating the enhancement in sensitivity and a computational model 

of a non-adiabatic (asymmetric) tapered fiber coupled microresonator system.  The computational 

model depends only on three parameters which can be experimentally determined.  Chapter IV 
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provides experimental details and verification of the theoretical framework put forward in Chapter 

III.  Our experimental results confirm an enhancement by three orders of magnitude.  In Chapter 

V, the summary of experimental findings and the future scope of this work are presented. 

 

1.3.  Absorption sensing using an adiabatically tapered fiber 

Often an adiabatically tapered fiber is used to excite WGMs of a microresonator.  As 

explained earlier, the throughput spectrum of an adiabatically tapered fiber coupled to a WGM 

microresonator consists of symmetric Lorentzian dips, one per WGM as shown in Fig. 1.3.  The 

quality factor of a WGM is defined as 

  
( )

2
,

nL
Q

L T

 


  
= = =
 +

 (1.1) 

where 
2





=  is the frequency of light,   is the full width at half maximum (FWHM),   is the 

lifetime of a photon in a mode,   is the wavelength of light, n  is the refractive index of the host 

medium of the resonator, T  is the outcoupling intensity loss per round trip, and L  represents the 

effective intrinsic intensity loss per round trip where   is the effective loss coefficient and L  is 

the microresonator circumference.  It is worth noting that a high quality factor mode will have a 

narrow linewidth whereas a low quality factor mode will have a broad linewidth.  The two factors 

that contribute to the linewidth are coupling loss and intrinsic loss.  Thus the linewidth ( )  can 

be written as 

  ( ) ( ) ,
c i

   =  +   (1.2) 
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where ( )
c

  represents the contribution corresponding to the coupling round-trip loss ( )T  and 

( )
i

  represents the contribution due to intrinsic round-trip loss ( )L   Substituting Eq. (1.2) in 

Eq. (1.1), 

  
1 1 1

,
c iQ Q Q

= +  (1.3) 

where the overall Q is determined by Eq. (1.3) in terms of the extrinsic quality factor cQ  and the 

intrinsic quality factor :iQ  

  
( )

2
,c

c

nL
Q

T

 

 
= =


 (1.4) 

and 

  
( ) ( )

2
.i

ii

nL
Q

L

 

  
= =


 (1.5) 

 

 

Figure 1.3. Symmetric Lorentzian dip.  This WGM has 20.7 MHz, =  Q = 

9.1×106, and M = 0.83. 
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For an adiabatic tapered fiber coupled microresonator, the resonant throughput dip depth 

can be written as 

 
( )

2

4
,

1

x
M

x
=

+
 (1.6) 

where x  represents the ratio of coupling loss T  to the effective intrinsic loss L  of the 

microresonator.  The dip depth M is measured by taking the ratio of the voltage difference between 

the bottom of the dip and the off-resonance voltage (40 mV in Fig. 1.3) to the total off-resonance 

voltage (48 mV).  The effective intrinsic loss coefficient  can be written as 

,i s aL L f L f L   = + +  where i L  represents the intrinsic loss, f  represents the evanescent 

fraction (interacting fraction), af L  represents the absorption of the analyte and sf L  represents 

the absorption of the solvent (if a solvent is present).  While keeping the transmission loss T  

constant, the effective intrinsic loss L  can be modified by introducing an analyte into the 

surroundings of a WGM microresonator.  This changes x  and hence the resonant throughput dip 

depth gets modified.   In analogy with Beer’s law, when the analyte absorption is weak, the 

fractional change in dip depth 
dM

M

 
 
 

 is assumed to be proportional to the change in the analyte 

absorption coefficient.  Using the effective intrinsic loss coefficient and Eq. (1.6), the fractional 

change in dip depth can be written as 

  
( )

1
.

1

a

i s a

fLddM x

M x f f L



  

− 
= − 

+ + + 
 (1.7) 

Under the conditions for low analyte absorption limit ( ),i s af f  +  the above equation 

becomes 
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1 1

.
1 1

a

i i

fLddM x x d L

M x L x L

 

 

− −   
= − = −   

+ +   
 (1.8) 

 Now when the modes are strongly overcoupled or undercoupled 

( ) ( )1 or  or 1 or ,x T L x T L   the fractional change in dip depth as a function of 

analyte concentration depends only on the intrinsic loss .i L  

  
1 1

.
i

dM

M d L L 
=  (1.9) 

Now let us analyze the change in linewidth as we change the analyte concentration.  It is 

worth remembering that the linewidth ( )  of a mode is proportional to the sum of coupling loss 

( )T  and absorption loss ( ).L   Hence the fractional change in linewidth is given by 

  
( )

.a a

i s a

fd L fd Ld

T L T f f L

 

    


= =

 + + + +
 (1.10) 

Under the conditions for low analyte absorption limit, the above expression becomes 

  .a

i i

fd Ld d L

T L T L

 

  


= =

 + +
 (1.11) 

When the modes are strongly overcoupled ( ),T L  the fractional change in linewidth as we 

change the analyte concentration depends only on the transmission loss .T  

  
( )1 1

.
d

d L T



 


=


 (1.12) 

Thus for overcoupled modes, the fractional change in linewidth as we change the analyte 

concentration is independent of the intrinsic loss, whereas Eq. (1.9) suggests that the fractional 
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change in dip depth as we change the analyte concentration depends only on the intrinsic loss.  

Hence in such cases measuring the fractional change in dip depth provides greater sensitivity. 

When the modes are strongly undercoupled ( ),T L  

  
( )1 1

.
i

d

d L L



  


=


 (1.13) 

Thus for undercoupled modes, the fractional change in dip depth or linewidth as we change the 

analyte concentration depends only on the intrinsic loss and hence we get the same sensitivity for 

both methods. 

1.4.   Hollow bottle resonator and mode profiles 

 

A silica capillary is used for making a hollow bottle resonator, shown in Fig. 1.4.  There 

are three stages in the fabrication process [9]. They are 

I. Etching of the silica capillary - The etching process (using an HF-methanol mixture) is done to 

achieve the desired wall thickness for the silica capillary.  

II. Chemical treatment of the etched capillary - The chemical treatment using hot sulfuric acid 

(H2SO4) is done to remove the polymer coating from the silica capillary.   

III. Making bulge - A bulge is formed in the capillary by heating and pressurizing the capillary. 
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Figure 1.4. Hollow Bottle Resonator.  Initial diameter of capillary is 140 µm and the 

bulge is about 180 µm.  The wall thickness is about 15 µm.  It is worth 

noting that the bulge and the end of capillary are not at focus of the 

microscope simultaneously. 

 

 

In cylindrical coordinates, the amplitude of a WGM in an HBR is given by, 

 ( ) ( ) ( ) ( ), , exp .mpq mp mqE r z R r Z z im   (1.14) 

Let 0

2



=  represent the vacuum propagation constant, n1, n2, and n3 represent the refractive 

indices in the three radial regions – interior, within the silica wall, and exterior respectively.  The 

radial part in Eq. (1.14) takes different Bessel function forms in the three different regions of an 

HBR and hence can be written as [40],     

 
( )

( )

( ) ( )
( ) ( )

1 0

2 0 2 0

1

3 0

           .  

    

                        

m

mp m mp m

m

J n r

R r J n r c Y n r

H n r



 



 
  

 + 
 

 

 (1.15) 

The radial mode intensity profile of a WGM for an HBR (with external and internal wall at 175 

and 165 µm respectively) is shown in Fig. 1.5.  
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Figure 1.5. TE mode profile of a WGM in an HBR filled with water with an outer 

boundary at 175 μm and inner boundary at 170 μm; n = 1.444, m = 1000, 

p = 3, fext = 0.008, fint = 0.03. 

 

As mentioned earlier, in addition to coupling light into and out of the resonator, the external 

evanescent fraction enables the interaction of light with the surroundings of the resonator.   The 

sensitivity of WGM sensors depends on the evanescent fraction of the mode.  Besides the external 

evanescent fraction, microresonators such as HBRs provide an internal evanescent fraction.  Some 

WGMs in a thin-walled HBR can have internal evanescent fractions that are significantly larger 

than their external evanescent fractions, thereby improving the detection threshold.  Hence the 

internal evanescent fraction (also referred to as “interacting fraction”) of a WGM is defined, for 

absorption measurements, to be the ratio of the power circulating in the inner region to the total 

power circulating in the mode, whereas the external evanescent fraction is the ratio of the power 

circulating in the outer region to the total power in the mode.    The internal evanescent (interacting) 

fraction (indicated by blue) of the mode is much greater than the external (indicated by red).  In 

addition to having large interacting fractions, the HBR requires a very small amount of analyte, 

making the HBR an ideal candidate for internal sensing. 
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CHAPTER II 
 

 

ADIABATIC AND NON-ADIABATIC TAPERED FIBERS 

 

2. 1.  Criteria for adiabatic and non-adiabatic tapers 

 

An optical fiber is a cylindrical dielectric waveguide made by drawing silica.  An optical 

fiber consists of a core which is surrounded by a cladding.  Light injected at one end of an optical 

fiber is transmitted to other end by the process of total internal reflection.  For a typical optical 

single-mode fiber such as SMF-28, the radii of core and cladding at 1550 nm =  are 4.1 μm and 

62.5 μm respectively, and the corresponding refractive indices of core and cladding are 

1.45205coren =  and 1.44681.claddingn =   A mode propagating through an optical fiber is said to be 

core guided if the effective index ( )effn  of the mode lies between the refractive index of core and 

cladding.  A plot of the normalized propagation constant as a function of normalized frequency is 

shown in Fig. 2.1.
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Figure 2.1.   Normalized propagation constant as a function of the normalized frequency [41].  

Here β/k = neff, n1 = ncore, n2 = ncladding, and mode families are labelled with the 

equivalent linearly polarized (LP) designation. 

 

For an optical fiber, the normalized frequency parameter or V number determines the 

number of modes that may propagate ( )2 1effn n n   at a given radius and wavelength.  The V 

number for a core guided mode with 1 ,coren n=  2 ,claddingn n=  4.1 μm,a =  and  1.55μm =  was 

calculated and found to be 2.04.V =   In Fig. 2.1, at V = 2.04, the fundamental mode HE11 is the 

only mode able to propagate and hence the light remains in the fundamental mode as it propagates 

through an untapered optical fiber. 

A tapered fiber is made by stretching a heated optical fiber, and it consists of a narrow 

stretched filament called the taper waist, each end of which is linked to the unstretched fiber by a 

section known as the taper transition.  Tapered optical fibers are used in many applications.  

Tapered optical fibers can efficiently couple light into microresonators.  They can also be used as 

fiber couplers, splitters, absorption sensors and so on.  A sketch of a tapered optical fiber is given 

in Fig. 2.2. 
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Figure 2.2.   Sketch of a tapered optical fiber. 

 

 

When an optical fiber is tapered down to a small enough diameter, the core can be 

neglected.  Hence at the taper waist, the mode is entirely guided by the cladding-air interface.  A 

mode is said to be cladding guided when the effn  of the mode lies between the refractive indices of 

cladding and air.  At the taper waist, the V number for a cladding guided mode with 1 claddingn n=  

and 2 ,airn n=  waist radius 1.15 μm,a =  and 1.55 μm =  was calculated and found to be V = 4.9.  

In Fig. 2.1, at V = 4.9, in addition to the fundamental mode HE11, other modes such as TE01, TM01, 

HE21, EH11, HE31, and HE12 are able to propagate and thus the taper waist is multimode.  Although 

Fig. 2.1 is for a weakly guiding fiber, in which 1 2 1,n n n−  unlike the taper waist, the allowed 

modes remain the same.  For convenience TE01, TM01, and HE21 are considered as one mode – LP11.  

Hence for the light propagating through a tapered fiber, in the untapered region, the light remains 

in the fundamental HE11 mode of the untapered fiber whereas in the taper waist, multiple fiber 

modes can be excited.  The taper transition region “transforms” the local fundamental mode from 
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being guided by the core-cladding interface in an untapered fiber to being guided by the cladding-

air interface in the taper waist. 

A taper transition is said to be adiabatic if light in the single mode of the untapered fiber 

couples only to the HE11 mode at the taper waist.  On the contrary, a taper transition is said to be 

non-adiabatic if light in the single mode of the untapered fiber also couples to higher order fiber 

modes at the taper waist.  Tapered fibers are analogous to the finite square well.  Consider a particle 

in the ground state of the finite square well with dimension a.  If the dimension of the well is 

reduced adiabatically, then the particle will remain in the ground state, whereas if the dimension of 

the well is reduced non-adiabatically, in addition to the ground state, higher energy states are also 

excited.  Consider the propagation of light through the downtaper, waist, and uptaper of an adiabatic 

tapered fiber.  Since the downtaper is adiabatic, on the downtaper taper transition, light in the single 

mode of the untapered fiber will predominantly couple only to the local HE11 mode.  At the taper 

waist, light will remain only in the HE11 mode of taper waist.  Since the uptaper is also adiabatic, 

on the uptaper taper transition, light will remain in the local HE11 mode and eventually will couple 

to the single mode of the untapered fiber.  Now let us discuss the propagation of light through the 

downtaper, waist, and uptaper of a non-adiabatic tapered fiber.  Since the downtaper is non-

adiabatic, light in the single mode of the untapered fiber can couple to the local fundamental (HE11) 

and higher order modes (mainly LP11) of the taper waist.  These two modes don’t couple to each 

other as they travel along the taper waist.  Since the uptaper transition is adiabatic, only light in the 

HE11 waist mode can eventually couple to the single mode of the untapered fiber.  Previously, it 

was shown in [42] that by choosing a particular ratio of resonator size to the diameter of the tapered 

fiber, only the HE11 and LP11 modes can significantly interact with the WGMs of a microresonator.  

The following discussion describes the delineation criteria which ensure adiabatic and non-

adiabatic taper transitions for different taper profiles.  
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For a taper transition to be adiabatic, the cladding taper angle cl  must be less than some 

maximum value [12,43] at all values of the inverse taper ratio 
0

( )r z

r
 where z  is the distance from 

the untapered fiber to the point of interest, as shown in Fig. 2.2, and ( )r z  is the local cladding 

radius, with ( )0 0r r= .  The local cladding taper angle cl  is defined as the angle between the fiber 

axis and the tangent to the taper profile at the point of interest:  

 ( )
( )

    .cl

dr z
z

dz
   (2.1) 

If the taper transition is adiabatic,  

  ( )
( )

( )  ,cl f h cl

dr z
z r

dz
    −  (2.2) 

where ( )f f z =  and ( )  h h z =  are the propagation constants of the fundamental and the 

higher order mode and 
2

effn





= .  Now we define max  as the maximum cladding taper angle 

for the evolution of   from untapered  to waist  to be adiabatic: 

 
( )

max ,
2

cl f hcl

b

rr

z

 



−
 = =  (2.3) 

where the beat length bz  is given by: 

 
2

  .
 - 

b

f h

z


 
=  (2.4) 
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( )
max

0

r z

r

 
  

 
 thus provides a delineation curve with which the cladding taper angle can be 

compared to determine the adiabaticity. 

Now let us take a detour and check how the propagation constants involved in the 

expression for max  are calculated.  The propagation constant in a step-index dielectric waveguide 

is obtained by solving the characteristic equation [41] shown below.  

                  
( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( )

2 22 2

1 2 2

2 2

0

1
,

l l l l

l l l l

J ha K qa n J ha n K qa
l

haJ ha qaK qa haJ ha qaK qa kqa ha

         
    + + =      +     

 (2.5) 

where lJ  and lK  represent the Bessel function of first kind and modified Bessel function with 

order ,l  and the prime indicates the derivative with respect to the argument of the Bessel function.  

In those arguments, h and q are defined below and a is the local core or cladding radius for core or 

cladding guidance, respectively.   From Eq. (2.5), using the Bessel function relations, the solution 

for lmHE  modes can be deduced as follows [44]: 

 
( )

( )

( )

( ) ( )

2 2
1 1 2

22

1

1
,

2

l l

l l

J ha K qan n
R

haJ ha n qaK qa ha

−
  +
 = − −      

 (2.6) 

where 

( )

( ) ( ) ( )

1
2 2 222

2 2 2

1 2

2 22 2

1 0 1

1
.

2

l

l

K qan n l
R

n qaK qa k nqa ha


       −    = +       +       

   

In Eq. (2.6), 

 2 2 2 2

1 0 ,  h n k = −  (2.7) 
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 2 2 2 2

2 0 = ,q n k −  (2.8) 

where 0effn k =  represents the propagation constant and 0k  represents the vacuum wavenumber.  

For l=1,mHE  modes, the solution can be obtained graphically by finding the intersection point of the 

left and right hand sides of Eq. (2.6), as shown in Fig. 2.3.  When the modes are core guided 

1 2( ,  ),core claddingn n n n= =  f =  is the propagation constant of the core guided 11HE  mode and 

0 2h k n = =  is the propagation constant of a hypothetical core guided higher-order LP11 mode.  

The intersection point along with Eqs. (2.7) and (2.8) allow us to find the propagation constants for 

both core and cladding guidance conditions. 

 

Figure 2.3.  Graphical solution for the HEl1 mode plotted under core guidance in the 

untapered fiber.  The blue curves represent the LHS and the yellow curve 

represents the RHS of Eq. (2.6). 
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When the modes are cladding guided 1 2( ,  ),cladding airn n n n= =  f =  is the propagation 

constant of the cladding guided 11HE  mode and h =  is the propagation constant of the cladding 

guided 11LP  mode.  It is worth recollecting that for convenience TE01, TM01, and HE21 are 

considered as one mode – LP11.  The characteristic equations [44] for TE and TM modes are   

 
( )

( )

( )

( )
( )1 1

0 0

,                                   TE
J ha K qa

haJ ha qaK qa

−
=  (2.9)   

and 

 
( )

( )

( )

( )
( )

2
1 12

2

0 1 0

.                           TM
J ha K qan

haJ ha n qaK qa
= −  (2.10) 

Once again, the LHS and RHS of Eq. (2.9) and Eq. (2.10) are plotted for increasing values of ha.  

The intersection point along with Eqs. (2.7) and (2.8) allow us to determine the propagation 

constant of TE01 and TM01 modes – LP11 mode.  The calculated propagation constants f  and h  

assuming core and cladding guidance are shown in Table 1, along with the maximum cladding 

taper angle from Eq. (2.3).  
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Table 1.  max  as a function of inverse taper ratio – delineation curve I. 

 

 

 

 

0

r

r
 

Core guidance Cladding guidance 

11HE  
6 110  mf

−  
11LP  
6 110  mh

−  
max  

11HE  
6 110  mf

−  
11LP  
6 110  mh

−  
max  

1 5.86718 5.85633 0.10792 5.85621 5.85601 0.00199 

0.9 5.86566 5.85633 0.08351 5.85618 5.85594 0.00215 

0.8 5.86373 5.85633 0.05886 5.85614 5.85583 0.00247 

0.7 5.86176 5.85633 0.03778 5.85608 5.85568 0.00278 

0.6 5.85970 5.85633 0.02008 5.85598 5.85544 0.00322 

0.5 5.85769 5.85633 0.00673 5.85583 5.85506 0.00383 

0.4 5.85663 5.85633 0.00116 5.85555 5.85435 0.00478 

0.3    5.85496 5.85282 0.00639 

0.2    5.85326 5.84847 0.00953 

0.1    5.84435 5.82536 0.01889 

0.024    5.66167 5.36944 0.06980 

0.022    5.65265 5.30497 0.07751 

0.0208    5.62262 5.22419 0.08247 

0.0192    5.58849 5.12250 0.08904 

0.0176    5.54382 5.01057 0.09340 

0.0160    5.48497 4.85767 0.09988 
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Now since we know the propagation constants, using Eq. (2.4) the beat length can be 

calculated for various taper radii.  In order to plot the delineation curve, the larger of the max  

values for core and cladding guidance at different values of inverse taper ratio was used.  These 

max  corresponding to different inverse taper ratios were fitted to a polynomial (red curve) 

( )5 4 3 20.076 0.173 0.571 0.179 0.062 0.026x x x x x− − + − − + as shown in Fig. 2.4. 

It is worth recalling that for V = 4.9 the taper waist is multimode. So far, while calculating 

max  using Eq. (2.3), the difference in propagation constants ( )f h −  was calculated by finding 

the propagation constant ( )f  of the local fundamental mode (HE11) and the  propagation constant 

( )h  of the first family of higher order modes shown in Fig. 2.1 – namely LP11.  Now let us relax 

this and calculate max  by considering the propagation constants of the second (LP02 = HE12, and 

LP21 = HE31, EH11) and third family of higher order modes (LP31 = EH21 and HE41).  Since the 

propagation constants are close, for convenience we will treat the second family of modes as one 

mode, namely HE12, and the third family of modes as one mode, namely HE41.  Thus, depending 

on the of choice of ( )11 12 41LP / HE / HEh  in Eq. (2.3), we will have three delineation curves. 

As mentioned before, for l=1,mHE  modes, the solution can be obtained graphically by 

finding the intersection point of the left and right hand side of Eq. (2.6).  Since we are interested in 

finding the propagation constant of 12HE  modes, the left- and right-hand side of Eq. (2.6) are 

plotted and the second intersection point is considered.  The calculated propagation constants f  

and h  assuming core and cladding guidance are shown in Table 2. 
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Table 2.  max as a function of inverse taper ratio – delineation curve II. 

0

r

r
 

Core guidance Cladding guidance 

11HE  
6 110  mf

−  
11LP  
6 110  mh

−  
max  

11HE  
6 110  mf

−  
12HE  
6 110  mh

−  
max  

1 5.86718 5.85633 0.10792 5.85621 5.85615 0.00059 

0.9 5.86566 5.85633 0.08351 5.85618 5.8552 0.00877 

0.8 5.86373 5.85633 0.05886 5.85614 5.8553 0.00668 

0.7 5.86176 5.85633 0.03778 5.85608 5.85498 0.00766 

0.6 5.85970 5.85633 0.02008 5.85598 5.8545 0.00883 

0.5 5.85769 5.85633 0.00673 5.85583 5.8537 0.01059 

0.4 5.85663 5.85633 0.00116 5.85555 5.85223 0.01321 

0.3    5.85496 5.84906 0.01761 

0.2    5.85326 5.84011 0.02617 

0.1    5.84435 5.79285 0.05125 

0.024    5.66167 4.86148 0.19112 

0.022    5.65265 4.73411 0.20477 

0.0208    5.62262 4.58326 0.21515 

0.0192    5.58849 4.41877 0.22351 

0.0176    5.54382 4.23679 0.22893 

0.0160    5.48497 4.09274 0.22169 
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The delineation curve plotted by using the larger of the max  values for core and cladding guidance 

at different values of inverse taper ratio, fitted to a polynomial 

( )5 4 3 21.21 3.13 3.05 1.72 0.574 0.094x x x x x− + − + − +  is shown in Fig. 2.4 (green curve). 

For the third family of modes (HE41) the solution can be obtained graphically by finding 

the intersection point of the left and right hand side of Eq. (2.6).  The calculated propagation 

constants f  and h  assuming core and cladding guidance are shown in Table 3.  The max  

values corresponding to different inverse taper ratios were fitted to a polynomial 

( )5 4 3 22.09 5.72 5.91 3.21 0.96 0.141x x x x x− + − + − +  as shown in Fig. 2.4 (yellow curve). 
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Table 3.  max  as a function of inverse taper ratio – delineation curve III. 

 

 

 

0

r

r
 

Core guidance Cladding guidance 

11HE  
6 110  mf

−  
11LP  
6 110  mh

−  
max  

11HE  
6 110  mf

−  
41HE  
6 110  mh

−  
max  

1 5.86718 5.85633 0.10792 5.85621 5.85545 0.00756 

0.9 5.86566 5.85633 0.08351 5.85618 5.85524 0.00841 

0.8 5.86373 5.85633 0.05886 5.85614 5.85495 0.00947 

0.7 5.86176 5.85633 0.03778 5.85608 5.85454 0.01072 

0.6 5.85970 5.85633 0.02008 5.85598 5.85389 0.01248 

0.5 5.85769 5.85633 0.00673 5.85583 5.85282 0.01497 

0.4 5.85663 5.85633 0.00116 5.85555 5.85087 0.01863 

0.3    5.85496 5.84465 0.03078 

0.2    5.85326 5.83466 0.03702 

0.1    5.84435 5.77144 0.07256 

0.024    5.66167 4.44795 0.28990 

0.022    5.65265 4.2447 0.31387 

0.0208    5.62262 4.0396 0.32769 

0.0192    5.58849 - - 

0.0176    5.54382 - - 

0.0160    5.48497 - - 
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Figure 2.4.   Delineation curves and the plot of cladding taper angle Ωcl as a function of 

inverse taper ratio for an adiabatic taper. 

 

 

In Fig. 2.4, the red, green, and yellow curves represent different delineation curves.  The 

red curve represents the delineation curve plotted by assuming h  to be the propagation constant 

of the LP11 mode under the cladding guidance condition. In contrast, the green and yellow curves 

represent the delineation curves plotted by assuming h  to be the propagation constant of the HE12 

and HE41 modes under the cladding guidance condition respectively.  For all values of inverse taper 

ratio, an adiabatic taper will have a taper angle cl  which is less than the delineation curves 

(red/green/yellow curves) whereas, for a non-adiabatic taper, the plot of the taper angle will pass 

above the delineation curve for at least some values of the inverse taper ratio.  The correct 

delineation curve is determined by experimental measurement of beat length, as described in the 

next section.  Previously in our lab the taper fiber puller system was designed for an adiabatic taper, 

and for such a taper the taper angle was calculated and is incorporated (orange curve) in Fig. 2.4.  
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A detailed discussion about fabrication of tapered fibers and calculation of taper angle cl  is 

provided in the next two sections. 

2. 2.  Fabrication of adiabatic and non-adiabatic tapers 

 

A sketch of a symmetric adiabatic tapered fiber is depicted in Fig. 2.5.  For a symmetric 

adiabatic tapered fiber, the taper transitions (downtaper and uptaper) are gradual and mirror images 

of each other about the center of the taper waist and hence the taper transition lengths are equal.  

Thus in an adiabatic tapered fiber, a single mode of the waist will be excited independent of the 

direction of propagation of light, provided no other perturbations such as a resonator’s WGM 

coupled to the fiber mode, are present. 

 

Figure 2.5.   Sketch of an adiabatic tapered fiber. 

 

 

 

The “flame brush” technique is used to fabricate tapered fibers in our lab.  A sketch of the 

fiber puller device used to fabricate both symmetric adiabatic and asymmetric non-adiabatic 

tapered fibers in our lab is shown in Fig. 2.6.  An optical fiber with its jacket removed is attached 

to the motorized translation stages A and B.  Underneath the stripped area of the fiber a hydrogen 

torch is installed on another motorized translation stage and the hydrogen flame continuously 
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brushes the stripped fiber along its length back and forth over a distance known as the brushing 

length .L   Much previous work has been done on fabrication and characterization of symmetric 

tapered fibers [11-14, 45-51].  In order to produce an asymmetric tapered fiber, stages A and B are 

pulled with different speeds, whereas an adiabatic tapered fiber is fabricated by pulling stages A 

and B with the same speed.  A sketch of an asymmetric tapered fiber is shown in Fig. 2.7 and a 

detailed explanation is given in the next section. 

 

Figure 2.6.   Fiber puller apparatus [52]. 

 

 

 
 

Figure 2.7.  An asymmetric taper with a non-adiabatic downtaper and an adiabatic 

uptaper. 

 

 

For an asymmetric tapered fiber as shown in Fig. 2.7, the taper transition on one side is 

abrupt whereas the other is gradual.  Thus, the tapered fiber is asymmetric about the center of the 
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taper waist, and hence the direction of propagation of light through the asymmetric tapered fiber 

needs to be defined.  If the light initially travels through a non-adiabatic downtaper, in addition to 

the fundamental fiber mode higher order fiber modes will be excited at the taper waist.  However, 

when propagating through the adiabatic uptaper the higher order fiber modes will be lost in the 

cladding. 

A non-adiabatic downtaper permits the light propagating down the waist to be multimode.  

Thus depending on the radius of the asymmetric tapered fiber, along with the fundamental mode 

different higher order fiber modes will be excited, which leads to beating of the modes.   Since we 

know the propagation constants of the various order fiber modes at any taper radius, it is possible 

to calculate the beat length using Eq. (2.4).  The calculated beat length for different taper radii is 

shown in Table 4, along with the measured beat length for three different asymmetric taper profiles. 

Table 4.  Beat length for various taper waist radii. 

Taper 

waist 

radius 

in µm 

Calculated beat length in µm 

2 2
.b

f h

z
 

  
= =

− 
 Measured beat length in µm 

 
HE11 and 

LP11 
HE11 and HE12 

HE11 and 

HE41 
Profile 1 Profile 2 Profile 3 

1.5 21.49 7.85 5.17 - 
20.08 

 

1.4 18.06 6.84 4.46 -  

1.3 15.76 6.04 3.97 - -  

1.2 13.47 5.37 - 
12.98 

- 
12.76 

1.1 11.48 4.80 - - 

 

For any taper profile, it is possible to measure the beat length by translating the point of 

fiber – microresonator contact along the waist of the asymmetric tapered fiber.  As mentioned 

earlier, when an asymmetric tapered fiber is used to couple light into a microresonator, the 

throughput spectral profile is no longer symmetric, and it depends on the relative strength and phase 

of the fiber modes as they couple into a single resonator mode.  Upon translating the point of 
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contact, the relative phase of the two fiber modes changes and hence the throughput profile changes 

periodically (from dip to peak or vice versa).  The distance which the fiber needs to be translated 

for the throughput profile to change from a peak or dip to the next peak or dip is defined as one 

beat length.  In our lab, for different asymmetric taper profiles, the average beat length of an 

asymmetric tapered fiber coupled microresonator system is measured by using a screw-gauge 

attached 3D stage to which the asymmetric taper is mounted.  The experimentally measured beat 

lengths for three different taper profiles are shown in Table 4 and all are consistent with HE11 and 

LP11 being the two fiber modes, and the waist radii are thus determined to be 1.16 µm, 1.47 µm, 

and 1.16 µm, for Profiles 1, 2, and 3 respectively. 

2. 3.  Asymmetric tapered fiber – model 

A schematic diagram of an asymmetric tapered fiber is shown in Fig. 2.7.  The radius of 

the untapered fiber and brushing length are represented by 0r  and L   respectively.  The 

assumptions for the model are as follows: 

a) The flame has a definite width and hence the heated region L  extends 0.260 mm beyond 

the flame brush length L  on each end. 

b) The end of the uniform waist is not at the limit of the heated region, but inside it by a 

distance that is inversely proportional to the pulling distance. 

The total length of the heated region is given by 

   2(0.260).L L = +  (2.11) 

Since the fiber is heated and pulled at the same time, the limit of the waist is recessed from the end 

of the heated region by a distance estimated to be 0.131 mmrec =  for the standard symmetric 

taper.  The length of the uniform waist is given by 
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1 2

26.88 26.88
,L L rec rec

p p

   
 = −  −    

   
 (2.12) 

where 1p  and 2p  represent the pull distances of the two stages.  (The number 26.88 mm is the pull 

distance for fabricating a symmetric tapered fiber of nominal radius1 μm ).  The taper transition 

lengths on each side are given by 

  1 1

1

26.88
,z p rec

p

 
= +  

 
 (2.13)  

  2 2

2

26.88
.z p rec

p

 
= +  

 
 (2.14) 

For any tapered fiber, in general, its radius in the transition region, ( ) ,r z can be written as  

 ( ) 2

0   ,

i

i

z

L
r z r e

−

=  (2.15) 

where iz  is the distance into the transition region from the untapered fiber and iL  is the length of 

the corresponding part of the taper waist.  For the full left side transition length 2z  Eq. (2.15) can 

be written as 

 

2

22

0   ,

- z

 L

wr r e=  (2.16) 

where wr  is the radius of the taper waist.  Similarly for the full right-side transition length 1 ,z  

 

1

12

0 .

- z

 L

wr   r  e=  (2.17) 

We assume that we have a uniform waist of length 1 2L L L = +  and hence 
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 1 2

1 2

.
z z

 L L
=  (2.18) 

The taper angle cl  is given by the following equation, 

 ( )
( )

( )
1

.
2

cl i

i

dr z
Ω z     r z

dz L
= =   (2.19) 

For the symmetric taper, 1 2 26.88 mm,p p p= = = 1 2 27.011 mm,z z z= = =  1 2 ,
2

L
L L


= =  and  the 

brushing length is 6.50 mm,L =   so the heated region length is  ( )6.50 2 0.260 7.02 mm.L = + =  

Since the distance from the heated limit to the end of the uniform waist is 0.131 mm, 

( )7.02 - 2 0.131 6.758 mm.L = =   Thus Eqs. (2.16) and (2.17) become, 

  
0   .

z

L
wr r e

−

=  (2.20) 

Since 27.011 mmz =  and 0 62.5 μm,r =  the radius of the waist is given by

  
0 1.16 μm.

z

L
wr r e

−

= =  

For the first asymmetric taper (Profile 1 in Table 5), 1 27.64 mmp = and 2 3.12 mm.p =   

Using Eq. (2.13) and Eq. (2.14), 1 27.77 mmz = and 2 4.25 mmz =  were calculated.  Since 

( )1 1
1 2 1

2 2

,
z z

L L L L
z z

= = −    

 

1

2

1
1

2

6.53
.

7.53
1

z

z
L L L

z

z

 
 
   = =

+
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Now the brushing length is 4.75 mm,L =  so ( )4.75 2 0.260 5.27 mm,L = + =  and 

26.88 26.88
5.27 0.131 0.131 4.01 mm.

27.64 3.12
L

   
 = − − =   

   
  Then 

 1

6.53
4.01 3.48 mm,

7.53
L = =   

and  

 

1

1

27.77

2 6.96
0 62.5 1.16 μm.

z

L

wr r e e

− −

= = =  

Before we proceed further, let us try to validate this asymmetric tapered fiber model.  To 

validate the model, we fabricate an asymmetric tapered fiber for a given set of parameters (Profile 

1: 1 27.64 mm,p =  2 3.12 mm,p =  4.75 mm,L =  1 3.48 mm,L =  2 0.53 mm,L =  1 21.77 mm,z =  

2 4.24 mmz = ) using an in-house taper puller system.  Later the same asymmetric tapered fiber is 

used to couple light into the microresonator, and the beat length is measured as explained in the 

previous section.  For Profile 1, the beat length was found to be 12.98 μm  and is recorded in Table 

4.  A beat length of 12.98 μm  suggests that 

a) the modes responsible for beating are HE11 and LP11 and hence the delineation curve of 

interest is the red curve shown in Fig 2.8. 

b) the radius of the fabricated asymmetric tapered fiber (estimated from Table 4 to be 1.16 

µm) is very close to that predicted by the asymmetric tapered fiber model ( 1.16 μm).wr =     

Using Eq. (2.19) the cladding taper angles for the adiabatic and non-adiabatic taper 

transitions of an asymmetric taper for Profile 1 are calculated and plotted along with the delineation 

curves in Fig. 2.8. 
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Figure 2.8.  Delineation curves and cladding taper angles plotted as a function of 

inverse taper ratio for an asymmetric tapered fiber with waist radius = 1.16 

µm. 

 

The red, green, and yellow curves represent the delineation curves.  The inverse taper ratio 

corresponding to the smallest taper angle in a delineation curve gives a rough estimate of the inverse 

taper ratio around which transition from core guidance to cladding guidance occurs.  For the blue 

curve in Fig. 2.8, the downtaper angles are above the minimum of the red delineation curve, which 

indicates that the downtaper will be non-adiabatic.  The orange curve representing the uptaper 

angles passes barely below the red delineation curve indicating that the uptaper is adiabatic.  Figure 

2.8 thus suggests that the fabricated asymmetric tapered fiber has a non-adiabatic downtaper 

(abrupt) and an adiabatic uptaper (gradual).  This can be compared to Fig. 2.4, which shows the 

taper angle and delineation curves for an adiabatic tapered fiber with the following set of 

parameters: 1 2 26.88 mm,p p= =  6.50 mm,L =  1 2  3.38 mm,
2

L
L L= = =  

1 2    27.01 mm,z z z= = = and 1.15 μm.wr =  
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Using Eq. (2.20) the cladding taper angles of asymmetric tapers for two different sets of 

parameters (Profile 2: 1 26.35 mm,p =  2 3.35 mm,p =  4.78 mm,L =  1 3.53 mm,L =  

2 0.59 mm,L =  1 26.48 mm,z =  2 4.40 mm;z =  Profile 3: 1 28.20 mm,p =  2 3.45 mm,p =  

4.74 mm,L =  1 3.55 mm,L =  2 0.56 mm,L = 1 28.32 mm,z = 2 4.47 mmz = ) are calculated. They 

are plotted along with the corresponding delineation curve in Fig. 2.9 and Fig. 2.10.  A summary 

of taper parameters for the three different taper profiles is shown in Table 5. 

 

Figure 2.9.  Delineation curve and taper angles plotted as a function of inverse taper 

ratio for an asymmetric tapered fiber with waist radius = 1.47 µm. 

 

 
 

Figure 2.10.  Delineation curve and taper angles plotted as a function of inverse taper 

ratio for an asymmetric tapered fiber with waist radius = 1.16 µm. 
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Table 5.  Summary of taper parameters for various taper profiles. 

Taper 

parameters 

Asymmetric tapered fibers Symmetric tapered fibers 

Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 

Brushing 

Length L  
4.75 mm 4.78 mm 4.74 mm 

6.50 

mm 
6.50 mm 6.50 mm 

Waist 

length 1L  
3.48 mm 3.53 mm 3.55 mm 

3.38 

mm 
3.38 mm 3.38 mm 

Waist 

Length 2L  
0.53 mm 0.59 mm 0.56 mm 

3.38 

mm 
3.38 mm 3.38 mm 

Taper 

transition 

length 1z  
27.77 mm 

26.48 

mm 

28.32 

mm 

27.01 

mm 

25.26 

mm 

27.01 

mm 

Taper 

transition 

length 2z  
4.24 mm 4.40 mm 4.47 mm 

27.01 

mm 

25.26 

mm 

27.01 

mm 

Radius of 

waist wr  
1.16 µm 1.47 µm 1.16 µm 1.15 µm 1.47 µm 1.15 µm 

 

 

In Fig. 2.8, the red, green, and yellow curves represent the delineation curves.  For the blue 

curve, the downtaper angles are above the minimum of the red, green, and yellow delineation 

curves, which indicates that in addition to the HE11, LP11, HE12 and HE41 modes are excited.  The 

blue curve in Fig 2.8 is farther away from the red curve, followed by the green, and yellow curve.  

This indicates that LP11 is strongly excited, followed by HE12 and HE41.  It is worth noting that the 

amount of power transferred from HE11 mode to LP11/HE12/HE41 is not linearly proportional to the 

distance between the red/green/yellow and blue curves shown in Fig. 2.8.  Among all the excited 

modes, LP11 will be the most excited mode, since the fiber sags slightly during the pulling [53] and 

hence there will be more power in LP11 compared to HE12 and HE41.  This agrees with our beat 
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length measurements shown in Table 4.  Previously it was shown that [42] by choosing a particular 

ratio of resonator size to the diameter of the tapered fiber, only the HE11 and LP11 modes can 

significantly interact with the WGMs of a microresonator and thereby the weak excitation of HE12 

and HE41 can be neglected.  Thus, when different asymmetric tapered fibers (Profile 1, Profile 2, 

Profile 3) are used to couple light into the microresonator, only two modes namely HE11 and LP11 

will interact with the WGMs of a microresonator.  

Non-adiabatic tapered optical fibers can be used as sensors themselves.  They have been 

used as refractive index sensors, biosensors, strain and temperature sensors, and magnetic field 

sensors [54-57]. 
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CHAPTER III 
 

 

THEORETICAL ASPECTS 

 

3. 1.  Simplified model  

 

A model which could precisely describe the behavior of WGMs inside a microresonator 

would consume vast computational resources and also would be very intricate as it would include 

a lot of parameters.  This complexity would only be compounded in a model that could also 

precisely treat the interaction between a WGM and multiple coupling-fiber modes.  Adding to all 

this, the ability to give a full description of the effects of an absorbing analyte, inside an HBR, 

interacting with the WGM, would make the model effectively intractable.  However, the behavior 

of a fiber-coupled microresonator-based dissipative sensor system can be explained adequately 

using a simplified model [58]. 

 Light from the single mode untapered fiber couples into two modes in the non-

adiabatic downtaper.  In this model, the two fiber modes are considered as two orthogonal 

(spatially, not in polarization) guided waves incident on the microresonator, having the same 

frequency but different propagation constants and thus a variable relative phase β.  The reflection 

and transmission coefficients of fiber-resonator input/output coupling are taken to be real and 

imaginary, respectively. 
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The amplitudes of the two incident fiber modes at the point where light gets coupled into the 

microresonator are given by 1  iE and 
2

i

iE e   respectively.  The total incident power will be 

proportional to the sum of the squares of these mode amplitudes.  The transmission coefficients of 

the two fiber modes are 1it  and 2it .  The two incident fiber modes couple into a single whispering 

gallery mode of the resonator as shown in Fig. 3.1, and the WGM couples out into both fiber modes.  

It is assumed that there is no intermode coupling in the adiabatic uptaper after the microresonator 

and only the first of the fiber modes, whose amplitudes are 1rE  and 2rE  after light couples out of 

the WGM, is captured as measurable throughput as shown in Fig. 3.1.      

The fact that energy needs to be conserved in such a process will induce some constraints 

on the coupling coefficients.  Coupling is assumed to be lossless and hence the coefficients have 

the following relationships. 

 2 2

1 1 1  1  , T t r= = −  (3.1) 

 2 2

2 2 2  1  ,T t r= = −  (3.2) 

where 1r  and 2r  represent reflection coefficients for the two fiber modes.  Energy conservation 

then says that 

 2 2 2

1 2 1 21           ,r t t T T− = + = +  (3.3) 

where r  is the internal reflection coefficient for the cavity mode and nT  is the transmissivity for 

mode n.  The transmissivities are assumed to be small, i.e.,   1.nT     
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Figure 3.1.   Non-adiabatic tapered fiber and a microsphere in contact.  The two fiber 

modes, fundamental (red) and higher order (blue) get coupled into a single 

whispering gallery mode.  The WGM couples out into both fiber modes.  

The higher order mode gets lost and only the fundamental mode is 

captured in the detector. 

 

 

We take 1iE  and 
2

i

iE e   to be the amplitudes of the two incident modes, with   their 

relative phase.  The relative phase   
will depend on the position of the microresonator along the 

taper waist of the fiber.  The intracavity WGM amplitude ,E  just after the input coupling point is 

given by 

 ( ) 2
1 1 2 2

0

     ,

n
L

i i

i i

n

E it E it E e re e


 
 −

=

 
= +  

 
  (3.4) 
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where n  represents the number of round trips, L represents the cavity round-trip length, L  is the 

intrinsic round-trip power loss, and   kL =  is the round-trip phase accumulation.  The throughput 

mode amplitudes can be then written as  

 2
1 1 1 1    ,

L

i

r iE r E it Ee e



−

= +  (3.5) 

 2
2 2 2 2    .

L

i

r iE r E it Ee e



−

= +   (3.6) 

Since we assume that no intermode coupling occurs in the second transition region, and that mode 

2 is lost while mode 1 gets captured by the fiber core, mode 2 ( )2rE  will be completely neglected 

from this point onwards.  We know that    

 2

0 2

1
    .

1  

n
L

i

L
n i

re e

re e







 −

−=

 
= 

  −

  (3.7)   

Hence the throughput amplitude of mode 1 can be written as 

 
( )2 2

1 1 1 2 2

1 1 1

2

  
    .

1  

L

i i

i i

r i L

i

t E t t E e e e
E r E

re e


 




−

−

+
= −

−

  (3.8) 

 

2 2
1 1 1 1 1 2 2

1

2

      

  .

1  

L L

i i i

i i

r L

i

r rr e e T E TT E e e e

E

re e

 
  




− −

−

 
− − − 

 
=

−

 (3.9) 

We evaluate to lowest order in the small quantities   1,    1,    1.nT L      So we can write 

 1 22
    

1      ,
2

L

i T T L
re e i


 


− + +

− = −  (3.10) 
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 2 12
1 1 1

    
         .

2

L

i T T L
r rr e e T i


 


− − +

− − = −  (3.11)  

Thus the throughput amplitude of mode 1 becomes 

 

2 1
1 1 2 2

1
1 2

    
     

2
  .

    
  

2

i

i i

r

T T L
i E TT E e

E
T T L

i







− + 
− − 

 
=

+ +
−

 (3.12)   

The relative throughput power in mode 1, or overall reflectivity ,R  is defined as 

2

1

1

,r

i

E

E
 so with 

2

1

:i

i

E
m

E
=  

 

2

2 1
1 2

1 2

    
    

2
  .

    
  

2

iT T L
i TT me

R
T T L

i











− + 
− − 

 
=

+ +
−

 (3.13) 

Note that, far off resonance ( ), 1 ,  1.nT L R  =   The corresponding resonant ( )0 =  dip 

depth is 1 .M R= −   Thus for 0, =  in the usual case where m is not too large, we have a 

Lorentzian dip in the signal on cavity resonance;   can be varied by translating the microresonator 

along the taper waist. When we have two modes incident, the dip for 0 =  can become a peak 

( )1R   for  =  and other values of   can make the feature asymmetric.  The resonant 

throughput power ( )  0 =  can be expressed as  

                    
( ) ( )

( )

2 2

1 2 1 2 1 2 1 2

0 2

1 2

      4   4      cos
  .

     

T T L TT m T T L TT m
R

T T L


  



− − + + − −
=

+ +
 (3.14) 
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In order to compare this theoretical model with the experiment, we need to know the values of 1 ,T   

2 ,T  ,L  and .m   So we are left with an interesting question, which is how to determine 1 ,T  2 ,T  

,L  and m  from the resonant throughput of an empty HBR (filled with solvent, if necessary, but 

no analyte) for   0 =  and/or   . =  

The probabilities of a photon from the cavity to couple to the fundamental fiber mode and 

the higher order fiber mode are given by 1T  and 2T  respectively and L  represents the loss due to 

scattering and absorption.  The sum of 1 ,T  2 ,T  and L  represents the total loss for a WGM.  The 

total loss can be determined by measuring the linewidth   of the mode.  The quality factor Q of 

this WGM is given by  

 
( )

2

1 2

4
   ,

    

na
Q

T T L

 

  
= =

+ + 
 (3.15) 

where   2 ,L a=  a being the radius of the resonator and n being the refractive index of the host 

medium of the resonator.  So the total loss can be written as 

 
2

1 2

4
      .

na
T T L

c

 



+ + =  (3.16) 

When   0, =  the throughput is given by 

 

2

1 2 1 2

00

1 2

      2
    .

    

T T L TT m
R R

T T L






 − − +
= =  

 + + 

 (3.17) 

When   , =  the throughput is given by 

 

2

1 2 1 2

0

1 2

      2
    .

    

T T L TT m
R R

T T L
 





 − − −
= =  

 + + 

 (3.18) 
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So, 

 
( )

( )
1 2 1 2

00 0 2

1 2

8     
   ,

    

T T L TT m
R R

T T L






− −
− =

+ +
 (3.19) 

 
( )

( )

2 2

1 2 1 2

00 0 2

1 2

2       8
   .

    

T T L TT m
R R

T T L






− − +
+ =

+ +
 (3.20) 

Now define  

 ( ) ( )
2

1 2 00 0

1
          4 ,

2
p T T L R R ab= + + − =  (3.21) 

 ( ) ( )
2 2 2

1 2 00 0

1
          4 .

2
q T T L R R a b= + + + = +  (3.22) 

with 1 2      ,a T T L= − −  
1 2  ,b TT m=  ( )

2
2 2 2 2 2 2  4 ,        4 .q a b q p a b= + − = −   Then 

  ,
4

p
b

a
=  so Eq. (3.22) becomes 

 
2

4 2       0.
4

p
a qa− + =  (3.23) 

Solving the above quadratic equation leads to the following result, 

                       ( ) ( )
2

2 2 2 2 2 2 2 2 21 1
    4    4     4    4 .

2 2
a a b a b a b a b

   = +  − = +  −    
 (3.24) 

To interpret this, first assume that 2 2  4 ,a b  and hence 
2 2 2 2 2 2  4     4    ,a b a b q p− = − = −   

 

( )2 2 2 2 2

2 2 2

1
    4     4 ,

2

1
       .

2

a a b a b

a q q p

 = +  −
 

 =  −
 

 (3.25) 
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The one with the negative sign can be neglected; it says ( )
2 2

1 2 1 2      4 ,T T L TT m− − =  but 1 ,T  

2 ,T  ,L  and m  are all independent.  So, 

 ( ) ( )
1

2

1 2 1 2 00 0 00 0

1
             4 ,

2
T T L T T L R R R R    − − =  + + + +

 
(3.26) 

with the sign being the same as the sign of p  or 00 0  .R R −  

Now if we assume that 2 2  4 ,a b  and hence 
2 2 2 2 2 2  4    4    .a b b a q p− = − = −

  

Then,   

                     ( ) ( )
1

2

1 2 1 2 00 0 00 0

1
             4 ,

2
T T L T T L R R R R    − − =  + + + −

 
 (3.27) 

with the sign being the same as the sign of 00 0  .R R −   Since we have two equations for  

1 2 ,T T L− −  we take a detour and explain how we decide which equation needs to be used. 

From Eq. (3.21) and Eq. (3.22), 

 ( ) ( )
2 2

1 2 00    2 .p q T T L R a b+ = + + = +  (3.28) 

Guided by experimental observations, consider a scenario where we have a dip and peak 

corresponding to 0 =  and  =  respectively, and the dip depth M increases as we increase L  

so that 
dM

d L
 is positive.   We know that dip depth 001M R= −  and hence 

 
( ) ( )

00 .
dRdM

d L d L 
= −  (3.29) 
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  The peak at  =  ensures that 00 0R R −  is negative and hence 

( ) ( )
2

1 2 00 0

1
      4

2
p T T L R R ab= + + − =  is negative.  b is positive since 1 ,T  2 ,T and m  are 

always positive.  So if p  needs to be negative, then a  has to be negative.  Using 00R  from Eq. 

(3.28) in Eq. (3.29),  

 
( )

( ) ( ) ( )

( )

2

1 2

3

1 2

2 2     2 2

.
    

da
a b T T L a b

dM d L

d L T T L




 

 
+ + + − + 

= − 
+ + 

 

 (3.30) 

In order to have a positive ,
dM

d L
 the term written inside the square bracket in the above equation 

needs to be negative.  If ( ) ( ) ( )
2

1 22 2 2 2 ,
da

a b T T L a b
d L




+ + +  +  the term in the square bracket 

will be negative.  1 2    T T L+ +  and ( )
2

2a b+  are always positive and 

( )

( )

( )
1 2    d T T Lda

d L d L



 

− −
=  is always negative under the assumed conditions.  This suggests that 

if  ( )2a b+  is positive then the term written inside the square bracket will be negative.  Now 

( )2a b+  is positive when 2b a  or 2 2  4 ,a b  so Eq. (3.27) with the minus sign is to be used 

for calculating 1 2 .T T L− −  

Since we now know 1 2    T T L+ +  and 1 2   ,T T L− −  we can calculate 1T  and 

2   T L+  by taking the sum and difference of  1 2    T T L+ +  and 1 2   .T T L− −   Since 

  ,
4

p
b

a
=  or 

 
( ) ( )

( )

2

1 2 00 0

1 2

1 2

      
  .

8    

T T L R R
TT m

T T L





+ + −
=

− −
 (3.31) 
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From the above equation, we can calculate 2

2 ,T m  since we know 1.T   From looking at Eq. (3.14), 

it can be inferred that for a solvent filled microresonator, 0R  can be calculated from 

1 2    ,T T L+ +  1 2   ,T T L− −  1 2 ,T T m  and .   Thus we don't need to find 2 ,T  ,L  and m  

separately. 

3. 2.  Theoretical analysis of absorption sensing based on fractional change in dip depth 

The sensing experiments described in this report are based on the fact that the resonance 

dip depth changes with the changes in intrinsic round trip loss due to the presence of the analyte.  

For a microresonator filled with solvent, the effective round trip loss is given by 

 .i sL L f L  = +  (3.32) 

Upon introducing analyte, the total effective intrinsic round-trip loss gets modified as 

      ,i s aL L f L f L L L      = + + = +   (3.33) 

where i  is the intrinsic loss coefficient of the microresonator which includes scattering, 

absorption, and radiation,  s  is the absorption coefficient of the solvent which contains the analyte 

in a typical sensing experiment, and a  is the absorption coefficient of the analyte.  For dye 

(SDC2072, H. W. Sands Corp.) sensing, methanol is used as the solvent.  Hence for dye sensing 

a  corresponds to the absorption coefficient of SDC2072 respectively.  f  is the evanescent 

(interacting) fraction of the WGM which interacts with the solvent and analyte. 

By analogy with Beer’s Law, the effect of analyte absorption on the resonant dip depth M   

is assumed to be 

 ( ) ( )   0 ,a effL

a aM M e


 
−

= =  (3.34) 
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where effL  is the effective absorption path length which can be negative.  So 

 
( )

( )  ,
a

eff a

a

dM
L M

d





=  (3.35) 

 

and  

 
( )

( )1
  .

a

eff

a a

dM
L

M d



 
=  (3.36) 

It is evident from Eq. (3.36) that a

dM
d

M
  and hence there is a linear dependence for small 

changes in .a  

The change in total round-trip intrinsic loss due to the change in analyte concentration is given by 

 ( )   .ad L fLd =  (3.37) 

Hence it follows that 

 
( )

1
  .

a

dM dM

d L fL d 
=  (3.38) 

So we can write 

 
( )

  .
a

dM dM
fL

d d L 
=  (3.39) 

For 0 =  and for , =  the dip depth M  is given by 01 R −  of Eq. (3.14): 
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( ) ( )

( )

2

1 2 1 2 1 2 1 2

2

1 2

4     4  4      cos
  .

     

T T L TT m T T L TT m
M

T T L

  



+ − − − −
=

+ +
 (3.40) 

If the change in dip depth is small, then 

 
( ) ( )

( ) ( ) ( ) 

2

1 1 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2 1 2

      2   3     L  cos1
,

              L  cos

T T T L TT m T T TT mdM

M d L T T L T T L TT m T T TT m

  

    

− − + + − −
=

+ + + − − − −
(3.41) 

and 

( ) ( )

( ) ( ) ( ) 

2

1 1 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2 1 2

      2   3     L  cos
.

              L  cos

T T T L TT m T T TT mdM
d L

M T T L T T L TT m T T TT m

  


   

 
− − + + − − 

=  
+ + + − − − −  

    (3.42) 

Thus, by combining Eqs. (3.39) and (3.41) an analytical expression for the change in dip depth with 

respect to change in analyte concentration for a WGM excited in a non-adiabatic tapered fiber 

coupled microresonator was derived.  Ideally, in order to quantify the enhancement in sensitivity, 

we need to know, for the same change in analyte concentration, how the dip depth of the same 

WGM will change if an adiabatically tapered fiber with the same waist radius (hence same 1T  and 

2T ) replaces a non-adiabatic tapered fiber. 

Consider a scenario where an adiabatic tapered fiber is used to couple light into and out of 

the resonator.  Only the fundamental mode of the fiber waist is excited and gets coupled into the 

resonator i.e.,  0,m→ and when the light gets coupled out, it can couple to higher order fiber modes 

as well as to the fundamental mode.  So when  0,m→  Eq. (3.41) becomes 

 
( )

( )( )
1 2

1 2 2

    
  .

       

T T LdM
d L

M T T L T L




 

− −
=

+ + +
 (3.43) 
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In the above equation, 
dM

M
 would be the fractional change in dip depth with an adiabatic tapered 

fiber of the same waist radius being used to couple light into and out of the microresonator.  In the 

limits of strong overcoupling ( )1 2   ,T T L +  or strong undercoupling ( )1 2   ,T T L +  the 

above equation becomes  

 
2

1 1
  .

  

dM

M d L T L 
=

+
 (3.44) 

Now from Eqs. (3.44) and (3.36), it follows that 

  

1 1
     .eff

a

dM dM fL dM
L fL

M d M d L M d L  
= = =  (3.45) 

Thus in the two limiting cases of strongly overcoupled and strongly undercoupled  

 
( ) max  mod

2

  .
  

eff one e

fL
L

T L
=

+
 (3.46) 

A lower limit for the sensitivity enhancement factor min  is therefore given by, 

 
( )

(   mod ) 2
min

 max  mode

2

  
     ,

  

eff for two e

eff one  

fL dM
L T L dMM d L

fLL M d L

T L






+
= = =

+

 (3.47) 

 
( ) ( ) ( )

( ) ( ) ( ) 

2

2 1 1 2 1 2 1 2 1 2

min 2

1 2 1 2 1 2 1 2 1 2

        2   3     L  cos
 = .

              L  cos

T L T T T L TT m T T TT m

T T L T T L TT m T T TT m

   


   

 + − − + + − −
 

+ + + − − − −
 (3.48) 
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If the WGM is not strongly under or over-coupled, then the actual sensitivity enhancement factor 

  is given by the ratio of 
dM

M
 for two modes, Eq. (3.41), to 

dM

M
 for (non-ideal) one mode, Eq. 

(3.43).           

( ) ( ) ( )

( ) ( ) ( ) 

2

2 1 1 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2 1 2

        2   3     L  cos
  .

              L  cos

T L T T T L TT m T T TT m

T T L T T L TT m T T TT m

   


   

 + − − + + − −
 

=
− − + − − − −

 (3.49) 

The above analysis for min  and   is expected to be true only when dM M  (linear regime) and 

.d L L   (The actual conditions are different, and will be discussed in the next chapter).  If the 

fractional change in dip depth is large (nonlinear regime), then the following analysis is preferred.  

The values of 1 ,T  2 ,T L+  and 2

1 2TT m  are calculated using the 00 ,R  0 ,R   and   

measurements made with just solvent inside the resonator.  Thus for a solvent filled microresonator, 

the dip depth M  of the WGM at 0 =  is calculated using Eq. (3.40).  Upon adding analyte of 

known concentration, the total effective round-trip loss increases and hence L  gets modified to 

.L   The corresponding dip depth is given by: 

                          ( )
( ) ( )

( )

2

1 2 1 2 1 2 1 2

2

1 2

4     4  4     
  .

     

T T L TT m T T L TT m
M L

T T L

 




 + − − − −
 =

+ +
 (3.50)  

It is worth recalling that 

      .i s aL L f L f L L L      = + + = +    

where .aL f L  =   Hence Eq. (3.50) can be written as   
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 ( )
( ) ( )( )

( )

2

1 2 1 2 1 2 1 2

2

1 2

4     4  4      
.

     

a a

a

T T L f L TT m T T L f L TT m
M L

T T L f L

   


 

+ + − − − + +
 =

+ + +
 (3.51) 

From Eq. (3.51), it is evident that one can determine the evanescent (interacting) fraction f  of the 

WGM, provided the absorption coefficient a  of the analyte, the circumference of the resonator 

,L  and ( )M L  are known.   

Consequently knowing f  and a  permits one to calculate the theoretical dip depth of the 

mode with a change in concentration of the analyte using Eq. (3.51).  Hence for the cases with 

significant change in dip depth,  

  

( ) ( )

( )
 .
M L M LM

M M L

 



 −
=

 
(3.52) 

The sensitivity enhancement factor at L  is given by the ratio of Eq. (3.52) to Eq. (3.43) assuming 

the one-mode response is linear.   

  

( ) ( )
( )

( )( )
1 2

1 2 2

      .

M L M LM
M LM

dM T T L
d L

M T T L T L

 







 

 −

= =
− −

+ + +

 (3.53) 

If the one-mode response is nonlinear, ( )L   is given by the ratio of Eq. (3.52) to the 0m →  

limit of Eq. (3.52).   

  ( )

( ) ( )
( )

( ) ( )
( )

0 0

0

.
m m

m

M L M L

M L
L

M L M L

M L

 


 

 



= =

=

 −

 =
 −

 (3.54) 
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The actual sensitivity enhancement factor   shown in Eq. (3.49), can be expressed in terms 

of two parameters, namely 00R  and 0 .R    To see this, let us revisit the expressions for 1 2T T L− −  

and 1 2 ,T T m  Eqs. (3.27), (3.31), and express them in terms of  1 2 :T T L+ +  

  ( )
1

2
1 2 1 2 00 0 00 0

1
2 .

2
T T L T T L R R R R    − − = − + + + −

 
 

In the above expression, the term inside the square root can be written as 

  ( )
1

1
2 2

2
00 0 00 0 0 0 0 00 12 .R R R R R R R R R    

  + − = − = − =
    

 

So the above expression for 1 2T T L− −  can be written as 

 ( )1 2 1 2 1

1
.

2
T T L T T L R − − = − + +  (3.55) 

We know that 1 2 1 2 12T T L T T L T + + + − − =  and ( ) ( )1 2 1 2 22 .T T L T T L T L  + + − − − = +   It 

follows that 

  
( )1 2

1 1

1
1 ,

2 2

T T L
T R

+ +  
= − 

 
 (3.56) 

and 

  
( )1 2

2 1

1
1 .

2 2

T T L
T L R




+ +  
+ = + 

 
 (3.57) 

Previously it was shown in Eq. (3.31)  

 
( ) ( )

( )

2

1 2 00 0

1 2

1 2

,
8

T T L R R
TT m

T T L





+ + −
=

− −
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So 

 
( ) ( )

( )

( )( )
2

1 2 00 0 1 2 00 0

1 2

1
1 2 1

,
1 4

8
2

T T L R R T T L R R
TT m

R
T T L R

  



+ + − + + −
= =

− 
− + + 
 

 

                           
( )( )( )

( )
( )1 2 0 00 0 00 1 2 2

1 2

0 00

.
44

T T L R R R R T T L R
TT m

R R

 



 + + + − + +
= =

−
 (3.58) 

where 2 0 00 .R R R= +  

Now let us substitute 1 2,  ,T T L+  and 
1 2TT m  in the 0 =  expression for ( )( ) Eq. 3.49  and in 

the 0 =  expression for ( )( ).E
1

q. 41  3.
dM

M d L
 

 

2 2

1 1 2 2 1 2
1

2 2
1 1 2 1 2

1 1

4 8 8 42 4 ,
1

2 4 16 16 8

R R R R R R
R

R R R R R


− −
+ + ++

= 
−

− − +

 

and 

 

2 2

1 1 2 2 1 2

2 2

1 2 1 21 2

1 1 4 8 8 4 .
1

4 16 16 8

R R R R R R

dM

R R R RM d L T T L 

 − −
+ + + 

=  
+ +  − − +

  

 

Upon simplifying the expressions for   and 
1 dM

M d L
 using the following relationships, 

( )
22 2

1 2 1 2 1 2 002 4 ,R R R R R R R+ − = − = 2 1 002 ,R R R− =  and ( )( )00 00 001 1 1R R R− = + −  we get  
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( )00 0

00

00 0 00

1
1 22 ,

1

R R R

R R R






− −

=
− −

 (3.59) 

and 

 
00

1 2 00

21 1
.

1

RdM

M d L T T L R 

 
=  

+ + −  

 (3.60) 

 

From Eq. (3.59) it is evident that the expression   consists of two factors; the first factor 

being 
( )00 0

00 0

1
1

2
R R

R R





− −

−
 and the second factor 00

00

2
.

1

R

R−
  Now let us take a close look at these 

factors. 

Using the approximations ( )00 0 00 0 00 0

1
1,  1,  1,

2
R R R R R R    −  −   the first factor 

becomes 

 
( )00 0

00 000 0

1
1

22 .

R R

R RR R





− −


−−

 (3.61) 

Similarly, using the same approximations the second factor becomes 

 
00 00 00 00

00 0000 00

2 1 2 2 4
.

11 1

R R R R

R MR R

+ +
 = 

−− +
 (3.62) 

Therefore  
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( )00 0

00

00 0 0000 0 00

1
1 2 2 42 .

1

R R R

R R MR R R






− −

= 
−− −

 (3.63) 

Let’s revisit the expression for ( )( )
1

 Eq. 3.41 .
dM

M d L
  Then we can write, 

( ) ( ) ( )

( ) ( ) 

2

1 2 1 1 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2

           2   3     L  cos
.

         L  cos

T T L T T T L TT m T T TT mdM

M d L T T L TT m T T TT m

   

   

+ + − − + + − −
=

+ − − − −
 

Upon substituting the above expression into Eq. (3.49), 

 2 1 2

1 2

.
T L T T L dM

T T L d L M

 


 

+ + +
=

− −
 (3.64) 

Now using the expressions 
( )

2

1 2

4 na
Q

T T L

 

  
= =

+ + 
 and 

2

1 2

4
,

na
T T L

c


 + + =   we can write 

 
1 2

,
d d L

T T L

 

 


=

 + +
 (3.65) 

and  

 
1 2

1 1
.

2

d Q
AQ

d L T T L nL

 

   


= = =

 + +
 (3.66) 

 

Substituting Eq. (3.65) back into Eq. (3.64), 

 
( )
( )

2 1 2 2

1 2 1 2

.

dM
T L T T L T LdM M

dT T L d L M T T L

  


  



+ + + +
= =

− − − −



 (3.67) 
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Thus  

 
( )
( )

2 1 2 2

1 2 1 2 00 0 00

2 4
.

dM
T L T T L T LdM M

dT T L d L M T T L R R M

  


  



+ + + +
= = 

− − − − −



(3.68)  

Since 2

1 2 00 0

2T L

T T L R R 





+


− − −
 and 

( )
( )

00

4
,

dM

M
d M








 Eq. (3.68) provides us a way to compare the 

dissipative sensing signal based on the fractional dip depth change to the signal based on the 

linewidth change. 

Now let us talk about the absolute sensitivity of an asymmetric tapered fiber coupled 

microresonator system with two modes incident on the microresonator and an ideal adiabatic 

tapered fiber 2( 0,T  smaller waist radius means different 1 )T T=  coupled microresonator system 

with a single mode incident on the microresonator.   In general, the absolute sensitivity of a tapered 

fiber-microresonator system will depend on the evanescent fraction f and the quality factor Q of 

the mode.  The absolute sensitivity is defined as the fractional change in dip depth as we change 

the analyte concentration.  For an asymmetric tapered fiber coupled microresonator system, with 

two modes incident on the microresonator, using Eqs. (3.60), (3.62), and (3.66), the absolute 

sensitivity 
1 dM

M d L
 is given by 

 
00

 mod 1 2 0000

21 1 4
.

1two e

RdM
AQ

M d L T T L MR 

  
=   

+ + −    

 (3.69) 

For the ideal adiabatic tapered fiber coupled microresonator system with a single mode incident on 

the microresonator, the dip depth M can be written as 
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( )

2

4
,

1

y
M

y
=

+
 

where .
L

y
T


=   Therefore, 

 
( ) ( )

3 2

4 1 1 4 1 1
,

1 11 1

dM dM dy y y y M x

d L dy d L T L y L xy y   

− − −
= = = =

+ ++ +
 (3.70) 

where .
T

x
L

=   Since
2

,i

nL
Q

L




=  Eq. (3.70) becomes 

 
 mod

1 1 1 1
.

1 1
i

one e

dM x x
AQ

M d L L x x 

− − 
= = 

+ + 
 (3.71) 

Since we know the absolute sensitivity 
1 dM

M d L

 
 
 

 with two modes input and with one mode input, 

let us find the condition for achieving equal sensitivity for both cases.  To have equal sensitivity, 

both 
1

,
dM

M d L
 with two mode input and with one mode input, need to be equal. Using Eq. (3.69) 

and Eq. (3.71), we can infer that for equal sensitivity, 

 
00 00

4 1 4
.

1
i

x
Q Q Q

M x M

+


−
 (3.72) 

It is worth noting for Eq. (3.71) to hold true, we need same 2 ,L a=  same wavelength ,  same 

refractive index ,n  and same evanescent fraction (interacting fraction) ,f  since .ad fd =   In 

the ideal case, with one mode incident on the microresonator, to have equal absolute sensitivity as 

compared to the multimode case the value of Qi needs to be approximately of the order of 109 which 

is difficult to maintain in fused silica without taking any extraordinary measures. 
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3. 3. Extended theory 

In the model explained above, even though the waist of the asymmetric tapered fiber can 

support many modes to propagate, it is assumed that there are two input modes of amplitudes 

( )1 or 2ijE j =  which couple into the microresonator mode with amplitude E  with coupling 

coefficients .jit   However with a proper design of an asymmetric tapered fiber with a non-adiabatic 

downtaper and adiabatic uptaper, it is possible to excite only the fundamental (HE11) and the first 

family of higher order modes (LP11) [59].  It is also assumed that light in the WGM of the 

microresonator couples out only to the two modes (HE11 and LP11) with the same coupling 

coefficients .jit   By aptly choosing the ratio of microresonator radius to the fiber waist radius, it is 

possible to have light from the WGM of a microresonator coupling only to the fundamental and the 

first higher order mode [42,44].   Furthermore, if there is any coupling into even higher order 

modes, it can be considered as an extra intrinsic loss.   Now the only assumption that remains is 

that the coupling coefficients for waist mode to resonator mode and resonator mode to waist mode 

are equal.   This assumption is often reasonable, but it’s not always true [58,60].  The effect of 

relaxing this assumption is explained below. 

Let us take the input and output coupling coefficients to be different.  Let the input coupling 

coefficients be ( )1 or 2jit j =  and the output coupling coefficients be ( )1 or 2 ,ji j =  and the jr  

represent the external reflection coefficients.  For the incident light,  

 2 2

1 1 1  1  ,T t r= = −   

 
2 2

2 2 2  1  .T t r= = −  

where 1T  and 2T  represents the input transmissivity of mode 1 and 2, respectively. 
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Now let us consider the light inside the microresonator.  It can undergo either an internal reflection, 

with an internal reflection coefficient ,r  or can get coupled out to the output modes of amplitudes 

,rjE  with outcoupling coefficients .ji   Then using energy conservation, 

 2 2 2

1 2 1 21 ,r T T   − = + = +   

where 
nT   represents the output transmissivity for mode n. 

The intracavity WGM amplitude ,E  just after the input coupling point is given by 

 ( ) 2
1 1 2 2

0

     ,

n
L

i i

i i

n

E it E it E e re e


 
 −

=

 
= +  

 
   

where n  represents the number of round trips, L  represents the cavity round-trip length, L  is the 

intrinsic round-trip power loss, and   kL =  is the round-trip phase accumulation.  The throughput 

mode amplitudes can be then written as  

 2
1 1 1 1    ,

L

i

r iE r E i Ee e



−

= +  (3.73) 

 2
2 2 2 2    .

L

i

r iE r E i Ee e



−

= +  (3.74) 

Since mode 2 is lost in the cladding, we neglect 2 .rE  

The throughput amplitude of mode 1 can be written as 

 
( ) 2

1 1 2 2

1 1 1 1

2

  
   + .

1  

L

i i

i i

r i L

i

it E it E e e e
E r E i

re e


 






−

−

+
=

−

  (3.75) 
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We evaluate to lowest order in the small quantities ,  <<1,   1,   1.n nT T L      Thus the 

throughput amplitude of mode 1 becomes 

 

1 2
1 1 1 1 2 2

1

1 2

2
.

2

i

i i

r

T T L
i TT E T T E e

E
T T L

i







  + +  − − − 
 
 

=
 + +

−

 (3.76) 

The throughput power, or overall reflectivity ,R  is defined as 

2

1

1

,r

i

E

E
 where 2

1

:i

i

E
m

E
=  

 

2

1 2
1 1 1 2

1 2

  
2

  .

2

iT T L
i TT T T me

R
T T L

i







  + +  − − − 
 
 

=
 + +

−

 (3.77) 

The resonant throughput power ( )  0 =  can be expressed as, 

     

( )

2

2

1 2 1 1 1 2 1 2 1 1 1 2

0 2

1 2

 2 4 4  2 cos

.

T T L TT T T m T T L TT T T m

R

T T L


  



          + + − − − + + −   
   

=
 + +

 (3.78) 

The above expression for resonant throughput power is once again in terms of three parameters 

namely 1 2 ,T T L + +  1 2 ,T T m  and 1 12 .T T    It is worth noting that we get Eq. (3.14) upon 

making the assumptions 1 1T T =  and 2 2.T T =  

The probabilities of a photon from the cavity to couple to the fundamental fiber mode and 

the higher order fiber mode are given by 1T   and 2T   respectively and L  represents the loss due 

to scattering and absorption.  So the total loss can be written as 
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2

1 2

4
      .

na
T T L

c

 



 + + =  (3.79) 

Now define  

 ( ) ( )
2

1 2 00 0

1
          4 ,

2
p T T L R R ab = + + − =  (3.80) 

 ( ) ( )
2

2 2

1 2 00 0

1
           4 ,

2
q T T L R R a b = + + + = +  (3.81) 

With 1 2 1 1  -  +  + 2 ,a T T L TT
   = − 
 

1 2  ,b T T m= ( )
2

2 2 2 2 2 2  4 ,        4 .q a b q p a b= + − = −  

Then   ,
4

p
b

a
=  so Eq. (3.81) becomes 

 
2

4 2       0.
4

p
a qa− + =  (3.82) 

Solving the above quadratic equation leads to the following result, 

( ) ( )
1

2

1 2 1 1 1 2 00 0 00 0

1
-  +  + 2          4 .

2
T T L TT T T L R R R R  
       − =  + + + −    

 (3.83) 

Since   ,
4

p
b

a
=  or 

 
( ) ( )

2

1 2 00 0

1 2

1 2 1 1

      
  .

8  +  + 2

T T L R R
T T m

T T L TT





 + + −
 =

   − − 
 

 (3.84) 

Thus knowing the linewidth ,  00 ,R  and 0R   allows us to compute 1 2 ,T T L + +  1 2 ,T T m  and 

1 12 TT   and hence the resonant throughput power. 
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For 0 =  and for , =  the dip depth M  is given by 01 :R −

( ) ( ) ( )
( )

22
2

1 2 1 2 1 1 1 2 1 2 1 1 1 2

2

1 2

      +  + 2  4 + 4  +  + 2  cos

    

.
T T L T T L TT T T m T T L TT T T m

M

T T L

   



         + + − − − −

=
 + +

   (3.85)           

Let 1 1 2    ,a T T L = + +  1 1 2 1 1 +  + 2 ,b T T L TT  = −  2 2

1 1 24 ,f T T m=  and 

1 1 2 1 1 1 24  +  + 2  cos .d T T L TT T T m 
    = − 
 

 

If the change in dip depth is small, then 

  
( )( )

( )
1 1 1 1 1

22
1 1 1 1

1 2
.

b f b f adM

M d L a a b f

 − − −
=  

− −  

 (3.86) 

Substituting 0m =  in the above expression allows us to determine the fractional change in dip 

depth for the same additional loss that would be found using a tapered fiber of same waist radius, 

but with only the fundamental mode incident on the microresonator. 

  
( )1 1 1

2 2

1 1 1

1 2
.

b b adM

M d L a a b

 − 
=  

− 
 (3.87) 

The sensitivity enhancement factor is found by taking the ratio of absolute value of Eq. (3.85) with 

arbitrary m to Eq. (3.86) with 0.m =   Thus, 

  

( )( )

( )
( )

1 1 1 1 1

22

1 1 1

1 1 1

2 2

1 1

.

b f b f a

a b f

b b a

a b



− − −

− −
=

−

−

 (3.88) 
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Now let us express Eq. (3.88) in terms of 00R  and 0 .R    We will find the same result as 

before, Eq. (3.63).  Let us start by writing Eq. (3.83) and (3.84) in terms of 00R  and 0 .R   

  ( )
1

2
1 1 00 0 00 0 1 1

1 1
4 ,

2 2
b a R R R R a R 

 = + − =
 

 (3.89) 

where 
1 0 00 .R R R= −  

  
( )1 00 0 1 2

1

1

,
2 2

a R R a R
f

R

−
= =  (3.90) 

where 2 0 00 .R R R= +   Substituting Eq. (3.90) and (3.89) in Eq. (3.88), we get 

  

( )

( )

2 2
2 11 1 2 2

2

1 2

2

1 1

2

1

22

4 4 4 4

4

4 .
2

4
4

4

R RR R R R

R R

R R

R



−
− + +

− −

=
−

−

 (3.91) 

Upon simplifying the Eq. (3.91) using the following relationships, 

2 2

1 2 1 2 00 2 1 002 4 ,  2 ,R R R R R R R R+ − = − = and ( )( )00 00 001 1 1R R R− = + −  we get 

  
( )00 0

00

00 0 00

1
1 22 .

1

R R R

R R R






− −

=
− −

 (3.92) 

3. 4.  Model predictions – simulated results  

For the same arbitrary waist radius, the throughput spectra of non-adiabatic and adiabatic 

tapered fibers coupled to a microresonator are simulated using Wolfram Mathematica.  The input 



67 
 

parameters for the model 00 0,   ,R R   and   are obtained by making measurements on the mode 

of interest.  For the asymmetric tapered fiber coupled microresonator system, the model calculates 

the throughput dip depth using Eq. (3.40) and plots the throughput spectrum.    For a given set of 

parameters ( )00 00.8,  1.20,  and 33.6 MHzR R  = =  =   the values of 1 ,T  2 ,T L+  and 2

2T m  

were calculated using Eq. (3.16), (3.27), and (3.31) and were found to be 

4 4 2 4

1 2 25.01 10 ,  6.13 10 ,  and 6.13 10 .T T L T m− − −=  + =  =    Using the values of 

2

1 2 2,  ,  and T T L T m+  the theoretical dip depth with methanol inside the resonator was calculated 

using Eq. (3.40) and was found to be 0.2.  The corresponding throughput spectra at 0 and  =  

calculated are shown in Fig. 3.2 (a) and Fig. 3.2 (b).   According to Eq. (3.50), the dip depth varies 

with the concentration of analyte solution inside the resonator.  For any predetermined analyte 

concentration, ( )M L  is experimentally measured.  Knowing ( )M L  and a  allows us to 

determine f  in such a way that the experimental measurement matches well with the predicted 

dip depth using Eq. (3.51). 

              

Figure 3.2.  Throughput spectrum (a) at β = 0, M = 0.2 and (b) at β = π, M = -0.2. (no 

analyte.) 
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Now, with the analyte, the dip depth and throughput spectrum given by the model for a set 

of parameters 

-1

00 0

m
0.8,  1.2,  0.4 nM 0.4 ,  0.25 

nM
aR R f 

 
= = =  = 

 
 are shown in Fig. 3.3.  

 

Figure 3.3.  Throughput spectrum at β = 0 for 0.4 nM solution, M(α’L) = 0.323. 

 

From Figs. 3.2 (a) & 3.3, it is evident that dip depth changes with increasing analyte concentration 

for the given set of parameters.  Thus 

  
( ) ( )

( )

0.323 0.200
0.615 61.5%,

0.200

M L M LM

M M L

 



 − −
= = = =  

and using Eq. (3.42), 

  0.668 66.8%.
dM

M
= =  
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Repeating a similar procedure for various predetermined analyte concentrations allows us to find 

the value of f  by averaging the values found at different concentrations.    

For a symmetric tapered fiber coupled microresonator system, with the same values of 

1 2,  ,T T L+  and 2

2 ,T m the model calculates the dip depth by substituting m and β = 0 in Eq. (3.40) 

and plots the throughput spectrum. The simulated throughput spectrum is shown in Fig. 3.4.     

 

Figure 3.4.  Throughput spectrum of an adiabatic tapered fiber coupled methanol filled 

microresonator system, M = 0.989. 

 

For an analyte concentration of 0.4 nM, with 0.25f =  the dip depth and throughput spectrum 

given by the model are shown in Fig. 3.5. 
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Figure 3.5.  Throughput spectrum for 0.4 nM solution, M(α’L) = 0.981. 

Thus, 

  
( ) ( )

( )
30.981 0.989

8.1 10 ,
0.989

M L M LM

M M L

 



−
 − −

= = =   

and 

  
( )

( )( )
1 2 3

1 2 2

    
7.21 10 .

       

T T LdM
d L

M T T L T L




 

−
− −

= = 
+ + +

 

 

It is worth noting that with both asymmetric and symmetric tapered fibers being used to couple 

light into and out of the microresonator, as we get into the nonlinear regime,
M

M


 is no longer equal 

to .
dM

M
  A detailed analysis of this behavior will be explained in the next chapter. 
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CHAPTER IV 
 

 

METHODOLOGY AND RESULTS  

 

4. 1.  Introduction 

 

This chapter validates the theoretical framework put forward in Chapter III.  Specific 

details about the experimental setup and dip depth measurement for dye absorption sensing using 

asymmetric and symmetric tapered fibers are described in section IV. 2.  Section IV. 3 provides 

details about the measurement of the absorption coefficients of methanol and dye.  Preliminary 

results which show the agreement between the theoretical dip depth and measured dip depth are 

shown in section IV. 4.   

In section IV. 5, detailed analysis of the experiment performed using an asymmetric 

(Profile 1) and symmetric tapered fiber (Profile 1) is presented.  Section IV.5 is further divided into 

six subsections.  The first subsection (IV. 5. a) explains how the interacting fraction f of the mode 

of interest is determined.  Knowing the interacting fraction f of the mode allows us to calculate the 

theoretical fractional change in dip depth and thereby allows us to compare the experimental 

fractional change in dip depth to the theoretical prediction.   
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The second subsection (IV. 5. b) explains how the fractional change in dip depth varies as 

a function of analyte concentration when an asymmetric tapered fiber of arbitrary waist radius is 

used to couple light into and out of the microresonator.  The theoretical and experimental values of 

fractional change in dip depth are plotted as a function of analyte concentration and the slopes of 

the curves are determined.   

The third subsection (IV. 5. c) describes the fractional change in dip depth when a 

symmetric taper of the same arbitrary waist radius is used to couple light into and out of the 

microresonator.  Once again, the theoretical and experimental values of fractional change in dip 

depth are plotted as a function of analyte concentration and the slopes of the curves are determined.  

The experimental enhancement factor is determined by taking the ratio of experimental slope with 

the asymmetric taper to the experimental slope with the symmetric taper.   

In general, dissipative sensing can be studied by monitoring the change in linewidth or the 

change in resonant throughput dip depth.  The dip depth based dissipative sensing signal is 

predicted to be more sensitive than linewidth based dissipative sensing by a factor which is 

approximately equal to 
00

4

M
  where 00M  is the methanol dip depth.  In the fourth (IV. 5. d) and 

fifth (IV. 5. e) subsections the two dissipative sensing signals are compared.  Subsection IV. 5. d 

explains the change in linewidth as we increase the analyte concentration when an asymmetric 

tapered fiber of arbitrary waist radius is used to couple light into and out of the microresonator. The 

theoretical and experimental values of fractional change in linewidth are plotted as a function of 

analyte concentration and the slopes of the curves are determined.  From IV. 5. b and IV. 5. d, since 

we know the slope of fractional change in dip depth versus analyte concentration, and the slope of 

fractional change in linewidth versus analyte concentration, we can take the ratio of the slopes and 

then compare it to the predicted value of 
00

4
.

M
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Subsection IV. 5. e describes the fractional change in linewidth when a symmetric taper of 

the same arbitrary waist radius is used to couple light into and out of the microresonator.  The 

linewidth and its fractional change should be the same for the symmetric taper as for the asymmetric 

taper.  The theoretical and experimental values of fractional change in linewidth is plotted as a 

function of analyte concentration and the slopes of the curves are determined.  Once again, the ratio 

of the slopes of fractional change in dip depth versus analyte concentration (from section. IV. 5. b), 

and fractional change in linewidth versus analyte concentration (from section. IV. 5. e) is compared 

to the predicted value of 
00

4
.

M
  

 In the last subsection (IV. 5. f) the absolute sensitivity of the asymmetric tapered fiber 

coupled microresonator system is compared with the absolute sensitivity of an ideal adiabatic 

tapered fiber coupled microresonator system where a single mode is incident on the microresonator.  

This shows that equivalent sensitivity can be achieved in the multimode input case with a WGM 

of much smaller Q.   

Section 1V. 6 provides a summary of an experiment performed using an asymmetric 

(Profile 2) and a symmetric tapered fiber (Profile 2).   This section is also further divided into six 

subsections. 

Section 1V. 7 provides a summary of an experiment performed using an asymmetric 

(Profile 3) and a symmetric tapered fiber (Profile 3).  Similar to sections IV. 5 and IV. 6, this section 

is also further divided to six subsections.  A summary of all the experimental results are provided 

in a Table at the end of this chapter.  
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4. 2.  Experimental setup for sensing absorption in dye  

 An illustration of the experimental setup for dye absorption sensing is shown in Fig. 4.1.  

A tunable diode laser (New Focus, model number: 6328) spanning a wavelength range from 1508 

nm to 1580 nm is used as the light source.  A function generator FG (Wavetek, model 395) is used 

to scan the laser in frequency.  Before the light passes through a set of waveplates (WP), the beam 

passes through an anamorphic prism (AP) and an optical isolator (OI).  The waveplates are used to 

select WGMs of one polarization.  A fiber coupler (FC) is used to couple light into the tapered fiber 

and a fiber isolator is used to prevent any back reflections arising from the tapered fiber. The light 

then travels through the tapered fiber and couples in and out of the microresonator. The signal is 

extracted at the other end of the tapered fiber and fed into a Newport detector (model 818-IR).  The 

power meter (Newport, model 2832-C) attached to the detector is coupled to an oscilloscope 

(Tektronix, model TDS 2022B) that is triggered by the synchronization output of FG.  A typical 

off – resonant throughput power, essentially equal to the input power, was about 500 µW. 

 

 

Figure 4.1.  Illustration of the experimental setup for dye absorption sensing. 
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Initially, an asymmetric tapered fiber with a non-adiabatic downtaper and an adiabatic 

uptaper was used to couple light into and out of the microresonator.  After the light from the 

asymmetric tapered fiber was coupled into a resonator filled with methanol, analyte (dye) at 

predetermined concentrations was added to the methanol and changes in WGM dip depths were 

recorded at β = 0.  Then the asymmetric tapered fiber was replaced by a symmetric tapered fiber of 

the same waist diameter and for the same WGM, changes in dip depth with different analyte 

concentrations were recorded and processed. 

According to our model, a huge enhancement is predicted for a WGM which changes from 

a small dip to a small peak upon translating the microresonator along the asymmetric tapered fiber.  

Hence our mode of interest in general has a dip depth less than 15%.  To detect any change in dip 

depth of a WGM whose dip depth is less than 15% a better resolution of the signal is preferred.  In 

our case, a better signal resolution is achieved by using the ac coupling setting on the oscilloscope.  

The ac coupling setting on the scope enables us to remove the dc component of the signal and helps 

us in improving the resolution of the signal measurements.     

Based on the model, when the asymmetric tapered fiber is replaced by a symmetric tapered 

fiber of the same waist radius, the throughput spectrum corresponding to the mode of interest 

becomes very close to that of critical coupling (dip depth corresponding to 100%) and the fractional 

change in dip depth will be very small.  In order to detect any change in the dip depth, we must be 

looking at the bottom of the dip and hence our oscilloscope needs to be in the most sensitive vertical 

(voltage) scale, which in our case is 2 mV. 

In order to collect better data, the liquid inside the microresonator had to stay stationary 

and hence horizontal alignment of the microresonator was preferred.  Both tapered fibers were 

mounted 90  to the HBR as shown in Fig. 4.2.  A diligent effort was made to avoid tilt of the 

tapered fibers with respect to the equatorial plane of the HBR.  A tightly capped plastic vial was 
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used as the reservoir for the analyte.  The two ends of HBR are connected to the reservoir and the 

analyte inside the reservoir was pushed through the HBR using a syringe feed at the top of the 

analyte reservoir. 

 

 

Figure 4.2.   Illustrating the horizontal alignment of the resonator.  The tapered fiber 

(marked in red) is mounted 90ο relative to the resonator. 

 

 

4. 3.  Measuring absorption coefficient of dye 

In this section, detailed information about measuring the absorption coefficient of the dye 

is presented.  The absorption coefficient of SDC 2072 dye in methanol was measured at three 

different wavelengths – 1550, 1530 nm, 1565 nm.    
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In order to find the absorption coefficient of dye ( )a  in methanol, one should know the 

absorption coefficient of methanol ( )s  at 1550 nm.  The experimental details for determining s  

at low power is discussed below. 

  Light from the diode laser is coupled into a fiber-optic patch cord.  The other end of the 

patch cord is connected to a collimator.  The schematic diagram for the path of light through a 

cuvette filled with methanol is shown in Fig. 4.3.  The optical power of collimated input light was 

measured to be 1 0.9540 μWP =  right before the cuvette.  A detector is kept right after the cuvette 

to collect the light coming through the cuvette of 4 mm thickness.  The cuvette has a wall thickness 

of 1 mm on both sides.  Hence light travels a distance 2 mmL =  through methanol in the cuvette.      

The light encounters four boundaries namely air-glass, glass-methanol, methanol-glass, glass-air 

before reaching the detector.  At each boundary, some light will be reflected and some transmitted.  

Hence the transmittance at each boundary was calculated and accounted for while calculating the 

measured absorption coefficient of methanol.  Transmittance at the air-glass boundaries is 0.9500, 

whereas transmittance at the glass-methanol interfaces is 0.9929.  An optical output power of  

0.1471μWdP =  was detected. 

 

 

Figure 4.3.   Path of light through a cuvette filled with methanol. 
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Using Beer-Lambert’s law, we can write 

 
4 3

sL
P Pe

−
=   (4.1) 

where 3P  and 4P  represent the power before and after the methanol within the cuvette.  Knowing 

the values of incident power 1 ,P  transmittance at the two boundaries, and the output power dP  

allows us to compute 3P  and 4 .P   The power after the first and the second boundary is given by 

2 10.9500P P=  and 3 20.9929P P=  respectively.  Since we know the detected power ,dP  the power 

at the fourth and third boundary is given by 5
0.95

dP
P =  and 5

4
0.9929

P
P =  respectively.  Knowing 

the values of 4 3,  ,P P  and L  allows us to compute the absorption coefficient of methanol.  Using 

Eq. (4.1) the absorption coefficient of methanol was found to be -18.7636 cms =  at 1550 nm.  In 

order to determine ,a  dye solutions of predetermined concentrations were added to methanol and 

the corresponding optical power dP  was detected.  Upon adding dye solution Beer-Lambert’s law 

can be written as 

 
( )

4 3 ,s a L
P P e

 − +
=  (4.2) 

where 3P  and 4P  represent the power before and after the methanol within the cuvette.  Thus 

 4

3

1
ln .a s

P

L P
 

  
= − +  

   

 (4.3) 

A similar procedure was carried out at the other two wavelengths, where there was 

no measurable change in ,s  and a  was plotted as a function of concentration of dye.  A 

plot of a  versus analyte concentrations at 1550 nm is shown in Fig. 4.4. 
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Figure 4.4.  Absorption coefficient of dye versus dye concentration at 1550 nm. 

 

 

It was found that for the given dye, the absorption coefficient increases linearly with 

concentration of dye.  Hence a  at low concentrations can be found by extrapolating the 

measurements made at high concentrations.   The slope of the curve in Fig. 4.4 is 
1cm

4.02 .
μM

−

  The 

slope was found to be 
1cm

4.00 
μM

−

 for the other wavelengths (1535 nm and 1565 nm).  Therefore at 

low concentrations the absorption coefficient of dye a  was found approximately to be 

-1
1 m

4 10  .
nM

−   It is worth noting that these measurements were made at low powers and hence we 

are not saturating the absorption of methanol.  In reality, the intensity of light inside the HBR is 

high and hence the methanol absorption is strongly saturated.  Hence the measurement of s  and 

a  was performed at high input power (5.41 mW) and lenses were used to focus light into the 

cuvette and to the detector.  The methanol absorption coefficient was found to be 12.2 ms
−=  

which suggests that the methanol absorption is getting saturated.  In spite of the solvent saturation, 

a  for the dye remains unchanged, showing that the analyte absorption is independent of solvent 

saturation, and that the analyte absorption saturation is negligible. 



80 
 

4. 4.  Preliminary experimental results  

A typical experimental setup was shown in Fig. 4.1.  A thin-walled HBR with a wall 

thickness of 5-10 μm and outer radius of 175 µm is made and is glued to an HBR stand.  The light 

from the tunable diode laser is frequency scanned and a mode which changes from dip to peak upon 

translating the microresonator along the tapered fiber is selected.  Preliminary experimental results 

using an asymmetric tapered fiber (Profile 1) with a non-adiabatic downtaper and an adiabatic 

uptaper to couple light into and out of the microresonator are shown in Fig. 4.5. 

 

Figure 4.5.  Throughput spectra corresponding to different analyte concentrations with 

an asymmetric tapered fiber being used to couple light into and out of the 

microresonator; upward shift indicates increasing analyte concentration; 

bottom trace for methanol only, showing a small throughput peak at β = π. 

 

The mode of interest is highlighted in Fig. 4.5.  It is evident from Fig 4.5 that the dip depth 

of the mode of interest increases with increasing analyte concentration.  Initially, with methanol 

inside the resonator, measurements gave the following values: dip depth 0.0949,M = linewidth 

22.1 MHz, =   00 0.905,R =  and 0 1.02.R  =   From those parameter values, 2

1 2 2,  ,  T T L T m+    
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and dip depth were calculated.  Upon introducing analyte (0.015 nM), the dip depth changes.  The 

dip depth corresponding to each analyte concentration was recorded and fitted to the model using 

Eq. (3.51) with the interacting fraction f of the mode being the fitting parameter.  The interacting 

fraction f of the mode was calculated to be 0.28 by averaging all the fitting parameters.  Knowing 

the interacting fraction f allows us to calculate the corresponding theoretical dip depth for each 

analyte concentration using Eq. (3.51) which is then compared with the experimentally measured 

dip depth.  It was found that the experimental dip depth agrees well with the calculated (theoretical) 

dip depth for the highlighted mode in Fig. 4.5. The fact that the dip depth predicted by the model 

agrees with the experimental dip depth allows us to be very optimistic about our model predictions 

even though we could not demonstrate the enhancement experimentally at this point.  Hence, our 

results are preliminary.  The results demonstrating experimental enhancement will be described in 

the next section.  A summary of other preliminary experiments is shown in Table 6. 

Table 6.  Summary of preliminary experimental results. 

00R  0R   f Predicted enhancement factor 

0.905 1.020 0.280 686 

0.890 1.030 0.070 483 

0.920 1.040 0.188 798 
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4. 5. Profile 1:  Experimental results and analysis for sensing dye absorption   

Introduction 

A detailed analysis of an experiment performed using an asymmetric (Profile 1) and 

symmetric tapered fiber (Profile 1) is presented below.  The detailed analysis consists of three parts.  

The first part (steps a, b, and c) compares the experimental enhancement to the predicted theoretical 

enhancement whereas the second part (steps d and step e) compares the two dissipative sensing 

signals, one based on fractional change in dip depth and the other one based on the fractional change 

in linewidth.  The third part (step f) compares the absolute sensitivity of the asymmetric tapered 

fiber coupled microresonator system to an ideal adiabatic tapered fiber coupled microresonator 

system.  The steps involved in the analysis are as follows: 

a. Determination of interacting fraction f of the mode of interest. 

b. For the asymmetric tapered fiber coupled microresonator system using the 

interacting fraction determined in step a, the theoretical fractional change in dip 

depth is calculated and later compared with the experimental measurements.  The 

theoretical and experimental values of fractional change in dip depth are plotted as 

a function of analyte concentration and the slopes of the curves are determined. 

c. Now for the symmetric tapered fiber coupled microresonator system, the 

procedures followed in step b are repeated.  The theoretical and experimental 

values of fractional change in dip depth are plotted as a function of analyte 

concentration and the slopes of the curves are determined.  The experimental 

enhancement factor is calculated by taking the ratio of slopes of the experimental 

curves explained in steps b and c. 

d. The two dissipative sensing mechanisms are compared in steps d and e:  For the 

asymmetric tapered fiber coupled microresonator system, the theoretical fractional 
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change in linewidth is calculated and later compared with the experimental 

measurements.  The theoretical and experimental values of fractional change in 

linewidth are plotted as a function of analyte concentration and the slopes of the 

curves are determined. 

e. Now for the symmetric tapered fiber coupled microresonator system, the 

procedures followed in step d are repeated.  The theoretical and 

experimental values of fractional change in linewidth are plotted as a 

function of analyte concentration and the slopes of the curves are 

determined.   

f. Comparison of the absolute sensitivity of an asymmetric tapered fiber 

coupled microresonator system where multiple modes are incident on the 

microresonator to the absolute sensitivity of an ideal adiabatic tapered fiber 

coupled microresonator system where a single mode is incident on the 

microresonator. 

 

4. 5. a:  Determining the interacting fraction f of the mode of interest 

In this subsection, we present detailed information regarding determining the interacting 

fraction f of the whispering gallery mode of interest.  The throughput spectra of a tapered fiber 

coupled HBR system are shown in Fig. 4.6.    A typical HBR used in the experimental results 

presented in this section and the following two sections has an outer radius of 90 µm and a wall 

thickness of 15 µm. With an asymmetric tapered fiber ( )1.16 μmwr =  used to couple light, WGMs 

which show a dip at 0 =  and peak at , =  and also an increase in dip depth with increasing 
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analyte concentration were the modes of greater interest for these sensing experiments.  A detailed 

analysis for the whispering gallery mode highlighted in Fig. 4.6 is given below.   

 

 

  

Figure 4.6.   Throughput spectra with asymmetric and symmetric tapered fiber of same 

waist radius, rw = 1.16 µm.  (a) With asymmetic tapered fiber - upward 

shift indicates increasing analyte concentration; bottom trace for methanol 

only, β = π.  (b)  With symmetric tapered fiber –  oscilloscope screenshot 

showing the mode of interest;  the red line indicates zero voltage and the 

mode is very close to critical coupling. 

 

Initially, with methanol inside the resonator, measurements gave the following values: dip 

depth 00 0.035 0.002,M =   linewidth 13.52 0.76 MHz, =   00 0.965 0.002,R =   and 

0 1.073 0.002.R  =    From those parameter values, 1 ,T  2 ,T L+  2

1 2 ,TT m  and dip depth 00M  were 

calculated.    Values of the dip depth 
00M  and the peak height 

0R   that agree with the measured 

values were calculated by substituting the values of 
1 2,  ,T T L+  and 2

2T m  into Eq. (3.40) with 

0 =  and  =  respectively.  Based on the input parameters ( )00 0,  ,  ,R R    the enhancement 

in sensitivity predicted by the model using Eq. (3.63) was 2135 ± 132.  Upon introducing analyte, 

the dip depth increased.  The dip depths corresponding to different analyte concentrations were 
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recorded and fitted to the model using Eq. (3.51) with the interacting fraction f of the mode being 

the fitting parameter.  The values of f for various concentrations which gave the best fits to the 

experimental data are tabulated and shown in Table 7.  The interacting fraction f  of the mode was 

calculated to be 0.062 by averaging all the fitting parameters shown in the table.   

Table 7.  Fitting parameter f for various concentrations. 

 

Concentration in nM Fitting parameter f 

0.02 0.062 

0.06 0.060 

0.08 0.061 

0.11 0.066 

0.15 0.063 

 

4. 5. b:  Dip depth using asymmetric tapered fiber: Theoretical and experimental results 

 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, we explain both theoretically and experimentally how the fractional 

change in dip depth varies as a function of analyte concentration.  The theoretical and experimental 

fractional changes in dip depth are plotted as a function of analyte concentration and the slopes of 

the curves are determined.      

The theoretical dip depth of the mode was calculated by substituting the interacting fraction 

0.062,f =  and  
-1m

0.4  
nM

a =  in Eq. (3.51).  The theoretical dip depth ( )M L   calculation for 

an analyte concentration of 0.06 nM is shown below.  It is worth recalling that upon adding analyte 

the effective intrinsic loss increases according to the following relation:
 

      .i s aL L f L f L L L      = + + = +   
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For 0.06 nM 6 70.062 0.06 0.4 2 3.14 90 10 8.41 10

a

a

f L

L f L


  − − = =       =   and the 

corresponding dip depth is given by the following equation, 

 ( )
( ) ( )

( )

2

1 2 1 2 1 2 1 2

2

1 2

4     4  4      
  ,

     

T T L TT m T T L TT m
M L

T T L

 




 + − − − −
 =

+ +
  

where 4

1 1.12 10 ,T −=  4 7 4

2 2 1.18 10 8.41 10 1.19 10 ,aT L T L f L   − − −+ = + + =  +  =   and 

2 8

1 2 1.51 10 .TT m −=    Thus the theoretical value of dip depth for an analyte concentration of 0.06 

nM was found to be 0.049 and the corresponding experimental value was 0.049  0.002.   Hence 

the theoretical and experimental values for fractional change in dip depth 
M

M

 
 
 

 are given by 

 
0.049 0.035

0.400.
0.035theory

M

M

 − 
= = 

 
 

 
exp

0.049 0.035
0.400.

0.035t

M

M

 − 
= = 

 
 

A similar analysis is done for the other dye concentrations and the results are tabulated in 

Table 8.  The corresponding theoretical 
dM

M
 values for various analyte concentrations are found 

using Eq. (3.51) and are also tabulated in Table 8.  Throughout the experiment, there are 

uncertainties associated with every measurement.  In our experiment, the main source of 

uncertainty comes from the finite thickness of the oscilloscope trace which arises from the noises 

within the system (mechanical noise + detector noise + amplifier noise). 
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Table 8.  Summary of dip depth results.  Asymmetric tapered fiber.  Profile 1, f = 0.062. 

 

Concentratio

n in nM 

Measured dip 

depth 

Mexpt 

Theoretical 

dip depth 

Mtheory 

Percent error 

exp

0.01

t the

the

M M

M

−
 

exp t

M

M

 
 
 

 
theory

M

M

 
 
 

 
theory

dM

M

 
 
 

 

Methanol 

0.035  

±  

0.002 

00M  

0.035 0 

0  

±  

0.065 

0 0 

0.02 

0.039  

±  

0.002 

0.039 0 

0.114  

±  

0.081 

0.135 0.135 

0.06 

0.049  

±  

0.002 

0.049 0 

0.400  

± 

0.084 

0.402 0.406 

0.08 

0.053  

±  

0.002 

0.054 1.9 

0.514  

±  

0.086 

0.536 0.541 

0.11 

0.062  

±  

0.002 

0.061 -1.6 

0.771  

±  

0.092 

0.734 0.744 

0.15 

0.071  

±  

0.002 

0.070 -1.4 

1.02 

 ±  

0.099 

0.996 1.01 

 

 

With the asymmetric taper of waist radius 1.16 µm (Profile 1) being used to couple light 

into and out of the resonator, the fractional change in dip depth is plotted as a function of 

concentration of analyte as shown in Fig. 4.7.  The three curves correspond to the last three columns 

of Table 8, with error bars reflecting the uncertainties in the experimental results. 
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Figure 4.7.   Fractional change in dip depth plotted as a function of analyte 

concentration with the asymmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

 

In Fig. 4.7, the green curve represents the best fit to the experimental data points whereas  

the orange and red curves represent the theoretical models.  It is worth recalling that the dip depth, 

1 ,M R= −  is found by measuring the throughput power ( )R  which is collected on the detector.  

The mode of interest shown in Fig. 4.6(a) has a small dip depth ( )0.065M =  and hence 0.935.R =   

As we increase the analyte concentration, note that ,R M =   so even if 
M

M


 is large, 

R

R


 will 

be small and the experimental data 
M

M


 will depend linearly on the concentration.  The slope and 

y-intercept of the linear fit were found to be 6.92 0.68  and 0.01 0.05   using a Python program, 

which incorporates the experimental error while performing the linear fit.  The orange curve 

M
theory

M

 
− 

 
 represents the theoretical fractional change in dip depth allowing for nonlinear 

change in dip depth as a function of concentration and the red curve 
dM

theory
M

 
− 

 
 represents the 

theoretical fractional change in dip depth assuming linear change in dip depth as a fucntion of 
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concentration.  It is worth noting that 
M

M


 and 

dM

M
 corresponding to various analyte 

concentrations were calculated using Eq. (3.52) and Eq. (3.41) in Chapter III and were subsequently 

fitted to a linear curve.  The slope of  the 
M

theory
M


−  curve was found to be 6.64 0.003,  and 

the slope of the 
dM

theory
M

−  curve was found to be 6.74 0.007.   At low concentrations, since 

,
M dM

M M


=  the theoretical curves lie on top of each other whereas at higher concentrations 

M

M


 

may no longer be equal to .
dM

M
  The experimental curve (green) lies on top of both theoretical 

curves well within the error limits suggesting  that our experiment agrees well with the theory. 

4. 5. c:  Dip depth using symmetric tapered fiber: Theoretical and experimental results 

 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, we explain both theoretically and experimentally how the fractional change 

in dip depth varies as a function of analyte concentration.  The theoretical and experimental 

fractional changes in dip depth are plotted as a function of analyte concentration and the slopes of 

the curves are determined.  At the end of this subsection, the experimental enhancement factor is 

calculated and compared with the theoretical prediction (2135 ± 132).   

In order to experimentally demonstrate enhancement in absorption sensing, instead of an 

asymmetric tapered fiber a symmetric tapered fiber of approximately the same waist radius (1. 15 

µm) is used to couple light into and out of the HBR filled with methanol.  When an asymmetric 

tapered fiber is replaced by a symmetric tapered fiber, the throughput spectrum for the same mode 

highlighted in Fig. 4.6 (a) becomes very close to critical coupling as shown in Fig. 4.6 (b).  The 

linewidth of the corresponding mode is measured and found to be 13.36 ± 0.15 MHz.  In order to 

detect any change in the dip depth, we must be looking at the bottom of the dip as we add the known 
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analyte concentrations to the HBR filled with methanol.  While detecting the change in dip depth, 

the oscilloscope needs to be set on the most sensitive vertical (voltage) scale, which in our case is 

2 mV as shown in Fig. 4.8.  

 

Figure 4.8.  Oscilloscope screenshot showing the bottom of the dip (methanol only). 

 

For the oscilloscope Tektronix TDS 2022B, the maximum voltage offset which can be 

added to the signal is 2 volts.  The power of the laser beam is adjusted in such a way that the mode 

of interest has a dip corresponding to 2 volts.  It is worth noting that in Fig. 4.6 (b), for the mode 

of interest the whole dip corresponds to 2 V.  In order to see the bottom of the dip, an offset voltage 

is introduced, and the bottom of the corresponding dip is shown in Fig. 4.8.  

Once the voltage offset knob was adjusted to see the bottom of the dip, analytes of known 

concentrations were added to the HBR and the change in voltage and hence in dip depth were 

recorded.  Since the scope is set on the most sensitive scale, the bottom of the dip seen on the scope 

is prone to fluctuations due to changes in fiber-HBR coupling resulting from the air currents and 

vibrations.  Hence, for methanol and other analyte concentrations, while measuring the change in 
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dip depth, a diligent effort was made to record the deepest fluctuation.  After recording the deepest 

fluctuation for the largest analyte concentration (0.6 nM for the case under consideration), the 

oscilloscope was set back to its intial vertical scale where the whole dip corresponds to 2V and the 

linewidth corresponding to the largest analyte concentration was measured.  For very low 

concentrations the change in dip depth ( )dM  is assumed to be linear with respect to change in 

analyte concentrations.  For very low concentrations, the change in dip depth is not mesaurable.  

For high concentrations, the change in dip depth is nonlinear.  The least measurable M  is 0.4 ± 

0.2 mV.  For 0.6 nM the change in dip depth 
3 32.8 10 0.1 10

M

M

− −
=     was recorded.  The results 

are tabulated in Table 9. 

Table 9. Summary of dip depth results. Symmetric tapered fiber.  Profile 1, f = 0.062. 

 

 

With a symmetric taper of approximately the same waist radius (1.15 µm) being used to 

couple light into and out of the resonator, the fractional change in dip depth from Table 9 is plotted 

Concentration in 

nM exp t

M

M

 
 
 

 
theory

M

M

 
 
 

 
theory

dM

M

 
 
 

 

0 0 0 0 

0.4 3 31.6 10   0.1 10− −    31.8 10−  31.3 10−  

0.55 3 32.4 10   0.1 10− −    32.7 10−  31.7 10−  

0.6 3 32.8 10  0.1 10− −    33.0 10−  31.9 10−  
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as a function of analyte concentration and is shown in Fig. 4.9.  Again,the error bars represent the 

experimental uncertainties. 

 

Figure 4.9.   Fractional change in dip depth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

 

In Fig. 4.9, the green curve represents the best fit to the experimental data points whereas 

the orange and red curves represent the theoretical curves.  Once again the best fit is performed by 

using a Python program.  As shown in Fig 4.6 (b), the mode of interest is close to critical coupling 

and hence has a dip depth M  greater than 0.96 and hence 0.04.R    Upon increasing the analyte 

concentration, even if 
M

M


 is small, 

R

R


 may be large, so  a quadratic fit ( )2ax bx c+ +  is 

performed where 0.00327 0.00156, 0.00265 0.00092, 0.000001 0.00010.a b c=  =  =   The 

orange curve 
M

theory
M

 
− 

 
 which is also a quadratic fit 

( )0.00277 0.00023,  0.00336 0.00002,  0.000009 0.000003a b c=  =  =   represents the 

theoretical fractional change in dip depth assuming nonlinear change in dip depth as a function of 

concentration and the red curve 
dM

theory
M

 
− 

 
 represents the theoretical fractional change in dip 
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depth assuming linear change in dip depth as a fucntion of concentration.  The slope and y-intercept 

of the linear fit were found to be 0.0032 0.000001  and 0.00000 0.000001.   It is worth noting 

that 
M

theory
M


−  curve is calculated by using Eq. (3.52) with m = 0 and 

dM
theory

M
−  curve is 

calculated using Eq. (3.42).  For very low concentrations, 
M dM

M M


=  and hence the theoretical 

curves lie on top of each other in the linear regime whereas at high concentrations 
M

M


 is no longer 

equal to .
dM

M
  At low concentrations, the experimental curve lies on top of the theoretical curves 

whereas at  high concentration, the experimental curve follows the trend of the 
M

theory
M


−  curve.  

This suggests that our experiment agrees well with the theory.  The next paragraph explains how 

the experimental enhancement factor is calculated.   

Before we calculate the experimental enhancement factor let us remind ourself that the 

predicted enhancement factor is 2135 ± 132.  In addition, from subsection 1V. 5. b,  the slope of 

fractional change in dip depth versus analyte concentration curve (green curve in Fig. 4.7) with an 

asymmetric tapered fiber of waist radius 1.16 µm was found to be 6.92 ± 0.68.  Also from the above 

paragraph, we know that at low concentrations the slope of of fractional change in dip depth versus 

analyte concentration (green curve in Fig. 4.9) with a symmetric tapered fiber of approximately 

same waist radius 1.15 µm was found to be 0.00265 ± 0.000920.  At low concentrations, the 

experimental enhancement factor can be calculated by taking the ratio of the slopes of the green 

curves shown in Figs. 4.7 and 4.9.  Thus the experimental enhancement is 

6.92 0.68
2616 945.

0.00265 0.000920


 


  It is worth recollecting that the predicted enhancement is 

dependent on the values of 00R  and 0 .R     A slight error  in measuring 00R  and 0R   due to the 

system noise will lead to an uncertainty in the predicted enhancment factor calculated by the model.  
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For example, if there is 0.2 % error in measuring 00R  and 0 ,R    then the predicted enhancment will 

be 2135 132.   Once again the uncertainty in experimental enhancement factor arises from the 

finite thickness of the oscilloscope trace which arises from the noises within the system (mechanical 

noise + detector noise + amplifier noise).  Thus the experimental enhancement agrees with the 

theoretical enhancement within the limits of uncertainty.  

4. 5. d:  Linewidth using asymmetric tapered fiber: Theoretical and experimental results 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, we explain both theoretically and experimentally how the fractional 

change in linewidth varies as a function of analyte concentration.  Knowing the slopes of the plots 

of fractional change in dip depth versus analyte concentration (from subsection IV. 5. b) and 

fractional change in linewidth versus analyte concentration (from subsection IV. 5. d), will allow 

us to compare the two disspative sensing mechanisms, i.e, dip depth sensing to linewidth sensing.  

It is worth remembering that from Eq. (3.68),  

 
( )
( )

2

1 2 00 0 00

2 4
,

dM
T L M

dT T L R R M








+
= 

− − −



 

where 2

1 2 00 0

2T L

T T L R R 





+


− − −
 and 

( )
( )

00

4
.

dM

M
d M








  Since the initial dip depth of the mode of 

interest (just filled with methanol) 00 0.035 0.002,M =   the predicted value of 
00

4
114.3 6.5.

M
=    

Thus for the same analyte concentration, the fractional change in dip depth is predicted to be 

approximately two orders of magnitude more sensitive than the fractional change in linewidth.   
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With the asymmetric tapered fiber being used to couple light into and out of the methanol-

filled microresonator, the linewidth   was found to be 13.52 0.76 MHz.   Using Eq. (3.16), 

 ( )1 22
    .

4

c
T T L

na
 


 =  + +  

Since the linewidth is linearly proportional to the total loss, as we increase the analyte concentration 

the effective intrinsic loss L  increases which in turn increases the total loss and the linewidth. It 

is worth recalling that upon adding analyte the effective intrinsic loss increases according to the 

following relation:
 

      ,i s aL L f L f L L L      = + + = +   

where .aL f L  =   Knowing the interacting fraction f and the absorption coefficient of the dye 

a  allows us to determine the theoretical linewidth.  The theoretical linewidth is calculated using 

the following procedure. 

For 0.02 nM 6 70.062 0.02 0.4 2 3.14 90 10 2.80 10

a

a

f L

f L


 − −=       =   and the 

corresponding theoretical linewidth is given by 

 ( ) ( )1 22
    ,

4

c
L T T L

na
  


  =  + +  (4.1) 

where 4

1 1.12 10 ,T −=  ( ) 4 7 4

2 2 1.18 10 2.80 10 1.183 10 ,aT L T L f L   − − −+ = + + =  +  =   

8 m
3 10  ,

s
c =   1.44,n =  and 690 10  m.a −=    Thus the theoretical value of linewidth for an 

analyte concentration of 0.02 nM was found to be 13.54 MHz and the corresponding experimental 
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value was 13.65 0.69 MHz.   Hence the theoretical and experimental value for fractional change 

in dip depth 
d 



 
 
 

 are given by, 

 313.54 13.52
1.48 10 .

13.52theory

d 



− − 
= =  

 
 

 3

exp

13.65 13.52
9.62 10 .

13.52t

d 



− − 
= =  

 
 

A similar analysis is done for the other dye concentrations and the results are tabulated in 

Table 10.  
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Table 10.  Summary of linewidth results. Asymmetric tapered fiber. Profile 1, f = 0.062. 

 

Concentration 

in nM 

Measured 

linewidth in 

MHz 

exp t  

 

Theoretical 

linewidth in 

MHz 

theory  

Percent error 

exp
100

t the

the

 



 − 



 

exp t

d 



 
 
 

 
theory

d 



 
 
 

 

Methanol M  13.52 ± 0.76 13.52 0 20 7.9 10−   0 

0.02 13.65 ± 0.69 13.53 0.88 

3

2

9.6 10

7.6 10

−

−

 


 47.3 10−  

0.06 13.73 ± 0.48 13.57 1.17 

3

2

1.6 10

6.6 10

−

−

 


 33.6 10−  

0.08 13.76 ± 0.54 13.59 1.25 

2

2

1.8 10

6.9 10

−

−

 


 35.2 10−  

0.11 13.81 ± 0.48 13.69 1.47 

2

2

2.1 10

6.6 10

−

−

 


 36.6 10−  

0.15 13.95 ± 0.30 13.64 2.27 

2

2

3.1 10

6.0 10

−

−

 


 38.8 10−  

 

 

With the asymmetric taper of waist radius 1.16 µm (Profile 1) being used to couple light 

into and out of the resonator, the fractional change in linewidth is plotted as a function of 

concentration of analyte and is shown in Fig. 4.10.  The two curves in Fig. 4.10 correspond to the 

last 2 columns of Table 10, with the error bars reflecting the uncertainties. 
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Figure 4.10.   Fractional change in linewidth plotted as a function of analyte 

concentration with the asymmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

In Fig. 4.10, the green curve represents the best fit to the experimental data points whereas 

the red curve represents the theoretical curve.  The theoretical curve is calculated by using Eq. (4.1).  

Since the linewidth is linearly proportional to the total loss a linear fit is performed to the 

experimental data points and theoretical values .  For the green curve, the slope and y-intercept of 

the fit were found to be 0.188 ± 0.553 and 0.003 ± 0.052.  whereas for the red curve the slope and 

y-intercept were found to be 0.061 ± 0.019 and 0.00009 ± 0.0019.  The huge uncertainty in 

experimental slope arises from the uncertainty in measuring the linewidth which in turn arises from 

the system noise.  The experimental points agree well with the theoretical values with in the error 

limit.  The best fit (linear fit) is performed by using a Python program, which incorporates the 

experimental error while performing the linear fit.  It is also worth noting that throughout the 

analysis, proper error propagation is followed.  For example, the initial linewidth was measured to 

be 13.52 ± 0.76 MHz and for a concentration of 0.02 nM, the linewidth was measured to be 13.65 

± 0.69 MHz.  Upon following proper error propagation, the fractional change in linewidth 

0.0096 0.0759.
d 




= 


  A similar procedure is followed for other analyte concentrations and the 

results are tabulated in Table 10.   
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With the asymmetric taper being used to couple light into and out of the microresonator, 

since we know the slope of the experimental fractional change in dip depth versus analyte 

concentration from Fig. 4.7 (6.92 ± 0.68), and the slope of experimental fractional change in 

linewidth versus analyte concentration from Fig. 4.10 (0.188 ± 0.553), we can take the ratio of the 

slopes and thereby compare the dip depth sensing signal to the linewidth sensing signal 

experimentally as shown below.  The ratio of the slopes is 

 
( )
( )

6.92 0.68
36.9 109.

0.188 0.553

dM

M
d 




= = 

 



 

It is worth recollecting that the theoretical prediction for 
( ) 00

4
114.3 6.5.

dM

M
d M



 = 




  Thus the 

experimental results agree with the theoretical results within the limits of uncertainty. 

4. 5. e:  Linewidth using symmetric tapered fiber: Theoretical and experimental results 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, we study the fractional change in linewidth as a function of analyte 

concentration.  Irrespective of whether we use an asymmetric or symmetric tapered fiber of the 

same waist radius, the predicted change in linewidth of the mode of interest will be the same for 

the same change in analyte concentration.  It is worth remembering that with the symmetric taper 

being used to couple light into and out of the microresonator, we measure the linewidth only twice, 

once with zero analyte concentration (just with methanol inside microresonator) and again at the 

highest concentration which is 0.6 nM for the case under consideration.  Knowing the slope of the 

plot of fractional change in dip depth versus analyte concentration with the asymmetric taper of 

waist radius 1.16 µm being used to couple light into and out of the microresonator (from subsection 
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IV. 5. b) and the slope of linewidth versus analyte concentration with a symmetric tapered fiber of 

approximately the same waist radius (from subsection IV. 5. e) will allow us to compare the two 

dissipative sensing mechanisms. 

With the symmetric taper being used to couple light into and out of the methanol – filled 

microresonator, the initial linewidth of the mode was found to be 13.36 ± 0.15 MHz.  Ideally one 

would expect the linewidth to be the same as with the asymmetric taper.  But in reality up to a 10% 

difference in linewidth is acceptable since we can’t be sure that the asymmetric and symmetric 

tapers fabricated in our taper puller system have exactly the same waist radius.  For an analyte 

concentration of 0.6 nM, the linewidth of the mode was found to be 13.93 ± 0.21 MHz. 

A plot of fractional change in linewidth 
( )d 






 as a  function of analyte concentration 

with the symmetric taper being used to couple light into and out of the microresonator is shown in 

Fig. 4.11. 

 

Figure 4.11.   Fractional change in linewidth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 
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In Fig 4.11, the green curve represents the best fit to the experimental data points whereas 

the red curve represents the theoretical model.  For the green curve, the slope and y-intercept of the 

best fit are given by 0.072 0.033  and 0.000 0.033.   For the red curve, the slope and y-intercept 

are given by 0.06 and 0.00.   

With the asymmetric taper being used to couple light into and out of the microresonator, 

since we know the slope of the experimental fractional change in dip depth versus analyte 

concentration from Fig. 4.7 (6.92 ± 0.68), and the slope of experimental fractional change in 

linewidth versus analyte concentration from Fig. 4.11 (0.072 ± 0.033), we can take the ratio of the 

slopes and thereby compare the dip depth sensing signal to the linewidth sensing signal 

experimentally as shown below:  

 
( )

6.92 0.68
97 46.

0.072 0.033

dM

M
d 




= = 

 



    

It is worth recollecting that the theoretical prediction for 
( ) 00

4
114.3 6.5.

dM

M
d M



 = 




  As shown 

in subsection IV. 5. d, with the asymmetric tapered fiber being used, 

dM

M
d 







 was found to be 36.9 ± 

109 and with the symmetric taper being used, 

dM

M
d 







 was found to be 97 ± 46.  It is worth noting 

that for the range of concentrations (0 – 0.15 nM) shown in Table 10, with the asymmetric taper 

being used to couple light into and out of the microresonator, the measured fractional change in 

linewidth is smaller than the uncertainty in measuring the fractional change in linewidth and this 
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accounts for the large uncertainty (±109). With the symmetric tapered fiber being used to couple 

light into and out of the microresonator, since the linewidth is measured at higher concentration (0 

and 0.6 nM), the measured fractional change in linewidth is smaller than the uncertainty in 

measuring fractional change in linewidth and this accounts for the smaller uncertainty (±46).  In 

both cases, the experimental value found for 
( )

dM

M
d 







 with asymmetric and symmetric tapered fiber 

agrees well with the theory within the error limits.  In addition, it is worth noting that there can be 

some uncertainty in the concentration.  But this uncertainty is more of a scale factor and arises from 

the uncertainty in making the intial dye solution. 

4. 5. f:  Absolute sensitivity 

In this subsection, instead of dip depth sensitivity enhancement we will compare the 

absolute senstivity of an asymmetric tapered fiber microresonator system with multiple modes 

incident on the microresonator to an ideal adiabatic tapered fiber coupled microresonator system 

where a single mode is incident on the microresonator.  It is worth remembering that “ideal” refers 

to a fiber waist radius that is not equal to that in the multimode case, but is chosen in such a way 

that Q can be as large as possible.  As discussed before in Chapter III, for the two tapered fiber 

coupled microresonator systems (asymmetric tapered fiber coupled and ideal adiabatic tapered fiber 

coupled),for equal absolute sensitivity,  

   
00 00

4 1 4
,

1
i

x
Q Q Q

M x M

+


−
 

where Qi refers to the intrinsic quality factor and x refers to the ratio of outcoupling loss to effective 

intrinsic loss.  When the mode excited with a single mode input is strongly undercoupled or 

overcoupled, then Eq. (3.72) becomes 
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 ( )
min

00

4
.iQ Q

M
 (4.2) 

Since 
00

4 4
114.3

0.035M
= =  and 71.43 10 ,Q =   then using Eq. (4.2), 

( ) 7 9

min
1.43 10 114.3 1.64 10 .iQ =   =    An intrinsic quality factor of the order of 109 is near the 

limit of what can be achieved in fused silica without taking extraordinary measures.  It is worth 

noting that, if the mode excited using ideal adiabatic tapered fiber is not strongly undercoupled or 

overcoupled, then for absolute sensitivity to be equal, the value of iQ  needs to be greater than 

91.64 10  for the case under consideration. 

A summary of a set of experiments (like the one described above) performed using Profile 

1, which validate our model predictions, is provided at the end of this chapter in Table 11.  The 

next two sections provide a brief summary of similar experiments performed using Profile 2 and 

Profile 3. 

4. 6. Profile 2:  Summary of experimental results and analysis for sensing dye absorption      

Introduction 

The summary of an experiment performed using an asymmetric (Profile 2) and symmetric 

tapered fiber (Profile 2) is presented below.  Similar to section IV. 5, this section is divided into six 

subsections.  Even though the steps described in the introduction part of section IV. 5 are followed 

while performing the analysis in section IV. 6 and IV. 7, we provide only minimum relevant 

information (such as the values of 00 0 00, , ,R R M   and the slopes of the experimental curves) for 

comparing the experimental and theoretical enhancement factors, the two dissipative sensing 

signals, and the absolute sensitivity with the model predictions. 
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4. 6. a:  Determining the interacting fraction f of the mode of interest 

In this subsection, we present the values of the input parameters for our model, the initial 

dip depth and linewidth of the mode of interest, and the interacting fraction f of the whispering 

gallery mode of interest. The throughput spectra of asymmetric and symmetric tapered fiber 

coupled HBR systems are shown in Fig. 4.12 (a) and Fig. 4.12 (b).  Initially, with methanol inside 

the resonator, measurements gave the following values: dip depth 00 0.073 0.002,M =   linewidth 

21.55 0.62 MHz, =   00 0.927,R =  and 0 1.030.R  =   Based on the input parameters 

( )00 0, ,R R   the enhancement in sensitivity predicted by the model was 1020 ± 38.  The dip depth 

corresponding to each analyte concentration was recorded and fitted to the model with the 

interacting fraction f of the mode being the fitting parameter.  The interacting fraction f of the mode 

was calculated to be 0.110 by averaging all the fitting parameters. 

  

Figure 4.12.   Throughput spectra with asymmetric and symmetric tapered fiber of same 

waist radius, rw = 1.47 µm.  (a) With asymmetic tapered fiber – upward 

shift indicates increasing analyte concentration; bottom trace for methanol 

only, β = π.  (b)  With symmetric tapered fiber –  oscilloscope screenshot 

showing the mode of interest;  the red line indicates zero voltage and the 

mode is very close to critical coupling. 
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4. 6. b:  Fractional change in dip depth using asymmetric tapered fiber 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, the slope of fractional change in dip depth versus analyte concentration 

is determined.  With the asymmetric taper of waist radius 1.47 µm being used to couple light into 

and out of the resonator, the relative change in dip depth is plotted as a function of analyte 

concentration and is shown in Fig. 4.13.  In Fig. 4.13, the green curve represents the best fit to the 

experimental data points whereas  the orange and red curves represent the theoretical  model.  The 

slope of the best fit performed by using a Python program was found to be 3.16 0.51.  

 

Figure 4.13.   Fractional change in dip depth plotted as a function of analyte 

concentration with the asymmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

4. 6. c:  Fractional change in dip depth using symmetric tapered fiber 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, the slope of fractional change in dip depth versus analyte concentration is 

determined.   At the end of this subsection, the experimental enhancement factor is calculated and 

compared with the model prediction (1020 ± 38).  With the symmetric taper of the same waist 



106 
 

radius 1.47 µm being used to couple light into and out of the resonator, the fractional change in dip 

depth is plotted as a function of analyte concentration and is shown in Fig. 4.14.   

 

Figure 4.14.   Fractional change in dip depth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

In Fig. 4.14, the green curve represents the best fit to the experimental data points whereas  

the orange and red curves represent the theoretical model.  A quadratic fit is performed to the 

experimental data points using a python program.  The parameters of the quadratic fit are given by  

0.002681 0.000924,  0.003302 0.000638,  0.000043 0.000096.a b c=  =  =   

It is worth recalling that the enhancement in sensitivity predicted by the model was 1020 

± 38.  At low concentrations, the experimental enhancement factor can be calculated by taking the 

ratios of slopes of Fig. 4.13 and Fig. 4.14.  Thus the experimental enhancement is 

3.16 0.51
956 240.

0.003302 0.000638


 


  Once again, the uncertainty in experimental enhancement 

factor arises from the finite thickness of the oscilloscope trace which arises from the noises within 

the system (mechanical noise + detector noise + amplifier noise).  The experimental enhancement 

agrees with the theoretical enhancement within the limits of uncertainty.   
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4. 6. d:  Fractional change in linewidth using asymmetric tapered fiber 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, the slope of fractional change in linewidth versus analyte concentration 

is determined and the two dissipative sensing signals are compared.  Since the initial dip depth of  

the mode of interest (just filled with methanol) 00 0.073 0.002,M =   the predicted value of 
00

4

M
 

which is approximately the ratio of fractional change in dip depth to the fractional change in 

linewidth is equal to 54.8 ± 1.5.  Thus for the same analyte concentration, the fractional change in 

dip depth is predicted to be more than one order of magnitude more sensitive than the fractional 

change in linewidth for the case under consideration. 

With the asymmetric taper of waist radius 1.47 µm being used to couple light into and out 

of the resonator, the fractional change in linewidth is plotted as a function of analyte concentration 

and is shown in Fig. 4.15. 

 

Figure 4.15. Fractional change in linewidth plotted as a function of analyte 

concentration with the asymmetric tapered fiber used to couple light into 

and out of the microresonator. 

 



108 
 

In Fig. 4.15, the green curve represents the best fit to the experimental data points whereas 

the red curve represents the theoretical curve.  A linear fit is performed to the experimental data 

points using a python program.  The slope of the fit was found to be 0.108 ± 0.323.  Knowing the 

slopes of the experimental curves shown in Fig. 4.13 and Fig. 4.15 with the asymmetric taper being 

used to couple light into and out of the microresonator, allows us to compare the two sensing 

mechanisms.  Therefore, 

 
( )
( )

3.16 0.51
29.1 87.2.

0.108 0.323

dM

M
d 




= = 

 



 

Since the theoretical prediction for 
( ) 00

4
54.8 1.5,

dM

M
d M



 = 




 the experimental results agrees 

with the theoretical results within the limits of uncertainty. 

4. 6. e:  Fractional change in linewidth using symmetric tapered fiber 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, the slope of fractional change in linewidth versus analyte concentration is 

determined and the two dissipative sensing signals are compared. 

  A plot of fractional change in linewidth 
( )d 






 as a  function of analyte concentration 

with the symmetric taper being used to couple light into and out of the microresonator is shown in 

Fig. 4.16.  The slope of the best fit is given by 0.073 0.050.   Hence 

( )
3.16 0.51

43.1 30.1.
0.073 0.050

dM

M
d 




= = 

 



  It is worth recalling that the theoretical prediction for 
00

4

M
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is 54.8 ± 1.5.  Thus the experimental value found for 
( )

dM

M
d 







 with symmetric tapered fiber agrees 

well with the theory within the error limits.  In both cases (with asymmetric and symmetric taperd 

fiber of approximately same waist radius), the experimental value found for 
( )

dM

M
d 







 with 

asymmetric and symmetric tapered fiber agrees well with the theory within the error limits. 

 

Figure 4.16. Fractional change in linewidth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 

4. 6. f:  Absolute sensitivity 

In this subsection, instead of dip depth sensitivity enhancement we will compare the 

absolute senstivity of an asymmetric tapered fiber microresonator system with multiple modes 

incident on the microresonator to an ideal adiabatic tapered fiber coupled microresonator system 

where a single mode is incident on the microresonator. 

Since the initial linewidth of the mode was 21.55 ± 0.62 MHz, the quality factor Q is equal 

to 69.0 10 .   Thus using Eq. (3.71), for equal absolute sensitivity, the minimum intrinsic quality 

factor of an ideal adiabatic tapered fiber coupled microresonator system is given by 
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 ( ) 6 8

min

00

4
9.0 10 54.8 4.9 10 .iQ Q

M
=  =   =   

It is worth remembering that an intrinsic quality factor of the order of 109 is near the limit of what 

can be achieved in fused silica without taking extraordinary measures. 

 A summary of a set of experiments (like the one described above) performed using Profile 

2, which validate our model predictions, is provided at the end of this chapter in Table 11.  The 

next section provides a brief summary of similar experiments performed using Profile 3. 

4. 7. Profile 3:  Summary of experimental results and analysis for sensing dye absorption     

Introduction 

The summary of an experiment performed using an asymmetric (Profile 3) and symmetric 

tapered fiber (Profile 3) is presented below.  Similar to section IV. 5 and IV. 6, this section is 

divided into six subsections.  

4. 7. a:  Determining the interacting fraction f of the mode of interest 

In this subsection, we present the values of the input parameters for our model, the initial 

dip depth and linewidth of the mode of interest, and the interacting fraction f of the whispering 

gallery mode of interest.  The throughput spectra of an asymmetric and symmetric tapered fiber 

coupled HBR system are shown in Fig. 4.17 (a) and Fig. 4.17 (b).  Initially, with methanol inside 

the resonator, measurements gave the following values: dip depth 00 0.064 0.002,M =   linewidth 

17.42 0.56 MHz, =   00 0.936,R =  and 0 1.040.R  =   Based on the input parameters 

( )00 0, ,R R   the enhancement in sensitivity predicted by the model was 1166 ± 47.  The dip depth 

corresponding to each analyte concentration was recorded and fitted to the model with the 
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interacting fraction f of the mode being the fitting parameter.  The interacting fraction f of the mode 

was calculated to be 0.077 by averaging all the fitting parameters. 

     

Figure 4.17.   Throughput spectra with asymmetric and symmetric tapered fiber of same 

waist radius, rw = 1.16 µm.  (a) With asymmetic tapered fiber – upward 

shift indicates increasing analyte concentration; bottom trace for methanol 

only, β = π.  (b)  With symmetric tapered fiber –  oscilloscope screenshot 

showing the mode of interest;  the red line indicates zero voltage and the 

mode is very close to critical coupling. 

 

4. 7. b:  Fractional change in dip depth using asymmetric tapered fiber 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, the slope of fractional change in dip depth versus analyte concentration 

is determined.  With the asymmetric taper of waist radius 1.16 µm being used to couple light into 

and out of the resonator, the relative change in dip depth is plotted as a function of analyte 

concentration and is shown in Fig. 4.18. 
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Figure 4.18.   Fractional change in dip depth plotted as a function of analyte concentration with 

the asymmetric tapered fiber used to couple light into and out of the 

microresonator. 

 

In Fig. 4.18, the green curve represents the best fit to the experimental data points whereas  

the orange and red curves represent the theoretical  model.  The slope of the best fit performed by 

using a Python program was found to be 3.37 0.28.  

4. 7. c:  Fractional change in dip depth using symmetric tapered fiber 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, the slope of fractional change in dip depth versus analyte concentration is 

determined.   At the end of this subsection, the experimental enhancement factor is calculated and 

compared with the model prediction (1166 ± 47).  With the symmetric taper of the same waist 

radius 1.16 µm being used to couple light into and out of the resonator, the fractional change in dip 

depth is plotted as a function of analyte concentration and is shown in Fig. 4.19.  In Fig. 4.19, the 
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green curve represents the best fit to the experimental data points whereas  the orange and red 

curves represent the theoretical model.  A quadratic fit is performed to the experimental data points 

using a python program.  The parameters of the quadratic fit are given by 

0.001779 0.001740,  0.003081 0.000898,  0.000022 0.000096.a b c=  =  =   

 

Figure 4.19.   Fractional change in dip depth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

It is worth recalling that the enhancement in sensitivity predicted by the model was 1166 

± 47.  At low concentrations, the experimental enhancement factor can be calculated by taking the 

ratios of slopes of Fig. 4.18 and Fig. 4.19.  Thus the experimental enhancement is 

3.37 0.28
1094 331.

0.003081 0.000898


 


  The experimental enhancement agrees with the theoretical 

enhancement within the limits of uncertainty.   

4. 7. d:  Fractional change in linewidth using asymmetric tapered fiber 

In this subsection, with the asymmetric tapered fiber being used to couple light into and 

out of the microresonator, the slope of fractional change in linewidth versus analyte concentration 

is determined and the two dissipative sensing signals are compared.  Since the initial dip depth of 
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mode of interest (just filled with methanol) 00 0.064 0.002,M =   the predicted value of 
00

4

M
 

which is approximately the ratio of fractional change in dip depth to the fractional change in 

linewidth is equal to 62.5 ± 2.  With the asymmetric taper of waist radius 1.16 µm being used to 

couple light into and out of the resonator, the fractional change in linewidth is plotted as a function 

of analyte concentration and is shown in Fig. 4.20. 

. 

Figure 4.20.   Fractional change in linewidth plotted as a function of analyte 

concentration with the asymmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

In Fig. 4.20, the green curve represents the best fit to the experimental data points whereas 

the red curve represents the theoretical curve.  A linear fit is performed to the experimental data 

points using a python program.  The slope of the fit was found to be 0.089 0.248.   

Knowing the slopes of experimental curves shown in Fig. 4.18 and Fig. 4.20 with the 

asymmetric taper being used to couple light into and out of the microresonator, allows us to 

compare the two sensing mechanisms.  Therefore, 
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( )
( )

3.37 0.28
37.5 103.4.

0.089 0.248

dM

M
d 




= = 

 



 

It is worth recollecting that the theoretical prediction for 
( ) 00

4
62.5 2.

dM

M
d M



 = 




  Thus the 

experimental results agrees with the theoretical results within the limits of uncertainty. 

4. 7. e:  Fractional change in linewidth using symmetric tapered fiber 

In this subsection, with the symmetric tapered fiber being used to couple light into and out 

of the microresonator, the slope of fractional change in linewidth versus analyte concentration 

curve is determined and the two dissipative sensing signals are compared.   

A plot of fractional change in linewidth 
( )d 






 as a  function of analyte concentration 

with the symmetric taper being used to couple light into and out of the microresonator is shown in 

Fig. 4.21. 
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Figure 4.21.   Fractional change in linewidth plotted as a function of analyte 

concentration with the symmetric tapered fiber used to couple light into 

and out of the microresonator. 

 

The slope of the best fit is given by 0.044 0.030.   Hence 

( )
3.37 0.28

76.6 52.6.
0.044 0.030

dM

M
d 




= = 

 



  It is worth recalling that the theoretical prediction for 
00

4

M

is 62.5 ± 2.  Thus the experimental value found for 
( )

dM

M
d 







 with both asymmetric and symmetric 

tapered fiber agrees well with the theory within the error limits.  In both cases (with asymmetric 

and symmetric tapered fiber of approximately the same waist radius), the experimental value found 

for 
( )

dM

M
d 







 with asymmetric and symmetric tapered fiber agrees well with the theory within the 

error limits. 
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4. 7. f:  Absolute sensitivity 

In this subsection, instead of dip depth sensitivity enhancement we will compare the 

absolute senstivity of an asymmetric tapered fiber microresonator system with multiple modes 

incident on the microresonator to an ideal adiabatic tapered fiber coupled microresonator system 

where a single mode is incident on the microresonator. 

Comparing the absolute sensitivity using Eq. (3.71), the minimum intrinsic quality factor 

is given by 

 ( ) 7 8

min

00

4
1.1 10 62.5 6.96 10 .iQ Q

M
=  =   =   

Once again, it is worth noticing that the absolute sensitivity which can be obtained by a 

mode with an intrinsic quality factor of the order of 109 in an ideal adiabatic tapered fiber coupled 

microresonator system, can be easily achieved by a mode of quality factor of the order of 107 in an 

asymmetric tapered fiber coupled microresonator system.  In addition, it is much easier to fabricate 

a mode of quality factor 107 than a mode of intrinsic quality factor 109 in a fused silica 

microresonator. 

A summary of another experiment performed using Profile 3, which validates the 

enhancement predicted by the model is provided at the end of this chapter in Table 11. 
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Table 11. Summary of results – Comparison of theory and experiment 

 

  Enhancement 
Comparison of dissipative 

sensing mechanisms 

Comparison of 

absolute sensitvity 

Taper 

Profile 
f 

Theor

y 
Exp 

 

asy

asy

M

M

d 



 
 
 

 
 
 

Exp 

 

asy

sym

M

M

d 



 
 
 

 
 
 

Exp 

00

4

M
 

Theory 

Q ( )
miniQ  

1 0.062 

2135 

± 

132 

2616 

± 

945 

36.9 

± 

109 

97 

± 

46 

114.3 

± 

6.5 

1.43 × 

107 1.64 × 109 

1 0.070 

5548 

± 

500 

4286 

± 

1467 

42.3 

± 

274 

171 

± 

71 

149 

± 

11 

1.29 × 

107 
1.92 × 109 

1 0.052 

1398 

± 

62 

2258 

± 

931 

35 

± 

161 

49 

± 

12 

45 

± 

1 

1.62 × 

107 
7.3 × 108 

1 0.070 

1298 

± 

55 

1476 

± 

416 

18 

± 

30 

NA 

67 

± 

2 

1.28 × 

107 
8.58 × 108 

1 0.195 

948 

± 

34 

1285 

± 

359 

7 

± 

11 

NA 

49 

± 

1.2 

1.45× 

107 
7.1 × 108 

1 0.19 

398 

± 

9 

417 

± 

231 

10.8 

± 

25 

NA 

30.6 

± 

0.5 

3.59 × 

106 
1.09 × 108 

2 0.110 

1020 

± 

38 

956 

± 

240 

29.1 

± 

87.2 

43.1 

± 

30.1 

54.8 

± 

1.5 

9.0 × 

106 
4.9 × 108 

2 0.128 

639 

± 

19 

735 

± 

159 

29.1 

± 

87.2 

43.4 

± 

36 

44.9 

± 

1.0 

1.15 × 

107 
5.2 × 108 

2 0.156 

729 

± 

23 

886 

± 

247 

20.4 

± 

22 

45 

± 

36 

43.5 

± 

0.94 

8.5 × 

106 
3.7 × 108 

3 0.077 

1166 

± 

47 

1094 

± 

331 

37.5 

± 

103.4 

76.6 

± 

52.6 

62.5 

± 

2 

1.1 × 

107 
6.96 × 108 

3 0.053 

509 

± 

33.4 

545 

± 

151 

15 

± 

25 

37 

± 

13 

38 

± 

0.70 

2.5 × 

107 
9.5 × 108 
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For three different taper profiles, based on column 3 and 4 of Table 11, we can say that the 

experimental enhancement factor agrees with the theoretical enhancement factor well within the 

error limits.  As mentioned before, the uncertainty in experimental enhancement factor arises from 

the noises within the system.  For all the 11 cases, the interacting fraction (evanescent fraction) of 

the WGM was calculated and is shown in column 2.  Based on the agreement between experimental 

and theoretical enhancement factor for all the cases, we can say that a novel sensing technique for 

enhancing the sensitivity of dip depth based dissipative sensing has been developed and an 

enhancement by three orders of magnitude is demonstrated. 

Based on the results shown in columns 5, 6, and 7 we can compare the two dissipative 

sensing mechanisms.  Theoretically, for the same change in analyte concentration, the ratio of 

fractional change in dip depth to the fractional change in linewidth was found to be approximately 

equal to 
00

4
.

M
  In most of the cases shown in Table 11, the ratio of fractional change in dip depth 

to fractional change in linewidth with both asymmetric and symmetric taper being used to couple 

light into and out of the microresonator agrees well with the theoretical prediction 
00

4

M

 
 
 

 within 

the error limits.  Out of 11 cases shown in Table 11, 9 cases agree with the theoretical prediction 

and hence we can say that dip depth based dissipative sensing is more sensitive than linewidth 

based dissipative sensing by more than one order of magnitude. 

In columns 8 and 9, we compare the absolute sensitivity of an asymmetric tapered fiber 

coupled microresonator system with multimode input to the absolute sensitivity of an ideal 

adiabatic tapered fiber coupled microresonator system where a single fiber mode is incident on the 

microresonator.  The absolute sensitivity of an asymmetric tapered fiber coupled microresonator 

system with a quality factor (Q~107) was found to be comparable to the to the absolute sensitivity 
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of an ideal adiabatic tapered fiber coupled microresonator system with a Q approximately equal to 

109. 
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CHAPTER V 
 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1.  Summary 

 

A novel technique for enhancing the sensitivity of dip-depth based dissipative sensing is 

presented in this dissertation.  The enhancement demonstrated in this dissertation is achieved by 

having multiple fiber modes incident on the microresonator using an asymmetric tapered fiber.  

Having multimode input produces an enhancement of approximately three orders of magnitude in 

the sensitivity of dissipative dip-depth based sensing compared to the sensitivity achieved using 

single-mode input from a coupling fiber with the same waist radius.  The highlights of this 

technique are as follows: 

i. The enhancement is independent of the quality factor Q of the mode. 

ii. The enhancement does not depend on the input and output couplings being equal or the 

wavelength or the refractive index or the size of the microresonator. 

iii. The dissipative sensing signal based on dip-depth change is significantly (approximately 

two orders of magnitude) more sensitive than the dissipative sensing signal based on the 

change in linewidth. 
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iv. An absolute sensitivity comparable to that achievable by using a high Q mode (109) of an 

ideal adiabatic tapered fiber coupled microresonator system can be achieved by using an 

asymmetric tapered fiber microresonator system with multiple modes incident on the 

resonator with a much more easily produced value of Q (~107). 

v. The ability to determine the interacting fraction f of the WGM of interest. 

As mentioned before, an enhancement in sensitivity was achieved by using an asymmetric 

tapered fiber with a non-adiabatic downtaper and adiabatic uptaper.  In chapter II, a precise 

fabrication and careful characterization of asymmetric tapered fibers with non-adiabatic downtaper 

and adiabatic uptaper was presented.  A model for predicting the radius of the waist of an 

asymmetric tapered fiber with a non-adiabatic downtaper and an adiabatic uptaper was developed.  

Usually, the delineation curve determines whether a taper transition is adiabatic or non-adiabatic.  

The usual criterion for adiabaticity of a taper transition is that the slope of the taper at any point 

should be less than the radius at that point divided by 2π and multiplied by the difference of 

propagation constants of the fundamental HE11 mode and the higher-order mode most likely to be 

excited.  Since the taper waist is multimode, there can multiple delineation curves depending on 

the choice of the higher-order mode which leads to a conundrum regarding the “correct” delineation 

curve.  The asymmetric tapered fiber model and the beat length measurements for various taper 

profiles suggest that 

i. The modes responsible for beating are HE11 and LP11 and hence the 

delineation curve which determines the adiabaticity of a taper transition is 

determined by the propagation constants of the HE11 and LP11 modes.  

ii. The radii predicted by the asymmetric fiber model for the three different 

profiles were very close to the estimated radii from the beat length 

measurements. 
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The asymmetric tapered fibers of different taper profiles were used in dye absorption sensing 

experiments.  The sensitivities they provided were compared to the sensitivities found using 

symmetric tapered fibers having the same waist radii, and the results were shown in Table 11. 

5. 2.  Future work 

 

In this dissertation, we have demonstrated chemical (dye -SDC 2072) absorption sensing.   

The method can be extended to investigations involving other chemicals.  Another possible 

direction that can be pursued is to detect gas absorption.  Hollow bottle resonators along with an 

asymmetric tapered fiber can be used to detect near infrared active gases such as CO2, CH3, NH3, 

CH3Cl and so on.  The detection limit can be further improved by means of lock-in amplification, 

phase sensitive detection, or by using quantum cascade lasers to excite the fundamental vibrational 

modes of the gases.  Detecting the atmospheric concentrations of various gases can be extremely 

important for environmental monitoring. 

In chapter II, the design of asymmetric tapered fibers and the adiabaticity criteria were 

discussed in detail based on the delineation curve defined by the difference in propagation constants 

of the HE11 and LP11 modes.  For the three different taper profiles discussed in this dissertation, the 

taper angle versus inverse taper ratio plot for the non-adiabatic taper transition was well above the 

delineation curves defined by HE11 and LP11.  In fact, for the non-adiabatic taper transitions, the 

taper angle versus inverse taper ratio plot was well above the delineation curve defined by the 

difference in propagation constants of HE11 and HE12 mode and HE11 and HE41 mode.  Ideally, for 

the non-adiabatic taper transition, we would like to have the taper angle versus inverse taper ratio 

plot to be just above the delineation curve defined by HE11 and LP11, and below the delineation 

curves defined by HE11 and HE12, and HE11 and HE41.  Even though the presence of modes other 

than LP11 may be only an extra intrinsic loss, we would like to eliminate those.  Hence, in future, 

we would like to design a new asymmetric tapered fiber for which the taper angle versus inverse 
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taper ratio plot for the non-adiabatic taper transition is just above the delineation curve defined by 

HE11 and LP11, and below the delineation curves defined by HE11 and HE12, and HE11 and HE41 

modes. 

Cross polarization coupling in microresonators can lead to effects such as coupled-mode 

induced transparency or coupled-mode induced attenuation.  These effects can produce slow or fast 

light i.e., pulse delay or advancement.  Using an asymmetric tapered fiber instead of a symmetric 

tapered fiber may lead to enhanced delay or advancement.  Hence a model will be developed to 

study the conditions for enhanced delay or advancement before being explored experimentally.
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