
A NEW DIRECT SEARCH METHOD FOR 

UNCONSTRAINED FUNCTION 

OPTIMIZATION 

By 

FRED EARL WTZ 

Bachelor of Science in Electrical Engineering 
North Dakota State University 

Fargo, North Dakota 
' 1968 

Master of Science 
Oklahoma State University 

Stil~w~ter, Oklahoma 
1970 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree qf 

DOCTOR OF PHILOSOPHY 
May, 1976 



. :. 
~· 

Tl~ 
197~]) 
W/.13~ 
~.;z_ 

,; ) " ,. J ~. : )~"~' ; 

·~ I 

.. 

.t ,. 



A NEW DIRECT SEARCH METHOD FOR 

UNCONSTRAINED FUNCTION 

OPTIMIZATION 

Thesis Approved: 

Thesis Adviser 

< 

Dean of Graduate College 

964014 

ii 



PREFACE 

This research was concerned with the development of a new optimi­

zation method. Interest in optimization originated in a search for a 

method for parameter estimation in the doctoral research of my brother, 

John Witz. 

The many hours of assistance of committee chairman, Dr. Charles 

Bacon, in preparing the final manuscript is greatfully acknowledged. 

Special thanks go to Dr. John Chandler for reviewing the technical 

aspects of the thesis and for calling attention to the problem of scal­

ing discussed in Chapter IV. Gratitude is also expressed to the other 

committee members, Dr. Bennett Basore and Prof. Paul McCollom, for 

their time, and to all of the committee for their patience during 

periods of slow progress. 

Sincere appreciation is expressed to Barbara.Strategier for her 

excellent typing of both drafts of the thesis under the pressure of 

deadlines. Appreciation is also expressed to Charles Hanes and Trecia 

Markes for proofreading the thesis, to Jim Hysaw for preparing the 

figures and to Sandy Coughlin for keypunching the cards used in Table II. 

The patience and support of my family are deeply appreciated. 

Special gratitude is expressed to Myron Paine for his counsel and 

support during difficult periods of the research. This thesis is 

dedicated to Susan and her friends, whose prayers and encouragement 

made it possible. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION ••• 

Motivation. • 
Advantages of the New Method. • • 
Organization of Thesis •• 

II • LITERATURE REVIEW. • 

Introduction. '• 
Direct Search Optimization. • 
Other Types of Optimization • 
The Jacobi Method • 

III. PROPOSED METHOD. • . . 

IV. 

Introduction. • 
.The New Method. 
Operation of the Method • • • • • • • 
Implementation of the Method. • • • • • • 
S UIIIID8. ry . . . . . . . . . . . . . 

THEORETICAL ANALYSIS . . 
Introduction. • 
Scaling • • • • • • 
Fitting the MOdel • • 
Univariate Model Calculations • 
Bivariate Model Calculations. • 
Step-Size Restrictions ••••• 

·• . . . 

The Effect of Ordering on the Jacobi Method 
Convergence of the Optimization Method. • • • • 
Summary . . . . . • · · • • · ,. 

V. TEST PROGRAM • 

Introduction. • • • • • • • 
Main Program. • • • • 
Utility Subroutines • 
Ordering Subroutines •• 
Model Updating Subroutines •• 
Function Sampling Subroutines • • 
Problem Definition Subroutines. • 

iv 

Page 

1 

1 
2 
3 

4 

4 
5 
7 
8 

15 

15 
15 
20 
21 
26 

28 

28 
28 
36 
37 
38 
40 
46 
54 
66 

68 

68 
73 
73 
74 
75 
78 
78 



Chapter 

VI. EXPERIMENTAL RESULTS • 

Introduction. • • . . • . 
Three Var1able Quadratic Function • 
Eight Variable Quadratic Function • 
Rosenbrock's Function .. 
Powell's Quartic Function 
Random Matrix Function. 
Curve Fitting Problems •. 
Comparison of Orderings 

VII. SUMMARY AND CONCLUSIONS. 

SELECTED BIBLIOGRAPHY •. 

APPENDIX • • • • • • • • 

v 

Page 

80 

80 
81 
81 
86 
86 
88 
91 
95 

100 

103 

107 



LIST OF TABLES 

Table 

I. Routines Used in Computer Program • . 

II. Important Program Variables • 

III. Control Cards .••.• 

IV. Argument for Subroutine PUT 

v. 

VI. 

VII. 

VIII. 

Three Variable Quadratic Function with 
Column Ordering, No Sorting . • 

Convergence of Eigenvalues for Three 
Variable Quadratic. • • • • • • • • • 

Eight Variable Quadratic Function with 
Column Ordering, No Sorting ••••• 

Effect of Ordering on Eight Variable 
Quadratic Function. • • • • • • • 

IX. Rosenbrock's Function 

X. Powell's Quartic Function with Column 
Ordering, Diagonal Sorted • . • . • . 

XI. Convergence of Eigenvalues for Powell's Function .. 

XII. Number of Sweeps and Function Evaluations to Reach 
lxi - iii < lo-4 for Random Matrix Function 
with No Sorting • • • • • • • • • . • • . • • • 

XIII. Other Methods Applied to Random Matrix Problem. 

XIV. Data for the First Curve Fitting Problem. 

XV. First Curve Fitting Problem with Column 
Ordering and No Sorting • . • • • . • • • • 

XVI. Data for Second Curve Fitting Problem • 

vi 

Page 

69 

70 

72 

74 

82 

82 

85 

85 

87 ,\ 

89 

90 

92 

92 

93 

94 

95 



Table 
Page 

XVII. Second Curve Fitting Problem with Column 

Ordering and No Sorting • • • • • • • 96 

XVIII. Comparison of Orderings •• 99 

vii 



LIST OF FIGURES 

Figure 

1. Two Examples of Order of Choosing Super-
Diagonal Elements. • • • ••• 

2. Example of Diagonal Ordering • 

3. 

4~ 

Base Location and Direction Vectors •• 

Sample Points and Model (Represented by 
, Isometric Curves) ••••• 

5. Rotated Direction Vectors ••• 

6. New Base Location •••••• 

7. System Diagram of the Information and 
Processes in the New Method. • • • • 

B. Orderings Based on the Pattern of Searches • 

9. Contour Diagram f(x) = 0.5 for Equation IV.l 

10. f(x) = 0.5 for Equation IV.8 • 

11. f(x) = 0.5 for Equation IV.ll. 

12. f(x) = 0.5 for Function of Figure 11 with 
Scale Changes of Equations IV.l2 and IV.l3 

13. An Example of a Triplet and Diagonal Element 

14. Flowchart of Subroutine FIT ••••• 

viii 

Page 

12 

14 

18 

18 

19 

19 

. . . . . . 22 

. . . . . . 24 

. . . . . . 30 

. . . . 30 

. . . . . 32 

35 

48 

77 



Cl:IAPTER I 

INTRODUCTION 

Motivation 

this research develops a new direct search method for unconstrained 

smooth function optimization. The method applies to any such function 

which can be evaluated by the computer. It was designed for the case 

where only the value of the function is available (not derivatives) and 

evaluation is expensive. The resulting method has properties which 

could make it useful in other situations also. 

A method which requires fewer function evaluations than other 

methods logically must retain more information or do more calculation. 

The only information available is the value of the function at a number 

of sample points. A good way to organize the information is to use a 

simple function to model the function. The usual model is a quadratic 

function. Some previous methods retain equivalent information, but it 

is not always organized as a model. 

Any method using this approach must contend with several difficul­

ties. First, for the case where only the value of the function is 

available, the derivatives of the function cannot be used to create the 

model. Second, the optimum of the model often lies outside the region 

where the model is valid. For this reason it is advantageous to use 

direction vectors and search in one direction at a time. As shown in 

1 
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Chapter II, the eigenvectors of second partial matrix derivatives of 

the function are desirable directions for this purpose. The matrix of 

second partial derivatives will be referred to here as the curvature 

matrix. A third possible difficulty is the-calculation of the location 

of the optimum of the model. The direct solution requires the inverse 

of the curvature matrix, which is usually a lengthy calculation. 

Finally, creating a complete model and calculating the location of the 

optimum before each movement toward the goal is usually highly efficient. 

In the new method, the key to the solution of these difficulties is 

the Jacobi method for finding eigenvectors. The Jacobi method is an 

iterative method which works with two eigenvectors at a time. Using the 

same organization, the new method works in the plane of two direction 

vectors at a time, sampling the function, fitting part of the model, 

correcting the two direction vecto~s, and searching for the optimum 

within the plane. This procedure is repeated for all pairs of direction 

vectors. Eventually the entire model is fitted, the direction vectors 

converge toward eigenvectors, and the base location moves toward the 

optimum. 

Advantages of the New Method 

The organization of the new method reduces function evaluation by 

eliminating the requirement for univariate optimizations. Instead, only 

sufficient samples to fit the function are required. In addition, the 

samples used to fit the function can be directed. toward the optimum. 

In this way they also serve as search points. 

The organization also reduces calculations. The-creation of both 

the model and the direction vectors is done a portion at a time. In 
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this way, the entire calculation~ are not done every iteration, but the 

information is updated each time it is needed. Also, the model is 

stored in such a way that the inverse of the curvature matrix is easily 

obtainable. 

An. important attr~bute of the new method iS that, since it speci­

fies only an organization, the actual implementation of several subtasks 

is not restricted. In this sense, the new method could be called a 

collection of methods. The analysis· and testing of the new method 

includes a comparison of some of the alternatives. The range of alterna­

tives prohibits an exhaust.ive analysis within the scope of this research. 

In addition, the best choice may depend on the problem. This means, 

however, that the method can be adapted to various types of problems. 

Organization of Thesis 

The remainder of this thesis describes the development of the new 

method. Chapter II is a review of previous methods for optimization. 

Also included is a brief summary of the Jacobi Method. Chapter III 

describes the method in detail. In Chapter IV, the mathematical 

analysis of the method is broken down into three divisions, the con­

struction of the model, the determination of the eigenvectors, and the 

convergence of the optimization process. Chapter V describes the com­

puter program used for testing. Chapter VI reports the results of 

testing the new method on various functions, along with comparisons to 

previous methods. Chapter VII gives conclusions and ideas for further 

research. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

The subject of optimization is well known. For a general back-

ground and bibliography see Kowalik and Osborne (1968), Box, Davies and 

Swann (1969), Polak (1971), Brent (1972), and Murray (1972). For com-

parisons of methods, see Fletcher (1965), Box (1966), and Himmelblau 

(1972). 

The problem is to find values for a set of n variables 

X = 

X 
n 

(II.l) 

which minimize or maximize the scalar function f(x). Some methods con-

sider only minimization. The problem of maximization of a function h(x) 

can be accomplished by minimizing 

f(x) = -h(x) (II.2) 

4 
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In practice, however, it is easy to arrange most algorithms to minimize 

or maximize on command. The test program used in this research includes 

this feature. 

Many methods are designed to insure that the minimum of a quadratic 

function 

f(x) = y + g T (x - X ) + (x - x )T A (x - X ) 
0 0 0 . 0 0 0 

(II. 3) 

will be found in a finite number of steps (ignoring computational error). 

This property is often called "quadratic convergence." Quadratic con-

vergence is also used to describe another property, the reduction of 

error to a multiple of the square of the previous error. To avoid 

confusion the term "finite convergence" is used for the first property. 

The topic of this research is direct search optimization. Direct 

search methods are those which require only the value of the function 

(not the derivatives). Some other types of methods are sufficiently 

related to be reviewed in this chapter. Included are types which re-

quire values for the gradien.t or the matrix of secori.d partial deriva-

tives, called here the curvature matrix. Finally, due to its importance 

in the new method, the background of the Jacobi Method for finding 

eigenvalues is discussed. 

Direct Search Optimization 

Direct search methods can be categorized into methods which are 

based on direction vectors and those which are not. Direction vector 

methods include Rosenbrock (1960), Powell (1964), and Davies, Swann and 

Campey (DSC) reported by Swann (1964, 1969). Non-direction vector 

methods include the simplex method of Nelder and Mead (1965) and the 
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pattern search method of Hooke and Jeeves (1961). Although non-direction 

vector methods are sometimes more efficient on small problems, the 

direction vector methods have generally been found to be more efficient 

and more reliable in practical comparisons such as Box (1960), and 

Hinnnelblau (1972). To this author, Powell's method appears to be the 

best method for a wide range of search problems. 

The Powell and DSC methods are based on moving to the optimum 

along a line in each direction in turn. Finite convergence is then 

assured if the direction vectors are conjugate with respect to the curva-

ture matrix. Vectors s. and s. are conjugate with respect to A if 
1 J 

T 
s. As. = 0, i f j 

1 J 
(II. 4) 

The effect is that (for a quadratic function) movement in one direction 

is independent of movement in the other directions. 

One problem with some versions of Powell's method is that the 

direction vectors can become linearly dependent (Zangwill, 1967; Brent, 

1972). This slows or eliminates movement in some directions. Complete 

freedom of movement is allowed if the direction vectors are orthogonal. 

Vectors which are both orthogonal and conjugate with respect to a matrix 

are by definition the eigenvectors of the matrix. For this reason the 

eigenvectors of the curvature matrix are desirable as direction vectors. 

Another problem with some methods is that their calculations depend 

on moving to the optimum in each direction. This involves at least as 

many directions as there are variables. Finding these optima can 

include a large number of trials which do not involve movement toward 

the overall goal. Fletcher (1965) points out the further disadvantage 

that the optimum along a line may not exist. 
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Stewart (1967) proposes using gradient methods when the gradient 

is not available by using an approximate gradient based on perturbations. 

Other authors advise against this approach (Swann, 1969; Brent, 1972). 

The approach has two disadvantages. First, it is difficult to choose 

a suitable step size since reducing the step length soon introduces 

round-off error and increasing the step increases the error of approxi­

mation. The errors which do result can be important since the gradient 

methods depend on the gradient for much of their information. Secondly, 

the steps used in finding the gradient may be wasted in terms of actual 

movement toward the goal. For further discussion and references, see 

Sargent and Sebastian (1972). 

Other Types of Optimization 

The situation associated with gradient methods yields to analysis 

somewhat more easily than that of the non-gradient types. The gradient 

provides very important information about the direction and distance to 

the optimum (assuming curvature information can be obtained) and indi­

cates when the optimum has been found.. Most methods determine a 

corrected direction vector based on the gradient and move to the optimum 

in that direction. These methods include the conjugate gradient method 

of Fletcher and Reeves (1964) and the variable metric or DFP method 

originally due to Davidon (1959) as simplified by Fletcher and Powell 

(1963). A generalized variable metric method given by Huang (1970) 

includes the conjugate gradient and DFP methods as special cases. 

Huang and Levi (1970) show that, applied to a quadratic function, 

the conjugate gradient and DFP methods evaluate the same points. On 

non-quadratic functions the DFP method is more efficient (Huang and 
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Levi, 1970, Himmelblau, 1972; Sargent and Sebastian, 1972). This is to 

be expected since it retainsmore information and performs more calcu­

lation. The conjugate gradient method, however, has the advantages of 

simplicity and small storage requirements. 

Most variable metric type methods base their operation on suc­

cessive line searches. Rather than keeping a set of directions, however, 

the algorithm generates a new direction each iteration. The methods are 

usually designed to insure that, for a quadratic function, a sequence 

of n conjugate direction vectors is generated. Thus, the methods have 

finite convergence. 

More recently, Fletcher (1970) describes another variable metric 

method. Based on testing by Himmelblau (1972), the method appears to 

be more efficient than other methods. This efficiency is in spite of 

the fact that the method does not haVe the property of finite con­

vergence. One factor which does contribute to the efficiency is that 

the method does not depend on moving to the optimum.along lines. 

In some problems the curvature matrix can be evaluated or approxi­

mated. An important special case is minimization of a function con­

sisting of .a sum of squared terms •. For a sum of squares, the curvature 

matrix can be approximated using the values and gradients of the indi­

vidual terms. Methods which make use of the curvature matrix (or 

equivalent information) may require even fewer function evaluations. 

For a review and comparison of methods see Bard (1970, 1974), and 

Sargent and Sebastian (1972). 

The Jacobi Method 

For a real symmetric matrix A, the eigenvectors can be defined as 



s., the columns of S, such that Sis orthogonal and 
1 

9 

(II.S) 

is diagonal. Each d .. is then the eigenvalue of A corresponding to s .. 
11 . 1 

An iterative method for finding the eigenvectors and eigenvalues was 

originally described by Jacobi (1846). For further background of the 

eigenvalue-eigenvector problem and the Jacobi method see Wilkinson 

(1965) and Hammerling (1970). 

Th~ Jacobi method begins with a matrix A0 , equal to the original 

matrix A, and a second matrix Sk, initially equal to the identity matrix. 

k 
At each iteration, a super-diagonal element a .. is chosen. A plane 

1] 

rotation matrix is used to transform Ak so that the chosen element is 

reduced to zero. The matrix A0 is symmetric, and the rotations preserve 

k k 
symmetry, so aji is always equal to aij and becomes zero also. During 

this process, the matrix Sk is used to record the rotations, maintain-

ing the relation 

(II.6) 

Since the elements which have become zero are affected by later 

k rotations, the matrix A does not become diagonal after each element has 

been chosen one time. However, under proper conditions the off-diagonal 

elements converge to zero. k Therefore, S converges to the matrix of 

eigenvectors. 

The original (and fastest) version of the Jacobi method chooses the 

various elements of Ak in order of decreasing magnitude. When incorpo-

rated in the new optimization method, only the current off-diagonal 

element will be known. Therefore, an arbitrary ordering must be used. 
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This corresponds to the "cyclic Jacobi method" (Forsythe and Henrici, 

1960), also known as the "serial Jacobi method" (Wilkinson, 1965). In 

this case, a complete cycle, in which every.super-diagonal element of 

Ak is used exactly once, is called a sweep. 

The cyciic Jacobi method is as follows. 

L Set 

k = 0 

a:rid 

2. According to some orderi.ng, choose each pair of indices, 

(i, j) = (ik, jk}, 12 i < j ~ n 

For each pair perform the following 

Calculate the matrix Uk o.f the form: . a. 

uii = cos cf> uij = sin cf> 

u,. = -sin cf> u .. = cos cf> Jl. JJ 

u = 1 for all p :f i, p :f j 
PP 

all other u = 0 pq 

where k 2a .. 
cf> = ~ Arctan ( l.J ) 

k k 
a .. - a ... 

JJ l.l. 

b. Set 

Ak+l = (Uk)TAkUk 

and 

sk+l = skuk • 

c. Replace k by k+l • 

(II. 7) 

(:!:1.8) 

(II. 9) 

(II.lO) 

(II~ll) 

(II.ll) 

(II.l3) 
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3. Return to step 2, unless convergence is indicated 

Without specifying the ordering, the convergence of the cyclic 

Jacobi method is difficult to analyze. Convergence is measured by 

k )2 
(apq (II.l4) 

For A symmetric, the same value can be found from 

(ILlS) 

Henrici (1958) and Schonhage (1961) prove that if the method does 

converge and if the matrix has distinct eigenvalues, then the error 

eventually converges to zero quadratically. It has not been proved 

that the general cyclic Jacobi method is convergent. (See, for example, 

Wilkinson, 1965.) In fact, Hansen (1963) shows a matrix for which a 

certain order fails to produce convergence, although the same paper 

gives results of testing several orderings on random matrices with no 

indication of failure. 

As a result of the difficulty of analysis, almost all literature 

on the cyclic method uses the row ordering, or the column ordering. An 

example of each of these orderings is symbolized in Figure 1. When the 

row or column ordering is used, the method is known as the special 

cyclic (or special serial) Jacobi method. Hansen (1963) shows that the 

two orderings produce identical results at the end of each sweep (except 

for computational error). 



i I ' 
4 l lj 2 3' 5 

I ! 
6 7 : s! 9 

i i 

10! li 12 
I 
I 13 14 

! 
I I 15 
I I 
I l l ' l I 

a. Row Ordering 

l 21 41 7 11 1, 
I . 

3 5· 8 12 

6 9 13 I 

10. 14 

15 

I 

b. Column Ordering 

Figure 1. Two Examples of Order of, Choosing 
Super-Diagonal Elements 

12 



Forsythe and Hencici (1960) prove that the special cyclic Jacobi 

method as described here converges in the sense that 

13 

lim Ak = D 

k-7<>0 
(II.l6) 

Wilkinson (1962) gives a proof of quadratic convergence with a better 

rate constant than Henrici (1958). On the other hand, Hansen (1963) 

presents arguments and test results which favor other orderings, such 

as a diagonal ordering symbolized in Figure 2. However, his counter­

example to convergence can be generalized to this or·dering, and for all 

orderings tried, the average time to converge to a standard accuracy 

varied only from 4.1 to 4.9 sweeps. Wilkinson (1965, p. 271) states 

that in practice five to six sweeps reduces the off-diagonal elements 

to zero to an accuracy of 10 to 15 places. Gregory (1953) gives test 

results which substantiate that claim. Thus, both analysis and experi­

ence indicate that one of the special cyclic orderings is preferable to 

other orderings. 
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1 6 10 13 15 

2 7 11 14 

3 8 12 

4 9 

5 

Figure 2. Example of Diagonal Ordering 



CHAPTER III 

PROPOSED METHOD 

Introduction 

This chapter describes the new method for unconstrained function 

optimization. · The operation of the method is discussed in terms of the 

underlying processes. Various possibilities for implementation are 

considered and the algorithm used for testing is given. Some of the 

processes are analyzed in more detail in Chapter IV. The test program 

and results are given in Chapters V and VI. 

The New Method 

The new optimization method is based on a quadratic model, 

u(x) = y0 + gT(x- X ) + ~(x- x )TA(x- x ) 
0 0 0 

(III.l) 

to approximate the function f(x) near x • The model parameters are the 
0 

scalar y , the vector g, and the matrix A. A is referred to as the 
0 

model curvature matrix. ·Taylor's theorem implies that 

1. y approximates f(x ), 
0 0 

2. g approximates the gradient of f(x) at x , 
0 

3. A approximates the matrix of second partial derivatives of 

f(x) at X • 
0 

15 
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It is assumed that the function. is well behaved, so the function. curva-

ture is symmetric. The model curvature matrix can. always be assumed to 

be symmetric, since in the form STAS there is no way to distinguish 

betweert the contribution of S.a .. S. and S.a .. S .• 
1 1J J J J1 1 

In addition to the model, the new method uses a set of orthogonal 

direction vectors s., the columns of S. ST is used as a linear trans-
1 

formation of the parameter space giving 

T 
z = S (x - x ) , 

0 
III. 2) 

(III.3) 

(III. 4) 

Then S and C have the proper relation to A for the Jacobi method. Note 

that x = x + Sz. 
0 

T Since SS is the identity matrix, the model can be 

written 

or 

u(x) 

u(x + Sz) 
0 

(III. 5) 

T T = y + b z + ~z C 
0 z 

(III. 6) 

Each iteration of the Jacobi method requires only the values of cii' 

c ..• 
1J 

If only z. and z. are non-zero, the model reduces to 
1 J 

u(x + zis. + z.s.) 
0 1 J J 

Y + b.z. + b.z. + ~c .. (z.) 2 
0 1 1 J J 11 1 

+ ~c .. (z.) 2 +~c .. z.z. + ~c .. z.z. 
J J J 1J 1 J J 1 J 1 

(III. 7) 
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Due to symmetry 

c .. z.z. 
~J ~ J 

(III. B) 

so 

(III. 9) 

This submodel can be fit to the actual function in the plane of x + 
0 

The basic method is as follows. 

1~ Assume some initial base location, x , and an initial set of 
0 

orthogonal direction vectors, S. For a two-dimensional example, 

see Figure 3. 

2. According to some ordering, choose each possible pair 

(i, j) = (ik' jk), 1 < i < j < n (III.lO) 

For each pair, operate in the plane of the two direction 

vectors si and sj as follows. 

a. Sample the function in the plane near the base location, 

x, and calculate b., bJ., c .. , cj. and c .. in the bivariate 
0 ~ ~~ J ~J 

quadratic submodel of the function, Eq. 111.9, to make the 

model fit the function at the sample points. See Figure 4. 

b. Calculate the plane rotation matrix R of the form of Uk in 

Equation 11.10. 

c. Replace b by RTB, C by RTCR and S by SR. See Figure 5. 



X 
0 

Figure 3. Base Location and Direction Vectors 

Figure 4. Sample Points and Model 
(Represented by 
Isometric Carves) 
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0 

0 0 
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Figure 5. Rotated Direction Vectors 

0 

Figure 6. New Base Location 
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d. Using the direction vectors, search in the plane for a 

location to improve the value of the function and move the 

base location, x0 , to the best point found. See Figure 6. 

e. Replace k by k + 1. 

3. Return to step 2, unless convergence to the optimum is indicat-

ed. 

As described, the algorithm involves three matrices. However, each 

time an off-diagonal element, c .. , is found it is immediately changed 
l.J 

to zero. Therefore, only the diagonal of C needs to be stored. The 

rotation matrix R is a special form which requires only two values, the 

sine and cosine. Thus, only one matrix, S, is required. 

The amount of calculation also appears large. Each sweep involves 

on the order of n2 rotations and each rotation involves a number of 

vector and matrix operations. However, the rotation (step 2c) involves 

only two elements of b, two diagonal elements of C and two columns of S. 

Thus, the number of calculations is on the order of n per rotation, 

i.e., n per line search. The total amount of computation for a complete 

sweep is on the order of n3 but involves on the order of n2 line search-

es. 

Operation of the Method 

Three simultaneous processes are involved in the method, each up-

dating a separate set of information. 

1. A curve fitting process is creating a model of the function in 

the region of the base location. 

2. An eigenvector process is finding the eigenvectors of the model 

curvature matrix. 



3. A search process is moving the base location. 

For each pair of direction vectors, each process operates in turn, 

updating a portion of its information. Each process, however, uses 

information from the other processes. 

21 

The interaction of the three processes is shown by the diagram, 

Figure 7. For a given pair of vectors~ the curve fitting process creates 

the submodel for the plane (path a) using the current direction vectors 

(path e) and the base location (path f) to define the plane. The eigen­

vector process rotates the two direction vectors (path b) based on the 

second derivative information of the model (path g). The search process 

moves the base location (path c) based on the calculated optimum from 

the model (path i) along direction vectors (path j). 

As a result of the interaction, the convergence of each process is 

affected by the operation of the other processes. Although· this makes 

analysis of convergence difficult, the frequent correction of the model 

and direction vectors is a great advantage to the search process. 

Implementation of the Method 

The basic method allows flexibility in accomplishing the following 

operations. 

1. The order of choosing pairs of direction vectors in step 2, 

2. The arrangement of sample points in step 2a, 

3. The strategy for searching to improve the base location in 

step 2d, 

4. The criterion for convergence in step 3. 

Thus, the basic method could be called a collection of methods. The 

choice of an algorithm for each operation results in a specific method. 
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Some of the possible algorithms are given in the following discussion of 

the four operations. 

The order of choosing pairs affects two things: 

1. The pattern of searching in the various directions, 

2. The convergence of !;:he Jacobi method. 

The pattern of searches suggests an ordering to try to isolate one 

occurrence of each index. (The indices correspond to direction vectors.) 

For ri equal to six this could be 

(ik,jk) = { (1,2)' (3,4)' (5,6)' (2,3)' (4,5)' (6,1)' (1,3)' (2,4)' 

(3,5),(4,6),(5,1),(6,2),(1,4),(2,5),(3,6)} • (III.ll) 

Another possibility is to favor two sequential occurrences of each index, 

such as 

(~,jk) = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,1),(1,3),(3,5), 

(5,1)' (2,4)' (4,6)' (6,2)' (1,4)' (2,5)' (3,6)} (III.l2) 

These orderings are both organized along diagonals of the curvature 

matrix as symbolized in Figure 8. The convergence of the Jacobi method, 

however, is improved by the orderings along rows or columns symbolized 

in Figure 1. The effect of ordering on the Jacobi method is discussed 

in Chapters II and IV. Two orderings are tested in Chapter VI. 

The sample points used for fitting the model could be arranged in 

a fixed pattern. The calculations could then be further simplified. 

On the other hand, the sample points used for fitting the model could 

also serve as search points. The search process (step 2d) could then 

consist solely of moving the base location to the best point found. 



1 7 13 11 6 

4 8 14 12 

2 9 15 

5 10 

3 

a. Ordering to isolate one occurence 
of each index 

1 7 13 9 6 

2 10 14 12 

3 8 15 

4 11 

5 

b. Ordering to favor two sequential 
occurences of each index 

Figure 8. Orderings Based on the Pattern 
of Searches 
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This combination of processes is limited when the desired sample point 

with regard to the search produces a step size which is too small for 

the calculation of the model parameters. 

A number of search strategies could be used in the new method. 

Possibilities include line searches along both direction vectors or a 

line search in the direction of the optimum~ The algorithm used for 

testing uses the search points for fitting the model as just described. 

Additional points are added to the curve fitting points to insure, if 

possible, that the optimum is bracketed and a better point is found. 

At the end of a complete sweep an additional sample is taken at the 

optimum of the entire model. During the process the base point.is 

moved to the best point found when the move will not disturb the calcu-

lations. 

The choice of a convergence criterion is difficult for all optimi-

zation methods. It is commonly considered to be a separate problem 

from the method. For comparison to other methods, a standard termi-

nation scheme, such as Himmelblau (1972),· could be applied. In the 

testing termination was not used for comparison. To prevent useless 

execution, the program terminates when a complete sweep produces no 

improvement. 

The resulting algorithm used in the trials is as follows. 

1. Set some initial x , and set S to the identity matrix. 
0 

2. According to some ordering, choose each possible pair of 

indices. 

(i, j) = (ik, jk), 1 < i < j < n (III.l3) 
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For each pair, perform the following. 

a. Sample the functionat the predicted optimum in direction 

si. 

b. Calculate a corrected value for b .• 
1 

c. Sample at the corrected optimum in direction si •. 

d. Calculate bi and cii. 

e. Move the base location, x , to the best point found thus 
0 

far. 

f. Similarly, sample twice in direction sj, resulting in bj 

and cjj. 

g. Sample at the predicted optimum in the plane of si and 

Calculate cij" 

s .. 
J 

h. 

i. Move to the best point found. 

j. Calculate the rotation matrix R. 

k. T T Replace b by R b, C by R CR, and S by SR. 

1. Replace k by k+l. 

3. Sample the function at the predicted multivariate optimum and 

move the base location if better. 

4. Return to step 2, unless no progress has been made during the 

sweep. 

The optima are based on the previous model limited to reasonable values. 

Summary 

Anew method for optimization is described in this chapter, based 

on the Jacobi method for finding eigenvectors. In the new method, a 

quadratic model of the .function is created, and search directions which 

approximate the eigenvectors of the curvature matrix are used. The 
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nature of the Jacobi method allows the construction of the model, the 

determination of the search directions, and the search itself to proceed 

simultaneously. The basic method does not specify the procedure for 

accomplishing some operations, so there are many ways to implement the 

method. 



CHAPTER tV 

THEORETICAL ANALYSIS 

Introduction 

This chapter collects the analysis of ptocesses related to the new 

optimization method. First, the effects of scaling the problem varia-

bles are discussed. Next, the curve fitting process is examined and 

restrictions on the step size are developed. The effect of ordering on 

the Jacobi method is then analyzed. A modified ordering is given along 

with a proof regarding convergence. Finally, the convergence of the 

base location to the optimum is considered, and the rate of convergence 

for the case of a quadratic function is found. 

Scaling 

For a given function, a change of scale is the replacement of any 

variable x~ by a constant multiple px .• If the values of the variable 
... . ~ 

are divided by the same constant, then the function values will remain 

the same. Thus, a change of scale does not change the inherent proper-

ties of the function. An example of change of scale is a change in the 

units of measure,-say from meters to kilometers. If the function is 

rewritten in kilometers and all "data" values are converted to kilo-

meters the function will behave the same. This may not affect all 

variables, because various variables may have entirely different di-

mensions (e.g. time). 

28 
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The appearance of a function as an optimization problem is changed 

by scaling.· To illustrate, consider minimizing the function 

f(x) 

2 2 
. . xl x2 

= .012 + 2 (IV .1) 

The contour diagram in Figure 9 shows that the function appears to be a 

long valley. If, however, x is i'de-scaled" with 

(IV.2) 

(IV.3) 

the function becomes 

(IV.4) 

which has circular contours. The de-scaling of IV.2 and IV.3 is given 

by 

X. 
1 

(IV.5) 

where the a .. are the diagonal elements of the curvature matrix. The 
11 

curvature matrix of the original function 

.01 0 

A= (IV.6) 

0 1 

becomes, for the de-scaled function, 



-I 

Figure 9. Contour Diagram f(x) 
Equation IV.l 

0.5 for 

Figure 10. f(x) 0.5 for Equation IV.8 
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1 0 

A,;, (IV. 7) 

0 1 

The de-scaling of Equation IV.S always results in a curvature matrix 

with ones oil the diagonal. The valley is controlled entirely by the 

scaling, and there is no absolute reference for the scale. Therefore, 

it can be argued that it is meaningless tb talk about a valley in this 

problem. 

On the other hand, the function 

f(x) 
(o s >2 ·(o.s )2 • xl - x2 xl + x2 

= • 01 2 + __ __;;:;-=-2 -~- (IV.8) 

diagrammed in Figure 10, has a valley which may be modified, but not 

completely removed by de-sC:aling :X. (To remove it completely requires 

a general linear transformation or a rotation followed by de-scaling.) 

When de-scaled with 

xl = 0.5 x1 (IV.9) 

-
X.z = x2 (IV.lO) 

(xl 
~ 2 

(xl 
- 2· - x2) + x2) 

f(x) = .01 + 2 2 
(IV.ll) 

The contours shown in Figure 11 illustrate a remaining valley. The 

"narrowness" of the valley, i.e., the ratio of the eigenvalues (curva-

ture), is reduced, however. Non-quadratic functions can also create 
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Figure 11. f(x) 0.5 for Equation IV.11 
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conditions where a valley cannot be removed by scaling or even by a 

general linear transformation. 

The conclusion is that "poor" scaling can increase the apparent 

difficulty of a problem. One solution is to reformulate the problem to 

improve scaling. However, the function is not always sufficiently well 

known to de-scale manually. Also, for non-linear problems the scale 

may change with location. Therefore, it is desirable that optimization 

methods be insensitive to poor scaling. When properly programmed, some 

methods are scale-invariant, that is, when the scale of a problem is 

changed (including the initial location and step sizes) the method 

samples the scaled function at exactly the points corresponding to those 

used before scaling. 

The new method is not scale-invariant due to the properties of 

eigenvectors. When a function such as IV.8 is scaled to IV.ll the 

eigenvectors of the scaled problem are not equal to the scaled eigen-

vectors of the original problem. To illustrate the effect on the method, 

assume in each case the method starts at an initial location, x0 , finds 

the eigenvectors exactly, and then performs a linear search in direction 

s 2 and then s1 . Referring to Figure 10, the movement for the original 

f · · · l d h 2 h . I h 1 d unct1on 1s to po1nt x an t en to s = x, t e opt1mum. n t e sea e 

-1 -2 
problem of Figure 11, the movement is to x and then to x = x. Since 

-1 
direction s 2 does not scale to .s2 the point x does not correspond to 

1 x . Therefore, the method applied to a scaled problem does not sample 

the scaled version of the original points. 

In the new method, the A matrix can be found from the model, so it 

would seem easy to automatically de-scale the variables. Several 

problems arise, however. The greatest problem is that if the old 
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direction vectors actually are the correct eigenvectors, and the scale 

is changed, then the direction vectors are no longer the eigenvectors 

The calculation of the de-scaled eigenvectors requires the complete 

calculation of the eigenvectors of a matrix. Even calculation of new 

curv.ature values (cii) along the oid direction vectors is a lengthy 

calculation (n3 operations). Fortunately, the method can be tnade 

"scale-invariant" along the direction vectors by basing every step siz~ 

calculation on scale-invariant properties of the model or on the previ-

ous step size. (This was done in the test program.) For this reason, 

once the direction vectors are aligned with the "valley" the functio~s 

of Figures 10 and 11 both appear as circular contours. Thus, the new 

method should work "well," though differently, when the scale is changed. 

Another effect occurs when the scale is changed. If the function 

of IV.ll is further scaled with 

::: 
(IV.l2) 

(IV.l3) 

the contours becomes those of Figure 12. The rotation of the direction 

vectors always chooses the angle.less than 45°, so direction s 2 becomes 

"down the valley" and s1 becomes "across the valley." For cases where 

there is some reason to distinguish between "across the valley" and 

"down the valley" (e.g., nop.linear problems), the meaning of s1 and s 2 

are reversed. If the direction vectors are chosen in order of curva-

ture, cii' then the first· (last) direction vector will represent, say, 

the greatest (least) curvature which corresponds to "across the valley" 



Figure 12. f(x) = 0.5 for Function of Figure 11 
with Scale Changes of Equations 
IV.12 and IV.13 
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("down the valley"). Thus, the "pattern" of searching will remain simi-

lar even though the scale ischanged. Sorting the diagonal of the C 

matrix, discussed later in this chapter, causes the direction vectors 

to be chosen in a specified order according to curvature. In that case 

the newmethod is somewhat insensitive to change of scale. 

Fitting the Model 

In the basic method given irt Chapter III, one task is to sample the 

function f(x) at a sufficient nti:illber of points to fit the model express-

ed by Equation III.9, 

u(x + zis. + z.s.) = y0 + b.z. + b.z. 
0 ~ JJ ~~ JJ 

2 . 2 
+ ~ciizi + ~z .. c. + c .. ziz .• JJ. J ~J J 

(IV.l4) 

Normally x will be changed only to a point which has already been 
0 

evaluated. As a result, 

y = u(x ) = f(x ) 
0 0 0 

(IV.l5) 

is assumed to be known. Five additionai-samples are usually sufficient 

to determine the remaining five unknowns, bi' bj' cii' cjj' and cij" 

The organization of the sample points can isolate the effect of 

zi and zj in the following way. If zj is zero, the model becomes 

u(x + zis.) 
0 ~ 

(IV.l6) 

Thus·, two points on the line x0 + zisi (parametric in zi) are usually 

sufficient to find b. and ci .• Similarly, two points on the line 
~ ~ 
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x + z.s. give b. and c ..• For this reason and since optimization along 
0 J J J JJ 

a line is of interest, the model along a line is considered next. 

Univariate Model Calculations 

For this section, the subscript i is temporarily elil1linated giving 

the model 

u(x + zs) = y + bz + ~cz2 
0 0 

(IV.l7) 

for the function f(x + zs), where s becomes a single direction vector, 
0 

and z, b and c are scalars. As noted before, y is assumed to be availa­
o 

ble. · The task is to chose two additional points, z1 and z2, sample the 

function at the points, giving 

(IV.l8) 

(IV.l8) 

and find b and c which satisfy the relations 

2 = yo + bzl + ~czl = y i ' (IV.20) 

(IV.21) 

One important use of the model is to give an improved estimate z of the 

optimum along the line by solving 

du - = b + cz ·- 0 ' dz 
(IV.22) 
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Resulting in 

z = -b/c (IV.23) 

The direct solution of the original Equations IV.20 and IV.21 gives 

(IV.24) 

c = (IV.25) 

When using a computer to evaluate b and c; roundoff (or truncation) 

errors can become significant. As a result the order of calculation is 

important. The algorithm used in the testing is as follows: 

c = 

dl = y y 1 - 0 

d2 Yz - Yo 

bl = d/z1 

b2 = dz'z2 

2(b2 - b1 )/(z2 - z1 ) 

b = b 2 - czz'2 ' 

z = -b/c 

Bivariate Model Calculations 

' 

(IV.26) 

(IV.27) 

(IV.28) 

(IV.29) 

(IV.30) 

(IV.31) 

(IV.32) 

Fitting the univariate model in directions si and sj gives bi' bj, 
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c .. and c .. , leaving ciJ. to be found. At least one additional point l.l. JJ 

with both z. and z. nonzero is required. If the function is sam.pled l. J 

giving 

f(X + z.s. + ZJ.SJ.) ~ 
0 l. l. 

then c .. can be determined from the relation l.J 

u(x + z.s. + z.s.) 
0 l.l. JJ 

The direct solution is 

( b 1 2 1 2) Ys - y0 + b.z. + .z. + ~c1.l..zl.. +~c .. z. l. l. J J JJ J c .. = ~----~----~~--~~----~~~----~~~ l.J z.z. 
l. J 

The algorithm used in the testing is 

c .. 
l.J 

= d5 - (hi + ciizi/2)zi - (bj + cjjzj/2)zj 

zizj 

(IV.33) 

(IV.34) 

(IV.35) 

(IV. 36) 

(IV. 37) 

If Equation IV.37 does not give sufficient accuracy, the value of 

cij can be found more directly from a univariate model along a line 

x = x + z(u.s. +u.s.) (IV.38) 
0 l.l.' JJ 

where ui and ju are arbitrary nonzero constants. For convenience assume 

1 (IV.39) 

The resulting univariate model is denoted 
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u(x + z(u.s. +u.s.) 
0 1 1 J J 

(IV.40) 

Equation IV.l4 gives the corresponding form, 

u(x + zu.s. + zu.s.) - y + biu.z + b.u.z 
0 11 JJ 0 1 JJ 

1 22 1 22 2 
+ ~ciiuiz + ~c .. u.z +c .. u.u.z 

JJ J 1] 1 J 

2 
Equating the coefficients of the z terms in IV.40 and IV.41, 

c -5 
2 

c .. u. 
11 1 

2u.u. 
1 J 

2 
- c .. u. 

JJ J 

(IV.41) 

(1V.42) 

The extra information provided by b5 (because an extra point has been 

sampled) could then be used to test the accuracy and validity of the 

quadratic model by comparison to (u.b. + u.b.). This option was not 
1 1 J J 

tested. 

Step Size Restrictions 

The calculations of both the univariate and bivariate model involve 

differences between function values at two sample points. As the step 

size becomes small the difference in function values becomes small. The 

errors in the function values then appear large relative to the differ-

ence. The relative error is then passed on to subsequent operations. 

As a result, a lower limit must be placed on the step size. 

Let e(u) represent the absolute error in u. In moder floating 

point computers the error due to truncation is bounded by 

e(u) < EjuJ (IV.43) 
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where e: is the machine precision. For example 

e: = (IV.44) 

for 7 digit storage. 

The errors in the y values which can be estimated are due to 

truncation in storing x and y. Using a first order approximation to 

the function near x, 

f(x + E(x)) = f(x) + g(x)T E(x) (IV.45) 

where g(x) is the gradient of f at x. The error is thus 

f(x + E(x)) - f(x) T g(x) E(x) (IV.46) 

Using IV.43 for each element of x, 

. T 
If (x + E (x)) - f (x) I . 2_ .e: I g (x) I /x / (IV. 47) 

where the absolute value of the vectors is performed on each element. 

The bound on the error in y due to both x and y is then approximated by 

E(y) < e: IYI + e:lg(x)/T lxl (IV.48) 

The errors in all the y values are estimated by the error in y0 , with 

(IV.49) 

The gradient g(x ) can then be estimated from the model using III.3. 
0 

" Next the value of d1 is estimated under two conditions for z. 

First, if 

(IV.50) 
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is sufficiently large, then it can be used for z1. In that case. 

b = -cz 1 (IV.Sl) 

so IV.20 becomes 

2 2 2 
yl = yo - cz 1 + ~cz1 kcz 

2 1 (IV.52) 

and IV.26 gives 

dl 
2 

= yl - y = -~cz 1 . 
0 

(IV.53) 

On the other hand, if z becomes small, then z 1 must be limited. 

Assuming 

_, (IV.54) 

then 

(IV.55) 

Using IV.SO and IV.55 

(IV.56) 

so 

(IV.57) 

Then the second term of IV.20 can be neglected, giving 

(IV.58) 
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and 

~ 2 
d1 = y y = ~cz 1 - 0 1 (IV.59) 

I • h. 1 2 . d . t f d n e1.t er case, ~cz 1 1.s a goo est1.ma e or. 1• To keep the relative 

error small, it is desired to insure 

< t (IV.60) 

where t is some large number. Thus the limit on d1 is 

(IV.61) 

Any error in y1 or y0 causes an identical error in the magnitude of d1 

so the error in d1 due to the errors in the y is bounded by 

(IV.62) 

Using the error estimate of IV.49 for both E(y1) and E(y0 ) 

(IV.63) 

Therefore, if jd1 J is limited by 

(IV.64) 

then IV.61 is ensured. Using ~czi to estimate d1 the restriction becomes 

(IV. 65) 

Solving for z1 gives 
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c 
(IV.66) 

The value of t is arbitrary so it can include 4E by letting 

t 1 = 4tE • ([V. 67) 

In the program used for testing, two parameters ty and tx are used for 

the errors due to storing y and x respectively. The limit then becomes 

(IV. 68) 

To maintain sufficient distance between all three sample locations the 

same limit is applied to z2 and the difference z2 - z1• 

To maintain accuracy in the bivariate fit, the steps in the two 

directions must be of similar magnitude. The comparison of step sizes 

in the two directions, however, must account for possible differences 

in scaling. This can be done by comparing the change in the function 

value caused by the steps. Again using ~cz2 to estimate the change 

y - y , the ratio of the changes for the two directions is limited by 
0 

the relation 

t < c-

with t < 1. The lower limit gives 
c 

1 <­
-'-t 

c 
(IV.69) 

(IV.70) 



Solving for zi, 

I z .1 > 
]. 

t 1 c .. z~ I 
c JJ J 

I c .. 1 
].]. 

Similarly, the upper limit of 1V.69 gives 

which becomes 

I z .I > 
J 

2 
t I c .. z ./ c ].]. ]. 

/c .. l 
JJ 

45 

(IV. 71) 

(IV. 72) 

(IV. 73) 

All step sizes in a given direction should be of similar magnitude, so 

all limits should be computed before the linear fitting. To keep the 

restriction on a given zi from changing due to pairing with various zj, 

the worst case 

I z.l > 
]. 

(IV.74) 

should be used every iteration. Finally, the limits of Equations IV.68 

and IV.74 ca be combined into 

(IV. 75) 
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where 

(IV. 76) 

The same value of y1 can then be used for the corresponding limit on zj. 

Before fitting the univariate models, the test program calculates y1 

based on the previous model. The limit of IV.75 is calculated as soon 

as a reliable estimate for cii is available. The limit is then enforced 

on the step sizes z1 and z2 and the difference z2 - z1. Whenever the 

optimum of the model produces a step size z which does not satisfy the 

limit, the step size for the sample is enlarged to equal the limiting 

value. 

The Effect of Ordering on the Jacobi Method 

This section uses the notation of Chapter II for the Jacobi method. 

In particular, the current matrix is 

(IV. 77) 

k The convergence of A to a diagonal matrix is measured by the error at 

iteration k (beginning at zero}, 

(IV.78) 

The object is to determine the ordering which will mini ize the error at 

the end of the sweep. A sweep involves N pairs of indices (p,q) where 

N = ~ n(n-1) 

Assume an arbitrary cyclic ordering and consider one sweep. 

(IV.79) 

Let k be 
0 
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the first iteration of the sweep and let 

I(p,q) = k (IV.80) 

describe the first iteratioh on or after k which rc>tates a .. , that is, 
0. pq 

(IV.81) 

Each rotation causes the chosen element to become zerb~ but later 

rotations change the value. To investigate the simplest occurrence of 

this effect, define a triplet to be three elements, a pq' a pr' and a qr'' 

where p, q, and r are distinct indices (not necessarily ordere'd) in the 

interval (1; n). The position of the elements of a typical triplet is 

shown in Figure 13. Actually, if the indices are not ordered, some of 

the elements will not be super-diagonal. However, A is symmetric, and 

the rotation affects, for example, a and a identically. Therefore, pq qp 

all references to a apply to either a or a . . pq pq qp 

-which rotate the three elements be 

k1 = I(p, q) 

k 2 = I(p, r) 

k3 = I(q, r) 

all within (k , k + N-1). Assume 
0 0 

Let the interations 

(IV.82) 

(IV.83) 

(IV.84) 

(IV.85) 

that is, the elements are chosen in the order apq' apr' aqr 

• 



a a a 
PP pq pr 

a a I 
qq qr I 

' 
1 .. -

I 
l 
I 

a i rr I 

I 

Figure 13. An Example of a Triplet 
and Diagonal Element 
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To discuss the accumulation of the changes in the elements which 

result in the error at the end of the sweep, let 

2: (IV.86) 

1(p,q)<k 
p:fq 

that is, all elements which have been rotated during the sweep previous 

to k. Note that 

k 
T 0 = 0 

because no elements have been chosen, and 

k +N 
T o 

because all elements have been chosen. 

(IV.87) 

(IV. 88) 

Previous to k1 none of the elements of the triplet contribute to Tk. 

After k1 , Tk includes a pq From k 1 on, a begins at zero and may be pq 

increased by the action of elements in other triplets of which it is a 

member until time k2• Then a becomes zero and is included in Tk. At pr 

the same time a is affected according to Equation 11.13, resulting in pq 

(IV.89) 

Again, a and now a may be increased by other triplets, until k3 pq pr 

when a is included in Tk with a value of zero. At k3 , a and a qr pq pr 

are rotated together according to 

(IV.90) 
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(IV.91) 

However, rotation preserves the magnitude, so 

(IV.92) 

k 
and the contribution to T 3 is not changed. From kj to the erid of the 

sweep the elements are changed due to other triplets. Thus, the total 

N . · k 
effect on T due to this triplet is the change in a· at iteration k2• pq 

To generalize, the rotation of the middle element of a triplet is the 

critical one. 

k+l 
The new a given by Equation IV.87, is bounded by the relation pq 

(IV.93) 

where ~ is given by 

(IV.94) 

Note than 

lak2 1 

~I tan 2 ~I = -.1 _k_/._r_. _k_2_1 
a - a pp rr 

(IV.95) 

so IV.93 implies 

(IV.96) 
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The total error at the end of the sweep is thus bounded by the sum of 

terms like last term in IV.96 for all triplets. 
k +N 

T . . . I k2+1l o m1.n1.m1.ze a pq 

and therefore E 0 , the ordering should try to promote two propositions 
' 

(IV. 97) 

(IV.98) 

For proposition 1, the only effect of the ordering is which of the 

elements of the triplet will become a and a The decision must be pr qr 

made at time k1 when a is chosen. Therefore, proposition 1 is pq 

equivalent to 

(IV.99) 

Proposition 1 is enforced directly in the original method of Jacobi. 

Hansen (1963) attempts to promote the same effect by indirect means. 

As noted in Chapter II, the values of the off-diagonal elements are not 

known in the optimization method. 

The second proposition is useful because it concerns only the 

diagonal elements. Note that both the row and column orderings of Figure 

1 choose the elements of every triplet in the order a , a , a with pq pr qr 

p < q < r. Obviously, 

Ia - a I > Ia - a I pp rr pp qq (IV.lOO) 

and 

(IV.lOl) 
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together are equivalent to either 

a <a <a 
pp qq - rr (IV.l02) 

or 

a > a > a 
PP qq - rr 

(IV.l03) 

Therefore, if the diagonal is sorted throughout the sweep, the row or 

column ordering will consistently satisfy Proposition 2. 

It is interesting to note that the diagonal ordering of Figure 2 

consistently violates the order a , a , a This property is not a pq pr qr 

direct contradiction to the testing of Hansen (1963) because the diago-

nals in his examples were not ordered and therefore could be considered 

random. 

To use the previous results, a modification is proposed in which 

the entire diagonal is sorted in, say, decreasing order before each 

sweep. The sorting can be accomplished without disturbing the algorithm 

or results (except the order of the results) by a succession of exchanges 

. k 
of two rols and the corresponding two columns of A • For the optimi-

zation method, the corresponding two columns of the eigenvector matrix, 

S, and the two elements of b, z, etc., would also have to be exchanged. 

In the actual computational algorithm, the same effect is achieved at 

less expense by using a permutation or pointer vector to record the 

exchanges and changing the ordering. The remainder of this discussion, 

however, considers the modification matrix with sorted diagonal and the 

original ordering for the selection of pairs. The following theorem 

shows that sorting the diagonal elements of A does not invalidate the 
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theorems on convergence cited in Chapter II. 

Theorem 1. If the special cyclic Jacobi method is modif.ied before 

each sweep by permuting the rows and columns of A alike, such that a . pp 

is a monotonic sequence in p~ then there exists an iteration k 1 after 

which the modificatidn cl;luses no further change to the matrix. 

Corollary. Theorem 1 holds with the special cyclic ordering of 

pairs replaced by any ordering for which Ek converges to zero. 

Proof. The exchange of two rows and the corresponding columns 

interchanges diagonal elements with diagonal elements and off-diagonal 

elements with off-diagonal elements. Therefore, the value of Ek of 

IV.76 is not changed by the permutations. Also, the modification 

changes the matrix only between sweeps. Therefore,. the properties of 

a single rotation or of rotations within one sweep are not changed by 

the mo.dification. 

Forsythe and Henrici (1960) prove that 

lim Ek = 0 
k~ 

(IV.l04) 

for the unmodified special cyclic Jacobi method. The proof depends only 

on properties of a single sweep (Lemmas 1, 2 and 3) and rotations within 

one sw~ep (Lemma 4 and the section labelled "proof of (11)"). There-

fore, the proof applies to the modified method. Based only on the 

.. k 
convergence of E to zero and the properties of matrices, Forsythe and 

Henrici prove that there exists a k1 after wh~ch the permutations 

required to put the matrix diagonal in monotonic order does not change 

(Lemma 6). k The modified method causes E to converge to zero, so the 

proof applies to the new method, proving Theorem 1. The corollary 
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follows directly from Lemma 6 of Forsythe and Henrici. 

Theorem 2. The·special cyclic Jacobi method modified as in Theorem 

1 converges in the sense that 

where D is a diagonal matrix. 

li:in Ak = D 
k-+<x> 

(IV.l05) 

Proof. 
. k 

The proof of Theorem 1 includes the proof that E converges 

to zero. The remainder of the Forsythe and Hentici proof that the 

special cyclic Jacobi method converges in the sense of IV.l05 applies 

to the modified method. 

Alternately, Theorem 2 follows from Theorem 1 by applying the 

entire proof of Forsythe arid Henrici to the iterations after the modifi-

cation causes no changes. In the same way, the other relevant theorems 

cited in Chapter II apply to the modification method. In particular, 

k the error E converges to zero quadratically. The quadratic convergence 

of the Jacobi method, with or without the modification, is used in the . . 

following discussion of the convergence of the whole optimization method. 

Convergence of the Optimization Method 

When the new method is applied to a general function bounded below, 

the sequence of function values cannot diverge as long as the algorithm 

never moves to a point unless the function value is improved. There-

fore, the sequence is monotonic. Convergence to a point short of 

.the optimum is a possibility, but several facts indicate that it is 

unlikely. First of all, the direction vectors in the method are always 

kept orthogonal, eliminating one of the problems of some other methods. 
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In addition, it has been noticed that even when the direction vectors 

change "randomly" the optimization progresses at a reduced rate. 

Finally, as the method converges, the direction vectors are still being 

corrected by small amounts, and this tends to prevent "stagnation." 

For the minimization of a quadratic function, the new method does 

not appear to have finite convergence for n greater than two. Even if 

linear optimizations are used, the Jacobi method does not produce finite 

convergence of the direction vectors to the eigenvectors of the curva-

ture matrix. The following analysis, however, shows that the distance 

to the optimum is bounded by a form which appears linear but depends on 

C. Under the conditions where the Jacobi process converges quadratical-

ly, the distance to the optimum converges to zero quadratically. 

Consider the new method applied 'to the minimization of a quadratic 

form 

(IV.l06) 

with A symmetric and positive definite. Since the optimum is 

X = 0 (IV .107) 

the distance to the optimum is 

n 

II X 11 2 = L (IV.l08) 

p=l 

In the notation of Chapter III, the current location x is the base 

location, X • 
0 

Recall that the new method uses 

T 
C = S AS (IV.l09) 
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as in 111.4, which corresponds to Ak in the discussion of the Jacobi 

method. Define z to be the error in the transformed space, 

so that 

T 
Z = S X 

f(Sz) 
T = z Cz 

(1V.ll0) 

(1V.lll) 

Note that the definition of z used here is slightly different than that 

of 111.2. The transformation S is orthogonal and normalized, so 

II z II = II X II . 

For an ideal quadratic function like 1V.l06, the fitting process will 

produce the correct values for the elements of C regardless of position. 

For A positive definite, 

c pp 
> 0 (IV.ll2) 

Assume that all movement to the optimum is accomplished by an exact 

linear optimization each time a linear search is called for. Let the 

superscript k indicate values for the variables before the k-th linear 

optimization (counting from zero). Two linear optimizations are per-

formed for each rotation of the direction vectors, so the index k here 

advances twice as fast as in the discussion of the Jacobi method. 

Therefore, a sweep consists of n(n-1) optimization iterations, rather 

than the ~(n-1) rotation iterations for the Jacobi method. 

p of 

Each optimization in direction sk corresponds to solving equation 
p 



k for z . The solution is p 

k+l z 
p = -1 

k c pp 

0 

n 

L 
q=l 
q=fp 

k 
c pq 

k 
z 

q 
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(IV .113) 

(IV .114) 

When used for solving a system of linear equations, this repeated 

solution for each variable is known as relaxation. In relaxation, the 

indices p are usually chosen in consecutive order, giving the Gauss-

Seidel method (see Schwarz, 1973). In the optimization method, pis 

chosen as i and then j of each pair (i,j), which usually does not result 

in consecutive order. As shown by the following three theorems, however, 

the order of choosing p does not eliminate the usual linear convergence 

characteristic of relaxation. Convergence is only slowed to the extent 

that more iterations are required before all z are reduced. p 

The three theorems each assume a k and establish a bound of the 
0 

form 

< r 
k 

II z o 11 2 (IV.ll5) 

for some k1 after k0 • Theorem 3 considers the general case of relaxation 

with p chosen in any order and rotation of si and sj (i.e., cij) after 

choosing p=i and p=j. The resulting bound applies for .any interval 

(k0 , k1-l) during which all p are chosen. Theorem 4 considers the con-

ditions of the optimization method and relates the reduction of error 

over one sweep to the error measure of the Jacobi method. 
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Ek= L L 
p=l q=1 

q;'p 
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(IV .116) 

Theorem 5 gives a better bound for the case of relaxation with constant 

Theorem 3. Consider relaxation as in Equation IV.ll4 with p chosen 

in any order and 

(IV .117) 

except for rotations of c. . (i.e .• , s . and s . ) after choosing p=i and 
1J 1 J 

p=j. Let 

n 
k 1 L k 2 k (IV.ll8) r = (cpq) ' p=p 2 

(cpp) q=l 
q;'p 

and 

(IV .119) 

For any interval (k0 , k1-l) such that every p is chosen at least once, 

and such that 

r < 1 (IV.l20) 

the relation 

II z k 1 11 2 < r 
k 

II z o 11 2 (IV.l21) 
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holds. 

Proof. At any given iteration, Equation IV.l14 may result in an 

increase in the value of z . The individual elements, however, are p 

bounded by the norm of the vector. In order to isolate the new 

elements let ek equal zk for all p which have been chosen in the inter-p p 

val (k , k-1) and ek equal zero otherwise. At k=k , no p has been 0 p 0 

chosen, so 

k 
II e o 11 2 0 0 (IV .122) 

At k=k1 all p have been chosen, so · 

II . (IV .123) 

From Equation IV.ll4, 

n 
k+l -1 L k k e =-- c z p k pq q c q=l PP 

(IV.l24) 

q:fp 

From the triangle inequality, 

(IV.l25) 

so from IV.ll8 

(IV.l26) 
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At this point, it is necessary to use induction on k to prove 

(IV .127) 

Assuming IV.l27 holds for kj IV.l20 implies 

(IV.l28) 

k . ko ·k Each z · equals e1ther z or e , so p p p 

(IV.l29) 

Using IV.l28 

(IV.l30) 

and IV.l26 becomes 

(IV.l31) 

k The other elements of e are unchanged, so 

(IV.l32) 

Using IV.l27 and IV.l31 

k k k 
2r 2 II z o 11 2 + 2rk II z o 11 2 , (IV.l33) 
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so 

k 

L (IV.l34) 

before rotation. 

k =k 2 0 

If a rotation affects only previously chosen elements, the rotated 

elements of z are included in ek+l A plane rotation does not change the 

Euclidean norm so II zk+lll 2 and II ek+lll 2 remain unchanged. Thus 

Relation IV.l27 holds for k+l, after rotation. Using IV.l22, relation 

. IV.l27 is true for k-k , and therefore, by induction, it is true for 
0 

all k>k0 • Returning to the proof of Theorem 3, using IV.ll9 and IV.l23, 

the relation IV.127 with k=k1 implies IV.l21 which proves the theorem. 

Theorem 4. Under the conditions of Theorem 3, if p is chosen as 

i and then j of each pair (i,j) of the optimization method, and the 

interval (k0 , k2-l) contains the iterations of one sweep, then Theorem 3 

holds with r replaced by 

r = 
2n(n-l). Ek 

min A.2 
l<q<n q 

(IV.l35) 

where A. is the q-th eigenvalue of A, and Ek is defined by IV.ll6. 
q 

Proof. From the properties of matrices, the eigenvalues of C are 

those of A, and 

2 (c ) > pp (IV.l36) 



For A positive definite 

Thus, IV.ll8 gives 

Certainly, 

n 

L 
q=l 
q:#p 

with k E of IV.ll6. 

so IV.138 becomes 

A > 0 
q 

.n 

rk < 1 L (ck )2 
2 pq min A 

l_::_~n 
q q=l 

q:#p 

n n 

(ck )2 < L L (ck )2 = pq - pq 
p=l q=l 

q:#p 

For· the Jacobi method, 

k 
rk < 

E o 

min A2 
1 <q..::.n q 
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(IV.137) 

(IV .138) 

Ek (IV.139) 

(IV.140) 

(IV.141) 

Every p is chosen in a sweep which consists of n(n-1) iterations, so, 

since 

(IV.142) 



k-1 
k -1 

1 

I i L i r < r < - -
i=k i=k 

0 0 

Relations IV. 20 and IV.l35 imply 

so 

2n(n-1) 

k-1 

I 
i=k 

0 

k 
E o 

min 
l<~n 
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k 

n(n-1) 
E o 

A.2 min 
(IV.l43) 

1.2_q_2n q 

A.2 
< 1 (IV.144) 

q 

(IV.145) 

Relation IV.145 can be used in place of IV.120 to prove that IV.127 

implies IV.l28. The remainder of the proof of Theorem 4 follows the 

proof of Theorem 3. 

Theorem 5. If Ck is cortstant then the theorem is true with r 

replaced by 

Proof. Define 

r 
p 

. 1 
n 

L 
q=l 
q:;'p 

(IV.146) 

(IV.147) 



Note that the definition of IV.l46 gives 

n n n 
2Ek ~ 2r 1 ~ ~ 2 = (cpq) = p (ck )2 . ( k )2 

p=l min 
p=l q=l 

m1n C . 

1 <q..::n qq l_s_q::,n qq 
q:#p 

so condition IV.l20 is equivalent to 

n 

~ 
p=l 

2r < 1 p-

If iteration k chooses p, then comparing IV.ll8 and IV.l47 

k 
r = 

n 

(ck )2 < --=1--=----=- "(ck )2 = r 
pq - . c k ) 2 L pq P m1n C qq q=l l<t'),.,S.n q:#p 

Thus, relation IV.l26 becomes 

Again, induction on k is required to prove that for all p 

Assuming IV.l52 holds for k, summing over p gives 

n 

~ 
p=l 

k 
2r II z o 11 2 , 

p 
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= r' (IV.l48) 

(IV.l49) 

(IV.l50) 

(IV.l51) 

(IV.l52) 

(IV.l53) 
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and using IV.l49, 

Noting that IV.l54 is identical to IV.l28, IV.l30 is assured. Using 

relation IV.l30, IV.l51 becomes 

(IV.l55) 

and IV.l52 is shown for k+l. By definition, 

(IV.l56) 

so IV.l52 is true for k • By induction, IV.l52 is true for all k. Using 
0 

IV.l48, relation IV.l53 becomes 

(IV.l57) 

Recalling IV.l23, relation IV.l57 for k=k1 becomes, 

(IV.l58) 

Since this is identical to IV.l21, Theorem 5 is proved. 

To summarize the results for the new method, Theorem 3 states that 

once 

k 
E 0 < 1 min A2 

- n(n-1) q l<q2_n 
(IV .159) 

the optimization method produces 



. k 
k +n(n-1) o liz o 112 2 n(n-l)E2 

min A. 
1 <<t:s.n q 

In view of IV.l56, 

k +n(n-1) 
II z o II < 

k 
liz o II 

so, 

Therefore, IV.l60 becomes 

k +N 
k +n(n-1) . · o 

llz 0 11 2 2n(n-l)E llz0 ll 2 • 
niin >.. 2 

i2<t:_n q 
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(IV.l60) 

(IV.l61) 

(IV.l62) 

(IV.l63) 

With I lz0 l 12 constant, the error at the end of each sweep is bounded 
k k 

by a multiple of E 0 If E 0 converges quadratically to zero, then 

k 
I I Z 0 112 1 d . 11 converges to zero at east qua rat1ca y. 

For distinct eigenvalues the convergence of the Jacobi method 

insures relation IV.l59 will eventually be met. Relation IV.l58 as well 

as the rate constant of relation IV.l60 appear discouraging due to the 

n2 factor. In practice, however, the Jacobi method converges fairly 

rapidly resulting in C being approximately constant. Thus, the rate 

will he closer to that of Theorem 5. 

Summary 

The analysis in this chapter provides several results. The calcu-
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lation of model parameters must consider errors involved. A simple 

analysis of the errors indicates that the step size z should be limited 

in such a way as to keep cz2 sufficiently large relative to the estimat-

ed error in the function value and relative to other similar terms. 

The order of choosing pairs of indices affects the convergence of 

the Jacobi method. The analysis sugg·ests an ordering based on sorting 

the diagonal. Theorem 1 shows that previous proofs regarding 

convergence apply when the new ordering is used. 

Convergence of the new method to the optimum of a quadratic 

function is analogous to that of iterative methods, such as Gauss-

Siedel, for solving the system of linear equations 

kk c z = 0 (IV.l64) 

The linear equation methods are known to converge linearly. In the new 

method, however, the matrix C changes. Theorem 4 shows that the rate 

of linear convergence includes the function of C used as an error 

measure for the Jacobi method. Under conditions where the Jacobi error 

measure converges to zero quadratically, the optimization method con-

verges quadratically. 



CHAPTER V 

TEST PROGRAM 

Introduction 

This chapter describes the FORTRAN program used for testing the 

new optimization method. The program listing is given in Appendix A. 

The algorithm of Chapter III is used with the step size limits of 

Chapter IV. Also, the modified ordering discussed in Chapter IV, with 

the diagonal sorted, is available as an option. The test results are 

reported in Chapter VI. 

The program is segmented to allow testing of various alternatives 

for some sections. The routines comprising the program are listed in 

Table I, along with the purpose and subroutines called. Only one of 

the ordering subroutines SWEPl, SWEP2, or SWEP3, is used for a· single 

solution. Various versions of subroutines INIT and EVAL are used to 

specify the various test problems. Most information passed between 

routines is stored in COMMON. For a description of important program 

variables, see Table II. 

The program includes options to test the effects of the following: 

1. Various orderings for choosing pairs of indices. 

2. Sorting the diagonal of the curvature matrix. 

In addition; the various constants for iteration and step size limits 

can be modified. The control cards are detailed in Table III. 
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Routine 

MAIN 

SORTER 

scs 

PUT 

SWEPl 

SWEP2 

SWEP3 

PLANE 

FIT 

TRY 

TAL OR 

INIT 

EVAL 

69 

TABLE 1 

ROUTINES USED IN COMPUTER PROGRAM 

Purpose 

Initialize and iterate 

Sort diagonal of C 

Multiply matrices 

Print table 

Column ordering 

Diagonal ordering 

·Optional user specified ordering 

Fit bivariate model 

Fit univariate model 

Sample function and save best point 

Sample optimum of complete model 

Initialize problem 

Evaluate function 

Subroutines Called 

INIT, EVAL, PUT, SCS, 
SWEPl, SWEP2, SWEP3 

SORTER, PLANE, TAL OR 

SORTER, PLANE, TAL OR 

SORTER, PLANE, TAL OR 

FIT, TRY, PUT 

TRY 

EVAL 

EVAL, PUT 



VARIABLE 

A.OA(l5, 15 l 

BBC 1 ': l 
BET E:R 

BPUT 
CC05l 

COPY 
CEGRE 
D IR 
DONE 
FCUR 
FREER 

FREE 5 

I BEST 
!FIT 
IMOV F 
IPLAI\ 
I PRM 

t PR ~2 

ISW E P 
I TRY 
ITALR 
KKPRIV D I 
KPRT 
KR 
KRDR 
K SwE P 

K5 
M 
N 
NPAIR 
NSAMP 

NSwEP 
N3 

TABLE II 

IMPORTANT PROGRAM VARIABLES 

DEFINITION* 

(IN MAIN) CURVATURE MATRIX OF THE MODEL, S*C*ST, 
CALCULATED AT THE C:ND OF OPTIMIZATION. 

GRADIENT FOR MODEL. 
(LOGICAL). INDICATES A SAMPLE HAS IMPROVED FUNCT!GN 

VALUE. 
(LOGICAL). OPTION TO CALL SuBRCuTINE PUT. 
DIAGONAL OF MODEL CURVATURE MATRIX. EQuALS UNIVARIATE 

CURVATURE. APPRCXIMATE EIGENVALUES. 
(LOGICAL). OPTION TO PRINT II\PUT. 
THE VALUE 180/Pt. 
+1 TO MAXIMIZE, -1 TO MINIMIZE. (-11 
CLOGICALlo SIGNALS TERMINATION. 
THE VALUE FOUR. 
(LOGICAL). OPTION TO USE OPTIMUM FOR BIVARIATE FIT. 

FALSE USES UNIVARIATE SAMPLE STEP SIZES. (FALSE! 
(LOGICAL!. OPTION TO BYPASS ROTATION RESTRICTION. FALSE 

PREVENTS CREATING REVERSE CURVATURE. (TRUE) 
NUMBER OF SAMPLES WhiCH IMPROVED FUNCTION VALUE. 
NUMBER OF UNIVARIATE FITS. 
NUMBEP OF MOVES OF 8ASE POINT. 
NUMBER OF BIVARIATE FITS. 
<IN MAINJ LOCATION UF PARI!I>IETER TO BE ChANGED. ALSO, 

TEMPORARY TO READ NSWEP. 
CIN MAIN) TEMPORARY TO READ NSAMP TO ALLO~ DEFAULT TO 

PRE VI Ol.JS VALUE. 
NUMBER OF SWEEPS. 
NUMBER OF FUNCTION EVALUATIONS. 
NUMBER OF TAYLOR SAMPLES. 
(IN MAINl ARRAY OVERLAYED ON FIXED POINT PARAMETERS. 
UNUSED. PROVISION FCR OUTPUT UNIT NUMEER. 
INTEGER TO SET FREER. 0 SETS FALSE, 1 SETS TRUE. !01 
UNUSED. PROVISICN FOR INPUT UNIT NUMBER. 

(IN MAIN! CHOICE OF ORDERING- 1=COLUMN, 2=DIAGONAL, 
3= USE P D E F IN ED • 

INTERGER TO SET FREES. 0 SETS FALSE. 1 SETS TRUE. (1) 
MAXIMUM NUMBER OF VARIABLES. (15) 
NUMBER OF VARIABLES. 
NUMBER OF PAIRS IN A SWEEP: NCN-ll/2 
LIMIT ON NUMBER OF FUNCTION EVALUATIONS. DEFAULT IS 

1000. 
LIMIT ON NUMBER Of SWEEPS. CEFAULT IS 25. 
LIMIT ON NUMBER OF RETRIES OF UNIVARIATE FIT. {ll 
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VARIABLE 

CNE 
P T 
PPRM(231 

P~INT 
PRM 
REV 

S"AL S 

S ~ALX 
SMAL Y 
SORT 
SS( l:: I 
SSSI 15.151 
TCLX 
TRACE 

TYL C 
T 'tL X 
TYLY 
nc 
TZL 
T ZL F 
Tzu: 
TZLT 
T ZLX 
TZUB 
T ZtfF B 
T ZUFl 

T lU F2 
TZUP 
TZ LT 
TZU 1 
TZO 
XXEIES( 151 
XXO(l5l 
Yl3[ ST 
YL 
't'YC!l')l 
YC 
Z E' EST 
ZERC 
ll I 1 '"::I 
ZZL( 15 l 
Z20PT(151 

TABLE II (Continued) 

THE VALUE ClNE • 
THE VALUE PI. 

DEFINITION* 

(IN MAINI ARRAY OVERLAYED 0~ FLGATING POINT PARAMETERS IN 
CO"lMON. 

(LOGICAL). OPTION TO PRINT AFTER EACH BILINEAR FIT. 
(IN MAINI NEW PARAMETER VALUE. 
(LOGICAL I. OPTION TO SORT DESCENDING RATHER THA~ 

ASCtf~DING. 

SMALLEST VALUE CF ELE~ENT Cf S USE[ TO CALCULATE LIMIT 
TO INSURE CHANGE IN X. VALUE IS 1/SQRT(NI. 

NON-RELATIVE LOWEP BOUND ON ESTIMATED ERRQR IN X. { lE-40) 
NON-RELATIVE LOhEP BOUND ON ESTIMATED ERROR IN Y. llE-601 
{LOGICAL). OPTION TO MODIFY ORDERING TC SORT. DIAGONAL. 
CURRENT DIRECTICN VECTOR. 

·MATRIX UF DIRECTION VECTORS. APPRCXIM.TE EIGENVECTORS. 
UNUSED. PROVISION .FOR TERMINAL ACCURAC'V. 
(LOGICAL). OPTICN TO PRINT AFTER EVERY FUNCTION 

EVALUATION. 
LOWER LIMIT GN ClZ RELATIVE TO MAX CZZ. 1.11 
LOWER ll MIT ON Cll RELATIVE TO ERROR I 1\ X. llE-10 l 
LOWER LIMIT ON Cll RELATIVE TO ERROR II\ Y. llE-101 
THE VALUE TWO. 
LOWER LI~1T 01\ Z RATIO. 1.011 
LOWER LIMIT ON Z RATIO FOR FITTING. (.31 
FRACTION OF PREVIOUS LOWER LI~IT BASED ON ERROR. 1.11 
LOWER LIMIT ON l RATIO AFTEP TAYLCR SA~PLE. 1.11 
LOWER LIMIT GN l TO INSURE CHANGE IN X. llE-101 
UPPER LIMIT Of\: l RATIO IF i3ETTER PCINT l-AS BEEN FOUND.( 10) 
SAME AS TZUB FOR FITTING. 121 
UPPEK LIMIT ON l RATIO FOR FITTING IF BETT~K POINT NOT 

FOUND AFTER FIRST SAMPLE. Ill 
SAME AS TZUFl FOR AFTER SECOND SAMPLE. 1.51 
UPPER LIMIT ON Z RATIO FOR BIVARIATE FIT. (2) 
UPPER LIMIT Cl\ Z RATIO AFTER TAYLCR SA~Pl~ • Ill 
UPPER LIMIT ON Z RATIO IF BETTER P1I~T NOT FOUND. 1.5) 
FRACTICN OF X FOR INITIAL z. loll 
X FOR PEST SAMPLE THUS FAR. 
BASE LOCAT IDN. 
FIX! FOR BEST SA~PLE THUS FAR. 
LOWER LIMIT ON CZZ. (CHANGE IN Yl 
CZZ. !CHANGE IN Yl 
F(Xl FOR BASE LCCA.TION. 
STEP SIZE FOq BEST SAMPLE. 
THE VALUE ZERO. 
LIMITED OPTIMUM STEP SIZE. 
LOWER LIMIT ON z. 
OPTIMUM STEP SIZE WITH NO LUWER LIMIT. 

* The value in parenthesis after definition is the default used in testing. 
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TABLE III 

CONTROL CARDS 

Card Column Format Variable Value Meaning 

1 1 Il KSWEP. 0 . End of job 
1 Column ordering 
2 Diagonal ordering 
3 User ordering 

2 Ll SORT * Sort diagonal 

3 Ll REV T Sort descending 
F Sort ascending 

4 Ll COPY * Print control cards 

5 tl PRINT * Print results after bivariate fit 

6 Ll TRACE * Print every sample 

7 Ll BPUT * Call subroutine PUT 

2 1-5 15 NSWEP Limit on number of sweeps 
(defaults to 25) 

6-10 15 NSAMP Limit on number of function 
evaluations (defaults to 1000) 

3-n 1-5 15 IPRM >0 Location for real program 
constant 

0 End of modifications to program 
constant 

<0 Location for integer program 
constant 

6-15 ElO.O PRM Value for program constant 

* Value of "T" activates option; value of "F" deactivates 
(defaults to "F"). 



73 

Main Program 

The main program initializes the program and performs the main 

iteration loop. First, constants and parameters are initialized. Then 

control cards are read to set the options and counter limits. Additional 

cards are read to specify optional changes to algorithm parameters. 

Next, the model is initialized. Subroutine INIT is called to initialize 

the function, obtaining in return the number of variables, initial base 

location and initial step sizes. The parameter KSWEP chooses the proper 

ordering subroutine, SWEPl, SWEP2, or SWEP3, which is called for 

initialization. 

The main iteration loop is then begun, in which the proper ordering 

subroutine is called. The ordering subroutine calls the other subrou­

tines to perform the actual optimization. The loop is terminated when 

convergence is signalled or when the iteration limits on either the 

number of sweeps or the number of function evaluations is exceeded. 

Following the optimization, the final direction vectors and associated 

curvatures are printed. Subroutine SCS is called to calculate the 

curvature matrix, in the original coordinates, which is then printed. 

The program is then restarted at the point of reading control cards. 

The program is terminated when a blank option card is read. 

Utility Subroutines 

Subroutine SORTER sorts the diagonal of C. The actual interchanges 

are applied to a permutation vector MAP. The ordering subroutines then 

generate a modified ordering which simulates operations with C sorted. 

Sorting is descending if REV is true and_ascending if REV is false. The 



74 

algorithm used for sorting is simple adjacent pair interchange, because 

after a few iterations the changes in MAP are infrequent. 

Subroutine SCS calculates the curvature matrix A as in Equation 

III.4. 

Subroutine PUT formats and prints any desired information at each 

iteration. Its main purpose is printing tables. One argument is passed 

from the calling program to indicate the current location in the calcu­

lations according to the scheme shown in Table IV. 

Value 

0 

1 

2 

3 

TABLE IV 

ARGUMENT FOR SUBROUTINE PUT 

Current Location 

After initialization 

After univariate 

After bivariate fit and rotation 

After entire sweep and Taylor sample 

Ordering Subroutines 

Subroutines SWEPl, SWEP2, and SWEP3 accomplish the ordering of pairs 

of indices. The first time the subroutine is called, the permutation 
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vector MAP is initialized. After that, one sweep is made each time the 
subroutine is called. Before each sweep, subroutine SORTER is called, 
if SORT is true. Pairs of indices (i,j) are then chosen, and modified 
to simulate operations with the diagonal of C sorted. Subroutine PLANE 
is called for each pair. After the sweep, subroutine TALOR is called. 

Subroutine SWEPl chooses pairs in column ordering as in Figure lb. 
Subroutine SWEP2 chooses pairs in a diagonal ordering to favor two 
consecutive occurrences of each index as in Figure 8b. Subroutine SWEP3 
is a dummy subroutine to allow the addition of another ordering. The 
parameter KSWEP chooses the appropriate ordering subroutine. 

Model Updating Subroutines 

Subroutine PLANE corrects the bivariate model of the function in the 
plane of the two chosen direction vectors and rotates the direction 
vectors. First, yL of Equation IV.76 is calculated. Then subroutine 
FIT is called for direction si' giving bi' cii' and a component size for 
the bivariate step. The base location is moved to the best point found. 
Subroutine FIT is then called again for directions .. 

J 
A temporary direction vector and step size are calculated and sub-

routine EVAL is used to sample one more point. The value of c .. is then 
lJ 

calculated, but limited to prevent the rotation from changing the sign 
of c .. or c; .• The base location is again moved to the best point ll JJ 

found. The rotation matrix elements are calculated and b, C and S are 
rotated. New values for the univariate step sizes are calculated, 
limited by values calculated in subroutine FIT. 

Subroutine FIT calculates the corrected model along a line. The 
samples are used to search for an improved location as discussed in 
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Chapter III. In addition to the error bounds of Chapter IV, heuristic 

bounds are used to insure the independent variables change and to keep 

the step size from growing or shrinking at more than a given rate. For 

a flowchart, see Figure 14. 

First, a limit to insure x changes is found and applied to the 

previous step size. The first point is sampled and b is corrected. 

Limits are calculated and a new step size is found. The second point 

is sampled and b and c are corrected. Limits and step sizes are again 

calculated. If the previous samples do not bracket the estimated 

optimum, the worst of the two samples is replaced and the model calcu-

lations are repeated. Otherwise, the step size limit based on the error 

estimate of IV.75 is calculated. This limit is not calculated earlier 

because a reliable estimate of c is required. 

If one of the samples has4mproved the function value, the fitting 

process is ended. If the function value has not been improved and the 

'-step size cannot be reduced or the number of recalculations exceeds a 

limit (usually two), one search point without a lower limit on step size 

is sampled and the process is ended. If none of the previous conditions 

has terminated the process, the fit is recalculated with new step size 

limits. If the desired step size for searching is within the limits for 

the second step, only the worst of the previous sample points is replac-

ed for recalculation. Otherwise, both samples are replaced. 

Before returning to the calling program, the exit section is per-

formed. The exit section calculates one limit for use after the bivari-

at fit. Other limits are applied to the current step size for use in 

the bivariate fit. 
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Figure 14. Flowchart of Subroutine FIT 
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Function Sampling Subroutines 

Subroutine TRY samples the function and performs housekeeping 

tasks. The sl:lmple location is calculated from the direction vector and 

step size. After subroutine EVAL is called, the change in y, DY, and 

first order slope, B, are calculated. If the new point is better than 

the current best point, the currerit best point is updated. 

Subroutine TALOR samples the function at the (upper-limited) optimum 

of the complete model and tests for convergence. First, the location 

of the optimum is calculated, along with model information in the 

direction of the optimum. Subroutine TRY is used to sample the point. 

The model is then corrected for the change in base location with lower 

limits on the new step sizes. 

Problem Definition Subroutines 

the purpose of subroutine INIT is to set initial conditions for a 

given problem. The conditions are returned to the main program by 

subroutine parameters. The parameters are 

X(l5) 

Z(l5) 

Initial location (independent variables) 

Initial step size. Default is O.lX 

DIR +1 to maximize, -1 to minimize 

N Number of variables 

For some problems INIT also sets initial conditions for the function 

evaluation subroutine, EVAL. For example, in curve fitting, the data 

points are read from cards. The information is passed to EVAL by the 

use of separate COMMON storage. 
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Subroutine EVAL calculates the function value for one sample point. 

The sample location is specified by a subroutine parameter and the 

function value is returned in the same way. The parameters are 

F 

X(l5) 

N 

Function value 

Sample location (independent variables) 

Number of variables 

The number of variables is included in the parameters for EVAL because 

several of the test problems are general and can be specified with any 

dimension. 



CHAPTER VI 

EXPERIMENTAL RESULTS 

Introduction 

The program described in Chapter V has beert tested on an IBM 360/65 

computer with double precision (about 15 decimal digits). This chapter 

summarizes the results of the testing along with comparisons to other 

methods. It should be kept in mind that the results for other methods 

have been obtained on various computers with various precisions. Normal-

ly, however, the precision will only affect the final stages of con-

vergence. 

A convergence criterion was not programmed. As indicated in Chapter 

III, the convergence criterion is commonly considered to be a separate 

problem. Convergence was not used to compare to other methods because 

many different criteria have been used, some of which are affected by 

the precision of the machine. 

The information given for each function includes the number of 

sweeps, ns, the number of linear searches, ni, and the number of function 

calls, nf. Where it is of interest the approximation to the smallest 

eigenvalue, c . , is listed. ml.n The smallest eigenvalue usually converges 

slowest giving an indication of the convergence of the direction vectors. 

The choice of ordering is indicated by COL for the ordering by columns 

and SEQ for the ordering to favor two occurrences of each index in turn. 

80 
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SORT indicates an ascending sort of the diagonal of the curvature matrix, 

which implies searching "down the valley" first. REVERSE indicates a 

descending sort or searching "across the valley" first. As noted in 

Chapter IV, the "valley" depends pa.rtly on the scale; here it is assumed 

that the valley is not produced entirely by poor scaling. 

Three Variable Quadratic Function 

The function 

f(x) 

is a quadratic with a very steep-sided valley. Minimization beginning 

at (10, 10, 10) results in a minimum at (0, 0, 0). 

The results for column ordering without sorting are shown in Table 

V. The sudden convergence in the third sweep is explained by the 

convergence of the approximate eigenvectors as shown in Table VI. The 

Jacobi method requires two iterations to approximate the direction 

vectors (and the eigenvalues). As shown in Chapter IV, the accuracy of 

the eigenvectors then determines the rate of convergence of the x to 

the optimum. 

Eight Variable Quadratic Function 

A larger quadratic function was created to compare orderings. The 

function 

f(x) " T " = (x - x) A(x - x) 



n nQ, s 

0 0 

1 6 

2 12 

3 18 

4 24 

* Zero to 

n s 

0 

1 

2 

3 

4 

nf 

TABLE V 

THREE VARIABLE QUADRATIC FUNCTION 
WORK COLUMN ORDERING, NO SORTING 

f xl xz 

0 .300 X 10 3 10.000 10.000 

24 .299 X 10 3 9.981 

44 .• 294 X 103 9.902 

64 .255 X 10-16 0.000* 

86 .231 X 10-29 0.000* 

significant figures printed 

TABLE VI 

APPROXIMATE EIGENVALUES FOR 
THREE VARIABLE QUADRATIC 

f ell c22 

• 300 X 10 3 

.299 X 10 3 740.65 14 770. 

.294 X 10 3 ;2.25 15050. 

• 255 X 10-16 2.00 15050. 

.231 X 10-29 2.000 15050. 

9.984 

9.902 

0.000* 

0.000* 

82 

x3 

10.000 

9.983 

9.902 

0.000* 

0.000* 

c33 

4691. 

5150 • 

5150. 

5150. 



was expressed in the form: 

f(x) " T = (x - x) 
T A 

SCS (x - x) 

so that eigenvalues and eigenvectors could be specified directly. To 
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provide interaction between variables, the eigenvectors were chosen to be 

1 1 1 1 1 1 i 1 

1 -1 1 -1 1 -1 1 -1 

1 1 -1 -1 1 1 -1 -1 

1 -1 -1 1 1 -1 -1 1 
s = 

1 1 1 1 -1 -1 -1 -1 

1 -1 1 -1 -1 1 -1 1 

1 1 -1 -1 -1 -1 1 1 

1 -1 -1 1 -1 1 1 -1 

which is the Hadamard matrix .of order eight (Hadamard, 1893; Paley, 

1933). The diagonal elements of C, 

{cii} {1, 1025, 1281, .1345, 1361, 1365, 1366, 1367} , 

were used to provide both grouped and spread eigenvalues. (Due to the 

scaling of S, the eigenvalues are.eight times the c .. values.) The 
. l.l. 

equivalent matrix is 



9111 -1093 -1607. -963 

-1093 9111 -963 -1607 

... 1607 -963 9111 -1093 
'. 

-963 -1607 -1093 9111 
A= 

-1807 '-'1083 -1.593 -957 

-1803 : -1807 ....;95 7 ·. -1593 
) 

' -1593 :-957 -1807 -1083 

-957 I -1593 -1083 -1807 

Optimum and initial points used were 

and 

... T = (2, 1, 1, 1, 1, 1, 1, 1) X 

XT = (1~ 2, 3, 4, 5, 6, 7, 8) 
0 

respectively. 
' 
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-1807 -1083 -1593 :-957 

-1083 -1807 -95T . -1593 

...;1593 . -957 :-1807 -1083 

·-957 :-1593 -i083 -1807 

9111 -1093 -1607 . -963 

-1093 9111 -963 ...:.1607 

-1607 -963 9111 -1093 

-963 -1607 -1093 9111 

The results ~or column ordering in Table vtt compared to those for 

the three variable quadratic show the tendency of Jacobi method to 

converge in the same number of sweeps regardless of n. Of course, each 

sweep includes n(n-1) rotations so thenumber of calculations (and the 

number of functio~ calls) is roughly proportional to n2• 

The converge~ce of the Jacobi method for the different orderings 

indicated by the ~mallest eigenvalues is shown in Table VIII. As expect-
' 

ed, the column ordering is better for the initial convergence of the 

Jacobimethod. F~r the coluliln ordering, sorting the diagonal gives 

slightly faster convergence. Convergeilce.to the optimum follows the 



n s 

0 

1 

2 

3 

4 

ORDERING 

COL 

COL, SORT 

COL, REVERSE 

SEQ 

SEQ, SORT 

SEQ, REVERSE 

TABLE VII 

EIGHT VARIABLE QUADRATIC FUNCTION WITH 
COLUMN ORDERING, NO SORTING 

ni nf f c . m1n 

0 0 .264 X 106 

56 164 .135 X 104 30.6 

112 338 .251 X 101 9.4 

168 504 .831 X 10-18 8.0 

224 64.5 .248 X 10-28 8.0 

TABLE VIII 

EFFECT OF ORDERING ON EIGHT VARIABLE 
QUADRATIC PROBLEM 

c . c . c . f at n m1n m1n m1n 
n =1 n =2 n =3 s s s 

30.6000 9.3928 8.0001 .831 X 

30.6366 8.0015 8.0000 .129 X 

30.6366 8.0000 8.0000 .604 X 

73.3525 10.1971 8.0001 .269 X 

73.3525 32.6754 8.0003 .138 X 

73.3525 8.0488 8.0000 .114 X 

85 

= 3 s 

10-18 

10-20 

10-3 

10-9 

10-9 

10-18 
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accuracy of the eigenvectors, except for the column ordering with 

descending sort. The comparison of convergence to the optimum for 

different orderings is discussed later. . 

Rosenbrock's Function 

The curved valley of Rosenbrock (1960) is well known. The function 

is minimized beginning at (-1.2, 1.0). The minimum is (1.0, 1.0). Al-

though artificial, the problem is useful for development arid comparison 

of methods because it involves a large number of simple iterations. 

Ordering is not important because there is only one pair. The results 

in Table IX show that a function value of .9 x l0-11 is attained in 137 

function evaluations. 
. . -11 

Powell (1964) reports reaching .7 x 10 in 151 

function evaluations. Fletcher (1965) reports Powell's method reaches 

.4 x 10-8 in 145 function evaluations and the method of Davies, Swann 

and Campey reaches .4 x 10-6 in 169 function evaluations. For.compari-

-7 
son, Rosenbrock (1960) took 200 function evaluations to reach .1 x 10 • 

On the other hand, the gradient method of Fletcher and Powell (1963) 

reaches .1 x 10-7 in 18 gradient evaluations which corresponds roughly 

to 54 function evaluations. 

Powell's Quartic Function 

Powell (1962) gives a function, 

f(x) 
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TABLE IX 

ROSENBROCK'S FUNCTION 

n n51. nf f x1 x2 s 

0 0 0 .240 X 102 -1.200 000 1.000 000 

1 2 6 .427 X 101 -1.064 214 1.143 571 

2 4 13 .409 X 101 -1.022 067 1. 040 780 

3 6 20 .• 353 X 101 -.867 636 .732 635 

4 8 26 .322 X 101 -.733 562 .570 513 

5 10 34 .275 X 101 -.631 673 .369 214 

6 12 42 .208 X 101 -.412 319 .140 509 

7 14 50 .173 X 101 -.095 359 -.063 488 

8 16 60 .982 .015 023 -.010 817 

9 18 66 .644 .218 761 .295 069 

10 20 74 .425 .385 128 .126 666 

11 22 80 .170 .589 127 .344 217 

12 24 90 .934 X 10-1 .702 148 .486 196 

13 26 96 .572 X 10-1 .764 591 .580 323 

14 28 102 .145 X 10-1 .90,7 213 . 815 360 

15 30 110 .324 X 10-2 .945 473 .892 296 

16 32 116 .110 X 10-2 .968 518 .936 968 

17 34 122 .152 X 10-3 1.006 836 1.014 744 

18 36 128 .101 X 10-6 .999 686 .999 377 

19 38 136 .902 X 10-11 .999 999 .999 998 

20 40 144 .3S4 X 10-14 1.000 000 1.000 000 
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to be minimized from (3, -1, 0, 1). The function is difficult because 

the curvature matrix is double singular at the minimum (0, 0, 0, 0). 

The resulting linear convergence can be seen in Table X for column order-

ing with the diagonal sorted. The corresponding approximate eigenvalues 

in Table XI show the two zero eigenvalues. Also note that the non-zero 

eigenvectors are approximated in only two sweeps. The function value is 

reduced to .88 x 10-9 in 223 function evaluations. Fletcher (1965) 

reports Powell's method reaches· .43 x 10-9 in 208 function evaluations 

and the method of Davies, Swann and Campey reaches .13 x 10-9 in 180 

evaluations. 

Random Matrix Function 

Fletcher and Powell (1963) present the function 

n 

f(x) = L 
i=l j=l 

where the elements of A and B· are random numbers between -100 and 100, 

"' and elements of x are random numbers between -~ and ~. For the chosen x 

n 

L A 

(Aij sin xj + Bij cos xj) 

i=l 

Elements of x are displaced from those of x by random numbers between 
0 

-. 1 ~ and • 1n. 

Testing was done for n of 3, 5, and 10. Fo~ each value of n, 

three different random problems were created. The number of function 

evaluations required to reduce the error in the independent variables 



n nR. nf s 

0 0 0 

1 20 42 

2 40 75 

3 60 111 

4 80 149 

5 100 188 

6 120 223 

7 140 257 

8 160 292 

9 180 332 

10 200 365 

TABLE X 

POWELL'S QUARTIC FUNCTION WITH COLUMN 
ORDERING, DIAGONAL SORTED 

f x1 x2 x3 

.335x10 3 .300x10 1 -.100x10 1 .o 

.570 .941 .909 .356 

.163x1o-1 .319 
' -1 

• 324x10 .120. 

• 7llx10 -3 -1 .517x10, -2 • 556x10. -.345x10 

.525x10 -5 .219x10 -1 .220x10 -2 -.495x10 

-1 

-2 

.352x10 -6 .764x10 -2 -3 -2 .762x10 -.581.10 

.880x10 -9 .512x10 -2 .512x10 -3 .244x10 -2 

• 733x10-ll .154x10 -2 .154x10 -3 .644x10 -3 

• 390x10-ll -3 • 942x10 · .942x10 -4 .152x10 -3 

.161x10-l3 .282x10 -3 .282x10 -4 .827x10 -4 

.778x1o-16 .590x10 -4 .590x10 -5 .103x10 -4 

89 

x4 

.100x10 1 

.553 

.124 

-.376x10 -1 

-.491x10 -2 

-.582x10 -2 

.244x10 -2 

.644x10 -3 

.152x10 -3 

.827x10 -4 

.103x10 -4 



n 
s 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE: XI 

CONVERGENCE bF E:IGE:NVALUES FOR 
POWELL'S FUNCTION 

ell c22 c33 

.235 X 101 166.0078 121.8056 

.146 X 101 200.5988 15.0593 

.0 202.2410 21.0133 

.127 X 10 -1 201.8421 20.04 71 

.367 X 10 -2 202.0033 20.0284 

.386 X 10 -3 202.0003 20.0000 

.262 X 10 -4 201.9997 20.0001 

.293 X 10 -5 202.0000 20.0000 

.259 X 10 -5 202.0000 20.0000 

.854 X 10 -6 202.0000 20.0000 

90 

c44 

-.355 X 10-14 

.191 X 102 

.207 X 10 1 

.750 X 10 -1 

• 770 X 10 -1 

.248 X 10 -2 

. -5 
.338 X 10 

.120 X 10 -3 

. -4 
.229 X 10 

.104 X 10 -5 
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to 10-4 is given in Table XII. Comparable results given by Powell 

(1964) for his own method and that of Rosenbrock (1960) are shown in 

Table .XIII. In several cases the new method converges to a local 

optimum other than the intended one. Fletcher and Powell indicate that 

there are many optima and convergence to a diff~r~nt one sometimes 

occurs. The first of the three cases for n = 10 fails to achieve 10-4 

accuracy in ten sweeps with either ordering. When terminated, the 

program was apparently approaching a different local optimum. 

Curve Fitting Problems 

Curve fitting is a more realistic problem and a difficult one. 

Osborne (1971) presents two models to be fit to tabulated data. The 

function to be minimized becomes 

m 

f(x) = ~ 
i=l 

The first model is 

The data values are given in Table XIV. Results for column ordering 

are shown in Table XV. The eigenvalues given by the.program, 

(14' 2. 3' • QQ.Q04' 132000' 4000) 

indicate that the problem is another very narrow valley. The correspond-

ing eigenvectors, 



TABLE XII 

NUMBER OF SWEEPS AND FUNCTION EVALUATIONS 
TO REACH jxi - xil < 10-4 FOR RANDOM 

MATRIX FUNCTION WITH NO SORT!NG 

COL SEQ 
n n nf n nf s s 

3 3 63 2 42 
3 4 79 4 77* 
3 4 78 3 59 

5 4 238* 2 130 
5 3 182 2 122 
5 3 188* 4 250 

10 ** ** 
10 4 1090 3 845 
10 6 1663* 4 1144 

* Converged to alternate local optimum 
** Failed to converge in ten sweeps 

TABLE XIII 

OTHER METHODS APPLIED TO RANDOM 
MATRIX PROBLEM 

Powell's Method Rosenbrock's Method 
n nf n nf 

3 61 
3 61 

5 104 5 465 
5 103 5 466 

5 388 

10 329 10 1210 
10 369 10 1258 

10 1295 
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.835 -.549 ~.006 -.024 -.041 

.387 .594 -.705 -.006 -.032 

s = .391 .586 .709 .-.003 .028 

.026 -.023 -.001 .957 .287 

.004 -.053 .003 -.288 .956 

show a strong interaction among the first three variables (the term .· 

coefficients) and a significant interaction between the last two 

variables (the exponential decay ratea). With this information, 

similar problems could be modified to make then easier to solve. 

TABLE XIV 

DATA FOR FIRST CURVE FITTING PROBLEM 

t y t y t y 

0 .844 110 .718 220 .478 
10 .908 120 .685 230 .467 
20 ~932 130 .658 240 .457 
30 .936 140 .628 250 .448 
40 .925 150 .603 260 .438 
50 .908 160 .580 270 .431 
60 .881 170 .558 280 .424 
70 .850 180 .538 290 .420 
80 .818 190 .522 300 .414 
90 .784 200 .506 310 .411 

100 .751 210 .490 320 .406 

The second model is 

f(t,x) 2 = x1 exp(-x5t) + x2 exp(-x6 (t-x9) ) 

+ x3 exp (-x7(t-x10) 2) + x4 exp (-x8 (t-x11) 2). 
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TABLE XV 

FIRST CURVE FITTING PROBLEM WITH COLUMN 
ORDERING AND NO SORTING 

n n.Q, s nf xl x2 x3 x4 
f en 022. 033 044 

0 c 0 0.5000000 1.5000000-1.0000000 0.010JOCO 
o. 8 79026 30 co o. 0 o.o ::J. 0 o. 0 

1 20 60 0.3312236 1. 5465290-1. GC77168 o.c10391B 
c. 34007540-02 12.867 6.292 0.130112364.449 

2 40 120 0.369!3178 1.7070741-1.2239984 C.C121<1St! 
o. 13835940-0.3 9.897 3.310 0.022 87857.676 

3 60 178 0.3731657 1.7099966-1.2367073 0.0123504 
C. 58416S1D-04 14. l 64 2. 24C -o.ooo 81342.7 57 

4 80 237 0.3736217 1.7564485-1.2840194 0.01246S3 
0.56847120-04 14. 174 2. 239 c. 000 82773.009 

5 lCC 303 o. 3 736929 1. 7661341-1.2936902 0.0124886 
o. 5(;24552Q..,.Q4 14.266 2. 244 o. 001 84516.648 

6 120 369 o. 3 7387 30 lo787381S-1o3152240 0.0125383 
0.55882680-04 14.314 2.247 o. 001 85EF.2.0S3 

7 140 436 o. 37441;50 1. 8 3 57 8 59- 1. 3 6 4 0 2 71 o.Cl26546 
c.552050flO-o4 14.382. 2.251 o.ooo 83241.409 

8 160 498 0.3745<.J09 1.8406227-1.3638557 o.Cl266tB 
c. s:cs<:55D-C4 1.4. 432 2.254 o. 001 89027.2 57 

9 180 5t.3 o. 3 748755 1.8782834-1.4067361 o.01274cB 
o. 54796090-04 14. 4 75 2. 2 57 o. 000 91371.754 

1C 2CC t2 <; O. 37506A9 1.8965667-1.4251567 o.0127ti65 
0.54714300-04 u .. 525 2. 2')9 c. occ 92664.314 

11 22C cSE o. 3751596 1. S0564 76-1. 't 343367 o.c1zao61 
0.54688720-04 14.555 2.260 0.001 93258.60 

12 240 764 0.3752525 l. Sl 7 8 0 2 2- 1. 4 4 6 52 4 7 O.C1283C6 
o. 54662140-r)l, 14.580 2.263 o.ooo 94081.2'13 

13 260 831 J.3752556 lo9l84732-lo447185S c.cl2E3le 
c. 54661310-04 14.577 2.260 0.003 94132. 65() 

14 2 8C 900 o. 3753977 1.9342400-1.4630712 0 .o 12864 3 
o. 54649070-04 14.593 2.263 c. 000 95104.157 

15 3CC S'S 7 o. 3 754100 1.9358435-1.464~837 0.0128675 
o. 54648950-04 14.606 2. 263 c. 00 c 95293.529 

16 320 1 C21 o. 3 7541 c 1 1.S35847C-1.4646o72 o. 01286 75 
o. 5 46 489 50-04 14.190 2.31.3 0. OOC132S :7.7 :s 

94 

x5 

055 

0.0200000 
o.o 

o. 0210042 
156B.257 

o. C228962 
1471.688 

0.0232258 
1421.494 

LJ. 02296SC 
1458.852 

0.0229133 
1499.773 

o. OL28024 
1529.935 

0.0225673 
1580.912 

O.C22542S 
1597.090 

0.0223665 
1642.224 

0.02226 73 
1666.2 50 

0.0222497 
1676.962 

o. 0221968 
1691.388 

O.CZ21935 
1692.165 

0.0221292 
1708.936 

0.0221227 
1711.987 

0.0221227 
4523.271 
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The data is listed in Table XVI and the results are shown in Table XVII. 

This case provides a practical problem of many variables. 

TABLE XVI 

DATA FOR SECOND CURVE FITT!NG PROBLEM 

t y t y t y 

o. 1.366 2.2 .694 4.4 .672 
0.1 1.191 2.3 .644 4.5 .708 
0.2 1.112 2.4 .624 4.6 .633 
0.3 1.013 2.5 .661 4.7 .668 
0.4 .991 2.6 .612 4.8 .645 
0.5 .885 2.7 .558 4.9 .632 
0.6 .831 2.8 .533 5.0 .591 
0.7 .847 2.9 .495 5.1 .559 
0.8 .786 3.0 .500 5.2 .597 
0.9 .725 3.1 .423 5.3 .625 
1.0 .746 3.2 .395 5.4 .739 
1.1 .679 3.3 .375 5.5 .710 
1.2 .608 3.4 .372 5.6 .729 
1.3 .655 3.5 .391 5.7 .720 
1.4 .616 3.6 .396 5.8 .636 
1.5 .606 3.7 .405 5.9 .581 
1.6 .602 3.8 .428 6 .. 0 .428 
1.7 .626 3.9 .429 6.1 .292 
1.8 .651 4.0 .523 6.2 .162 
1.9 .724 4.1 .562 6.3 .098 
2.0 .649 4.2 .607 6.4 .054 
2.1 .649 4.3 .653 

Comparison of Orderings 

Table XVI!I summarizes the results which compare the orderings. 

The first observation is that none of the orderings cause complete 

failure. The column ordering with descending sort causes slowest 



n nR. nf s 
f 

0 0 0 
0.20934200 01 

1 110 333 
0.11291380 00 

2 220 662 
o. 5i67C920-C1 

3 330 992 
c. 41844020-01 

4 440 1329 
0.40262960-01 

5 550 1671 
0.40138200-01 

6 66C 2Cl4 
o. 40137740-01 

TABLE XVII 

SECOND CURVE FITTING PRbBLEM WITH 
COLUMN ORDERING AND NO SORTING 

xl x2 x3 x4 

ell 022 033 044 

1. 3000000 o. 65 coooo o. 6500000 0.7000000 
o.J o.o o. 0 o. 0 

1.1899570 o. 3048836 c. !;202528 c. 4873668 
30.375 13.96,5 <:1.224 13.8 42 

1.2467814 o. 3315676 0.5831046 o.54627Sa 
8.001 12.060 19.871 13.911 

1.2935216 C.404560 1 0.6209244 0.5646968 
3. 330 11.763 27.474 14.839 

1. 30732 87 0.4252806 0.6309330 0.5904110 
2.960 11. 843 27.819 15.2 96 

1. 3100218 c. 431362 6 o. 6336042 0.598989"1 
2.975 11.788 2 A. 016 15. 4(:6 

1.3099772 0.4315537 c. {:336617 0.'59943C5 
2.974 11.779 28.045 1 5. 4 f2 

96 

xs 

' 0ss 

0.6000000 
o. 0 

o.sb16136 
64.183 

o. 561.8960 
71.153 

0.6917888 
53.043 

o. 73 80161 
50.463 

o. 7535135 
49. 52 7 

0.7541830 
49.435 
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TABLE XVII (Continue~) 

x6 x7 x8 x8 xlO xll 

066 en 0ss egg 010,10 011,11 

3. CCOOOJO 5.0000000 7.0000000 z.ooooooo '•. 5CCOCCO 5.5000000 c.c o. 0 o. 0 o. 0 o.o o.o 

2.0982742 1.1613520 3.6045.20 2. 4158393 4.5380937 5.6443125 
0.326 0.212 0.154 3.437 2.366 9.691 

1.5358380 lo 21666 43 5.45073'58 2.4307116 4. 5942314 5. 6816599 o. lil3 o. 095 0.022 4.170 2.450 15.2S7 

1.0890311 1. 19213 86 5.1792022 2 • .3938802 4.5834035 5.6835096 
0.216 o. 119 c. OC8 4.642 1.630 16.435 

0.9:511':3 1.3115275 4.9131033 2. 3963891 4.5715682 5.6782114 
0.16 3 0.079 O. OC8 4. 859 1. 2C E 17.126 

0.9067318 1.3636656 4.8258524 2.3988278 4.':690447 .5.6754883 
0.151 0.065 0.007 4.920 1.147 17.346 

c. 9C42 an 1.3658118 4.82369.89 2.3986850 4.5688746 5.6753415 o. 14 7 o. 056 O. OC6 4.923 1.185 17.403 
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convergence. A possible reason is that the column ordering chooses 

the first indices more frequently at the beginning of the sweep and the 

latter indices more at the end. With the descending sort the directions 

with greater curvature ("across the valley'') are chosen many times 

before the 'directions with lesser curvature ("down the valley'1)·. For 

a curved valley, optimizing "across the valley" too accurately reduces 

the domain of lower function values. As a result, it is difficult to 

find a better point "down the valley." This problem might be relieved 

by changing the scale. 

At the other extreme, the column ordering with ascending sort and 

the sequential ordering with descending sort causes fast convergence on 

the functions tried. More exhaustive testing would be required to draw 

further conclusions. 



n n s 
COL 

NO SORT 

TABLE XVIII 

COMPARISON OF ORDERINGS 

COL 
.SORT 

nf/log10f 

COL COL 
REVERSE NO SORT 

Eight variable quadratic function 

COL 
SORT 

99 

SEQ 
REVERSE 

8 3 504/-18 517/-20 536/-3 
4 645/-28 648/-29 693/-27 

557/-9 543/-9 528/-18 
702/-30 690/-25 669/-25 

Powell's quartic function 
4 6 222/-7 223/-9 228/-6 232/-7 233/-9 225/-9 

Random matrix function 
3 4 84/-14 84/-14 84/-14 83/-18 83/-18 82/-18 
3 4 79/-7 77 /-6* 
3 4 78/-10 80/-15 

5 4 238/-10* 247/-27 

5 4 236/-27 237/-26 
5 4 241/-26* 250/-5 

10 5 1400/-1* 1440/-2* 
10 5 1331/-21 1310/-26 
10 5 1389/-4* 1391/-16 

* Converging to alternate optimum 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The objective of this research was to develop a new direct search 

method for unconstrained function optimization. The method is based on 

fitting a quadratic model and moving towards the optimum of the model 

along approximate eigenvectors of the curvature matrix. The operation 

of the method involves fitting the model, improving the eigenvectors 

and searching for a location with improved function value. The three 

processes are accomplished efficiently by an organization based on the 

Jacobi method for finding eigenvalues of a matrix. At the same time, 

the basic method allows flexibility in implementing several operations. 

The calculations used for fitting the model are straightforward, 

but computational roundoff error can be a problem. Using the model to 

predict function values, some types of error can be estimated. The step 

size (distance between sample locations) directly controls the effects 

of the error on the calculations. Therefore, an analysis of the error 

has been completed which yields limits on the step size necessary to 

maintain sufficient accuracy. 

A new analysis of the Jacobi method suggests sorting the diagonal 

of the working matrix. The same effect can be produced by modifying the 

order of choosing pairs. The analysis includes a proof that the 

modification (of the matrix or the ordering) does not invalidate the 

existi~g proofs regarding convergence of the Jacobi method. Testing 
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indicates a slight improvement in speed of convergence of the eigen­

values with the modified ordering. For optimization, however, the test­

ing did not show a significant effect on convergence to the optimum. 

The rate of confergence of the new method to the minimum of a posi­

tive definite quadratic function has been analyzed. The result shows 

that the rate depends on the error measure used for the Jacobi method. 

Under conditions where the Jacobi method converges quadratically, the 

distance to the optimum converges to zero at least quadratically. 

To verify the operation of the new method, one version was program­

med and tested on several problems. The algorithm converged at a 

reasonable rate in almost all cases. In fact, on problems with a small 

number· 'of variables, the rate of convergence was approximately the same 

as some of the best previous methods. This result is encouraging when 

it is considered that the algorithm used was the first version of the 

method. 

The new method is valuable due to the availability of the model of 

the function including the eigenvectors of the curvature matrix. One 

use fot the model is to evaluate "sensitivity" coefficients. The eigen­

vectors provide information of the interaction (correlation) of the 

independent variables. In many problems part of the model is known 

beforehand and may be set initially, obviously shortening the optimi­

zation. An important example is the solution of a constrained problem 

by repeated unconstrained optimization with a variable penalty function 

added~ In that case, the change in the model due to changes in the 

penalty function might even be calculated before restarting the optimi­

zation. Another example of the use of the model is the optimization of 



a large number of variables in groups, combining the models for the 

groups in a final complete optimization. 

A possible extension of the new method is the direct inclusion 

102 

of constraints. The problem of constrainted optimization is important, 

due to its natural occurrence in many situations and its inherent 

difficulty. With the new method, the situation is reduced to using 

the constrained optimum of the model, which is a known tractable 

function. Adding constraints in this way is possible because the 

location of the samples used to fit the model are not restricted. 

Another extension concerns problems where the gradient or curvature 

matrix can be obtained, including minimization of a sum of squares. 

In these cases additional information allows a significant reduction 

in the number of function evaluations required to determine the optimum, 

as shown by previously available methods. 
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C THE FURPOSE OF THIS PROGRAM IS TO 0PTIMIZE AN LNCONSTRAINED C IS'-100THl FUNCTION WITHOUT EXPLICIT GRADIENT. IT WAS WRITTEN BY C P<EC WITZ FOR PH.D. PESEARCH. THE MElHOD IS DESCRIBeD AND THE C FRCGPA~ IS EXPLAINEC IN THE RELATED ClSSERTATIONr OKLAHOMA STAT~ C LNIVERSITY, MAY, 1<176. 
c 
C NOTE THAT DOUBLE AND TRIPLE LETTERS ARE USED THROUGHOUT FOR 
C VECTORS AND MATRICES, RESPECTIVELY. MOST CCMMENTS USE THE SINGLE C LETTER IN THE MATHEMATICAL SENSE. 
c 

IMPLICIT REAL*B IA-H, 0-ZI 
C COMMON BLOCK 

LCGICAL SORT, REV, CJPY, PRINT, TRACE, BPUT, BETER, OO"Jf­
LOGICAL FREES, FREER 
C0'-1MON /JOECOM/ ZERO, UNE, TWO, PI, FOUR, DEGRE, DIR 

+, SSS(l5, 151, XXOI151, YO, BB(l5l, CC(l5), ZZOPT(l51, ZZI15l 
+, XXBESI 151, YBEST, ZBEST, SS(l5l, SMALS, YYC(l51, YL, ZZLI15l 
CO~MCN /JOECOM/ TZO, TOLX, SMALX, SMALY 

+, "TYLX, TYLY, TYLC, TZLR, TllX, TZLF, Tll, TZLT 
+, TZUF 1, TZUF2, TZ L1, TZ UFB, Tl UB, TZUP, T ZUT 
CC~MCN /JOECOM/ M, KRDR, KPRT, N, NSWEP, NSAMP, NPL\IR 

+, ISI\EP, ITALR, IPLAN, lFIT, !TRY, !BEST, !MOVE 
+, N3, K5, KR 

CCf"MCI\ /JOEC01/ BETER, DONE, SORT, REV, COPY, P''I.INT, TRACE, SPUT +, FREES, FREER 
C END COMMON 

c 

OI~E~SICN AAA(l5t 151 
DIMENSION PPRM( 191, KKPRM(31 
EQUIVALENCE (PPRM(l), TZOI, (KKPRM(l), N31 
tiBS(I\l = OABS(W) 
SIGN(W, Wll = DSIGN(W, ldl 
SORT IW l = OSQRT (W l 

1 FCFIJATilXl 
2 FORMAT(/3H Y=, Gl5.7, 36X, 3H X=, (J58, 5G15.7l 

C INITIALIZATIO~ 

c 

c 

c 

c 

c 

KPCR 5 
KPRT 6 

ZERO C. 0 
CNE = 1.0 
TWC = 2.0 
PI = 3.14159265358<17900 
F:JUR = 4.0 
8EGRE = 180.000/PI 
M = 15 

~ S 1\E F 
NStiMP 

"TZC = .1 

25 
1000 

TCLX = 1.E-4 

SMALX = 1.E-40. 
S ~A L Y = 1 • E -6 0 
TYLX 1. E-10 
TYLY 1.E-10 
TYLC .01 
T l LR • 1 

DEFAULTS 

INITIAL STEP ~ATIJ 

TERMINATIC~ ERRCR IN X 

INSURE OX 



c 

c 

c 

c 

1 !LX lE-1 0 

TZLF .3 
T7L = .01 
TZLT=.l 

Tl LF 1 = 1. 
T1UF2 = .5 
TZL1 = .5 
i7. LFB = z. 
TZUB 10. 
TZUP z. 
Tl LT 1. 
N3 = l 
1<5 l 
KR C 

TZLC .1 
20C CONTINUE 

Sfi'ALS = O. 
YL = C. 
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RATE CF Z REDLCTICN 

RATE OF Z GRO\IITH 

CIJ TERM RATIO 

ZERO WORKSPACES FOR PRINT 

c * * • • ~ * * • * * * * * * * * * * * * * * * * * * • * * * * * * * ~ C READ PARAMETER CHANGES 

c 

21 FC'R!"1AT!Il, SLll 
Pcll0(5, 211 KSWEP, SORT, REV, COPY, PRINT, TRACE, BPUT 
IF!KSwEP .EQ. Ol GC TC 990 

22 FORMAT!//1/H PARAMETER INPUT- I 1X, Il, 9lll 
IF!CGPYIWRlTE(6, 221 KSWEP, SORT, REV, COPY, PKINT, TRACE, BPUT 

23 FORMAT(10151 
RE~D(5, 23) IPRI'1, IPRM2 

24 FCRM~T(1X, 10151 
!F(COPYI WRITE(6, 24) IFRf,<, IPRM2 
!F(IPRM .GT. 01 NSWEP=IPRM 
IF!IPR~2 .GT·. 01 NSAMP = IPRI-12 

250 CONTINUE 
25 FOr<I>1H(!S,ElO.OI 

REAO('i, 25) IPRM, PRM 
2 6 F Cl RM A T( 1 X, I 5 , G l C • 3 I 

IF(COPYlWRITE(6,26!lPRM, PRM 
JF(JFRM) 254, 256, 252 

252 CUNT INUE 
PPRM(IPRMI=PRM 
GC TC 250 

254 CONTINUE 
KK FRr< ( IPR~1) =PRM 
GC TC 250 

25c CONTINUE 

f'P.EE5 =.TRUE. 
IF(K': .EQ. 0) FPEE5= .FALSE. 
FREER = .FALSE. 
IF ( KR oNE. 0) FREER = • TRUE. 

CONVERT ~OGICAL PARAMETERS 

C PRINT PARAMETERS 
41 FOPMAT(/lOH LIMITS= , 215) 

IF !COPY I WRITE( 6, 41) NSIIEP, NSAMP 
42 FORMAT(/12H PARAMETERS=, 1001/lX, 1CG10.3l 

IF!CCPY) WRITFC6, 42) PPRM 
44 FORMAT(lX, 10!10) 

I F ( C 0 P Y l WR IT E ( 6, 4 4 I K K P R M 
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IF (COPY l WR I TE ( 6 , ll 

c * * * * 4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C INITIALIZE MODEL 

3 38 ' 

00 3 f8 l = 1, M 
CO 33A J = lt M 
SSS( I, Jl = ZERO 
CONTINUE 
SSS(l, II= ONE 
XXC(II =ONE 
BBIII =ZERO 
CCI I I = ZERO 
ZZIII =ZERO 
ZZUII = ZERO 
ZZOPTI I I = ZEfl.C 

368 
c 

YVCI II =ZERO 
CCI\TII\UE 

SET C EFAULT S FOR I NIT 
c 

c 

c 

c 

c 

DIR ;:: -1.0 
N=2 

CALL INITIXXO, zz, CIR, Nl 

DO 458 I = lt N 
XXBESIIl ·= XXOIII 

+ = MAXIMIZE, - = MINI~IZE 

INITIALIZE FU~CTION 

INITIALIZE STEPSIZE, ETC. 

IFIZZIII .EO. ZERO) ZZ(ll = TZO*XXO!Il 
IFIABSIZZ!Ill .LT. SMALX) l'Z(Il =ONE 

458 COI\TINUE 
NP 4I R = ( N* ( N - ll ) /2 
D I R = S I G N ( ON E., 0 I R l 
S~ALS = SORTIONE/Nl 

CALL EV~L(VQ,X~O,NI 

YBEST YO 
Z9EST = ZERO 

TSIIEP = 0 
I TilL R 0 
!PLAI\ 0 
TFIT = 0 
!TRY = 0 
IR!:ST = 0 
!MOVE = 0 

SAfoiPLE INITIAL POINT 

INITIALIZE COLNTERS 

C INI TIAUZE SWEEP 
!f(KSWEP- 21 4'>1, 46.2, 463 

461 CONTINUE 
CALL .SWEPl(Q, Nl 
Gr. TC 46q 

462 CONTINUE 
CALL SWEP210, Nl 
GC TG 469 

463 CONTINUE 
CALL SWEP3(0, Nl 

46<; CllNTINUE 
IF!.NOT. SDPTI"GO TO 479 

47 FCR"1JlT(' DIAGONAL SORTED INCREASING'! 
IF(.NOT. REV) WRITEI6, 47} 

48 FORMAT!' DIAGONAL SORTED DECkEASING 1 l 
IFIREVl WRIT£(6, 481 

47S Cfli'llTINUE 
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C PRII\T INITIAL POINT 

c 
c 
c 
c 

51( 

52C 

53( 

590 

599 
c 
c '* * c 

60 
600 

61 
61C 

( 

900 
91 

c 
c 
c 

928 

<J4 

948 

968 

c '* * c 
99( 
9S 

IF!PRINT .ORe TRACEI WRITE!6, 21 YO, (XXO!I), I = 1, Nl 
IF!BPUTI CALL PUTIOI 
IF!TRACEl WRITE!6, 11 
IF!PRINTI WRITE!6, ll 

DC 5S9 ISWEP = 1, NSWEP 
CONE = • TRUE • 

. IFIKSWEP- 21 510, 520, 530 
CONTINuE 
CALL SWEPl! ISWEP, Nl 
GO TC 590 
CONTINuE 
CALL SWEP21ISWEP, Nl 
GC TC 590 
f.ilNTINLE 
CALL SWEP3( ISWEP, Nl 
CCI\TINUE 
IFIDONEI GO TO 610 
IF!ITRY .GT. NSAMPl GO TO 600 
COI\TINUE 
END ISWEP 

******************* 
MAIN !TERATIC~ LOOP 

* * • * * * * * * * * *·* * * * * * * * * * * * * * * * * * * * * EX ITS 
FORMAT!' EXCEEDED MAXH1l;M ITERATIONS' I 
WRITE!6, 601 
WRITE!6, 11 
GCJ TO 900 
FCRMATI' $$$$$ STANCARD END'I 
~RITE(6, 611 
GO TO 9CO 
CONTINUE 
FCRMHIT9, 1 C='• (T12, 5G24.161 
WRITE(6, 911 !CC(Il, I= 1, Nl 
WRITEI6, 11 
FORMAT!T9, 'S=', IT12, 5G24.16l 
DO 928 I = 1, N 
WIRITEI6, 921 ISSSII, J), J = 1, Nl 
\<R I T E! 6, 1 l 

CALL SCSI AAA, SSS, CC, N I 
FORMAT(T9, 'A='• <Tl2, 5G24.161 
00 948 I = 1, N 

A = S C ST 
THAT IS, THE SECOND PARTIALS 
CF TrE FUNCTION F 

W R IT E ( K P RT, 9 4 l (A A A I l, J l , J = 1, N l 
V.RITEIKPRT, ll 
DD 9t:8 I = 1, N 
WRITEIKPRT, 941 !AAA(!, J), J 1, Nl 
GO TC 200 

'* * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * PROGRAM TERMINATION 
CONTINLE 
FORMAT('-***** END OF JOB' I 
V.RITE(6,99l 
STCP 
END 



c 
c 

c 
SUBROUTINE SORTER(MAP) 

C THIS SUBROUTINE SORTS THE ELEMENTS OF CC. THE SORT IS DECREASING 
C FOR REV=FALSE AND INCRE~SING FOR REV=TRUE. THE ELEMENTS OF CC 
C ·ARE NOT MOVED - THE VECTOR MAP LISTS THE INDICES Of CC IN ORDER. 
C THE METHOD IS A SIMPLE ADJACENT PAIR INTERCHANGE BUBBLE SORT. 
C IF SCRT=FALSE, SORTING IS NOT DONE. 
c 

IMPLICIT REAL*8 IA-H, 0-Z) 
LCGI CAL DONES 

C COMMON BlOCK 
LOGICAL SORT, REV, COPY, PRINT, TRACE, 8PlT, BElER, DONE 
LOGICAL FREES, FREER 
COMMON /JOECOM/ ZERO, ONE~ T~O, PI, FCUR, CEGRE, DIR 

+, SSS(l5, 151, XXOI15), YO, 88115), CCIL5.), ZZOPTI15), ZZ(l51 
+, )lXBESU5), YBEST, ZBEST, SSC15), Sfi.HS, YYC(l51, YL, ZZU151 

COMMON /JOECOM/ TZO, TOLX, SMALX, SMALY . 
+, TYLX, TYLV, TYLC, TZLR, TZLX, TZLF, TZL, TZLT 
+, TZUFl, TZUF2, TZUl, TZUF8, TZUS, TZUP, TZUT 

COMMON /JOECOM/ M, KROR, KPRT, N, NSWEP, NSA~P, NPAIR 
+, ISWEP, I'TALR, IPLAN, IFIT, ITRY, IBEST, !MOVE 
+, N3, 1<5, KR 
CO~MCN /JOECOM/ BETER, DONE, SORT, REV, COPY, PRINT, TRACE, BPUT 

+, FREES, FREER 
C END CCMMCN 

c 
c 

c 

c 

c 

CI~E~SION MAPI151 
IFI.f\CT. SORTI RETURN 
NU 2 = N - 1 
f\l2 = 1 
lEf\ = NU2 
00 5 S 8 I = 1, LEN 
CONES = .TRUE. 
JL = NL2 + 1 
MU = MAPIJUI 
XU= CC(MUl 

CO 498 JL2 = NL2, NU2 
JL = NL2 + NU2 - Jl2 
Ml = MAPIJL I 
XL = CCIML I 
IFIREVI GO TO 420 

IFIXL .LE. XU) GO TO 439 
GO TO 430 

420 COf\TINUE 

IFI XL eGE. XUI GO TO 439 
430 COfliTINUE 

MAP(JL) = MU 
~AF(JU I = ML 
0 0 fl E S = • F A LS E ~ 
GO TO 469 

439 COI'\TINUE 
fJU = fJl 
XU = XL 

469 CONTINUE 

PAIRWISE DESCENDING 
DO JL = NU2, f\L2, -1 

SORT INCREASING 

SORT DECREASING 

INTERCHANGE 
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Jli = JL 
498 CONTINUE 

c 
c 

c 

IFIDCNESI GO TO 900 
NL2 = NL2 + 1 

598 CONTINUE 
900 COI\T INUE 

RETURN 
END 

SUBROUTINE SCSIAAA, SSS, CC, Nl 

C THIS SUBROUTINE CALCULATES THE MATRIX PRODUCT A~ S*C*ST, WHERE 
C ST IS THE TRANSPOSE OF S, AND C IS A DIAGCNAL MATRIX WITH THE 
C DIAGONAL STORED IN CC. 
c 

c 

c 

c 

c 
c 

c 

I!IIPLICIT REAL*B IA-1-t, 0-ZI 
DIMENSION AAAI 15, 151, SSSI 15, 151, CCI 151, WWU51 
ZEFO = 0. 

DO sc;c; I = 1. N 

DO 3(:9 J = 1' N 
WWIJ I = SSSI I, J I *CCI Jl 

369 CCI\TJNUE 
DO 5(:9 J I ' N 
w = ZERO 

DO 4(:9 K = 1, N 
W = W + SSS(J, KI*WWIKI 

469 COI\T I NUE 
AAA(I, Jl W 
UA(J, II= W 

569 COI\TI 1\UE 
599 CONTINUE 

RETURN 
Er.D 

SUEROUT INE PUT (LEV Ell 

A S*C*ST 

w S*C 

A W*ST OR AT S*WT 

C THIS SUBROUTINE ALLOWS THE ~RI~TING OF ANY INFORMATION SO THAT THE 
C FORMAT CAN BE CHANGED fOR DIFFERENT PROBLEMS. LEVEL INDICATES THE 
C CURRENT LOCATION IN THE ALGCRITH~ AS FOLLOWS. !=INITIALIZATION 
C 2=AFTER UNIVARIATE FITr 3=AFTER BIVARIATE FIT AND ROTATION, 
C 4=AFTER TAYLOR IGAUSSI STEP. 
c 

IMPLICIT REAL*S IA-H,Q-ZI 
C COMMON BLOCK 

LOGICAL SORT, REV, COPY, .PRINT, TRACE, BPUT, BE'TER, DONE 
LOGICAL FREES, FREER 
CO~MCN /JOECCM/ ZERO, ONE, TWO, PI, FOUR, CEGRE, DIR 

+, SSSI15t 151, XXOI151, YO, BB115lr CCU51, ZZOPTI151, ZZ(151 
+, XXBESI15), YBEST, ZBEST, S$1151, SMALS, 'tYCI151, YL, Zllll51 
CC~MCN /JOECOM/ TZQ, TOLXt SMALX, SMALY 

+, TYLX, TYLY, TYLC, TlLR, TZLX, TZLFr TZL, TZLT 
+, TZUFlr TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT 
CC~MCN /JCECCM/ M, KROR, KPRTr Nr NS~EPr NSAMP, NPAIR 

+, ISWEP, ITALR, !PLAN, IFIT, !TRY, IBESTr !MOVE 
+, N3, K5, KR 
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c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 

31 
32 

10 

168 

200 

COtJMON I JOECCM/ BET ER, DONE, SORT • REV, COPY, PRINT, TRACE, BPUT 
+, FREE5, FREER 

IF!LEVEL.EQ. ll RETURI\ 
IFILEVEL.EQ. 21 RETURN 

END COMMON 

WRITE(6, 311 ISWEP, !FIT, ITRY, (XXOIK), K = 1, Nl 
WR IT E ( 6, 3 21 Y 0, ! C C ( K I , K = 1 , N) 
FORMHI/lX, 315, (lX, 5G20.l01 I 
FCRMATf1H , El5.7, (lX, 5G20.101 I 
RETURN 
ENC 

SUBROUTINE SWEP1(1SWEP, Nl 

THIS SlBROUTINE CHOOSES ALL SUPER-DIAGCNAL ELEMENTS !PAIRS OF 
INDICES I IN NATURAL COLUMN ORDER. 
THE II\DICES ARE THEN PERMUTED ACCORDING TO MAP TO SIMULATE 
OPERATIONS OF C WITH THE DIAGONAl SORTED. PLANE IS CALLED FOR 
EACH !PERMUTED) PAIR OF INDICES. SORTER IS CALLED BEFORE EACH 
COIIPLETE SWEEP TO UPDATE THE SORTING OF THE DIAGONAL OF C. 

IMPLICIT REAL*8 IA-H, 0-ZI 
DltJEf\SICN MAPI201 
IFIISWEP .GT. 01 GO TC 200 
FORMAT(lHO , 'COLUMN ORDERING') 
1-RITEC6,101 
DO 1 (; 8 I K = 1, N. 
tJAP(IKI=IK 
COT I 1\UE 
RETURN 
COH INUE 
CALL SORTER!MAPI 
00 5 'i 8 J K 2 = 2, N 
JMl = JK2 - 1 
JK = MAPIJK21 
DO 388 IK2 = 1, JMl 
I K = tJ API I K2 I 
CALL PLANEIIK, JKI 

388 CONTINUE 
598 COH Iii<UE 

CALL TALOR 
RETURN 
fNC 

SUBROUTINE SWEP21ISWEP, Nl 

C THIS SLBROUTINE CHOOSES ALL SUPER-DIAGONAL ELEMENTS !PAIRS OF 
C INOICESI IN A DIAGONAL ORDER WHICH FAVORS TWO SEQUENTIAL 
C CCCURAI\CES CF EACH INDEX. 
C THE INDICES ARE THEN PERMUTED ~CCORDING TO MAP TO SIMULATE 
C OPERATIONS OF C WITH THE DIAGONAL SORTED. PLANE IS CALLED FOR 
C EACH I PERMUTED) PAIR OF INDICES. SORTER IS CALLED BEFORE EACH 
C COMPLETE SWEEP.TO UPO~TE THE SORTING OF ThE OI~GONAL OF C. c 

IIVPLICIT REAL*8 (A-H, 0-Zl 
DIIVEI\SION MAPI2CI 
IF(!SWEP .GT. OIGO TO 200 

10 FOPMATilHO , 'SEQ2 CRDERING, FAVOR EACH INDEX TWICE') 
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c 

( 

wRITE(6,101 

N02 = N/2 
CC 159 I 1 1 N 

15<; I\IAF(IJ = 
R fTURN 

200 CCI\TI 1\UE 
CALL SORTER (MAP I 

INIT !All ZE 

C MAIN LOOP 

c 

c 

c 

c 

c 
c 

c 

DC 4S9 II2 = 1, N02 
JJ = l 
JJSAV = JJ 
I I = 1 
DO 469 JJ2 = 1, N 
I ISAV = I I 
IT = JJ 
JJ=II+II2 
IF(JJ .GT. Nl JJ = JJ- N 
IFIJJ oNE. IISAVJ GO TO 310 
IFIN .NE. 21 GO TO 480 

310 CONTINUE 

IK = MAP( I I l 
JK = I\IAPIJJ I 
CALL PlANEIIK, JKI 

4AC CONTINUE 

TFIJJ .NE. JJSAVJ GO TO 489 
JJ = JJ + 1 
JJSAV = JJ 

489 CCI\TINUE 
498 CONTINUE 

499 COI\TII\UE 

CALL T ALOR 
RETURI\ 
END 

SUBRCUTINE SWEP3IISWEP, Nl 

FIT AND OPTIMIZE PLANE 

END JJ 

END II 

TAYLCR STEP 

C THIS SUBROUTINE ALLOWS FOR A THIRD ORDERING FOR CHOOSING PAIRS. c 

c 
c 

c 

IMPLICIT REAl*8 IA-H,C-ZI 
Dlf.IEI\SION MAPI151 
STCP 
END 

SUBRCUTINE PLANEIIK,JKI 

C THIS SUBROUTINE CONTROLS THE BIVARIATE FIT AND THE ROTATION OF THE 
C DIRECTION VECTORS IN THE PLANE OF Sill ANC SIJJ 
C IK AND JK SPECIFY THE TWO INDICES REFERRED TO IN COMMENTS AS I 
C /!1\C J. 
c 

IMPLICIT REAL *8 ( A-H, 0-Zl 
c COMMON BLOCK 

115 



c 

LOGICAL SORT, REV, COPY, PRINT, TRACE, BPLT, BETER, DONE 
LCGtCAL FREES, FREER 
COMMCN /JOECOM/ ZERC, ONE, J~O, PI, FCUR, OEGRE, DIP 

+, SSSI15, 15), XXOI15J, YO, B'Bil5J, CCI151 1 -ZZGPTll51 1 ZZI151 +, XXBESI15), YBEST, ZSEST, SS(l5), SMALS, YYCI151r YL, ZZLI151 
COMMCN /JOECOM/ TZO, TOLXr SMALX, SMALY 

+, TYLX, TYLY, TYLC, TZLR, TZLX, TZLF, TZL, TZL T 
+, TZLFl, TZUF2, TZUl, TZUFB, TZUBr TZUP, TZUT 

COMMON /JOECOM/ M, KROR, KPRT, N, NSWEP, NSAMP, NPAIR 
+t IStr.EP, ITALR, IPlAN, IFIT, ITRY, lBEST, HWVE +, N3 , K5, KR . . 

COMMON /JOECOM/ BETERt OONEt SORT, REV, COPY, PRINT, TRACE, BPUT +,FREES, FREER 

ABS(wl = DABSIWI 
SIGN(w, Wll = OSIGNIW, Wll 
SQRTI WI = D SQR T( WI 
ATAN2CW, ~11 = OATAN2CWt Wll 

1 FCPMATI 1 1 ) 

71 FORMAT(' DIRECTION', 13 1 1 

+ nsa, 5G15. 11 1 
72 FOPMATI' CROSS RUN ', 14, ' 

+ 1158, 5G15.71 I 
IPLAI\i = IPLAN + 1 
'rLX = ZERO 
YLC = ZERO 
CO 239 I = 1, N 

ElliC CCMMCN 

Z='• G15.7, I C='• G15.7, IS=·· 

R='• Gl5.7, • c=•, Gl5.7, • s=•, 

C SUM ABS G*X 
W = ZERO 
CO 229 J = 1, N 
k = k + SSS(I, JI*BBCJI 

229 CONTINUE 
YLX = YLX + ABSIW*XXOIII 

C MAX CZZ 
IFIYYCIII .GT. YLCI YlC "'YYCCII 

239 CONTINUE 
YL = TYLY*ABSIYOI + TYLX*YLX + TYLC*YLC c 

C UN !VARIATE Fl T IN OIREC TION Sl I I 

c 

C I = CC ( I K I 
Z I = Z Z ( IK I 
ZLI = ZZLI IK I 
DC 33'1 I = 1, N 

339 SSIII = SSSII, IKI 
ZE'ES T = ZERO 
CALL FITIZI, BI, CI, ZLI, ZUI, ZLFI, ZliFII 
IF(JRACEI WRITEI6, 711 IK, ZI,CI, ISSCKI, K 
IFIBPUTI CALL PUTill 
IFfTRACEI WRITE(6, 1) 
YYCIIKI = ABSICI*ZI*Zll 
ZZLIIKI = ZLI 
ZBfSI = ZBf.ST 

1, N I 

MOVE TO BEST FOINT FOUND 
IFIYO .EQ. YBESTJ GO TO 360 
IMOVE = IMOVE + 1 
DO 359 I = 1, N 

359 XXOIIl = XXBESIII 
YO YBEST 
BI BI+Cl*ZBEST 
ZI = ZI - ZBEST 
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360 
c 

IFIABS.(Zll .LT. ZLFIJ ZI 
ZBES I = ZERO 
CONTINUE 

SIGN I ZLF I, l I l 

c UNIVARIATE FIT IN DIRECTION SIJI 

c 
c 

c 

CJ = CCI JKI 
ZJ = ZZIJK l 
ZLJ = ZZL IJK I 
DC 369 I = 1, N 

369 ·SSII l = SSS!I, JK) 
ZEEST = ZERO 
CALL FITIZJ, eJ, CJ, ZLJ, ZUJ, ZLFJ, lUFJl 

IFITRACEI WRITE!6, 71) JK, ZJ, CJ, ISS{K), K 
IFIBPUTl CALL PUTill 
IFITRACEI WRITE!6, 11 
YYCIJKl = ABSICJ*ZJ*ZJl 
ZZLIJKI = ZLJ 
ZBESJ = ZBEST 

Z = SQRTIZI*ZI + ZJ*ZJl 
\II = ZI/Z 
WJ = ZJ/ Z 

BIVARIATE FIT 

1, Nl 

s ZI*SI + ZJ*SJ 
D'J 3 E9 I = 1, N 

389 SS (! l = WI*SSS I I, IK l + WJ*SS(! l 
C = CI*~I*WI + CJ*WJ*WJ 
ZBES T = ZERO 
CALL TRY(Z, OY, Bl 
CIJ =lOY- ZI*IBI + ZI*CI/TWO)- ZJ*IBJ + ZJ*CJ/TWOl l/IZI*ZJI 

C LIMITCIJ 
IFIFREERl GO TO 400 

\1 = SQRTIABSICI*CJl I 
IFIABSICIJl .GT. Wl CIJ SIGN(W, CIJl 

400 COI\T INUE 
c MOVE TO EEST FOINT FOUND 

420 

429 

4:0 
c 
c 

( 

( 

c 
c 

IFI l BEST .EO. ZERO l GO TO 420 
ZBESI = ZI 
ZBESJ = ZJ 
CONTINUE 
IFIYO .EO. YBESTl GO TO 430 
!MOVE = !MOVE + 1 
00 429 I = 1, N 
XXO(!l = XXBESIIl 
YO = YBE S T 
!'I= ei + CI *ZBESI + CIJ*ZBESJ 
BJ = BJ + CIJ*ZBESI + CJ *lBESJ 
CONTINUE 

W 1 = CJ - C I 
W2 = SORT IFOUR*CIJ*CIJ + Wl>+Wll 
WCOS2 = IW2 + ABS!Wll l/tTWO*W2l 
WCOS = SQRTIWCOS2) 

ROTATE II\ PLANE 

WSIN = SIGNION~, Wli*CIJ/IWCOS*W2l 
WSIN2 = WSIN*WSIN 

R = COS, SIN 
-SIN, COS 

RT = R TRANSPOSE 
C = RT*C*R 
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c 
W = TWO*WSIN*WCOS*CIJ 
WI = C I 
CI = kCOS2*WI + WSI~2*CJ - k 
CJ = WSIN2*WI + WCOS2*CJ + W 
CCl'II<l =CI 
CC ( JK I = C J 
W = ATAN2(WSIN, WCOSI*DEGPE 

lC STORED DIAGONAL ONLY) 

IFlTRACEl WRJTE(6, 721 IPLAN, W, ClJ, (SSIK), K = lr Nl 
C 8 = RT*B 

c 

459 
c 
c 
c 
c 
c 
c 
c 

c 

c 

WI = B I 
AI = WCOS*WI - WSIN*BJ 
BJ = L-.SIN*WI + WCCS*BJ 
BH(JKI BI 
BB ( J I< I = BJ 

DC 459 I = lr N 
III = SSSIIriKI 
ioJ = SSSI I ,JKI 
SSS(I, IKI WCOS*Wl- WSIN*WJ 
SSSII, JKI = WSIN*WI + WCOS*WJ 
CONTINUE 

ZI = SIGNIZUI,BI*DIRI 

S - S*R CR ST = RT*ST 

CALCULATE NEW OPTIMUM STEP SIZE 

IF C IS NONZERO AND OF CCRPECT 
SIGN AND IF B/C IS LESS THAN ZU 
Z = -B/C , CTHERWISE 
l = ZU WITH SIGN FOR DOWNHILL 

IFlABSIBII .LT. -DIR*CI*ABSIZII I Zl = -BI/CI 
Z ZCPT I JK l = Z I 
IFIABSlZil .LT. ZLII ZI = SIGNlZLI, Zll 

Z J = S I GN I ZU J, BJ * 0 I R l 
IFIABSIBJI .LT. -DIR*CJ*ABS(ZJl I ZJ = -BJ/CJ 
ZZOPTIJKI = ZJ 
IFIAES(ZJI .LT. ZLJI ZJ = SIGNlZLJ, ZJI 

ZZIIKl = ZI 
ZZIJKl = ZJ 
IFITRACEl WRITEI6r 71) IK, Zit CI, (SSS(K, IK), K "'lt Nl 
IFlTRACEl WRITE(6, 71 I JK, ZJ, CJ, ISSS(K, JK), K = lr Nl 
IFIPRINTIWRITE(6,2IYO,ISWEP,ITRY,IBEST,CIJ,(XXOIKI,K=l,NI 

2 FCRMAT(' Y= 1 oG15o7r3Xo3I5,' C= 1 oGl5o7t 1 X='tll58,5Gl5.71 I 
!FIBPUTl CALL PUT(2) 

c 
c 

c 

IF(TRACEI WRITEt6, 11 
RETURN 
EIIID 

SUBROUTINE FIT I z, BrCtZL ,zu, Zl F, ZUF I 

C THIS SLBROUTINE PERFORMS THE UNIVARIATE FIT WHICH ALSO SEARC~ES C FOR THE OPTIMUM 
c 

Ilo'FLICIT RE.AL*B IA-Ht 0-ZI 
C COMMCN BLOCK 

LOGICAL SORT, REV, COPY, PRINT, TRACE, BPLT, BETER, DONE 
LCGICAL FREES, FREER 
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c 

CO~MCN /JOECOM/ ZERO, ONE, TWO, PI, FOUR, DEGRE, DIR 
+, SSSI15, 15), XXOil5l, YO, 66(15), CCI15), ZZOPT!l5), ZZI15l 
+, XXBESI151, YBEST, Z!lEST, SSIL5lt Sf'ALS, YYC(151, YL, ZZLU51 
CO~MCN /JOECOM/ TZO, TOLX, SMALX, SMALY 

+, TYLX, TYLY, TYLC, TZLR, TZLX, TZLF, TZL, TZLT 
+, TZUFl, TZUF2, TZU!, TZUF6, TZUB, TZUP, TZUT 

COMMCN /JOECOM/ M, KRDR, KPRT, N, NSWEP, NSAMP, NPAIR 
+, IS!OEP, ITALR, !PLAN, IFIT, ITRYt iBEST, IMOVE 
+, N3, K5, KR 
CO~MCN /JOECCM/ BETER, DONE, SORT, REV, COPY, PRINT, TRACE, BPtJT 

+, FREES, FREER 

A6S( ~I = DABS IWI 
SIGN(Io, Wll = DSIGN(W, kll 
SORTIWl = OSQRTIWl 

END COMMON 

81 FORMATIT58,5G15.7l 

c 
c 

IFIT = IFIT + l 
BETER = .FALSE. 
13 = 0 

ZL X = SMA LX 
DO 1 <; I = lt N 
S = ABSISSI II I 
IF I S • L T. S MA l S l G 0 T C 19 . 
X = ABS(XXO( I l l 
IFIZLX*S .LT. XI ZLX = XIS 

FINO LIMIT TO INSURE X CHANGES 
ZLX = MAX(X(Il/S!Il I 

19 CONTI!~lJE 

c 
c 

c 

c 
c 

20 

( 

c 
c 
c 
c 

ZLX TZLX*ZLX 

ZLC = T ZLR*ZL 

IFIABS(ZI .LT. ZLXl l 

CONTINUE 
Zl = Z 
CALL TRY(Zl, DYl, Bll 
B = Bl - C*Zl/TWO 

ZA = ABSIZI 
Zl l TZL *ZA + ZLX 
ZL Zll + ZLC 
ZLFl = TZLF *ZA + ZLX 
ZLF ZLFl + ZLC 

USE FRACTION OF PREVIOUS ZLC 
UNTIL C IS RELIABLE 

PRELIM IT 
SIGNIZLX, Zl 

FIRST STEP 

SET LIMITS 

ZUF = TZUFl*ZA + TZUFB*ABSIZBESTI 
IFITRACElWRITE(6,81lZLC,ZLFl,ZLF,Zl,ZUF 

+, ZLX, Zll, ZL, z, ZU 

Z = SIGNilUF, DIR*6l 

IF C IS NON-ZERO AND OF CORRECT 
SIGN AND IF B/C IS LESS THAN ZUF 
Z = -B/C , ELSE 
Z = ZUF WITH SIGN FOR DOWNHILL 

IFIABSIBl .LT. ·-oiR*C*ZUFI Z -8/C 
C INSURE NEW STEP IS AT LEAST ZLF 
C FROM ZERC AND FROM Zl 

IFIABSIZ- ZBESTl .GT. ZLFI GO TO 40 
IFIZA .LT. TWO*ZLFI Z ZBEST + DIR*Bl 
Z = ZBEST + SIGNCZLF, l - ZBESTl 
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c 
t. SEC C NO S TE P 
40 CONTINUE 

Z2 = Z 
CALL TRY( Z2, DY2, B2l 
C = TWO*(B2- Bll/IZ2- Zll 
B = B2 - C*Z2/TWO 
ZA = ABS(ll 
ZUF = TZUf2*ZA + TZUFE*ABS(ZBESTl 
Zl:l = TZUl *ZA 
ZU = ZUl + TZUB*ABSIZBESTl 

C IF C IS NONZERO AND OF CORRECT 
C SIGN AND IF B/C IS LESS THAN ZU 
C Z = -B/C , OTHERWISE 
C Z = ZU WITH SIGN FOR DOWNHILL 

Z = SIGNI~U, DlR*Bl 
IF(ABS(Bl .LT. -DIR*C*ZU Z = -B/C 
ZA = ABSIZl 
IFlZA .LT. SIGNITWO,Zl*Zll GC TC 50 
IFIZA .LT. SIGNITWO.Zl*Z2l GO TO 50 
IFII3 .GT. N3l GO TC 50 
I3= I3+ 1 
IFITRACElWRITE(6,BllZLC,ZLFl,ZLF,Zl,ZUF 

+, ZLX, ZLl, ZL, z, ZU 
IF(ZA .GT. ZUFI Z = SIGNIZUF,zt 
IF!ZII .LT. ZLFIZ = SIGNIZLF, Zl 

GO TC 52 
50 CONTINUE 

C IF C IS NONZERO AND OF CORRECT 
C SIGN AIIJC SQRTIABSIYL/Cll IS LESS 
C THAN OR EQUAL ZU THEN 
C Z = SQRT(ABS(YL/Cl l 
C OT hE RW IS E. Z L C = ZU 

c 
c 
c 
c 

c 

ZL C = ZU 
IFIYL .LT. -DIR*C*ZLC*ZLCl ZLC 
ZL = l Ll + ZLC 

IF(BETERJ GO TO 70 
IF(ABSIZll .LT. TWD*Zll GO TC 60 

SQRT I ABS( YLIC J l 

TEST FOR COMPLETION, I.E. 
BETTER POINT FOUND OR TOO MANY 
R E PE TI TI ON S 

IFIZA .LT. TZLF*ZA + ZLX + ZLCI GO TCl 60 
IFII3 .GE. N3l GO TO 60 
I3=I3+1 

C REPEAT 

c 
c 

ZLF = ZlFl + ZLC 
IF (TRACE J WR IT E ( 6, 8 ll t LC, ZLF 1, ZL F, Zl, l UF 

+, ZLX, Zll, ZL, z, ZU 
IFIZA .LT. Zll Z = SIGNIZL, Zl 

IFIZA .LT. ZLFI GO TO 2C 
IF ( lA .GT. ZUF) GO TO 20 

IF NEW ESTIMATE IS EXTREME, 
REPEAT BOTH STEPS 

C OThERWISE, REPEAT SECOND STEP 
52 CONTINUE 

JF(OIR*IDYl- DY2l .GT. ZEROJ GO TO 58 
DYl = OY2 
B 1 = B 2 
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Z 1 = Z2 
58 CONTINUE 

c 
c 
c 
c 
c 

60 

GC TC 40 

CONTINUE 
IF(Z.A .LT. ZLXI GO TO 70 
CALL TRYIZ, DVl, Bl) 

EXIT SECTION 

FAILED TC FINC BETTER POINT, 
TRY OPTIMUM WITH NO UPPER LIMIT 

C FIND Lt MIT FOR USE AFTER C BIVARIATE FIT 
70 CONTINUE 

ZU = ZUl + TZUP*ABSIZBESTI 
IFITRACEIWRITE16,8liZLC,ZLFl,ZLF,Zl,ZUF 

+, ZLX, ZLlo ZL, z, ZU 
C Llt~IT l FOR BIVARIATE SAMPLES 

IFIZA .LT. ZLFI l SIGI\<ZLF, Zl 
IF(lA .GT. ZUFI Z = SIGNIZUF, Zl 
IF IFREE5l RETURN 

C OPTICN FCR BETTER ACCURACY, C SET l TO BETTER OF ACTUAL SAMPLES 

c 
c 

c 

l = Zl 
IFIDIR*IDY2- DYll .GT. ZEROI l = l2 
RETURN 
END 

SUBROUTINE TRY I z, DY, B l 

C THIS SUBROUTINE ~VALUATES THE FUNCTIC~ AT A POI~T A DISTANCE l C FRCM XXO IN DIRECTION SS, IT ALSO CALCULATES DY ANO.B AND C MAINTAINS THE BEST POINT FOU~D THUS FAR. c 
IMPLICIT REAL*B IA-h, 0-Zl 

C COMMON BLOCK 
LOGICAL SORT, REV, COPY, PRINT, TRACE, BPLT, BETER, DONE 
LCGIC.AL FREE5, FREE~ 
COMMCN /JOECOM/ ZERO, Ot-.E, H;C, PI, FCUR, CEGR E, DIR 

+, SSSI15, 15), XXOI15), YO, 88(151, CCI151, ZZCPTI151, ZZ1151 +, XXBESI15), YBEST, ZEEST, SSI151, SMALS, YYCI151, YL, Zllll5l COMMON /JOECOM/ TZO, lOLX, SMALX, Sf!ALY 
+, TYLX, TYLY, TYLC, TZLR, TZLX, TZLF, TZL, TZLT 
+, TZLFl, TZUF2, TZUl, TZUFB, TZUB, TZUP, TZUT 

COMMON /JOECOM/ M, KRDR, KPRT, N, NSWEP, 1\SA~P, NPAIR 
+, ISI-.EP, ITALR, IPLAN, lFIT, ITP.Y, !BEST, IMOVE 
+, N3, K5, I<R 

COMMON /JOECOM/ BETER, DONE, SORT, R[\1, COPY, PRINT, TRACE, BPUT +, FR2E5, FREER 
C END CGM~CI\ 

29 
c 

CIMENSION XXI20l 
ITRY = ITRY + 1 
DO 2 <; I = 1, N 
XXIII= XXOIII.+ Z*SSIII 

CALl E VAL I Y, X X, N I 
CY = Y - YO 
E' = CY I Z 
IFID't*DIR .GE. ZfROI BETER 

EVALUATE NEW POINT 

• TRUE. 
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IF( IV- VBESTI*DIR .LE. ZERO) GO TO 70 
C NEW BEST PCINT 

1 FORMAT(' V='• Gl5.7, '*Z='• Gl5o7t 18X, '*X='• !T58o 5Gl5.71 l IF!TRACE) WRITE(6, ll Y, z, !XX(Kio K = lo Nl 
IBEST = IBEST + 1 
DONE = .FALSE. 
ZBEST = Z 
DO 6S I = lo N 

69 XXBES!II =XXIII 
YBEST = V 
RETURN 

C POINT NOT BETTER 

c 
c 

c 

70 CONTINUE 
2 FORMAT!' V='• Gl5o7o 'l='• Gl5.7, l8X, 1 X='• !T58o 5Gl5.71 I IF!TRACEI WRITE(6, 21 Y, z, !XX!KI, K = 1, Nl 

RETURN 
END 

SLBRCUTINE TALOR 

C THIS SUBROUTINE SAMPLES THE FUNCTION AT THE OVERALL OPTIMUM OF C THE MODEL !GAUSS POINT!. 
( 

I MPL IC IT REAL *8 ( A-h 0-ll 
C COMI-1CN BLOCK 

LOGICAL SORT, F';EV, COPY, PRINT, TRACE, BPUT, BETER, DONE 
LCGI CAL FREES, FREER 
CCMMCN /JOECOM/ ZERO, ONE, TWC, PI, FCUR, CEGRE, OIR 

+, SSS!l5, 151, XX0(15), YO, 88(151, CC!l5l, ZZCPT(l51, ZZ1151 
+, XXEESU51, YBEST, ZBEST, SS!l5), SMALS, YVC(l5l, YL, ZZUlSJ COMMON /JOECOM/ TZO, TOLX, SMALX, SMALV 
+, TVLX, TYLY, TYLC, TZLR, TZLX, TZLF, .TZL, TZLT 
+, TZUFl, TZUF2, TZU!, TZUFB, TZUB, TZUP, TZUT 

COMMCN /JOECOM/ M, KROR, KPRT, No NSWEP, NSA~P, NPAIR 
+, lSWEPo ITALR, !PLAN, IFIT, ITRY, !BEST, !MOVE 
+, f\3, 1<5, KR 

COMMON /JOECOM/ BETER, DONE, SORT, REV, CCPY, FRINT, TR.ACE, BPUT +, FREES, FREER 
C Er-,o COMMON 

A !:1 S ( WI = DABS I W J 
SIGN(W,W21 = OSIGN(W,W21 
SQRT(Id = OSQRTIWI 
ITALR = ITALR + 1 

C FINO MODEL IN DIRECTION OF C CPT IMlJ."' PQ INT • z : ZERO 
B = ZERO 
C = ZE RC 
DO 4 c; 3 9 I = 1, N 
W = ZERO 
DC 4929 J = 1, N 

4929 W = W + SSS!I, JI*ZZOPT(JI 
SS!II = W 
ZI = ZZCPT(II 
IF!ABS(ZII .LT. SMALXI GO TO 4939 
l = Z +' l I *l I 
B = B + ZI*BBIII 
C = C + ZI*Zl*CC!II 

4939 CONTINUE 
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l = SQRTlZI 
IFIABSIZI .LT. S~ALXI GO TO 497 
DC 4949 I = 1, N 

4949 SSIII = SSCII/Z 
e = et z 
C = Cl Z1 Z 
ZBEST = ZERO 

C EVALLATE POINT 

c 

c 
c 
c 
c 

c 

.CALL TRYCZ,OY,BI 
71 FORMAT(' TAYLOR',· 13, I5, 1 B='.• G15o7 1 1 C=•., G15.7 1 ' S=•, 

+ CT58, 5G15.7l l 
IFCTI<ACEJ WRJTE(6, 711 ISWEP, ITRY, B, C, ISSIKI, K. = 1, Nl 

1 FORMAT! I I I 
IFITRACEI WRITE(6, 11 

IF I ¥C .EQ •. YBESTI GO TO 497 
IMGVE !MOVE + 1 
B = e + C*ZBEST/TWO 

Z = TZUT*Z 
IFCABSIBI.LT.-OIR*C*ZlZ 

Z = Z/ZBEST 
DC 4959 I = 1, N 
ZI = Z*ZZOPTI I I 
ZZOPT(ll ;. ZI 
ZL = TZLT*ABSCZZIIII 

-BIC 

IFIZL oLT. ZZLCIII ZL = ZZLCII 

MOVE TO POINT IF BETTER 

IF C IS NONZERC AND OF CORRECT 
SIGN AND IF B/C IS LESS THAN ZU 
Z ~ -B/C , OT~ERWISE 
Z = ZU WITH SIGN FOR DCWNHILl 

CORRECT Z FOR MOVE 

IFCAES(ZI) .LT. ABS(illl ZI = SIGNCll,ZII 
ZZ(IJ =ZI 

49 !:9 lCXCC I I = XXBE Sl I I 
YO = YBEST 
ZBES T = ZERO 

49 7 CONTINUE 

.C 
c 

c 

2 FORMAT(' Y= 1 ,Gl5.7,3Xo3I5,18X, 1 X='~IT58,5G15.711 
IF I PRINT I WR ITt! 6, 21 YO, I SWE P, ITRV, I BEST, I XXO ( K I 1 K=l, N I 

3 FORMATIT55, 1 C= 1 ,1T58,5Gl5.71 I 
IFIPI<INT) WRITE(6, 31 (CCIKI, K ~ 1, Nl. 
IFIBPUTI CALl PUT(31 
IF IPR INT IWR IT El 6,11 
RETURN 
END 

SLBROUTINE INIHX, zz, DIR, NXI 

C HIS IS A SAMPLE CF THE PROBLEM INITIALIZATION SUBROUTINE. 
C X IS THE INITIAL:LOCATIGNo ZZ IS THE INITIAL STEP SIZE WITH 
C TZO*X WHERE TZO HAS THE DEFAULT Ool o DIR = +1. SPECIFIES 
C ~AlCI~IZATION, OIR = -1. SPECIFIES MINIMIZATION IDEFAULTio 
C N SPECIFIES THE NUMBER OF ELEMENTS OF X. 
C THE PROBLEM IS.ROSENBROCKS CURVED VALLEY 
C STARliNG AT Xl = -1.2 AND X2 ~ 1.0 o 
c 

IMFLICIT REAL*8 IA-H,O-Zl 
OIMEI\SION Xll5l, ZZI151 

1 FORMAT!' FUNCTION: ROSENBROCK 11 S CURVED VALLEY'! 
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c 
c 

c 

\IRITE(c, 11 
1\X = 2 
X(ll = -1.2 
X I 21 = 1. 0 
f<ETU RN 
END 

SUBROUTINE EVAL(F, X, Nl 

C T~IS IS A SAMPLE OF THE PROBLEM FUNCTION EVALUATION SUBROUTI~E. C F RETURNS THE FUNCT IOI'. VALUE, X PROVIDES THE CURRENT LOCATION C ( INDEPENDANT VARIABLES) AND N GIVES THE ~UMBER CF ELEMENTS OF X C ~S SET BY !NIT (FOR USE IN GENERALIZED PROBLEMS). 
C THE PRCBLEM IS ROSENBROCKS CURVED VALLEY 
C Y = (Xl- 1.1**2 + lOC.>t(Xl**2..., X2l**2 c 

I"PUCIT REAL*8 IA-H,O-Zl 
DIMENSION X( 151 
~ X Ill 
8 = ~ - 1. 
C -= A*A- X(2l 
F = E*B + lOO.O*C*C 
RETURN 
END 
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