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CHAPTER I
INTRODUCTION
Motivation

This research develops a new direct search method for unconstrained
smooth function optimization. The method applies to any such function
which can be evaluated by the computer. It was designed for the case
where only the‘value of the function is available (not derivatives) and
evaluatidn is expensive. The resulting method has properties which
could make it useful in other situations also.

A method which requires fewer functiﬁn evaluations than other
methods logically must retain more information or do more calculation.
The only information available is the value of the function at a number
of saﬁple points. A good way to organize the iﬁformation is to use a
simple function to model the function. The usual model is a quadratic
function. Some previous methods retain equivalent‘information, but it
is not always organized as a model.

Any method using this approach must contend with several difficul-
ties. First, for the case where only the value of the function is
available, the derivatives of the function cannot be used to create the
model.. Second, the optimum of the model often lies outside the region
where the model is valid. For this reason it is advantageous to use

direction vectors and search in one direction at a time. As shown in



Chapter II, the eigenvectors of second partial matrix derivatives of
the function‘are desirable directions for this purpose. The matrix of
second partial derivatives will be referred to here as the curvature
matrix. A third possible difficulty is the-calculation of the location
of the optimum of the model. The direct solution requires the inverse
of the curvature matrix, which is usually a lengthy calculation.
 Finally, creating a complete model and calculating the location of the
optimum before each movement toward the goal is usually highly efficient.
In the new method, the key to the solution of these difficulties is
the Jacqbi method for finding eigenvectors. The Jacobi method is an
iterative method which works with two eigenvectors at a time. Using the
same organization, the new method works in the plane of two direction
vectors at a time, sampling the function, fitting part of the model,
correcting the two direction véctofs, and éearching for the optimum
within the plane. This procedure is repeated for all pairs of direction
vectors. Eventually the entire model is fitted, the direction vectors
converge toward eigenvectors, and the base location moves toward the

optimum.
Advantages of the New Method

The organization of the new method reduces function evaluation by
eliminating the requirement for univariate optimizations. Instead, only
~sufficient samples to fit the function are required. In addition, the
samples used to fit the function can be_directed‘toward the optimum.

In this way they also serve as search points.
The organization also reduces calculations. The -creation of both

the model and the direction vectors is done a portion at a time. In



this way, the entire calculations are not done every iteratiomn, but the
information is updated each time it is needed. Also, the model is
vstored in such a way that the inverse of the curvature matrix is easily
obtainable.

An important attribute of the new method is that, since it speci-
fies only an organization, the actual.implementation of several subtasks
is not reétricted. In this sense, the_new method could be called a
collection of ﬁethods. The analysis and testing of the new method
includes a'cpmparison of some of the alternatives. The range of alterna-
tives prohibits an exhaustive analysis within the scope of this research.b
In addition, the best choice may depend on the problem. This means,

however, that the method can be adapted to various types of problems.
Organization of Thesis

The remainder of this thesis describes the development of the new
method. Chaptér II is a review of previous methods for optimization.
Also included is a brief summary of the Jacobi Method. Chapter III
describes the method in detail. In Chapter IV, the mathematical
analysis of the method is broken down into three divisions, the con-
struction of the model, the determination of the eigenvectors, and the
convergence of the optimization process. Chapter V describes the com-
puter program used for testing. Chapter VI reports the results of
testing the new method on various‘functions, along with comparisons to
previous methods. Chapter VII gives conclusions and ideas for further

research.



CHAPTER II
LITERATURE REVIEW
Introduction

The subject of optimization is well known. For a general back-
ground and bibiiography see Kowalik and Osborne (1968), Box, Davies and
Swann (1969), Polak (1971), Brent (1972), and Murray (1972). For com-
parisons of methods, see Fletcher (1965), Box (1966), and Himmelblau

(1972).

The problem is to find values for a set of n variables

x = : (II.1)

which minimize or maximize the scalar function f(x). Some methods con-

sider only minimization. The problem of maximization of a function h(x)

cén be accqmpiished by minimizing

f(x) = -h(x) - (11.2)



In practice, however, it is easy to arrange most algorithms to minimize
or maximize on command. The test program used in this research includes
this feature.

Many methods are designed to insure that the minimum of a quadratic

function
: T T
f(x) = Y, + g, (x - xo) + (x - xo) Ab (x - xo) (1I1.3)

will be found in a finite number of steps (ignoring computational error).
This property is often called '"quadratic convergence.'" Quadratic con-
vergence is also used to describe another property, the reduction of
error to a multiple of the square of the previous error. To avoid
confuéion the term "finite coﬂveréenée" is used for the first property.

The topic of this research is direct search optimization. Direct
search methods are thbse which require only the value of the function
(not the derivatives). Some other types of methods are sufficiently
related to be reviewed in this chapter. Included are types which re-
quire values for the gradient or the matrix of second partial deriva-
tives, called here the curvature matrix. Finally, due to its importance
in the new method, the background of the Jacobi Method for finding

eigenvalues is discussed.
Direct Search Optimization

Direct search methods can be categorized into methods which are
based on direction vectors and those which are not. Direction vector
methods include Rosenbrock (1960), Powell (1964), and Davies, Swann and
Campey (DSC) reported by Swann (1964, 1969). Non-direction vector

methods include the simplex method of Nelder and Mead (1965) and the



pattern search method of Hooke and Jeeves (1961). Although non-direction
vector methods are sometimes more efficient on small problems, the
direction vector methods have generally been found to be more efficient
and more reliable in practical comparisons such as Box (1960), and
Himmélblau (1972). To this authér, Powell's method appears to be the
best method for a wide range of:search problems.

The Powell and DSC methods are based on moving to the optimum
along a line in each direction in turn. Finite convergence is then
assured if the direction vectors are conjugate with respect to the curva-

ture matrix. Vectors s and sj are conjugate with respect to A if

s;As =0, 043 . (11.4)
The effect is that (for a quadratic fﬁnction) movement in one direction
is independent of movement in tHe other directions.

One problem with some versions of Powell's method is that the
direction vectors can become linearly deﬁendent (Zangwill, 1967; Brent,
1972). This slows or eliminates movement in some directions. Complete
freedom of movement is allowed if the direction vectors are orthogonal.
Vectors’which are both orthogonal and conjugate with respect to a matrix
are by definition the eigenvectors of the matrix. For this reason the
eigenvectors of the curvature matrix are desirable as direction vectors.

Another problem with some methods is that their calculations depend
- on moving to the optimum in each direction. This involves at least as
mény directions as there are variables. Finding these optima can
include a large number of trials which do not involve movement toward
the overall goal. Fletcher (1965) points out.the further disadvantage

that the optimum along a line may not exist.



Stewart (1967) proposes using gradient methods when the gradient
is not available by using an approximate gradient Based oh perturbations.
Other authors advise against this approach (Swann, 1969; Brent, 1972).
The approach has two disadvantages. Fifst, it is difficult to choose
a suitable step size since reducing the step length soon introduces
round-off error and increasing the'step increases the error of approxi-
mation. The errors which de result can be important since the gradient
methods deperid on the gradient for much of their information. Secondly,
the steps used in finding the gradient may be wasted in terms of actual
movement toward the goal. For further discussion and references, see
Sargent and Sebastian (1972). |

Other Types of Optimization

The situation associated with gradient methods yields to analysis
somewhat more easily than that of the non-gradient types.' The gradient
provides very important information about the direction and distance to
the optimum (assuming curvature information can be obtained) and indi-
cates when the optimum has been found. Most methods determine a
corrected direction vector based on the gradient and move to the optimum
in that direction. These methods include the conjugate gradient method
of Fletcher and Reeves (1964) and the variable metric or DFP method
originally due to Davidon (1959) as simplified by Fletcher and Powell
(1963). A generalized variable metric method given by Huang (1970)
includes the conjugate gradient and DFP methods as special cases.

Huang and Levi (1970) show that, applied to a quadratic function,
the conjugate gradient and DFP methods evaluate the same points. On

non-quadratic functions the DFP method is more efficient (Huang and



Levi, 1970, Himmelblau, 1972, Sargent and Sebastian, 1972). This is to
be expected since it retains more information and performs more calcu-
lation. The conjugate gradieﬁt method, however, has the advantages of
simplicity and small storage requirements.

Most variable metric type methods base their operation on suc-
cessiﬁe line searches. Rather than keeping a set of directions, however,
the algorithm.generates a new direction each iteration. The methods are
usually designed to insure that, for a quadratic function, a sequence
of ﬁ conjugate direction vectors is‘generated. Thus, the methods have
finite convergeﬁce .

More recently, Fletcher (1970) describes another variable metric
method. Based on testing by Himmelblau (1972), the method appears to
be more efficient than other methods. This efficiency is in spite of
the fact that the method does not have thé property of finite.con-
vergence. One factor which does contribute to the efficiency is that
the method does not depend on moving to the optimum along lines.

In some problems the curvatufe matrix can be evaluated or approki—
mated. An important special case is minimization of a function con-
sisting of a sum of squared terms. For a sum of squares, the curvature
matrix can be approximated using the values and gradients of the indi-
vidual terms. Methods which make use of the curvature matrix (or
equivalent information) ﬁay require even fewer function evaluations.
For a review and comparison of methods see Bard (1970, 1974), and

Sargent and Sebastian (1972).
The Jacobi Method

For a real symmetric matrix A, the eigenvectors can be defined as



S:5 the columns of S, such that S is orthogonal and

D = STAS (11.5)

is diagonal. Each dii is then the‘eigenvalﬁe of A corresponding to 8 -
An iterativé method for finding thg eigenvectors and eigenvalues was
originally described by Jacobi (1846). For further background of the
eigenvalue-eigenvector problem and the Jacobi method see Wilkinson
(1965) and Hammerling (1970).

The Jacobi method'begins with a matrix AO, equal to the original
matrix A, and a second matrix Sk, initially equal to the identity matrix.
At each iteratiop, a super-diagonal element a?j is chosen. A plané
rotation matrix is used to transform Ak so that the chosen element is
reduced to zero. The matrix A° is symmetric, and the rotations preserve
symmetry, SO a?i is always equal to aij and becomes zero also. During
this process, the matrix Sk is used to record the rotations, maintain-
ing the relation

Ak k)T k

= (87)7AS . (I1.6)

Since the elements which have become zero are affected by later
rotations, the matrix Ak does not become diagonal after each element has
been chosen one time. However, under proper conditions the off-diagonal
elements converge to zero. Therefore, Sk converges to the matrix of
eigenvectors.

The original (and fastest) version of the Jacobi method chooses the
various elements of Ak in order of decreasing magnitude. When incorpo-
rated in the new optimization method, only the current off-diagonal

element will be known. Therefore, an arbitrary ordering must be used.



This corresponds to the

10

"cyelic Jacobi method" (Forsythe and Henrici,

1960), also known as the "serial Jacobi method" (Wilkinson, 1965). 1In

this case, a complete cycle, in which every super-diagonal element of

Ak is used exactly once, is called a sweep.

The cyclic Jacobi method is as follows.

1.

Set

k=0 ,

A? =A , (I1.7)
and

=1 . (II.8)
According to some ordering, choose each pair of indices,

(i, ) = {1, ), 121 <3 <n (11.9)
For each pair perform the following

a. Calculate the matrix Uk of the form:

u;; = cos ¢ uij = sin ¢
uyy = -sin ¢ uyy = cos ¢ (I1.10)
U = 1 for all p # i, p # j
all other u =0
Pq
where zak
¢ = % Arctan &7;—45L7;—) . (I1.11)
a,. — a,
33 ii
b. Set
AR Ry Takyk (11.11)
and
gkt o gkyk | (11.13)

c. Replace k by k+l1 .
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3. Return to step 2, unless convergence is indicated
Without specifying the ordering, the convergence of the cyclic

Jacobi method is difficult to analyze. Convergence is measured by

E = Z @ )2 - (11.14)
p#q '

‘For A symmetric, the same value can be found from

k _ k |2 ‘
E™ = :E: (apq) . (1I1.15)
p<q

Henrici (1958) and Schonhage (1961) prove that if the method doés
converge and if the matrix has distinct eigenvalues, then the error
eventually converges to zero quadratically. It has not been proved
that the general cyclic Jacobi metﬁod is convergent. (See, for example,
Wilkinson, 1965.) In fact, Hansen (1963) shows a matrix for which a
certain order fails to produce convergence, although the same paper
gives results of testing several orderings on random matrices with no
indication of failure.

As a result of the difficulty of analysis, almost all literature
on the cyclic method uses the row ordering, or ﬁhe column ordering. An
example of each of these orderings is symbolized in Figure 1. When the
row or column ordering is used, the method is knoﬁn as the special
cyclic (or special serial) Jacobi method. Hansen (1963) shows that the

two orderings produce identical results at the end of each sweep (except

for computational error).




10 11| 12
13| 14
15

a. Row Ordering

6 91 13
10} 14
15

b. Column Ordering

Figure 1. Two Examples of Order of Choosing
Super-Diagonal Elements
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Forsythe and Hencici (1960) prove that the special cyclic Jacobi

method as described here converges in the sense that

lim A¥ =D |

koo

(1I1.16)

Wilkinson (1962) gives a proof of quadratic convergence with a better
rate constant than Henrici (1958). On the other hand, Hansen (1963)
presents arguments and test results which favor other orderings, such
as a diagonal ordering symbolized in Figure 2. However, his counter-
example fo convergence can be generalizéd to this ordering, and for all
orderings tried, the average time to converge to a standard accuracy
varied only from 4.1 to 4.9 sweepé. Wilkinson (1965, p. 271) states
that in practice five to six sweeps reduces the off-diagonal elements
‘to zero to an aCcdracy of 10 to 15 places. Gregory (1953)‘gi§es test
results which substantiate that claim. Thus, both analysis and experi-
ence indicate that one of the special cyclic orderings is pfeferable to

other orderings.



3 8 | 12
4 9
5

Figure 2.

Example of Diagonal Ordering

14



CHAPTER III
PROPOSED METHOD
Introduction

This chapter describes the new method for unconstrained function
optimization. The operation of the method is discussed in terms of the
underlying processes. Various possibilities for implementation are
considered and the algorithm used for testing is given. Some of the
processes are analyzed in more detail in Chapter IV. The test program

and results are given in Chapters V and VI.
The New Method

The new optimization method is based on a quadratic model,
u@) =y_+ gT(x -x ) +%x-x )TA(x -x ) (III.1)
o [¢) o o’ °?

to approximate the function f(x) near X, The model parameters are the

scalar y_, the vector g, and the matrix A. A is referred to as the
model curvature matrix. Taylor's theorem implies that

1. v, approximates f(xo),
2. g approximates the gradient of f(x) at X

3. A approximates the matrix of second partial derivatives of

f(x) at X

15
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It is assumed that the function is well behaved, so the function curva-
ture isAsymmetric. The model curvature matrix can always be assumed to
be symmetric, since in the form STAS there is no way to distinguish
between the contribution of S.a,.S, and S.a,.S,.

. 11373 JjJir1

In addition to the model, the new method uses a set of orthogonal

. . T ,
direction vectors si, the columns of S. S is used as a linear trans-

formation of the parameter space giving

z = ST(x - xo) s ‘ I11.2)
T ‘ .
b =Sg , (II11.3)
T
C=SAs . (I11.4)

Then S and C have the proper relation to A for the Jacobi method. Note
that x = X, + Sz. Since SST is the identity matrix, the model can be

written

u(x) = Yo + gTSST(x - xo) + %(x - xo)TSSTASST(x - xo) (1I11.5)

or

u(x +Sz) =y + blz + l/zzTCz . (III.6)

Each iteration of the Jacobi method requires only the values of c,

cjj and cij’ If only z; and zj'are non-zero, the model reduces to

2

)

i

. = 1
u(xo + z;8 + zjsj) Yo + bizi + bjzj + 6cii(z

1 (I11.7)

2
+Y%c,.(z.)" +%c,.z2,z. +%c..z.2,
iey5(25) 1042175 T 50y%5%

11

(O]
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Due to symmetry

soO

1 + 1 = .
1cijzizj fgcjizjzi cijzizj , (I11.8)

o 2,8, + zjsj) Yo bizi + bjzj

s 2 |
+ 1 + 1 X . .
| écii(zi) 1cjj(zj) + cijzizj (I11.9)

This submodel can be fit to the actual function in the plane of X +

z.s., + z,s,, resulting in c,., c.,. and c,. as required.
i“i j i i1 NN 1]

The basic method is as follows.

1.

Assume some initial base location, X and an initial set of
orthogonal direction vectors, S. For a two-dimensional example,
see Figure 3.

According to some ordering, choose each possible pair

(i, 3) = (4, 3.0, 1 <i<j<n . (II1.10)
Kk’ "k

For each pair, operate in the plane of the two direction

vectors si and sj as follows.

a. Sample the function in the plane near the base location,
x , and calculate b.,, b,, c.., C.. and c.. in the bivariate
o i’ 73 ii’ 7ij ij
quadratic submodel of the function, Eq. III.9, to make the
model fit the function at the sample points. See Figure 4.
b. Calculate the plane rotation matrix R of the form of Uk in
Equation II.10.

c. Replace b by R'B, C by R'CR and S by SR. See Figure 5.
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[
Y

'Figure 3. Base Location and Direction Vectors

x 1

Figure 4. Sample Points and Model
(Represented by
Isometric Curves)
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x< Y

Figure 5. Rotated Direction Vectors

x 1

Figure 6. New Base Location
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d. Using the direction vectors, search in the plane for a
location to improve the value of the function and move the
base location, X5 to the best point found. See Figure 6.

e. Replace k by k.+ 1.

3. Return to step 2, unless éOnvergence to the optimum is indicat-

ed.

As described, the algorithm involves three mattrices. However, each
time an off-diagonal element, cij’ is found it is immediately changed
to zero. Therefore, only the diagonal of C needs to be stored. The
rotation matrix R is a special form which requires only two values, the
sine and cosine. Thus, only one matrix, S, is required.

The amount of calculation also appears large. Each sweep involves
on the order of n2 rotations and each rotation involves a number of
vector and matrix operations. However, the rotation (step 2c) involves
only two elements of b, two diagonal elements of C and two columns of S.
Thus, the number of calculations is on the order of n per rotation,
i.e., n per line search. The total amount of computation for a complete
sweep is on the order of n3 but involves on the order of'n2 line search-

es.
Operation of the Method

Three simultaneous processes are involved in thé method, each up-
dating a separate set of information.
1. A curve fitting process is creating a model of the function in
the region of the base location.
2. An eigenvector process is finding the eigenvectors of the model

curvature matrix.
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3. A search process is moving the base location.

For each pai; of direction vectors, each process operates in turn,
updating a portion of its information. Each process, however, uses
informatiqn from the other processes.

The interaction of the three processes is shown byithe diagram,
Figurev7. For a given pair of vectors, the curve fitting process creates
the submodel for the plane (path a) using the cﬁrrent direction vectors
(bath e) and the base location (path f) to define ﬁhe plane. The eigen-
vector process rotates the two direction vectors (path b) based on the
second derivative information of the model (path g). The search process
moves the base location (path c) based on the calculated optimum from
the model (path i) along direction vectors (path j).

As a result of the interaction, the convergence of each process is
affected by the operation of the other processes. Although- this makes
analysis of convergence difficult, the frequent correction of the model

and direction vectors is a great advantage to the search process.
Implementation of the Method

The basic method allows flexibility in accomplishing the following
operations.

1. The order of choosing pairs of direction vectors in step 2,

2. The arrangement of sample points in step 2a,

3. The strategy for searching to improve the base location in

step 2d,

4. The criterion for convergence in step 3.

Thus, the basic method could be called a collection of methods. The

choice of an algorithm for each operation results in a specific method.
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Figure 7. System Diagram of the Information and

Processes in the New Method
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Some of the possible algorithms are given in the following discussion of
-the four operations. |

The order of choosing pairs affects two things:

1. The pattern of searching in the various directions,

2; The éonvergence of the Jacobi method.
The pattern of searches suggests an ordgring to try to isolate one
occurrence of‘each index. (The indices correspond to direction vectors.)

For n equal to six this could be

(ik’Jk) = {(132), (3,4),(5,6),(2,3), (4,5),(6,1),(1,3),(2,4),

(3,5),(4,6),(5,1),(6,2),(1,4),(2,5),(3,6)} . (III.11)

~ Another possibility is to favor two sequential occurrences of each index,

such as
(ik,jk) = {(,2),(2,3),(3,4),(4,5),(5,6),(6,1),(1,3),(3,5),
(5,1),(2,4),(4,6),(6,2),(1,4),(2,5),(3,6)} (I11.12)

These orderings are both organized along diagonals of the curvature
matrix as symbolized in Figure 8. The convergence of the Jacobi method,
however, is improved by the orderings along rows or columns symbolized
in Figure 1. The effect of ordering on the Jacobi method is discussed
in Chapters II and IV. Two orderings are testéd in Chapter VI.

The sample points used for fitting the model could be arranged in
a fixed pattern. The calculations could then be further simplified.
On the other hand, the sample points used for fitting the model could
also serve as search points. The search process (step 2d) could then

consist solely of moving the base location to the best point found.



2 91 15
51 10
3

a. Ordering to isolate one occurence
of each index

3 81 15
41 11
5

b. Ordering to favor two sequential
occurences of each index

Figure 8. Orderings Based on the Pattern
of Searches
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This combination of processes is liﬁited when the desired sample point
with regard to the search produces a step size which is too small for
the calculation of the model parameteré.

A number of search strategies could be used in the new method.
Possibilities include line searches along both direction vectors or a
line search in the direction of the optimum. The algorithm used for
testing uses the search points for fitting the model as just described.
Additional points are added to the curve fitting poinfs to insure, if
possible, that the optimum is bracketed and a better point is found.

At the end of a complete sweep an additional sample is taken at the
optimum of the entire model. During the process the base point is
moved to the best point found when the move will not disturb the calcu-
lations.

The choice of a convergence criterion is difficult for all optimi-
zation methods. It is commonly considered to be.a separate problem
from the method. For comparison to other methods, a standard termi-
nation scheme, such as Himmelblau (1972), could be applied. In the
testing termination was not used for comparison. Tb prevent useless
execution, the program terminatés when a complete sweep produces no
improvement.

The resulfing algorithm used in the trials is as follows.

1. Set some initial X» and set S to the identity mafrix.

2. According to some ordering, choose each possible pair of

indices.

(i, 3 = (G5 § s 1<i<j<n. (II1I.13)



26

For each pair, perform the following.
a. Sample the function at the predicted optimum in direction
Si.
b. Calculate a corrected value for bi.-
c. Sample at the corrected optimum in direction s;-
d. Calculate b, and c,,.
: i ii
e. Move the base location, X s to the best point found thus
far.
f. Similarly, sample twice in direction Sj’ resulting in bj
and c...
g. Sample at the predicted optimum in the plane of s, and Sj'
h. Calculate c,..
1]
i. Move to the best point found.
j. Calculate the rotation matrix R.
k. Replace b by Rib, C by RTCR, and S by SR.
1. Replace k by k+l.
3. Sample the function at the predicted multivariate optimum and
move the base location if better.
4. Return to step 2, unless no progress has been made during the

sweep.

The optima are based on the previous model limited to reasonable values.
Summary

A new method for optimization is described in this chapter, based
on the Jacobi method for finding eigenvectors. In the new method, a
quadratic model of the function is created, and search directions which

approximate the eigenvectors of the curvature matrix are used. The
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nature of the Jacobi method allows the construction of the model, the
determination of the search directions, and the search itself to proceed
simultaneousiy. The basic method does not specify the procedﬁre for
accomplishing some operations, so there are many ways to implement the

method.



CHAPTER IV
THEORETICAL ANALYSIS
Introduction

This chapter collects the analysis of processes related to the new
optimization méthod. First, the effects of scaling the problem varia-
bles are discussed. Next, the curve fitting process is examined and
restrictions on the step size are developed. The effect of ordering on
the Jacobi method is then analyzed. A modified ordering is given along
with a proof regarding convergence. Finally, the convergence of the
base location to the optimum is considered, and the rate of convergence

for the case of a quadratic function is found.
Scaling

For a given function, a change of scale is the replacement of any
variable_xi by a constant multiple PX, . If the values of the variable
are divided by the same constant, then the function values will remain
the same. Thus, a change of scale does not change the inherent proper-
ties of the function. An example of change of scéle is a change in the
units of measure, say from meters to kilometers. If the function is
rewritten in kilometers and all "data'" values are converted to kilo-
meters the function will behave tﬁe same. This may not affect all

variables, because various variables may have entirely different di-

mensions (e.g. time).

28
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The appearance of a function as an optimization problem is changed

by scaling. To illustrate, consider minimizing the function
2 2
B

f(x) = .01 5“4"2— (Iv.1)

The contour diagram in Figure 9 shows that the function appears to be a

long valley. If, however, x is "de-scaled" with

x) = doxp o, (Iv.2)
Xy = Xy 5 (Iv.3)
the function becomes
;2 ;2
£(x) = -2—1 +'§3 , (1V.4)

which has circular contours. The de-scaling of IV.2 and IV.3 is given
by
(1Iv.5)

where the a.. are the diagonal elements of the curvature matrix. The

curvature matrix of the original function

.01 0
(Iv.6)

b
I

becomes, for the de-scaled function,
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Figure 9. Contour Diagram f(x) = 0.5 for
| Equation IV.1

Figure 10. f(x) = 0.5 for Equation IV.8
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A= . (1V.7)

The de-scaling of Equation IV.5 always results in a curvature matrix
with ones on the diagonal. ‘The valley(is controlled entirely by the
scaling, and there is no absolute rgference for the scale. Therefore,
it can be argued that it is meaningless to talk about a valley in this
problem. |

On the other hand, the function

2 2

(0.5 x) - x2) (0.5 x) + x

)
2
2 + 2 ’

f(x) = .01 (1v.8)

diagrammed in Figure 10, has a valley which may be modified, but not
completely removed by de-scaling x. (To remove it completely requires
a general linéar transformation or a rotation followed by de-scaling.)

When de-scaled with

X:L = 0.5 Xl s (IV.9)
x2 = x2 0 (IV.lO)
. - x)7 Gy +x)?
f(x) = .01 5 + 5 . (Iv.11)

The contours shown in Figure 11 illustrate a remaining valley. The
"narrowness' of the valley, i.e., the ratio of the eigenvalues (curva-

ture), is reduced, however. Non-quadratic functions can also create




Figure 11.

f(x) = 0.5 for Equation IV.1l1l

32
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conditions where a valley cannot be removed by scaling or even by a
general linear transformation.

The conclusion is that 'poor" scaling can increase the apparent
: difficulty of a problem. One solution is to reformulate the problem to
improve scaling. However, the function‘is not always sufficiently well
known to de-scale manually. Also, for non-linear problems the scale
may change with location. Therefore, it is desirable that optimization
methods be insensitive to poof scaling. When properly programmed, some
methods are scale-invariant, that is, when the scale of a problem is
changed (including the initial location and step sizes) the method
samples the scaled function at exactly the points corresponding to those
used before scaling.

The new method is not scale—invariant due to the properties of
eigenvectors. When a funcgiqn such as IV.8 is scaled to IV.11l the
eigenvectors of the scaled problem are not equal to the scaled eigen-
vectors of the original problem. To illustrate the effect on the method,
assume in each case the method startsvat an initial 1ocation, X s finds
the eigenvectors exactly, and then performs a linear search in direction

s, and then s,. Referring to Figure 10, the movement for the original

2 1

function is to point x1 and then to s2 = x, the optimum. In the scaled
problem of Figure 11, the movement is to xl and then to x2 = x. Since

~ ~

direction S, does not scale to.s2 the point x1 does not correspond to
xl. Therefore, the method applied to a scaled problem does not sample
the scaled version of the original points.

In the new method, the A matrix can be found from the model, so it

would seem easy to automatically de-scale the variables. Several

problems arise, however. The greatest problem is that if the old
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direction vectors actually are the correct eigenvectors, and the scale
is changed, then the direction vectors are no longer the eigenvectors
The calculation of the de—scgled eigenvectors requires the complete
calculation of the eigenvectors of a matrix. Even caleculation of new
curvature values (cii) along the old direction veéfors is a lengthy
calculation (n3 operations). ‘FOrtunately, the method can be made
"scale-invariant' along the direction vectors by basing every step size
calculation on scale-invariant properties of the mbdel or on the previ-
ous step size. (This was done in the test program.) For this reason,
once the direction vectors are aligned with the "valley" the»functions
of Figures 10 and 11 both appear as circular contours. Thus, the new
method should work "well," though differently, when the scale is changed.
Another effect occurs when the scale is changed. If the function

of IV.11 is further scaled with

?

- (1Iv.12)

(Iv.13)

M
]
N
o]
N

the contours becomes those of Figure 12. The rotation of the direction
vectors always chooses the angle less than 450, so direction Sy becomes

' For cases where

"down the valley" and 8; becomes '"across the vailey.'
there is some reason to distinguish between "across the valley" and
"down the valley" (e.g., nonlinear problems), the meaning of s; and s,
are reversed. If the direction vectors are chosen in order of curva-

ture, c.., then the first (last) direction vector will represent, say,

the greatest (least) curvature which corresponds to "across the valley"
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02

Figure 12. f(x) = 0.5 for Function of Figure 11
with Scale Changes of Equations
IV.12 and IV.13
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("down the vélley"). Thus, the "pattern" of searching will remain simi-
lar even though the scale is changed. Sorting the diagonal of the C
matrix, discussed later in this chapter, causes the direction vectors
to be chosen in a specifie& order according to curvature. In that case

the new method is somewhat insensitive to change of scale.
Fitting the Model

In the basic method given in Chapter III, one task is to sample the
function f(x) at a sufficient number of points to fit the model express-

ed by Equation III.9,

u(x_ +z,s, +z.8,) =y +b.z, +b.z,
o ii 1] o i1 JJ

+ ]/2(: 22 + ]/22 (IV.14)

11%5 25385 T C33%4%

Normally X will be changed only to a point which has already been

evaluated. As a result,

y. = u(xo) = f(xo) | (IV.15)

o

is assumed to be known. Five additional. samples are usually sufficient

to determine the remaining five unknowns, b., b., ¢.., c.., and c,..
i 737 7117 T3] ij

The organization of the sample points can isolate the effect of

z; and zj in the following way; If zj is zero, the model becomes
u(x_ + z;s.,) =y +b.z, + % z2 . (Iv.16)
o ivi o ivi ii~i

Thus, two points on the line X + z;8; (parametric in zi) are usually

sufficient to find bi and cige Similarly, two points on the line
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X, + zjsj give bj and ij' For this reason and since optimization along

a line is of interest, the model along a line is considered next.
Univariate Model Calculations

For this section, the subscript i is temporarily eliminated giving

the model
L2
u(x0 + zs) = Yo + bz + %ez (Iv.17)

for the function f(x0 + zs), where s becomes a single direction vector,
and z, b and ¢ are scalars. As noted before, Yo is assumed to be availa-

and Zgs sample the

ble. - The task is to chose two additional points, zq

function at the points, giving

v, = f(xo + zlé) . , (1Iv.18)
v, = £(x, + z,8) (1v.18)

and find b and c¢ which satisfy the relations

' 2
- 1 = v.
u(xo + zls) =9, + bzl + ez =¥ o (Iv.20)
2
= 1 =
u(xo + ZZS) Y, + b22 + ez, =Y, - (1Iv.21)

~

One important use of the model is to give an improved estimate z of the

optimum along the line by solving

—_— b + czZ = 0 ’ (IV.ZZ)



38

Resulting in
z = -b/c . (1Iv.23)

The direct solution of the original Equations IV.20 and IV.21 gives

2 2
z; (v, =y) -z, (y;, - y.)
p=-1 "2 0O 2 L o s (IV.24)

z, 2, (z2 - zl)

zy (y2 - yo) -z, (yl - yo)

c =2 (Iv.25)

- Z

zy 2z, (z, 1)

When using a computer to evaluate b and c,; roundoff (or truncation)
errors can become significant. As a result the order of calculation is

important. The algorithm used in the testing is as follows:

(Iv.26)

d; =y, -y, »
4=y, -y, , (1v.27)
b, = dl/zl R (1v.28)
b, = d2/z2 s (1v.29)
c = 2(b2 - bl)/(z2 - zl) . (Iv.30)
b = b2 - czz/Z , (Iv.31)
z = -b/c . (IV.32)

Bivariate Model Calculations

Fitting the univariate model in directions s, and sj gives b,, b.,
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iy and ij’ leaving cij to be found. At least one additional point

with both z, and zj nonzero is required. If the function is sampled

giving

.ys = f(xo + z;8; + zjsj) B (Iv.33)

then ¢ i can be determined from the relation

u(xo + zi'si + zjsj) =Ys - | (IV.34)
The direct solution is
V5 - (yo + bizi + b,z, + %ciiz? + %c..z?)
c.. = - JJ = 43 J . (1Iv.35)
ij zizj

The algorithm used in the testing is

d5 = Y5 =Y, (1v.36)

d. - (b, +c..z./2)z, = (b, + c..2./2)z.
e, = =2 = -2 2 l JiJ J (IV.37)

ij zizj

If Equation IV.37 does not give sufficient accuracy, the value of

cij can be found more directly from a univariate model along a line

X = X + z(uisi + ujsj) s (1v.38)

where u, and ju are arbitrary nonzero constants. For convenience assume

u% + u% =1 . (Iv.39)
i3

The resulting univariate model is denoted
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2
= 1
u(x0 + z(uisi + ujsj) v, t+ bSZ +Yegz” . (Iv.40)

Equation IV.14 gives the corresponding form,

+ .+ .8.) =y + b,u.z + b,u,
u(xo zu s, qusJ) Yo blulz bJqu

+ Y%c u2z2 + %c..ugzz + c..u.u.z2 . (IV.41)

ii'i 33 3 13173

~ Equating the coefficients of the 22 terms in IV.40 and IV.41,

2 2
) CS - ciiui - Cc..u,
c.. = 3 J (IV.42)
ij 2uiuj

The extra information provided by b5 (because an extra point has been
sampled) could then be used to test the accuracy and validity of the
quadratic model by comparison to (uibi + ujbj). This option was not

tested.
Step Size Restrictions

The calculations of both the univariate and bivariate model involve
differences between function values at two sample points. As the step
size becomes small the’difference in function values becomes small. The
errors in the function values theh‘appear large  relative to the differ-
ence. The relative error is then passed on to subsequent operatidns.

As a result, a lower limit must be placed on the step size.
Let e(u) represent the absolute error in u. In moder floating

point computers the error due to truncation is bounded by

e(u) §_€|ul s (Iv.43)
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where € is the machine precision. For example

10~ (IV.44)

™
1]

for 7 digit storage.
The errors in the y values which can be estimated are due to
truncation in storing x and y. Using a first order approximation to

the function near x,
f(x + E(x)) = £(x) + g(x)" B(x) , (IV.45)

where g(x) is the gradient of f at x. The error is thus

£(x + E(x)) - £(x) = g(x)” E(x) . . (IV.46)
Using IV.43 for each element of x,
|£(x + E®)) - £x)| <ele@ [T |x] (IV.47)

where the absolute value of the vectors is performed on each element.

The boﬁnd on the error in y due to both x and y is then approximated by
T .
E(y) <e |y| +elg@® | [x] . (IV.48)

The errors in all the y values are estimated by the error in Yo? with

E(r,) < ely,l +eleG)l” [x] - (17.49)

The gradient g(xo) can then be estimated from the model using III.3.
Next the value of dl is estimated under two conditions for 2.

First, if

; = -b/c (Iv.50)
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is sufficiently large, then it can be used for zy. In that case.

b=-cz; , (Iv.51)
so IV.20 becomes
2 2 2 .
Yy =¥, " cz; + %czl - 1/2czl . (1v.52)
and IV.26 gives
d, = y, -y = —]/CZZ (IV.53)
1 1 o b
On the other hand, if 2 becomes small, then zy must be limited.
Assuming
2] <« [z;] (1.54)
then
|ez| << lczl| . ’ (1V.55)
Using IV.50 and IV.55
Ib] = Jez| << lez,| (IV.56)
S0
2
Ibzll << Iczll . A (Iv.57)

Then the second term of IV.20 can be neglected, giving

¥, =y, t+ kez] (1V.58)
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and

(Iv.595

In either case, %czi is a good estimate for_dl. To keep the relative

error small, it is desired to insure

IE(dl)l (19603
—_— <t Iv.
1411

where t is some large numbet. Thus the limit on d1 is

|dll < tlE(dl)l . (Iv.61)

Any error in y, or y, causes an identical error in the magnitude of d1

so the error in d1 due to the errors in the y is bounded by

[E@)] < [EGD] + [EG)] . (1V.62)
Using the error estimate of IV.49 for both E(yl) and E(yo)
T |.
|EG@)] < 2EG) < 2Cely | +elg|™ |x ) . (IV.63)

Therefore, if [d,| is limited by

4,1 > 2tCely, | +elel™ x> > £ BE@) , (1V.64)

then IV.61 is ensured. Using %cz% to estimate d1 the restriction becomes

ezt | > 2eCely | + elglTIx |) . . (1IV.65)

Solving for 2, gives
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beely | + atelg] x|
|z, > —Tq] . (IV.66)

The value of t is arbitrary &o it can include 4e by letting
t' = 4te ,  (IV.67)

In the program used for testing, two parameters ty and tx are used for

the errors due to storing y and x respecfively. The limit then becomes

ly | +¢_lgl"lx |
lzll ke e IC]‘X 2 . (IV.68)

To maintain sufficient distance between all three sample locations the
same limit is applied to z,y and the difference zy = 2.

To maintain accuracy in the bivariate fit, the steps in the two
directions must be of similar magnitude. The comparison of step sizes
in the two directions, hqwever,'must account for possible differences
in scaling. This can be done by comparing the change in the function
value caused by the steps. Again using l/zcz2 to estimate the change
Y = Yoo the ratio of the changes for the two directions is limited by

the relation

og5%4| <L (IV.69)
¢ e, 22 Tt
33 3]
with tc < 1. The lower limit gives
2 2 ‘
lciizil >t |cjjzj| . (IV.70)
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Solving for‘zi,

(Iv.71)

(1V.72)

which becomes

(IV.73)

All step sizes in a given direction should be of similar magnitude, so
all limits should be computed before the linear fitting. To keep the
restriction on a given z; from changing due to pairing with various zj,

the worst case

£, max |cppz§[
EMIES Lpn , (1V.74)
leyy!

should be used every iteration. Finally, the limits of Equationms IV.68

and IV.74 ca be combined into

(Iv.75)
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where

v = tylygl + txlgITJxol +t, l;;;pICPPZ§I . (IV.76)
The same value of yL can then be used for the éorresponding limit on zj.
Before fittiﬁg the univariate models, the test program calculates v,
based on the previous model. The limit of IV.75 is calculated as soon
as a reliable estimate for cig is available. The limit is then enforced
on the step sizes zy and z, and the difference zy = Zg. Whenever the
optimum.of the model produces a step size ; which does not satisfy the

limit, the step size for the sample is enlarged to equal the limiting

value.
The Effect of Ordering on the Jacobi Method

This section uses the notation of Chapter II for the Jacobi method.

In particular, the current matrix is

k vk)

Ak = (s k

Task . (IV.77)

The convergence of Ak to a diagonal matrix is measured by the error at

iteration k (beginning at zero),

)T . (1v.78)

The object is to determine the ordering which will mini ize the error at

the end ofvthe sweep. A sweep involves N pairs of indices (p,q) where
N=%nm-1) . ' (Iv.79)

Assume an arbitrary cyclic ordering and consider one sweep. Let ko be
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the first iteration of the sweep and let _

I(p,q) =k . (Iv.80)

describe the first iteration on or after ko,which rotates apq, that is,
(iks jk) = (p, Q) (1Iv.81)

Each rotation causes the chosen element tovbecome zero, but later
rotations change the value. To investigate the simplest occurrence of
this effect, define a triplet to be three eleménts, apq’ apr, and aqr’
where p, q, and r are distinct indices (not necessarily ordered) in the
interval (1, n). The position of the elements of a typical friplet is
shown in Figure 13. Actually,»if the indices are not ordered, some of
the elemenfs will not be super-diagonal. However, A is symmetric, and
the rotation affects, for example, apq énd éqp identically; Therefére,

all references to a__ apply to either a_ or a_ . Let the interations
Pq P4 %

-which rotate the three elements be

k= I, @) 5 | (1V.82)
k2’= I(p, ) (Iv.83)
k3 = I(q, ¥) > (Iv.84)

all within (ko, ko + N-1). Assume

ky <k, <ky ' (1V.85)

that is, the elements are chosen in the order a_ , a_ _, a _.
pq” pr- dgr



a a a
PP pq pr
a a i
aq qr
a
rr !
.

Figure 13. An Ekample of a Triplet
and Diagonal Element
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To discuss the accumulation of the changes in the elements which

result in the error at the end of the sweep, let

)T , (1v.86)
CI(p,a)<k
p#q
that is, all elements which have been rotated during the sweep previous

to k. Note that
T =0 ., (1Iv.87)
because no elements have been chosen, and

ko+N -k N
T =g° (IV.88)

because all elements have been chosen.
Previous to k] none of the elements of the triplet contribute to =,

After k Tk includes a_ . From kl on, apq begins at zero and may be

1’

increased by the action of elements in other triplets of which it is a
member until time k2. Then apr becomes zero and is included in Tk. At

the same time apq is affected according to Equation II.13, resulting in

ak2+l = ak2 cos ¢ + ak2

8q pq qr sin ¢ . (1v.89)

Again, apq and now aPr may be increased by other triplets, until k3

when a is included in Tk with a value of zero. At k,, a and a
r 3 Pa PT

are rotated together according to

ak3+1 = ak3 cos ¢ + ak3

g g pr sin ¢ s (1Iv.90)
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ak3 +1 -

oe oy CO8 o - algg sin ¢ . (IV.91)

However, rotation preserves the magnitude, so

k3 +ly2 o ka+ly2 _ kg 2 | k3y2 ' '

a = (a + Iv.92

@2+ @I = @)+ @D, (1v.92)
k3

and the contribution to T is not changed. From k3 to the end of the

sweep the elements are changed due to other triplets. Thus, the total
effect on TN due to this triplet is the change in aﬁq at iteration k2‘
To generalize, the rotation of the middle element of a triplet is the
critical onme.

+
The new a§q1 given by Equation IV.87, is bounded by the relation

|ak2+l‘ < lakzl + lakz . (1v.93)
pa | — |%pq qr| |sin ¢|
where ¢ is given by
2 aki
¢ =% arctan ( ), -m/4 < ¢ < T/4 . (1IV.94)
k — —_—
a 2 - ak2
PP rr
Note than
|aX2]
1 1 o=
|sin ¢| < %|2¢| < X%|tan 2 ¢| | P akZ] , (1Iv.95)
pp rr
so IV.93 implies
ko ko
la 2| |a 2|
(akzﬂ' < ‘ak2’+——3£——95— . : (IV.96)
Pa | — | pa |ak2 ak2|
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The total error at the end of the sweep is thus bounded by the sum of
terms like last term in IV.96 for all triplets. To minimize ]a§§+l|

k +N
and therefore E ° , the ordering should try to promote two propositions

1. minimize |ak2| and lakzl s (1Iv.97)
pr : qr E

2. maximize Iakz - akzl . ’ » (IV.98)
PP rr

For proposition 1, the only effect of the ordering is which of the
elements of the triplet will become apr and aqr' The decision must be
made at time k when apq is chosen. Therefore, proposition 1 is

1

equivalent to

1b. maximize lagél . (1V.99)

Proposition 1 is enforced directly in the original method of Jacobi.
Hansen (1963) attempts to promote the same effect by indirect means.
As noted in Chapter II, the values of the off-diagonal elements are not
known in the_optimization method. |

The second proposition is uéeful because it concerns only the
diagonal elements. Note that both the row and column orderings of Figure
1 choose the elements of every triplet in the order apq’ apr’ aqr with

P <q <r. Obviously,

|v

lapp - aqql _ (Iv.100)

and

|v

|aqq -a_ (Iv.101)
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together are equivalent to either

a <a <a (Iv.102)
PP — “qq — “rr

or

a . (1IV.103)

a > a >
PP — q4 — rr

Therefore, if the diagonal is sorted throughout thée sweep, the row or
column ordering will consistently satisfy Proposition 2. :

It is interesting to note that the diagonal ordering of Figure 2
consistently violates the order apq’ apr’ aqr' This property is not a
direct contradiction to the testing‘of Hansen (1963) because the diago-
nals in his examples were not ordered and therefore could be considered
random.

To use the previous results, a modification is proposed in which
the entire diagonal is sorted in, say, decreasing order before each
sweep. The sorting can be accomplished without disturbing the algorithm
or results (except the order of the results) by a succession of exchanges
of two rolé and the corresponding two columns of Ak. For the optimi-
zation method, the cofresponding two columns of the eigenvector matrix,
S, and the two elements of b,'z, etc., would also have to be exchanged.
In the actual computational algorifhm,.the same effect is achieved at
less expense by using a permutation or pointer vector to record the
exchanges and changing the ordering. The remainder of this discussion,
however, considers the modification matrix with sorted diagongl and the
original ordering for the selection of pairs. The following theorem

shows that sorting the diagonal elements of A does not invalidate the
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theorems on convergence cited in Chapter II.

Theorem 1. If the special c?clic jacobi method is modified before
each sweep by permuting the rows and columns of A alike, such that app
is a monotonic sequence in p, then thefe exists an iteration k1 after
which tﬁe modification causes no.further change to the matrix.

Corollary. Theorem 1 holds with the special cyclic ordering of
pairs replaced by any ordering for which Ek converges to zero.

Proof. The exchange of two rows and the cdrresponding columns
interchanges diégonal elements with diagonal elements and off-diagonal
elements with off-diégonal elements. Therefore, the value 6f Ek of
IV.76 is not changed by the permutations; Also, the modification
changes the matrix only between sweeps. Therefore, the properties of
a single rotation or of rotations within one sweep are not chaﬁged by
the modification.

Forsythe and Henrici (1960) prove that

lim EX = 0 (IV.104)

k>
for the unmodified special cyclic Jacobi method. The proof depends only
on properties of a single sweep (Lemmas 1, 2 and 3) and fotations within
one sweep (Lemma 4 and the section labelled '"proof of (11)"). There-
fore, the proof applies to the modified method.‘ Based only on the
convergence of Ek to zero. and the properties of matrices, Forsythe and
Henrici prove that there exists a kl after which the permutations
required to put the matrix diagonal in monotonic order does not change
(Lemma 6). The modified method causes Ek to converge to zero, so the

proof applies to the new method, proving Theorem 1. The corollary



54

follows directly from Lemma 6 of Forsythé and Henrici.
Theorem 2. 'The special cyclic Jacobi method modified as in Theorem

1 converges in the sense that

1im aA¥ = p

koo

R (1v.105)
where D is a diagonal matrix.

Proof. The proof of Theorem 1 includes the proof that Ek converges
to zero.' The remainder of the Forsythe and Henrici proof that the
special cyclic Jacobi method converges in the sense of IV.105 applies
to the modified method.

Alternately, Theorem 2 follows from Theorem 1 by applying the
entire proof of Forsythe and Henrici to the itefations after the modifi-
cation causes no changes. In the same way, the other relevant theorems
cited in Chapter II apply to the modificaﬁion method. In particular,‘
the error Ek converges to zero quadratically. The quadratic convergence
of the Jacobi method, with or without the modification, is used in the

following discussion of the convergence of the whole optimization method.
Convergence of the Optimization Method

When the new method is applied to a general function bounded below,
the sequence of function values cannot diverge as long as the algorithm
never moves to a point unless the function value is improved. There-
fore, the éequence is monotonic. Coﬁ?ergence to a point short of
the optimum is a possibility, bﬁt several facts indicate that it is
unlikely. First of all, the direction vectors in the method are always

kept‘orthogonal, eliminating one of the problems of some other methods.
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In addition, it has been noticed that even when the direction vectors
change '"randomly" the optimization progresses at a reduced rate.
Finally, as the method converges, the direction vectors are still being
corrected by small amounts, and this tends to prevent "stagnation."

For the minimization of a quadratic funcﬁion, the new method does
not appear to have finite convergence for n greater than two. E&en if
linear optimizations are used, the Jacobi method does not produce finite
convergence of the direction vectors toithe eigenvectors of the curva-
ture matrix; The following analysis, however, shows that the distance
to the optimum is bounded by a form which appears linear but dépends on
C. Under the conditions where the Jacobi process converges quadratical-
ly, the distance to the optimum converges to zero quadratically.

Consider the new method applied'to the miniﬁization'of a quadratic

form
T
f(x) = x Ax (1Iv.106)

with A symmetric and positive definite. Since the optimum is

x=0 , | (1V.107)
the distance to the optimum is
n .
IESEE z (xp)2 : (1V.108)
. = | » |

In the notation of Chapter III, the current location x is the base

location, X . Recall that the new method uses

C = S'as (1V.109)
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as in III.4, which corresponds to Ak in the discussion of the Jacobi

method; Define z to be the error in the transformed space,

z=8x |, : (1Iv.110)
so that
T
£f(Sz) = z'Cz . (Iv.111)

Note that the definition of z used here is slightly different than that

of III.2. The transformation S is orthogonal and normalized, so

IERIESIESE

For an ideal quadratic function like IV.106, the fitting process will
produce the correct values for the elements of C regardless of position.

For A positive definite,

c =sAs >0 . (IV.112)
pp - °p" °p

Assume that all movement to the optimum is accomplished by an exact
linear optimization each time avlinear search is called for. Let the
superscript k indicate values for the variableé before the k-th linear
optimizatién (counting from zéro)L Two linear optimizations are per-
formed for each rotation of the direction vectors, so the index k here
advances twice as fast as in the discussion of the Jacobi method.
Therefore, a sweep consists of n(n-1) optimization iterations, rather
than‘the Ln(n-1) rotation iterations for the Jacobi method.

‘Each optimization in direction SE corresponds to solving equation

p of



57

Cz =0 (Iv.113)
k . .
for Zp' The solution is
: n
zk+1 = :E: ck zk ’ - (Iv.114)
P K Pq q _
pPp  gq=1
q#p

When used for solving a system of linear equations, this repeated
solution for each variable is known as relaxation. In relaxation, the
indices p are usually chosen in consecutive order, giving the Gauss-
Seidel method (see Schwarz, 1973). In the optimization method, p is
chosen as i and then j of each pair (i,j), which usually does not result
in consecutive order. As shown by the following three theorems, however,
the order of choosing p does not eliminate the usual linear convergence
characteristic of relaxation. Convergence is only slowed to- the extent
that more iterations are requifed before all zP are reduced.

The three theorems each assume a ko and establish a bound qf the

form
Kk, - K
1z ]12<% || z°]2 (IV.115)

for some kl after ko. Theorem 3 considers the general case of relaxation

with p chosen in any order and rotation of sy and sj (i.e., cij) after
choosing p=i and p=j. The resulting bound applies for any interval
(ko, kl—l) during which all p are chosen. Theorem 4 considers the con-

ditions of the optimization method and relates the reduction of error

over one sweep to the error measure of the Jacobi method.
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n n
:E: :E: (c )2 . (IV.116)
p=l q=1

q#p

Theoren 5 gives a better bound for the case of relaxation with constant

ck.

Theorem 3. Consider relaxation as in Equation IV.114 with p chosen

in any order and
kL o K (IV.117)

except for rotations of cij (i.e., 5y and Sj) after choosing p=i and

p=j. Let
k .
r Z (c Q@ p—p s (Iv.118)
q#p
and
kl_l
- k
r = 2r . (Iv.119)
k=k |
o

For any interval (ko, kl—l) such that every p is chosen at least once,

and such that

(1Iv.120)

H
| A
—

the relation

k
[zt 12<Z ]l =z°]]? (1v.121)
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"~ holds.

Proof. At any given iteration, Equation IV.11l4 may result in an
increase in the value of zp. The individual eleménﬁs, however, are
bounded by the norm of the vector. In order to isolate the new
elements let eg equal zg for all p which have been chosen in the inter-
val (ko, k-1) and eg equal zero otherwise. At k=ko, no p has been

chosen, so

[l e®]*=0. | (IV.122)

|| =z 1 Il = 1] e 1 [ . | . (Iv.123)

From Equation IV.114,

o
o

n
e - —k :E: ck zk . (Iv.124)
P ck Pd ¢

q=1

q#p

From the triangle inequality,

n
2 <L N EST P, avazs)
P ) Pq )
PP q=1
q#p
so from IV.118

(Iv.126)



At this point, it is necessary to use induction on k to prove
k-1

2,k
k 2 2
el < E 2r © ||z °[|

22=ko

Assuming IV.127 holds for k, IV.120 implies
k2 kg2
™7 < [lz °]]7 .

K ko x
Each zp equals either zp or ep, so

. k
[12511% < |12 °]] + | ]e¥] ]2

Using IV.128

k
11252 < 2]z °]|?

and IV.126 becomes

k
™2 < 2% |z 0|2

The other elements of ek are unchanged, so

Ilek+1l|2_§ llekllz + (e§+l)2»

Using IV.127 and IV.131

k-1
k k k
2 e DT 2 2 1202 w2 |2 02,

k2=k0

| (1v.

(1v.

(1v.

(1v.

(Iv.

(Tv.

(Iv.
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127)

128)

129)

130)

131)

132)

133)
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SO

o |
ek )12 < Z 2:% ||z °]|? (1V.134)

before rotation.
If a rotation affects only previously chosen elements, the rotated

+
elements of z are included in ek 1. A plane rotation does not change the

k+l||2 k+l||2 remain unchanged. Thus

Euclidean norm so ||z and I[e

Relation IV.127 holds for k+l, after rotation. Using IV.122, relation

- IV.127 is true for k-ko, and therefore, by induction, it is true for

all kzko. Returning to the proof of Theorem 3, using IV.119 and IV.123,

the relation IV.127 with k=k1 implies IV.121 which proves the theorem.
Theoreﬁ 4. Under the conditions of Theorem 3, if p is chosen as

i and then j of each pair (i,j) of the optimization method, and the

interval (ko, kz-l) contains the iterations of one sweep, then Theorem 3

holds with r replaced by

- _ 2n(n—l)'Ek

r (Iv.135)

" min lz
1<q<n
where Aq is the q-th eigenvalue of A, and Ek is defined by IV.116.

Proof. From the properties of matrices, the eigenvalues of C are

those of A, and

(c_ )" > min A . (IV.136)



For A positive definite

A >0
q
Thus, IV.118 gives
.n
rk_ 1 Z (X y2

min X =1 Pq
1<g<n
—12 a#p

Certainly,

n n n

k 2 _
:E: (cp :E: :E: -
=1 = =]

q
q#p q#p

with Ek of IV.116. For the Jacobi method,

k
Ek_<_E°,
so IV.138 becomes
ko
rk‘§ E ;
min A
1<q<n
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(Iv.137)

(Iv.138)

(Iv.139)

(Iv.140)

(Iv.141)

Every p is chosen in a sweep which consists of n(n-1) iterations, so,

since

k, = ko + n(-1) ,

(Iv.142)
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k.-1

k-1 1 ko
r2'_<_ Z r < n(n-1) _E—7 . (Iv.143)
min A
z—ko 2= o 1<q<n
Relations IV. 20 and IV.135 dimply
k
. EO
2n(n-1) —— <1 , (Iv.144)
min A v .
1<q<n
so
k-1
:E: ' <1 . | (IV.145)
2=k '
o

Relation IV.145 can be used in place of IV.120 to prove that IV.127
implies IV.128. The remainder of the proof of Theorem 4 follows the‘
proof of Theorem 3.

Theorem 5. If Ck is constant then the theorem is true with r

replaced by

k
F = — 2E ) (IV.146)
. k (2
min (¢ )
1<qsn
Proof. Define
n
r = 1 Z (c )2 . (IV.147)
P min (c )2 Pq
qq q=1

1<qg<;
=asn q#p



Note that the definition of IV.146 gives

. n n
P Z
. P
p=1 l<q_n qq_ p=1

SﬁMé

so condition IV.120 is equivalent to

n
>
p=1

2K

min (c

- l<q<n

k 2
»

If iteration k chooses p, then comparing IV.118 and IV.147

n
k
r —

= min (c

a#p l<q_p

Thus, relation IV.126 becomes
k1.2 . k2
N2 <x |12

(c =r
#

Again, induction on k is required to prove that for all p

: k
k.2 02
2
% <2e []2°]

Assuming IV.152 holds for k, summing over p gives

n

K12 < D 2r (120112,

P
p=1

64

= T (IV.148)

(Iv.149)

(Iv.150)

(Iv.151)

(Iv.152)

(Iv.153)
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and using IV.149,

k .
Hegllzi lz°[|1? . (IV.154)

Noting that IV.154 is identical to IV.128, IV.130 is assured. Using

relation IV.130, IV.151 becomes

: k
(e1;+1)2 <2t ||z °|)% . (IV.155)
and IV.152 is shown for k+l. By definition,
ko
e =0 , (Iv.156)

so IV.152 is true for ko. By induction, IV.152 is true for all k. Using

IV.148, relation IV.153 becomes

k .
11X 12 <7 |1z °|1* . (IV.157)

Recalling IV.123, relation IV.157 for k=k1 becomes,

k k k
1z Y12 = [le Y% <7 ||z °||* . (IV.158)

Since this is identical to IV.121, Theorem 5 is proved.
To summarize the results for the new method, Theorem 3 states that
once

ko 1 2
E :m min A s (Iv.159)

1<q<n

the optimization method produces
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' k
k_ +n(n-1) o k
|z © 2 cnlozDE_ 1y,001)2 (IV.160)
’ min A ' :
1<q<n
In view of IV.156,
k +n(n-1)
|z ° ]l_j Ilz °|l . (Iv.161)
so,
ko ) .
[z °I1 < [1=7[] . | (IV.162)
Therefore, IV.160 becomes
kN
k +n(n-1) _ o :
||z ° |12 < R@DE 02 (1V.163)
min A '
1<qsn ¢

With |[z°|l2 constant, the error at the end of each sweep is bounded
k k /
by a multiple of E °, 1fE° converges quadratically to zero, then

||z O[IZ converges to zero at least quadratically.

For distinct eigenvalues the coﬁvergence of the Jacobi method
insures relation IV.159 will eventually be met. Relation IV.158 as well
as the rate constant of relation IV.léO»appear discouraging due to the
n2 factor. In practice, however, the Jacobi method converges fairly
rapidly resulting in C being approximately constant. Thus, the rate

will be closer to that of Theorem 5.
Summary

The analysis in this chapter provides several results. The calcu-
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lation of model parameters must consider errors involved. A‘simple
analysis of the errors indicates that the step size z should be limited
in such a way as to keep cz2 sufficiently large relative to the estimat-
ed error in the function value and relative to other similar terms.

The order of choosing pairs of indices affects the COnvergence of
the Jacobi method. The analysis sﬁggests an ordering based on sorting
the diagonal. Theorem 1 shows that previous proofs regarding
convergence apply when the new ordering is used.

Convergence of the new method to the optimum of a quadratic
function is analogous to that Qf iterative methods, such as Gauss-

Siedel, for solving the system of linear equations

Kk =0 . | (IV.164)

The linear equation methods are known to converge linearly. In the new
method, however, the matrix C changes. Theorem 4 shows that the rate
of linear convergence includeé the function of C used as an error
measure for the Jacobi method. Under conditions where the Jacobi error
measure converges to zero quadfatically, thg optimization method con-

verges quadratically.



CHAPTER V'
TEST PROGRAM
Introduction

This chapter describes the FORTRAN program used forAtesting the
new optimization method. The program listing is given in Appendix A.
The algorittm of Chapter III is used with the step size limits of
Chapter IV. Also, the modified ordering discussed in Chapter IV, with
the diagonal sdrted, is available as an option. The test results are
reported in Chapter VI.

The program is segmented to allow testing of various alternatives
for some sections. The routines comprising the program are listed in
Table I, along with the purpose and subroutines called. Only one of
the ordering subroutines SWEPl, SWEP2, or SWEP3, is used for a single
solution. Various versions of subroutines INIT and EVAL are used to
specify the various test problems. Most information passed between
routines is stored in COMMON. For a description of important program
variables, see Table II.

The program includes options to test the effects of the following:

1. Various orderings for choosing pairs of indices.

2, .Sorting the diagonal of the curvature matrix.

In addition; the various constants for iteration and step size limits

can be modified. The control cards are detailed in Table III.

68
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TABLE I

ROUTINES USED IN COMPUTER PROGRAM

Routine Purpose Subroutines Called

MAIN Initialize and iterate INIT, EVAL, PUT, SCS,
SWEP1, SWEP2, SWEP3

SORTER Sort diagonal of C

SCS Multiply matrices

PUT Print table

SWEP1 Column ordering ' SORTER, PLANE, TALOR
SWEP2 Diagonal ordering SORTER, PLANE, TALOR
SWEP3 -Optional user specified ordering ~ SORTER, PLANE, TALOR.
PLANE Fit bivariate model FIT, TRY, PUT

FIT Fit univariate model TRY

TRY Sample function and save best point EVAL

TALOR " Sample optimum of complete model EVAL, PUT

INIT Initialize problem

EVAL Evaluate function
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TABLE II

IMPORTANT PROGRAM VARIABLES

VARIABLE

DEFINITION*

AAA(15, 15)

BB(1%)
BETER

BPUT
CC(15)

caory
CEGRE
DIR
DONE
FCUR
FREER

FREES

IBEST
IFIT
IMOVF
IPLAN
IPRM

1PRM2

ISWEP

I TRY
ITALR
KKPRNM{3)
KPRT

KR

KRDR
KSWEP

K5

M

N
NPAIR
NSAMP

NSWEP
N2

(IN MAIN) CURVATURE MATRI X OF THE MODEL, S*CxST,
CALCUL ATED AT THE &5ND OF OPTIMIZATION,
GRADIENT FOR MODEL.
(LOGICAL)e INDICATES A SAMPLE HAS IMPROVED FUNCTIGN
VALUE.
(LOGICAL)e OPTION TU CALL SUBRCUTINE PUT.
DIAGONAL OF MODEL CURVATURE MATRIX. EQUALS UNIVARIATE
CURVATUREe APPRCXIMATE EIGENVALUES.
(LOGICAL)e OPTION TO PRINT INPUT. )
THE VALUE 180/P1.
+1 TO MAXIMIZE, -1 TQ MINIMIZEs (-1)
(LOGICAL)e SIGNALS TERMINATION,
THE VALUE FOUR.
(LOGICAL)e. GPTION TO USE OPTIMUM FOR BIVARIATE FIT.
FALSE USES UNIVARIATE SAMPLE STEP SIZESe. (FALSE)
(LOGICAL)s OPTION TO BYPASS RGTATION RESTRICTION. FALSE
PREVENTS CREATING REVERSE CURVATUREe. (TRUE)
NUMBER OF SAMPLES WHICH IMPROVED FUNCTION VALUE.
NUMBER OF UNIVARIATE FITS.
NUMBER OF MOVES OF BASE POINT,
NUMBER OF BIVARIATE FITS.
(IN MAIN) LOCATION OUF PARAMETER TG BE CHANGEDe. ALSU,
TEMPORARY TO READ NSWEP.
(IN MAIN) TEMPORARY TO READ NSAMP TO ALLOW DEFAULT TG
PREVIOUS VALUE,
NUMBER OF SWEEPS.
NUMBER OF FUNCT ION EVALUATIONS,
NUMBER OF TAYLOR SAMPLES.
(IN MAIN) ARRAY OVERLAYED ON FIXED POINT PARAMETERS.
UNUSEDe PROVISICN FCR CUTPUT UNIT NUMBER,
INTEGER TO SET FREERe O SETS FALSE, 1 SETS TRUE. (0)
UNUSEDe PROVISICN FOR INPUT UNIT NUMBER.
(IN MAIN) CHOICE OF CRDERING - 1=COLUMN, 2=DIAGONAL,
3=USER DEFINED.
INTERGER TO SET FREES, O SETS FALSE, 1 SETS TRUE. (1)
MAXIMUM NUMBER GF VARIABLES. (15)
NUMBER OF VARIABLES.,
NUMBER OF PAIRS IN A SWEEP: NI(N=-1)/2
LIMIT ON NUMBER OF FUNCTION EVALUATICNSe DEFAULT IS
1000,
LIMIT ON NUMBER OF SWEEPS. "CEFAULT IS 25,
LIMIT ON NUMBER OF RETRIES OF UNIVARIATE FITe (1)
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TABLE II (Continued)

VARIABLE DEFINITION*
CNE THE VALUE 0ONE.
PI THE VALUE Pl
PPRM(23) (IN MAIN) ARRAY GVERLAYED CN FLCATING POINT PARAMETERS IN
COMMON. -
PRINT (LOGICAL)e OPTION TO PRINT AFTER EACH BILINEAR FIT.
PRM (IN MAIN) NEW PARAMETER VALUE. _
REV (LOGICAL)e OPTION TO SORT DESCENDING RATHER THAN
ASCENDINC.
SMAL S SMALLEST VALUE CF ELEMENT CF S USEL TO CALCULATE LIMIT
TO INSURE CHANGE IN Xe VALUE IS 1/SQRT(N).
SMALX NON=-RELATIVE LOWER BOUND ON ESTIMATED ERROR IN X. (1E-40)
SMALY NON=-RELATIVE LOWER BOUND GN ESTIMATED ERROR IN Yo (1E-60)
SCRT (LOGICAL)e OPTION TO MODIFY CRDERING TC SORT. DIAGONAL.
SS(1¢%) " CURRENT DIRECTICN VECTCOR,.
$SSS(15415) -MATRIX OF DIRECTION VECTORSe APPRCXIMATE EIGENVECTORS.
TCLX UNUSEDes PROVISION FOR TERMINAL ACCURACY.
TRACE (LOGICAL)e OPTICN TO PRINT AFTER EVERY FUNCTION
EVALUATION
TYLC LOWER LIMIT CN C7Z RELATIVE TO MAX CZZs (ol)
TYLX LOWER LIMIT ON CZ7 RELATIVE TO ERRCR IN Xe (1E=-10)
TYLY LOWER LIMIT ON CZZ RELATIVE TC ERROR IN Y. (1E-10)
TwC THE VALUE TWO.
TZL LOWER LIMIT GN Z RATIO. (o01)
TILF LOWER LIMIT ON Z RATIO FOR FITTING. (e 3)
TZLE FRACTION OF PREVIOUS LOWER LIMIT BASED ON ERROR. (1)
TILT LOWER LIMIT ON Z RATIO AFTEP TAYLCR SANPLEe (ol1)
TILX LOWER LIMIT ON Z TO INSURE CHANGE IN X. (1E-10)
TZUB UPPER LIMIT ON Z RATIO IF RETTER PCINT RAS BEEN FOUND.(1C)
TIUFB SAME AS TZUB FOR FITTINGe (2)
TIUF1 UPPER LIMIT ON Z RATIO FOR FITTING IF BETTER POINT NOT
FOUND AFTER FIRST SAMPLE. (1)
TIUF2 SAME AS TZUF1 FOR AFTER SECOND SAMPLE. (e5)
TZUpP UPPER LIMIT ON Z RATIC FOR BIVARIATE FITe (2)
TZLT UPPER LIMIT CN Z RATIC AFTER TAYLCR SANPLE o (1)
TZul UPPER LIMIT ON Z RATIO IF BETTER PAOINT NOT FOUNDe (45)
TZ0 FRACTICN QF X FGR INITIAL Zo (1)
XXBES(15) X FOR REST SAMPLE THUS FAR.
XX0(15) BASE LOCATION,
YBEST F(X) FCR BEST SAMPLE THUS FAR,
YL LOWER LIMIT ON CZ2. (CHANGE IN Y)
YYC(15) C2Z. (CHANGE IN Y)
YC F(X) FOR BASE LCCATICN.
Z7BEST STEP SIZE FOR BEST SAMPLE.
7ERC THE VALUE ZERC,.
22(1¢%) LIMITED CPTIMUM STEP SIZE.
IZL(15) LOWER LIMIT ON Z.
220PT(15) OPT IMUM STEP SIZE WITH NO LUWER LIMIT.

* The value in parenthesis after definition is the default used in testing.
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TABLE III

CONTROL CARDS

Card Column Format Variable Value Meaning
1 1 11 KSWEP 0  End of job
' 1 Column ordering
2  Diagonal ordering .
3 User ordering
2 Ll SORT % Sort diagonal
3 Ll REV T Sort descending
F Sort ascending
4 Ll COPY *  Print control cards
5 11 PRINT *  Print results after bivariate fit
6 Ll TRACE *  Print every sample
7 11 BPUT % Call subroutine PUT
2 1-5 I5 NSWEP Limit on number of sweeps

(defaults to 25)

6-10 15 NSAMP Limit on number of function
evaluations (defaults to 1000)

3-n 1-5 15 IPRM >0 Location for real program
: constant

0 End of modifications to program
constant

<0 Location for integer program
constant

6-15 E10.0 = PRM , Value for program constant

* Value of "T" activates option; value of "F'" deactivates
(defaults to "F").
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Main Program

The main program initializes the prograﬁ and performs the main
iteration loop. First, constants and parameters are initialized. Then
control cards are read to set the options and céunter limits. Additional
cards are read to specify optional changes to algorithm parameters.
Next, the model is initialized. Subroutine INIT is called to initialize
the function, obtaining in return the number of variables, initial base
location and initial step sizes. The parameter KSWEP chooses the proper
ordering subroutine, SWEPl, SWEP2, or SWEP3, which is called for
initialization.

The main iteration loop is then begun, in which the proper ordering
subroutine is célled. The ordering subroutine calls the other subrou-
tines to perform the actual optimization. The loop is terminated when
convergence is signalled or when the iteration limits on either the
number of sweeps or the number of function evaluations is exceeded.
Following the optimization, the final direction vectors and associated
curvatures are printed. Subroutine SCS is called to calculate the
curvature>matrix, in the original coordinates, which is then printed.
The program is then restarted at the point of reading control cards.

The program is terminated when a blank option card is read.
Utility Subroutines

Subroutine SORTER sorts the diagonal of C. The actual interchanges
are applied to a permutation vector MAP. The ordering subroutines then
generate a modified ordering which simulates operations with C sorted.

Sorting is descending if REV is true and ascending if REV .is false. The
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algorithm used for sorting is simple adjacent.pair interchange, because
after a few iterations the changes in MAP are infrequent.

Subroutine SCS calculates the curvature matrix A as in Equation
ITI.4.

Subroutine PUT formats and prints any desired information at each
iteration. Itsbmain purpose is printing tables. Oﬁe argument is passed
from the calling program to indicate the current location in the calcu-

lations according to the scheme shown in Table IV.

TABLE IV

ARGUMENT FOR SUBROUTINE PUT

Value Current Location
0 After initialization
1 After univariate
2 After bivariate fit and rotation
3 After entire sweep and Taylor sample

Ordering Subroutines

Subroutines SWEP1l, SWEP2, and SWEP3 accomplish the ordering of pairs

of indices. The first time the subroutine is called, the permutation
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. Vector MAP is initialized. After that, dne sweep is made each time the
subroutine is called. Before each sweep, subroufine SORTER is called,
if SORT is true. Pairs of indices (i,j) are then chosen, and modified
to simulate operatlons with the diagonal of ¢ sorted Subroutine PLANE
is called for each pair. After the sweep, subroutine TALOR is called.

Subroutine SWEP1 chooses pairs in column ordering as in Figure 1b.
Subroutine SWEP2 chooses pairs in a diagonal ordering to favor two
consecutive occurrences of each index as in Figure 8b. Subroutine SWEP3
is a dummy subroutine to allow the addition of another ordering. The

parameter KSWEP chooses the appropriate ordering subroutine.
Model Updating Subroutines

Subroutine PLANE corrects the bivariate model of the function in the
Plane of the two chosen direction vectors and rotates the direction
vectors. First, L of Equation IV.76 is calculated. Then subroutine
FIT is called for direction 84> giving bi’ Cigo and a component size for
the bivariate step. The base location is moved to the best point found.
Subroutine FIT is then called again for direction sj.

A temporary direction vector and step size are calculated and sub-
routine EVAL is used to sample one more point. The value of Cij is then
calculated, but limited to prevent the rotation from changing the sign
of ¢y OF cjj‘ The base location is again moved to the best point
found. The rotation matrix elements are calculated and b, C and S are
rotated. New values for the univariate step sizes are calculated,
limited by values calculated in subroutine FIT.

Subroutine FIT calculates the corrected model along a line. The

samples are used to search for an improved location as dlscussed in
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Chapter III. In addition to the error bounds of Chapter IV, heuristic
bounds are used to insure the independent variables change and to keep
the step size from growing or shrinking at more than a given rate. For
a flowchart, éee Figure 14.

Firsf, a limit to insure x changes is found and applied to the
previous step size. The first point is sampled and b is corrected.
Limits are calculated and a new step size is found. The second point
is sampled and b and ¢ are corrected. Limits and step sizes are again
calculated. If the previous samples do not bracket.the estimated
optimum, the worst of the two samples is replaced and the model calcu-
lations are repeated. Otherwise, the step size limit based on the error
estimate of IV.75 is calculated. This limit is not calculated earlier
because a reliable estimate of ¢ is required.

If one of the samples has.improved the function value, the fitting
process is ended. If the function value has not been improved and the
step size cannot be reduced or the number of recalculations exé;eds a
limit (usually two), 6ne search point without a lower limit on step size
is sampled and the process is ended. If none of the previous conditions
has terminated the process, the fit is recalculated with new step size
limits. If the desired step size for searching is within the limits for
the second step, only the worst of the previous sample points is replac-
ed for recalculation. Otherwise, both samples are replaced.

Before returning to the calling program, the exit section is per-
formed. The exit section calculates one limit for use after the bivari-
at fit. Other limits are applied to the current step size for use in

the bivariate fit.
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Figure 14.

Flowchart of Subroutine FIT
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Function Sampling Subroutines

Subroutine TRY samples the function and performs housekeeping
tasks. The sample location is calculated from the direction vector and
step size. After subroutine EVAL is called, the change in vy, DY, and
first order slope, B, are calculated. If the new point is better than
the current best‘point, the current best point is updated.

Subroutine TALOR samples the function at the (upper-limited) optimum
of the complete model and tests for convergence.. First, the location
of the optimum is calculated, along with model information in the
direction of the optimum. Subroutine TRY is used to sample the point.
The model is then corrected for the change in base location with lower

limits on the new step sizes.
Problem Definition Subroutines

The purpose of subroutine INIT is to set initial conditions for a
given problem. The conditions are returned to the main program by
subroutine parameters. The parameters are

X(15) 1Initial location (independent variables)
Z(15) Initial step size. Default is 0.1X
DIR +1 to maximize, -1 to minimize
N Number of variables
For some problems INIT also sets initial conditions for the function
evaluation subroutine, EVAL. For example, in curve fitting, the data
points are read from cards. The information is passed to EVAL by the

use of separate COMMON storage.
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Subroutine EVAL calculates the function value for one sample point.

The sample location is specified.by a subroutine parameter and the
function value is returned in the same way. The parameters are

F Function value

X(15) Sample location (independentlvariables)

N Number of variables
The number of variables is included in the parameters for EVAL because
several of the test problems are general and can be specified with any

dimension.



CHAPTER VI
EXPERIMENTAL RESULTS
Introduction

The program described in Chapter V has been tested on an IBM 360/65
computer with double precision (about 15 decimal digits). This chapter
summarizes the results of the testing along with comparisons to other
methods. It should be kept in mind that the results for other methods
. have been obtained on various computers~with various preéisions. Normal-
1y, however, the precision will only affect the final stages of con-
vergence.

A convergence criterion was not programmed. As indicated in Chapter
ITI, the convergence criterion is commonly considered to be a separate
problem. Convergence was not used to compare to other methods because
many different criteria have been used, some of which are affected by
the precision of the machine.

The information giveq for each function includes the number of

sweeps, n_, the number of linear searches, n,, and the number of function

L
calls, nc. Where it is of interest the approximation to the smallest
eigenvalue, Chin’ is listed. The smallest eigenvalue usually converges
slowest giving an indication of the convergence of the direction vectors.

The choice of ordering is indicated by COL for the ordering by columns

and SEQ for the ordering to favor two occurrences of each index in turn.

80
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SORT indicates an ascending sort of the diagonal of the curvature matrix,
which implies searching "down the valley" first. REVERSE indicates a
descending sort or searching "across the valley" first. As noted in
Chapter IV, the 'valley" depends partly on the scale; here it is assumed

that the'valley>is not produced entirely by poor scaling.
Three Variable Quadratic Function
The function

N 2 2 2 _ _ _
f(x) = 3366(xl + X, + X X %, X X4 x2x3)

2 2
+ (x1 + X,

35 ‘ .
+ X3) +vV3 (x2 - xl)(xl + X, - 2x3)

is a quadratic with a very steep-sided valley. Minimization beginning
at (10, 10, 10) results in a minimum at (0, 0, 0).

The results for column ordering without sorting are shown in Table
V. The sudden convergence in.the third sweep is explained by the
convergence of the approximate eigenvectors as shown in Table VI. The
Jacobi method requires two iterations to approximate the direction
vectors (and the eigenvalues). As shown in Chapter iV, the accuracy of
the eigenvectors then determines the rate of convergence of the x to

the optimum.
Eight Variable Quadratic Function

A larger quadratic function was created to compare orderings. The

function

£(x) = (x - %)L A(x - %)



TABLE V

THREE VARTABLE QUADRATIC FUNCTION

WORK COLUMN ORDERING, NO SORTING

82

s % Og 1 X 3

0 0 0 .300 x 10° 10.000 10.000 10.000

1 26 .299 x 10° 9.981 9.984 9.983

2 12 44 .294 x 100 9.902 9.902 9.902

3 18 64 .255 x 10716 0.000% 0.000% 0.000%

4 24 86 .231 x 10~ 2? 0.000% 0.000% 0.000%
* Zero to significant figures printed

TABLE VI
APPROXIMATE EIGENVALUES FOR
THREE VARIABLE QUADRATIC

ng Ci1 Cao C33

0 .300 x 103 - - -

1 .299 x 10° 740.65 14770. 4691.

2 294 x 10° 2.25 15050. 5150.

3 .255 x 10710 2.00 15050. 5150.

4 .231 x 1022 2.000 15050. 5150.
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was expressed in the form:

f(x) = (x - %)T SCST (x - g)

so that eigenvalues and eigenvectors could be specified directly. To

provide interaction between variables, the eigenvectors were chosen to be

which is the Hadamard matrix of order eight (Hadamard, 1893; Paley,

1933). The diagonal elements of C,

{cii} = {1, 1025, 1281, 1345, 1361, 1365, 1366, 1367} ,

were used to provide both grouped and spread eigenvalues. (Due to the
scaling of S, the eigenvalues are eight times the ciy values.) The

equivalent matrix is
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/9111 -1093 -1607 -963 =-1807 -1083 —1593'_'-957
-1093 Coul -963 -;607' 1083 -1807 =957 '-1593
-1607 . -963 9111 ~1093 -1593 957 -1807 -1083
~963 '-1607 -1093 9111 -957 -1593 -1083 -1807

-1807 - -1083 -1593 -957 9111 -1093 -1607 ’f963

-1803 -1807 -957 . -1593 -1093 9111 = -963 -1607

)

-1593  -957 -1807 -1083 -1607 -963 9111 -1093

-957 ' -1593 -1083 -1807 -963 -1607 -1093 9111

Optimum and initial points used were

#=(2,1,1,1,1, 1, 1, 1)
~and |
xg = (1; 2, 3, 4, 5, 6, 7, 8)
respectively.

The results %or column ordering in Table VII compared to those for
the three variéblg quadratic shéw the tendency of Jacobi method to
convefge in the same number of sweeps regardless of n. Of~course, each
sweep includes n(n-1) rotations so the number of calculations (and the
number of function calls) is roughly proportional to n2.

The convergeﬁce of the Jacobi method'for the different orderings
indicated by the émallest eigenvaiues is shown in Table VIII. As expect-
ed, the column oraering is better for the initial convergence of the
Jacobi method. For the column ordering, sorting the diagdnal gives

slightly faster convergence. Convefgence to ‘the optimum follows the



TABLE VII

EIGHT VARTABLE QUADRATIC FUNCTION WITH
COLUMN ORDERING, NO SORTING

n n, ne f Chin
0 o o .24 x10° -
1 56 164 .135 x 10% 30.6
2 112 338 .251 x 10% 9.4
3 168 504 .831 x 10718 8.0
4 224 645 248 x 10728 8.0
TABLE VIII
EFFECT OF ORDERING ON EIGHT VARIABLE
QUADRATIC PROBLEM
Cmin . Cmin Cmin f at ng = 3
ORDERING n_= ns=2» - ng=
COL 30.6000 .  9.3928 8.0001  .831 x 1018
COL, SORT 30.6366  8.0015 8.0000 .129 x 10720
COL, REVERSE 30.6366  8.0000  8.0000  .604 x 107>
SEQ 73.3525  10.1971 8.0001  .269 x 10°
SEQ, SORT 73.3525  32.6754  8.0003  .138 x 107>
SEQ, REVERSE 73.3525  8.0488  8.0000  .114 x 10 18




86

accuracy of the eigenvectors, except for the column ordering with
descending sort. The comparison of convergence to the optimum for

different orderings is discussed later.
Rosenbrock's Function
The curved valley of Rosenbrock (1960) is well known. The function

f(x) = lOO(x2 - x]2_)2 + (1 - Xl)2

is minimized beginning at (-1.2, 1.0). The minimum is (1;0, 1.0). ’Al—
though artificiél, the problem is useful for development and éomparison
of methods because it involves a large number of simple iterationms. |

Orde;ing is not important because there is only one pair. The results

11 is attained in 137

-11

in Table IX show that a function value of .9 x 10
function evaluations. Powell (1964) réports reaching .7 x 10 in 151
function evaluations. Fletcher (1965) reports Powell's method reaches
A ox 10“8 in 145 function evaluations and the method of Davies, Swann
and Campey reaches .4 x 10_6 in 169 function evaluations. For compari-
son, Rosenbrock (1960) took 200 function evaluations to reach A ox 10_7.
On the other hand, the gradient method of Fletcher and Powell (1963)

reaches .1 x 10_7 in 18 gradient evaluations which corresponds roughly

to 54 function evaluations.
Powell's Quartic Function

Powell (1962) gives a function,

2 a2 4 4
f(x) = (xl+10x2) + 5(x3—x4) + (x2—x3) + lQ(xl—x4) .



TABLE IX

ROSENBROCK'S FUNCTION
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n_ n, ne £ X X,
0 0 .240 x 102 ~1.200 000 1.000 000
1 2 .427 x 10t ~1.064 214 1.143 571
2 4 13 .409 x 10! ~1.022 067 1.040 780
3 6 20 .353 x 10! ~.867 636 .732 635
4 8 26 .322 x 10t ~.733 562 .570 513
5 10 34 .275 x 10! -.631 673 .369 214
6 12 42 .208 x 10' -.412 319 .140 509
7 14 50 .173 x 10t ~.095 359 ~.063 488
8 16 60 .982 .015 023 ~.010 817
9 18 66 644 1,218 761 .295 069
10 20 74 425 .385 128 .126 666
11 22 80 .170 .589 127 .344 217
12 24 90 934 x 1071 .702 148 .486 196
13 26 9 572 x 1071 .764 591 .580 323
14 28 102 .145 x 1071 .907 213 .815 360
15 30 110 .324 x 1072 .945 473 .892 296
16 32 116 .110 x 1072 .968 518 .936 968
17 34 122 152 x 1072 1.006 836 1.014 744
18 36 128 .101 x 107° .999 686 .999 377
19 38 136 .902 x 1011 .999 999 .999 998
20 40 144 .384 x 10714 1.000 000 1.000 000
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to be minimized from (3, -1, 0, 1). The funqtion is difficult because
the curvature matrix is double singular at the minimum (0, 0, O, 0).

The resulting linear convergence can bé seen in Table X for column order-
ing with the diagonal sorted. The corresponding approximate eigenvalues
in Table XI sh&w the tﬁo zero eigenvalues. Also note that the non-zero
eigenvectors are approximated in only two sweeps. The function value is

reduced to .88 x 10_9

in 223 function evaluations. Fletcher (1965)
reports Powell's method reaches .43 x 10_9 in 208 function evaluations
and the method of Davies, Swann and Campey reaches .13 x 10_9 in 180

evaluations.
Random Matrix Function

Fletcher and Powell (1963) present the function

n n

o\ _ . W2

f(x) = :E: (Ei :E: (Aij sin x, + Bij cos xj)) .
i=1 j=1 .

where the elements of A and B are random numbers between -100 and 100,

~ N ~
and elements of x are random numbers between -7 and 7. For the chosen x

Elements of x  are displaced from those of X by random numbers between
-.1 7 and .1m.

Testing was done for n of 3, 5, and 10. Fof each value of n,
three different random problems were created. The number of function

evaluations required to reduce the error in the independent variables



TABLE X

POWELL'S QUARTIC FUNCTION WITH COLUMN
ORDERING, DIAGONAL SORTED
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nS n2 nf f Xl x2 x3 . x4
3 1 1 1
0 0 0 .335xl10 .300x105  -.100x101 .0 .100x10
1 20 42 .570  .941 .909 .356 .553
2 40 75 .163x10°F  .319 .324x10°1  .120 124
-3 -1 -2 -1 -1
3 60 111 .711x10 .517x107Y  .556x107% -.345x10"F -.376x10
-5 -1 -2 -2 -2
4 80 149  .525x10 .219x10 .220x10™% -.495x107% -.491x10
5100 188 .352x107°  .764x1072  .762x107> -.581.107% -.582x107%
-9 -2 -3 ) -2
6 120 223  .880x10°°  .512x10 .512x107°  .244x10 . 244%10
7 140 257  .733x10° 11 L154x1072  .154x1073 .644x107>  .644x10 >
8 160 292 .390x10"1l .942x1073  .942x107% .152x107°  .152x107°
9 180 332 .161x10"13 .282x1073  .282x107% .827x107%  .827x107*
10 200 365 .778x10°1® .590x10™%  .590x107° .103x10~% .103x107%




TABLE XI

CONVERGENCE OF EIGENVALUES FOR
POWELL'S FUNCTION
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x 10

By 11 €92 €33 €44
.235 x 10 166.0078 121.8056 -.355 x 10714
.146 x 101 200.5988 15.0593 191 x 102
3 .0 202.2410 21.0133 .207 x 10%
4 127 x 1071 201.8421 20.0471 .750 x 1071
5 .367 x 107 202.0033 20.0284 .770 x 107"
6 .386 x 1072 202.0003 20.0000 .248 x 1072
7 .262 x 1074 201.9997 20.0001 .338 x 107°
8 .293 x 107° 202.0000 20.0000 .120 x 1073
9 .259 x 107 202.0000 20.0000 .229 x 1074
10 .854 x 107° 202.0000 20.0000 104 x 1070
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to lOf4 is given in Table XII. Comparable results given by Powell
(1964) for his own method and that of Rosenbrock (1960) are shown in
Table XIII. In several cases the new method converges to a local
optimum otherbthan the intendéd one. Fletcher and Powell indigate that
there are many optima and coiivergence to a differenf one sometimes
occurs. The first of the three cases for n = 10 fails to achieve 10_4
accuracy in ten sweeps with either ordering. When terminated, the

program was apparently approaching a different local optimum.
Curve Fitting Problems

Curve fitting is a more realistic problem and a difficult one.
Osborne (1971) presents two models to be fit to tabulated data. The

function to be minimized becomes
m
- . 2
f(x) = Z (F(t;, %) ‘ v
i=1
The first model is
F(t, x) = Xy + X, exp.(fx4t) + X3 exp (—x5t) .

The data values are given in Table XIV. Results for column ordering

are shown in Table XV. The eigenﬁalues given by the program,
(14, 2.3, .00004, 132000, 4000)

indicate that the problem is another very narrow valley. The correspond-

ing eigenvectors,



TABLE XII

NUMBER OF SWEEPS AND FUNCTION EVALUATIONS
TO REACH |x{ - %{| < 10~% FOR RANDOM
MATRIX FUNCTION WITH NO SORTING

COL SEQ

n ns nf I‘IS nf

3 3 63 2 42

3 4 79 ' 4 77%
3 4 78 3 59

5 4 238% 2 130
5 3 182 2 122 -
5 3 188% 4 250
10 %k *k
10 4 1090 3 845
10 6 1663%* 4 1144

% Converged to alternate local optimum
*% Fajiled to converge in ten sweeps

TABLE XIII

OTHER METHODS APPLIED TO RANDOM
MATRIX PROBLEM

Powell's Method ' Rosenbrock's Method
n ne n ne
3 61
3 61
5 104 5 465
5 103 5 466
5 388
10 329 10 1210

10 369 10 1258
' 10 1295




.835 -.549 -.006 -.024 -.041

.387  .594 -.705 =-.006 =-.032

s = .391 .58 - .709 .-.003  .028 | ,
026 -.023 -.001  .957  .287
.004 -.053  .003 -.288  .956

show a strong interaction among the first three variables (the term -
coefficients) and a significant interaction between the last two
variables (the exponential decay rates). With this information,

similar problems could be modified to make then easier to solve..

TABLE XIV

DATA FOR FIRST CURVE FITTING PROBLEM

t y t v t y
0 .844 110 .718 220 478
10 .908 120 .685 . 230 467
20 .932 130  .658 240 457
30 .936 140 .628 250 448
40 .925 150 .603 260 .438
50 .908 160 .580 270 431
60 .881 170 .558 280 424
70 .850 180 .538 290 420
80 .818 190 .522 300 414
90 .784 200 .506 310 411
100 .751 210 .490 320 .406

The second model is

f(t,x) = Xy exp(—xst) + X, exp(—x6(t—x9)2)

2 2
+ X3 exp (—x7(t—x10) ) + X, exp (—x8(t—xll) ).



TABLE XV

FIRST CURVE FITTING PROBLEM WITH COLUMN
ORDERING AND NO SORTING

s 2 nf X]. x2 . x3 ' x4 x5
f 11 Cop- €33 Cas Css
C. C 0 0.5000000 1.5000000-1.0000000 0401000C0 00200000
0.8790263D C0 0. X 3.0 0.0 0.0
1 20 60 043312236 1e5465290-1s CCTT168 0o GL03918 0.0210042
0.3400754D-02 12,867 64292 0o130112364.449 1568, 257
2 40 120 043698178 1.7070741-1e2239984 CoCl21GS8 00228962
0. 1383594D-03 9,897 3.310 0022 87857.676 1471688
3 60 178 043731657 1.7099966-1.2367073 0.0123504 0.0232258
Ce5841651D-04 14. 164 2.24C 20,000 81342.757 1421.494
4 B0 237 043736217 1.7564485-1,2840194 0.0124653 U, 0229650
0.56847120=04 14, 174 2.239 Ce 000 83773.000 1458.852
5 ,ALL) 303 0.3736929 1.76£1341-1.2936902 0,0124886 0.0229133
0.5€24552D 14,266 2. 244 0. 001 84516s648 1499.773
6 120 265 0.373873C 1.787381S-1.3152240 0.0125383 0. 0228024
0.55885680-04 14,314 22247 0.001 B5E£2.063 1525,935
7 140 436 043744450 1.8357859-1s 2640271 CuCl26546 040225673
€.55205080-04 144382 2.251 0.000 88241.405 1580.912
8,180,498 043745909 1.8406227- 143638557 C.ClZ6668 0,0225426
Co 5ECSES5D- Ch 144432 0.001 83027.257 1597.090
180 563  0.3748755 1.8782834-1,4067361 0.01274€8 0,0223665
0454796090~ C4 14. 475 2:2517 0. 000 $1371.754 1642.224
1C _2CC €25 0.3750689 1.8965667-144251567 0.0127865 0.0222673
0+54714300-04 140525 24259 Co00C 926640314 16668250
220 €sE 0.3751596 1.50564761.4343367 0, CL2BOL 0,0222497
0.54688720-04 14.555 260 0.001 92758.6€7 16764 362
12, 240 764 0.3752525 1.6178022-1.44£5247 0.CLl283C6 0,0221968
00546621 4D=n4 144580 24253 02300 94081.293 1661.388
13 260 B3] 043752556 1.9184732-1.447185S C.C128318 0,C221935
Ce 5466131004 142577 24240 0.003 94135.650 16924165
14 28C_ S00 043753977 1.9342400-1+4630712 0,0128643 0.0221292
0e5464567D- 04 144553 <000 951040157 17084936
3CC S57 003754100 149358435-1.4646837 0,0128675 0,0221227
022462895004 144606 2. 263 C.00C 95253.529 1711.987
16 220 1021 0e37541C1 1.S35647C-1. 4646872 0.0128675 0.0221227
00546489 50-04 144190 2313 0.00C13%6E7, 758 455%.571

94
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The data is listed in Table XVI and the results are shown in Table XVII.

This case provides a practical problem of many variables.

TABLE XVI

DATA FOR SECOND CURVE FITTING PROBLEM

t y t 'y t y
0. 1.366 2.2 .694 A .672
0.1 1.191 2.3 644 4.5 .708
0.2  1.112 2.4 .624 4.6 .633
0.3 1.013 2.5 .661 4.7 .668
0.4 .991 2.6 .612 4.8 .645
0.5 .885 2.7 .558 4.9 .632
0.6 .831 2.8 .533 5.0 .591
0.7 .847 2.9 .495 5.1 .559
0.8 .786 3.0 .500 5.2 .597
0.9 .725 3.1 .423 5.3 .625
1.0 .746 3.2 .395 5.4 .739
1.1 .679 3.3 .375 5.5 .710
1.2 .608 3.4 .372 5.6 .729
1.3 .655 3.5 .391 5.7 .720
1.4 .616 3.6 .396 5.8 .636
1.5 .606 3.7 .405 5.9 .581
1.6 .602 3.8 428 6.0 428
1.7 .626 3.9 429 6.1 .292
1.8 .651 4.0 .523 6.2 .162

1.9 724 4.1 .562 6.3 .098
2.0 .649 4.2 .607 6.4 .054
2.1 .649 4.3 .653

Comparison of Orderings

Table XVIII summarizes the results which compare the orderings.
The first observation is that none of the orderings cause complete

failure. The column ordering with descending sort causes slowest



TABLE XVII

SECOND CURVE FITTING PROBLEM WITH
COLUMN ORDERING AND NO SORTING

X

C11

)

Cyo

X3
C33

'x4

Cos

X5

G55

3 3
Ce4184402D-01

1.3000000
O.:)

1. 1899570
306375

1.2467814

84001

1.2935216
3. 330

1.3073287
24560

1.3099772
2974

Co €5 C0000

Ce 304883¢
13,565

0.6500000

0.£€209244
2Te 474

07000000

Ce 4873668
13.842

Ce5645659€8
14.839

0.56000000
0.0

067541830
494435




TABLE XVII (Continued)

Xg ' Xg

Cgg 99

X

10
10,10

*11

C11,11

3.0C0CCI0 5.,0000000
CeC 0

15358380 142166643
0. 183 0. G95
1.0890311 1.1921386

0e 216 0. 119

0e9551183 1431152175
0163 04079

18 143636656
51 06065

Ce3C42871 1.3658118
Oe 147 De 056

7.0080000 2.0080000

501792022 243938802
4eb42

033243563891
acs 44859

445000CCO0
0.0

40 5380937
243

55000000
040

Se €443125
9.691

546835096
16435

5e 6762114
17.126

5.67%4883

17+ 3406

506£€753415
17.403
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convergence. A possible reason is that the column ordering chooses
"the first indices more frequently at the beginning of the sweep and the
latter indices more at the end. With the descending sort the directions
with greater curvature ("across the valley") are chosen many times
before the directions with lesser curvature ("down thé valley"). For
a curved Valléy, optimizing "across the valley'" too accurately reduces
the domain of lower function values. As a result, it is difficult to
find a better point "down the valley." This problem might be relieved
by changing the scale.

At the other extreme, the column ordering with ascending sort and
the sequential ordering with descending sort causes fast convergence.on
the functions tried. More exhaustivé testing would be required to draw

further conclusions.



TABLE XVIII

COMPARISON OF ORDERINGS

99

nflloglof
n COL , COL COL COL COL SEQ
n s NO SORT .SORT REVERSE NO SORT SORT REVERSE
Eight variable quadratic function
8 3 504/-18 517/-20 536/-3 557/-9 543/-9 528/-18
4 645/-28 648/-29 693/-27 702/-30 690/-25 669/-25
Powell's quartic function
4 6 222/-7 223/-9 228/-6 232/-7 233/-9 225/-9
Random matrix function :
3 4 84/-14 84/-14 84/-14 83/-18 83/-18 82/-18
3 4 79/-7 77/-6%
3 4 78/-10 80/-15
5 4 238/-10% 247/-27
5 4 236/-27 237/-26
5 4 241/-26% 250/-5
10 5 1400/-1% 1440/-2%
10 5 1331/-21 1310/-26
10 5 1389/-4% 1391/-16

* Converging to alternate optimum



CHAPTER VII
SUMMARY AND CONCLUSIONS

The objective of this research was to develop a new direct search
method for unconstrained function'optimization. The method is based on
fitting a quadrétic model and moving towards the optimum of the model
along approximate eigenvectors of the curvature matrix. The operation
of the method involves‘fitting the model, improving the eigenvectors
and searching for a location with improved function value. The three
processes are accomplished efficiently by an organization based on the
Jacobi method for finding eigenvalues of a matrix. At the same time,
the basic method allows flexibility in implementing several operations.

The calculations used for fitting the model are straightforward,
but computational roundoff error can be a problem. Using the model to
predict function values, some types of error can be estimated. The step
size (distance between sample locations) directly controls the effects
of the error on the calculations. Therefore, an analysis of the error
has been completed which yields limits on the step size necessary to
maintain sufficient accuracy.

A new analysis of the Jacobi mefhod suggests sorting the diagonal
of the working matrix. The same effect can be produced by quifying the
order of choosing pairs. The analysis includes a proof that the
modification (of the matrix or the ordering) does not invalidate the

existing proofs regarding convergence of the Jacobi method. Testing
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indicates a slight improvement in speed of convergence of the eigen-
values with the modified ordering. For optimization, however, the test-
ing did not show a significant effect on convergence to the optimum.

The rate of confergence of the new method to the minimum of a posi-
tive definite quadratic function has been analyzed. The result shows
that the rate depends on the error measure used for the Jacobi method.
Under conditions where the Jacobi method converges quadratically, the
distance to the optimum converges to zero at least quadratically. |

To verify the operation of the new method, one version was program-
med and tested on several problems. The elgorithm converged at a
reasonable rate in almost all cases. 1In fact,‘on problems with a small
number ‘of variables, the rate of convergence was approximately the same
as some of the‘best previous methods. This result is encouraging when
it is considered that the algorithm used was the first version of the
method. |

The new method is valuable due to fhe availability of the model of
the function including the eigenvectors of the curvature matrix. One
use fot the model is to evaluate "sensitivity" coefficients. The eigen-
vectors provide information of ohe interaction (correlation) of the
independent variables. In many problems part of the model is known
beforehand and may be set initially, obviously shortening the optimi-
zation. An important example is the solution of a constrained problem
by repeated unconstrained optimization with a variable penalty function
added. 1In that case, the change in the model due to changes in the
penalty function might even be calculated before restarting the optimi-

zation. Another example of the use of the model is the optimization of
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‘a large number of variables in gfoups, combining the models for the
groups in a final complete optimization.

A possible extension of the new method is the direct inclusion
of coﬁstraints; The problem of constrainted optimization is important,
due to its natural occurrence in ﬁany‘situatiohs and its inherent
difficulty. With the new method, the situation is reduce& to using
the constrained optimum of the model, which is a known tractable
function. Adding constraints in this way is possible because the
location of the samples used to fit the model are not restricted.
Another extension concerns problems where the gradient or curvature
matrix can be obtained, including minimization of a sum of squares.
In these cases additional information allows a significant reduction
in the number of function evaluations requiréd to determine the optimum,

as shown by previously available methods.
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THE FURPOSE OF THIS PROGRAM IS TO OPTIMIZE AN UNCONSTRAINED
(SMOOTH) FUNCTION WITHOUT EXPLICIT GRADIENT. IT WAS WRITTEN BY
FREC WITZ FOR PHeDs RESEARCHe THE METHOD IS DESCRIBED AND THE
FRCGRAM IS EXPLAINEC IN THE RELATED CISSERTATION, OKLAHOMA STATE
UNIVERSITY, MAY, 1676

NCTE THEAT DDUBLE ANG TRIPLE LETTERS ARE USED THRQUGHOUT FOR
VECTORS AND MATRICES, RESPECTIVELYe MOST CCMMENTS USE THE SINGLE
LETTER IN THE MATHEMATICAL SENSE, :

- IMPLICIT REAL*8 (A-H, 0-1) .
COMMGN BLOCK

LOGICAL SORT, KEV, CJIPY, PRINT, TRACE, BPUT, BETER, DONE

LCGICAL FREES5, FREER o

COMMON /JOECOM/ ZERO, UNE, TWO, PI, FOUR, DEGREy DIR
+9 535(15, 15), XX0(15), YO, BB(15), CC(15), ZZ0OPT{15)y 2Z(15)
+9 XXBES(15), YBEST, IBEST, S$SS(15), SMALS, YYC{15), YL, ZZL(15)
COMMEON /JOECOM/ TZOy TOLX, SMALX, SMALY
+o TYLX, TYLYy TYLC, TZLR, TZLX, TZLF, TZL, TZLT
++ TZUF1l, TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT

CCMMCN /JOECOM/ M, KRDR, KPRT, N, NSWEP, NSAMP, NPAIR
+9 ISWEP, ITALRy IPLAN, IFIT, ITRY, IBEST, IMOVE

++ N3, K5, KR

CCMMCN /JOECCM/ BETER, DONE, SORT, REV, COPY, PRINT, TRACE, BPUT
+y FREES5, FREER

END COMMCN

DIMENSICN AAA(15, 15)

DIMENSION PPRM(19) s+ KKPRM{3)

EQUIVALENCE (PPRM(1), TZ0), (KKPRM{1), N3)

ABS({h) = DABS (W)

SIGN{Ws WL) = DSIGN{W, Wwl)
SORT (W) = DSQRT (W)
FCRMAT(1X)

FORMAT(/3H Y=y G157, 36Xy 3H X=, (158, 5G15.7) )

INITIALIZATION

KPLR = 5§

KPRT = 6

ZERO = Co0

CNE = 1.0

TWC = 2.0

PI = 3.14159265358579D0

FCUR = 4.0

DEGRE = 180,0D00/P1

M= 15 ,
DEFAULTS

NSWEF = 25

NSAMP = 1000
INITIAL STEP RATID

TZC = o1

TERMINATICN ERRCR IN X
TCLX = l.E-4

INSURE DX
SMALX = l.E=40°
SMALY = 1.E-60
TYLX = 1.E~-10
TYLY = 1.E-10
TYLC = 401
TZLR = 41



22
23

24

250
25

26

N
(81
N

41

42

44

TILX = '1E-10
RATE CF Z REDLCTICN

TILF = b3
T72L = ,01
TZLT=.1
RATE OF Z GROWTH
TZLF1l = 1.
TIUF2 = .5
TZUl = .5
J72LFB = 2,
TZUB = 10.
TZuP = 2,
TILT = 1,
N3 = 1
K5 =1
KR = C
CIJ TERM RATIC
TZILC = o1
CONTINUE
IERO WORKSPACES FOR PRINT
SMALS = Q.
YL = C.

o2 o4 ok k% ok ok ok ok Kk ok Kk Kk ok % k k &k k k ok &k K ok %k ok k k [

) READ PARAMETER CHANGES
FORMAT(I1l, SL1)
RPZAD(5, 21) KSWEP, SORT, REV, COPY, PRINT, TRACE, BPUT
IF(KSWEP +EQs 0) GC TC 990
FORMAT(//17H PARAMETER INPUT- / 1X, I1l, 9L1)

IF {CGPY IWRITE(6, 22) KSWEPy SORT, REV, COPY, PRINT, TRACE, BPUT

FORMAT(10I5)
READ(5, 23) IPRM, IPRM2
FCRMAT (1X, 1015) '
IF(COPY) WRITE(&, 24) IFRM, IPRM2
IF(IPRM oGTe O) NSWEP=IPRM
IF(IPRM2 .GTe. O) NSAMP = [PRM2
CONTINUE
FORMAT(15,£10.0)
READ(S, 25) IPRM, PRM
FORMAT(1Xs 15, G1Ce3)
IF(COPY )WRITE(6,26 )IPRM, PRM
TF(IFRM) 254, 2564 252
CUNT INUE
FERM (I PRM)=PRM
GC TC 250
CONT INUE
KKFRM{IPRM)=PRM
GC TC 250
CONTINUE : ‘
CONVERT LOGICAL PARAMETERS
FPEE5 = o« TRUE.
IF(KE o+EQe O) FREES= oFALSE.
FREER = L FALSE. '
IF({KR oNEe. 0) FREER = ,TRUE.

PRINT PARAMETERS
FOFMAT(/10H LIMITS= , 21%)
IF(COPY) WRITE(6, 41) NSWEP, NSAMP
FORMAT (/12H PARAMETERS=, 10C(/1X, 1CG10s3) )
IF(CCPY) WRITE(6, 42) PERM
FORMAT(1X, 10110)
IFICOPY) WRITE(6, 44) KKPRM
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[¥%]
20}

368

[aRe]

458

461

4¢2

46132

466

47

48

47S

IF(COPY)

WRITE(6, 1)

110

0% o & k& ok ok ko ok ok ok ok ok a k ok % X ok ok ok ok % ® ook %k ok % % x &k %

DO 32€8 1
CC 338 J
SSS(T, J

" CONTINUE

SSS(I, I
XXC(I) =
BB{I)
CC(Id
27(1)
ZZr(r) =
220PT(I)
YYC(I) =
CCNTINUE

Hou oy

IR = -1

[LS I o]
W

D
N
CALL INT

Lo 458 1
XXBES(I)
IF(Z2Z2(1)
IF(ABS (Z
CONTINUE
NPAIR =

DIR = SIGN{ONE,

SMALS =

CALL EVA
YBEST
I8EST

i

TSWEFP
ITALP
IPLAN
IFIT

ITRY

IREST
IMODVE

0
e

HoH

IF(KSWEP - 2)

CONTINUE
CALL Swt
GC TC 46
CONT INUE
CALL SWE
GC TC 46
CONTINUE
CALL SWE
CONTINUE
IF(«NOT.
FCRMAT (Y
IF(.NQOTs
FORMAT(
IF(REV)

CONTINUE

INITIALIZE MODEL
1ly M ’
1, M
) = ZERC

) = ONE
ONE
LERD:
LERO
ZERO
LERC

= IERC
LERD

SET CEFAULTS FCR INIT

+ = MAXIMIZE, - = MINIMIZE
0
-

INITIALIZE FUNCTION
TIXX0, ZZ+ CIRy N) .
INITIALTIZE STEPSIZEy ETC.
1y N
XX0{1I)
«EQe ZERQ) ZZ(I) = TZOXXXO(I)
Z(1)) oLTe SMALX) ZZ(1) = ONE

it

(N*(N - 1) })/2
DIR)
SQRT (CNE/N)
SAMPLE INITIAL POINT
LYOy XXO0y N} .
YO
ZERO
INITIALIZE COUNTERS

[eRaRe)

0
0.

INITIALIZE SWEZEP
451y 462y 463
P10, N)
9

P2 {0, N)
3 .

P3 {0, N)

SORT) GO TO 479

DIAGONAL SURTED INCREASING!')
REV) WRITE(6, 47)

DIAGONAL SORTED DECKEASING')
WRITE(&6, 48)



2 ¥aXsKa)

51C

52¢C

53C

590

61
€1C

900
91
G2

928

[aNeNal

94

948

968

IF(KSWEP - 2) 510,

IF(PRINT 40ORoe TRACE) WRITE(6, 2)
IF(BPUT) CALL PUT(0)
IF(TRACE) WRITE(6, 1)
IF(PRINT) WRITE(6, 1)

CC 559 ISWEP = 1, NSWEP
CONE = +TRUE,

520, 530
CONTINUE

CALL SWEPL(ISWEP, N)
G3d TC 590

CONTINUE

CALL SWEP2( ISWEP,s N)
CC TC 590

CONTINLE

CALL SWEP3(ISWEP,y N)
CCNT INUE

IF(DONE) GO TO 610
IF{ITRY oGTes NSAMP)
CONTINUE

END ISWEP

GO TO 600

PRINT INITIAL POINT
YO, (XX0(I)y I =1, N)

3k ook b ok ok ok ok ok ok sk koK
MAIN ITERATICN LOOP

111

¥R b ok ok ok ok ok ok kX .k % ok Kk Kk % k k % k %X k KX Kk x k k k K & X

EXITS

FORMAT(' EXCEEDED MAXIMCM ITERATIONS ')

WRITE(6, 60)
WRITE(6, 1)

GO TO 900
FCRMAT (' $$8¢$
WRITE(6, 61)
GO TO scCoO

CONT INUE .
FCRMAT(T9, *C=', (T12, 5G24.16)

WRITE(6Ey 91) (CC{I)y I = 1, N)
WRITE(6, 1)
FORMAT(T9, *S=', (T1l2, 5G24.16)

DO 928 I = 1, N
WRITE(6, 92) (SSS(I,
WRITE(6,s 1)

J)e J = 1,

CALL SCS(AAA,
FORMAT(T9, 'A=?,
DO 948 1 =1, N
WRITE(KPRT, 94)
WRITE(KPRT, 1)
DO GEE T = 1, N S
WRITE(KPRT, 94) (AAA(I, J)y» J

GO TC 200
% 4 % k ok %k Kk ok K k %k Ok %k k %

SSS+ CCy» N)
(T12, 56G24.16)

(AAALTy J)y J =

i

CONTINLE

FORMAT(*'=***%% END OF JOB')
WRITE(6,99)

sSTCP

END

STANCARD END')

)

)
N)
A= SC ST
THAT IS, THE SECOND PARTIALS
CF THE FUNCTION F
)

1, N)

1, N)

¥ ok % Kk Kk ok Kk k K Kk & k k k k %k %

PROGRAM TERMINATION
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420

430

439

469

SUBROUTINE SORTER(MAP)

THIS SUBROUTINE SORTS THE ELEMENTS GF CCe THE SORT IS DECREASING
FOR REV=FALSE AND INCREASING FOR REV=TRUE. THE ELEMENTS OF cC
ARE NOT MOVED - THE VECTCR MAP LISTS THE INDICES OF CC IN ORDER,
THE METHOD IS A SIMPLE ADJACENT PAIR INTERCHANGE BUBBLE SGRT.

IF SCRT=FALSE, SORTING IS NOT DONE. :

IMPLICIT REAL*8 (A=-H, 0-1)
LCGICAL DONES
COMMCN BLOCK
LCGICAL SORT, REVs COPY, PRINT, TRACE, BPUT, BETER, DONE
LCGICAL FREE5, FREER
COMMON /JOECOM/ ZERO, ONE, TWO, PI, FCUR, CEGRE, DIR
+y SSS(15, 15)s XXO0(15), YO, BB(15), CC(15), ZZGPT(15), 2Z(15)
+9 XXBES(15)y YBEST, ZBEST, SS{15), SMALS, YYC(15), YL, ZZL(15)
COMMCON /JOECOM/ TZ20, TOLX, SMALX, SMALY
+y TYLXy TYLY, TYLCy TZLRy TZLXy TZLF, TZL, TZLT
+s TZUFl, TIUF2, TZUl, TZIUFB, TZUB, TZUP, TZUT
COMMCN /JOECOM/ My KRDR, KPRTy Ny NSWEP, NSAMP, NPAIR
+y ISWEP, ITALR, IPLAN, IFIT, ITRY, IBEST, IMOVE
+y N3y K5, KR '
COMMCN /JOECOM/ BETER, DONE, SORT, REV, COPY, PRINT, TRACE, BPUT
+y FREES5, FREER
END CCMMCN
CIVENS ION MAP(15)
IF(«NCTse SORT) RETURN

NUz = N -1
N2 =1
LEN = NU2

DO 568 I = 1y LEN
CONES = oTRUE,

JU = NL2 + 1
MU = MAP(JU)
XU = CC(MU)

PAIRWISE DESCENDING
DO JL = NU2y NL2, -1
CO 498 JL2 = NL2,y NU2

JL = NL2 + NU2 - JL2
ML = MAP(JL)
XL = CC(ML)

IF(REV) GO TO 420

SORT INCREASING
IF(XL «LEe XU) GO TO 439
GO TO 420
CONT INUE

SORT DECREASING

IF( XL «GEe XU) GO TO 439

CONT INUE

INTERCHANGE
MAP(JL) = MU
VAF(JU) =
DCNES = JFALSE.

CONT INUE
MU = ML
XU = XL
CONT INUE
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469

569
599
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Ju = JL

CONT INUE

IF{DCNES) GO TO 900
NL2 = NL2 + 1

CONT INUE

CONT INUE

RETURN

END

SUBRCUTINE SCS(AAA, SSS,y CCys N)

THIS SUBROUTINE CALCULATES THE MATRIX PRODUCT A = S*C*ST, WHERE
ST IS THE TRANSPOSE OF S, AND C IS A DIAGCNAL MATRIX WITH THE
DIAGGONAL STORED IN CC.

IMPLICIT REAL*8 (A-H, 0-1)
DIMENSION AAA(1S, 15), SSS(15, 15), CC(15), WW(L15)

ZEFQ = 0.
A = SkC*ST

LO 566 I = 1, N

, W= S%C

DO 366 J = 1, N

WW(J) = SSS(I, JI*CC(J)

CCATINUE

DO 569 J = I, N

W = ZERO
A = WKST OR AT = S¥WT

DO 46S K = 1, N

W = W + SSS(Jy K)*WW(K)
CONTINUE
AAA(T, J)
AAA(J, 1)
CCNTINUE
CONTINUE
RETURN
END

W
W

([ ]

SUBROUTINE PUT(LEVEL)

THIS SUBROUTINE ALLOWS THE PRINTING OF ANY INFCRMATION SO THAT THE
FORMAT CAN BE CHANGED FOR DIFFERENT PROBLEMS. LEVEL INDICATES THE
CURRENT LOCATION IN THE ALGCRITHM AS FCLLOWSe 1=INITIALIZATION
2=AFTER UNIVARIATE FIT, 3=AFTER BIVARIATE FIT AND ROTATION,
4=AFTER TAYLOR (GAUSS) STEP.

IMPL ICIT REAL *8 (A-H,0-1Z)
COMMON BLOCK

LOGICAL SORTs REV, COPY, PRINT, TRACE, BPUT, BETER, DONE
LOGICAL FREES, FREER

COMMCN /JOECCM/ ZEROs ONE, TWO, PI, FOUR, CEGRE, DIR
+¢ SS5S(15, 15) 4, XX0(15), YO, BB(15), CC(15), ZZCPT(15), ZZ(15)
+, XXBES(15)s YBEST, ZIBEST, SS(15), SMALSs YYC{(15), YL, ZZL(15)
CCMMCN /JOECOM/ TZ0, TOLX, SMALX, SMALY
+o TYLX, TYLY, TYLC, TZLR, TZLX, TZLFy TZL, TZLT
+y TZUFl, TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT

CCVMMCN /JCECCM/ M, KRCRy KPRTy Ny NSWEP, NSAMP, NPAIR
++ ISWEP, ITALR, IPLAN, IFIT, ITRY, IBEST, IMOVE
+9 N3, K5, KR
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COMMCN /JOECCM/ BETER, DONEs SORT, REV,.COPY, PRINT, TRACE, BPUT

+, FREES5, FREER
END COMMON

IF(LEVEL.EQe 1) RETURN

IF(LEVEL.EQa 2) RETURN .

WRITE(6s 31) ISWEP, IFIT, ITRY, (XXO(K)y K = 1, N)

WRITE(6y 32) YO0, (CCAK)y K = 1y N)

FORMAT (/1Xs 315, (1Xy 5G20.10) )

FCRMAT(IH , E15.7, (1Xy 5G20410) )

RETURN

ENC

SUBROUT INE SWEPL(ISWEP, N)

THIS SUBROUTINE CHGGSES ALL SUPER-DIAGCNAL - ELEMENTS (PAIRS OF
INDICES) IN NATURAL COLUMN ORDER.

THE INCICES ARE THEN PERMUTEC ACCORDING TO MAP TO SIMULATE
OPERATIONS OF C WITH THE DIAGONAL SORTED. PLANE IS CALLED FOR
EACH (PERMUTED) PAIR OF INDICES, SORTER 1S CALLED BEFORE EACH
COMPLETE SWEEP TGO UPDATE THE SORTING OF THE DIAGONAL OF Ce

IMPL ICIT REAL*8 (A-H, 0-2)
DINMENSICN MAP(20)

IF(ISWEP «GTe O) GC TC 200
FORMAT (1HO , 'COLUMN CRDERING?')
WRITE(6,10)

DO 1¢€¢8 IK = 1, N.

MAP{IK) = 1K

CONTINUE

RETURN

CONT INUE

CALL SORTER(MAP)

DO 588 JK2 = 2, N

JML = JK2 -1

JK = MAP( JK2)

CO 388 IK2 = 1, JM1

IK = MAP({IK2)

CALL PLANE(IK, JK)

CONT INUE

CONT INUE

CALL TALOR

RETURN

ENC

SUBROUT INE SWEP2UISWEP, N)

THIS SLBROUTINE CHCCSES ALL SUPER~DIAGGNAL ELEMENTS (PAIRS OF
INDICES) IN A DIAGONAL ORDER WHICH FAVORS TWO SEQUENTIAL
CCCURANCES CF EACH INCEX,

THE INDICES ARE THEN PERMUTED ‘ACCCRDING TC MAP TO SIMULATE
OPERATIONS OF C WITH THE DIAGONAL SORTED. PLANE IS CALLED FOR
EACH (PERMUTED) PAIR OF INDICES. SORTER 1S CALLED BEFUORE EACH
COMPLETE SWEEP TO UPDATE THE SORTING CF THE DIAGONAL GF C.

IMPLICIT REAL*8 (A-H, 0-2)

DIMENSION MAP(2C)

IF(ISWEP +GTs 0)GOD TO 200

FCRMAT (1HO , *SEQ2 CRDERING, FAVOR EACH INDEX TWICE?')
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WRITE(6,10)
INITIALIZE
NOZ = N/2
£C 159 I =
MAF(I) = I
RETURN

1, N

CCATINUE
CALL SORTER(MAP)

MAIN LOOP
DC 459 112 = 1, NO2
Jd =1
JJsAav = JyJ
IT =1
DO 4€5 J42
IISAV = 11
IT = 44
JJ = 11 + 112
IF(JJ «GTe N) JJ = JJ = N
IF(JJ oNEe TISAV) GO TO 310
IFIN oNEe 2) GO TO 48¢C
CONT INUE

[}
o
-
z

FIT AND OPTIMIZE PLANE
1K MAP(ITI)
JK MAP(JJ)
CALL PLANE(IK, JK)
CONTINUE

END JJ
TF(JJ o«NEe JJSAV) GG TO 489
JJd = Jd + 1
JJSAV = JJ
CCNTINUE
CONTINUE

END I1
CCATINUE

TAYLCR STEP
CALL TALOR
RETURN
END

SUBRCUTINE SWEP3(ISWEP, N)
THIS SUBROUTINE ALLOWS FOR A THIRD ORDERING FOR CHOCSING PAIRS.

IMPLICIT REAL*E (A-H,y(~1)
DIMENSION MAP(15)

STCP

END

SUBRCUTINE PLANE(IK,JK}

THIS SUBROUTINE CONTROLS THE BIVARIATE FIT AND THE ROTATION OF THE
DIRECTION VECTORS IN THE PLANE OF S(I) ANC S(J)

IK AND JK SPECIFY THE TWO INDICES REFERRED TO IN COMMENTS AS I

ANE Jo

IMPL ICIT REAL*8 (A~H, 0-2)
COMMON BLOCK



1
71

12

229

239

33¢

359

LOGICAL SORT, REV, COPY, PRINT, TRACE, BPUT, BETER, DONE
LCGICAL FREE5, FREER '
COMMCN /JOECOM/ ZERC, ONE, TWO, P1, FCUR, DEGRE, DIR
+y SSS(15y 15}, XX0(15)y YO, BB(15), CCL15), ZZGPTLL5),y ZZ(15)
+9 XXBES(15) s YBEST, ZBEST, SS(15), SMALS, YYC(15)y YL, ZZL(15}
COMMCN /JOECOM/ TZ0, TOLX, SMALX, SMALY
+» TYLXs TYLY, TYLCy TZLRy TZLXe TZILFy TZL, TILT
+9 TZLFly TZUF2, TZUl, TZUFB, TZUBy T2UP, TZUT
COMMON /JOECOM/ M, KRDR, KPRT, Ny NSWEP, NSAMP, NPAIR
+y ISWEP, ITALRy IPLAN, IFIT, ITRY, IBEST, IMOVE
+¢ N3y K5, KR
COMMCN /JOECOM/ BETER, DONE, SORT, REV,s CCOPY, FRINT, TRACE, BPUT
++ FREES, FREER
ENC CCMMCN
ABS (W) = DABS (W)
SIGN(wWy W1) = DSIGN(W, Wl)
SORTIW) = DSQRT(W)
ATANZ2{W, W1l) = CATAN2 (W, W1)
FCRMAT(? ")
FORMAT( " DIRECTION', I3, ! L=y G157y ' C=%,y Gl5,7, ¢ S=t,
+ (7584 5G15.7) 1}
FORMAT(® CROSS RUN ', 14, ¢ R=%y G1547y ' C=', G157, ' S=1,
+ (T58, 5G1547) ) )
IPLAN = IPLAN + 1
YLX = ZERO ’
YLC = ZERO
CC 239 1 = 1, N
SUM ABS G*X
W = ZERO
€0 229 J = 1, N
k= w + SSS({I, J)*BB{J)
CONT INUE
YLX = YLX + ABS(WxXX0{(I) )
MAX C22
IF(YYC(I) oGTe YLC) YLC = YYC(I)
CONT INUE
YL = TYLYXABS({YO) + TYLX*YLX + TYLC*YLC

UNIVARIATE FIT IN DIRECTION S(I)
Ct CClIK)
Z1 ZZ{IK)
ILT = ZZL(IK)
DC 336 1 =1, N
SS(I) = SSS{I, IK)
IBEST = ZERO
CALL FIT(ZI, BIs CI, ZLI, 2U1, ZILFI, ZUFI)
IF(TRACE) WRITE(6y 71} IKy, Z1, Cl, (SS{K)y K = 1, N}
IF(BPUT) CaLL PUTI(1)
IF(TRACE) WRITE(&6, 1)
YYCOIK) = ABS(CI®ZI*Z1)
ZZLUIKY) = 7L 1 -
IBESI = ZIBEST

L]

MOVE TC BEST FCINT FOUND
IF(YO .EQe YBEST) GO TO 360

IMGVE = IMOVE + 1

DO 389 1 =1, N

XXQ(I) = XXBES(I)
Y0 = YBEST
BI = BI + CI%*ZIBEST

21 Z1 - ZBEST
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IF(ABS(2I) oLTe ZLFI) ZI = SIGN(ZLFI, ZI)
IBESI = ZERC

CONTINUE
CJ = CCLIK)
d = 71Z(JK)

2Ld = ZIL{(JK)
CC 3691 =1, N

"SS(I) = SSS(I, JK)

ZBEST = ZERO .

CALL FIT(ZJy BJy CJy ZLJy ZUJy ILFJ, ZUFJ)
IF(TRACE) WRITE(6, T1) JK, ZJy CJy (SS(K),y K = 1,
IF(BPUT) CALL PUT(1)

IF(TRACE) WRITE(6, 1)

YYC(JK) = ABS(CJI*ZJ*ZJ)

ZZLUJUK) = 7Ly

IBESJ = ZIBEST

BIVARIATE FIT
Z = SQRT(ZI*Z1 + 72J4%*1J)
Wl = 21/
WJd = 2J/1

S = ZI*SI + 72J4%SJ
DO 3&S I = 1, N . :
SS{I) = WI*SSS(I, IK) + WJI%SS(I)
C = CI*WI*WI + CUXWJI*WJ
IBEST = ZERO
CALL TRY(Z, DY, B)

CIJ = (DY = ZI*(BI + ZI*CI/TWC) =~ ZJ*(BJ * ZJ*CJ/TWO) )/(Z1%*ZJ)

LIMIT CIJ
IF(FREER) GG TC 400
kW = SQRT(ABS(CI*CJ) )
IF(ABS(CIJ) oGTe W) CIJ = SIGN(W, CIJ)
CONT INUE :

MOVE TO EEST FOINT FGOUND

IF(ZBEST +EQe. ZERO) GO TO 420

IBEST = 71
IBESJ = 24
CONT INUE

IF(YO .EQe YBEST) GO TO 430
IMOVE = IMOVE + 1
CO 429 I = 14 N

XX0(T) = XXBES(I)
YQ = YBEST )
BI = BI 4 CI *ZBESI + CIJ*ZBESJ
BJ = BJ + CIJ*ZBESI + CJ *ZBESJ
CONTINUE
ROTATE IN PLANE
Wl= CJ - CI :
W2 = SCRT(FOUR*CIJ*CIJ + W1l¥Wl)'
WCOS2 = (W2 + ABS{Wl) )/ (TWC%*W2)

WCOS = SQRT(WCOS2)
WSIN = SIGN{(ONE, WL)*CIJ/ (WCOS*W2)
WSIN2 = WSIN*WSIN
R = COS, SIN
-SINy COS
RT = R TRANSPCSE
C = RT*C*R

UNIVARIATE FIT IN DIRECTION S(J)

117
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(C STORED DI.AGCNAL ONLY)
W = TWO*WS IN*WCOS*C1J

Wl = CI
Cl = WCOS2*WI + WSIN2*CJ -~ &
CJ = WSIN2*WI + WCOS2%*CJ + W

CClIK) = CI

CCLJK) = CJ

W = ATAN2(WSIN, WCOS)*DEGRE . :

TFITRACE) WRITE(6, 72) IPLANy W, ClJ, (SS(K)y K = 1, N)

B = RT*B
WI = BI1
BI = WCOS*WI = WSIN¥BJ
BJ = WSIN*WI + WCCS*BJ
BB(IK) = BI
BB(JK) = BJ

S = S%R (R ST = RT#ST
DC 459 1 = 1, N
Wl = SSS(I,IK)
W = SSSUI,J4K)

SSS(Iy IK) = WCOS*WI - WSIN*WJ
SSS(Iy JK) = WSIN®WI + WCOS*WJ
CONTINUE

CALCULATE NEW OPTIMUM STEP SIZE

IF C IS NONZERO AND OF CCRRECT
SIGN AND IF B/C IS LESS THAN Zu
z ~-B/C » CTHERWISE

4 ZU WITH SIGN FOR DOWNHILL

L}

L1 = SIGN(ZUI,BI*DIR)

IF(ABS(BI) oL Te =DIRXCI*ABS(ZI) ) 71 = -BI/CI
ZICPT(IK) = Z1

IFCABS(ZI) oLTe ZLI) ZI = SIGN(ZLI, ZI)

ZJ = SIGN(ZUJ, BJU*DIR)

IF(ABS(BJ) oLTe ~DIRXCJ*ABS{ZJ) ) ZJ = =BJ/CJ
ZZ0PTIJK) = ZJ

TF(ABS(ZJ) oLTe ZLJ) ZJ = SIGNIZLY, ZJ)

ZZ(1IK) Z1

ZZ{JK) ZJ

IF(TRACE) WRITE(6s 71 ) IKy ZIy CI, (SSS(Ky IK)y K = 1, N}
IF(TRACE) WRITE(6s 71 ) JKy, ZJsy CJs (SSS(K; JK), K = 1, N)
IF(PRINTIWRITE(6+2) YO, ISWEPyITRYyIRESTyCIJp(XXO(K)sK=1,N}
FCRMAT (* Y=14G154793X9315¢% C=4yG1l57, ' X=',(758,5615.,7) )
IF(BPUT) CALL PUT(2)

IF(TRACE) WRITE{6, 1)

RETURN

END

n o

SUBROUTINE FITAZyByCy2ZL ¢2Uy ZLFyZUF)

THIS SLBROUTINE PERFORMS THE UNIVARIATE FIT WHICH ALSO SEARCHES
FOR THE OPT IMUM

IMFLICIT REAL*8 (A=Hy 0-Z)

. ‘ COMMCN BLOCK
LOGICAL SORT, REV, COPY, PRINT, TRACE, BPLT, BETER, DCNE
LCGICAL FREES, FREER
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COMMCN /JOECOM/ ZERO, ONE, TWO, PI, FGUR, DEGRE, DIR
+9 SSS{15, 15), XXO(15)y YO, BB(15)y CC(15), ZZOPT(15), 2Z(15)

+y XXBES(15), YBESTs ZBEST, SS(15), SMALS, YYC(15), YL, ZZL(15)
COMMCN /JOECOM/ TZO, TOLX, SMALX, SMALY
+9 TYLX, TYLY, TYLC, TZLR, TZLX, TZLF, TZL, TZLT

+» TZUF1, TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT

COMMCN /JOECOM/ M, KRDR, KPRT, N, NSWEP, NSAMP, NPAIR

+y ISWEP, ITALR, IPLAN, IFIT, ITRY, IREST, IMOVE

+y N3, K5, KR

COMMCN /JOECCM/ BETER, CONE, SORT, REV, COPY, PRINT, TRACE, BPUT
+, FREES, FREER
; END COMMON
ABS( ) = DABS (W) 3
SIGN(®s W1) = DSIGN(W, Wl)
SORT (W) = DSQRT (W)
FORMAT(T58,5615.7)

IFIT = IFIT + 1

BETER = JFALSE.

13 = 0

FIND LIMIT TO INSURE X CHANGES
CILX = MAX(X(I)/S(I) )

- ZILX = SMALX

DO 15 I = 1, N

S = ABS(SS(I) ) )

IF(S «LTe SMALS) GG TC 19

X = ABS(XX0(I) )

IF(ZLX*S oLTe X) ZLX = X/S

CONTINLE

ILX = TZLX*ZLX N
. USE FRACTION OF PREVIOUS ZLC

UNTIL C IS RELIABLE

ILC = TZLR*ZIL

PRELIMIT
IF(ABS(Z) «LTe ZLX) Z = SIGN(ZLX, Z)

FIRST STEP
CONTINUE :
1 = 2
CALL TRY(Zl1, DYl, Bl)
B = Bl - C*Z1/TwWO

SET LIMITS
IA = ABS(Z)
Ll = TIL *ZA + ZILX
L = L1 + ZILC
ILFl = TILF *ZA + ZILX
ILF = ILF1l + ILC !
ZUF = TZUFL*ZA + TZUFB*ABS(ZBEST)

IF(TRACEIWRITE(6+81)ZLCoZLFLy2LF,21,42UF

+y ZLXe ZL 1y ZLy Z4 ZU

IF C IS NON-ZERO AND OF CORRECT
SIGN AND IF B/C IS LESS THAN ZUF
Z = -B/C , ELSE
Z = ZUF WITH SIGN FOR DOWNHILL
Z = SIGN(ZUF, DIR%B)
IF(ABS(B) oLTe =DIR*C*ZUF) Z = -B/C
INSURE NEW STEP IS AT LEAST ZLF
FROM ZERC AND FROM 71
IF(ABS(Z - ZBEST) 4CGTe ZLF) GO TO 40
IF(ZA oLT. TWO*ZLF) Z = ZBEST + DIR#*B1
Z = IBEST + SIGN(ZLF, Z - ZBEST)
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c
c SECCND STEP
40 CONT INUE
2 = 7
CALL TRY(Z2, DY2, B2)
C = TWO*(B2 - Bl)/(Z12 - 11}
B = B2 ~ C*Z2/TK0
IA = ABS{(Z) .
ZUF = TIUF2%ZA + TZUFB*ABS(ZBEST)
L1 = TZULl *ZA
U = ZUl + TZUB*ABS(ZBEST)
C IF C IS NONZERO AND OF CORRECT
C SIGN AND IF B/C IS LESS THAN ZU
C Z = -B/C » QTHERWISE
C Z = ZU WITH SIGN FOR DOWNHILL
Z = SIGN(ZU, DIR*B)
IF(ABS(B) LT+ =-DIR%C*ZU ) 7 = =B/C

ZA = ABS(Z)
IE(ZA oLTe SIGN{TWQ+Z)*Z1) GC TC S0
IF(ZA oLTe SIGN(TWO,Z)*Z2) GO TO 50
IF(I3 .GTe N3) GO TG 50
I3 =13+ 1 ’
IF(TRACEIWRITE(6+81)IZLCyZLF1yILF,Z1,ZUF
+y ZLXy ZLly ILs Z, 2U

IF(ZA «GT. ZUF) Z = SIGNIZUF,Z}
TF(ZA oLT. ZLF)Z = SIGNIILF, Z)
GO TC 52

50 CONT INUE

C IF C IS NONZERO AND OF CORRECT
C SIGN ANC SQRT{ABS(YL/C)) IS LESS
C THAN OR EQUAL ZU THEN
C Z = SQRT(ABS(YL/C) )
c CTHERWISE, 2LC = ZU

It = 72U

IF(YL oLTe -DIR¥C*ZLC*ZLC) ZLC = SQRT(ABS(YL/C))

IL = L1 + 21LC
C
C TEST FOR COMPLETION, I.E.
C BETTER POINT FOUND OR TOO MANY
c REPETITIONS

IF(BETER) GO TO 70

IF(ABS{Z1) «LTs TWOXZIL) GO TC 60

IF(ZA oLTe TZLF#*ZA + ILX + ZLC) GO TO &0

IF(13 .GE. N3} GO TO 60

I3 =13+ 1
C
C : REPEAT

ILF = ILFl + ZILC .

[F(TRACE)WR ITE(6,8L)ZLCyZLF1y ZLF,71,ZUF

+y ZLXe ZL1s ZLs Z, U

IF(ZA oLTe ZL) Z = SIGN(ZL, 2}
C IF NEW ESTIMATE IS EXTREME,
C REPEAT BOTH STEPS

IF(ZA +LTe ZLF) GO TO 2¢C
IF(ZA .GT. ZUF) GO TO 20
c ) OTHERWISE, REPEAT SECOND STEP
52  CONTINUE i :
IF(DIR*{DYl = DY2) «GT. ZERD) GO TO 58
DYl = DY2
B1 = B2
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71 = 72
CONT INUE
GC TC 40
EXIT SECTION
FAILED TC FINC BETTER POINT,
TRY COPTIMUM WITH NO UPPER LIMIT
CONT INUE

IF(ZA oLTe ZLX) GO TG 70
CALL TRY(Z, DY1l, B1)

. FIND LIMIT FOR USE AFTER
BIVARIATE FIT
CONT INUE
2U = 72Ul + TZUP*ABS(ZBEST)
IF(TRACE) WRITE(6481)ZLC+ZLF1l, 2LF, Z1, ZUF
+y ZLXe ZL1ly ZLs Zy 2U

LIMIT Z FOR BIVARIATE SAMPLES

SIGNUZLF, Z)
SIGN(ZUF, Z)

IF{ZA oLT. ZILF) Z
IF{ZA «GTe ZUF) 2
IF(FREES5) RETURN

o

OPTICN FCR BETTER ACCURACY,
SET Z TO BETTER OF ACTUAL SAMPLES
Z =171 .
IF(DIR*(DY2 - DY1l) .GTs ZERQ) Z = 122
RETURN
END

SUBRCUTINE TRY(Z, DY, B)

THIS SUBROUTINE EVALUATES THE FUNCTICA AT A PGINT A DISTANCE 2
FRCM XXO IN DIRECTION SS, IT ALSO CALCULATES DY AND.B AND
MAINTAINS THE BEST POINT FOUND THUS FAR.

IMPLICIT REAL*8 (A-h, 0=2)
COMMCN BLOCK
LOGICAL SORT, REV, COPY, PRINT, TRACE, BPLT, BETER, DONE
LCGICAL FREES, FREER
COMMCN /JOECOM/ ZEROs ONE, TWCy PI, FCUR, CEGRE, DIR
+y SSS(15, 15), XX0(15), YO, BB(15), CC(15), LZCPT(15), 22(15)
+9 XXBES(15), YBEST, ZBESTy SS(15), SMALS, YYC(15), YLy 22L(15)
COMMCN /JOECOM/ TZ0, TOLXs SMALX, SMALY
+9 TYLX, TYLY, TYLC, TZLR, TZLXy TZLF, TZL, TZLT
+, TZLFl, TZUF2, TZUl, TZUFB, TZUB, T2UP, TZ2UT
COMMON /JOECOM/ M, KRDR, KPRT, Ny NSWEP, NSAMP, NPAIR
+y ISWEP, ITALR, IPLAN, IFIT, ITRY, IBEST, IMOVE
+9 N3, K5, KR
COMMCN /JOECOM/ BETER, DONE, SORT, REV, COPY, PRINT, TRACE, BPUT
+y FRZE5, FREER
END CCMMCN
CIMENSION XX(20)
ITRY = ITRY + 1
DO 261 = 1, N
XX(I) = XXO(I) + Z*SS(I)
EVALUATE NEW POINT
CALL EVAL(Y, XX, N)
CY = Y - YO
B = CY/2Z
IF(DY*DIR oGEes ZERC) BETER = oTRUE.
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IF( (Y - YBESTI*DIR .LE. ZERO) GO TO 70
- NEW BEST PCINT :
FORMAT(* Y=1, G1547, **Z=', G15.,7y 18X, TRX=ty (7584 5G1547) )
IF(TRACE) WRITE(6, 1) Y, Z, (XX(K), K = 1y N)
IBEST = IBEST + 1
DONE = oFALSE.
IBEST = 2
DO é6S I = 1, N
XXBES(I) = XX{I)
YBEST = Y
RE TURN
POINT NOT BETTER
CONT INUE
FORMAT(® Y=', G15.7y ' Z=', G157, 18X, ¢ X=1, (7584 5G15.7) )
IF(TRACE) WRITE(6y 2) Y, Z, (XX(K)y K = 1, N)
RETURN
END

SUBRCUTINE TALQR

THIS SUBROUTINE SAMPLES THE FUNCTION AT THE GVERALL OPTIMUM QF
THE MODEL (GAUSS POINT),

IMPLICIT REAL*8 (A-Fy Q0-2)
COMMCN 'BLOCK’

LOGICAL SORT, REV, COPY, PRINT, TRACE, BPUT, BETER, DONE
LCGICAL FREES, FREER L

CCMMCN /JOECOM/ ZERG, ONE, TWC, PI, FCURy, CEGRE, DIR
+s SSS(15, 15), XX0(15)y YO, BB(15), CC(15), ZZCPT(15), 2Z(15)
*e XXBES(15), YBESTs ZBEST, SS(15), SMALS, YYC(15), YL, ZZL(15)
COMMON /JOECOM/ TZ0, TOLX, SMALX, SMALY
o TYLX, TYLY, TYLCy TZLR, TZILX, TILF, TIL, TILT
+» TZIUFl, TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT

COMMCN /JOECOM/ M, KRDR, KPRT, Ny NSWEP, NSAMP, NPATIR

+s» ISWEP, ITALR, IPLAN, IFIT, ITRY, IBEST, IMOVE
+, N3, K5, KR

COMMCN /JOECOM/ BETER, DONE, SORT, REV, CCPY, FRINT, TRACE, BPUT
+, FREES, FREER
END CCMMON

ABS(W) = DABS(W)

SIGN(WsW2) = DSIGN(W,W2)

SQRT (W) = DSQRT (W)

ITALR = ITALR + 1

FIND MUDEL IN DIRECTION OF
CPTIMUM POINT .

ZERG
ZERO
JERC
0 4636 1 = 1, N
ZERD
C 4929 J = 1, N
W + SSS(I, J)*ZZOPT(J)

) = W

ZICPT (1)
BS(ZI) +LTe SMALX) GO TC 4939

7+ 7I%71
B + ZI%*BB(I)
c

I

o N
wonou

nNWEO==0O
"

I
A

+ ZI%71%CC(1)
NUE

Z o~
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Z = SQRT(Z)
IF(ABS(Z) oLT. SMALX) GO TO 497
DC 4949 1 = 1, N A
SS(I) = S$S(1)/2
B = B/12
C=c/ue
ZBEST = ZERQ
EVALUATE POINT
CALL TRY(Z,DY,B)
FORMAT(® TAYLOR', 13, I5, ¢ B='y, G1547, ' C='y, Gl5.7, ' §
(158, 5G615.7) )
IF (TRACE) WRITE(6, 71) ISWEP, ITRY, By Cy (SS(K)y K = 1, N)
FORMAT(® 1) :
IF(TRACE) WRITE(6, 1)
MOVE TO POINT IF BETTER
IF(YC +EQ. YBEST) GO 10 497
IMCVE = IMOVE + 1
B = B + C*ZBEST/TWC

IF C IS NONZERC AND OF COFRECT
SIGN AND IF B/C IS LESS THAN ZU

Zz
z

-B/C 4y OTFHERWISE

R

= TIUT*Z :

IF(ABS(B) oL Te=-DIR%XC*Z2)Z = -B/C
CORRECT Z FOR MOVE

Z = 1/ZIBEST .

DC 4959 I =1, N

LI = I*ZZ0PT(I)

ZIZCPTI(I) = 11

ZL = TZLT*ABS(Z2Z2(1))

IF(ZL oLTe ZZLU(I)) ZL = Z2ZL(I)

IF(ABS(ZI) oLTe ABS(ZL)) Z1 = SIGN(ZL,ZI)

z(1) = 11 '

XXCLI) = XXBES(I)

YO = YBEST

ZIBEST = ZERO

CONT INUE

FORMAT(* Y='3G15e7+3X+31I5918Xy*' X="4(T58,5G15.7))

IF(PRINT)WRITE(6+2) YOoI SWEPyITRY,IBEST o (XXO(K) yK=1,N)

FORMAT(T55, * C=',(T58,5G615.7) )

IF(PRINT) WRITE(6, 3) (CC{K)y K = 1, N)

IF(BPUT) CALL PUT(3)

IF(PRINTIWRITE(6,1)

RETURN

END

SUBROUTINE INIT(X, ZZ, DIR, NX)

THIS IS A SAMPLE CF THE PROBLEM INITIALIZATION SUBROUTINE.

X IS THE INITIAL LOCATICNe ZZ IS THE INITIAL STEP SIZE WITH
TZO0*X WHERE TZ0 HAS THE DEFAULT Oel o DIR = +1, SPECIFIES
MAXINIZATIONy DIR = -1o SPECIFIES MINIMIZATION (CEFAULT).

N SPECIFIES THE NUMBER OF ELEMENTS COF X.

THE PROBLEM IS ROSENBROCKS CURVED VALLEY

STARTING AT X1 = =142 AND X2 = 1.0

IMFPLICIT REAL*8 (A-H,0-1)
DIMENSION X{(15), ZZ(15) )
FORMAT(* FUNCTION: ROSENBROCK'*S CURVED VALLEY')

,

LU WITH SIGN FGR DCWNHILL
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WRITE(E, 1)

N =2
X(1) = -1,2
X(z) = 1.0
KETURN
END

SUBROUTINE EVAL(F, Xy N)

THEIS IS A SAMPLE OF THE PROBLEM FUNCTION EVALUATION SUBROUTINE.
F RETURNS THE FUNCTION VALUE, X PROVIDES THE CURRENT LOCATICN

( INDEPENDANT VARIABLES) AND N GIVES THE NUMBER CF ELEMENTS CF X
AS SET BY INIT (FOR USE IN GENERALIZED PRCBLEMS).

THE PRCBLEM IS RCSENBROCKS CURVED VALLEY

Y = (X1 = Lle)*%2 + 10Ce#{XI%*%k2 = X2)%%2

INPLICIT REAL*S
DIMENSION X(15)

A = X(1)

B = A -1,
C = A*A - X(2)
F =

RETURN

END

EXB + 100,0%C*C
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