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ABSTRACT 

Accurate automatic classification and picking of anival times of events from 

acoustic emission (AE) signals is of considerable importance for rapid 

identification and location of seismic events. Due to the large number of digital 

signals that could be acquired during a simple expe1iment, manual classification 

and arrival picking become impractical and subjective. 

A system that detects and stores se1sm1c signals generated dming hydraulic 

fracturing (HF) experiments has been used in laboratory experiments to study 

the mechanism of HF. This system employs a combination of sensors, 

preamplifiers, signal conditioning unit and a data acquisition (DAQ) module 

attached to a personal computer (PC). The system captures the AE signals using 

a simple threshold value. 

External and internal noise due to the electronics, sensor coupling, reflections 

and echoes from the microseismic signals (MS) are captured too. In order to 

reduce the number of false AE signals, improve the processing time and obtain 

the most infonnation from the HF processes, an automated solution has been 

developed to classify, pick the first anival, and the polarization of AE signals 

that have been previously captured by the AE monitoring system. 
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1 INTRODUCTION 

Acoustic emissions (AE) signals are noises made when materials deforms or 

fracture. This is a phenomenon widely used in different disciplines and began to 

be investigated in the middle of the 20th century. The advances in technology 

have let the area of AE move forward as an important technique in the study of 

materials. Ultrasound analysis and non destructive testing (NDT) are just a few 

of possible techniques that use AE as a tool. Different disciplines like civil 

engineering, eaiih sciences, mechanical engineering, metallurgy, etc. have 

received special benefits from research in AE, and combined with the 

technological advances in electronics and computer science have led to the 

develop of new and better ways to detect and analyze the signals. 

AE is similar to seismology and can be related to the study of sudden movement 

of the earth's crust that generates elastic disturbances, known as seismic waves. 

These waves propagate from the origin spreading spherically in an isotropic 

material. The waves generated are recorded by seismometers that capture the 

amplitude vs. time in plots known as seismograms. 

AE can be considered also as a form of microseismicity that is generated during 

the failure process as materials are stressed to failure. It is defined as the 



spontaneous release of localized strain energy in stressed materials (Grosse and 

Ohtsu, 2008). This energy can be recorded by transducers (sensors) placed on 

the material and analyzed for research to study the mechanism of failure (see 

Figure 1.1). 

STRESS 

Figure 1.1 Example of a material under stress. The source is represented by a release of 
energy in red. AE waves (black dashed Lines) move in a spherical path reaching the walls of 

the medium. 

The sources of AE signals have widely varymg characteristics due to the 

differences in medium and modes of failure. Monitoring of continuous AE can 

be used to control the operation of machines, or to locate the origin of 

earthquakes or defects. Earthquake location has historically depended upon the 

ability of human analyst to estimate arrival times. During generation of AE two 

waves are generated, a P-wave and an S-wave. P-wave has an early anival 
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which is nonnally two times that for an S-wave. So first arrivals are P-waves 

followed later by S-waves. An an-ival time of a seismic signal is considered a 

first break difference between the signal and the noise background. 

Generation of AE refers to the source and how it is produced, naturally or 

induced. Detection and analysis involves human interaction. Most acoustic 

emission signals are at levels which are outside the nonnal range of the human 

ear and for visualization and analysis require the use of electronic 

instrnmentation due to the amplitude and frequency of the signals. 

Detection and classification of events typically needs an experienced analyst. 

This method is known as the manual method. And the person who manually 

analyzes these signals are known as seismic analyst, this person detects and 

picks the arrival time of an AE signal. An event is also known, as an AE signal 

or a group of signals, which possesses certain amplitude and frequency 

characteristics. The number of events generated depends on the magnitude and 

rate of stress application and the material tested. The number of recorded signals 

depends on the number of sensors used to capture the events and the number of 

signals that are finally captured can be quite large (For an in situ hydraulic 

fracture experiment, the number of events range from lO0's to 1 000's) . 

As mentioned before, localization of the AE events plays an important role in 

detennining the characteristics of a mate1ial. AE signals vary considerably in 
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frequency and amplitude. These signals must be classified to differentiate a true 

AE signal from noise or a false signal generated from echoes or external noise 

(see figure 1.2). Following a perfect classification, only true AE signals remain. 

The next step is to extract arrival times of first and subsequent waves in these 

signals. The ability to perfonn accurate automatic classification and aITival 

picking on a large number of signals remains a serious challenge facing the 

microseismic and seismological community. The routine classification and 

picking is done manually by visual inspection of each signal. For practical 

applications this is time consuming and demands experienced personal. 

The best picking system widely recognized is the human analyst (Alderson, 

2004). Manual picking remains as one of the slowest and most repetitive tasks. 

Analysts are slow, and sometimes they produce questionable results due to the 

boredom induced by the highly repetitive nature of arrival picking and visual 

inspection for classification, especially during long periods of intense seismic 

activity (Alderson, 2004). 
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Figure 1.2 Example of AE signals obtained ji-om a hydraulic fi'acture event. Top: waveform 
with low signal amplitude but with a distinct arrival. Bottom: signal with a better signal to 

noise ratio (SNR). 

AE events are very simply signals. Signal processing techniques, widely used in 

areas as electrical engineering, system engineering, and applied mathematics, 

deals with the operations and analysis of signals ( continuous or discrete, time or 

frequency) to enhance, extract or limit infonnation content. 

The advances in areas as digital signal processmg (DSP) are applied across 

many disciplines. Engineering, aerospace, electronic, medicine and earth 

sciences just to name a few. The world is filled with signals: voltages generated 

by the heart and the brain, radar and sonar echoes, seismic vibrations and 

countless other sources. DSP is the tool and the science of using computers to 

analyze these digitized and discrete signals. 
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Cunent AE analysis methods require the user to have an understanding of the 

relationship between the source and the resulting wavefonn characteristics, and 

then analyze the signals by visual inspection to classify and choose the anival 

times. When an experiment is carried out, many events occur. Thus, methods 

that can automatically analyze the data and extract infonnation from these 

signals, allow timely decisions to be made, and reduce needs for skilled 

personal. . 

Challenges to be addressed by automated classification and detection of arrivals 

can be summarize as follows: 

• The number of events is large; norn1ally around l00 ' s to l000 's or even 

more occur. If we multiply this number by the number of sensors used 

(in our experiment 16 sensors are used) we have an extremely large 

number of signals to analyze. 

• An event differs from others by amplitude, frequency and also in the 

number of sensors capturing the signal. AE events from HF are further 

shaped by their radiation patterns and path dependent losses due to 

heterogeneity and attenuation. 

• The background noise is different for every signal. This background 

n01se mcreases the enor in manual classification and anival 

detennination. 
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• Except for the most impulsive onsets, equally competent analyst will 

pick onsets at different times. 

The main purpose of this work is to develop an automated way to classify and 

pick the first wave arrivals (P-wave signals) from large volumes of digital 

microseismic signals. The foundation for this investigation is in exploiting the 

amplitude and frequencies of the recorded signals and developing an algorithm 

for classification. 

1.1 Motivation 

A strong motivation for accurate AE event detection and location of seismic 

activities is to duplicate or even replace the perfonnance of an expert operator or 

seismic analyst. Since the beginnings of AE and its acquisition, the problem of 

the data volume, false events and noise has limited studies, application and 

analysis of the results. 

Hydraulic fracture is a common technique that improves well production and 

extraction of oil and gas, especially in tight fonnations like Barnett shale 

(Castano, 2010) and it is critical to the future development of shale gas and tight 

gas resources for the U.S. and the world. The hydraulic fracture processes and 

the nature of associated AE events are complex. This makes automatic 

processing challenging. This thesis work will try to improve the process of 

classification and arrival picking of AE events generated during hydraulic 
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fracture experimentation m laboratory scale. The results obtained by the 

automated process will be compared to the results obtained by the se1sm1c 

analyst. 

1.2 Research Objectives 

The principal objective for this research can be summarized: 

Generate an automated computer alg01ithm that can duplicate the 

perfonnances of a human operator to classify and pick the anival time of 

AE signals generated by HF process. 

Other objectives or sub-objectives of this research are: 

a. Generate results m a form compatible with other post-processing 

programs. 

b. Analyze AE associated with hydraulic fractures to detennine AE sources 

(location), focal mechanism and source parameters. 

c. Initial classification to eliminate false events and save only the events 

and signals that meet certain user characteristics. 

d. Classification of "good events" and "bad events" in order to analyze the 

best events with the automated arrival picking method choose. 
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1.3 Acoustic Emission Signals 

It is generally accepted that any kind of material generates a sound or tick when 

is stressed to failure; some sounds are generated by the sudden change in the 

crystal structure. AE waves in general, are elastic waves in a solid. The 

frequency range of the radiated energy covers a wide frequency spectrum, 

ranging from audible to ultrasonic (Grosee and Ohtsu, 2008). In laboratory 

experiments we detect ultrasonic waves. 

A variety of tenns, including AE, microseismic activity, seism-acoustic activity, 

subaudible noise, roof and rock talks, elastic shocks, elastic radiation and micro

earthquake activity are utilized by various disciplines to denote this phenomenon 

(Hardy, 2003). Throughout this thesis, this phenomenon will be referred as 

Acoustic Emission/ Microseismic (AE/MS) activity. 

This thesis is focused on the techniques used in the geotechnical areas. In 

geologic materials the origin of AE/MS activity appears to relate to the process 

of deformation and failure which are accompanied by a sudden release of strain 

energy. AE/MS activity may originate at the micro-level as a result of 

dislocations and at the macro-level by twinning, grain boundary movement, or 

initiation and propagation of fractures through and between mineral grains, in 

the mega-level it will be found by fracturing and failure of large areas of 

material or relative motion between structural units (Hardy, 2003). 
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Lavrov (2005) also defines an acoustic emission as a phenomenon of emitting 

elastic waves as a result of i1Teversible or pa1iially reversible changes in the 

structure of a solid under the action of various external and internal physical 

factors. 

Muravin (2008) defines an AE em1ss10n as a phenomenon of sound and 

ultrasound wave radiation m materials undergoing defonnation and fracture 

processes. 

1.4 Arrival Picking Theory 

The true onset time of a seismic signal could be defined as the moment when the 

first energy of the particular signal arrives at a sensor. Every signal is normally 

identified by a difference in amplitude and frequency content, or even wave 

pola1ization from the background noise. 

The onset time is usually picked as the point where the difference from the 

background noise first occurs (Leonard, 2000), (see Figure 1.3). Nonnally an 

experienced analyst is able to pick an arrival that is hidden in noise based on 

experience (Leonard, 2000). 

Methods for reducing the noise without distorting the signal will nonnally result 

in an earlier a1Tival time being picked (Leonard, 2000). Filtering or noise 



reducing techniques need to be applied with caution so they do not eliminate the 

real arrival time. 
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Figure 1.3 Example of a HF signal. Red line show the arrival acquired by an automated 
method. The dashed yellow lines show the amplitude of the background noise. 

1.4.1 Automatic Time Pickers 

An automatic arrival time picker is a system able to emulate the behavior of an 

experienced analyst in the picking of the onset time from an AE arrival. The 

process is shown schematically in figure 1.4 as an input - output functional. The 

input will be the signal or group of signals previously selected as a real seismic 

event and the output is the arrival time picked for that group of signals. 
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INPUT: signals 
( digital signals in 

time) 

OUTPUT: Table 
( arrival time in 

µsec) 

Figure 1.4 Input- output block diagram representation of the automatic picking process to 
extract the arrival time of a signal or group of signals. 

It is important to differentiate between a detector and a picker. A detector is able 

to recognize an AE event over the background noise without picking the arrival. 

In other words a detector scans an AE signal and determines if it is an event that 

meets the characteristics set by the detector and if the quality is sufficient for 

storage, while a picker performs more precise analysis required for hypocenter 

location and further study. The most important difference between a time picker 

and a phase detector is the required precision of timing of the onset of first 

arrival (Allen, 1982). 

It is important to mention that there is not a single method that ensures 

consistent onset time picking for every arrival. Any particular method will fail 

when the difference between the noise and the signal is small, particularly when 

the Signal to Noise ratio is low (Bai and Kennet, 2000). With this understanding, 

it is necessary to analyze which automatic method will be the most robust and 

satisfactory. 
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Bandpass filtering will not work when the noise and the signal have almost the 

same frequency content (Bai and Kennet, 2000). This occurs due to the 

reflections of the original waves between interfaces and discontinuities on the 

medium. Most significant reflectors are the walls of the sample that reflect and 

send back the signal as an echo with frequencies close to the fundamental. 

1.5 Hydraulic Fracturing 

Hydraulic fracturing is a tool to enhance the extraction and production of an 

oilfield, is commonly known as a stimulation technique that is applied to 

increase the production rate and enhance hydrocarbon recovery. In the 

laboratory, these scaled experiments are used to understand the field techniques. 

1.6 Background History on AE 

According to Scott (1991) and Muravin (2008), the first documented 

observations of AE may have been made on the 8th century by an Arabian 

alchemist, Geber, who describes the "harsh sound or crashing noise" emitted 

from tin. He also describes iron as "sounding much" during forging. But 

probably the first practical use of AE was by pottery makers, thousands of years 

before recorded history, to assess the quality of their products (Muravin, 2008). 

The successful application of AE in different areas like detection and location of 

faults on pressure vessels, damage in composites, monitoring of civil 
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engineering structures ( e.g bridges, reactors, platfonns, pipelines, etc.) and in 

general in the area of geotechnical engineering has been creating different 

branches and rapidly advancing new techniques. 

The first experiments using AE were related to the measurement of the 

mechanical stability of rock materials and the associated rock structure in the 

mines and tunnels. In the late 1928, A.F. Ioffe published a paper, "the physics of 

crystals," which can be considered one of the first researches on AE in rocks 

(Lavrov, 2005; Scott, 1991, and Muravin, 2008). Ioffes' s paper mentioned that 

each particular event on the deformation of rock salt is accompanied by a 

"noise" and indicates the possibility of using this noise for studying the nature 

and behavior of the deformation. During the 30' s, Foster and Scheil (1936) 

discussed the clicks which occurs during the formation of martensite in high

nickel steel measuring the small voltage and resistance vaiiations caused by 

sudden transfonnations in this materials Scott, (1991) and Muravin, (2008). 

By 1941, two researchers of the U.S Bureau of Mines (USBM), Obe1i and 

Duvall, discovered that a stressed rock pillar appeared to emit micro level 

sounds. This discovery was observed in a laboratory and called in nontechnical 

terms as "rock talks" (Hardy, 2003; Scott, 1991). Mason, McSkimin and 

Schockley, (1948), suggested measuring AE to observe the moving dislocations 
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by means of stress waves they generated, on ultrasonic of twinning in tin (Scott, 

1991; Muravin, 2008). 

Later, on the 50's, AE was recognize as one of the best ways to monitoring rock 

fractures generated in stressed rocks in coal mines (Lavrov, 2005). In 1950, 

Josef Kaiser (Gennany) used tensile tests to detennine the characteristics of AE 

in engineering materials. The result from his investigation was the observation 

of the irreversibility phenomenon that now bears his name, the Kaiser Effect, 

(Hardy, 2003; Scott, 1991; Muravin, 2008). It is generally known that his 

research represents the beginnings of AE as practiced today (Scott, 1991). The 

first extensive research after Kaiser was done in the United States by Schofield 

in 1954. Schofield investigated the application of AE in the field of materials 

engineering. He concluded that AE is mainly a volume effect and not a surface 

effect (Scott, 1991 ; Muravin, 2008). 

During the 60' s, according to Muravin, (2008), AE start to be used for true 

industrial applications. The first test in the USA was conducted by the aerospace 

industry to verify the integrity of the Polaris rocket motor for the U.S. Navy. 

During the following years, 1963-65 Dunegan, suggested the use of AE for 

examining high pressure vessels and founded the first company that specializes 

in the production of AE equipment (Muravin, 2008). 
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Due to the use of different terms, i.e., acoustic emission or microseismic activity 

to denote the general phenomenon of the analysis of noise created under stress 

in different materials, the research and the associated technical publications in 

the field have been widely scattered throughout various areas of engineering and 

science. Around the 70' s and 80' s as a result of the continuing efforts of 

Acoustic Emission Working Groups in the USA (AEWG), Europe and Japan; 

different Symposia sponsored by the American Society for Testing and 

Materials (ASTM), AEWG, and the Society for Nondestructive Testing (ASNT) 

joined together to integrated the different fields into a common language and 

share all the infonnation related; workers in different disciplines are becoming 

better acquainted with the extensive literature available for the subject (Hardy, 

2003). Today, AE is a commonly method used in different fields besides 

geotechnics and petroleum engineering. 

1.7 Synthetic Signals 

In order to determine how effective the automatic picking algorithm is, it is 

necessary to generate synthetic signals that emulate or try to emulate the 

behavior of AE signals. 

The principal characteristics of synthetic signals could be summarized by: 

• Known arrival time location 

• Controllable amplitude 
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• Controllable frequency: singular and multi-tone. 

• Repeatable 

A test has been prepared to examine the behavior of the automatic picking 

algorithm. One wavefonn recorded as AE wave is equivalent to the sum of 

sinusoidal waves with a principal fundamental frequency. Our synthetic AE 

signal S(t) consist of an exponentially decaying sine wave with a dominant 

frequency, detennined statically on several samples of real AE signals using the 

analysis of the fundamental frequency peak in the Fast Fornier Transfonn (FFT). 

S(t) = Apexp (-at)sin (wt) 

Where AP correspond to the amplitude of the sine wave with w frequency in Hz, 

which is modulated by the exponential decaying curve by the factor a. The 

signal's S(t) frequency, w, is detennined to be 350 kHz. The synthetic signal is 

illustrated in the figure 1.5, where the arrival time has been selected at t = 

60 µsec. 
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Figure 1.5 Synthetic signal S(t). TOP: time signal with a clear arrival time located at 60 µsec. 
BOTTOM: spectral bandwidth representation of signal. ZOOM: spectral bandwidth around 

350 kHz. 

Real AE signals are observed mixed with noise. Sources of noise are produced 

by electronic equipment and echoes produced by the wave reflected between the 

impedance contrast inside and outside the rock. The noise is distributed in and 

around the bandwidth of the true signals. These two types of n01se are 

simulated. Background n01se which is normally produced by electronic 

equipment can be reproduced by Gaussian White Noise with variable sampling 

ratio, number of samples and standard deviation. The other noise attributed to 

echoes and reflection of the wave inside the rock can be simulated by a multi

tone sine wave. This multi-tone signal will be represented by a group of 
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frequencies, also known as tones, between 10 kHz and 500 kHz. Figure 1.5 

shows an example of these two types of noise; Gaussian white and multi-tone. 

The FFT can be used to measure the RMS (root mean square) amplitude of the 

multiple frequencies and noise components of a digitized signal. This example 

of noise clearly shows how complicated the extraction of the anival infonnation 

can be. The arrival picking due to noise presented on the signals can be 

interpreted in different positions of time by different seismic analyst. The same 

is applicable to an automatic pick method; the arrival time could be corrupted by 

the noise presented on the signal. The amount of noise can be represented by the 

Signal to Noise Ratio (SNR). 

SNR is a measure that represents the difference between the level of signal and 

the level of noise, and is nonnally represented in dB (decibels) following the 

equation 1.1 

SNR = 20 log(~) [dB] 

Where, S represents the signal and N the noise or unwanted signal. SNR can be 

represented in different way and the definition has been analyzed and studied in 

different areas that require the handle signals. 
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Figure 1.6. Synthetic signal with noise added. TOP: time signal covered by Random Gaussian 
White Noise with a standard deviation of± 150 m V. BOTTOM: Spectral frequency content of 

synthetic signal plus Gaussian and multi-tone noise. 

I systematically varied the SNR to test the robustness of the picking method. 

Based on these tests, we can detennine at what SNR the picking will fail. Figure 

1. 7 shows the results of the signal with different SNR values. 
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original signal. 
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2 CLASSIFICATION OF EVENTS 

The cun-ent manual event classification has been recognized as a repetitive and 

difficult task. The repetition of a manual task brings numerous en-ors induced by 

the human mind acting in a situation of stress. Misclassification of large number 

of events and detecting good events in the presence of noise and reflections are 

the most commons problems encountered. This time consuming process and 

verification of en-ors becomes a costly task and limits the number of useful 

events. 

In the se1sn11c monitoring industry they commonly implement a simple 

amplitude threshold for event classification. A threshold value in amplitude is a 

common and easy method to differentiate the background noise (in the order of 

mV) from the amplified microseismic signal. Following a simple threshold 

classification method will capture reflections as "good" events. These reflections 

are in the same order of amplitude as a real signal and are able to change and 

complete mask the arrival of a seismic and the secondary S waves. 

Observation of large numbers of microseismic signals (specifically "good" 

events) shows that generally these signals have lower dominant frequency 

content, shorter P-wave event lengths and flatter time domain characteristics 

(Tan, et al., 2007). Based on these observations a classification algorithm can be 

developed involving different statistical measures. Statistical analysis provides a 
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a strong technique for microseismic signal classification which is superior to 

common industry techniques such as thresholding, amplitude analysis, 

frequency filtering and event-length detection. For this reason, an extensive 

testing was performed to determine which classification algorithms involving 

statistical analysis and other characteristics were most robust and accurate. 

The resulting characteristics are a multidimensional data set. Multivariate data 

reduction techniques such as principal component analysis (PCA) are able to 

reduce the multidimensionality of these data and simplify the classification. 

The purpose in this chapter is to analyze and combine microseismic signal 

analysis alg01ithms to develop a precise automatic classification method for a 

large numbers of AE signals. The system must be able to differentiate "good" 

signals and "bad" signals obtained from HF testing on rock samples. 

2.1 "Good" signals vs. "Bad" signals. 

After reviewing several HF experiments, certain characteristics differentiate a 

good signal from a bad signal. These characteristics are generally visible and 

easily extracted from the raw data. 

Good signals normally present the following characteristics (Tan et al., 2007): 

• Lower signal variance. Variance is a measure of statistical dispersion. It 

indicates how values vary about the mean. Larger dataset variances 
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correspond to larger expected deviations of arbitrary data points from the 

mean (Tan, 2007); which means that the signal is covered by noise 

acting randomly and dispersing the values. 

• Higher central data distribution. The distribution around a central point is 

another measure of randomness in the signal. This is measured by 

counting the number of points lying outside a mean centered window 

(Tan, 2007) 

• Less frequent oscillations. It is observed that the magnitudes of signed 

amplitude differences between adjacent time series data points were 

generally greater for noise microseismic traces compared to "good" 

traces (Tan, 2007). 

These characteristics added to an analysis of signal to n01se ratio (SNR), 

frequency and amplitude analysis and proper analysis of the pre-trigger signal 

and the arrival of the signal (acquisition process) will result in the right 

combination of characteristics for the classification process. 

Manually extracting these characteristics from a signal is both difficult and 

subjective. The human brain can interpret a noisy signal as a good one just 

because at first glance (no zoom applied) an arrival could be extracted. For a 

good analyst three levels can be easily distinguished in the classification of 

signals: 

24 



Good signals: like the one presented in figure 2.1, (SNR around 8 to 40 

dB) which have clear arrivals, low background noise and no reflections. 

Medium signals: figure 2.2, (SNR 8 to 2-3 dB), signals often classified 

by a non-expe1i analyst as "good" ones but a manual anival picking is distorted 

by the noise and normally incorrect. 

Bad signals: (see figure 2.3), are signals completely obscured by noise 

and reflections, with no possibility to extract an arrival or any other useful 

infonnation. 

An automatic method to classify these signals needs to not only differentiate 

clearly a good signal from a bad signal but also classify medium level signals 

that have an unclear arrival times and cannot be compared by manual methods. 

Figure 2.1 Example of a "good" signal 
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Figure 2.2 Example of a "medium" signal 

Figure 2.3 Example of a "bad" or "noise" signal 

In order to classify an event, a certain number of sensors must record "good" 

signals and be classified as "good". One of the final objectives of the HF data 

processed is to locate the hypocenter of the event. For a 3-dimensional location a 

minimum of 4 sensors is needed (Stein and Wysession, 2003), but in order to 

minimize the amount of uncertainty and error, more sensors are required. In 
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laboratory experiments, the minimum number of sensors needed to classify an 

event as "good" is defined to be six. 

2.2 Classification Algorithms 

Several criteria and algorithms have been used previously to classify signals. 

According to Tan (2007), the best results for classification are obtained using 

statistical approaches in combination with a proper method to reduce the amount 

of data obtained from every algorithm. Based on the nonnal characteristics 

found for good signals, seven different characteristics algorithms were designed 

to classify events. Combinations of these characteristics are finally used to 

classify the events along with the multidimensional data space reduction using 

principal component analysis (PCA). 

2.2.1 Signal to Noise Ratio (SNR) 

Signal is considered as the part of the data where we can extract all the 

necessary infonnation. On the other hand, noise is all the unwanted infonnation 

which also occur this portion of the data. A clear definition of signal and noise is 

subjective in many cases for the people who know how to interpret the data, for 

others, everything could be noise. 

In the acquisition procedure for HF signals (chapter 4) a configuration for pre

trigger setting in the acquisition software, gives us a beginning for the 

identification and differentiation between signal and noise. Signal pre-trigger 
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points determine the amount of memory to be included in the data capture prior 

to the trigger time. A trigger time is the moment in which a signal on any given 

channel crosses the threshold value (0.01 V). 

Figure 2.4 shows the acquisition of signals using a different percentage of pre

trigger points (10%, 25% and 50%) on pencil-break calibration test. These 

different configurations do not determine the exact an-ival time, just the point 

around which the arrival occurs . . Figures 2.1, 2.2 and 2.3 show an example of 

signals using 50% pre-trigger points on a total of 1024 data points, this means 

512 data points or 102.4 µsec of data before threshold value is reached. It is easy 

to identify that a "good" signal should behave as the one presented on figure 2.1 

and 2.4. 

The SNR is nonnally measured in the frequency domain by analysis of energy 

of the signals around the fundamental frequency. In the time domain, a special 

an-angement can be done taking the advantage that the number of pre and post 

signal arrival can be approximate from the pre-trigger points. To accomplish this 

analysis, a window after and before the pre-trigger point is taken and assuming 

that the window before contains noise and the window after contains the real 

signal. 
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Figure 2.4 Pencilbreak test using 10%, 25% and 50% (top to bottom) pre-trigger points, note 
that the total acquisition trace length is 2048 points 

Figure 2.5 shows an example of the window used in analyzing SNR during a 

lead-break calibration experiment (top), and a real HF signal (bottom). 
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Figure 2. 5 Windows for analysis of SNR. Red zone will measure unwanted noise signal. 
Green zone will measure tlte real signal obtained from an AE experiment. Tlte windows are 

set knowing tlte pre-trigge.r points setting. Top figure represent a 25% pre-trigger point. 
Bottom signal use 50% of pre-trigger points 

The following algorithm defines the value of SNR extracted from every signal: 

(
JL~ x~) Asignal . i- ws I 

SNR = 20log10 ( A _ ) = 20log10 
noise ~ ~,vs X-2 

Li i=O 1. 

Where, A represents the amplitude of the signals, ws the window for noise 

portion of signals (defined by pre-trigger) and ww the window for signal (same 
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number of points ofws). Results from SNR measurements in real and synthetic 

signals are summarized in the following tables: 

Event Reference SNR (dB) 

Good 30.84 

Medium 2.90 

Bad 2.72 

Table 2.1 SNR measurements 011 real signals figures 2.1, 2.2 and 2.3 showing different value 
levels 011 dB 

Event Reference SNR (dB) 

1 (Good) (Inf) No Noise 

2 (Good) 73.9 

3 (Good) 63 .2 

4 (Good) 54.4 

5 (Good) 42.8 

6 (Good) 33.24 

?(Medium) 23.44 

8 (Medium) 11.9 

9 (Noise) 8.56 

10 (Noise) 6.45 

11 (Noise) 3.44 

12 (Noise) 1.34 

Table 2.2 SNR measurements 011 synthetic signals using different levels of background noise 
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2.2.2 Threshold Percentage Algorithm 

Visual inspection and comparison of "good" and "bad" events provides several 

conclusions. Applying statistical analysis on time sequence plots shows that 

time is an imp01iant factor that contributes to variability of data. A time series or 

time sequence is a data set in which the observations are recorded in the order in 

which they occur (Montgomery, et al, 2001). A seismogram time series plot is a 

graph in which the vertical axis denotes the observed value of the variable (in 

our case, the amplitude in V), and the horizontal axis denotes the time (~Lsec). 

A pre-trigger signal is set during the acquisition that provides a time window for 

analysis of background noise. If the pre-trigger is set properly, the window can 

enhance the picking of the arrival time. Figure 2.1 indicates that this pre-trigger 

position is set at 100 µsec. This leaves enough time to analyze, differentiate and 

find the proper time difference where the signal arrives. 

Following Tan (2007), he concludes: "more noise data points would be expected 

to lie outside an arbitrary mean-centered amplitude window w than good data 

points." To validate Tan's conclusion, a defined window has been created 

around the mean, which is zero after DC removal from the signals. The 

threshold algorithm simply counts the number of data points lying outside the 

threshold limits -a ::; w ::; a. Table 2.1 and 2.2 summarize the percentage of 

outlying data points using a threshold value of a = ±0.01 . 
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Event Reference SNR (dB) % Points Outside 

Good 30.84 33.3 

Medium 2.90 36.2 

Bad 2.72 73.8 

Table 2.3 Percentage of points lying outside a window threshold value of 0.01 on real example 
signals from HF (see figures 2.1, 2.2 and 2.3) 

Event Reference SNR (dB) % Points Outside 

1 (Good) (Inf) No Noise 38.1 

2 (Good) 73.9 40.5 

3 (Good) 63.2 48.5 

4 (Good) 54.4 62.9 

5 (Good) 42.8 76.0 

6 (Good) 33.24 83.2 

?(Medium) 23.44 90.5 

8 (Medium) 11.9 95.2 

9 (Noise) 8.56 93.8 

10 (Noise) 6.45 95.7 

11 (Noise) 3.44 98.6 

12 (Noise) 1.34 98.9 

Table 2.4 Percentage of points lying outside a threshold window of 0.01 on synthetic signals 
with different SNR ratios 
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Tan's conclusion is derived from the Chebyshev's inequality, this analyzes the 

likelihood of dataset points existing a given distance away from its mean. A 

large data variance will correspond to an increase of data points lying outside a 

centered window 2a, according to the following equation: 

VAR[X] 
Pr(IX-E[X]l 2 a)::; 

2 a 

In this equation, Pr (IX - E[X] I 2 a), is the probability that a random vaiiable 

X will lie, at least, outside a distance a away from the mean E [ X]. 

Analyzing the results of tables 2.1 and 2.2, the signals with a high SNR 

(generally known as "good" signals) contains fewer outlying data points. 

2.2.3 Zero Crossing's Algorithm 

According to Tan, (2007): "microseismic noise signals tend to oscillate more 

frequently about the time axis and that magnitudes of signed amplitude 

differences between adjacent time series data points are generally greater 

compared to good traces." These conclusions are also derived by visual and 

statistical interpretations. 

To evaluate Tan's conclusions, an algorithm that counts the number of zero 

crossings over a defined window in a signed amplitude range - z :::; v ::; z was 
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developed. The algorithm first removes all the data-points that fall within the 

defined window in order to removes low-amplitude noise (Tan, 2007). 

The amplitude of adjacent data-points on noise signals generally vary on greater 

than good signals (Tan, 2007). So the step that eliminates the low-amplitude 

data points is trying to preserve sign changes but eliminate this change on 

"good" signals to enhance the difference between "good" and noise signals. 

Zero-crossing alg01ithm generates a TRUE immediately after the transition 

occurs on any direction (minus to plus or plus to minus) and finally counts the 

total number of "true" and generates a percentage of zero crossings over the 

total number of points. This algorithm was tested on real and synthetic signals. 

Table 2.3 and 2.4 shows the result on the percentage of zero-crossing with low

amplitude noise elimination. 

Event Reference SNR (dB) % Points Outside % Points Outside 

(Window= 0.01) (Window = 0.03) 

Good 30.84 3.32 1.56 

Medium 2.90 7.62 4.49 

Bad 2.72 3.32 1.95 

Table 2.5 Percentage of zero crossings count on real signals using 2 different windows of 0.01 
and 0.03V 
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Event Reference SNR (dB) % Points Outside % Points Outside 

(Window= 0.01) (Window = 0.03) 

1 (Good) (Inf) No Noise 6.4 4.8 

2 (Good) 73.9 7.4 4.8 

3 (Good) 63.2 11 5.2 

4 (Good) 54.4 17.2 5.8 

5 (Good) 42.8 24.6 13 

6 (Good) 33.24 31.6 21 

7(Medium) 23.44 35.6 27.8 

8 (Medium) 11.9 41.2 37.6 

9 (Noise) 8.56 44.6 40.6 

10 (Noise) 6.45 44.2 41.2 

11 (Noise) 3.44 48.4 46.2 

12 (Noise) 1.34 49.4 48 

Table 2.6 Percentage of zero crossings count on synthetic signals using to different values of 
windows 0.01 and 0.03 for low-amplitude noise reduction 

Tabulated results show a clear incremental changes in the percentage of zero 

crossings (using a window for low amplitude noise reduction) when the SNR is 

reduced. Note that noise events generally have a significant number of crossings 

to zero in comparison with a good signal. This indicates that zero crossing 

algorithms are able to quantify and differentiate the signals with different SNR. 
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2.2.4 Histogram Algorithm 

A histogram is a graphical representation of a frequency distribution. This 

distribution is a compact summarization of the data divided in different intervals 

or bins. A good differentiation between "good" and "bad" signals is that a "bad" 

signal tends to be distributed closely around the time axis ; this analysis can be 

measured by a histogram. 

Using a histogram for data distribution, it is possible to represent the number of 

signal data points that fall within disjointed amplitude ranges (Tan, 2007). To 

illustrate how a histogram can represent a signal distribution, it is necessary to 

divide the range of the data into intervals or bins. The number of bins depends 

on the quantity of data points and some judgment must be used to select an 

appropriate number. According to Tan (2007), the simplest way to determine the 

number of histogram bins is using the following algorithm: 

Where n is the total number of bins; max and min represents the largest 

positive value and the largest negative value, respectively and b represents the 

width of every bin. An important issue when creating a histogram is to 

detennine the optimal width, b, or analyzing the equation, the appropriate 

number of bins. 
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Tan (2007) tried to analyze and discuss three well known equations for an 

optimal choose of b: Sturges (1926), Scott (1979) and Freedman and Diaconis 

(1981 ). As a general conclusion, the best solution to determine this number is to 

do it empirically. No mathematical relationship concerning optimal histogram 

bin width has been developed for all types of datasets. 

The histogram parameters for empirically determined the number of bins are 

selected from every signal. For example, using as reference the dataset of the 

figure 2.1, 2.2 and '2.3 that corresponds to a "good", "medium" and "bad" 

signals and using a number of 99 bins, the central distribution diagram or 

histogram with DC eliminated can be analyzed on the following figures: 
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Figure 2.6 Histogram distribution plot corresponding to "good" signal in figure 2.1. The 

extreme values are max= 162. 45 mV and min= -192. 31 mV using 99 bins and DC 

component elimination. The max bin corresponds to the number 55 with 27% data points of 

the total number of data points. 
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Figure 2. 7 Histogram distribution plot corresponding to "medium" signal in figure 2.2. The 

extreme values are max= 169. 75 mV and min= -199. 58 mV using 99 bins and DC 

component elimination. The max bin corresponds to the number 55 with 5.86% data points of 
the total number of data points. 
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Figure 2.8 Histogram distribution plot corresponding to good "bad" signal in figure 2.1. The 

extreme values are max = 70. 99 mV and min = -63. 48 mV using 99 bins and DC 

component elimination. The max bin corresponds to the number 51 with 2.83% data points of 
the total number of data points. 

A good signal is easily identified in a histogram plot because present a 

concentration of data points on the middle bin or closer. A case using the middle 

bin and other using the maximum bin component will be analyzed on the 
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following tables using real and synthetic signals. It is important to mention that 

some signals do not have a maximum distribution on the middle bin of the 

histogram even if they have DC removed. 

Event Reference SNR (dB) % of Points in % of Points in 

Middle Bin (49) Maximum Bin (Bin #) 

Good 30.84 2.24 27 (Bin 55) 

Medium 2.90 5.08 5.86 (Bin 55) 

Bad 2.72 1.76 2.83 (Bin 51) 

Table 2. 7 Percentage of zero crossings count on real signals using 2 different windows of 0.01 
and 0.03V 

Results on table 2.7 confirm that the major concentration of data points on a 

histogram when DC removal is applied is not exactly on middle bin. Bin 55 was 

used specifically on a "good" signal. The alg01ithm is able to find this maximum 

bin and is used for comparison. 

Event Reference SNR (dB) % of Points in % of Points in 

Middle Bin ( 49) Maximum Bin (Bin #) 

1 (Good) (Inf) No Noise 3.4 49.5 

2 (Good) 73.9 3.4 36.9 

3 (Good) 63.2 7.7 47.0 
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4 (Good) 54.4 8.1 29.0 

5 (Good) 42.8 8.5 22.5 

6 (Good) 33.24 8.2 14.3 

7(Medium) 23.44 7.0 9 

8 (Medium) 11.9 3.7 4.6 

9 (Noise) 8.56 3.5 5.3 

10 (Noise) 6.45 3.1 5.1 

11 (Noise) 3.44 3.24 3.8 

12 (Noise) 1.34 3.1 3.2 

Table 2.8 Percentage of zero crossings count on synthetic signals using to different values of 
windows 0.01 and 0.03 for low-amplitude noise reduction 

Due to the random nature of the real and synthetic signals, the middle bin (bin 

49) does not contain the most of the data points as commented by Tan (2007). In 

our case and analyzing the results obtained on tables 2.7 and 2.8, an adjustment 

has been made to analyze the bin that contains or concentrates the majority of 

the data points. 

The middle bin does not show a normal tendency in the percentage of data 

points due to the variation of the SNR compared to those analyzed by Tan 

(2007). In other words, when the maximum bin data points are analyzed, the 

tendency shows that this percentage will reduce with the increasing of the SNR 

which will help differentiate between a "good" signal and a "bad" signal. 
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2.2.5 Frequency Analysis 

AE signals on geologic materials have also been described in tenns of their 

frequency spectra. In general, any transient signal can be considered as a 

superposition of a large number of sinusoidal signals of specific frequencies and 

amplitudes. The conversion between time domain (amplitude vs. time) and 

frequency domain (amplitude vs. frequency) can be expressed mathematically 

by the Fourier integral, following the general form : 

1f00 

S(t) = - S(w)cos[wt + 0(w)]dw 
1[ 0 

Where w = 2rr f; S ( t) represent the amplitude of the wave in the time domain; 

S ( w) represents the amplitude of the wave in the frequency domain; f is the 

frequency; t is the time; and 0 ( w) is the phase factor. 

For a continuous signal, frequency domain can be determined using the Fourier 

transfonn, which can be defined as 

S(f) = L: s(t)exp (- j2rrf t)dt 

Figure 2.9 shows the signal corresponding to a "good" event and its associated 

frequency spectra. The frequency spectra show components that reach 2.5 MHz 

that corresponds to the Nyquist cutoff frequency; however, the major frequency 

components are in the range of 200 - 500 kHz. 
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It is possible to compare the frequency content of different signals obtained from 

an HF experiment. Figure 2.10 and 2.11 shows the frequency content of a 

"medium" signal and a "bad" signal respectively. 

Figure 2.9 TOP: A "good" signal from an AE event in a HF experiment in the time domain. 
BOTTOM: Frequency spectra using RMS magnitude. 
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Figure 2.10 TOP: A "medium" signal fi'om anAE event in a HF experiment in the time 

domain. BOTTOM: Frequency spectra using RMS magnitude. 

Figure 2.11 TOP: A "bad" signal from an AE event in a HF experiment in the time domain. 

BOTTOM: Frequency spectra using RMS magnitude. 
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2.2.5.1 Primary Frequency (Characteristic frequency) 

Another characteristic of every signal is its primary frequency which contains 

important diagnostic information. I attempt to analyze the primary or principal 

frequency characte1istic of events but these too vary with signal quality, as one 

would expect. For a "good" signal there is nonnally a dominant narrowly 

defined peak frequency. 

On a "medium" signal the frequency spectrum is spread around different 

frequencies. Even if the maximum peak it is possible to be detected, this peak 

appears to be dispersed over different frequencies. For a "bad" signal, the 

frequency is also lower than a "good" signal. This is due to the reflection 

content on this signal. 

Ohmaka and Mogi (1981) mentioned this difference of the frequency 

dependence of the quality of the signals in practice; one emission event differs 

from another in both the quality of signal observed and its frequency content. So 

according to this, every signal will have a unique frequency spectrum and the 

analysis of the primary frequency could characterize and differentiate one signal 

from another. 

A summary of the maximum peak frequencies on real HF signals is shown on 

the following table: 
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Characteristic 
Event Reference SNR (dB) 

Frequency [kHz] 

Good P6HF E19S1 30.84 68.43 

Good Pl0HF ElSl 51.38 268.82 

Good Pl5HF E8S1 55.72 83 .80 

Medium 2.90 268.82 

Bad 2.72 68.43 

Table 2.9 Primary or characteristic Ji·equencies from real HF events 

It is difficult to find a pattern in the behavior of the characteristic frequency of 

the signals. As mentioned by Niwa et al. (1981), the frequency content of the 

AE waveforms depends on the cracking mechanism, the ray paths and 

attenuation in the sample. It is also possible to find a difference in the frequency 

behavior with different time periods in the sample experiment, this is mentioned 

by Sondergeld and Estey (1981) and Chitrala et al., 2010. 

Analysis of primary frequencies of synthetic signals will be controlled by the 

principal frequency of the signal, which is I fixed at 350 kHz, and the amount of 

noise added to the signal. Table 2.10 shows this difference for different 

increments of signal to noise ratio (SNR). 
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Primary 
Event Reference SNR (dB) 

Frequency [kHz] 

1 (Good) (Inf) No Noise 350 

2 (Good) 73.9 350 

3 (Good) 63.2 350 

4 (Good) 54.4 350 

5 (Good) 42.8 350 

6 (Good) 33 .24 350 

?(Medium) 23.44 350 

8 (Medium) 11.9 345 

9 (Noise) 8.56 345 

l0(Noise) 6.45 345 

11 (Noise) 3.44 335 

12 (Noise) 1.34 350 

Table 2.10 Primary frequencies for synthetic signals according to variation 011 SNR. 

2.2.5.2 Time vs. Frequency analysis 

Therefore, different ways to visualize and interpret the behavior of a wavefom1, 

the two most common are time and frequency domain. AE signals are 

commonly analyzed in either the frequency or time domain. Amplitude vs. time 

(time domain) shows how the amplitude of the wave varies positive or negative 

with time. Amplitude vs. frequency (frequency domain) shows the spectral 
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content or the frequency components of the signal and helps to highlight 

information that might be hidden in the time domain. 

Another useful way to analyze the behavior of a signal over the time is using the 

short-time Fourier transfonn (STFT) spectrogram which provides the power 

(square of the magnitude) spectra over sh01i time scales. The STFT is the 

simplest and computational fastest method to analyze a non-stationary signal 

(signal that frequency content varies over time). I compute the STFT using the 

following equation: 

mdM+!::.-1 
2 

, j2nni 
STFT[m, n] = L s[i]y* [i - mDM]exp (- N ) 

i=mdM-L/2 

Where, s[i] is the signal, y is the window function , L is the window length, dM 

is the time step and N is the number of frequency bins. This function uses a 

sliding window to divide the signal into several blocks and applies the Fast 

Fourier transfonn (FFT) to each data block. Window tapers are useful in 

reducing spectral leakage, in our case a universal window called Hanning is 

used. The window function determines the resolution of the STFT. For better 

resolution a longer window length should be used but this causes a worse time 

resolution (Lab VIEW Help, 2010). 
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Figure 2.12 (middle) shows an example of an STFT spectrogram on a "good" 

signal obtained from a real HF experiment using an automatic adjustment of the 

time steps that does not exceed 512 bins (recommended by NI.com) and a 

Hanning window with a length adjusted at four times the time steps. Hanning 

window helps to control the relationship between the time resolution and the 

frequency resolution of the time-frequency representation. 

On a spectrogram is easily to identify different zones that correspond to the 

behavior of the frequency and amplitude of the signal over the time. Frequency 

is represented on the y-axis and the amplitude by the color density, while the x 

axis represents the time in µsec. 
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Figure 2.12 TOP: Time domain representation of a "good" signal. MIDDLE: STFT

spectrogram from a "good" signal obtained from a real HF event. BOTTOM: mean 

instantaneous frequency (MIF) obtained from the spectrogram showing the relation between 

frequency and time. 

A "good" signal is expected to have a "quiet" zone which contains only low 

level background noise ( < O.OlmV). The length of this zone depends on the 

selection of the pre-trigger point (for figure 2.12 the pre-trigger is selected at 
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100 ~Lsec). A second zone will contains the HF signal which is recognized by a 

high concentration of colors and a different frequency behavior. 

The spectrogram shows the relation between time, frequency and amplitude. For 

a single relation and visualization between frequency and time a mean 

instantaneous frequency (MIF) is computed. The mean frequency of a signal 

describes the central distribution of the spectrum. The spectrum of non

stationary signals (signals who changes frequency in function of time) is time 

dependent and therefore the mean frequency of non-stationary signals is time 

dependent. The time dependent mean frequency is called the mean instantaneous 

frequency (MIF). The MIF reveals how the central frequency of the signal 

changes over time. The following equation defines the MIF of a signal : 

J~
00 

wSP(t, w)dw ( w) t = _ CX) _____ _ 

J_
00 

SP(t, w)dw 

Where SP(t, w) represent the spectrogram of the signal and w the frequencies 

involved on the signal. Figure 2.12 (bottom) shows an example of a MIF plot for 

a "good" signal. It is possible to clearly identify the different frequency zones 

and its change over time. 

Before the arrival of the signal a zone with frequencies around 500 kHz up to 1 

MHz represent the background noise. Following the arrival a reduction in the 

frequency is visualized indicating that the arrival has, in this case, a frequency 
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around 200 to 500 kHz. This behavior of the frequency of the signal is a 

characteristic that differentiate a "good" signal from a "bad" signal. Figures 

2.13 , 2.14 and 2.15 shows an example of another "good" signal obtained from a 

different experiment and a "medium" and "bad" signal obtained from real HF 

experiments respectively. 
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Figure 2.13 Example of a STFT spectrogram and MIF of a "good" sfgnal obtained from a 
different experiment. The path mentioned/or figure 2.12 ts repeated. 
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Figure 2.13 shows an example of a "good" signal from a different experiment. 

The pattern that is mentioned for figure 2.12 is repeated and two different 

sections are distinguished; the "quiet" and the signal zone, before and after the 

pre-trigger point. 
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Figure 2.14 STFT Spectrogram and MIF for a "medium" signal. The complexity oftlte signal 
is evident on tlte MIF (bottom) plot. 
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Knowing the pre-trigger point it is possible to analyze the behavior of the 

frequency in the signal zone (where the arrival is expected) and perform a 

statistical analysis to obtain the mean, median and mode of the frequencies for 

this zone, in order to differentiate a "good" signal from a "bad" signal. 
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Figure 2.15 STFTspectrogram and MJF for a "bad" signal. The range_offrequenciesfor this 

signal is evidently different from a good signal. The range of frequencies corresponds to the 

capture of a signal from a real event. 
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Analysis of MIF is a good indication that "bad" signals are not always obscured 

by background noise but by echoes and reflections of original signals around the 

sample. 

Table 2.11 shows the statistical results obtained from MIF on HF signal from 

different experiments. It should be note that different experiments will produce 

different frequencies that differentiate a "good" signal from a "bad" signal. 

Mean Median Mode 

Event Reference SNR (dB) Frequency Frequency [kHz] 

[kHz]' [kHz] 

Good Pl0HF ElSl 51.38 343.84 289.92 289.33 

Good P15HF E8Sl 55.72 205.93 167.9 146.4 

Good P6HF E19S7 30.84 146.08 128.08 134.9 

Medium 2.90 278.09 285 .51 412.2 

Bad 2.72 126.3 96.9 80.15 

Table 2.11 Statistical frequency analysis of the signal portion obtained from MIF of different 
types of signals from HF experiments. 

Synthetic signals were also analyzed usmg STFT spectrogram and MIF 

statistical frequency analysis. Figure 2.16 shows a synthetic signal with a high 

SNR and is considered as a "good" signal. On MIF plot it is easy to identify the 
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different frequencies that represent the "quiet" zone (0 - 60 µsec) and the signal 

zone (from 60 to around 120 µsec). 
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Figure 2.16 STFTspectrogram and MIF plot from a synthetic signal with good SNR. 
(SNR=54.4 dB) 
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Table 2.12 shows the statistical analysis on MIF usmg synthetic signals. 

Analyzing the results from real and synthetic signals, it 1s possible to 

differentiate that nonnally the frequency of "good" signals is lower than the 

background noise, and higher than the frequency of reflection and echo signals, 

normally known as "bad" signals. 

Mean Median 
Mode 

Event Reference SNR (dB) Frequency Frequency 
[kHz] 

[kHz] [kHz] 

1 (Good) (Inf) No Noise 348.07 349.01 349.88 

2 (Good) 73.9 348.24 349.05 349.79 

3 (Good) 63 .2 348.72 349.59 350.47 

4 (Good) 54.4 350.68 350.29 349.57 

5 (Good) 42.8 352.35 351.78 349.90 

6 (Good) 33.24 372.51 360.89 352.76 

7(Medium) 23.44 407.90 373.58 351.98 

8 (Medium) 11.9 493.78 475.08 363.37 

9 (Noise) 8.56 576.83 550.26 359.62 

10 (Noise) 6.45 587.14 503.62 459.23 

11 (Noise) 3.44 723.11 654.61 616.34 

12 (Noise) 1.34 742.73 740.73 704.48 

Table 2.12 MIF statistical analysis for synthetic signals usmg different SNR levels. 
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2.3 Multidimensional Data Reduction 

A combination of algorithms or attributes has the highest potential for consistent 

data classification (Tan, 2007). According to Tan (2007), statistical algorithms 

like threshold, histogram and zero-crossing count were found to yield the best 

results in classification. It is important to mention that the characteristics of the 

signals on the field are different with the ones obtained on lab-scale. This 

depends on the nature of the fracture and also on the equipment used to acquire 

the signals. 

Different combinations of classification algorithms were tested to reduce the 

dimension of the data and simplify classification. Principal component analysis 

(PCA) is the multidimensional (also known as multivariate) data reduction 

technique used. 

Multivariate analysis use statistical techniques that consider two or more random 

variables as a single entity (Jackson 1991 ). For this case, 6 different variables 

were used; three proposed by Tan, (2007): threshold, zero-crossings and 

histogram and three more: the signal to noise ratio (SNR) and 2 obtained from 

the frequency analysis (primary frequency and MIF mean frequency). 

Tan concludes that using only three statistical algorithms (threshold, histogram 

and zero-crossing) yields the best results for classification. After reviewing our 
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results using different combination of algorithms, the best results were obtained 

using the threshold, mean of frequencies and the signal to noise ratio. 

2.3.1 Principal Component Analysis 

PCA is a way to identify patterns in data, and express the data in such a way to 

highlight their similarities and differences. The patterns that are expected in the 

data are generated by the different classification algorithms and using PCA to 

reduce the dimension of the data and finally make the decision of the difference 

between a "good" and a "bad" signal. 

The dataset generated by an experiment contains many variables, which makes it 

difficult is to extract a single discriminator. Mathematical theory pertaining PCA 

is encountered on Labview Help, Smith (2004), Jackson (2004) and Tan (2007). 

PCA has been applied in many different fields including geophysics, for 

electrofacies characterization, computer science for image processing and 

pattern recognition, astrophysics and neuroscience. 

2.4 Results 

A dataset of microseismic signals taken from a HF expe1iment is used to analyze 

the performance of the classification algorithms and the final result of the 

classification. The standard results of the classification are detennined by 

manual inspection. A single manual classification is made between "good", 

"medium" and "bad" events only for few events (for example lead break 
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calibration). On a large number of events, it is only possible to manually 

separate signals between "good" and "bad." It is necessary to remember that a 

"medium" signal is also considered as a "bad" signal, but a manual separation is 

also made because these signals represent the biggest challenge to manual 

classification. 

A good event is known as a collection of at least 6 "good" signals acquired by 

the sensors surrounding the rock sample (n01mally 14 to 16 sensors are used in 

each experiment). If at least 6 signals are classified as "good" signals, the total 

event is also classified as a "good" event. 

Tan (2007) suggested nonnalizing the algorithm's outputs for each signal of the 

dataset: "Nonnalization indicates that each algo1ithm measurement was divided 

by the largest value pertaining to that measurement over all examined 

microseismic files." 

A sample of 30 events was extracted and organized in the following order: first 

10 "good" events (160 signals), then 10 "medium" (160 signals) and finally 10 

"bad" events (160 signals). A total of 480 signals (16 signals for every event) 

are analyzed and the results for every classification algorithm are presented on 

figures 2.17 to 2.22, where y-axis the represents the value obtained from the 

algorithm applied and x-axis corresponds to every signal for every sensor in 

every event. 
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Figure 2.17 Normalized output from % of threshold value (value = 0. 01 V) 

Figure 2.18 Normalized outputji·om % zero-crossings (value=± 0.03V) 

Figure 2.19 Normalized output from% of histogram middle bin (99 bins used) 
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Figure 2.20 Normalized output from principalji·equency component obtained from FFT plot 

Figure 2.21 Normalized output from STFT spectrogram - MIF mean frequency 

Figure 2.22 Normalized output from signal to noise ratio analysis (Noise window= 0 to JOO 
µsec) (Signal window = 100 to 200 µsec) 
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A clear pattern is observed in figures 2.17, 2.19, 2.21 and 2.22 corresponding to 

threshold, histogram, MIF mean of frequencies and SNR algorithms. The pattern 

observed provides a clear differentiation between the first 160 "good" signals 

and the others. 

According to Tan (2007), the threshold, histogram and zero crossmgs, 

corresponding to statistics algorithms, are the ones that yield with the most 

accurate results in classification. Using PCA on the three algorithms outputs 

mentioned by Tan (2007), produces the results presented in figure 2.23. 
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Figure 2.23 First, second and third principal components obtained from PCA applied on 
titres/told, histogram and zero-crossing algorithms. Second and third component~ will be used 

to make the final decision and differentiation between "good" and "bad" signals. 
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It is clear that principal component 2, creates 2 zones that correspond to the 

"good signals" from 1 to 160 and "bad signals" from 161 to 480. Principal 

component number 3 defines the limit between a good and a bad signal. Finally, 

these two components will be used to differentiate a "good" from a "bad" signal. 

Figure 2.24 shows these 2 components plotted on the same graph. 
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Figure 2.24 Second and tltird principal components using J. Tan algorithms (threshold, 

histogram and zero-crossings). Principal component number 3 limits a good signal from a bad 

signal. 

The final step to determine if a signal is a "good" or "bad" uses the value 

principal component 2 (PC2), if this value is less than the one obtained from the 

principal component number 3 (PC3), the signal is considered as a "good" one, 

otherwise is considered as a "bad" signal. 
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if PC2 '.S PC3 "GOOD" signal 

if PC2 > PC3 "BAD" signal 

Based on these expressions, PCA was applied on the different combinations on 

the different algorithms created. The best results are summarized in the 

following table. The e1ror is counting in comparison against a manual 

classification of signals and events: 

Error on Error on TOTAL TOTAL 

Algorithms Classifying Classifying ERROR ERROR 
Combination 

Used Good Bad ON ON 

Signals Signals SIGNALS EVENTS 

Threshold 

1 Histogram 6 0 98. 75% 0% 

Middle Bin 

Threshold 

2 SNR 0 5 98.9% 0% 

Histogram 

Threshold 

3 MIF 26 0 94.5% 0% 

SNR 

Table 2.13 Total results from the best combmatwns of algorithms. All the combmatwns 
results with a 0% of error (comparison vs. manual classification) in event classification. 

Combination number 2 yields the best results in signal classification. 
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Figures 2.25 show the results from the second and third principal components 

using the combinations number 2 and 3. 
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Figure 2.25 TOP: Principal components 2 and 3 using the combination of algorithm 2. 

BOTTOM: Principal components 2 and 3 using the combination of algorithm 3. 

Testing on a diverse number of signals like the one presented on figures 2.24 

and 2.25 yields a perfect classification with no bad signals detection. This 
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perfection in not expected over all the datasets, but the demonstrated 

improvement after the application of principal component analysis is expected 

(Tan, 2007). Other results will be shown in chapter 5 for a complete set of 

signals from a real HF experiment. It will be demonstrated that the accuracy of 

classification depends on the diversity of the signal according to Tan, 2007. 

Principal component analysis was first analyzed in all possible combination of 

algorithms, but the best results were obtained using only 3 combinations given 

in table 2.13. 
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3 ARRIVAL PICKING 

One of the most important applications of AE data is detennination of AE 

events location from observations at multiple stations (multiple sensors). Arrival 

time-picking is a c1itical step in the analysis of AE data and is required for the 

location of events. To obtain an accurate location of an AE event, two factors 

are important to know; velocity of the wave in the specimen and arrival time. 

This investigation will focus on arrival time picking from P-wave arrivals 

obtained on hydraulic fracture AE events. 

After signal classification, only "good" signals should remain. These signals will 

be processed to extract arrival infonnation. Due to the number of signals, an 

automatic method must be used to process the signal and extract this 

information. Numerous methods for arrival picking have been applied over the 

years 

Energy, multi-window amplitude, S-transfonns and autoregressive techniques in 

time and frequency domains are just a few samples of algorithms commonly 

used recently in lab scale. Their accuracies depend on numerous factors: 

amplitude, SNR and frequency of the signals, among others (Munro, 2005). 

Techniques as short term average vs. long tenn average (STA/LT A) and 

modified energy ratio (MER) emerge from the others for their recognized 

accuracy and fast convergence. 
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Using synthetic and real data, a comparison between manual and automatic pick 

have been carried out using ST A/LTA and MER algorithms. Both ST A/LTA 

and MER techniques work well when signals have good SNR ratios. However at 

lower SNR (SNR < 10), the STA/LTA algorithms fails (Wong et al., 2009), 

which makes MER the technique that was choose to finally pick all the arrival 

times of the signals classified previously. 

Implementation of an automatic, fast and accurate method is highly desirable to 

process the amount of microseismic events. In order to get an accurate arrival, 

we implemented a process defined by R. Allen, which can be organized and 

structured depending on the type of signals used (Allen, 1982). 

Figure 3.1 Block diagram of logical structure used/or arrival pick of AE. (Adapted from R. 
Allen, 1982). 

According to R. Allen, the logical structure of all pickers is strikingly similar 

and could be divided into a 4 block decision structure. The first block 

corresponds to the input section and includes different options to "smooth" the 

signal. Filtering and averaging can be applied in this point with the concern to 

preserve signal frequencies, in order to discard DC and high frequency 

components. R. Allen mentioned this block as the one that applies the input 
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filter and the analog to digital converter. It have been mentioned that these 

signals change its frequency with time, so the frequency we are interested in will 

be centralized around the arrival. Based on previous research perfonned on AE 

signals, using a window of 5 µsec about the first arrival, the principal frequency 

is between 150 and 547 kHz for an Indiana Limestone (Chitrala et al. , 2010) . So 

in order to preserve the important infonnation, it is nonnally recommended to 

use a band-pass filter (50 kHz to 1.0 MHz). Several researches before have 

mentioned the concept: "the less filtering, the better the algorithm" (Douglas, 

1997); for this reason an extensive analysis on filte1ing techniques will be 

avoided (Munro, 2005), but open for a future work 

The second block is called the characteristic function (CF). Allen uses this block 

to generate a new time se1ies characteristic of the digital filtered signal that is 

going to be examined for changes indicating the presence of an arrival. This is 

the part where the algorithm will be used (MER, STA/LTA, among others). The 

CF can be as simple as an absolute value of the filtered trace. The detennination 

of which CF to use depends on the signal expected and the perfonnance required 

of the picker. 

For the third block another algorithm is used to finally make the determination 

of the arrival time. Allen declares that this block is used for the analysis on false 

results but it is also mentioned the complexity of the implementation and also 
' 
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the computer processing required for it. The decision could be made based on 

different thresholds values that are acquired after an analysis of hundreds of 

different signals (Allen, 1982). Threshold values will differ if the characteristics 

of the signals change and will make analyzing different samples using the same 

decision criterion algorithm impossible. 

The decision of which criteria to implement in the third block depends on the CF 

alg01ithm used. The third block is called, detennination of arrival time. In our 

case this block was used for a simple decision of arrival based on the CF. 

Algorithms implemented for this block will be discussed on every CF analyzed. 

The final block is called output post-processing. Allen uses this block for 

verification analysis of a tentative pick. A good algorithm minimizes the number 

of steps required for a final decision. In our case this block is simply used as a 

final presentation of the infonnation, a table showing the result of only the 

events and sensors previously classified as "good". The output is saved as 

* .LVM file whose format is compatible with Microsoft Office (Word and 

Excel). 

The final evaluation of picker perfonnance is carried out usmg a direct 

comparison of automatic and manual picks on real and synthetic data. The 

number of comparison with real data will be restricted to a few signals due to 
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the known error introduced by a manual hand pick on a big large number of 

signals. 

3.1 Arrival Picking Algorithms 

The arrival picking algorithm is implemented m the block 2 of the logical 

structure, which is called the characteristic function (CF). The final performance 

of the complete picker depends heavily on the choice of algorithm. An arrival is 

identified by a sudden change in amplitude or frequency, or both, in the time 

sequence series. The CF must respond to these changes as rapidly as possible, 

and, ideally should enhance the change (Allen 1982). 

The majority of automatic pickers are designed for online detection and timing 

of primary wave (P-wave) arrivals (Earle et al. , 1994) (reviewed by Allen, 

1982). Our goal is to implement a method that works after the hardware 

acquisition, detection and software classification of the signals. This is known as 

an offline method for detection where all the processing and analysis is done 

after the signals are acquired. 

3.1.1 Previous work 

A brief review of previous work will be discussed in this part of the chapter. 

Some algorithms will be tested and described in detail, others will simply be 

mentioned. 
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Absolute value CF(i) = IX(i)I is the most widely method used for detection of 

AE events and arrival picking even for signals with extremely low SNR. It is 

easy to compute but not viable to be used as a stand-alone arrival picker (Allen, 

1982). 

Energy analysis differentiates and enhances the SNR applying the following 

algorithm, CF(i) = IX(i)l 2
, in other words, energy algorithm enhance the 

amplitude differences of the signal, but not the frequency changes. 

Figure 3.2 shows an example of absolute value and energy algorithms applied 

for a real "good" AE signal. The arrival is visible; the absolute value function 

preserves the clean onset of the energy arrival which facilitates threshold 

picking. The direct method of absolute value is clearly not useful when a signal 

is dominated by noise; even at high amplitude levels the arrival could be lost. 

Figure 3 .3 shows how these methods are used for a "medium" class signal. In 

this figure the enhancement in amplitude of the energy method is better than the 

absolute value method (Bottom plot in figure 3.3). 
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Figure 3.2 TOP: real AE "good" signal obtained from a HF experiment. MIDDLE: Absolute 
value algorithm applied to the time series. BOTTOM: Energy algorithm applied to the same 

time series. 

Using the simple energy algorithm, it is possible to see a clear differentiation 

between signal and noise. This enhancement will be discussed later with 

ST A/LT A and MER algorithms that also use this advantage. 
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Figure 3.3 TOP: Real AE of a "medium" signal obtained from an HF experiment. MIDDLE: 

Absolute value algorithm applied to the original signal. BOTTOM: Energy algorithm applied 

to the signal. The energy algorithm provides a superior discriminator. 

Stewart (1977) uses a function that analyzes the differences in the incoming 

signal. This algorithm really tracks polarity changes, DXk = Xk - Xk-l where k 

represents the current time. The sign of the difference is compared with the 
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prev10us first difference and so on and the sign of this difference is taken 

(positive or negative). The signs are compared for a length of time, if the signs 

persisted for less than eight consecutive times, then the value of the modified 

signal (M DXk) is taken to be its current value increased by DXk , (Stewart, 

1977) and (Allen, 1982). According to Allen, with this technique slightly 

emergent onsets have a chance to be detected. 

Figure 3.4 plots the difference alg01ithm by Stewart. A clear enhancement of the 

signal is not visible and right arrival time is questionable, but the oscillatory 

nature and the direction of the first motion are preserved. 

Figure 3.4 Stewart (1977) one sample algorithm applied on a medium class signal (bo~~m). A 

clear improvement in the ability to pick the arrival is not evident; however, some ongmal 

characteristics of the signal are preserved. 
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After Stewart's algorithm is applied, an event declaration criterion needs to be 

used. The criteria use the absolute value of M DXk. For a final declaration time, 

a set of crite1ia and thresholds must then be met. The prime advantage of 

Stewart's function is that it is very fast to compute. It only involves addition, 

subtraction and comparison operations (Allen, 1982). 

Allen (1978) developed a detector based on an envelope that is equal to the 

square of the data plus the weighted square of the first derivative. 

E(t) = f(t) 2 + C2 + f'(t) 2 

C2 is a weighting constant, whose purpose is to vary the relative weight 

assigned to the amplitude and first difference depending on sample rate and 

noise characteristics. The processed data then is subjected to a set of logical and 

mathematical tests to obtain a final arrival pick (Withers, 1998). 

Baer and Kradolfer (1987) started to transfonn the signals based on the work of 

R. Allen. Some deficiencies were detected for the specific type of signals 

analyzed. Deficiencies like the strong sensitivity to frequency increase rather 

than amplitude which is characteristic on tele-seismic and regional 

seismological events. To overcome these deficiencies, a new CF similar to 

Allen's was implemented using energy analysis. 
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e(t)2 = y(t)2 + y(t)'2 * LY(t)2 
LY(t)'

2 

This function is called the envelope function (EF). Where y(Ois signal and y(t)' 

is the derivative of the signal. The sum is taken from the beginning of the signal. 

The final characteristic function (CF) is produced by a statistical test using the 

running average and variance of the function = (e(t)2) 2 , called the squared 

function (SF) in the following algorithm: 

) 
_ (SF(t) - SF(t)) 

CF(t - S(t) 

Where, SF(t) is the average of the SF, and S is its variance taken from the 

beginning of the series to the present point (Baer and Kradolfer, 1987). 

After the CF is obtained criteria are established to extract the anival time. These 

criteria depend on the CF being analyzed. A change in the principal 

characteristics of the signals (amplitude, frequency) will require a change in the 

criteria applied. 

Figure 3.5 shows an example of a CF obtained from a real HF "medium" signal 

using the Baer and Kradolfer algorithm. The signal contains a clear change in 

frequency which is visible in the previous figure 2.14. Here, the enhancement in 
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the CF is in the difference of amplitude where the peaks are obtained in the time 

position of the largest amplitude peaks of the original signal. 

Figure 3.5 BOTTOM: Characteristic function obtained using Baer and Kradolfer algorithm. 
This algorithm is sensitive to changes in amplitude. The large peaks correspond to the largest 

amplitudes of the original signal. 

To summanze, prev10us work can be divided or categorized into time and 

frequency domain, particle motion and pattern matching, among others 

(Withers, 1998). None of all the picker algorithms yield good results under all 

situations. Most of the pickers widely in use today are based on time domain 

methods. 
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Time domain methods are applicable to a larger range of signal types. The 

frequency of the signals does not behavior similar to the amplitude, and a 

manual picking is easier when the amplitude change rather than the frequencies. 

3.1.2 STA/LT A 

Short tenn average and long term average (STA/LTA) is classified as a time 

domain energy technique. The ST A/LT A algorithm evaluates the ratio of short 

to long tenn energy density (y(t) 2
). 

i 

STA=~ ~ y] 
ns L 

j=i-ns 

i 

LTA = :l L Y] 
j=i-nl 

if j <= 0, set YJ = (Y1 + Yz)/2 

Here, ns is the number of data points (number of samples) taken for the window 

of the STA and nl the number of data points in the LTA. The long term average 

(LT A) characterizes the slow trend of signal energy, while the short term 

average (STA) is more responsive to sudden increases in energy (Oye and Roth, 

2003). 
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The ratio ST A/ LT A is used as a measure of the signal to noise ratio (SNR). 

When the ratio exceeds a pre-defined constant threshold, a detection time is 

assigned to that specific signal (Munro, 2005). Trying to avoid certain c1iteria 

necessary to make a final time decision of an arrival, Wong et al. , (2009) fonn 

the ratio from the derivative obtained from : 

Where s represents the ratio STA / LT A.The maximum value of the numerical 

derivative of the ST A/ LT A ratio is close to the first-break time of the first arrival 

(Wong et al., 2009). 
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Figure 3.6 STA/LT A ratio applied to real HF "good" signal with a high SNR. The peak of 
the derivative of STA/LT A ratio corresponds to the arrival time of signal. Window size 10/100 

for the sort and long term averages. 

This method works well on signal with a high SNR (see figure 3.6), g1vmg 

accurate results compared with manual result. If a signal has a low SNR (figure 

3.7), the algorithm begins to fail. Other criteria will be required to define the 

correct arrival of a signal. 
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Figure 3. 7 STA/LT A ratio applied to real HF "medium" signal with a low SNR. The peak of 
the derivate on STA/LT A ratio do not corresponds to the arrival time of signal due to the noise 

presented on the signal. Window size 1 Oil 00 for the sort and long term averages. 

The pre-trigger points (number of points before the threshold crossing) could 

generate false arrivals due to strong noise levels. Some of these pre-trigger data 

points could be erased to prevent this e1Tor and obtain more accurate arrival 

results but in more of the cases this type of signals will be classified as a "bad" 

signal. This presumes that only "good" signals arrive after the pre-trigger. This 

is generally true if the arrival on any of the 16 sensors triggers the acquisition 

The lengths of the windows used for STA/LTA depend on the type of signal. 

The ST A is usually longer than a few periods of the typical expected signal, and 
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the L TA is longer than a few periods of typically irregular se1sm1c n01se 

fluctuations (Munro, 2005). 

The typical range of frequencies expected for good signals is around 100 - 500 

kHz. The final value for ST A window was chosen between 2 to 10 µsec by trial 

and error, which corresponds to 10 to 50 data points and 500 to 100 kHz 

respectively. LTA (nl) window size has to be longer than STA window (ns) 

different window sizes were analyzed; a 100 µsec window gave the best results. 

Figure 3 .8 shows the manual pick of an arrival of a signal classified as a "good" 

signal which contains a high SNR (28 dB) without any filtering. This signal will 

be used to analyze and compare the response of the CF to different STA/LTA 

ratios. The results are presented on figures 3.9 to 3.14. The maximum peak of 

the CF in the ST AIL TA ratio is closer to the arrival signal but a correction needs 

to be applied. 
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Figure 3. 8 Manual pick of a "good" signal used to demonstrate the CF obtained from 

different STA/LT A ratios. The arrival is picked manually at 103.21 µsec. Automatic pick is 

sensitive to the window lengths used in the STA/LT A algorithm (see Figures 3.9 -3.14 below). 
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Figure 3.9 Manual (blue line) vs. automatic (red line) pick using an STA/LT A ratio of 2/100. 
The bottom plot is the clzaracteristicfunction obtained from the STA/LT A ratio showing the 

maximum peak. 
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Figure 3.10 Manual (blue line) vs. automatic (red line) pick using an STA/LT A ratio of 5/100. 
The bottom plot is the characteristic/unction obtained from the STA/LT A ratio showing the 

maximum peak. 
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Figure 3.11 Manual (blue line) vs. automatic (red line) pick using an STA/LT A ratio of 
1 Oil 00. The bottom plot is the characteristic function obtained from the STA/LT A ratio 

showing the maximum peak. 
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Figure 3.12 Manual (blue line) vs. automatic (red line) pick using an STAILTA ratio of 10/50. 
Tlte bottom plot is the characteristic function obtained from the ST A/LT A ratio showing the 

maximum peak 

The results obtained for the different values of ST A/LT A window ratios, and the 

manual comparison with the original signal (figure 3.8) are summarized in table 

3.1. A result in Table 3.1 indicates that the best results were obtained using an 

ST AIL TA of 10/100 with an error of 3 data points. This error is constant for 
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most of the signals with a good SNR; for this case this error was used as a 

constant correction to minimize the difference between automated and manual 

arrival picks. 
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Figure 3.13 Manual (blue line) vs. automatic (red line) pick using an STA/LT A ratio of 

10/150. The bottom plot is the characteristic function obtained from the ST AILTA ratio 
showing the maximum peak 
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Figure 3.14 Manual (blue line) vs. automatic (red line) pick using an STA/LT A ratio of 

10/200. The bottom plot is the characteristic function obtained from the STA/LT A ratio 
showing the maximum peak 
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Automatic AlTival Absolute Relative Data points 
STA/LTA 

Pick Time [µsec] Error [~Lsec] Error% difference 

2/100 104.63 1.42 3.45 7 

5/100 105.82 2.61 2.53 13 

10/100 103.42 0.61 0.6 3 

10/50 103.42 0.61 0.6 3 

10/150 103.42 0.61 0.6 3 

10/200 106.77 3.56 3.45 17 

Table 3.1 Error analysis using different STA/LT A window ratios. The manual arrival pick is 
measured at 102.81 µsec 

The results show that the minor error is obtained using an STA window of 10 

µsec and LT A window of 50 to 150 µsec. After several trial and enor tests on 

multiple signals the average enor is 3 points on a "good" signal (SNR > 10). 

This is an acceptable average for anival detennination using this type of CF. 

The CF algo1ithm was also tested on synthetic signals. The arrival was set at 60 

µsec. Table 3.2 resumes the enor produced by the automatic picking using 

synthetic signals with a fixed arrival in 60 µsec and an ST A/LT A ratio set on 

10/100 µsec . An example is showed on the figure 3 .15 that conesponds to a 

signal with a SNR equal to 11.9 dB. 
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Automatic Arrival Absolute Relative Data points 
Signal - SNR 

Pick Time [~Lsec] En-or [µsec] Error% difference 

(Inf) No Noise 60.20 0.2 0.33 1 

73.9 60.20 0.2 0.33 1 

63.2 60.20 0.2 0.33 1 

54.4 60.20 0.2 0.33 1 

42.8 60.21 0.21 0.35 1 

33 .24 60.25 0.25 0.42 1 

23.44 60.30 0.3 0.5 1 

11.9 60.25 0.25 0.42 1 

8.56 60.47 0.47 0.78 2 

6.45 53.80 6.2 10.33 31 

3.44 96.61 36.61 61.02 183.05 

1.34 24.22 35.78 59.63 178.9 

Table 3.2 Analysis of error using STA/LT A window characteristic function (10/100) with SNR 

variation 011 a synthetic signal with an arrival set at 60 µsec.Note the approach works well 

down to about a 10% SNR. 
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Figure 3.15 TOP: original synthetic signal with arrival at 60 µsec (blue line). The following 

plot corresponds to a zoomed zone around the arrival with an automatic arrival detected at 

60.2µsec (red line). The last plot (bottom) corresponds to the CF of the STA/LT A ratio 10/100. 

All the results shown to the point use neither any filtering technique to smooth 

the signal nor onset time correction. However, onset time correction is normally 

used on all the techniques and is based on the manual comparison error results. 

The difference in the number of data point between manual and automatic 

results are averaged and used for onset time correction. Complete results will be 

discussed on real HF signals after the classification is made in chapter 5. 

Munro (2005) analyzed the behavior of ST AIL TA algorithm without onset time 

correction and used a different technique for final picking. He analyzed the 

dependency of the frequency (20 Hz to 400 Hz), the amplitude (difference 
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between P-wave and S-wave) and the background noise (SNR 1.5 to 10 and no 

noise) on picking. Even if the characteristics of the signals are different, some 

results show similitude with the results obtained on our signals. Varying the 

SNR using random background noise does appear to have a minor influence on 

the onset time errors, with minor fluctuations of 1 or 2 data points. As the SNR 

decreased the errors increased as it is expected. The errors increased around an 

SNR less than 6. 

3.1.3 Modified Energy Ratio 

The results obtained by the STA/LT A ratio are good until the signal has a low 

SNR value. Wong et al., (2009) developed a time-picking scheme for individual 

traces based on a modified energy ratio (MER) att1ibute, which produced good 

results on signals with significant noise (Wong et Al. , 2009). 

The technique is based on the same energy STA/LT A ratio theory with 

variations on the window lengths. MER uses only one variable for the window 

size minimizing the probability of error by using two windows employed in the 

ST A/LT A ratio technique. 

Wong et al. , (2009) described the method based on the following algorithm, 

i 2 
Lj=i-ne Xj 

er= "i+ne 2 
L.., j=l Xj 
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. . X1 + Xz 
if,J < 0,set xj = --

2
-

Where, Xj represents the time series of the seismogram with the time index 

i = 1,2, ... N. The number of points in an energy time window is ne. And, 

finally the ratio of energies in windows preceding and following the index i is 

given as er (Wong et al. , 2009). 

The peak of the modified energy ratio (MER) is taken over er3 i algorithm. This 

peak is close to the first break on noise-free seismograms as shown in figures 

3 .16 and 3 .1 7 for a high SNR and low SNR signals. 

From the result obtained form a good signal (figure 3.16) it is clear that the 

maximum peak obtained from the MER algorithm conesponds closely to the 

arrival of the signal. In comparison with the result obtained on ST A/LTA ratio, 

MER generates a clear peak signal with a clear anival. This is a general 

characteristic produced by this algorithm when it is applied on a "good" signal 

with a high SNR. 
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Figure 3.16 Modified energy ratio (MER) applied to a high SNR "good" signal obtained from 
a real HF experiment. Window size 100 µsec. 

The major improvement of MER algorithm is the response on signals with a low 

SNR. Figure 3.17 shows an example of a "medium" class signal with an SNR = 

2.9 dB; the maximum peak of the MER algorithm is closer to the possible 

an-ival time of the signal. This wave corresponds to a signal that is difficult to 

manually pick due to the noise. 
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Figure 3.17 Modified energy ratio (MER) applied to a low SNR "medium" signal obtained 

f,-om a real HF experiment. Window size 100 µsec. 

Figure 3.18 shows the manual pick of an arrival on a "good" signal which has an 

SNR =28 dB, without any filtering applied. This signal will be used to analyze 

and compare the response of the CF to different MER window values. The 

results are presented on figures 3.19 to 3.25. The maximum peak of the MER 

characteristic function in the er3i ratio is closer to the manual arrival but there 

still is a small difference. 
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Figure 3.18 "Good" signal obtained from an hydraulic fracturing experiment. SNR = 28 dB. 
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Figure 3.19 Manual (blue line) vs. automatic (red line) pick using an MER window size of 2 
µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak . 
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Figure 3.20 Manual (blue line) vs. automatic (red line) pick using an MER window size of 5 
µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 
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Figure 3.21 Manual (blue line) vs. automatic (red line) pick using an MER window size of JO 
µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 
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Figure 3.22 Manual (blue line) vs. automatic (red line) pick using an MER window size of 50 
µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 
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Figure 3.23 Manual (blue line) vs. automatic (red line) pick using an MER window size of 
100 µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 
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Figure 3.24 Manual (blue line) vs. automatic (red line) pick using an MER window size of 
J 50 µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 
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Figure 3.25 Manual (blue line) vs. automatic (red line) pick using an MER window size of 

200 µsec. The bottom plot is the characteristic function obtained from the MER algorithm 

showing the maximum peak. 

The results obtained for the different values of MER window ratios, and the 

manual comparison with the original signal in figure 3 .18 are summarized in 

table 3 .1 showing that the best results were obtained using an MER window 

ratio of 10, 50 and 100 µsec with an error of 3 data points. This error is constant 

for most of the signals with a good SNR (SNR > 1 0dB); for these cases this error 

was a constant and could be subtracted from the automatic arrival to get a better 

and accurate arrival pick. 

MER Automatic Arrival Absolute Relative Data points 

Window [µsec] Pick Time [µsec] Error [µsec] Error% difference 

2 177.2 73 .99 71.69 370 

5 152.6 49.39 47.85 246 

10 103.4 0.2 0.18 I 
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50 103.4 0.2 0.18 1 

100 103.41 0.2 0.18 I 

150 103.41 0.2 0.18 I 

200 103.81 0.6 0.58 3 

Table 3.3 Error analysts usmg different MER windows. The manual arrival pick is measured 
at 102.81 µsec 

The results using the MER algorithm show the efficiency in picking the arrival 

with a window size between 10 to 150 µsec with only 1 data point in difference 

(0.2 µsec) when compared with the manual pick. 

This algorithm was also tested usmg synthetic signals with different SNR 

values. Arrival time was fixed at 60 µsec. Table 3 .4 shows the result of MER 

automatic picking with a MER window set at 50 µsec. 

Automatic Arrival Absolute Relative Data points 
Signal - SNR 

Pick Time [µsec] Error [µsec] Error% difference 

(Inf) No Noise 60.20 0.2 0.33 1 

73.9 60.20 0.2 0.33 1 

63.2 60.20 0.2 0.33 1 

54.4 60.20 0.2 0.33 1 

42.8 60.21 0.21 0.35 1 

33.24 60.25 0.25 0.42 1 

23.44 60.30 0.3 0.5 1 
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11.9 60.25 0.25 0.42 1 

8.56 60.44 0.44 0.73 2 

6.45 60.47 0.47 0.78 2 

3.44 60.39 0.39 0.65 2 

1.34 24.20 35.8 59.66 179 

Table 3.4 Analysis of error usmg MER characteristic function (50 µsec) with SNR variation 
on synthetic signals with an arrival set at 60 µsec. Note superior performance of this 

algorithm over the STA/LTA algorithm especially at lower SNR values. 

The same synthetic signal used for STA/LTA algorithm with an SNR = 11.9 dB 

is used now to show the benefits of MER algorithm in figure 3 .26. 
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Figure 3.26 TOP: Original synthetic signal with arrival at 60 µsec (blue line). The following 
plot corresponds to a zoomed zone around the arrival with an automatic arrival detected at 

60.2µsec (red line). The last plot (bottom) corresponds to the CF of the MER algorithm using 
a window of 50 µsec . 
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All results are extracted without any filtering applied and no onset time 

c01Tection implemented. The time difference in between the manual arrival and 

the automatic picked arrival is only 1 to 2 data points. The MER algorithm 

performs better than the STA/LTA algorithm especially when the SNR is low, 

i.e. SNR < 10 dB. Table 3.4 shows that the MER algorithm was able to pick 

signals with a low SNR (3.44 dB). 

Every algorithm will be need an onset time correction and MER is not an 

exception. MER will be tested on a complete set of signals obtained from a real 

HF experiment after classification. Complete results will be analyzed in chapter 

5 on a complete set of classifications. 

3.2 Test Results and Onset time correction 

Energy technique for arrival picking is efficiently and accurate on signals with a 

low background noise, or, in other words, signals with a moderate high SNR 

(SNR > 10 dB). With signals containing a high background noise it was evident 

that MER algorithm provides superior accuracy than ST A/LT A ratio . 

Both techniques require a simple onset time correction. Also, a simple filter will 

be applied to minimize the amount of undesirable frequencies . From the analysis 

obtained on good signals collected and picked by Chitrala et Al., (2010) the 

filter is set to a bandwidth between 50 kHz to 1 MHz using a simple Butterworth 
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type second order filter. Other filters and bandwidths are available for testing in 

the final software. (For analysis and settings on the use and the types of filters, 

please refer to Lab VIEW Help.) 

Analysis of different HF generated classified "good" signals usmg a 

combination of MER algorithm with a window of 100 µsec, filtering and time 

coITection of only 3 data points results with the best accuracy possible. This 

combination of processing operations will be tested on the synthetic signals; the 

results are presented in table 3.5. 

Automatic Arrival Absolute Relative Data points 
Signal - SNR 

Pick Time [~tsec] Error [µs ec] Error% difference 

(Inf) No Noise 60 0 0 0 

73.9 60 0 0 0 

63.2 60 0 0 0 

54.4 60 0 0 0 

42.8 60.2 0.2 0.33 1 

33.24 60.2 0.2 0.33 I 

23.44 60.2 0.2 0.33 1 

11.9 60.2 0.2 0.33 1 

8.56 60.4 0.4 0.66 2 

6.45 60.2 0.2 0.33 1 
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3.44 61.6 1.6 8 

1.34 61.9 1.9 9.5 

Table 3.5 Analysis of error using MER characteristic function (100 µsec), a 2"r1 order Butterworth band-pass filter (50 kHz- JMhz), and onset time correction with SNR variation on synthetic signals with an arrival set at 60 µsec. 

Using this combination of bandwidth filtering and a MER window of 100 µsec 

the error is reduced for a signal with an SNR of 1.34 dB to only 3.2%. It is 

important to mention that the background noise created is random and this 

randomness even for a signal that has the same SNR could contain a different 

error. This will be analyzed for a complete test that combines classification and 

arrival picking for signals recorded during a real HF experiment in chapter 5. 
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4 LABORATORY MONITORING SYSTEM 

AE/MS laboratory studies involve the detection and processing of events 

occurring in a finite body. In comparison to AE/MS field studies, data that is 

detected during laboratory studies will generally exhibit high dominant 

frequencies, lower signal amplitudes and signal complexities due to stress wave 

reflections from specimen boundaries ( echoes or reflections). (Hardy, 2003). 

4.1 Equipment and materials 

This chapter explains and shows the entire experimental system configuration 

used to capture the AE signals during the hydraulic fracturing experiments. The 

complete system is depicted in the block diagram shown in figure 4.1. 

The hydraulic fracturing system consists of a precision pumping system unit 

controlled by a personal computer (PC), a lateral stress system (flats jacks), an 

acoustic emission signal acquisition and processing system which is fed by a 

sensor or group of sensors, preamplifiers, a signal conditioning system and a 

Data Acquisition (DAQ) module attached to a PC and finally the test sample. 
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Figure 4.1 Block diagram for the hydraulic fracturing system located at laboratory 
(University of Oklahoma). PA = preamplifier; A amplifier; F = filter; DAQ = data acquisition 

system; PC= personal computer. 

4.1.1 Pumping system 

The pumping system generates the fluid pressure forcing the fluid down a 

borehole inside the rock which causes the hydraulic fractures when the fluid 

pressure overcomes the rock's tensile strength and the applied external pressure. 

The pump used for this experiment 1s a Quizix SP-6200 pump system 

manufactured by Chandler Engineering and Ametek. The pump system is 

designed with two cylinders which provide continuous flow of the fracturing 

fluid. The system can operate in two different program modes; constant pressure 

or constant flow rate. 

Figure 4.1 shows m detail the principal components of the system. Primary 

components are: 

• 2 C-6000 Pump cylinders 
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• 2 constant volume valves 

• 2 pressure transducers 

• 1 CN-6000 pump controller 

• Plumbing and cables 

• Quixiz Pump Works software operated through a PC 

Two principal characteristics govern the operation mode of the pump. The first 

one is the flow mode, which must to be smooth and continuous using 

independent operation of both cylinders. This means that while one cylinder is 

delivering fluid the other retracts and pressurizes to the level of the other 

cylinder. Second is to deliver a constant flow rate. 

The required pumping rates are different for different types of rocks; rates 

depend on porosity and penneability characteristic of each rock. The following 

table (see Table 4.1) shows the rate used for pumping fluid and some important 

characteristic information to the different kinds of rocks. Right circular cylinder 

rock specimens with diameters of 4" are used in this test. 
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Indiana Lyons Pyrophyllite (PJ 
limestone (C) sandstone (SJ 

Petrophysical characteristics 

Porosity,% 

Crushed 20 10 4 

Boyle's law 16 9 3 

@800 psi. 15 9 3 

Permeability 5md 20µd 8 nd 

Mineralogy, wgt% Calcite, 95 Quartz, 85 

Sample and stimulation dimensions and conditions 

Length, in 5 4 4 

Diameter, in 4 4 4 

Borehole depth, in 2.5 2 2 

Counter-bore depth, 0.4 0.4 0.4 
ln 

Perforation depth, in 2 1.6 1.6 

Frac fluid viscosity, Oil, 50 Oil, 50 Oil, 50 
cp 

Pumping rate, cc/min 15 10 5 

Table 4.1 Petrophysical properties and sample characteristics of rock samples under test. 
Taken from Chitrala et al. (201 OJ. 
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Figure 4.2 Dual cylinder pumping unit system. Top image is a front view of the system. 
Bottom image is the rear view. 

The pumping system is connected to the rock sample by high pressure stainless 

steel tubing. The tubing connects to high pressure tubing which is epoxied in a 

hole bored into the sample. 

4.1.2 Lateral stress system 

Lateral stresses control the fracture direction. Applying a single horizontal stress 

causes a negative hoop stress at the azimuth of application and positive 

concentration 90 degrees away. Rocks are extremely weak in tension, thus the 

negative hoop stress controls the initiation of the hydraulic fracture. The 
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fractures are created by the differential stress between the lateral stress and the 

stress generated by the fracturing fluid inside the rock. 

Figure 4.3 Position of rock sample on the lateral stress system. This picture shows the gauge 
for the pressure applied on the lateral sides of the rock. A sample is instrumented with 16 

piezoelectric sensors distributed around and on top of the sample. 

4.1.3 Fracturing Fluid 

The two most common fracturing fluids are water and oil. For most of the 

experiments vegetable oil(µ= 50 cp (centipoises)) was used. 

4.1.4 Acoustic Emission monitoring system 

This AE monitoring system is the most important part in the complete system, 

because it captures and stores the signals from the microfracture events. This 

system is capable of handling 32 sensors. The normal flow of the data across 

this system is illustrated on figure 4.4. 
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Figure 4.4. Block diagram of AE monitoring system (Aso, 201 OJ. This figure shows the 
normal/low of data through the components of the AE monitoring system. 

4.1.4.1 Sensors/Transducers 

In general, sensors, also known as transducers, are piezoelectric elements that 

convert the acoustic energy into electric signals. The main purpose in AE 

experiments is to detect and capture the stress waves caused by local dynamic 

displacement and convert this displacement to an electrical signal (Muravin, 

2008). AE activity at a specific point in the structure may be detected by 

monitoring the particle displacements, velocities or accelerations generated by 

the displacements at that point using a suitable transducer (Hardy, 2003). 

Most laboratory studies in the geotechnical area involve the detection of AE 

events with dominant frequencies in the range of 50 kHz to 500 kHz (Hardy, 
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2003), but the typical frequency range in AE applications varies over a range 

between 20 kHz and 1 MHz (Muravin, 2008). 

AE sensors are almost always of piezoelectric (PZT) material type, (lead

zirconite-titanate ). Direct piezoelectric effect is produced when a mechanical 

deformation of the PZT material produces a change in the electric polarization 

generating an electric charge which is amplified and measured (Gautschi, 2002). 

The transduction element is usually a piezoelectric ceramic disk or cylinder with 

a thickness of a few mm. The thickness controls the resonant frequency of the 

transducer. An ideal transducer should be small, highly sensitive, easy to couple, 

cheap, easy to construct, with a high sensitivity over a wide frequency range 

(Hardy, 2003). 

In this work, 16 B 1025 piezoelectric transducers manufactured by Digital Wave 

Corporation (see figure 4.5) have been used. The B1025 are high fidelity 

piezoelectric transducers with a bandwidth of 50 kHz to 2 MHz. This sensor 

employs a low Q piezoelectric ceramic in a rugged package that is 0.365" in 

diameter by 0.50" in height. The principal attributes are a broadband flat 

response and general purpose testing (see Figure 4.6). Factory calibration 

suggests a good frequency response between 1 kHz to 1. 5 MHz. 

This sensor is specially designed for Modal Acoustic Emission (MAE), which is 

a method for determine the types of acoustic emission in materials using the 
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shape of the wave rather than just counting the events or using other parameters 

(Digital Wave anonymous). Each sensor is coupled to the test object by a thin 

layer of adhesive and its output is connected to a preamplifier via a BNC-to

Microdot coaxial cable (figure 4.5). 

Figure 4.5. Broadband AE transducer. Bl 025 manufactured by Digital Wave Corporation. 

These sensors are factory calibrated. A typical response is shown in figure 4.6. 

Sensitivity and frequency response are the principal criteria in the selection of 

these sensors. In general, for selection of sensors, the most sensitive sensor will 

be chosen commensurate with frequency response, size and availability. 

Sensitivity should be constant over the chosen frequency band (Scott, 1991). 
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B1025 Calibration Curves 

Absolute Surface Wave Calibration 

-H; l--------+---+----<---i-----'-----+---+-'---+----<--1 

rr~u.;ncy (MHI) 

40dB = 1 00V/µm 

Face-to-Face Calibration 
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Generator: B 1025 
Receiver: B 1025 

Figure 4.6. Bl 025 Calibration curves provided by Digital Wave Corporation. Every sensor is 
also calibrated separately and provided by Digital Wave Corporation. 

4.1.4.2 Couplant 

The sensors are coupled to the rock sample using a mounting adhesive material 

(Crystalbond 555 Mounting Adhesive manufactured by SPI). This is a low 

melting point adhesive for moderate stress machining process with a viscosity at 

flow point of 500 cp which makes it perfect for temporally coupling the sensors. 

4.1.4.3 Preamplifiers 

The output of piezoelectric sensors is an electric charge. The magnitudes of the 

signals generated by AE waves are on the order of n V to m V (low level acoustic 

signals). The signals, which come from the sensor, in the preamplifier stage are 

filtered and amplified and then fed to the signal conditioning system. 
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The principal requirements for pre-amplification are bandwidth and gain. SNR 

and dynamic range are also taken into consideration. In this work, 16 Olympus 

Parametrics NDT 5660B wide band preamplifiers were used. They are lMQ 

input impedance, low noise, wide band (20 kHz to 2 MHz), with two manually 

selectable gains ( 40 dB or 60 dB). 

OLYMPUS 

Figure 4. 7. Olympus Parametrics-NDT. Preamplifier stage unit used for amplification of the 
signal coming from sensor. 

Each preamplifier input is a BNC coaxial cable and its output a BNC coaxial 

cable going into the signal conditioning unit. 

4.1.4.4 Signal Conditioning Unit 

The preamplifier unit is used to amplify the signal; it is located as close as 

possible to the sensor in order to reduce noise. This step does not guarantee a 

completely clean signal. In order to reduce noise acquisition and preparation of 

the real AE signals a signal conditioning unit is used. 

114 



The FM-1 is a stand-alone signal conditioning unit manufactured by Digital 

Wave Corporation. This unit has 16 channels for conditioning signals in the 

frequency range from 20 kHz to 2.3 MHz and AID converter boards. It consists 

of two controller cards which control the filter and gain settings for a group of 8 

signal cards. Each signal card is used to condition signals from the 

preamplifiers. Every signal card has a BNC input with an impedance of 1 MO 

and receives the signal from the pre-amplification stage. 

The controller card consists of an internal preamplifier, signal and trigger 

sections. The internal preamplifier is a low input impedance, low noise amplifier 

designed to work with a fixed gain high impedance preamplifier driver. It has 

thumb wheel switches providing a maximum of 42 dB gain in 6 dB increments. 

After amplification the signal is split into the signal conditioning section and 

trigger conditioning, this separation allows the system to prevent triggering on 

spurious noise whose frequency is outside the bandwidth of interest. 
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Figure 4.8. FM-1 Signal Conditioning Unit from Digital Wave Corporation. 16 individual 
channels. 

The signal conditioning section has two options to modify the gain and filter of 

the signals. The gain toggle switch allows selection of an additional 24 dB gain 

in 12 dB increments. The high pass filter has a three position toggle switch to set 

between 20 kHz, 50 kHz or 100 kHz. The maximum signal frequency allowed is 

5 MHz but the 3dB bandwidth at zero gain is 2.3 MHz. 

The trigger stage conditioning can be adjusted in two separated gain and High 

Pass (HP) and Low Pass (LP) filtering options. It can give an additional gain of 

21 dB adjustable in 3 dB increments and an additional gain of 20 dB. The 

filtering section of the trigger stage has the possibility to use a HP filter between 

50 kHz, 100 kHz or 300 kHz while the LP filter can be set at 0.75 MHz, 1.5 

MHz or 5 MHz. The trigger threshold is permanently set at 0.1 V by 

manufacturer. 

116 



To detennine the total gam of the complete signal conditioning unit, it 1s 

necessary to add the preamplifier gain and the signal or the trigger gain. The 

signal, after it passes through the internal pre-amplification, is split and enters 

the signal or tiigger stages. 

STAGE CONFIGURATION 

GAIN [dB] FILTER 
Preamplifier (External) 40 dB Bandwidth 

(20kHz to 2 
Mhz) 

Signal Preamplifier 0 dB -

Conditioning (Internal) 

Signal Stage 24 dB HP 50 kHz 
Trigger 0 dB HP 50 kHz 
Stage 20 dB LP 1.5 MHz 

40+44=84 Bandwidth 
TOTALS dB 50 kHz - 1.5 

MHz 
Table 4.2 Configuration of Hardware stages on Acquisition of Acoustic Emission Signals. 

4.1.4.5 AID Board 

The data acquisition module is the ICS-645 PCI Bus analog input board, 

specially designed for high frequency measurements. The principal 

characteristics of this AID board can be summarized as follows: 

• Thirty two 16-bit ADC channels sampling at up 20 MSPS (mega 

samples per second). 

• 16 Mbytes of onboard storage 
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• PCI Bus (64-bit, 66MHz) 

• Pre-trigger ( circular buffer) data collection, in order to collect data both 

before and after the trigger. 

The final step of the signal to the final visualization and storage is the analog to 

digital conversion. A simplified block diagram for analog to digital converter is 

shown on figure 4.9. For our purpose 16 channels were used. 

INPUT 

STAGE 
,- ---- ------- ---, 

1MSAMPLE 
ADC _r BUFFER 

32 { 

PCI 

Channels INTERFACE 

ADC 
BUFFER 

--- -- -- ---- -----

FPDP 
FIFO 

INTERFACE 

Figure 4.9 Simplified block diagram of the ICS-645. (Obtained from DaqScribe Technology, 

2003). FIFO stands for First In Firs Out. FPDP stands for Front Panel Data Port Interface. 

ADC stands for Analog to Digital Converter. PC/ stands for Peripheral Component 
Interconnect 

The analog input stage of the board accepts single-ended input signals with peak 

amplitudes of approximately± l .OV; the input impedance is 500 Ohms. A single 

pole, low pass filter is included. This filter ensures a flat pass band response up 

to the maximum bandwidth (5 MHz). The input stage is mainly composed by 

four AD8056ARM voltage feedback amplifiers for amplification and filtering. 
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The output of the input stage is transmitted to the analog to digital conve1ier 

(ADC) which employs an AD9260 chip per channel. Here, following the 

Nyquist crite1ion, the signals are sampled a rate which is at least twice the 

highest expected frequency in order to avoid aliasing. 

Three principal operation modes are available for acquisition of signals. These 

are continuous mode and capture mode without pre-trigger and with pre-trigger. 

In continuous mode, acquisition begins upon application of the trigger and 

continues until the board is disabled, and acquisition is stopped when the ADC 

interrupt occurs each time a memory buffer has been filled to the programmed 

buffer length. In capture mode without pre-trigger storage, data is acquired for a 

maximum programmable number of samples; for all active channels this number 

is 1048576 samples. For the capture mode with pre-trigger data storage, the 

memory onboard is used as a circular buffer in a programmable circumference. 

The process is started by the user and the control logic continually fills the 

circular buffer with fresh data in anticipation of the trigger signal. Once the 

trigger signal is received, the final number of samples is stored in memory and 

acquisition is automatically tenninated. 
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Figure 4.10 Operation of DAQ board on capture with pre-trigger mode. This graph shows the 

usage of the buffer memory for an acquisition. (Obtained from JCS sensor processing). 

For our application, the capture mode is used with the pre-trigger mode. The 

total number of points is fixed on 1024 samples or 2048. This pre-trigger value 

signal is set by the user based on a percentage of the total number of samples. 

Normally this value is set between 10 to 50 %. Classification requires a pre

tiigger setting that allows an analysis of the background noise and the signal. 

The normal value used is 50% on a 1024 samples signal, or 25% for a 2048 

samples signal, figure 4.11 shows an example of an acquisition using different 

pre-trigger percentages. For an acquisition of a 10% the possibility of missing 

the arrival increases to a critical level, this is due to the threshold level of 100 

m V. Some signals reach this level several samples after the first arrival; this 

behavior is normally seen on HF signals with low amplitude on the order of m V 

after amplification. Using a pre-trigger percentage of 25-50 % is sufficient to 

capture the arrival of the signal and ensure an amount of data to also sample 

background noise. 
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Figure 4.11. TOP LEFT CORNER: pre-trigger signal acquisition at 10%. TOP RIGHT 
CORNER: pre-trigger signal acquisition on 10%. BOTTOM LEFT CORNER: pre-trigger 

signal acquisition at 25%. BOTTOM RIGHT CORNER: pre-trigger signal acquisition at 50%. 

Using pre-trigger percentages between 25 - 50 % and with a total number of 

samples of 1024, the number of samples used for noise analysis are between 256 

- 512 samples or 51.2 - 102.4 µsec. 

According to the Nyquist criterion, the sampling rate for data acquisition should 

be set so that the sampling :frequency is at least twice the highest :frequency 

expected. Hydraulic :fractming acoustic emission signals have a bandwidth range 

of 50 kHz to 1.5 MHz. The sampling rate should be at least 3 MHz. We used a 5 

MHz sampling rate. 

The sampling rate and the number of points together define the length of signal 

captured. For a 5 MHz sampling rate and 1024 points per channel, the time 

duration of the capture data is: 
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Number of points 

Sampling Rate 

1024 points 

6 
points; = 204.8 µsec 

SxlO second 

4.1.5 Rock Samples 

Three principal rocks were used for HF expe1iments. These are listed on table 

4.3 with a brief description on the principal characteristics that describes 

composition, permeability and porosity. 

Rock Type Mineralo2:v Permeability Porosity 
Pyrophyllite (P) 80nD 5% 

Lyon Sandstone (S) 85% Quartz 20 µD 10% 
Indiana Limestone 

(C) 95% Calcite 5mD 20% 
Table 4.3. Principal characteristics for the rock types used on the HF experiments. 

Permeability is measured in Darcy (D). 

Rocks contain different types of grams and together with the voids and 

inclusions detennine poroelastic properties of petroleum reservo1rs. Fourier 

Transform Infrared (FTIR) Spectroscopy can be used in determining the mineral 

composition of rocks through comparison with a library of known mineral 

spectra (Aso, 2010; Sondergeld and Rai, 1993). 

Permeability is measured in Darcys (D) and determines the ease with which a 

fluid can flow through a material. Darcy' s law describes pressure driven laminar 

flow through porous media: 
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KA dP 
q = -- * -

µ dx 

Where q is the fluid flow rate; K is the penneability of the medium;µ is the fluid 

viscosity; dP / dx is the pressure gradient in the flow path within the medium. 

Porosity is the ratio of pore to bulk volume and it is nonnally expressed as a 

fraction or percentage: 

Where Vpore and Vbulk are the pore and bulk volumes, respectively. 

The dimensions of the samples are 4 inches in diameter and 3.5 - 4.72 inches in 

length. Some samples are shown in figure 4.12. 
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Figure 4.12. Rock samples prepared for HF testing. High pressure tubes are epoxied into a 

borehole and provide the path for the fracture fluid. 

4.2 Experimental Procedure 

Analyzing real signals obtained from rock samples is the final goal for this 

thesis. Chapters 2 and 3 show results obtained from different types of rocks; this 

chapter will explain the process to prepare the rock and obtain the final data 

( classification and arrival picking) from the large volume of experimentally 

generated events. 

Three cylindrical core samples are obtained and carefully polished. A ¼ inch 

hole is drilled in one end and a counter-bore was made using a ½ inch coring bit 

and a steel mini-casing (0.12" internal diameter) with 2 perforations on both 

sides. One of the ends of the mini-casing has the perforation exit close to the 
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depth end and this end is cemented to the borehole wall using Conley Weld TM 

epoxy (see figure 4.13). 

To locate the sensors on the sample and to facilitate the installation of the mini

casing, a Cartesian coordinate system (x,y,z) was used as reference. See figure 

4.13 obtained from ASO, 2010. 

Mini-Casing------

Sample ~- Epoxy bond 

Sensors 
• 

PLAN VIEW 

• 
0 

0 

' ' ' I I I I 

·--'-{--• 0 :, 0 
z ' ' tj 

0 0 

SIDE VIEW 

y 

0 

0 

Coordinate System 

Figure 4.13. 3D plan and side view of a 4-inclt diameter sample with a 0.12-inch internal 
diameter mini-casing. 16 AE sensors are shown surrounded the sample. Red squares indicate 

the perforation points while the blue portion symbolizes the epoxy glue that confines the 
fracture fluid around the perforation. 
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Sixteen AE transducers are attached to the sample using Crystalbond 555™ 

mounting adhesive. Figure 4.14 shows different configurations of the sensors . 
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Figure 4.14. Top view of sensor position configurations. The number corresponds to a sensor 

located from top to bottom in the order closer to the sample on the.figure. Left will be known 

as sensor configuration number 1. Right correspond to sensor configuration number 2. 

The sensors are attached to the preamplifier with an amplification set at 40 dB 

via a 6 ft long BNC to Microdot sensor cable. 

126 



AE Sensor 

Cementing 

Mounting 
Adhesive 

Rock Sample 

Figure 4.15 Sensor 16 attached to the top part of a sample by the mounting adhesive 
Crysta/bond 555. 

The signal conditioning unit receives the signal with the configuration given in 

table 4.4. The data acquisition is configured through the AE software 

(WaveExplorer version 7 .1 ). 
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CHARACTERISTIC CONFIGURATION 

Number of Channels 14-16 channels 

Sampling Rate 5MHz 

Number of Points 1024 

Pre-trigger Points 25%-50% 

Table 4.4. WaveExplorer configuration for data acquisition of AE signals obtained from HF 
experiments. 

WaveExplorer requires location of every sensor to be input; other characteristics 

like velocity model, isotropic or anisotropic material, sample identification and 

elastic properties must be input too. A schematic of the complete process is 

showed in figure 4.16 which includes all the hardware involved on the system. 

To ensure a good acquisition of the signals and a proper configuration of the 

hardware - software components, a calibration test is conducted. This 

calibration is done using the Hsu-Nielsen source calibration, using a pencil 

break (see figure 4.17) as a suitable simulated source of AE (Scott, 1991; Aso, 

2010). The purpose of this exercise is to verify that the AE sensors are properly 

attached to the specimen, check transducer polarities, proved calibration data set 

for location algorithms and to provide a controlled data set for classification and 

arrival picking. 
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Figure 4.16 Schematics of Hydraulic Fracturing and microseismic monitoring system. 

Hsu-Niels en Source 
(pencil lead break) 

Lead: 2H 
Diameter: 0.5mm (0.3mm) 
Length: 3 0 ± 0.5mm 

Figure 4.17 Hsu-Nielsen source for the testing and calibration of AE systems. (source: 
htpp:/lwww.ndt.net/ndtaz/mltaz.php). 

129 



4.2.1 Classification and Arrival picking procedure 

The process for Classification and arrival picking is done following 10 steps of 

the flow diagram in the figure 4.18. 

START 

Acoustic 
Emission 

Monitoring 
System &.~:--__ 8T_I 

WaveParser Eve ts.bet LabVIEW 
Soft'-Nare Classification of Events 

.:El 
@ ···T-of files ftware 

Folder with 
GOODEvents fi les .TXT 

Figure 4.18 Flow diagram/or the classification and arrival picking of AE events. 

® 

@ 

(1) The rock is prepared as mentioned before; the dimensions and the position of 

every sensor are entered into WaveExplorer for acquisition setup. (2) 

WaveExplorer is configured and a calibration by pencil-breaks is carried out. 

The events are recorded by WaveExplorer and are (3) saved as a *.WAVE file. 

This file contains all the events generated by the HF experiment and information 

about the acquisition: date, time, number of events, number of sensors, sampling 
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rate, etc. This file cannot be opened by any other software except from 

WaveExplorer, for this reason it has to be conve1ied to a *. txt or * .lvm file. 

These are standard file extensions that are accessible to Microsoft Office (Word, 

Excel) or Lab VIEW. 

( 4) The *. wave file is converted to *. txt file usmg the software called 

WaveParser (S1 on the flow diagram, figure 4.18). This program opens a *.wave 

file and generates a folder (5) with every event generated converted to a * .txt 

file. The number of *.txt files depends on the number of events captured in the 

*.wave file . Every *.txt file contains one event captured by the number of 

sensors used. The infonnation from every sensor is saved as an anay of the 

amplitudes sampled every 0.2 µsec . 

S eled V./ .t-.VE File Open File J', 

! C:\Documents and Settings\OU\Desktop\Y.t-.S hwan I 

Ve_ndor: Digital W a,,e. Corporation 
App Narne:\1/aveD'etector for Win95 
Ai:iiJ v~rsiori:3.00J:Jf 
Ci,ate;'.2010/ 4127 . 
Tiriie' 19:11:23.671 

Select'OutpLit Di(ectory · I Select 

I C:\Documents and Settings\OU\Desktop 

f .... . I : Parse : 
~z'.WM'wt) Yr:'.m'"W'; 

L E:-:it l 

i:J~;:ide,r;.Le0g\)'1; 7Q4Re,c,ciro length: 32811 , 
~eqord count 18 ·.Resolution: 32484 .• 
Voltage conversion' 1 :S ampling ra\e:: 5 
\,\l) lVe, data points> 1024· ,Pretrigger points: 512 . 
Niirhber,of channel:•:1 s· 'Number. of parametrics: 4 · 
,t irpf Pre,q:) 0Q0000 )vi aterial 'namf?: 

Figure 4.19. Screen presentation of WaveParser (SJ) software used to convert *.WA VE files 
to *.txt files. This image present the final information presented after a conversion of file 
extension. 16 channels for 18 complete events on a pencilbreak calibration experiment. 
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Once the folder that contains every event with * .txt file extension is created, the 

files are readable by other software. Lab VIEW can be used in this instance to 

make an automatic classification of the events. CLASSAE (6) is a Lab VIEW 

program (located as S2 on the flow diagram, figure 4.18) which performs the 

automatic classification of AE events. 
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1
~ ~ lljl , I)~ Thresh~ Range v~lueJ.or Jfhi:esb Id ,10.01 
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i ' I \11 I I 
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I ' I 

7 - l ->- 5 I-
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9 -
ttl=Utt:tttE.6 =~: 
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Figure 4.20. Classification software (CLASSAE). This screen shows the front panel interface 

that allows the user to select the folder of events to be classified. In this chase, a pencil-break 

experiment was selected with 18 events and classifying JO good events with 143 good signals. 
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The input to CLAS SAE is the location of the folder that contains the event files 

to be classify and the output (7) is a * .lvm ( or *. txt) file ( array type) containing 

the final classification infonnation of the good events and good sensors. Table 

4.5 shows an example of an output file resulting from the classification of 18 

events (rows) from a calibration test of a lead-break using 16 sensors ( columns). 

Every sensor of every event is analyzed, if a zero appears in the table this means 

that the sensor corresponding to the event was discarded. 

E s s s s s s s s s s s s s s s s 
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

2 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

5 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

6 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

10 1 2 3 4 0 0 0 0 9 10 11 12 0 14 0 0 

12 1 2 3 4 5 6 0 8 9 10 11 12 13 14 0 16 

14 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

15 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

17 1 2 3 4 5 6 0 8 9 10 11 12 13 14 0 16 

18 1 2 3 4 5 6 0 8 9 10 11 12 13 14 15 16 

Table 4.5. Classification results from a pencil break test. First column correspond to the event 

number. The other columns show the corresponding sensor of every event. If a zero appears 

011 the spot corresponding to the sensor this means that the signal was not good enough. 

This file can be opened by any software but normally is opened by default in 

Windows by Microsoft Excel to analyze the results obtained. 
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Once the classification file is constructed, it is necessary to create a new folder 

containing only the good events and the corresponding good sensors. For this 

reason the software called /C 3 Acoustic Event Detection (CLASSAE 

Eliminator) (referenced as S3 on the flow diagram) has been created (8). S3 

receives the input folder containing all the events without classification (from 

S 1) and the file output of CLAS SAE (see table 4.5). The output of S3 is a folder 

containing every good event and every good sensor classified in a *. txt file (9). 

The number of files depends of the number of events classified as good events. 

After the classification, the automatic arrival picking is performed on only 

"good" signals. Other wave analyses have been added to the software to enhance 

the infonnation obtained from the signals. Polarization, frequency analysis, and 

maximum peak amplitude are important metrics computed by this software .This 

part of the signal analysis is done by S4 (10). S4 is the last step in the process; 

this software receives all the *. txt files already classified as "good" and applies 

the processes explained on chapter 2. 

The software (shown on figure 4.21) perfonns and obtains the arrival picking, 

the polarization, frequency, and amplitude analysis. Each of these parameters 

are saved as an individual * .txt file ,ready for future analysis and reference for 

each experiment. 
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Figure 4.21 Front Panel of Signal Analysis for Microseismic Signals (arrival picking, 

polarization, amplitude and frequency analysis). Signals correspond to a pencilbreak test and 
shows the arrival time for every one during the complete process of analysis. 

The process is straightforward trying to follow a normal and logical flow at each 

step. In general it is possible to recreate this process as a single box with only an 

input and multiple outputs as the one presented on figure 4.22. 
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signals 
(ti1ne domain) 

Figure 4.22 Single block diagram of the automatic process for AE signal analysis. 

Based on this diagram the process flows in only one direction and does not need 

any feedback. 

For a simple and complete analysis on a particular event or group of events, a 

third software called ONEbyONE (figure 4.23) has been created. This software 

lets you analyze every event for a particular experiment ( contained on a folder) . 

The analysis of results by events allows configuring different characteristic 

values to get an accurate arrival pick. Different visualization options also let a 

user analyze first arrival polarizations, arrival picks, amplitude and frequency. 

Also, this visualization is recommended to be used before S4 software in order 

to review the classification results and to ensure a correct size of processing 

windows. 
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Figure 4.23 Screen display of pa gel of OnebyOne software. Results from a pencilbreak 
calibration test showing a zoom around the arrival to ensure a right pick and a right analysis 

of the signal on every sensor. Sensor 8 corresponds to a bad sensor that was already 
eliminated by CLASSAE. 

Visualization on a same plot (figure 4.24) is available in the second page of this 

software. This visualization permits analysis for every sensor arrival and shows 

the arrival automatically picked. Available on this page are the results from 

every event saved in the single * .txt file. 
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Figure 4.24 Screen display of page 2 of OnebyOne software. Final results from a particular 
event and automatic arrivals results on a same plot. 
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5 RESULTS AND DISCUSSION 

A complete set of signals obtained from a real hydraulic fracturing experiment 

on an Indiana Limestone sample, Cl 6, have been used to demonstrate the 

accuracy of classification and atTival picking. 

Another way to measure the accuracy of the algorithms implemented in this 

research is to measure the impact or the improvement in the final location of AE 

events. The method used for final location will not be discussed here, but 

infonnation about how to implement the final location based on the arrivals can 

be found on Castano, 2010; Stein and Wysession, 2003; Lay and Wallace, 1995 

and Chitrala et al., 2010. 

Locations of events allow visualizing where possible macro and microfractures 

occur within the sample. Hypocenters are determined through a minimization of 

a travel time inversion problem. The process starts with the end results, the 

seismograms or AE signals, and works backwards to minimize the calculated 

arrival times and ray paths consistent with the observed arrival times and sensor 

locations (Stein and Wysession, 2003). 

5.1 Calibration Test 

An initial calibration is carried out before the actual fracture experiment. This 

test will determine the accuracy for event locations. A pencil break is used to 
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simulate an AE event. Fracture of pencil lead causes an impulse event which 

takes places as the load on the surface is released (see figure 4.17). 

In this test 8 pencil leads are broken in different previously detennined surface 

locations. During the experiment some false events are also generated due to 

failure to break the lead or movements of the device around sample. 

During the pencil break experiment on sample C16 a total of 20 events were 

generated. The results of manual classification of the signals are presented in 

table 5.1. 

Event number Total number of Events 

Good Events 1, 2, 4, 5, 6, 9, 10, 16, 18 9 

Medium Events 3, 7, 11, 12, 19, 20, 15 7 

Bad Events 8,13,14,17 4 

Table 5.1 Manual classification of a pencil break calibration signals on a11 l11dia11a Limesto11e 
rock sample. 

Application of the different techniques explained on chapter 2 for classification 

result in the automatic classifications presented in table 5.2. 

140 



Classification Total number 
Event number 

Technique of Events 

Good 1, 2, 4, 5, 6, 9, 10, 16 Good 9 

T-M-S 

Bad 3, 7, 8, 11, 12, 13, 14, 15, 17, 19, 20 Bad 11 

Good 1, 2, 3, 4, 5, 6, 7, 9, 10, 15, 16, 18, 19, 20 Good 14 
T-H-Z 

Bad 8, 11, 12, 13, 14, 17 Bad 6 

Good 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 18, 20 Good 16 
T-M-S + 20% 

Bad 8, 13, 14, 17 Bad 4 

Table 5.2 Automatic classification results showing different algorithms implemented for a 
pencil break calibration test on an Indiana limestone sample. 

Where, T corresponds to threshold algorithm; M corresponds to mean of 

frequencies; S to signal to noise ratio; H to histogram; Z to zero-crossing 

algorithms. 

After reviewing the results from different algorithms for event classification, the 

algorithm that results in 100% of accuracy is the T-M-S (threshold - mean of 

frequencies - SNR). The classification technique implementing T-H-Z 

(threshold - histogram - zero crossing) results in an accuracy of 100% in 

detecting the good events but includes 5 "medium" events, which could lead 

errors on the arrival picking. 
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Finally a third algorithm was implemented trying to define the "medium" 

events. This technique will include the signals (and events) whose difference 

between the principal component 2 (PC2) and principal component 3(PC3) is 

less or equal to 20% of the complete maximum difference resulting from the 

principal component analysis (PCA). The results show that using TMS +20% 

include the "medium" events and exclude the "bad" events with 100% accuracy. 

This final technique will help to improve the results on signals with less 

diversity and could avoid possible "good" signals from the final classification. 

Diversity refers to the difference between signals and events acquired during a 

complete experiment. If the difference between "good" signals and "bad" 

signals is big the algorithms for classification could obtain better results (Tan, 

2007). 

The final results for location after classification using T-M-S algorithms for C16 

pencil lead calibration are presented on figures 5 .1. The method for arrival 

picking is MER algorithm (100 µsec window) and STA/LTA (10/100 µsec 

window) with a band-pass 2nd order Butterworth filter (50 kHz to 1 MHz). 

Figure 5.2 presents a comparison of event locations based on manual, MER and 

TSM algorithms. 
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Figure 5.1 Pencil lead break calibration test location for events after manual and automatic 
classification (using T-M-S algorithms) and MER and STA/LTA arrival algorithms. T-M-S 

automatic classification and MER automatic arrival picking methods obtained the best results 
in comparison against manual methods. 
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Figure 5.1 Event #lo/ 20 arrival picking/or a pencil lead break calibration test using MER 
algorithm (100 µsec window). 

Figure 5 .1 plots the locations of events after automated classification and arrival 

time picking using T-M-S classification and MER (blue circle) and STA/LTA 

(red triangle). Also plotted are the hypocenters resulting from manual picking 

(green filled square). Results showing absolute error compared with the original 

location for manual picking are shown on table 5.3. 
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Event Number X(mm) Y(mm) Z(mm) Absolute Error (mm) 
1 2.43 25.34 0.00 5.97 
2 23 .32 17.58 0.00 4.48 
3 25.30 1.23 0.00 5.63 
4 21.02 -19.14 0.00 2.74 
5 -0.12 -27.28 0.00 3.52 
6 -14.09 -22.37 0.00 7.71 
7 -37.20 -2.18 0.00 6.76 
8 -18.25 4.86 0.00 17.28 
9 -38.03 -2.85 0.00 7.77 

Average 6.87 
Table 5.3 Manual RMS error hypocenter location for CJ6 pencil lead break calibration after 

manual classification. 

Event Number X(mm) Y(mm) Z(mm) Absolute Error (mm) 

1 
1.92 26.43 0.00 4.77 

2 19.95 16.05 0.00 6.02 

3 
27.08 1.66 0.00 4.08 

4 20.64 -19.69 0.00 2.38 

5 
-0.24 -3 2.62 0.00 1.84 

6 
-14.79 -22.94 0.00 7.08 

7 
-36.95 -1.58 0.00 6.35 

8 
-36.46 -2.18 0.00 6.07 

9 
-19.1 3 17.09 0.00 5.38 

Average 
4.88 

Table 5.4 Automatic classification (TMS) and arrival picking (MER) absolute error 
hypocenter location for Cl 6 pencil lead break calibration. 
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Event Number X(mm) Y(mm) Z(mm) Absolute Error (mm) 

1 
2.52 25.26 0.00 6.08 

2 22.68 17.11 0.00 4.75 

3 26.54 1.59 0.00 4.55 

4 22.02 -21.26 0.00 0.57 

5 0.34 -27.17 0.00 3.65 

6 
-14.41 -22.76 0.00 7.43 

7 
-36.54 -1.55 0.00 5.95 

8 
-39.14 -0.61 0.00 8.36 

9 
-43.46 35.11 0.00 25.45 

Average 7.42 

Table 5.5 Automatic classification (TMS) and arrival picking (STA/LT A) RMS error 
hypocenter location for Cl 6 pencil lead break calibration. 

The average absolute error for location for hypocenter locations from manual 

classification and manual arrival picking is 6.87 mm. Using automatic (TMS) 

classification and MER automatic picking is 4.88 mm absolute error. Finally 

using automatic classification and ST A/LT A automatic picking the result in 

average absolute error is 7.42 1mn. Absolute errors are calculated using the 

following formula: 
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Where X, Y, Z are the axis locations, c correspond to the value calculated and r 

correspond to the real value of location. 

After reviewing results for locations using manual and automatic classification 

and arrival picking, it is clear that the best results were obtained using automatic 

classification and MER automatic arrival picking with an absolute error location 

of 4.88 mm and 0.4% (0.004 µsec) absolute error in time comparison vs. manual 

results. 

5.2 Hydraulic Fracturing Test 

A complete test for HF on the same Indiana limestone sample following the 

procedure mentioned in chapter 4 was carried out. An entire dataset of 269 

events using 16 sensors generates 4304 signals. These were automatically 

classified and each arrival time was picked automatically. The results for manual 

and automatic classification are summarized in table 5.5. Due to the number of 

signals, the events were manually classified simply as "good" or "bad" events. 

Figure 5.3 shows an example of a good event (event 44) selected randomly to 

show the results obtained for every signal ( of every sensor) using the MER 

automatic arrival picking algorithm. 
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Total number 
Classification 

of Events 
Technique 

Good Bad 

T-M-S 68 201 

T-M-S +20% 269 0 

T-M-S +2% 204 65 

T-S-H 136 133 

T-S-H +20% 210 59 

T-H-Z 149 120 

T-H-Z+20% 210 59 
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Manual Classification 206 63 

Table 5.6 Automatic and manual classification results on events for an Indiana limestone HF 
experiment. Total number of events was 269, and 4304 individual waveforms were analyzed. 

The time implemented for a manual classification and arrival picking of the total 

set of events is approximately 8 hours versus approximately15 minutes to 

automatically classify and pick arrival times. 
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Figure 5.2 Automatic arrival picking results (yellow cursor) using MER algorithm (window = 

I 00 µsec) for a "good" event number 44 of 269. The different signals correspond to every 
sensor (16 in total). Sensor I plotted at the bottom to sensor 16 plotted in the top. On the right 

of the plot, the time results in µsec/or automatic arrival are also shown for every sensor. 
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The dependency of automatic classification depends on the diversity of signals 

analyzed. This is something also mentioned by Tan, 2007. Table 5.5 shows a 

summary of results obtained from implementing different automatic 

classification algorithms. The best results are obtained using threshold - signal 

to noise ratio - histogram (T-S-H) + 20% which includes "medium" class 

signals with a total number of 210 events classified as "good", creating 98 .1 % 

( 4 events more declared as "good") of accuracy compared with manual results. 

The best arrival time comparison was realized using the MER algorithm with a 

window of 200 ~Lsec. The results comparing manual anival picking vs. 

automatic arrival picking give an absolute error of 1.99% difference in time 

(approximately 1.93 µsec in time). 

The algorithm implemented for HF expe1iments, The T-S-H + 20%, is different 

in comparison with the T-M-S used for pencil lead calibration. This is due to the 

diversity of the signals which in the case of an HF test is lesser. This means that 

the difference between a "good" signal and a "bad" signal is more significant in 

a calibration test than in a hydraulic fracturing test. 

Hypocenter locations were calculated for HF events. The algorithm used for 

location produces the final results generating an error measured by the RMS 

(root medium square) error. This algorithm depends on a velocity model 

obtained by other process for the rock. After a manual classification and arrival 
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picking is made and the location algorithm is applied, the uncertainties in arrival 

times will produce mislocation of events, sometimes outside the sample. This 

signals located outside the sample are eliminated. 

Table 5.7 shows the root medium square (RMS) error for location for different 

classification and arrival picking methods. The RMS error is calculated from the 

error estimates generated during the least squares event location. A comparison 

is presented based on the automatic and manual picks. 

METHOD RMS Number of events 

error located inside sample 

Classification Arrival Picking 
(mm) (Total number of events) 

T-M-S MER(l00µsec) 3.97 65 

(65 "good" MER (200µsec) 0.50 65 

events) ST A/LTA(l 0/1 00µsec) 2.05 61 

T-S-H MER(l00µsec) 3.46 131 

(136 "good" MER(200µsec) 0.97 128 

events) ST A/LTA(l 0/1 00µsec) 2.89 119 

T-S-H+20% MER( 100 µsec) 2.76 172 

(210 "good" MER(200µsec) 1.71 177 

events) ST A/LTA( 10/100 µsec) 2.85 165 
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Manual 

(210 "good" Manual 0.57 201 

events) 

Table 5. 7 Analysis of RMS error obtained after location of events inside sample using the 
methods that yields on best results. 

The automatic classification method that produced the largest number of "good" 

events (177 "good" events) and a good RMS error (1.71 mm) is using threshold 

- signal to noise ratio - histogram plus 20% which includes "medium" class 

events. 

It is imp01iant to clarify the relation between classification of "good" events and 

accuracy on final location. In order to achieve small RMS error in locations ( < 1 

mm) it is necessary to eliminate "medium" level signals. This level of accuracy 

is reached by the single T-S-H classification method which classifies 128 

"good" events with an RMS error in location (using MER 200 ~tsec) of 0.97 mm 

and eliminates 74 "medium" events. 

Some examples on location of events from HF on Indiana limestone sample are 

presented on figure 5.4, 5.5 and 5.6 using different axis views (X-Y; X-Z and Y

z respectively) . 
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Figure 5.3 Event location example using the classification and arrival picking methods that 
yields best results. X-Y axis plan view; distance in mm. Blue squares correspond to manual 
methods for classification and arrival picking. Red squares correspond to T-M-S automatic 

classification method. Green triangles correspond to T-S-H automatic classification method. 
Both automatic methods for classification were finally located using MER automatic arrival 

picking algorithm with 200 µsec window. 
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Figure 5.4 Event location example using the classification and arrival picking methods that 
yields best results (; distance in mm). X-Z lateral axis view projected onto the diametrical 
plane of the sample. Blue squares correspond to manual methods/or classification and 

arrival picking. Red squares correspond to T-M-S automatic classification method. Green 
triangles correspond to T-S-H automatic classification method. Both automatic methods for 
classification were finally located using MER automatic arrival picking algorithm with 200 

µsec window. 
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Figure 5. 6 Event location example using the classification and arrival picking methods that 
yields best results (; distance in mm). Y-Z lateral axis view projected onto a diametrical plane 
perpendicular to the final hydraulic fracture. Note the tight clustering of events in the region 

of the final fracture. Blue squares correspond to manual methods for classification and 
arrival picking. Red squares correspond to T-M-S automatic classification method. Green 

triangles correspond to T-S-H automatic classification method. Both automatic methods for 
classification were finally located using MER automatic arrival picking algorithm with 200 

µsec window. 
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6 OBSERVATIONS AND CONCLUSIONS 

An automatic software process that classifies and picks P-waves arrival 

times for AE signals obtained dming the hydraulic fracturing of rock samples in 

a laboratory scale expe1iment was successfully implemented and validated using 

manual comparison. A complete data set from an HF experiment on Indiana 

Limestone sample was used to analyze the error in classification and arrival 

picking. Using 16 sensors, a total of 20 events (3 20 signals) during calibration 

and 269 events ( 4304 signals) during the actual HF test were classified. Results 

indicated that 9 events in calibration lead-break test and 210 events for HF test 

were classified as "good" events using T-M-S + 20% (threshold - mean of 

frequencies and signal to noise ratio) for calibration test signals and T-S-H 

(threshold - signal to noise ratio - histogram) for HF test. Overall this 

combination of algorithms produces a 98 .1 % agreement in classification with 

manual classification. Other alg01ithms yield the following levels of 

classification agreement: 72% using T-H-Z, 66% using T-S-H and 33% using T

M-S. 

Results for automatic arrival picking (MER and STA/LTA) algorithms were 

also compared against manual results. MER arrival picking alg01ithm gives the 

best results with a 0.4% of absolute error in time comparison vs. manual arrival 
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picking in pencil lead break calibration and 1.99% of error in HF real test 

signals. 

Final event locations are also examined to demonstrate the consequences in 

the final interpretation of AE data. The best results for classification were 

obtained using a combination of 3 algorithms (threshold - mean of frequencies -

signal to noise ratio) including "medium" signals. Inclusion of "medium" 

signals will increase the error in the automatic arrival picking method in about 1 

or to 2 decimals in RMS error. It is recommendable not to use "medium" signals 

in order to improve the uncertainty and RMS error location. 

Two principal programs, one for classification and another for arrival 

picking have been created for processmg AE events from laboratory 

experiments. A third program lets the user interact with properties and 

algorithms used for arrival picking and the characteristics at the individual 

signal level. This third software could be used to detennine which combination 

of characteristics perfonns the best. Different algorithms were analyzed and 

used for both classification and arrival picking and are available for analysis on 

the selectable options of the software. 

Additional signal information 1s extracted from signals after 

classification; these characteristics are: first arrival polarization (positive, 

negative or not possible detection), principal frequency around a window 
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centered on the arrival and analysis of maximum amplitude in this window. All 

three use the arrival time to define where to obtain those characteristics and 

depend on a good perfonnance of the arrival picking procedure. These signal 

characteristics are important for the characterization and analysis of AE events 

results (Chitrala et al., 2010). 

The results show that the time required for automatic picking is shorter 

than any manual method. Automatic pickers have improved to the point where 

they can now rival human analysts ' results on large volumes of data. The time 

implemented on average for a set of 269 events in manual classification and 

manual arrival picking is approximately 8 hours compared to 15 minutes on 

average to finish the complete automatic processes. 

MER algorithm method developed by Wong et al. , (2009) is simpler and 

faster than the STA/LTA window ratio approach. Both methods are effective at 

picking arrivals on low noise seismograms (SNR < 1 0dB). But as the random 

noise increases, both methods begin to fail. The method with better accuracy and 

greater noise tolerance is the MER algorithm, whose results and perfo1mance are 

discussed in chapter 5. 

Future work should look to implement an "online" automatic procedure. 

The automatic procedure system implemented in this research works "offline." 

This means that the classification and arrival picking is implemented after the 
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acquisition is done. The acquisition of the signals is implemented by a different 

system. It is possible for future implementation to realize a complete acquisition 

and analysis on "real time." This is extremely important in the field where it is 

necessary to study fracture stages as they are carried out. This will require new 

software which is directly coupled with the acquisition software. 
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