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A PENALTY FUNCTION APPROACH TO GLOBAL EXTREMA

FOR CERTAIN CONTROL PROBLEMS

CHAPTER 1

INTRODUCTION

This paper is primarily concerned with optimal cdntrol problems to
be described in Section 2.2 of the next chapter. We consider "solving an
optimal control problem" to mean

(1) determining a2 function Uy in a certain set U of admissible

controls, that is a candidate for furnishing the desired
infimum of a given cost function (criterion for optimality)
J(*) over U,
and
(2) demonstrating that the candidate Yy does indeed furnish the
desired infimum.
Actually, in practice it is seldom poésible to carry out steps (1) and
(2) above to completion but in many cases the problem can be at least
partially solved.

It is well known that solving or partially solving an optimal
control problem can be extremely difficult. Frequently, it leads to the
solution of a nonlinear two-point boundafy value problem or to the solu-
tion of a large system of algebraic or transcendental equations. I1f

either of these latter situations occurs then a further attempt to obtain

1
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a solution or partial solution is usually by recourse to numerical
methods.

The need for such numerical methods has long been recognized as
indicated by the 1909 paper of Ritz [21]. However, in recent years, the
effort to develop numerical methods has greatly increased.

The numerical methods have been generally classified as either
indirect or direct numerical methods. Descriptively stated, indirect
methods use the Euler or other necessary conditions and seek, by various
iterative procedures to satisfy these conditions, whereas, direct
numerical methods use the cost function and the side and end conditions
and attempt to solve the problem without resorting to the Multiplier
Rule or other necessary conditions [24, p. 2].

An indirect numerical method was suggested as early as 1949 by
Hestenes in [11]. A direct computational procedure was presented in 1960
by Kelley in [14, pp. 205~254]. Since these times several new or modi-
fied methods have been added to each general class.

Some difficulties are associated with these numerical methods.
There is a general lack of criteria for selecting a method for a particu-
lar problem. In case an indirect method is used, then the terminal
conditions are extremely sensitive to variations in the initial Lagrange
multipliers, [9, p. 295]. Also, sometimes the solution of the dynamicai
equations is required at each step, which may be prohibitive in terms of
both computer time and storage. On the other hand, the direct numerical
methods have the inherent disadvantage of very slow convergence ian the
neighborhood of the optimal solution, [23].

There seems to be a basic misconception in numerous published



3
papers that if one follows a direct computational technique associated

with necessary conditions such as Pontryagin's Maximal Principle,
Bellman's dynamic programming, etc., and if this yields a sequence {un},
in the set U of admissible controls ,v that appears to converge to some
Yy in U, then

(1.1) I(yy) = inf{I(u):u € UL,

Of the many recent examples, [15] and [20] are typical. It may be the

case that J (uo) is only a local minimum, that is,
1.2) 3(ay) < ICw)

for u € U and u sufficlently near u, in one sense or another. Another
possibility is that U fails to satisfy some necessary condition for even
a local minimum. There usually are not enough criteria given to rule out
these unwanted possibilities.

Given a problem

J(u) = global minimum on U,

let uy denote a computed function of which it is hoped that
(1.3) J(u,) < inf{J(u):u €U} + 4, § > 0.

There is a paucity of criteria that will say with certainty, or even high
probability, that (1.3) holds for an explicit small 6.

Recently, the Calculus of Variation, which dates back to the
seventeenth century, has been formulated in the language and notation of
control systems. However, in spite of this long history, the potential
usefulness in engineering and other human affairs continues to be only

marginally realized because of the previously mentioned computational



difficulties.

There is such a variety of problems, J(u) = global minimum on U,

depending on the nature of the admissible controls u € U and the kind of
side and end conditions that it is vain to hope that one théory or
procedure can encompass them all. We shall restrict attention to certain
control problems with suitable convexity properties. It is noteworthy
that many of the illustrative examples on which numerical methods have
been tried out in the literature are of the type to be considered, for
example, see [16, p. 210], [19, pp. 402-406], [20, pp. 344-347], and

[22, p. 236].

The approach used here is the penalty function method as treated by
Balakrishnan in [2]. We are indebted to his suggestive work. However,
his paper has some seemingly vague or missing details that we will attempt
to clarify or supply.

The class of problems presented in Section 2.2 is somewhat different
from that of Balakrishnan in [2]. However, following his approach, the
original control problem is replaced by the so-called auxiliary problem
which is described in Section 2.3. Then Balakrishman's major results of
[2] are obtained, namely, the existence of solutions of the auxiliary
problems and the use of these solutions to approximate the infimum of the
original problem. Also, with additional assumptions, several new results
involving existence and uniqueness of a solution for the original control
problem are presented in Sections 2.6 and 2.7 of Chapter II.

Some of the ideas in the paper [6] by Budak, Berkovich and Solov'eva
are used in Chapter IiII to prove that the infimum of the continuous

auxiliary problem is approximated by the infimum of the corresponding
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discrete auxiliary problem. Then, with reference to some of the work in
Chapter II, it is concluded that the infimum of the original control
problem can be approximated by the infimum of a corresponding discrete

auxiliary problem.



CHAPTER II
A PENALTY FUNCTION TECHNIQUE

2.1 Introduction

The use of penalty functions in minimization problems with equality
constraints seems to go back to the 1945 work of R. Courant in [7, pp.
270-280]. He replaced the ordinary constrained minimization problem,
F(x) = minimum subject to the constraint G(x) = 0, by a'sequence of free

problems, that is,
FJMEF&)+MNQF=mMMM,

in the penalty-function n|G(x)|2

for each positive integer n, where |'
denotes the euclidean norm. Observe that unless IG(x)I2 is suitably near
zero for an x value that minimizes Fn’ then it seems likely that Fn
becomes large as n becomes large. Hence it is plausible to hope that,
as n + », a minimizing X for Fn(x) will converge to a limit X, such that
G(xo) = 0 and such'that X5 solves the original minimum problem. Courant
proved that indeed this is so under certain conditions including lower
semicontinuity of F and G.

Recently, Balakrishnan has discussed in [2], [3], [4], and [5], a
penalty function method for solving certain control problems for
dynamical systems. Although the method is similar in concept to that of

Courant's work, Balakrishnan/credits J. L. Lions with the suggestion.
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The technique used by Balakrishnan avoids explicit solution of the

dynamical equations, which seems to give it an inherent computational
advantage. Also, this approach has certain advantages in proving the

existence and uniqueness of a minimizing pair for the control problem.

2.2 The Control Problem

Let @ be the class of all pairs (x,u) of functions x = (xl,'--,xn)
and u = (u1,~--,up) from the fixed interval [0,T} to R® and Rp, respec-

tively, satisfying the conditions that

(i) x is absclutely continuous (AC) on [0,T],

(ii) % = £[t,x,u(t)] almost everywhere (a.e.) on [0,T], where f

(2.1) is a vector-valued function defined on [0,T] X R® x Rp,

(111) =x(0) = 3y 2 constant vector in Rn,

(iv) u is Lebesgue measurable on [0,T] such that

Iuj(t)l S bi < m’ 0 5 t 5 T’ ng = l’onc,p.

Define a functional J: @ + R, the real numbers, by the statement

that
T
(2.2) J(x,u) EJ glt,x(t),u(t)ldt,
0
where T 1is a positive constant and g is a scalar function defined on

[0,7] =< R® > &P,

Additional assumptions are:

(2.3) f(t,x,u), g(t,x,u) and all first order partials with respect

to components of x and u are continuous on [0,T] >< R < Rp,

and

(2.4) J(x,u) 2 0, for all (x,u) € (.
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In order to use the appropriate existence and uniqueness theorem [18,

pp. 342-346] for the initial value problem (2.1) (ii), (iii) we require

that
(2.5) there exist a constant b, > 0 such that
|f(tsx’u) - f(t’Ysu)l s bzlx = YI’ X,y € Rn:
for t € [0,T] and u satisfying (2.1) (iv),
and
2.6) |£¢e,%,0)| € w()le + |x|], for all ¢ €[0,T] and all

u satisfying (2.1) (iv), where u is integrable on [0,T]

and ¢ is a positive constant.

The problem, herein referred to as the control problem, is to

investigate the existence, the properties, and the possible approximation
by numerical methods of a pair (xo,uo) € & such that J (xo,uo) is the
infimum of J(x,u) on & subject to conditions (2.3) through (2.6).

Let x(*;u) denote the response x from (2.1)(ii) corresponding to a
given control u. It is shown in [13, pp. 74~78] that conditions (2.5),
(2.6) and the continuity of f given in (2.3) are sufficient for lx(t;u)|
to be bounded, that is, there exist positive constants b;’, i=1,2,+++,n,

such that

2.7) |x*(t50)] < b, for all ¢ e [0,T], for all u

such that (x,u) € @, and 1 = 1,2,*+*,n.

As a consequence of (2.7), the differential equation (2.1)(ii), the
boundedness (2.1)(iv) of u and the continuity of £, the derivative x of
every x such that (x,u) € ® 1is bounded on [0,T] except for a subset of

measure zero.,



2.3 The Auxiliary Problem

Let O be the class of pairs (x,u), x = (xy++,x%), u = (uly++,u

satisfying the conditions that

8

- 1) x EAC on (0,T] _a_Ei X € Lz([O’T]),

(1) x() = ay» a constant vector in RR,

(2.8) : s
@) |x*(e)] < b3, for all t € [0,T] and 1 = 1,-*,n,

(iv) u is Lebesgue measurable on [0,T] and such that

Iuj(t)l < bi <o, 0<t<Tand j=1,°,p.

Every (x,u) € G+ (or @) will be called an admissible pair for the

original problem or the auxiliary problem as the case may be, with such

qualification omitted if it is clear from the context which problem is
involved. The x and u of an admissible pair will be called an admissible

response and an admissible control, respectively.

Every x such that (x,u) € @ is an x satisfying the given differen-
tial equation (2.1)(ii) for some admissible control u and hence every
such x is an x(*;u) satisfying (2.7). Although the symbol x(*;u) does
not make sense in connection with the class G’+ because this class is
free of the requirement (2.1)(ii), it remains true of & that every x

such that (x,u) € (P satisfies the condition (2.7) that
i i
|x"(e)| < by, for all ¢ € [0,T] and 1 = 1,2,**+,n.

It is clear from the boundedness of x implied by (2.7) that every such x
is such that x € L2([0,'1‘]). These considerations together with the
comparison of conditions (2.1) and (2.8) show that every pair (x,u) € @
is also a pair (x,u) in G’+ but not conversely; Thus, ¢ c 0+ and

¢+ 6.
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We now introduce with Balakrishnan an auxiliary problem also called

the €-problem. Let conditions (2.3) through (2.6) hold with (2.4)
henceforth strengthened by the replacement of @ by G’+ and denoted by

(2.4)+. For an arbitrary but fixed € > 0, we wish to minimize

(2.9) I (x,u) = ﬁ{g[t,x(t);u(t)] +;—e |%(t) - f[t;x(t) ,.u(t)] Iz}dt

over the class @"'.
T
Recall that J(x,u) = [0 g[t,x(t),u(t)]dt. The following condition

will be a hypothesis in several of the theorems that follow:

(2.10) lim inf J(:\),uv) 2 J(xo,uo) s

AVIE )

for an arbitrary sequence { (xv,uv)} in @+ such that x , converges

uniformly to a limit X and u |, converges weakly to a limit Uy

By definition [10, p. 270] a sequence {uv € L2([0,T])} converges weakly

tou

o € Ly ([0,T]) if

‘r: (uv - uo)d) + 0 with 1/v for all ¢ € LZ([O,T]).

2.4 Existence of a Solution of the Auxiliary Problem

This section is devoted to showing that a solution for the €-problem
exists, that is, there is a minimizing pair [x0(°,e),u0(-,€)] in 6’+ for

the problem J_(x,u) = global minimum on ot

Balakrishnan has no condition corresponding to (2.4)+ in his paper

[2]. However, in a related paper, [3, p. 373] he included the condition
(2.11) g(t,x,u) 2 0, for all (t,x,u) € [0,T] x R* x rP,

which is certainly sufficient for (2.4)T. Efther (2.11), (2.4)" or some

other similar condition seems to be essential to ensure the existence of
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a minimizing sequence for the auxiliary problem.

It will be notationally convenient at times to suppress the fixed ¢,
that is, x(*,e), x(*,e) and u(*,c) may be written as x(+), x(*), and
u(*), respectively.

Let {ek} denote a strictly decreasing sequence of real numbers which

converges to zero. Let ¢, be a fixed member of {ek} and set

h(e,) = 10f{J_ (x,u): (x,u) € O,

L
It follows from (2.4)+ and the definition of Je (x,u) in (2.9) that h(ez)
is nonnegative. The form of Jel(x,u) and the continuity of £ and g make

it clear that there exists a pair (y,v) in 6% such that Jez(y,v) is

finite so there necessarily exists a minimizing sequence {(x v’uv)}’ that

is, a sequence such that

(2.12) 1im Jsz(xv,uv) = h(ez).

AVIE: ]

LEMMA 2.1. Let {(x ,u )} denote a minimizing sequence for the

problem Jez (x,u) = global minimum on e+ and let {u } be the correspond-

ing sequence of admissible controls. Then there exists a subsequence of

{u v} that converges weakly to an admissible control Uy

Proof. Let j be a fixed integer in the set {1,2,+++,p}. By

condition (2.8)(iv) we have that

T 1
U [ug(c)]zd:) 2. b] /2,
0

i

I

where ||¢|| denotes the L, norm. The weak compactness [10, p. 275] of a

|- )
closed ball in L2 ensures that there is a subsequence of {ui }, which we
again denote by {ug}, and which converges weakly to a limit v% in the

given ball. Let E; and E_ denote subsets of [0,T] consisting of points
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t such that

vg(t) >b] and vi(e) < b,

respectively. ,If‘{ug} converges weakly to a limit vg then by definition,
[10, p. 270], we have that
T j T
Lo | ule = vls, for all ¢ €L ([0,TD).
v 0 _— 2
v+’ 0

Choose ¢ as the characteristic function Xg, * Then
+

T ¢
h| - k|
J Yy XE+ ) uy»

0 E,
T (
Xg = Vj’
[ B =] 4
0 + E,
and
(2.13) limj ui - j vg.
V> o E+ E.+

1f E, has positive Lebesgue measure, A(E+), condition (2.8)(iv) requires
that the left member of (2.13) be less than or equal to bi A(E+), while
by our definition of E+ the right member is greater than bi_A(E+). This
is a contradiction unless X(E+) = 3, By a similar argument it is
necessary that A(E_ ) = 0. We now define
i i Vo] <,

j -

u.(t) =

0 0 if Ivg(t)l > bi.

Then ug(t) is equivalent to vg(t), has property (2.8)(iv) and is also
the weak limit of the sequence‘{ui}.
The integer j was an arbitrary but fixed member of the set

{1,2,--+,p} so the above argument could be applied with j = 1 to obtain
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a first subsequence of {()\),Uv)} (retain the same notation) such that

{ut} converges weakly to ug)'. Then the argument could be applied again
to obtain a subsequence of the preceding subsequence (again retaining
the same notation) such that {ui} converges to ug. Repeating this

procedure we finally obtain a pth subsequence which provides weak con-

vergence of all components of v, to those of and hence by definition

Y%
= (o P
the weak convergence of v to Uy (uo R --,uo).

THEOREM 2.1. Let the following condition hold: if (y,w) € @+ then

(2.14) lim inf !z [ip(t) - f[t,xp(t),up(t)][zdt 2

p >

T
[o ly(e) - £le,y(t) W)l |at,

for every sequence {(xp,up)} of admissible pairs in @+ such that the

corresponding sequence {xp} of admissible responses converges uniformly

to y on [0,T] and the corresponding sequence {up} of admissible controls

converges weakly tow on [0,T]. If, in addition, condition (2.10) holds

then there exists an optimizing pair for the el—problem, J ez(x,u) =

global minimum on @+.

Proof. Let {(xv,uv)}, a minimizing sequence for the £y -problem, be
chosen so that -the corresponding sequence {u v} of admissible controls

converges weakly to an admissible control as in Lemma 2.1. Let i be

Y%
a fixed integer in the set {1,2,°+-,n}, and let {xt} denote the sequence
of ith components of the admissible responses in the minimizing sequence
{(x,,u)}

Define

évs%a)-ﬂg%uh%an.

Then, from (2.9) and (2.12) we have that

(2.15) lim { g[t,x\’(t),uv(t)]dt + E%—r Iiv(t)lzdt} = h(ez)-
v+ /(0 %70
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Since h(ez) is finite and the first integral in (2.15) is nonnegative

by (2.4), we can suppose the sequence {(xv,uv)} and hence the sequence
{év} to have been so chosen that the second term in (2.15) also con-
verges. Hence Jz Iiv(t)|2dt is uniformly bounded. Conditions (2.8)(iii)
and (2.8)(iv) require that va(t)l and Iuv(t)| be uniformly bounded
independently of v and t. These conditions, the continuity of f and the

fact that

@] = [ + fex 0,0 01] < o] + 11 ©,0 o1,

can be used together with the Cauchy-Buniakowski-Schwarz (CBS) inequality

to obtain the existence of a constant, say bt, such that,

T
(2.16) Jo i) ) e < bj;.

and t2 in [0,T], with tl <t

1

Now, for t 29

ty i
J x (t)dt
£ VY

1

It (e - xi(e))|? = 2 s (t,- tl)LT) ()| %,
where the last inequality follows from the CBS inequality. Thus, the
xi's are equicontinuous and equally bounded and, by the Arzeli—Ascoli
theorem, there exists a subsequence of'{xt(t)} (denote the subsequence
by the same syﬁbol'{xt(t)}) that converges uniformly to a limit, say
xg(t,e,). It is shown dn [1, pp. 133-134] that xg(t,c,) is AC on [0,T].
From the weak compactness theorem [10, p. 275] and with reference to
(2.16), a further subsequence can be so chosen, for which we again
retain the same notation, so that the sequence'{ii(t)} of derivatives
converges weakly to some limit, which we denote by ii(t). Then, the

equalities
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t t
i 1 1 i N RS L ("
xy(£,€9) = %;(0,60) = x;(t,e)) = g, '-vl-i:lfo xv(s,ep)ds = Io Y (s,€))ds,

imply via a standard theorem [10,.p. 241] that
°i oi
xo(,t,sz) =y (t,ez) a.e. on [0,T].

The above argument holds for every choice of i and hence the selection of
appropriate subsequences can be repeated for each of the n components.
Observe that Xy = (xé,---,.xg) is AC and also satisfies (2.8)(iii). More-
over, Theorem 8.1 of [17, p. 612] can be applied in order to conclude
that the integral JZ [ii(t)lzdt is lower semicontinuous on the set

{x:x is AC, x(0) = ay, X eLZ(IO,T])}, hence

T T
of 2 ol 2 i
(t){"dt < lim inf [ x.(t)|"dt <b
!0 Ixo l v+ Jo I V) I 4?

8o that :':0 € LZ( [0,T]) as required of admissible responses. Thus Xy is

an admissible response.

The definition of h(e) and hypotheses (2.10) and (2.14) can now be

used to obtain that

(2.17) h(ez) = lim { g[t,:\,(t),\\’(t)]dt + f va(t) f[t,xv(t) U, (t)]l dt} =

R

T
lim m‘f{f BlE.x,(8) 0, (£) ]dt+ 5 f 06 - £1,%,(6) s, 1%t 2

v+o /0

T .
! glt,xy(t),u,(t) Jdt + 52— f Ixo(t) f[t,xo(t),uo(t)]ldt>h(ez).

It is clear that equality must hold throughout in the preceding. Therefore,
(xo,uo) or [xo(c,eg),uo(-,ez)] in the more complete notation is a minimiz-
ing palr for the ¢ 2—prob1em’ and the proof of the theorem is complete.

The hypotheses (2.10) and (2.14) are very strong so the important
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question remains, for what functions f and g can we be assured of these
semicontinuity properties.

Observe that the admissible controls u play the role of derivatives
in the classical formulation of variational problems. Since each

admissible u is in Lz([O,T]), it is in Ll([O,T]), so we cah define

t
(2.18) v(t) Ef u(t)dtr, for t € [0,T].
0
Then, v(t) = u(t) a.e. on [0,T] by a standard theorem. Moreover,
. t2
(2.19) e - ey = f o (),
t1

and from the boundedness (2.8)(iv) of the admissible u's we have that

(2.20) |v‘1(t2) - vj(tl)l < b%:—.'f{»;-«tlﬂi-f_ﬂ j=1,+7,p,
and
. 3,2,1/2
(2.21) v(t,) - v(t.)| < B|t, - t,| where B = [ (b3) .
fuce) = vt | <3l - ¢ Lol

Thus our integral (2.2) can now be written J(x,v) = I; glt,x(t),v(t)ldt

and the penalty term can be written

I o
%, fo [=(t) - £t x(t),7(e) 1] "dt.

In this notation Jez(x,v) can now be regarded as a nonparametric integral

in (n+p+1)-space with an integrand in (t,x,v,x,v) that is free of v.
We have already shown that successive refinements of a given

minimizing sequence { (x\),u\’)} can be made to obtain a sequence such that

x,, converges uniformly to an admissible X, and u, converges weakly to an

admissible uye Let v be the integral (2.18) of u . Then all the functions

v, are equilipschitzian by (2,21}, hence they are equally bounded and

equicontinuous and the Arzela-Ascoli theorem assures a subsequence
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converging uniformly to a limit Yo+ For lower semicontinuity in terms of
uniform convergence of pairs (kv,vv) to a limit pair (x0 ,vo) in a class
of vector-valued functions (ﬁ,v) of equally bounded total variation,
convexity of g(t,x,Vv) in v suffices for (2.10) and likewise convexity of
|x - £(t,x,V) |2 in (x,v) suffices for (Z.14) as shown by McShane in
[17, p. 612]. That all components of admissible responses X, appearing
in a minimizing sequence {(kv,%')} have appropriately bounded total
variation is asserted by (2.16). Similarly, for the components of u,, we
have ‘.'\) =, from above and the uv's are bounded by (2.8)(iv).

Thus the conclusion of Theorem 2.1 applies at least to all integrals

Jez such that g is convex in Vv and such that f is linear in v = u, that is,

(2.22) fi(t,x,u) = ri(t,x) + sij (t:,x)uj, where i = 1,***,n

and summation is on j for j = 1,+««,p.

We call attention at this juncture to two things. We have made a
concerted effort to verify the conclusion stated by Balakrishnan at the
bottom of his page 169 in [2]. This would establish the existence of a
solution to the ez-problem under weaker conditions than (2.10) and (2.14).
However, the difficulty expressed in the present notation is that :.:\) is
known only to converge weakly on [0,T] to ;(0 Balakrishnan in a later
reference, namely [4, p. 366] assumes a condition which encompases our
conditions (2.10) and (2.14). Also, in order to prove existence of a
minimizing pair for a similar e-problem, S. De Julio, a former student of
Balakrishnan, assumes conditions very similar to (2.10) and (2.14) on
pages 11 and 15 of his 1968 Ph.D. Dissertation, Study of a New Computing

Technique for Distributed Parameter Systems.:

We remark secondly that even with restriction to functions f that
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are linear in u we have verified the major conclusions of Balakrishnan
for a larger class of functions f than those treated in Balakrishnan's

Section 2 of [2] where f is linear In both x and u.

2.5 Approximate Solution of the Control Problem

Again let {ek} be a strictly decreasing sequence of positive reals
that converges to zero and recall the definition of h('ek) preceding
Lemma 2.1, If solutions of the ek-problem e:dst for k = 1,2,«¢., then
the following theorem shows that these solutions can be used to approxi-
mate the infimum of J(x,u) on ?.

THEOREM 2.2 Let {[xo(-,ek),uo(-,ek)]}, k=1,2,3,.--, denote a

sequence of minimizing pairs in @+ for the € -problems, Let {ﬁ(-,ek)}

be the sequence of unique solutions on the full interval [0,T] of

X f[t,x,uo(t,t—:k)], satisfying x(0) a, (this sequence is ensured by a

standard existence theorem [18, pp. 342-346]). Then

(2.23) 1lim h(ek) = {nf {J(x,u): (x,u) € P} =

k +%

T
lin [ 8lt,f(t,e,) 0y (te, ) 1dt =
k+ol0

T
lim IO 8[tax0(ts€k) :uo(tsEk)]dt-

k -+

Proof. Select €, and ¢ from {e,} such that 0 < €y <€ but which

R”
are otherwise arbitrary. Let

zo(t,ek) = §o(t.ek) - fIta;‘o(.taek) )uoctsek)]a
Fe) = r I3 (a0 e,
0 o™
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and
G(ek) = [:g[tsxoctvek) auo(tpek)]dt'

By hypothesis, [xo(-,em),uu(' ,em')] denotes a minimizing pair for the

em-problem, Je (x,u) = global minimmm on ®+. Thus, we have that
m
Jem[xo(' :em) sUOC'aem)] < Jemeo(°’ez) ’uO(."eR,)] .

This latter inequality can be written as

(2.24) ﬁ F(e ) + G(e ) < 2—2; F(e)) + G(ep).
Similarly,

Jezlxo(-,ez),uo(uez)] < Jezlxo(nsm) TNCH-BIR
that is,
(2.25) 7%:-; F(e,) + Gle,) < ?i—’: P(e ) + (e ).

Since 0 < € < € it follows from inequalities (2.24) and (2.25) that

(2.26) B(e,) < F(ey)
and that
(2.27) G(em) > G(ez).

Alternately stated, {F(Ek)] and {G(ek)} are both monotonic sequences.

Hence from the definitfons of F and G we conclude that

T T .
1im f |z Ct, )|2dt and’ 1lim I glt,x. (t,e, ),u.(t,c )]dt
k>0 0 ek T k4ol 0" ek 0 ek
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both exist.

Observe next that, since G+ o5 &, then
(2.28)  dof {J_ (x,0) : (x,0) € @7} 5 dnf {J_ (x,u)  (x,u) € O
k ek

But x = £[t,x,u(t)] a.e. on [0,T] for every pair (x,u) in @, so that,

by definition (2.9) of J_, J, (x,u) = J(x,u) and hence

(2.29) inf {Jek(x,u) : (x,u) € 6@} = inf {J(x,u) : (x,u) € @P}.
It follows from (2.28) and (2.29) that

@.30)  inf (3 0 1 () € 6"} < inf (I(x,0) ¢ (x,0) € OF.

In the proof of Theorem 2.1 it was shown that there is an admissible

pair [x0 (t,ek) »U5 (t,ek)] such that

T
inf{d, (60 : (o) € @73 = Jlxy(tiey)ug(t,e)] + z—ik- Jo |35(t,e) | 2at,

so we have that

T
(2.31) J[xo(t,ek),uo(t,ek)] + -2€Lk JO lio(t,ek)lzdt < inf{J(x,u):(x,u) € @),

The right-hand member of (2.31) is free of k and is necessarily finite.
Let k + » in the left-hand member of (2.31) and use the monotoneity of

G(sk). It follows that

(2.32) 1im J[xo(t,ek),uo(t,ek)] < inf {J(x,u) : (x,u) € @}.

k>

T T
If lim |2, (t,e )|2dt were positive, then lim = |2, (t,e )lzdt =
0 0 k 0 0 k

k+o k> w25

and we have a contradiction. It must be inferred that
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T
(2.33) lim J

ko

. 2
zo(t,ek)l dt = 0.

Recall that ﬁ(-,ek) is the unique solution on [0,T] of the initial
value problem (2.1)(1i), (iii) with u(t) = uo(t,ek). By the mean value

theorem there exists a e(t,ek) in the open interval (0,1) such that

g[tyg(tyek)auo(tsek)] - g[t’xo(tsek),uo(taek)] =

Y al i
’ ’ + 0(t, s - ’ ’ ’ ° ’ - ’ ’
gxi[t xo(t sk) (t ek)x(t ek) xo(t ek) uo(t ek)] [x™(t ek) xo(t ek)]

with summation on i from 1 to n. Since each uo(t,ek) satisfies (2.8)(iv)
it follows that Iuo(t,ek)| is uniformly bounded independently of t and k.
For each € Ve have that [ﬁ(t,ek) ,uo(t,ek)] € ® so that from (2.7) and
the discussion immediately preceding (2.7) we can conclude that |§(t,sk)|
is bounded independently of t and k. These boundedness conditions and
the continuity of the gxi'g are sufficient for the existence of a

constant Ml such that
(2.34) |gle,RCt e, ) ugtse )] = glt,x (t,e,) ug(t,e)]]

2 Mllﬁ(t’ek) = xo(t’sk)l’
on [0,T]. Next, let

y(t’ek) Z ﬁ(tisk) - xo(t’ek).

Then, in a manner somewhat similar to the preceding, it can be shown that
Jtre) = £[E,X (e e, ) ug(tse )] = £LE,x,(t,e,) up (t,ep)] = Zo(Eep)
can be written as

(2.35) y(t,e)) = M(E)y(t,ep) = Z,(t,e,)
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where M(t) is uniformly bounded on [0,T] independently of €yt Solving

the first order linear differential equation (2.35) by the familiar

formula leads to the existence of a constant M2 such that

' T . 2 1/2
(2'36) Iy(t’ek)l $ M2 Io Izo(tsek)l dt ]

on [0,T]. Inequality (2.36) together with (2.33) implies that

ln [y(t,e)| = o0,

k> >

so it follows from (2.34) and the definition of y(t,ek) that

T
(2.37) limJ |glt,R(t,e, ) ,u.(t,e, )] - glt,x.(t,€,),u (t,e,)]|dt = 0.
oy k’*% 0"k’ *Y%

Hence,

T T
(2.38) klf!:ofo g[t,ﬁ(t,ek),uo(t,ek)]dt =k1ﬂ fo g[t,xo(t,sk),uo(t,ek)]dt-

Since [ﬁ(t,ek),uo(t,ek)] is a pair in @P,
(2.39) inf {J(x,u) : (x,u) € @} < J[:?(t,ek),uo(t,ek)].
Taking the limit as k > « in (2.39) we obtain that

(2.40)  inf {J(x,u): (x,u) € P} < lim J[:’e(t,ek),uo(t,ek)] =

k+m

T
1im J g[t,f(t,e ),u,(t,e, )]dt,
k>wlg k’?0 k

and the conclusion of the theorem now follows from (2.32), (2.38) and

(2.40),

2.6 Existence of a Minimizing Pair for the Control Problem

Theorem 2.2 is probably adequate for potential applications since

the desired infimum can be approximated with any desired accuracy for k
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sufficiently large. However, one would like to know at this point

whether or not there is a minimizing pair for the original control

problem.

The remainder of this chapter extends the work of Balakrishnan

by establishing

o))

the existence of a minimizing pair for the original control

problem,

and, under certain convexity conditions, showing both

)
and that

(3)

the uniqueness of such a pair,

for an arbitrary strictly decreasing sequence {ek} of positive
reals converging to zero the corresponding sequence of minimiz-
ing pairs {[xo(-,ek),u0(°,ek)]} for the €, ~problems "converges"
to the unique minimizing pair for the original control problem

(see Theorem 2.5).

THEOREM 2.3 Let {[xo(',ek),uo(',ek)]} denote a sequence of minimiz-

ing pairs for the ¢, -problems, k = 1,2,3,+*-, where'{sk} is a strictly

decreasing sequence of positive reals converging to zero. If conditioms

(2.10) and (2.14) hold then

(1)

(11)

there exists a subsequence of {[x0(°,ek),u0(°,ek)]}, call it

{[xo(',ekv),u0(°,ekv)]}, such that the corresponding sequence

)} of admissible responses converges uniformly to a

{xo(°,ekv
limit x4,

there exists a subsequence gg;{[xo(-,ekv),uo(',ekv)]}, for

which we retain the same notation, such that the corresponding

seguence‘{uo(°,ekv)}.g£ admissible controls converges weakly

to a limit u,,



24
(iii) (x*su*). € e

(iv) J(x,,u,) = inf{J(x,u) : (x,u) € @3.

Proof. For each £, it was shown in Theorem 2.1 that a minimizing

k
pair [xo(' ,ek),uo(' ,ek)] exists and belongs to 0+. Recall that in the
proof of Theorem 2.2 we defined
T.. 2
F(sk) = jo Ixo(t,ek) - f[t,xo(t,ek),uo(t,sk)ll dt

and it was shown that F(sk) is non-increasing as k + =, Hence,
F(ek) < F(el), for all k.

It follows, for components of io(t,ek) and f[t,xo(t,ek),uo(t,ek)], that

e £l Yt < Fe,);
0 xo(t’ek) - [t’xo(t’ek) ’uo(t’ek)] ts el H

hence that

Ixdce.e) - £10E,mg (i) (eIl < VEG)

and by the triangle property of the Lz-norm that

(2.41) "x (t,e )" VF(e + "f [t,xo(t € ),u

Since xo(t,ek) and uo(t,ek) are bounded independently of k by conditions
(2.8)(iii) and (2.8)(iv) and fi is continuous by condition (2.3) we have

that "fi[t,xo(t,sk),uo(t,ek)]" is bounded independently of k. We can

T
now conclude from (2.41) that IO [ig(t,ek)lzdt is bounded independently
of k.

Let t and t, in [0,T] satisfy the inequality t, < t,. Then

ng(tz,ek) - x;(tl,ek)lz

< (tz-tl)j Ixo(t ek)lzdt,

t2
= :':i(t,e )dt 2
0 k
t
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where the last inequality follows by the CBS inequality. Thus, the

xé(',e )'s are Holder continuous of order 1/2, hence equicontinuous and
equally bounded and by the Arzeld-Ascoli theorem, there exists a sub-
sequence of'{xg(',ek)} (relabel it'{x3(°,ek)}) that converges uniformly
to a limit, say xi. The function x: is AC on [0,T] as shown in [1,

Pp. 133-134]. Since each x%(',ek) satisfies (2.8)(ii1) we have that

by 2 lim |xg(t,e)| = |x4(t)|, for all t € [0,T].

k> o
Thus, x: satisfies (2.8)(i11i). By applying the above procedure for
i=1,2,+++,n and by the successive selection of subsequences as in the

proof of Lemma 2.1, one obtains finally a subsequence'{xo(uek )} of the
v

original sequence such that every component.xé(*,ekv) converges uniformly

to an AC limit xi, i=1,2,°+*,n, and we denote the vector function with

these components by x,.

Let {[xo(',ekv),u0(°,ekv)]} denote the sequence of pairs such that

+

{x0(~,ekv)} converges uniformly to x,. Recall that [xo(',ekv),u0(°,ekv)]€ &7,

which requires under (2.8)(iv) that |u0(t,ekv)| < bi. Thus, for any

fixed integer j in the set {1,2,***,p} we have that
T 1/2 V
- 2 1/2
||u‘3(t,€kv)|| = (Jo Iug(t.skv)l dt) s bi’r .

Hence, each component uj(',e ) of u,(*,e, ) is in the closed ball
0 k, 0 k,

1/2

B(biT »0), with center at the zero element 6 of L2([0,T]) and radius

biTllz, and so, by the weak compactness theorem [10, p. 275] for such

balls, there exists a subsequence (relabel it'{ug,(°,ekv)}) which
h

converges weakly to a limit, say uy. Repeating the above procedure of

selecting appropriate subsequences for each of the p components and
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retaining the same notation each time we can conclude that {uo(°,e )}
converges weakly to u,. It follows as in Lemma 2.1 that u, satisfiZs
(2.8) (1v).

It has been shown that x, is AC, i:* satisfies (2.8)(1ii) and that
u, satisfies (2.8)(iv). It is readily verifiable that i* € Lz([O,T]) and

that x,(0) = Thus, (x,,u,) € 0+. We want to show that (x,,u,) € @

2.
so it remains to establish that the differential equation (2.1)(ii) is

satisfied by the pair (x,,u,), that is, that
%, = £flt,x,,u (t)] a.e. on [0,T].

From (2.33) and the definition in the proof of Theorem 2.2 of

zo(t,ekv) we have that

. 2
2.42 11 fT t,e, ) - f[t,x.(t, su(t,e, )]|7dt = 0.
(2.42) = % Ceaey ) - ElEsmyC %) 4o e )1l

V>

By condition (2.14) we have that

T
. 2
(2.43) liminf! |x (t,e, ) - E[t,x (t,e, ),u (t,e, )| dt 2
v e Jg Ok Dt Wl DS

f: ENGIE f[t,x*(t).u*(t)]lzdt.

Clearly, the right-hand member of (2.43) is nonnegative so it follows

from (2.42) and (2.43) that

T
(2.44) f |%,(8) - £1t,x,(t) ,u,(0) 1| at = 0.
0

Hence % (t) = £It,x,(t),u (t)] a.e. on [0,T]. Thus condition (2.1)(ii)

is satisfied by (x*,u*) and we conclude that the pair (1;:*,'u*) is in ©.
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2.7 A Convex Control Problem

Theorem 2.3 states the existence of a solution for the original
control problem of Section 2.2. A uniqueness theorem is given in this
section for the control problem of Section 2.2 with certain additional
convexity assumptioﬁs.

The functional J is said to be strictly convex at (x,u) in &

relative to @ if corresponding to (x,u) and to every (y,v) € @,
(y,v) # (x,u) there is a positive number e(x,u,y,v) < 1 such that

[x + 1(y=x),u + 1(v-u)] € @ and
(2.45) J(x,u) + t[I(y,v) = J(x,u)] > J[x + 1(y -%), u + T(v-u)]

whenever t is in the open interval (0,e(x,u,y,v)). Observe that the
special case in which J(x,u) is convex in (x,u) in the ordinary sense
occurs if e(x,u,y,v) = 1 for all quadruples (x,u,y,v).

THEOREM 2.4. Let the conditions in the formulations of the control

problem and the auxiliary problem of Sections 2.2 and 2.3 hold. Let

conditions (2.10) and (2.14) hold. Let {[x0(~,sk),uo(-,ek)]}, a sequence

of minimizing pairs for the ek-problems, k =1,2,+++, be chosen go that

it converges in the sense of Theorem 2.3 to a minimizing pair (x,,u,) for

Jon ®. If J is strictly convex at (x,,u,) relative to @ then (x,,u,)

is unique.

Proof. From Theorem 2.3 we have that
(2.46) inf{J(x,u) : (x,u) € @} = J(x,,u,).

Suppose that (x**,u**) is a pair in @ distinct from (x4,u,) such that

(2.47) inf{J(x,u) : (x,u) € @)} = J (XppsUyy)

The strict convexity of J at (x,,u,) yields that
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(2.48) I(xyouy) + TIIG,00,) - Ix,,u)] >

JIx* + T(x** - x,) su, + 'c(u** - u*')],

provided that 0 < T < e('x*,u*,x**;u**) .‘ By (2.46) and (2.47) we have that
I(xyou,) = J(xe0ou,,)

so that (2.48) can be written as

(2.49) J(k*,u*) > Jlx, + 1(x,, - %) ;u* + T(uy, - vl

provided that 0 < T < e(x*,u*,x**,u**) . Hdwever, (2.49) now contradicts
the hypothesis (2.46) that (x*,u*) minimizes J(x,u) on &, and we must
.conclude that (ic*,u*) is unique.

The proof of Theorem 2.3 makes substantial use of subsequences of
sequences of minimizing pairs for the ek-problems and this makes it
difficult if not impossible to use this theorem in formulating a numeri-
cal procedure for approximating x, and u,on a grid of t values. How-
ever, with the added convexity hypothesis of Theoreéem 2.4, the following
theorem shows that to obtain the optimal pair (x*,u *) it is sufficient
to consider any sequence of minimizing pairs for the ek-problem,

k =1,2,°++, where {ek} is an arbitrary strictly decreasing sequence of
positive reals converging to zero.

THEOREM 2.5. Let the conditions in the formulaticns of the control

problem and the auxiliary problem of Sections 2.2 and 2.3 hold. _Let

' {'[xo(- ,ek) ,uo(- ’Ek)]} denote a sequence of minimizing pairs ‘for the

problems J. (x,u) = global minimmon O, k = 1,2,-++, with {x;(*,e)}
N ——————— k ——— —— - e——

_z_a_n_{ {u0(~ ,ek)} denoting the corfgspondin§_ sequences 'of ‘admissible

responses - and‘admiésible ‘controls, respectively. Further, let conditions
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(2.10) and (2.14) hold and let (x,,u,) denote a minimizing pair for J on

@. If J is strictly convex at (x*,u*) relative to @ then

(1) the sequence {x;(+,€ )} converges unifornly to x,,

(11) the sequence {uo( -,ek)} converges weakly to u,.

Proof. All of the hypotheses of Theorem 2.4 hold so that (x,,u,)
is the unique minimizing pair of J on @.'

Suppose that it is necessary to select a proper subsequence of
{[xo(',sk) ,uo(',ek)]} in order to have the convergence of (i) and (ii)
in accord with Theorem 2.3. Then we can consider the possibilities in
two cases. In the first case we assume that the original sequence
{x0(°,ek)} does not converge uniformly to x,. Then there necessarily
exists a subsequence {ekz} of {ek} so that {xo(-,ekQ)} does not have
x,(*) as an accumulation point. We can apply Theorem 2.3 to the sequence
{[xo(-,ekz) ’u0(°’€k2)]} of minimizing pairs for the ekg-problems to
obtain another optimal pair for J on @ which contradicts the uniqueness
of (x %Y *).

In the second case we assume that the original sequence {xo(-,ek)}
converges uniformly to x, but {uo(°,(~:k)} does not converge weakly to u,.
Then there necessarily exists a subsequence {ek } of {ek} so that
{uo(.,gk )} does not have u, as a weak accumula:ion point., We can then
apply Th:orem 2.3 to the sequence {[xo(-,ekm),uo(-,skm)]} of minimizing
pairs for the ekm-problems to obtain another optimal pair for J on &
which contradicts the uniqueness of (x*,u*) . Therefore, we conclude that

it is unnecessary to consider subsequences of [x,(<,g;) Uy (ergg)] dn

order to obtain the pair (x*,u*).



CHAPTER III

DISCRETE APPROXIMATIONS FOR THE

CONTINUOUS AUXILIARY PROBLEM

3.1 Introduction
One must discretize in some way if he hopes to approximate an optimal

solution numerically. The auxiliary problem, Je(x,u) = global minimum on

§?+,'which was described in Section 2.3, is a continuous problem. In
this chapter we consider the corresponding discrete auxiliary problem,
i.e., the problem obtained by partitioning the fixed interval [0,T]
(details described in the next section) and then restricting the domains
of the functions of the continuous auxiliary problem to the partition
points.

The literature relating a solution of the associated discrete prob-
lems to a solution of the original continuous control problem is limited
and, in general, it seems merely to be assumed that a desirable relation-
ship exists [8, p. 33]. Balakrishnan's papers [2], [3), [4], and [5]
appear to be consistent with this remark since none of them includes any
explicit results relating the coﬁtinuous problem to an associated discrete -
problem.

The objective of this chapter is to demonstrate that under suitable
hypotheses the infimum of an associated discrete auxiliary problem

approximates the infimum of the correspon&ing continuous auxiliary

30
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problem,

Some of the ideas for the work in this chapter were derived from [6].

3.2 A Discrete Auxiliary Problem

Let m = 2¥ for some fixed positive integer r and let

QG = tepprturs totage) 2 Em
denote a partition of [0,T] such that
tx = Tk/m, k =0,1,°°,m.
The common length, T/m, of each subinterval will be denoted by Ty

Let (x,u) € 6‘*. the class of pairs defined by (2.8), and let
3.1) (xmk’umk) = [x(tmk),u(tmk)], k=0,1,+,m.
It follows from (2.8) and (3.1) that

(1) Xo =3 2 constant vector in Rn,

(3.2) (i1)

i i
lxmkl Sb3, i = l’z,ﬁoo’n’ i‘ﬂk = 0’1’0..’m,

1) [ul, ] sbd, 4= 1,2,00,p, snd k= 0,1,00,m.

Let x = (xnll,- i ,x:) and u = (u‘];,--- ,ug) denote the vector-valued func-

tions of the argument k, taking on values x ik

k=0,1,°°+,m. Let @; denote the class of all pairs (xm,um) such that

and u L K? respectively, for

T ————. . S—————————— — —

to the digcrete domain Q via (3.1),

(3.3) . .
(1) for all values of m the first component xm'g_f_ (xm,um)

satisfies the condition that

m-1 | |
kzo [(x;(k-f-l) B ":k)/"mlztm' <bh <, =100,

for some get of positive comstants bl,:+« ",
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This is a discrete analog of the condition that a class of functions

x: [0,T] » R" have derivatives in Lz([O ,T1), namely that
2 2
'i . ri
x| = r (%) dt
0

be bounded.

The discrete e-problem is: for a fixed partition Qm and a fixed

€ > 0, minimize

(3.4) JE,m(xm’um) =

m-1 : X ooav— X 2
1 [Tm(ktl) “mk
A - FC XU | 1T

on @+.

m

It should be noted that Je: o is a function of m(n+p) real variables

y
on a compact subset of Rm(n+p) determined by the inequalities (3.2)(ii),
(iii). The definition (3.4) of Je o together with the continuity of £
’
and g implies that J e.m is continuous on this compact set. Thus, there
9

exists a pair (x;,u;) in 6’; such that
LI N . +
Je,m(xm’um) inf{Je’m(xm,um) : (xm,um) € G’m}.

3.3 Restriction of Je to a Domain Obtained by Extensions of Pairs in @:

Let (xm,um) be a pair in 5’;. Define a piecewise-linear extension

;m (abbreviated PWLE) of the function xm from the discrete domain Qm to

[0,T] by setting

X - X
v = m(ktl) mk
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for k = 0,1,+-+,m1. Also, define a plecewise-constant extension 't‘x'm

(abbreviated PWCE) of the function u by the statement that
o =
B Sy, Eh SECt

for k = 0,1,***,m~1, and Gm('r) =u . Let
.4

@+

e oL +
nZ {(xm,um) : (xm,um) € em}.

Each component ‘:":lj;l of each '§m is a function from [0,T] to R with a broken
line graph and each component ﬁi of each ﬁm is a step function from [0,T]
to R.

It 1s clear from the definition of the PWLE X that ¥ 1s AC.
Directly from the definition of ':':'m and conditions (3.2)(1),(ii) we have
that ﬁm satisfies (2.8)(11),(1ii). The def?ﬁition of lim and differentia-

tion yield that

i i
st o FmCerl) T *mk
x (t) T for t, <t< toCks1) ?
whence,
1 i |2
w1l pbn(k4l) |X - x

[I Iii(t)lzdt =] f m(k"'ll — okl gt < ot
0 k=0 't ak m

where the last inequality follows from (3.3)(ii). Indeed (3.3)(ii) was
imposed to ensure this inequality. Consequently, i;(t) € Lz([O,T]).

Also, note that ﬁm is Lebesgue measurable and satisfies the inequality
of (2.8)(iv). Thus, é: c @+ and conditions similar to the hynotheses
of Lemma 2,1 and Theorem 2.1 hold with @+ in each of them replaced now

Ld

by @;:. Hence there exists (yo,vo) € 0+ such that

3Gy = 1mEls B8+ 7,8 € 61,
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where JE is the functional defined by (2.9). Observe that, since

8t ¢ o,
m
(3.5)  inf(J_(x,0) : (xw) € 07} < 4nfld (R 8 &8 € 671,

3.4 A Lemma for Theorem 3.1

For every pair (x,u), (y,v) of pairs in 6" define a norm
(3.6) NL(x,u), (y,V)] = [lx=y| + |[x= 3} + ju-v],

d

LEMMA 3.1 If %] and [I5] are bounded then the functional J is

where again denotes the L2([0,T]) norm.

continuous in the norm (3.6), that is, for every o > O there exists a

number 8, such that if

N[Ge,u), (7,0)] < B, and (x,0),(7,0) € 6,
‘then

IJE(x,u) - Je(y,v)| < a.

Proof. Let (x,u) and (y,v) be in G+. It follows from definition

(2.9) of JE that

T
(3.7) I _(x,u) = I _(y,v) = Io [g(t,x,u) - g(t,y,v)]dt +
2¢

T
'1_ JO { Ii"f(t’xyu) l‘li""f(t:y’v) I H |;“f(t’x:u) l + |9"f (t,y,v) I ldt.

This last equation together with the triangle inequality for the

euclidean norm yields that
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T
3.8) I Gxu) - I (3,)] & fo |g(t,x,0) - g(t,y,v)|de +

[x|+ |£(t,x,u) | +

L
= fo |35 y| + |£¢t,y,v) |14t +

T )
il?f |£(t,x,u) - £(t,y,9) | [|%] + |E£Ct,x,u) | + |F] + |£Ct,y,v) | 1dt.

0
The vector functions x and y are bounded as indicated by (2.8) (iii)
whereas u and v are bounded as in (2.8)(iv). The functions X and y are
bounded in the integral sense as given by the hypotheses of the lemma.
Application of the CBS inequality to each of the last two integrals in

(3.8) yields that

T
3.9) IJe(x,u) - Je(y,v)l < IO |g(t,x,u) ~ g(t,y,v)!dt +

l ¢ o 3
5 %yl

+ [[£¢t,x,0)]| + ||7] + | £CE,y,WI) +

3= e - £y &) + 1eex,0l + 151+ [l£Ey.wID.

We can conclude from (3.9), the continuity of £ and the boundedness

(2.8)(1i1), (iv) that there exists a positive constant b. such that

5

(3.100) |3 _(xw) - I (5,9 <

T b5
f |g(e,x,u) - g(t,3,v) [ae + 52 (|%=3 ]| +]| £t ,x,0) - £¢e,3,0]]).
0

The mean value theorem can be applied to both the difference in the f
terms and the difference in the g terms of this last inequality to obtain

that
T 11 3
(3.11) IJe(x,u)-Je(y,v)| < Jolgxi(t,zl,wl)-(x -y )1-guj(t,zl,w1)-(u -vj)ldt

b [
+52 (|3 + £ 4 (tzg i) Geey) + £ 4 (Es2g0mp) - el
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where summation is on i from 1 to n and on j from 1 to p, and

z, =x+ ek(x-y), for some 6, € (0,1), k = 1,2,

w, =u+t ¢l(u-v), for some ¢2 € (0,1), 2 =1,2.

By application of Minkowski's inequality to the last term in (3.11), we

have that

T .
(3-12) |3 (x0) = I_(5,9)] s JO o g (Erzp o)) (loy )+ g (b2 o) v Jae +

bg
35 (|

. P S | N
g+ llE g (Ezgawp) e G-y 1112 5Ces2),9) (u .

The continuity of each fxi’ i=1,2,-+e,n, given in (2.3), plus the
boundedness of the arguments t, z, and w, ensure the existence of positive
constants b:, i=1,-++,n, such that

(3.13) LGNNI bgs 1=1,¢,n.

Similarly, there exist positive constants b;, j=1,++,p, such that

(3.14) lfuj(t,zz,wz)l < b;, §=1,000,p.

bP}. Then from (3.12), (3.13) and (3.14)

Let b = m{bé""’bg’b%’."’ 7

8

we can conclude that

T 11 j
(3.15) |3_(x,w)-3_(3,0)] < Jolgxi(t,zl,wl)-(x A FICURANC ) jae

b ) n
#32 dicsl +g [ Iyl + o jﬁl I - ).

Clearly,

"xi = yi" s ||x"Yl|» i=1,000,n,

and

"uj - vjl £ "u 'V“0 J=1,000,p.
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These inequalities together with (3.15) imply that

(3.16) |3 (x,0)= I G50 | < f; g g€z m) o'y 48 46z ) () e

ol - y] + phgfu - vD.

A similar argument applies to g 1 and g j to ensure the existence of a
X u

positive constant bg so that from (3.16) we can conclude that

nbsbg by . .
(3.17) IJe(x,u) - Je(y,v)l < (nbg + —2—8—)||x -y + % Iz -y +

b
(pbg + —5— )Ilu vl|.

bsb b beb
Let U = max{n(b + 5 ), 22 , (b9 ges )}. Then if
NG, 0] =[x = ]l + [1%= 30 + flu-v] < B, = 55,

we have from (3.17) that
IJe(xou) - JE(Y’V)I < a,

which completes the proof of the theorem.

3.5 A Discrete Approximaf:ion for the Continuous Problem

lLet e be an arbitrary positive number and let G: denote the class
1
of palrs (xe,ue), x, = (xe,---,x:') , U= (ui‘,---,uz) » satisfying the
conditions that
(1) x, 1s AC on [0,T] and x_ € L,([0,T]),
(11) x (0) = a,, 28 condtant vector in ',

1D [x5(0)] < b3

(3.18) ,
+ e, for all t € [0,T] and L = 1,°°*,n,

(1v) u, 1s Lebesgue measursble on [0,T] and'such that



38
lWl(0)] <bd +e, for all t € [0,T] and § = 1,---,p.

~

We proceed as in Sections 3,2 and 3.3 and obtain @: o @ class of

’
~

s,u_ ), where now in lieu of (3.2) we have

piecewise extended pairs (:":'m
that

(1) Xoe =3 2 constant vector in Rn,
3

(319) (D) |xh | £bj+e, 1= 1,2, namd k= 0,1, m,

(1i1) l Sbi"'eaj =1,2,+ee,p and k = 0,1,--,m.

3
lumk,e

We now compare the pairs (X g4 ) in 6’+ with pairs (X ,0) in @+.
m,e’ m,e m,e m’ m m

Some of the PWLE components $1 W11l be such that l"k'i ] > b for
m,e m,e 3
some values of t € [0,T] and some of the PWCE components ﬁi e will be
9
such that Iﬁfn e(t)l > bi for some values of t € [0,T]. Also, some of the
£}
absolute slopes ':.":i e(t)l will exceed I';i:x(t)l for t € (0,T). Thus, we
H]

TR o N4, 24
have that @m (ol ®m,e and @m ¥ @m,e'

LEMMA 3.2. Let € > 0 and m, a natural number, be fixed. Let

: ~t - ~ W N o~ 3+
(3.20) Yo o 5 W GLED : (R ,8) € VAN

and

~t - ~ ~ . ~ 9+

(3.21) Yeome = inf{Js(xm’e,um’e) PR T )€ @m’ B2

Then,
‘ ~t ~+
3.22 1L = .
o -
Proof. There exists a minimizing sequence {(xm,e, vine, v)} in

@: o for J_auch that
, |

(3.23) ¢ T )<y

+ 2 ‘...
e\ 'mye,y’ mye,v g,m,e v, v=1,2,
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Let o be the arbitrary positive number of Lemma 3.1. Then we can suppose
e to have been chosen so small that corresponding to each pair in the

minimizing sequence there is a pair (¥ _,8 ) in 8t such that
m,V” m,V m

' ~ ~ 4
- I+ Ig AN

m,e,V  ‘m,V

1% % ol + 1%

m,e,V - xm,v mye,V
is less than the positive number Bd of Lemma 3.1 for all values v = 1,2,:--,

Hence we have by Lemma 3.1 that

(3.24) Je(ﬁ'

~ w~ a i
u >3J u - O
m,e,V’ m,e,\)) e(xm,\)’ )

m,V

From (3.20), (3.21), (3.23) and (3.24) it follows that

¥ o<a @ ¥ )<Y 41+,

€, = € xm,\)’um,\) €,m,e
hence that
~t ak )
< + 1/v + a.
Ye,m YE,m,e Iv+a

The natural number vy can be chosen at pleasure and the positive number o
can be as near zero as desired provided that e (and hence Ba) is

sufficiently small. Thus,

art ~t
(3.25) Ye.m S lim inf Ye,me’

’ e_*o

Since @m c @m,e’ we have that

~t ~
hence
(3.26) 1im sup 37 <
' P Ye,m,e - Ye,m'

e+0
The desired conclusion (3.22) now follows from (3.25) and (3.26).
Recall that Theorem 2.1 ensures the eﬂstence of an optimal pair

[x°(°,e).u0(-;e)] for the problem Je(x',u) = global ‘minimum on @+.

. ~T . e +
THEOREM 3.1. Let y: o denote the nfimm of Je on ém and let (xo,uo)
, -
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be an optimal pair for JE in @+. Then, for each choice of €,

+
3.27 m¥, =37
(3.27) m mYe,n (xo sug) «

Proof. Let i be a fixed integer in the set {1,...,n}. By use of

(2.16) it was shown in the proof of Theorem 2.1 that

1/2
Il < oh™>.

1/2

Thus, 2 is in the closed ball B((b

0
separability of L2, let X be a countable set of continuous functions dense

/2

,0) In L ([O,T]) Using the

0). For an example of such a set see [10, p. 270]. Let 62’

be an arbitrary positive number. Then there exists a continuous function

in B(G "%,

in X, which can be regarded as the derivative y of some y, such that
(3.28) 1% - 51l < &
) %o 4°

By definition of the Lz—norm we have that

T 1/2 1/2
(3.29) I, - ¥] = (f |:'co-ﬂ2dt) = I—f 2 (’1-;?1)2&{] <
0 [0 1=1

n T 1/2
ol 1.2
(x,~-y)dt .

We can conclude from (3.28) and (3.29) that
[ hd 2 i
(3.30) ||x0 -yl< } 8,
i=1
Inequality (3.28) together with the CBS inequality yields that

t
a5 -] - || e - e

T
. Io I*éft) _ },1“)'&: < T1/2 s 1” < T1/2
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From this last inequality it follows that

(3.32) I = vl < 83,

and hence that
n

.
(3.33) lxg = vl <T 121 8,

Let j be a fixed positive number in the set {1,2,++,p}. From
condition (2.8)(iv) and the admissibility of Uy Ve have that “3 is a

measurable function on [0,T] such that
ldce)| svd, for teo,m.

By Theorem 9.15 in [10, p. 268] there exists a real-valued continuous

function v:i on [0,T] such that

(3.34) Y| sbd, for teo,m,
and
leg - 1 < ]
for an arbitrary positive number 6:{. It readily follows that
2 1/2
(3.35) luy - vl <1 § @h .

i=1
As remarked at the beginning of the present proof, Iliill is bounded by
1/2
(b 4)

is bounded. Thus, the hypotheses of Lemma 3.1 hold. We have from (3.30),

» hence, |X)| is bounded and from (3.30) we can conclude that ||y ||

(3.33) and (3.35) that

. Tote 1§ oh? 1/2

N[ (x,, 0) G = llxg=yll + g -7l + lug=vll < Q+1 F 8, + [ ] 6D7T1 .
is] =1

Now, for an arbitrary preassigned positive number d/Z and for any choice of

the §'s such that
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/
(1+T)Z&+[2(62 $B .,
151 51 a/2
"we can conclude from Lemma 3.1 that
(3.36) IJs(xo,uo) - 3| < a/2.

all numbers Ih('s) - h(s')[, with s,8' € I. Let Tm be so small and hence
m so large that the oscillation of the continuous function }"i € X on eéch
of the subintervals [tmk’tm(k+1)]’ k= 0,1,‘-v--,m-1, is iess than the
positive number 62‘ introduced in (3.28). Inequality (2.21) gives the

1/2 6 4 such that we can define the functions xi e’

existence of an e = T

i=1,°+*yn, on [0,T] by

v (e )= yiCe )
=i O+ m(k+1) mk

mye T

(3.37) (.t--t:mk , t

< <
e Stst

m(k+1)?

k =0,1,-+-,m-1. Observe that X x (t) approximates y (t) uniformly on

[0,T] with accuracy within 6 4 and hence it follows that

1/2 1/2

(3.38) Iy - %, ol <70 z Chi

From (3.37) we have that

i i
é’gi (t) - y (tgl,(k'l'l)) -y (tmk)

m,e T v Gk
m

(3.39)

<<t k)

k =0,1,-++,m1, The continuity of yi on [0,T] together with the mean
value theorem implies the existence of . in (t »t (k-i-l)) such that

i
(t Ck+1)) -y (tmk) ’
T
m

(3.40) ii(ck).- .
for k = 0,1,+++,m~1. Thus, from (3.39) and (3.40) we conclude that

(3.41) i:,,e(t) = Fie), for ty <t Caet1)
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k = 0,1,***,m~1. Since the oscillation of }"i(t) on [t )] is less

mk? Sm (kL
than 6 it now follows from (3. 41) that (t) approximates }.'(t:) uniformly

1/2

on [0,T] with accuracy within [ 2 (6 4) 17", and we have that

i=1

(3.42) I5 - % ME 2§ 2 pht,

Recall that a continuous function vj was introduced in (3.34). Let
Ty be so small that the oscillation of the continuous function vj on the

subintervals [tmk’tm(k+1)]’ k= 0,1,°**,m-1, is less than the positive

number 6{. Then from (3.34) it is seen that we can define functions ?1?11 o
H
j=1,+++,p, on [0,T] by
I g =
um’e(t) = Vj(tmk), tmk < t< tm(k,+l)’
for k = 0,1,**,m-1, and uj (D = V(M. It follows that
(3.43) lv-% [<0§ @Hyt?
’ m,e 2 1 ’
i=l
From (3.38), (3./2) and (3.43) we have that
.46 MW, E L8 1= y-F H+M-%@H+h-%&ﬂ<
2 1/2
i=

Thus, if the 6's are sufficiently small such that

1/2

2 § pRcn 2, [jz @h 1" <8,

we can conclude from Lemma 3.1 that

(3.45) |J'e(y;v) - Jecgm,-e,zm’“e) | < of2.
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By adding (3.36) and (3.45) we have that -

(3.46) ERCATA IR A A TS

p : '
provided that 2 (6 and z (6.1)2 are sufficiently small. From
i=]1 =1

inequality (3.46) and (3.21) we have that

ot

Y <3 @&

€,m,e € xm e’ m e) J (XO’UO) ta.

Now from this last inequality and Lemma 3.2 we have that

(3.47) ' 'VF 1Im Y

E,m >0 €,m,e £J (xa,u) o

Finally, from inequality (3.47), the definition of (xo.uo) as an optimal
pair for J_ on O, the definition (3.20) of «7: o 8 the inflnum of J_
H

3+ o+ +
on @m’ and from the fact that @m c @ , we have that

+

(3.48) I (%ysu,) < ?e n S I (xgsup) +a

Since (3.45) and hence (3.46) and (3.47) hold for a given a provided m is
sufficiently large we see that in (3.48) as o - 0 then m + * and the
conclusion of the theorem is obtained.

LEMMA 3.3. Given x_ = {xmo,x ,°-',xm}, the first component of a

pair (xm,um) € @;, let ;“m be the first componment of the corresponding

~

pair in @;. Then

Lo |§, -x | = ln “‘“‘*DT (t -t )| =0,

m+® m+® m

R
for amy k € 0,1, mn1} and € € [ty ]

Proof. For t € [ ] it follows from the definition of T

(k+1)
that
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[CER IRV NS

hence that

- 3.49) | Gtagisry = % €& = Ed Tl S [3peany = %l

Let 1 be any fixed integer in the set {1,2,...,n}, Choose any dyadic
rational multiple of T in [0,1] as the fi:“:ed left endpoint of an interval

ch (k_+1)

_—.T’

- IZI Then, by the definition of Qm in Section 3.2, the left-

hand endpoint of this interval is in the partitionms Qm’Qm+1""' Assume

i i
that xm(km+1) does not converge to X mkm’ that is,

m m

Then, by definition, there exists an o > 0 such that for every natural
number A there exists a natural number v > A such that

xi - x [ 2 a

v(km+1) vk | <

Let )\1 = 1. From the above there exists a natural number v, > 1 such that

1

% (k_+1) ”‘:k |20
1%m 1m

Next, let >‘2 =V + 1 and we are assured of the existence of a natural
nunber v, 2 )‘2 such that

=, (k +1) "‘iklia'
V2t Y1*n

Repeating the above procedure indefinitely (letting Ap' Tl \)}l + 1,

p=1,2,3,+..) wve obtain a strictly increasing sequence {v‘B} such that

"

(3.50) %, mogay =% o | 20, B =1,2,3,000,
vB(km+1) vskm
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It follows that

(3.51)

2 2
|x\) e Ay " l /T >0 /TvB = a"v/T,

where the latter equality of (3.51) follows from the definition of

T, = T/\)B. Since {\)B} is a strictly increasing sequence there necessar-

B
ily exists a \)B sufficiently large so that (3.51) implies that

vg-1 2

.52 ] el ey | T, 2 G
keo | vgQet)” Bk vgl Tvg = gl

i 2 i
\)k)/T\) >b,

k +1) ~ 8%y 8

which contradicts (3.3). Therefore, we conclude that

X | >0 as mo>o,

'“wﬂ)
Since the above argument holds for 1 = 1,2,+++,n, it follows that

lx(k+1) mk|+0 as m-+ o,
n

and the conclusion of the lemma now follows from (3.49).

We now define

K = {(t,x,u):t € [0,T], Ixil < bz <ow, 1= 1,.eo,n, and Iujl < bi < o,
' 4 =1, p}.
Observe that K is a "box" in R lHuip including all of its boundary points.
Thus, K is a bounded and closed, hence compact subset of R hﬂ’. Since
the function g was given to be continuous on [0,T] X _Rn x Rp and hence
on K by condition (2.3) then it is uniformly continuous on K in all
1 + n + p variahles, hence uniformly continuous in (t,xl,' --,xn) for

each fixed u = (ul ---,up). Similarly, the function £ is uniformly

continuous in x = (x ,'--,x ) for each fixed (t,u ,---,up).
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THEOREM 3.2. If (x_,u ) is a pair in ¢F and (X ,0) is the
=V —ei— = Vp¥— VYp'n ——/

-,

corresponding extended pair in 6’; then

~N :
(3.53) lJE(xm,um) - Je,m(xm’um)l +0 as m~>o,

Proof. From definition (2.9) of Je and definition (3.4) of Je o

]

we have that

(3.54) |3 (X ,8) - Je,m(xm,um)l =

m-1

T
”0 g(t,xm,um)dt - kzo g(tmk’xmk’umk)rm +

T m-1 x -X 2
1 ~ N w2 1 m(k+l) “mk
2¢ fO Ixm f(t’xm’um)l de - 2e kZO T - f(tmk’xmk’umlg T

Direct use in (3.54) of the definitions from Section 3.3 of the PWLE §m

and the PWCE ﬁm gives that

n-1 tm(k-i-l) X -X
m(letl) ¥k,
¥ f [8(tyx , + T (b=t ) )

(3.55) |3_(X,8) - Je,m(xm’um)' =

k=0 Je
- - 2
1 | m(k+1) Fmk *n(let1) “mk
= 8t e Uy + 7€ T kgt T p (!

1 Pn(k+1) Fmk 2

By appropriate use of some elementary triangle inequality properties for the

euclidean norm |*| we can conclude from (3.55) that

@3.56) |3 GLE) -3, Go.ud] <
m-l (t X (k1) = '
4k§0 [t’f’(k*l)llg(t.x e _E.Q‘i':lrf;ﬂl‘. (e=t g dyu ) = 8Cty % ou )l
o
X pooay=X o . -
+ 'Ql"g If‘(tmk’xmk + M (t-tmk) ’umk) - f(tﬂi’x ,llmk) l]dt.
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Lemma 3.3 states that

X -X .
. k+l) “mk
Ixmk+—£(—:-r-L—(t—tmk) -xmk[ +0asm>>

for each k € {0,1,++.,m=1}. Recall from the paragraph preceding the
present theorem that g is uniformly continuous in x and t on a certain

compact set K. Hence there exists an m sufficiently large so that

’umk,)l < d/ZT,

TmQeH) Tk -
(3.57) lg(t,xmk + T (et ) u ) = 8(t %

for some preassigned small positive number d.. Similarly, from the uniform
continuity of f in x on K, as remarked preceding this theorem, we have

that there exists an m sufficiently large such that

b4 =X
m(k+l) “mk . - 1
(3.58) |[£(t p.x, + T (=t su ) = £(E pox 00 )| <5 .

Then for m sufficiently large so that both (3.57) and (3.58) hold we can
obtain the conclusion of the theorem from (3.56), (3.57) and (3.58).

THEOREM 3.3. If

ot . N N N A 6‘!"
Ys,m = inf {Je(xmsum) : (xm,um) € m}a
and
% % : +
Je,m(xm’um) = inf {Je,m(xm’um) : (xm,um) € @m},
then
(3.59) ¥ -3 G5uN| >0 as mow,

Te s €,m m’ m

Proof. It was shown immediately preceding Section 3.3 that there
exists a pair (x;,u;) in @: with the property staiigd in the hypotheses
of this theorem. We can apply (3.53), the conclusion of Theorem 3.2, to

* 8+ @t
conclude that for the corresponding pairs (‘i:,ﬁ;) ’ (xm,u:) in Om, @m
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that

_ ok ik * %
(3.60) IJe(xm,um) - Je’m(xm,um)l +0asm=>>,.

From the definition of convergence, (3.60) means that for an arbitrary

but fixed e > 0, there e:dsts an Mgl) such that m 2 Me(]') implies that

uk k Lk
(3.61) |J€(i'm,um) - Je’m(xm,um)[ <e.

From (3.61) and the definition of '?: 'm we have that
o

«

ot

(3.62) Yo w3 GF o) <7 @R -7 @MY <,

1 m’ m e m’ m g,m m’ m

provided that m > MS').

. N
For e/2 and for every m there necessarily exists a pair (gm’ﬁm) € @:

such that

~ M. wt v ~ ~t

Suppose that m in the preceding has been chosen sufficiently large, say

m2 MS%, such that we can conclude from Theorem 3.2 that

(3.64) |3, 8) -3

e,m(xm’um) | < e/2.

Then from (3.63) and (3.64) we have that

' ~+t
(3.65) |9 aCpot) = Ve al <&
provided that m > MS%. Hence we have that
~t ~t * %
(3.66) -e < Ye,m Je,m(xm’um) < Ye,m Je,m(xm’um)’

(). o rae@) 2
provided that m > He/Zf Let Me max{Me ; ’Me /2} and we can conclude from

(3.62) and (3.66) that

¥ 1 Gt <e,

(3.67) Teon ™ Ye,n
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provided that m > L Since e was an arbitrary positive number (3.67" is

the desired conclusion.
THEOREM 3.4, If
J (x* u¥) = Inf{J & .u ):(x ,u)e @+}.
€,m-m’ m ' g,m m’m "V mdm m’

then

lin I, _Ghub) = J_Gegoup) = m'f{Ja(:},u) s (x,u) € @),

My ?

Proof. For an arbitrary but fixed o > 0 the conclusion (3.27) of
Theorem 3.1 implies that

at
¥. - Je(xo,uo)[ < a2

(3.68) e,m

for m sufficiently large. Now from Theorem 3.3 we can conclude that

art
|

(3.69) Ye.m
]

for m sufficiently large. Hence if m is sufficiently large for both

(3.68) and (3.69) to hold we have that
(3.70) IJ (x*,u*) - J (x,,u )I < 0.
g,m"'m’ m €00
Since a was an arbitrary positive number the conclusion of the theorem
holds.

Recall that {ek} denotes a strictly decreasing sequence of positive

reals converging to zero, and that

* ~ +
Jek’m[x;(-,ek),um(-,ek)] - inf{Jek’m(xm,um) t(xyu) e €,

and

JEkao (' Dek) ’ uo (.' ’ ek_)] = inf{Jek(xlu) : (xs u) € 0+} .

THEOREM 3.5. If the conditions in the formulation of the continuous

and discrete auxiliary problems of Sections 2.3 and 3.2 hold, then
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* % :
klig mlg Jek,m[xm( s€ ) su (05E )] = lgn; J,ek[xo( 5€) 54 (56 ) ]

= J(#*,u*) = 1nf{J(x,u) :(x,u) € @}.

Proof. This theorem is obtained as a direct consequence of Theorems
2.2 and 3.4.

From Theorem 3.5 we see that obtaining an approiimate solution of the
original control problem of Section 2.2 essentially reduces to solving
the corresponding discrete auiiliary problems for small positive €
Various mathematical programming techniques eﬂst to solve the discrete

auxiliary problem.
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