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Abstract:  
 
Analytical subsurface mass removal models are used to evaluate the accuracy and efficiency of 

remediation approaches.  Generally, in field settings, the initial mass of the contaminant source is 

unknown and thus these analytical approaches cannot be evaluated effectively for complex field 

conditions.  This is more difficult in karst settings, which have preferential flow and perched 

water tables. At a site near Fittstown, OK, several passive and active remediation technologies 

were used and monitored after 2000 gal of diesel spilled at an isolated municipal supply well in 

dolomite. Seven analytical models to estimate hydrocarbon mass attenuation or recovery were 

tested to predict mass removal of diesel from the various mechanisms that occurred on the site. 

The analytical predictions of diesel mass removal were either underestimated or overestimated, 

depending on the remediation technology or attenuation process. Model uncertainties relative to 

field data mass estimates may be due to parameter sensitivity and variability, sampling 

methodology, or model assumptions for the analytical solutions. While the models have various 

uncertainties in mass estimations, they are demonstrated to be useful to provide remediation 

options and decisions based on these estimates prior to active remediation. 
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CHAPTER I 
 

 

INTRODUCTION 

Petroleum fuels are an essential resource in modern society for transportation or electricity. These 

fuels are transported or stored in tanker trailers, petroleum distilleries, pipelines, and both above 

ground and underground storage tanks. With the wide variety of transportation and storage, spills 

and leaks do occur (Etkin, 2009; Ramseur, 2017; U. S. EPA, 2018) and cleanup of these spills is 

needed to protect human health and the environment (Risher, 1995; Agency for Toxic Substance 

and Disease Registry, 1996; Udem et al., 2011). Cleanup can utilize natural attenuation through 

microbial process or active remedial technologies to restore these sites. Predicting which 

approach would be most effective can be accomplished with several analytical mass removal 

models developed to predict mass removal of hydrocarbons. 

Prior studies have shown the effectiveness of these remedial technologies in the laboratory (Hess 

et al., 1996; Waddill and Parker, 1997; Chevalier and Petersen, 1999; Schluep, 2000; Lee et al., 

2001; Qu et al., 2013; Wang et al., 2014) and in the field (Höhener et al., 1998; U. S. EPA, 2000; 

Wang and Mulligan, 2004; U. S. EPA, 2005; U. S. EPA, 2005; Rahbeh and Mohtar, 2007;  

Burden et al., 2008; Chiu et al., 2013; McCoy et al., 2015). Studies for these methods have 

determined the transport characteristics of the site and specific properties of the contaminant are 

essential to predict or quantify the mass removal of the contaminant. Several models have been 

developed for this purpose; some are simple, requiring a basic calculator with few analytical 
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parameters, while others are complex, requiring advance computing with multiple parameters and 

a 3-D numerical solution. 

Several of these models have not been field tested with a known initial petroleum mass; they use 

similar field scenarios with estimated initial petroleum mass (Lyman et al., 1981; Johnson et al., 

1990; Fingas, 2013; Kuo, 2014; McCoy, 2015).  

The purpose of this study is to test uncertainties for mass removal models in a field setting with a 

known initial mass of contaminant and a known remediated mass for several remedial 

technologies and methods. A fractured karstic dolomite aquifer impacted by diesel provides a 

unique field test site to study these uncertainties. A variety of remedial methods were used on the 

error calibration field site such as excavation, submersible pump-and-treat, skimmer pump-and-

treat, soil vapor extraction, in-situ soil flushing, evaporation, volatilization, and bioremediation. 

Each of these have their own advantages and limitations in removing petroleum fuels from a 

contaminated site. Analytical models have been developed to predict or estimate the mass 

removed with either estimated or known parameters. 

The hypothesis of this thesis is analytical mass removal models for hydrocarbons can be 

predictive on complex field settings if calibration data for the models are available. By having a 

test site with a spill of known initial mass into a fractured karstic aquifer and comparing the 

analytical models predictions with the field recovered mass, the hypothesis can be tested. The 

background literature will discuss in depth the various technologies and methods used and what 

models were used for predicting the diesel mass removal. The site description section will discuss 

the geography, climate, geology, and hydrogeology at the regional and local scale. The site 

characterization and remediation section will discuss the various methods used to characterize the 
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site and the remedial work used to extract the hydrocarbon mass at the site with respective dates. 

The methods section will discuss what instruments and laboratory methods were used in the field 

and the parameter selection of the models. Results are presented comparing the model and field 

diesel mass removal, and calculating the error between the model and the field data. Discussion is 

presented with evaluating uncertainties relating to the parameters, models, or overall conceptual 

ideas with future work. The final section provides conclusions based on the evaluation of the 

mass removal models.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

This section reviews literature to provide context for fuel transport, remediation methods, and 

their analytical models for mass removal. Fuel transport covers how hydrocarbons interact with 

groundwater and in karst geology. Remediation methods reviews how fuels are removed from the 

subsurface by using evaporation, excavation, pump-and-treat methods for submersible pumps and 

skimmer pumps, soil vapor extraction, surfactant flushing, volatilization and bioremediation.  

Remedial models are discussed with remediation methods to show how the models compute mass 

removal with each associated remedial method. 

HYDROCARBONS IN GROUNDWATER 
 

Hydrocarbon fuel is a complex mixture of saturated aromatic hydrocarbons (Song et al., 2000). 

Different oil refineries may vary the mix of hydrocarbons in fuels depending on regulations, 

climate, and season (Dineen, 1991; Song et al., 2000). Diesel is produced as a middle 

hydrocarbon, with the lighter weight hydrocarbons and most volatile aromatic compounds found 

in gasoline removed during distillation (Dineen, 1991). The physical and chemical properties of 

diesel are between lighter hydrocarbons like gasoline and heavier hydrocarbons of crude or 

bunker oils.  
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Several physical properties of diesel are needed for transport calculations. The density of diesel is 

lighter than water but heavier than gasoline, ranging from 0.80-0.86 g/mL (Song et al., 2000), 

classifying diesel as a light non-aqueous phase liquid (LNAPL). Vapor pressure is the measure of 

how oil partitions between liquid and gas phases, and is estimated from 1.03-1.38 kPa (Woodrow 

and Seiber, 1988). The hydrocarbon variability of diesel complicates the measurement of vapor 

pressure and is rarely used to assess spills (Fingas, 2001). The viscosity of diesel is dependent on 

the amount of lighter and heavier fractions of compounds (Fingas, 2001), ranging from 2-4 

centistokes with most estimates at 2 cm2/s (Environment Canada, 2017).  

Oil/air surface tension is force of attraction or repulsion between oil and air (Fingas, 2001), which 

can vary based on the temperature. Oil/air surface tension of diesel is 23.8 dynes/cm at 25° C and 

26.5 at 15° C (Mercer and Cohen, 1990; Environment Canada, 2017). Oil/water interfacial 

tension is the force of attraction or repulsion between the molecules of oil and water (Fingas, 

2001) and falls between 27-29.4 dyne/cm (Fingas 2001; Environment Canada, 2017). With the 

addition of viscosity, oil/water surface tension is an indication of the extent and speed of LNAPL 

spreading (Fingas, 2001). If the LNAPL has a lower interfacial tension, then the lateral extent of 

LNAPL increases (Fingas, 2001).  

LNAPL transport primarily relies on advection or dispersion (National Academies of Sciences, 

Engineering, and Medicine, 2015).  LNAPL transport typically migrates vertically in the 

subsurface until it reaches an impermeable matrix or the water table. At either of these conditions, 

the LNAPL will commonly disperse and follow the down gradient pathway of the impermeable 

layer or the water table interface. Lateral flow by advection is primarily caused by a positive 

gradient along either an impermeable layer or the direction of groundwater flow (National  
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Table 1: Diesel properties used in this study used from literature. 

Academies of Sciences, Engineering, and Medicine, 2015). Diving plumes with vertical LNAPL 

movement are also possible (Newell et al., 1995). 

Some examples of LNAPL field study sites include Bemidji, MN; Carson and Los Angeles, CA; 

and Pusan, Korea. The Bemidji, Minnesota site was to observe the subsurface flow, dissolution, 

volatilization, and bioremediation of approximately 1.7 x 106 L (10,700 barrels) of crude spilled 

oil evaluated over 30 years of study (Essaid et al., 2011). At the Carson and Los Angeles sites, 

both surfactants and bioremediation test pilots were conducted for their effectiveness (Los 

Angeles LNAPL Working Group, 2015). The Pusan, Korea site was to determine the 

effectiveness of surfactant flushing of diesel at the field scale (Lee et al., 2005). 

 Value Unit Source 

Density 0.80-0.86 mg/L Song et al., 2000 

Viscosity 2-4 cm2/s Environment Canada, 2017 

Molecular Weight 234 g/mol Fogg, 2017 

Vapor Pressure 1.03-1.08 kPa Woodrow and Seiber, 1988 

Oil/Air Surface 
Tension 

23.8 

26.5 

dynes/cm @ 25° C 

dynes/cm @ 15° C 

Mercer and Cohen, 1990 

Environment Canada, 2017 

Oil/Water Interfacial 
Tension 

27-29.4 dynes/cm @ 15° C Fingas, 2001 

Environment Canada, 2017 
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FUEL IN KARST 
 

While hydrocarbon fuels in a porous matrix such as sandstone may disperse in an elliptical shape 

and flow from pore to pore, fuel transport in karst is different as fuel typically migrates in 

fractures or conduits (National Academies of Sciences, Engineering, and Medicine, 2015).  

Advection is the primary transport of both water and fuel in karst. Fractures are the primary 

pathways for advection unless there is a more permeable flow path (National Academies of 

National Academies of Sciences, Engineering, and Medicine, 2015).  LNAPL accumulates 

primarily above the water table, but it can be transported horizontally and vertically in fractures 

beneath the water table (Adamski et al., 2005). This can trap LNAPL beneath or above the water 

table and allow contamination of remediated groundwater with changing groundwater levels 

(Newell, 1995).  Several factors affect transport such as rock fracture and matrix geometries, 

local variations in flow velocity, fracture aperture, fracture roughness, and hydrodynamics at 

fracture intersections (National Academies of National Academies of Sciences, Engineering, and 

Medicine, 2015). 

Remediation of fuel in karst requires a different approach compared to porous media. Difficulties 

of remediating fuel-impacted karst are primarily in characterization, plume transport, and access 

to contaminants in the subsurface.  Characterization of impacted karst require more detailed 

characterization and non-invasive techniques (National Academies of Sciences, Engineering, and 

Medicine, 2015); this may increase the cost and be more difficult for deep impacted areas in 

competent fractured aquifers. A limited hydrogeological conceptual model might allow the 

migration of remedial injections away from the impacted portion of a site.  Plume extent and flow 

can cause difficulty in remediation, as fractured pathways are not the same as in porous media. 
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Transport of the fuel may follow a “stair-stepping” shape where highly transmissive vertical 

fractures can cause the plume to move to lower or higher areas in the subsurface (National 

Academies of Sciences, Engineering, and Medicine, 2015).  

The depth of the contaminant also varies for possible discharge points. Shallow areas may have 

discharge points at surface water areas, while a deeper area may hold the contaminants for a 

longer time scale (National Academies of Sciences, Engineering, and Medicine, 2015). Access to 

contaminants may pose another difficulty in remediation. If pump-and-treat methods or surfactant 

injection methods are applied, they might not reach the contaminated area if a flow path with 

higher transmissivity is available and moves away from the intended area.  

Possible technologies used for fuel remediation in fractured aquifers may include pump-and-treat 

methods, in-situ chemical flushing, or natural attenuation. Pump-and-treat, whether it is a 

submersible pump, skimmer pump, or vacuum pump, removes the contaminant from the 

subsurface to an above ground storage unit or disposal area. Pump-and-treat methods rely on 

advection for transport, the primary transport method in fractured karst systems (National 

Academies of Sciences, Engineering, and Medicine, 2015). In situ chemical flushing can include 

water, acidic aqueous solutions, basic solutions complexing or reducing agents, cosolvents or 

surfactants (U. S. EPA, 2006). The chemical components rely on advection for transport to the 

contaminated areas (National Academies of Sciences, Engineering, and Medicine, 2015). Natural 

attenuation includes volatilization, bioremediation, dissolution, and sorption (U.S. EPA, 1999). 

Volatilization relies on the phase change from liquid to vapor by natural vapor pressure 

differences. Bioremediation does not rely on the advection process unless injecting microbes or 

other properties for microbes to grow. Instead, bioremediation relies on the microbes already 
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present in the subsurface for remediation. Dissolution is the breakdown of complex compounds 

by water; some compounds degrade more easily than others do. 

MASS REMOVAL ANALYTICAL MODELS 
 

Nine types of mass removal analytical models were selected based on the field site remedial 

history. These are given abbreviations for their use in this work, I for the initial phase, A for 

active remediation, and NA for natural attenuation mechanisms. Initial passive and active 

remediation includes evaporation (I1) and excavation (I2). Active remediation includes 

submersible pump-and-treat (A1), skimmer pump-and-treat (A2 & A4), and soil vapor extraction 

(SVE) (A3 & A5) before and after the application of surfactants. Before the application of 

surfactants, submersible pump-and-treat (A1), skimmer pump-and-treat (A2), and SVE (A3) were 

used. After surfactant flushing, skimmer pump-and-treat (A4) and SVE (A5) were used. Natural 

attenuation includes volatilization (NA1) and bioremediation (NA2). The following will include 

detailed descriptions of each method: factors affecting the mass removal calculation, the 

analytical model selected and which parameters are utilized. 

INITIAL MASS RECOVERY 
 

1) EVAPORATION: I1 
 

Evaporation is the first process to occur during and following the diesel spill with the liquid phase 

changing to a vapor phase (Atkins, 2018). The layer of vapor above the liquid is known as the 

boundary layer. The boundary layer characteristics may influence evaporation of some liquids, 

but not petroleum products (Fingas, 2013). 
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The primary factors for evaporation include temperature and LNAPL thickness.  Temperature is 

the major factor with higher temperatures increasing the rate of evaporation (Fingas, 2013). The 

thickness of the petroleum affects the evaporation of diesel if the thickness is greater than 2 mm, 

which increases the path length of volatile components that must diffuse through a thicker layer. 

If the thickness is greater than 2 mm (3.28 x 10-3 ft), a correction factor can be applied to the 

calculation of diesel evaporation rate (Fingas, 2013). Wind speed and surface area do not affect 

the evaporation of LNAPL (Fingas, 2013). 

The efficiency and advantages for evaporation is that it occurs naturally and has a high relative 

evaporation rate compared to unprocessed hydrocarbons.  As diesel is a mixture, some 

compounds of diesel will evaporate quicker than other compounds (Fingas, 2013). Diesel 

naturally evaporates with the increase of temperature. Most surface spills will evaporate within 

days if held at constant high temperatures (Fingas, 2013).  

There are several disadvantages of mass loss by evaporation; low volatility rate, the presence of 

heavier organic compounds, parameter changes, and difficulty in field evaluation may be 

problematic (Fingas, 2013). While diesel may evaporate faster than raw hydrocarbons, diesel has 

a lower volatility and can evaporate at a slower rate than lighter fuels, such as gasoline, below its 

boiling point. This is primarily because the heavier hydrocarbons in diesel have lower volatility 

points than the compounds in gasoline. Field evaluation is also difficult to quantify as various 

conditions could affect diesel evaporation rates over a large area. This could leave the heavier 

organic compounds behind after the evaporation of lighter organic compounds. The evaporation 

of lighter compounds may change diesel parameters such as viscosity, density, and flash point 

(Fingas, 2013). With the remaining heavier diesel compounds and parameter changes, 
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remediation prediction and effectiveness may become more difficult (Fingas, 2013).  Evaporation 

is easier to measure in the lab; evaporation measurements in the field are more difficult with 

varying environmental conditions and large spill sizes. 

Fingas created several empirical analytical models based on lab experiments to estimate 

evaporation rates of gasoline, diesel, and crude oils (Fingas, 2013). While most fuels follow a 

logarithmic decay curve with time, diesel evaporation rates follow a square root with time decay 

model (Fingas, 2013). For the diesel evaporation equation, the amount of time diesel has been 

exposed is required. Two different empirical equations have been used if the diesel has been 

exposed for more or less than five days. An additional equation may be added if the thickness of 

the diesel spill is more than 2 mm.  The equation used in this study considered diesel exposed for 

less than five days, with a thickness of less than 2 mm.  The equation is:	 

 𝑉#$%& = 𝑉( − (𝑉(	𝑥	%𝐸𝑉𝐴𝑃) = 𝑉( − (𝑉(𝑥		(0.39 + 0.13𝑇)√𝑡, (2.1) 

where VEVAP is the volume of diesel evaporated in L (gal), Vt is the total volume of diesel spilled 

in L (gal), %Evap is the percentage of diesel evaporated, T is the ambient air temperature in °C 

(°F), and t is the time the diesel was exposed to the ambient air temperature in minutes (Fingas, 

2013). The mass of diesel removed can be determined by multiplying the density of diesel with 

the volume of diesel evaporated. 

2) EXCAVATION: I2 
 

Excavation is the removal of contaminated soil from the impacted site to prevent the LNAPL 

from further affecting the site (Kuo, 2014). Primarily, construction equipment removes soil from 

a site and disposal trucks remove the impacted soil from the site. Contaminated soil can be placed 
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directly into the disposal trucks or temporarily stored on an impermeable surface or in a storage 

unit to prevent runoff of LNAPL. Disposal of contaminated soil is commonly performed by 

trucking soil to EPA designated disposal facilities. The soil is then either thermally inducted or 

allowed to let LNAPL evaporate (Kuo, 2014). 

Excavation is advantageous due to the relative simplicity of requiring general excavation 

equipment and no complex understanding of the process (U. S. EPA., 1991). Excavation’s 

generally short time frame can be used as a rapid response option. Additionally, it is useful in low 

permeability settings (Barnes et al., 2002; U. S. EPA 2012).  If the soil has low permeability, 

excavation can assume that advection of LNAPL doesn’t occur on short time scales. 

The cost of excavation for equipment, removal, storage, disposal, and labor will increase with 

time and size of the contaminated area. Excavation is generally limited to the vadose zone as 

deeper phreatic excavations are costly (Testa and Winegardner, 1990). Excavation becomes 

problematic for large contaminated areas, significant depth to impacts, and when the total costs 

are high (Barnes et al., 2002; U. S. EPA 2012). If the size of the contaminated area is too large, 

excavation time and cost may increase to a point where excavation is ineffective as a remediation 

option. The depth to bedrock may inhibit excavation, as most excavation equipment is unable to 

remove the harder bedrock without more expensive equipment or risk the contaminated bedrock 

spreading impacts (Barnes et al., 2002; U. S. EPA 2012).  

Most equations to predict the mass removal of LNAPL by excavation are simple (Kuo, 2014). 

Parameters usually include volume of pit, average concentration of contaminant, and density of 

soil and contaminant. Average concentration of the contaminant is taken from multiple soil 
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samples before the excavation as drill logs, during excavation, or after excavation from a stored 

pile. The equation for contaminant removal through excavation  is: 

 
𝑉;&< =

=$>?@×
B
C
∑ EFC
FGB ×HIJ?KL

HKMN>K
, 

(2.2) 

 

where VTPH  is the volume of TPH in m3 (ft3), VPIT is the volume of the excavation pit in L (gal), n 

is the total number of soil samples, i is the sample number, Ci is the concentration of the soil 

sample i in mg/kg, rSoil is the density of the soil in kg/m3, and rLNAPL is the density of the LNAPL 

in kg/m3 (Kuo, 2014). The mass of TPH removed by excavation can be determined by 

multiplying by the density of the LNAPL. 

ACTIVE MASS RECOVERY 
 

3) SUBMERSIBLE PUMP-AND-TREAT: A1 
 

Submersible pump-and-treat is a common remediation technique that pumps out contaminants 

and water from the subsurface to be treated or removed from the site (U.S. EPA, 1996).  There are 

multiple case studies for predicting the effectiveness of pump-and-treat LNAPL contaminant 

mass removal, field removal, and guidelines (Mackay and Cherry, 1989; McKinney et al., 1996; 

U.S. EPA, 1996; Cohen et al., 1997; U. S. EPA, 2005; Baú and Mayer, 2008; Burden et al., 2008 

Ko and Lee, 2010). Pump-and-treat remediation is a common tool for its simplicity of calculating 

and field methodology (Mercer, 1990; U.S. EPA, 1996); calculation of contaminant mass removal 

is similar to water removal and flow rates (Newell et al., 1995). Field methodology is simple with 

the installation of a well, a pump, and storage containers or treatment system (Mercer, 1990). 
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Submersible pump-and-treat is considered dual phase pumping of both the aqueous and free 

phase LNAPL (Mercer,1990). The remediation technique works by creating a cone of depression 

with the water via pumping (Newell et al., 1995). The floating LNAPL flows with the water in 

the cone of depression and is pumped out with the water. The cone of depression can be 

considered as the radius of capture (Newell et al., 1995; Charbeneau, 2007). 

Advantages of submersible pump-and-treat remediation includes multiple studies, simplicity, 

large production rates, and reduction of LNAPL movement (Mercer, 1990; Cohen et al., 1997; 

Charbeneau, 2007). Submersible pump-and-treat is common and well evaluated in scientific 

literature, as well as in the regulatory environment (Mercer, 1990). Submersible pump-and-treat 

requires installing a pump and removing water and contaminant to a disposable container or area 

(Newell et al., 1995; Cohen et al., 1997). If no well is present, one can be installed at the best 

possible area to intervene contaminant flow or where the most contaminant is gathered. 

Submersible pump-and-treat can also achieve large production rates if the permeability is high 

enough and the pump is capable of high volume pumping rates (Newell et al., 1995; Cohen et al., 

1997). If the contaminant is mobile, submersible pump-and-treat can intercept the flow path or 

make the LNAPL flow toward the well if the hydrogeologic conditions are appropriate (Mercer, 

1990; Newell et al., 1995; Cohen et al, 1997). 

The disadvantages of submersible pump-and-treat application includes low permeability settings, 

inability to pump the residual phase of LNAPL, smearing of the recovery well during or post 

installation, the tailing effect where recovery decreases over time asymptotically, missing the 

location of the LNAPL in the subsurface, and time limits (Mercer, 1990; Newell et al., 1995; 

Cohen et al., 1997; Charbeneau, 2007). Submersible pump-and-treat can only remove free-
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flowing LNAPL, and is unsuitable for use if the LNAPL is in a low permeable matrix, where 

contaminant and water flow is restricted. Residual LNAPL is unaffected by submersible pump-

and-treat (Mercer, 1990).   

Pumping LNAPL out of the well or borehole may cause smearing alongside the well or borehole 

(Newell et al., 1995). Smearing is caused when drawdown of the water table and floating LNAPL 

is high enough to cause LNAPL smear along the sides of the well or borehole. When pumping 

halts, the recently remediated water covers and submerges the smeared region of the well and 

becomes contaminated again (Newell et al., 1995). Another effect of pump-and-treat is known as 

tailing. Tailing is a residual factor where free flowing LNAPL is pumped, but leaves a “tail” of 

residual in the subsurface (Mercer, 1990; U.S. EPA 1996). When the water table recovers, the 

water is contaminated again with the LNAPL (Mercer, 1990; U.S. EPA 1996).  

Another issue in submersible pump-and-treat is the radius of capture missing the flow path of the 

LNAPL (Mercer, 1990; Cohen et al., 1997). A misplaced recovery well, low pumping rates, or 

low permeability may cause the radius of capture to miss some or all of the free-flowing LNAPL. 

In general, continuous pumping has shown decreases in contaminant recovery (Mercer, 1990). 

Time-step pumping may be used where the water table and LNAPL is allowed time to 

accumulate around the recovery well for increased contaminant recovery (Mercer, 1990). 

The model selected for submersible pump-and-treat is the American Petroleum Institute’s (API) 

LNAPL Distribution and Recovery Model (LDRM) developed by Charbeneau (2007) to 

determine the saturation, distribution, and potential recovery of LNAPL in the subsurface. The 

model uses Van Genuchten equations for saturation distribution and Darcian and Theim equations 

for LNAPL movement and recovery. The model can simulate up to three layers of soil and 
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recovery simulation for submersible pump-and-treat, dual phase pumping, skimmer pump-and-

treat, and trench flow recovery (Charbeneau, 2007). 

In order to calculate the model, information on site characteristics, LNAPL properties, soil 

characteristics, and pumping variables are required (Charbeneau, 2007). Site characteristics data 

is the depth to water table and any layer intervals; the depths between each interval also 

determine the thickness of the layers. LNAPL fluid characteristics including density, viscosity, 

surficial tension between LNAPL and air, and interfacial tension between LNAPL and water are 

essential data, while viscosity and density of water is all that is required for the water phase. Soil 

characteristics includes data for each layer require porosity, hydraulic conductivity, van 

Genuchten parameters “N” and “a”, water saturation, and residual saturation f-factor. Once these 

parameters are known, the saturation distribution of LNAPL is calculated (Charbeneau, 2007). 

Recovery of LNAPL requires the selection of the recovery method used and associated 

parameters. The submersible pump-and-treat method requires pumping time, well radius, radius 

of influence, radius of capture, pumping rate, and saturated thickness to calculate how much 

diesel is removed (Charbeneau, 2007). 

Several equations are used for LDRM. The saturation and distribution of the LNAPL is first 

calculated at various elevation intervals. Once the model has calculated the elevation values, 

another set of equations are used for recovery. The following order describes first the saturation 

and distribution of fluids in the model followed by the recovery.  

1) Thickness of LNAPL equation (2.3) 

2) The van Genuchten “M” parameter for either Burdine or Mualem models  

3) Total liquid effective saturation 
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4) Total effective water saturation 

5) Initial LNAPL saturation for both below and above the air/LNAPL interface 

6) LNAPL residual saturation 

7) Water saturation 

8) LNAPL saturation above and below the air/LNAPL interface 

9) Recoverable LNAPL saturation equation (2.4) 

The recovery of LNAPL is calculated after selecting the recovery method and inputting the 

required parameters. The API LDRM is calculated as follows: 

1) Relative permeability for either Burdine or Mualem models 

2) LNAPL transmissivity equation (2.5) 

3) Recovery rate of LNAPL equation (2.7) 

4) Parameters “b”, “c”, “d”, and “h” for linear 

5) Linear equations for recoverable volume and transmissivity equations (2.8) and (2.9) 

6) Change of thickness over time equation (2.10) 

7) Continuity parameter for submersible pump-and-treat equation (2.11) 

8) Thickness of LNAPL at second and third time intervals equation (2.12) 

Calculating the distribution and saturation of LNAPL starts with the thickness of LNAPL. The 

thickness of LNAPL, bn(max), is calculated:  

 𝑧PQR = 𝑧QS +
(TUHV)(WXC WCY⁄ )

HVU(TUHV)(WXC WCY⁄ ) 𝑏S, (2.3) 

where zmax is the maximum elevation of LNAPL due to capillary rise (m or ft), zan is the elevation 

between the air and LNAPL bgs (m or ft), rr is the density ratio between LNAPL and water 
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(unitless), san is the surface tension between air and LNAPL (dynes/cm), snw is the interfacial 

tension between water and LNAPL (dynes/cm), bn is the thickness of LNAPL (m or ft) 

(Charbeneau, 2007). Once saturation distribution has been calculated, the amount of recoverable 

LNAPL is calculated using the saturation of free-phase LNAPL and residual LNAPL. The 

equation used is: 

 𝑅S(𝑏S) = ∫ 𝑛(𝑆S(𝑧) − 𝑆S`(𝑧))𝑑𝑧
bcXd
bCY

, (2.4) 

where Rn(bn) is the recoverable volume (L or gal), znw is the elevation of the LNAPL and water 

interface (m or ft), n is the porosity of the layer (unitless), Sn(z) is the saturation of free phase 

LNAPL at elevation z, and Snr(z) is the saturation of residual LNAPL at elevation z (Charbeneau, 

2007).  

For the permeability function, there are two different equations based on if the Burdine or 

Mualem model is used. For LNAPL transmissivity, the equation is: 

 𝑇S(𝑏S) =
HV
eV
∫ 𝐾gh(𝑧)
bcXd
bCY

𝑘`S(𝑆g, 𝑆S)𝑑𝑧, (2.5) 

where Tn(bn) is the transmissivity of LNAPL at LNAPL thickness (m2/d or ft2/d), rr is the density 

ratio between LNAPL and water (unitless), µr is the viscosity of LNAPL (cp), Kws(z) is the 

hydraulic conductivity of water for selected layer (m/d or ft/d), and krn(Sw,Sn) is the relative 

permeability of LNAPL (Charbeneau, 2007) .  

The continuity equation for recovering LNAPL can be expressed by: 

 −𝐴j
klC
k(

= 𝑄S, (2.6) 
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Where Ac is the area extent of the region of capture for a well (m2 or ft2), Rn is the recoverable 

volume of LNAPL (L or gal), t is time of recovery (days), and Qn is the recovery rate of LNAPL 

(L/d or gal/d) (Charbeneau, 2007).  

Qn can further be calculated by: 

 𝑄S =
nY;C(oC)
;Y(oY)HV

, (2.7) 

Where Qw is the water discharge rate (L/d or gal/d) and Tn(bn)  is the transmissivity of water (m2/d 

or ft2/d) (Charbeneau. 2007). However, there are problems trying to solve equation (2.6). Rn and 

Tn are nonlinear functions of bn and cannot be integrated. Instead, piecewise linear equations are 

used for best fit for both the recoverable volume and transmissivity of LNAP (Charbeneau, 2007).  

The linear equation for recoverable LNAPL is: 

 𝑅S(𝑏S) = 𝛽(𝑏S − 𝜒), (2.8) 

with b and c as constants for recoverable volume and bn is the thickness of LNAPL (m or ft) 

(Charbeneau, 2007).   

For transmissivity of LNAPL, the equation is: 

 𝑇S(𝑏S) = 𝜂(𝑏S − 𝛿), (2.9) 

with h and d as constants for transmissivity of LNAPL (Charbeneau, 2007).  

To determine the change of thickness over time during pumping, an integral is used by using the 

constant d and an additional constant developed for submersible pump-and-treat. The equation 

used is: 
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 tuv
tw

= −Ayz(b| − δz), (2.10) 

with dbn/dt as the change of LNAPL thickness over change of time and Awj as a submersible 

pump-and-treat constant that includes radius of capture, density, transmissivity and pumping rates 

(Charbeneau, 2007).  

 The equation for Awj is: 

 Ayz =
~�

�����������
=�
�
L, (2.11) 

with Qw as the water pumping rate (L/d or gal/d), Rc as the radius of capture (m or ft), and Tw-bw as 

the transmissivity of the thickness of the aquifer (m2/d or ft2/d) (Charbeneau, 2007).  

For the thickness of LNAPL at the second time interval is calculated with the equation: 

 b|(t�) = δ + (b|(tT) − δ)exp	(−Ayz(t� − tT)), (2.12) 

with t1 and t2 as time interval one and interval two (Charbeneau, 2007).  

These equations are repeated for a second time for the third piecewise linear function. Equation 

(2.4) is the primary equation used to determine the volume recovered with equations (2.7), (2.10), 

(2.11) and (2.12) used for primarily submersible pump-and-treat method. To determine the mass, 

the volume recovered can be multiplied by the density of the LNAPL. 

4) SKIMMER PUMP AND TREAT: A2 
 

Skimmer pump-and-treat was used for both before and after the application of surfactants. 

Skimmer pump-and-treat works similar to submersible pump-and-treat but produces little or no 

water during pumping (Obigbesan et al., 2001). The lack of water production allows easier 
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treatment as it does not require LNAPL/water separation or water disposal. This also lowers the 

cost with less treatment (Mayer and Hassanizadeh, 2005). Since there is little or no water 

production, smearing along the wellbore is minimal with maximum pumping from the skimmer 

pump. 

The disadvantages of the skimmer pump-and-treat are a decrease of effectiveness in low 

permeability settings, no treatment of residual LNAPL, limited radius of capture, lack of LNAPL 

flow control, and long remediation times (U.S. EPA, 1996; Mayer and Hassanizadeh, 2005; 

Interstate Technology Regulatory Council 2009). Skimmer pump-and-treat relies on the 

advection of LNAPL and if the subsurface has low permeability, the effectiveness of skimmer 

pump-and-treat method is reduced (U.S.EPA, 1996). Skimmer pump-and-treat can only treat free-

phase LNAPL and is unable to treat residual LNAPL.  

Most skimmer pumps have low pumping rates, increased remediation times, lower radius of 

capture, and limited hydraulic control (U.S. EPA, 1996; Mayer and Hassanizadeh, 2005). The 

skimmer pump may have a small radius of capture and miss the plume by misplaced drilling or 

miscalculated subsurface properties (U.S. EPA, 1996; Interstate Technology Regulatory Council, 

2009). The skimmer pump may not be able to alter the flow path of the LNAPL plume if the 

pumping rate is too small to adjust for the error. If the extraction well and radius of capture are in 

the flow path of the plume, the pumping rates of the skimmer pump may not be strong enough to 

alter all of the LNAPL toward the extraction well and continue down the flow path (U.S. EPA, 

1996). Remediation time of skimmer pump-and-treat method may take upward to several months 

or years as low pumping rates increase the time.  
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The API LDRM calculator can also predict the recoverable volume of LNAPL using a skimmer 

pump (Charbeneau, 2007). The inputs for elevations, layer thickness, fluid characteristics, and 

soil characteristics are the same as those used for submersible pumping. The only change is the 

selection of skimmer pump-and-treat and the inputs required for the recovery calculation 

(Charbeneau, 2007). The inputs for skimmer pump-and-treat is the type of aquifer being 

remediated, remediation time, the radius of capture and the well of the skimmer pump. The 

equations calculating saturation, permeability, transmissivity, and recoverable volume are the 

same (Charbeneau, 2007). Only equations (2.7), (2.10), (2.11) and (2.12) are changed for the 

application of skimmer pump-and-treat (Charbeneau, 2007). The recovery rate for skimmer 

pump-and-treat is: 

 𝑄S =
��(TUHV);C(oCUoCY)

�|(l� lY⁄ ) , (2.13) 

 

Where bnw is the LNAPL thickness in the well constrained by a fine grain zone (FGZ) (m or ft) 

and Rw is the radius of the extraction well (m or ft) (Charbeneau, 2014).  

The continuity equation for the skimmer pump-and-treat method is: 

 tuv
tw

= −A�z(b| − δ)(b| − b|�), (2.14) 

with Asj as the skimmer pump-and-treat performance coefficient and bnw thickness of the water 

table (m or ft) (Charbeneau, 2007).  

The performance coefficient equation is: 
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 𝐴h� =
(TUHV)

l���S	(l� lY)⁄ =�
�
L, (2.15) 

(Charbeneau, 2007). The performance equation used is: 

 A�z(t� − tT) =
T

�Uuv�
ln ��

(uv(wB)U�)(uv(w�)Uuv�)�
�(uv(w�)U�)(uv(wB)Uuv�)� , (2.17) 

Where t1 and t2 is time interval and bn(t1) and bn(t2) is the LNAPL thickness at time interval 1 and 

2. Equation (2.17) is used to calculate the removal of LNAPL in the subsurface over the given 

time of remediation (Charbeneau, 2007). Equation (2.4) is used to determine the volume 

recovered with equations (2.13) to (2.18) used for the constants specifically used for skimmer 

pump-and-treat method. The mass of LNAPL recovered can be determined by multiplying the 

volume recovered with the density of the LNAPL. 

5) SOIL VAPOR EXTRACTION: A3 
 

Soil vapor extraction or SVE is a similar to the pump-and-treat method for the vapor phase 

(Mercer et al., 1990). SVE uses vacuums to extract volatile contaminants from the subsurface into 

either a container or the atmosphere if it the contaminant vapor is safe or treated (Johnson et al., 

1990; Anderson, 1994; Newell et al., 1995). SVE also induces volatilization by lowering vapor 

pressure in the subsurface and encourages more contaminants to transfer from either residual or 

free phase to the vapor phase (Johnson et al., 1990; Anderson, 1994). With the removal of vapor 

contaminants, any aerobic microbial colonies that are present in the subsurface can utilize the 

additional available oxygen (also known as bioventing) (Anderson, 1994). 

Advantages for SVE include the remediation of residual LNAPL, volatilization enhancement and 

bioremediation enhancement (Johnson et al., 1990; Mercer et al., 1990; Anderson, 1994; Newell 
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et al., 1995). SVE is able to remediate residual LNAPL as it induces the LNAPL from the sorbed 

phase to gas phase for remediation (Mercer et al., 1990). If the vacuum pressure is high enough, it 

may be able to also vacuum up free-phase LNAPL but at a lower rate than a submersible or 

skimmer pump. SVE lowers the partial pressure of the fuel in the subsurface during and after the 

application (Anderson, 1994; Newell et al., 1995). SVE is able to induce volatilization during and 

after the method has been applied (Anderson, 1994; Newell et al., 1995); some complex 

compounds may require SVE to volatilize, as they cannot naturally. Bioremediation may also be 

induced after the application of SVE (Anderson, 1994; Newell et al., 1995). With the removal of 

contaminants and flow of oxygen in the subsurface, aerobic microbes are allowed to grow and 

remove the remaining contaminants (Newell et al., 1995). This will continue remediation of 

primarily the residual phase LNAPL (Newell et al., 1995). 

Soil vapor extraction has similar disadvantages to other pump-and-treat methods with low 

permeability and water table fluctuations. However, SVE is different from other pump-and-treat 

systems with contaminant concentration changes and the overall vapor pressure threshold 

increasing during SVE, which can decrease the efficiency of SVE (Johnson et al., 1990; Mercer et 

al., 1990; Anderson, 1994; Newell et al., 1995). Like most treatment methods that rely on 

advection, low permeability can reduce the movement of airflow during extraction (Newell et al., 

1995). If the SVE pumping is too high, it might cause water table fluctuations in the subsurface 

and smear against the well sides when pumping ceases (Johnson et al., 1990). Unlike most pump-

and-treat methods that can remove the entire LNAPL, SVE relies on the vapor pressure of the 

contaminant. If the contaminant cannot naturally volatilize or have low enough vapor pressures to 

be induced by SVE, then the method cannot remove the contaminant (Newell et al., 1995). If the 
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contaminant is a complex mixture with multiple compounds, each with different vapor pressures, 

SVE may induce the volatilization of only the compounds with low enough vapor pressures and 

leave the remaining compounds (Johnson et al., 1990). This could overall change the composition 

of the contaminant, altering the properties of the contaminant itself and making contaminant 

removal predictions more difficult (Johnson et al., 1990).   

To help predict if SVE is applicable and determine the amount of vapor mass removal, Johnson et 

al. (1990) created several equations. These equations help estimate the vapor concentration in the 

subsurface, the required pumping rates, and how much vapor can be removed. First step is to 

estimate the vapor concentration in the subsurface. This could be done by taking vapor readings 

at a well, or by estimation using the following equation: 

 𝐶¢h( = ∑ RF&F
£¤Y,F
l;¥ , (2.19) 

where Cest is the estimated contaminant vapor concentration in mg/L, xi is the mole fraction of 

component i in liquid phase residual, Pi
v is the pure component vapor pressure at temperature T in 

Pa; Mw,i is the molecular weight of component I in mg/mole, R is the gas constant in 

L·Pa/mol·°K, and T is the absolute temperature of residual in °K (Johnson et al., 1990). If 

multiple components are in a mixture, the mole fraction, vapor pressure, and molecular weight for 

each component found then summed for an estimated mixture. If only one component is 

available, xi will equal 1.  

Next is to determine realistic pumping rates using the following equation: 

 𝑄 = 𝐻𝜋 ¨
e
𝑝g

ªTU(&N«c &Y⁄ )�¬
�|(lY l?⁄ ) , (2.20) 
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where Q is the pumping rate in cm3/s (ft3/s), H is the thickness of the well screen in cm (ft), k is 

the soil permeability to air flow in cm2 (ft2), µ is the viscosity of air in g/cm-s, pw and Pw are the 

absolute pressure at the extraction well in g/cm-s2 or atm (psi); Patm is the absolute ambient 

pressure in g/cm-s2 or atm (psi), Rw is the radius of vapor extraction well in cm (ft), and RI is the 

radius of influence in cm (ft) (Johnson et al., 1990).  

Once these two estimations are known, estimated removal rates can be calculated using the 

equation: 

 𝑅¢h( = 𝐶¢h(𝑄, (2.21) 

with Rest of the estimated removal rate of the estimated vapor concentration (Cest) at a certain 

pumping rate (Q) in units of mass/time (mg/s or lbs/s) (Johnson et al, 1990). The removal rate can 

be multiplied by the time of pumping to determine the mass. The volume of vapor removed can 

be divided by the density of the LNAPL in the vapor phase.  

6&7) IN SITU FLUSHING: A4 & A5 
 

In situ flushing is a process that involves injection of an aqueous solution through vertical wells 

or trenches, into contaminated zone. In situ flushing uses surface-active-agents or surfactants. 

Surfactants are chemical compounds frequently used in detergents and food products that alter the 

properties of solution interfaces (Sabatini et al., 1995; Strbak, 2000). Surfactants primarily lowers 

the interfacial tension between non-aqueous phase liquids and water by consisting of a molecular 

hydrophilic “head” and hydrophobic “tail” that separates the NAPL and water (Cole, 1994). At 

some instances, tracers have been known to reduce interfacial tension such as the Martel et al. 

(1996) study where interfacial tension for diesel reduced from 24.6 µN/m to 19.6 µN/m. 
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Surfactants can lower the interfacial tension of diesel to less than 10-3 µN/m (Pope and Wade, 

1995; Martel et al., 1996). 

The advantage to surfactant flushing is the ability to enhance and mobilize residual LNAPL and 

encourage bioremediation (Anderson, 1993). With the application of surfactants, most pump-and-

treat methods are improved by enhancing the mobilization of free-phase LNAPL. Residual 

LNAPL is separated from soil particles and flushed with surfactant or water. Some surfactants are 

also compatible with bioremediation. Microbes can nourish off the surfactant and possibly, off 

any remaining LNAPL; this eliminates the need to remove the surfactant. 

Disadvantages of surfactant flushing are limited effectiveness in low permeable settings, 

permeability reduction, groundwater chemical reactions, biodegradability, negative impact on 

bioremediation, and failing to separate LNAPL and water (Anderson, 1993). If the permeability is 

low, the surfactant will have difficulty flowing through the subsurface at a reasonable rate. Some 

surfactants may also lower the permeability of the subsurface based on the surfactant composition 

(Anderson, 1993). The chemical composition of the surfactant may react with the groundwater 

chemistry and cause additional problems. If the surfactant is biodegradable, it may degrade at a 

rate faster than it could flush the NAPL out of the subsurface (Speight and Arjoon, 2012). If the 

surfactant is not biodegradable, it may reduce bioremediation by cleaning out the microbes 

during, and possibly after flushing (Brusseau et al., 1995; Rouse et al., 1995). The inability to 

separate the NAPL and water from each other for enhanced NAPL mobility may limit the 

effectiveness of the surfactant (Anderson, 1993). In some instances, the surfactant is unable to 

separate the LNAPL from the water or soil grains, rendering the surfactant useless.  
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Due to the variability and complexity of surfactant flushing, simple analytical equations have not 

been fully developed for surfactant flushing. Instead, efficiency equations to measure estimated 

initial contaminant mass and recovered mass after surfactant flushing are used (Pope and Wade, 

1995). If the amount of contaminant mass and surfactant mass are known before remediation and 

after recovery, the efficiency can be used to determine if surfactant should still be applicable to 

the site (Khalladi et al., 2009). However, they cannot accurately predict contaminant mass 

removed from the subsurface. It is assumed that surfactant reached the contaminated areas and 

successfully mobilized the residual LNAPL. The diesel at the site is recovered by using skimmer 

pump-and-treat and soil vapor extraction. The interfacial tension between LNAPL and water can 

be reduced to simulate surfactant flushing to predict diesel removal using the LDRM model for 

skimmer pump-and-treat. Using Johnson’s (1990) method, permeability can be reduced to 

simulate the permeability reduction occasionally shown in surfactant application. 

NATURAL ATTENUATION 
 

8) VOLATILIZATION: NA1 
 

Volatilization is the process of converting a chemical from a liquid or solid phase to the vapor 

phase directly proportional to relative chemical vapor pressures (Kang, 1993; Gordon and 

Murray, 2014). Volatilization is dependent on the vapor pressure of the chemical and 

environmental conditions affecting evaporation such as soil moisture (Calabrese and Kostecki, 

1991). Adsorption of a chemical onto soil particles reduces the vapor pressure of the chemical 

due to decrease of chemical activity. Soil moisture may have the opposite affect by transporting 
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the chemical to the air or water surface where the chemical can volatilize more readily (Calabrese 

and Kostecki, 1991). 

Volatilization has the advantages of being a natural process and can be induced and/or enhanced 

by SVE (Cole, 1994; Zheng et al., 2004). If the NAPL has a low enough vapor pressure, it can 

naturally volatilize without human interaction. Most common LNAPL’s that can easily volatilize 

are gasoline, jet fuel, and aviation gasoline (Cole, 1994).  If the vapor pressure for the LNAPL is 

not low enough to volatilize naturally, it can be induced by increasing temperature or decreasing 

pressure by removing vapor like SVE (Gordon and Murray, 2014). The LNAPL can continue to 

volatilize shortly after an SVE event until the subsurface vapor pressure reaches its previous 

vapor pressure. If the LNAPL is volatilizing, SVE can enhance the volatilization of LNAPL and 

decrease clean–up time. 

Disadvantages for diesel volatilization include having low volatility rates, trapped by low 

permeability layers, and overall low mass reduction for diesel (Cole, 1994). Diesel has low 

volatility rates that make volatilization and SVE less effective. Contaminant vapors can volatilize 

and leave the subsurface either by diffusion or advection (Kang, 1993).  Low permeability layers 

may trap the contaminant vapors in the subsurface and make remediation more difficult; while 

diesel’s lighter compounds volatilize faster, diesel’s heavier compounds remain.  

Hamaker (Lyman et al, 1981), Fingas (2013), and Ma et al. (2014) measured volatilization rates 

as a function of the inverse of the square root of time. To predict the estimated mass removal of 

contaminants via volatilization, Hamaker (Lyman et al., 1981) created two simple equations. One 

equation can predict volatilization through dry soil without water flow intercepting the path, 
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while the other equation predicts volatilization through soil as water flows through the airflow 

path. The equation to predict volatilization through dry soil without water flow is: 

 𝑀 = 𝐴	𝑥	𝑄( = 𝐴	𝑥	2𝑐°±𝐷𝑡 𝜋⁄ , (2.22) 

with M is the mass removed by volatilization in kg (lbs.), A is the area of the spill beneath the soil 

in m2 (ft2), Qt as the total loss of chemical per unit area over time in kg/m2 (lb/ft2, c0 the initial 

concentration in the soil in g/L (lb/gal), D as the diffusion coefficient of vapor through the soil  in 

m2/s (ft2/s), and t is the time chosen for vapor to diffuse in seconds (Lyman et al., 1981). 

Thickness of the subsurface is assumed to be semi-infinite. If volume is needed, the mass of 

diesel can be divided by the density of diesel. 

9) BIOREMEDIATION: NA2 
 

Bioremediation is the remedial method of using living organisms to reduce or eliminate 

environmental hazards (Speight and Arjoon, 2012). Bioremediation primarily works by using 

metabolic or enzymatic processes to transform the contaminants to less harmful products or as 

carbon dioxide, water, and cell biomass. Some material can be degraded anaerobically, with most 

degraded aerobically (Speight and Arjoon, 2012). 

Bioremediation can occur naturally but can be enhanced by biosimulation and bioaugmentation 

(Speight and Arjoon, 2012). Biosimulation adds nutrients and other substances to catalyze the 

indigenous microbes. Bioaugmentation implements non-native microorganisms (sometimes 

genetically altered) to the contaminated site for remediation.  
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Surfactants that have been applied at a contaminated site may enhance or reduce bioremediation. 

Some surfactants are called biosurfactants, which lower interfacial tension but are biodegradable 

and non-toxic to microbes (Speight and Arjoon, 2012). The surfactants may inhibit growth of 

microbes by either removing the food source (contaminants) or the microbes themselves 

(Brusseau et al., 1995; Rouse et al., 1995). 

Bioremediation is naturally occurring, environmentally friendly, and generally a low cost solution 

(Speight and Arjoon, 2012). Microbes are already present in the ground and, with the addition of 

contaminants, can begin to grow and remove the contaminants. Bioremediation is considered 

environmentally friendly, as the site remediation doesn’t disrupt the natural habitat at the surface 

by the introduction of chemicals or remediation process. Contaminated soil and diesel do not 

need to be transported off the site, reducing the cost and energy of remediation (Speight and 

Arjoon, 2012). 

Bioremediation is a slow remedial process that might not be suitable for quick remediation 

(Speight and Arjoon, 2012). Other disadvantages include low permeability trapping carbon 

dioxide or methane gasses, environmental dependences, and the requirement for degradable 

compounds (Speight and Arjoon, 2012). If permeability is too low, the CO2 that microbes emit 

will be trapped in the subsurface and “choke” the microbes (Anderson, 1994). Environmental 

dependences include temperatures, pH, and nutrients (Speight and Arjoon, 2012); the optimal 

temperature for biodegradation is from 25-45° C (77-113° F) (Nester et al., 2001). Nutrients such 

as phosphorus and nitrogen are needed to allow microorganisms to grow. If there are too many 

nutrients, the microbes may choose to react to the already present nutrients instead of the 

contaminant. Another problem relies with the contaminant’s biodegradability, while microbes 
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might thrive in the subsurface without the presence of contaminates, the contaminant may not be 

degraded if it is too difficult to receive nutrients from the bioremediation process.   

Bioremediation can be measured using a method developed by McCoy (2015). McCoy designed 

CO2 traps to adsorb the CO2 for measurement. The CO2 traps use carbon disks to adsorb escaping 

CO2 from the contaminant plume or uncontaminated soil. The traps are processed in the lab to 

determine the concentration over the area of the disk for the length of time deployed. They are 

then converted to volume over area over time by using stoichiometric conversion flux. To 

determine the volume of diesel removed by remediation, the estimated LNAPL loss of volume 

over area over time can be multiplied by the impacted area and time of traps deployed. The 

volume of diesel loss by bioremediation can be multiplied by the density of the LNAPL to 

calculate the mass of diesel loss by bioremediation.
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CHAPTER III 
 

 

SITE DESCRIPTION 

The site for this study is a dolomite karst aquifer impacted by a known quantity of diesel over a 

short time period. This section reviews the geography, climate, and geology of the site to provide 

a context. The hydrogeology of the aquifer and the wells for the study site are also detailed. 

GEOGRAPHY 
 

The site is located in south-central Oklahoma in Pontotoc County (Figure 1). The nearest town to 

the site is Fittstown, located 6.5 km (4.0 miles) northeast of the site.  The site is located at the 

southern section of the Ada Water Well field at 34.564° N, 96.670° W. The well of the initial 

diesel impact is named Water Well 1 (WW1). 

CLIMATE 
 

The nearby Fittstown Mesonet weather station monitors and records real-time weather events 

(Figure 1). The station is run by the Oklahoma Climatological Survey, University of Oklahoma, 

and Oklahoma State University. It is designed to measure the environment and duration of 

mesoscale weather events (Brock et al, 1995; McPherson et al., 2007). The Fittstown Mesonet 

Station is located approximately 4.5 km (2.8 miles) southwest of WW1. 
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Figure 1: Regional scale of the study site. 
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Average precipitation on a 30-year average from 1907-2000, ranges from 1070 mm (3.5 ft) to 

1140 mm (3.7 ft) per year with the highest rainfall occurring during May and June. Most winters 

have a minimum of 25 mm (0.08 ft) of snowfall (Oklahoma Climatological Survey, 2010). 

During the possible span of the spill, total precipitation was 219 m (0.71 ft) and during times of 

remediation the total amount of precipitation was 2159 mm (7.1 ft) (Brock et al, 1995; 

McPherson et al., 2007). Over the two year span, from the filling of the above ground storage 

tanks to the date of non-detect, precipitation was 3512 mm (12 ft). The average temperature is 

17° C (62.6° F) with slight variation from south to north in the county. Average high temperature 

is 34° C (93.2° F) in July and August and an average low of -2.2° C (28.0° F) in January 

(Oklahoma Climatological Survey, 2010). South to southeast winds are dominant, averaging 

around 4 m/s (13.1 ft/s) (Oklahoma Climatological Survey, 2010). During the unknown spill 

time, lowest temperature was -10° C or 14° and the highest temperature was 29° C or 84.2° F. 

The average temperature during possible spill time was 9° C or 48.2° F (Brock et al, 1995; 

McPherson et al., 2007). 

GEOLOGY 
 

The geology of the site consists primarily of the Arbuckle group (Fig 3); a fractured dolomite 

karst (Christenson et al., 2011), which has a thickness of approximately 900 m (2953 ft), near the 

study area. Although the Arbuckle group extends across the state, it is not exposed over much of 
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it. Most of the Arbuckle group across the state is drilled more for hydrocarbon activities and is 

highly saline, while the Arbuckle group at the study site is a thick, freshwater aquifer 

The surface at the site is weathered Arbuckle group epikarst with very little soil and an average 

thickness of approximately 8 m (26.2 ft) (Christenson et al., 2011; Greystone Environmental et 

al., 2016a). Soil at the site is primarily of Scullin gravelly loam and sandy clay with a thickness of 

less than approximately 1 m (3.3 ft) ((Bogard, 1973; Greystone Environmental et al., 2016a). The 

formation at the site is lightly fractured. There are no significant mapped faults intersecting at the 

site (Christenson et al., 2011). The Arbuckle group is primarily a fracture aquifer with several 

karst characteristics such as small caves near the surface. Video recording shows that the wells in 

the Ada well field produce from large, deep voids at depths greater than  

 

Figure 2: Regional geology at the site (Lidke and Blome, 2017). 
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200 meters (656 ft). Folding and faulting in the aquifer are significant, but not in the regional of 

the Ada well field (Christenson et al., 2011). 

HYDROGEOLOGY 
 

The Arbuckle-Simpson aquifer is a 1,400 km2 (1.5 x 1010 ft2) area semi-confined aquifer that 

spans across Carter, Coal, and Johnston, Murray, and Pontotoc counties (Christenson et al., 

2011). The hydrogeology of the site has several studies on the local aquifer (Ham, 1973; Fairchild 

et al., 1990; Christenson et al., 2011). The Arbuckle-Simpson aquifer is mapped into the eastern, 

central, and western sections (Christenson et al., 2011). The site is in the eastern Arbuckle-

Simpson aquifer, the largest and most studied section of the three. The area is uplifted by the 

Hunton Anticline, formed during faulting and uplift during the Pennsylvanian.  

The site aquifer properties are characterized on the regional and well scales. The regional 

transmissivity of the Arbuckle-Simpson studies of both Fairchild (1990) and Christenson (2011) 

is estimated to be 1,110 m2/d (11948 ft2/d). A separate aquifer test was conducted to determine 

any connectivity and contaminant movement of Water Well 1 to Water Well 2 and Water Well 3. 

Transmissivity determined from this aquifer test is 1,210 m2/d (13024 ft2/d) (Pickens and Halihan, 

2016).  

Storativity of the Arbuckle-Simpson aquifer is variable in previous studies. Fairchild (1990) and 

Christenson (2011) determined the aquifer storativity to be 0.005 and 0.011, respectively. The 

aquifer test conducted in 2016 determined the storativity in the Ada wellfield to be 0.014 (Pickens 

and Halihan, 2016). The gradient direction, for both the well and regional scales, is toward the 

southeast as shown in Figure 3 (Christenson et al., 2011; Greystone Environmental et al., 2016a). 
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Several nearby springs provide discharge from the Arbuckle-Simpson aquifer (Christenson et al., 

2011). Sheep Creek Spring is a spring on private property approximately 2.4 km (1.5 miles) east 

of the Ada Well Field. Byrds Mill Spring is a municipal water supply spring for the city of Ada, 

OK located 3.5 km (2.2 miles) northeast of the well field. Both springs have recording stations 

monitored by the United States Geological Society (USGS) at the Oklahoma Water Science 

Center (U.S. Geological Survey, 2016). 

There are several wells near the impacted well and at the study site. Three municipal supply wells 

provide water to the City of Ada during drought conditions.  One USGS monitoring well exists to 

the northwest of the site. Water Well 1 (WW1), Water Well 2 (WW2), and Water Well 3 (WW3) 

are spaced approximately 0.8 km (.5 miles) from each other in a south-to-north trend (Fig 4). The 

depths of WW1, WW2, and WW3 are 316 m (1037 ft), 293 m (961 ft), and 280 m (919 ft), 

respectively. The USGS monitoring well 01N-06E-04 CAD (the Fittstown monitoring well) is 

located approximately 2.3 km (1.4 miles) northwest of the Ada Water Well Field. The Fittstown 

monitoring well provides recorded water table data on a five-minute interval. 

At the WW1 site, the perched water table is at 10-12 m (33-39 ft) below ground surface (bgs) and 

the regional water table is at 30 m (98 ft) bgs. There are three deep site monitoring wells CD-03, 

CD-05, CD-06 to the regional water table. Each of the three wells drilling locations were 

determined by electric resistivity imaging (ERI) along possible faults and fractures as possible 

flow paths (Greystone Environmental et al., 2016a). CD-03, CD-05, and CD-06 were drilled to a 

depth ranging from 43 m (141 ft) to 46 m (151 ft). 
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Figure 3: Potentiometric map of the Arbuckle-Simpson aquifer. Flow is toward east-southeast 
direction. 

Around WW1, several shallow remediation wells and trenches were installed for SVE and 

surfactant flushing through the epikarst or to the perched water table. Six wells were drilled for 

SVE remediation. The wells were drilled to a depth ranging from 6 m (20 ft) to 12 m (39 ft). For 

surfactant flushing, five wells (two injection wells and three extraction wells) and three trenches 

were installed. The two injection wells were drilled to a depth of 1.5 m (4.9 ft), the three 

extraction wells were drilled to approximately 12 m (39.4 ft), and the three trenches were dug to 

approximately 1 m (3.3 ft).  
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Figure 4: Site map of WW1 with observation wells, remediation wells, and injection wells 
(Greystone Environmental et al., 2016a; Greystone Environmental et al., 2016b). 
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CHAPTER IV 
 

 

SITE CHARACTERIZATION AND REMEDIATION 

Two, 1000-gallon aboveground diesel tanks spilled outside of their secondary containment, onto 

the land surface in an isolated area with little soil and no trees. The only structures in the area 

were the tanks and a well house with a 366 m (1200 ft) deep municipal supply well (WW1). The 

diesel impacted the well during the late winter of 2015 with several remedial methods applied 

from mid-2015 to late 2016. The remediation of the site included an initial emergency response, 

site characterization, followed by remediation. Diesel samples collected at the site were nondetect 

for diesel impacts as of June 26, 2017. This section details the initial response, the integrated site 

characterization, and the remediation of the diesel impact.   

IMPACT AND INITIAL RESPONSE 
 

On January 16, 2015, two connected 1,000 gallon above ground storage tanks were filled with 

diesel (Greystone Environmental et al., 2016a). On April 19, 2015, the tanks were discovered to 

be empty during a maintenance check. On April 21, 2015, remediation began with excavation of 

the contaminated surface area around the tanks. The soil was removed and the dolomite epikarst 

of the site was excavated to an average depth of 2.4 m (8 ft) (depth of competent bedrock) over an 

area of approximately 10.7 m (35 ft) by 15.8 m (52 ft). The 137.6 m3 (180 cubic yards) of 

impacted material were sent to a hazardous waste landfill. The sides of the excavation pit and the 

excavated material were tested for total petroleum hydrocarbons (TPH). On May 7, 2015, 0.76 m 

of diesel was measured in WW1 with an interface probe (Greystone Environmental et al., 2016a). 
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Initial sampling of WW1 indicated 5.1 mg/L of diesel by using EPA method 1664A (Greystone 

Environmental et al., 2016a). 

On May 28, 2015, submersible pump-and-treat remediation began in the water supply well 

(WW1) and continued until September 15, 2015. 

SITE CHARACTERIZATION 
 

Site characterization was conducted by utilizing specialized electrical resistivity imaging (ERI) 

surveys, confirmation borings, and well sampling. These data were integrated to develop the 

conceptual site model. The objective of the characterization was to determine the extent of the 

impacts and the preferential pathways to the impacted wells and away from the site. The ERI was 

able to determine the horizontal and vertical extent of the diesel light non-aqueous phase liquid 

(LNAPL) as a resistive portion of the datasets beneath the tank area. The pathways and weathered 

epikarst were determined to be conductive portions of the ERI datasets. The electrical data 

indicated the diesel flowed vertically through the epikarst until the diesel reached the perched 

water table at a depth of approximately 10 meters (30 feet) (Greystone Environmental et al., 

2016a). The diesel remained there until it began to flow through a fracture into WW1 to the 

regional water table at 30 meters (100 feet). The separate phase diesel remained near WW1 and 

did not migrate more than 7.6 m (25.0 ft) away from the well (Greystone Environmental et al., 

2016a). 

Drilling logs obtained during well installation confirmed the ERI results. A photoionization 

detector calibrated to iso-propane measured vapor concentrations from the wells. Fluid sampling, 

during and after well installation, confirmed a perched water table at a depth of approximately 10-
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12 m (33-39 ft) bgs. The chemical data collected from the perched aquifer was used to determine 

the degree of contamination of that zone. The regional water table for the eastern Arbuckle-

Simpson aquifer was sampled at WW1 and three additional monitoring wells placed in the 

fracture network around WW1 evaluating the water table at a depth of approximately 30 m (98 ft) 

bgs. Lithological logs collected at several depth intervals during drilling, confirmed the depth and 

concentration of diesel at each interval. 

Based on the ERI and boring data, a conceptual model was determined for the vertical and lateral 

extent of the diesel (Greystone Environmental et al., 2016a). The diesel impact can be described 

by vertical and lateral extent of the free phase diesel and residual phase diesel. The vertical extent 

of the diesel remained primarily under the concrete platform of the above ground diesel storage 

tanks (Greystone Environmental et al., 2016a).  Free phase diesel flowed straight down toward 

the perched water table. Residual diesel, trapped in soil pores and epikarst fractures, outlines the 

footprint of the vertical flow path through the shallow portion. In the deeper aquifer, vertical 

extent of the free phase diesel is controlled by the fracture, which allowed the diesel to flow past 

the 6.10 m (20 ft) well casing and into the open borehole. Liquid diesel flowed into the open 

borehole to the deeper water table. The flow path of free phase diesel is shown by the remaining 

residual diesel trapped by sorption and fractures. 
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Table 2: Timeline of activities occurred at the site (Greystone Environmental et al., 2016a; 
Greystone Environmental, 2016) 

 

Date Activity 

4/21/2015 Excavation 

5/28/2015 Submersible Pump Installed 

7/15/2015 Electric Resistivity Imaging Characterization 

7/1/2015 Submersible Pump Removed 

Skimmer Pump Installed 

9/17/2015 Drill Wells CD-03, CD-05, CD-06, CD-8a, CD-8b, CD-8c 

12/7/2015 Drill Wells CD-8d, CD-8e, CD-8f 

12/14-17/2015 Soil Vapor Extraction 

1/13-16/2016 Soil Vapor Extraction 

1/27-29/2016 Soil Vapor Extraction 

3/28/2016 Drill Wells RW1-3 and I1 and I2 

4/1/2016 Dig Pits, Surfactant Flush 

4/5/2016 Soil Vapor Extraction with 3% Surfactant Solution and Freshwater Flush 

4/8/2016 Soil Vapor Extraction with 3% Surfactant Solution and Freshwater Flush 

5/10-11/2016 Soil Vapor Extraction with Freshwater Flush 

6/1/2016 Soil Vapor Extraction 

7/28/2016 Soil Vapor Extraction 

8/31/2016 Soil Vapor Extraction 

10/6/2016 Soil Vapor Extraction 

11/8/2016 WW1 Recased to 46 m 



45 
 

The lateral extent of the diesel was limited by the preferential downward flow toward the regional 

water table (Greystone Environmental et al., 2016a). Free phase diesel flowed toward WW1 and 

stayed around the well, with the well acting as a sump (Greystone Environmental et al., 2016a). 

After the diesel flowed past the well casing and dropped into the open borehole, the free phase 

diesel remained around WW1 and could only extend laterally by connected fractures, which 

followed the groundwater flow away from the site (Greystone Environmental et al., 2016a). The 

residual phase diesel only moved laterally from the well when the water table dropped 

significantly, generally at the end of summer. 

Post remediation characterization was evaluated with a temporal ERI dataset and well vapor 

readings. Bioremediation was determined to occur with ERI using a differencing image 

conducted on June 17, 2015, before remediation (Figure 5) and December 16, 2016, after 

remediation (Figure 5). The temporal ERI dataset showed a change of nearly 300% from a more 

resistive diesel to a more conductive microbial activity. The conductive temporal resistivity 

image suggested free phase diesel was removed and bioremediation was occurring as indicated by 

significant increases in conductance in the area found to be impacted by diesel and measure as 

highly resistive. CO2 measurements from the nearby wells confirmed the interpretation (Figure 

5). Well samples were nondetect for diesel as of June 2017. 
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Figure 5: Development of a conceptual model using electric resistivity and drilling. 1) Shows 
the ERI before remediation; 2) Shows the ERI after remediation with bioremediation 

occurring and conductivity difference from 1; 3) Shows the conceptual model after applying 
ERI 1 and 2. 
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REMEDIATION 
 

A total of 9 remediation technologies and methods were utilized at the site (Greystone 

Environmental et al., 2016a; Greystone Environmental et al., 2016b). The remediation techniques 

are broken into three categories: initial, active, and natural attenuation. Each category will have 

its own abbreviation followed by the number that pertains to which method it belongs to when it 

occurred. For example, evaporation is under the initial category and first to occur after the spill, 

so will be labeled I1. 

Initial remediation methods occurred immediately after the spill and prior to site characterization. 

This included evaporation (I1) and excavation (I2). Evaporation occurred during the spill, before 

the diesel infiltrated the soil. Excavation was the first active remedial approach to remove source 

material. Evaporation occurred during the release of the contaminant as it flowed from the source 

and during infiltration. Excavation occurred on April 21, 2015 (Greystone Environmental et al., 

2016a).  

Active remediation consists of a range of commonly utilized remedial technologies. This category 

is split into pre-surfactant and post-surfactant remediation, as surfactant remediation changes 

certain site transport parameters after its use. Remedial technologies prior to surfactant flushing is 

submersible pump-and-treat (A1), skimmer pump-and-treat (A2) and soil vapor extraction (SVE) 

(A3). Post-surfactant flushing remedial technologies include skimmer pump-and-treat (A4) and 

SVE (A5). On September 15, 2015, skimmer pump-and-treat replaced submersible pump-and-

treat in WW1. The skimmer pump was removed May 15, 2016 (Greystone Environmental et al., 

2016a; Greystone Environmental et al., 2016b). Three separate soil vapor extraction events 
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occurred during remediation. The three events occurred from December 14-17, 2015, January 13-

16, and January 17-29, 2016. Surfactant flushing and extraction began on March 28, 2016, with 

the installation of RW 1-3 and I1&I2. On April 1, 2016, pits for surfactant were excavated and 

surfactant flushing began. Soil vapor extraction and skimmer pump-and-treat remediation began 

starting on April 5, 2016.  

More surfactant recovery continued on April 8, May 10-11, June 1, July 28, August 31, and 

ended on October 6, 2016 (Greystone Environmental et al., 2016a; Greystone Environmental et 

al., 2016b). On December 16, 2016, a temporal resistivity dataset was collected to correspond 

with the original ERI line ADA-08 to determine the effectiveness of remediation. WW1 was 

recompleted with 150 ft of steel surface casing (Greystone Environmental et al., 2016b). 

Monitoring wells at the site were sampled as non-detect for diesel as of June 2017. 

Natural attenuation is natural degradation of diesel by either volatilization or by being utilized as 

a food source for microbes in the subsurface. Two natural attenuation methods were observed: 

volatilization (NA1) and bioremediation (NA2). It is also important to note that volatilization and 

bioremediation were enhanced after SVE use, but were still occurring prior or after use of SVE 

and other remedial technologies (Greystone Environmental et al., 2016b). The surfactant flush 

was noted to limit biodegradation for 2 months after it was applied as indicated by a decrease in 

the amount of carbon dioxide off gassing (Greystone Environmental et al., 2016b).
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CHAPTER V 
 

 

METHODS 

This section describes the methodology for obtaining transport parameters from the site and for 

predicting mass removal of diesel using selected analytical models. First, the analysis of mass 

recovery from the field data collected during remediation is described for verification data. Then, 

the parameters used in mass removal modeling are described for each model. The methods for 

both sections follow in the order of the nine analytical models described in the previous section. 

FIELD MEASURMENTS 
 

INITIAL MASS RECOVERY 
 

1) EVAPORATION: I1 

Evaporation field measurements have no exact methodology and are difficult to obtain in field 

settings. Diesel evaporates quickly at first as the more volatile compounds dissipate but less 

volatile compounds are left behind (Fingas, 2013). When the diesel evaporation rate is plotted 

over time, the evaporation rate follows a square root function (Fingas, 2013). The diesel is 

estimated as 10% evaporated or approximately 760 L or 636 kg (200 gal or 1402 lbs) (Greystone 

Environmental et al., 2016a). 

2) EXCAVATION: I2 
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The field method used for excavation is developed from the Oklahoma Department of 

Environmental Quality (Oklahoma Department of Environmental Quality, 2012). Soil is 

excavated onto a 10 mm (0.40 in) plastic sheeting, covered with a 10 mm (0.40 in) plastic 

sheeting, and a berm constructed around the pile to prevent rain water run-off (Greystone 

Environmental, 2016a). Each truckload is sampled with two scoops of a clean hand trowel into a 

clean 19 L (5 gal) bucket with a lid. Every tenth truckload, the samples are mixed and placed in a 

bag for laboratory analysis. The sampling method continues until the entire stockpile has been 

sampled. Each truck is weighed before and after dumping to record soil weights. Soil 

concentrations from the excavated pile is from the EPA laboratory method SM 2540G for total 

percent solids and method TNRCC 1005 for total petroleum hydrocarbons (TPH) range 

(American Public Health Association et al., 1998; Texas Natural Resource Conservation 

Commission (TNRCC), 2001; Greystone Environmental et al., 2016a). The estimated volume of 

diesel removed from field excavation is 1135 L or 950 kg (300 gal or 2094 lbs) (Greystone 

Environmental et al., 2016a). 

ACTIVE MASS RECOVERY 
 

3) SUBMERSIBLE PUMP-AND-TREAT: A1 
 

The field method for mass estimation of submersible pump-and-treat remediation consisted of 

using a submersible 2.54 cm (4 in) pump at the depth to the water table surface and adjusted 

during pumping (Greystone Environmental et al., 2016a). The water and diesel mixture was 

pumped into above ground storage containers and were sampled by using EPA laboratory 

methods 8021 and 8000/8100 (U. S. EPA, 1982). The EPA laboratory method 8021 was used for 
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benzene, toluene, ethylbenzene, and total xylene (BTEX constituents). EPA method 8000/8100 

was used for TPH and Diesel Range Organics (DRO). Diesel recovered is estimated to be 3220 L 

or 2695 kg (850 gal or 5942 lbs) (Greystone Environmental et al., 2016b). 

4) SKIMMER PUMP-AND-TREAT: A2 
 

The field method for skimmer pump-and-treat utilized a solar powered hydrophobic pneumatic 

skimmer pump once the free product thickness was less than 30.5 cm (1 ft) (Greystone 

Environmental et al., 2016a). The diesel was pumped directly into 1890 L (500 gal) tanks and 

removed from the site. Estimated field values were determined by measuring the amount of diesel 

fluid in the tanks. The amount of diesel removed from skimmer pump-and-treat method is 

estimated to be 2080 L or 1741 kg (550 gal or 3838 lbs) (Greystone Environmental et al., 2016a). 

5) SOIL VAPOR EXTRACTION: A3 
 

The field methodology for SVE consisted of using a Mini RAE portable photoionization detector 

(PID), that was calibrated with isopropane to measure estimated diesel vapor concentrations; a hi-

vacuum Kinney Tuthill® liquid ring pump with 98 kPa (14 psi), 8.5 m3/min (300 cfm); and a 

7874 L (2080 gallon) tank and a 2.5 cm (1 in)  drop tube placed on top of the remediation wells or 

down in WW1 to remove diesel (Greystone Environmental et al., 2016a). The PID measured 

hexane before and after SVE events to determine related diesel contamination. A Mini Rae 3000 

measured PID, and a Mini Rae 3000 and RKI Eagle was able to measure CO2 concentrations 

from the well and during SVE to estimate vapor concentrations and bioremediation. Estimated 

diesel removal through SVE is estimated to be 330 L or 276 kg (86.5 gal or 609 lbs) (Greystone 

Environmental et al., 2016a). 
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6)  SURFACTANT ENHANCED SKIMMER PUMP-AND-TREAT: A4 
 

The surfactant flushing field method included drilling surfactant recovery wells (RW1, RW2, and 

RW3), injection wells (I1 and I2), and excavating soil for three trenches around the site (Fig. 5) 

(Greystone Environmental et al., 2016b). The surfactant was mixed to the company and EPA 

recommendation of 3% surfactant in a 7571 L (2000 gal) water mixture. The surfactant was then 

gravity fed into the injection wells and trenches. An 1893 L (500 gal) aqueous injection, using a 

gravity feed method and a sprinkler system to simulate rainfall around the site was performed 

(Greystone Environmental et al., 2016b). 

A skimmer pump was then installed into WW1 and skimmed during the SVE event. The 

surfactant and diesel mixture was pumped into removable above ground storage tanks and field 

values were measured by using the volume of diesel and surfactant in the tanks. The post-

surfactant skimmer pump-and-treat is estimated to remove 23 L or 19 kg (6 gal or 42 lbs) of 

diesel (Greystone Environmental et al., 2016b). 

7) SURFACTANT ENHANCED SOIL VAPOR EXTRACTION: A5 
 

The Mini RAE portable photoionization detector was used before and after post-surfactant SVE 

events. The detector was calibrated with isopropane. A hi-vacuum Kinney Tuthill® liquid ring 

pump with 98 kPa (14 psi), 8.5 m3/min (300 cfm); a 7874 L (2080 gallon) tank; and a 2.5 cm (1 

in) drop tube was placed on top of the remediation wells, or down in WW1, to remove diesel 

(Greystone Environmental et al., 2016a). The PID measured hexane to determine the approximant 

amount of hydrocarbon removed after the post-surfactant SVE events. CO2 was measured by a 

Mini Rae 3000 and RKI Eagle to determine the concentration during the SVE events. 
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Approximately 8 L or 7 kg (2 gal or 15 lbs) of equivalent hydrocarbon vapors were removed 

(Greystone Environmental et al., 2016a). 

NATURAL ATTENUATION MASS RECOVERY 
 

8) VOLATILIZATION ESTIMATION: NA1 
 

Diesel has a low volatilization rate and the process was not considered during field remediation. 

No field values were estimated for this process, as it is difficult to measure in field settings; 

studies using soil columns demonstrated less than 4% of total loss of diesel concentration through 

volatilization (Møller et al., 1996). With an estimated 22.7 L (6 gal) of diesel remaining after the 

previous remedial methods, it is assumed less than 3.79 L or 3 kg (1 gal or 7 lbs) of diesel 

volatilized during remediation as volatilization can remove up to 36% of diesel in 230 days 

(Kroening et al., 2001). 

9) BIOREMEDIATION: NA2 
 

While McCoy (2012) used traps to capture CO2  moving through the soil from bioactivity, CO2 

traps were not used at the study site as bioremediation was a side effect of SVE treatments and 

not in the remedial plan for the site (Greystone Environmental et al., 2016a; Greystone 

Environmental et al., 2016b). To measure estimated bioactivity in the field, the Mini Rae 3000 

and RKI Eagle measured different concentrations of CO2 during the remediation period and 

recorded the concentrations before and after remediation events (Greystone Environmental et al., 

2016a). Field value is estimated for the remaining diesel of approximately 15.1 L or 13 kg (4 gal 

or 28 lbs) after the majority of mass is removed from the previous remedial methods and applying 
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the remainder diesel mass to bioremediation. Previous studies have shown up to 80% of diesel 

have been consumed in a four-week incubation period (Speight and Arjoon, 2012). 

MASS RECOVERY MODELING 
 

INITIAL MASS RECOVERY 
 

1) EVAPORATION: I1 
 

For evaporation modeling, the time to drain diesel from the two 3785 L (1000 gal) above ground 

storage tanks was calculated. The tank dimensions were taken from the Ada Characterization 

Report (2016a). Temperature data for the Fingas empirical evaporation equation was taken from 

the Fittstown Mesonet station online database (Brock et al, 1995; McPherson et al., 2007).  

The horizontal tank drainage time equation was used to estimate the amount of time it took to 

gravity drain 7570 L (2000 gal). The equation is: 

 𝑡 = ³´
µE¶Q±�·

¸(2𝑅 − 𝐻�)
¹
� − (2𝑅 − 𝐻T)

¹
�º, (5.1) 

where t is the time to drain the tank (s), L is the length of the tank (3.2 m or 10.5 ft), Cd is the 

coefficient of discharge (1.0), a is the area of the orifice (2.9×10-4 m2 or 3.1 x 10-3 ft), g is the 

gravity constant (9.81 m2/s or 32.17 ft2/s), R is the radius of the tank (0.6 m or 2 ft), H1 is the 

initial height of the liquid in the tank (1.2 m or 4 ft), and H2 is the final height of the liquid in the 

tank (0 m or 0 ft) (Kunz, 2011). This time was used for equation (2.1). The estimated time to 

drain 7570 L (2000 gal) from the tanks was 155 min. As the spill occurred during a temperature 

transition from winter to early spring and the time of the spill is unknown over a three-month 
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period, temperature during the spill may be at lower or higher temperatures. Instead, the lowest, 

highest, and average temperature from when the tank was filled to when the spill was discovered 

was used. Since the time was only 155 min, temperature changes are small in this period. A 

constant minimum, maximum and average temperature was used during the 155 min interval. The 

temperature was used as the temperature value in equation (2.1). The minimum temperature was -

10° C or 14° F (Brock et al, 1995; McPherson et al., 2007). The maximum temperature is 29° C 

or 84.2° F and the average temperature is 9° C or 48.2° F (Brock et al, 1995; McPherson et al., 

2007). 

2) EXCAVATION: I2 
 

The data used for excavation came from the Ada Characterization Report (2016a). The data 

include the total weight of solids removed and sample concentrations. The samples were 

composited to calculate an average soil concentration. Calculated concentration of the soil was 

1272 mg/kg using composite sampling methods.(Greystone Environmental et al., 2016a). 

Standard deviation for composited sampling was 1498 mg/kg. The standard error from calculated 

average was 387 mg/kg.  

The excavation encountered competent bedrock at varied depths (Greystone Environmental et al., 

2016a). The depth of the excavation was estimated with a minimum, maximum and best estimate 

from the various depths observed at the excavation. Minimum depth was estimated to be 1.8 m (6 

ft). Maximum pit depth was estimated to be 3.0 m (10 ft). The average depth of the pit was 2.4 m 

(8 ft). The spatial extent of the excavation is also not a simple geometrical shape (Figure 4). Like 

the depth, the area varied with an estimated minimum, maximum and best-estimated area. 
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Minimum excavated area is 133 m2 (1432 ft2) (Greystone Environmental et al., 2016a). Maximum 

excavated area is 185 m2 (1991 ft2) (Greystone Environmental et al., 2016a).  The best-estimated 

area is 151 m2 (1625 ft2) (Greystone Environmental et al., 2016a). 

Additional data used for the model was the density of diesel and the density of the dolomite 

bedrock. The average density of diesel used was 0.83 kg/m3 (Song et al., 2000). The density of 

the dolomite bedrock was not measured from the field and the average density of 2.63 kg/m3 was 

used as the density of dolomite bedrock range from 2.5 to 2.8 kg/m3 (Manger, 1963). 

ACTIVE MASS RECOVERY 
 

3) SUBMERSIBLE PUMP-AND-TREAT: A1 
 

The parameters for inputting the initial depth intervals, LNAPL properties, and soil properties are 

from the Ada Characterization Report (2016a) or literature values such as Charbeneau (2003) or 

Environmental Canada (2014). API LDRM calculates equations (2.3) through equations (2.20) at 

twenty equally distributed intervals from lower water saturated thickness to maximum LNAPL 

thickness (Charbeneau, 2007). Some of the parameters for submersible pump-and-treat inputs are 

known and have a constant value. The time of recovery is 79 days (Greystone Environmental et 

al., 2016a; Greystone Environmental et al., 2016b), the well radius of the predicting well is 0.51 

m (20 in) (Greystone Environmental et al., 2016a; Greystone Environmental et al., 2016b), the 

radius of influence is 132 m (433 ft) (Pickens and Halihan, 2016), and saturated thickness or 

groundwater thickness is 286 m (938 ft) (Christenson et al., 2011).  
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The variable parameters are the pumping rates and the radius of capture. The water pump 

installed was designed to pump no more than 37.9 L/min (10 gpm) to reduce the risk of smearing. 

Minimum and maximum water production rates were 18.9 L/min (5 gpm) and 37.9 L/min (10 

gpm). Estimated water production rate is 26.5 L/min (7 gpm). The radius of capture is determined 

from using similar minimum, maximum and best-estimated values shown in a skimmer pump-

and-treat radius (Charbeneau, 2007). Minimum radius of capture is approximately 3.05 m (10 ft), 

maximum radius of capture is estimated to be 7.62 m (25 ft), and an average radius of capture is 

5.30 m (17 ft). 

4) SKIMMER PUMP-AND-TREAT: A2 
 

Data for inputting the initial depth intervals, LNAPL properties, and soil properties were obtained 

from the Ada Characterization Report (2016a) and several literature values such as Charbeneau 

(2003) and Environmental Canada (2014). API LDRM was used for skimmer pump-and-treat 

prediction. The inputs were the same for soil and diesel properties from the submersible pump-

and-treat method. 

Several equations from the submersible pump-and-treat are used for the skimmer pump-and-treat. 

Equation (2.3) to equation (2.6) and equations (2.8) to equation (2.9) are used in calculation of 

skimmer pump-and-treat. However, the skimmer pump-and-treat method in the API LDRM 

calculator uses equation (2.13) through equation (2.17) for calculation. It also requires the 

selection of whether the aquifer is unconfined, confined, or perched (Charbeneau, 2014). The 

aquifer type changes the LNAPL thickness and possible soil interval. If the aquifer is unconfined, 

LNAPL thickness equation is: 



58 
 

 𝑏S» = bY«UbB�
HV

, (5.2) 

Where bnW is the LNAPL thickness in the well constrained by fine-grain zone (Charbeneau, 

2014).  

If the aquifer is confined, the model assumes the upper soil facies is the confining layer at the 

water table is above the soil interface (Charbeneau, 2014). The LNAPL thickness is calculated 

using: 

 𝑏S» = bY«UbB�
HV

, (5.3) 

Where zwt is the elevation of the water table, z12 is the elevation of the interval between soil 1 and 

soil 2 (Charbeneau, 2014).  

If the aquifer is perched, the model assumes the bottom soil layer is the perching layer and the 

water table is located below the soil interface (Charbeneau, 2014). The LNAPL thickness is 

modified using the equation: 

 𝑏S» = bB�UbY«
(TUHV)

, (5.4) 

(Charbeneau, 2014). Where equations (5.2), (5.3), and (5.4) are used in equations with the 

parameter bnw to adjust for the aquifer type. Initial soil thicknesses, water table depths, LNAPL 

parameters, and soil parameters are the same as submersible pump-and-treat. The LNAPL 

thickness changes after previous remediation from the pump-and-treat. Known parameters that 

will not vary are time, well radius, and aquifer conditions. The time for skimmer pump-and-treat 

recovery is 129 days (Greystone Environmental et al., 2016a; Greystone Environmental et al., 

2016b) and well radius is 0.51 m (20 in) (Greystone Environmental et al., 2016a). While the 
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aquifer is geologically a confined aquifer, the water table was deep enough during this time that it 

did not cross the simulated second and third “soil” intervals. An unconfined aquifer was used for 

the model to work correctly.  

The only parameters that were unknown from the field was the radius of capture. However, other 

field studies have shown the radius of capture ranges from 3.0-150 m (9.8-492 ft) (Charbeneau, 

2007). At the site, skimmer pumping rates were equivalent to the rates of submersible pumping, 

equaling the same radius of capture. The minimum radius of capture is assumed to be 3.05 m (10 

ft). The maximum radius of capture is assumed to be 7.62 m (25 ft) as the pumping rate is no 

more than 38 L/min (10 gpm) and the radius of capture will be smaller than 150 m (492 ft). The 

average radius of capture is 5.3 m (17 ft). 

5) SOIL VAPOR EXTRACTION: A3 
 

Data used for SVE removal models includes site data from the Ada Characterization Report 

(2016a), the Ada Surfactant Report (2016b). Additional site specific data were available from the 

United States Department of Agriculture: Natural Resources Conservation Service (USDA: 

NRCS) (Soil Survey Staff et al., 2016).  Several literature sources for contaminant values such as 

Fogg (1990) for molecular weight and vapor pressure, Brock et al. (1995), McPherson et al. 

(2007) for Mesonet temperature data, and Johnson et al. (1990) for suggested radius of influence 

and well pressure values were also utilized. 

Initial diesel vapor concentrations are calculated by using equation (2.19), which uses molecular 

weight, vapor pressure, temperature, and the gas constant. The molecular weight for diesel is 

estimated to be 234 g/mol (Fogg, 2017). The vapor pressure of diesel is estimated to be 2.03 kPa 
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(0.29 psi) (Fogg, 2017). The temperature in the subsurface is estimated to be 293 K (67.7° F) 

(Brock et al., 1995; McPherson et al., 2007). 

Equations (2.19) and (2.22) calculates a single SVE well and not multiple SVE wells. Each SVE 

well was calculated with corresponding well screen lengths, then totaled to determine the value of 

diesel vapor removed. The well screen length used is the total screen length assuming there is no 

water or liquid diesel in the well. The consistent values used are flow rates (Q), viscosity of air 

(µ), absolute ambient pressure (Patm), radius of the extraction wells (Rw) and well screen lengths 

(H). The flow rate is 0.142 m3/s (301 cfm) (Greystone Environmental et al., 2016a; Greystone 

Environmental, 2016b). The viscosity of air is 1.8×10-4  g/cm·s (1.2 x 10-5 lbs/ft·s) (Johnson et al., 

1990). Absolute ambient pressure is 1.01×106 g/cm (6.8 x 104 lbs/ft) (Johnson et al., 1990). 

Radius of the extraction wells CD-8b, CD-8c, CD-8d, CD-8e, and CD-8f is 0.051 m (2 in) 

(Greystone Environmental et al., 2016a; Greystone Environmental, 2016b). The well screen 

lengths for CD-8b and CD-8c is 1.5 m (5 ft) and well screen lengths for CD-8d, CD-8e, and CD-

8f is 9.1 m  (30 ft) (Greystone Environmental et al., 2016a; Greystone Environmental, 2016b). 

The absolute pressure of the wells varied during pumping for SVE. A constant minimum, 

maximum and average pressure of SVE values from field studies were used. Minimum absolute 

pressure at the extraction wells was 96.3 kPa (14.0 psi) (Johnson, 1990). Maximum absolute 

pressure at the extraction wells was 91.2 kPa (13.2 psi) (Johnson, 1990). Average absolute 

extraction well pressure was 94.2 kPa (13.7 psi) (Johnson, 1990). Radius of influence also varied 

for SVE. Minimum, maximum, and the average radius of influence were taken from literature 

values. Minimum SVE radius of influence was 9.0 m (29.5 ft) (Johnson, 1990). Maximum radius 

of influence for SVE wells was 16.0 m (52.5 ft) (Johnson, 1990). Average radius of influence for 
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each extraction well was 12.0 m (39.4 ft) (Johnson, 1990). Permeability of the soil was not 

determined but equation (2.20) can be rearranged to calculate permeability (Calabrese and 

Kostecki, 1992). Using the values and data from the Ada Characterization Report (2016a) and 

Ada Surfactant Report (2016b), it can be calculated using the equation: 

 𝑘 = ne

<�¼Y
ªB�(>X«c >Y⁄ )�¬

½v�¾Y ¾?⁄ �

, (5.5) 

(Calabrese and Kostecki, 1992). The minimum, maximum, and average absolute pressure and 

radius of influence for each well to calculate minimum, maximum, and average permeability of 

the soil for each SVE extraction well. The calculated minimum permeability is 3.6 x 10-11 m2 (3.9 

x 10-10 ft2). The calculated maximum permeability is 1.1 x 10-10 m2 (1.2 x 10-9 ft2). The average 

permeability is calculated to be 7.2 x 10-11 m2 (7.8 x 10-10 ft2).  

6) SURFACTANT ENHANCED SKIMMER PUMP-AND-TREAT: A4 
 

Field data from the post-surfactant skimmer pump-and-treat remediation was obtained from the 

Ada Surfactant Report (2016b). The post-surfactant skimmer pump-and-treat model uses the 

same equations and methodology as the pre-surfactant skimmer pump-and-treat model for 

saturation and recovery. Constant parameters are time, well radius, depth to water table, soil 

properties. Most LNAPL properties are the same except LNAPL thickness and interfacial 

oil/water tension, which were adjusted for the post-surfactant phase. The time of pumping is 

approximately 28 days (Greystone Environmental et al., 2016b). 

Variable parameters are the radius of capture and interfacial oil/water tension. Radius of capture 

was the same as model A2: Skimmer Pump-and-Treat. Interfacial oil/water tension for diesel was 
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similar around 24.1 dyne/cm (1.4 x 10-4 lbs/in) (Canada Environmental, 2014). However, with the 

application of surfactants, it can decrease three orders of magnitude degrees (Martel and Gélinas, 

1996). Diesel/water tension has been observed to decrease with rhodamine dye (Martel and 

Gélinas, 1996). The minimum decrease of oil/water tension was 19.4 dyne/cm (1.1 x 10-4 lbs/in) 

(Martel and Gélinas, 1996). Maximum of interfacial tension decrease was 0.241 dyne/cm (1.4 x 

10-6 lbs/in). Average decrease of interfacial oil/water tension was 2.41 dyne/cm (1.4 x 10-5 lbs/in). 

7) SURFACTANT ENHANCED SOIL VAPOR EXTRACTION: A5 
 

Data used for the post-surfactant SVE model comes from the Ada Surfactant Report (2016b). 

Initial diesel vapor concentrations were calculated using the same method and values as for model 

A3: SVE. Flow rates for the model also used the similar method of calculating flow rates for each 

well and totaling them for a sum of vapor extraction. The varied permeability was calculated the 

same as for a well using the post-surfactant SVE data for the reduced permeability values.  

SUBSURFACE PARAMETERS 
 

The following are the parameters used for both submersible and skimmer pump-and-treat models 

using the LDRM. For the subsurface section of the LDRM inputs, different LNAPL thickness 

was used for models A1, A2, and A4. The LNAPL thickness for the submersible pump-and-treat 

model was 0.762 m (2.5 ft) (Greystone Environmental et al., 2016b).  LNAPL thickness for the 

skimmer pump-and-treat models for pre-surfactant was 0.305 m (1.0 ft) and post-surfactant was 

0.024 m (0.079 ft) (Greystone Environmental et al., 2016a; Greystone Environmental et al., 

2016b). 
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Table 3: Properties for each soil layer used in the API LDRM 

Ground surface elevation was selected for zero. Water table depth used was 26.2 m (86 ft) 

(Greystone Environmental et al., 2016b).  The vertical hydraulic gradient was treated as zero as 

the observation well was also the extraction well. 

For model LNAPL parameters, density, viscosity, air/LNAPL surfacial tension, and 

water/LNAPL interfacial tension was taken from Environmental Canada Diesel Properties Report 

(2011). Density of diesel was 0.83 kg/m3 (Environment Canada, 2017). Viscosity was 0.002 Pa·s  

(Environment Canada, 2017). Air/LNAPL surfacial tension was 27.3 dyne/cm (1.6 x 10-4 lbs/in) 

and water LNAPL interfacial tension prior to surfactant use was 24.1 dyne/cm (1.4 x 10-4 lbs/in) 

(Environment Canada, 2017). 

 Layer 1 Layer 2 Layer 3 Source 

Porosity (n) – unitless 0.41 0.46 0.15 Charbeneau, 2003; 

Christenson et al., 2011 

Hydraulic Conductivity (Kws) 

m/d 

3.35 0.001 4.96 Charbeneau, 2003; Pickens 

and Halihan, 2016 

Van Genuchten “N”   unitless 2.28 1.37 2.00 Gerke and van Genuchten, 

1993; Charbeneau, 2003 

Van Genuchten “a” m-1 12.5 1.61 10.0 Gerke and van Genuchten, 

1993; Charbeneau, 2003 

Irreducible Water Saturation 

(Swr) -  unitless 

0.41 0.034 0.43 Charbeneau, 2003 

Residual LNAPL Saturation 

(Sni) -  unitless 

0.50 0.63 0.15 Charbeneau, 2003 
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The relative permeability models selected were the Burdine and Mualem models. The Burdine 

model assumes the material is coarse grain while the Mualem model assumes the media is fine-

grained. Layer 1 was the coarsest material in the subsurface and the Burdine model was selected. 

Layers 2 and 3 were considered fine-grained material and use the Mualem model (Table 2). Soil 

parameters for all three model layers included porosity, hydraulic conductivity, van Genuchten 

“N” and “a” parameter, irreducible water saturation, residual LNAPL saturation and f-factor 

(Table 2). Residual LNAPL f-factors for model soil layers 1, 2, and 3 were not selected for the 

model. 

NATURAL ATTENUATION MASS RECOVERY 
 

8) VOLATILIZATION: NA1 
 

The Hamaker equation ( 2.38) requires a initial vapor concentration, a total area of the diesel 

plume in the subsurface and how long volatilization has occurred. Estimation of the volatilization 

rate of diesel used the initial vapor concentration equation (Equation 2.19) that SVE initially 

used. This used the same initial diesel vapor concentration value in the SVE: A2 model.A 

minimum, maximum, and average area used in equation (2.22) was measured from the Ada 

Characterization Report (2016a) and Ada Surfactant Report (2016b). The minimum area was 18 

m2 (194 ft2), the maximum area was 35 m2 (377 ft2), and the average area was 70 m2 (753 ft2). The 

time of volatilization occurring at the site was from the time the initial spill was discovered to 

when non-detect was reported. The time of the discovery of the spill to the site reporting non-

detects was approximately 2 years (Greystone Environmental et al., 2016a; Greystone 

Environmental et al., 2016b). 
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9) BIOREMEDIATION: NA2 
 

Data used for the estimation of mass removal via bioremediation was from the Ada 

Characterization Report and Ada Surfactant Report (Greystone Environmental et al., 2016a; 

Greystone Environmental, 2016b). CO2 measurements were taken from the multi-gas infrared 

detector taken at various times at each well at the site before and after the application of remedial 

activities. For estimated mass removal rates, the concentration of CO2 measured from the field 

was converted into a flux in units of µmol/m2/s. The CO2 flux rate was converted from µmol/m2/s 

to L/acre/yr using McCoy’s stoichiometric conversion using an equivalent organic compound 

(McCoy et al., 2012). McCoy selected decane (C10H22) for stoichiometric conversion for gasoline. 

Diesel has higher concentration of organic compounds heavier than decane; this may not 

accurately provide mass removal of diesel via bioremediation. Instead, minimum, maximum, and 

average equivalent organic compounds were used. Minimum equivalent organic compound was 

decane as it was a basis for McCoy’s method. Maximum equivalent organic compound was 

hexadecane (C16H34), due to it being used in multiple studies in biodegradation (Wodzinski and 

Johnson, 1968; Geerdink et al., 1996; Roy and Greer, 2000; Krummenacher et al., 2003). The 

average equivalent organic compound was cyclododecene (C12H22) as the average between 

decane and hexadecane.  

MODEL UNCERTAINTY EVALUATIONS 
 

The analytical model results were compared to values retrieved from the site to determine the 

error in model estimates. Some of the remedial methods have quantitative values to compare from 

the field. Quantitative values include excavation (I1), submersible pump-and-treat (A1), skimmer 
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pump-and-treat (A2 & A4), and SVE (A3 & A5). The other methods, evaporation (I2), 

volatilization (NA1) and bioremediation (NA2) have no quantitative values to compare to either 

due to difficulty of field measurements or no remedial plan to measure mass removal rates for 

that method.  
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CHAPTER VI 
 

 

RESULTS 
 
 

This section details the results from the mass removal models compiled in Chapter III and using 

the parameters provided in Chapter IV. The mass removal and model uncertainty for each 

individual model are presented (Figure 6). The mass removal contribution of each remedial 

method relative to the known total mass is also presented (Figure 7). The results are detailed in 

the same order as the previous sections. 

INITIAL MASS RECOVERY 
 

1) EVAPORATION: I1 
 

The evaporation model with minimum values for parameters predicted 251 L (66 gal) or 210 kg 

(463 lbs) of diesel would evaporate. The evaporation model with average values predicted 482 L 

(127 gal) or 403 kg (889 lbs.), and the maximum values predicted 727 L (192 gal) or 210 kg (463 

lbs.) would evaporate. This is a range of 3% to 10% of the mass with an average model estimate 

of 6%. 

Of the 7571 L (2000 gal) spilled at the site, 757 L (200 gal) or 634 kg (1397 lbs.) or 10% of diesel 

was removed through evaporation as the field estimate. The estimated error of field amount was 

10%. The evaporation model generally under predicted the field estimate. The range of under 

prediction was 4% for the maximum model parameters and 67% for the minimum. The difference 

between the field amount and the average model prediction was 36%. 
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2) EXCAVATION: I2 
 

The excavation model with minimum values for parameters predicted 1047 L (276 gal) or 876 kg 

(1932 lbs.) of diesel would be removed with the soil and weathered dolomite. The excavation 

model with average parameter values predicted 1575 L (416 gal) 1318 kg (2906 lbs.) with 

maximum values of 2414 L (638 gal) or 2021 kg (4454 lbs.) of diesel. This resulted in a range of 

mass removal between 14% and 32% of the 7571 L (2000 gal) spill. The average excavation 

model estimate anticipated a 21% removal.  

The field data suggested that of the 7571 L (2000 gal) spilled at the site, 1170 L (300 gal) or 979 

kg (2159 lbs.) or 15% of diesel was removed through excavation. Estimated error of the field 

calculation was 30%. The difference between the field measurement and minimum model 

prediction was an 8% model under prediction. The average model and the maximum model 

predictions over predicted the field measurement by 39% and 113%. The range of model results 

for excavation are consistent with the field data with a general over prediction based on the 

average model estimate.  

ACTIVE MASS RECOVERY 
 

3) SUBMERSIBLE PUMP-AND-TREAT: A1 
 

The API LDRM code with minimum values for parameters predicted 644 L (170 gal) or 539 kg 

(1188 lbs.) of diesel would be removed. The prediction with average values was 1156L (305 gal) 

or 968 kg (2133 lbs.), and with maximum values, 1376 L (364 gal) or 1152 kg (2539 lbs.) of 

diesel would be removed. Thus, the model predicted a removal of between 9% and 18% through 
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Figure 6: Model volume of diesel mass removed for each remedial method (squares) versus the 
field estimate of diesel removed (blue bars) in order of lowest to highest field mass value 

submersible pump-and-treat with an average model estimate of 15%. 

Of the 7571 L (2000 gal) spilled at the site, 3217 L (850 gal) or 2639 kg (5936 lbs.) or 43% of 

diesel was removed through submersible pump-and-treat. The field measurement error was 

estimated to be 10%. The model significantly underestimated the amount of mass recovery 

through submersible pump-and-treat with an under prediction between 57% and 80%. The 

average values provided a model estimate that was 64% below the measured field value. 

4) SKIMMER PUMP-AND-TREAT: A2 
 

The API LDRM code with minimum values for parameters predicted 143 L (38 gal) or 120 kg 

(264 lbs.) of diesel would be removed via skimmer pump-and-treat. For average values, the 

model predicted 403 L (106 gal) or 337 kg (744 lbs.), and with maximum values the prediction 



70 
 

was 672 L (178 gal) or 562 kg (1240 lbs.). This results in estimates of mass removal between 2% 

and 9% with an average estimate of 5%. 

Of the 7571 L (2000 gal) spilled at the site, a field estimate of 2082 L (550 gal) or 1743 kg (3842 

lbs.) or 43% of diesel was removed through skimmer pump-and-treat. The field measurement 

error was estimated to be 10%. The model significantly under predicted mass removal for this 

method. The error between the field measurement and the model estimate was an under 

prediction between 68% and 93%. Using average values, the model under predicted by 81%.  

5) SOIL VAPOR EXTRACTION: A3 
 

The SVE model with minimum values for parameters predicted 121 L (32 gal) or 101 kg (223 

lbs.) of diesel would be removed. The average values provided an estimate of 337 L (89 gal) or 

282 kg (622 lbs.), and the SVE model with maximum values predicted 494 L (130 gal) or 413 kg 

(912 lbs.) of diesel would be removed. This would provide a range of 1% to 11% of the diesel 

impact. The average estimate from the model 366 would be 9% mass removal. 

Of the 7571 L (2000 gal) spilled at the site, 327 L (86 gal) or 274 kg (603 lbs.) or 4% of diesel 

was removed through SVE. The estimated field measurement error was 10%. The model was in 

the range of the field measured value. The minimum model prediction under predicted by 63%, 

while the maximum model over predicted by 52%. The difference between the field estimate and 

the average model prediction is a 3% model over prediction. Overall, the model slightly over 

predicted the amount recovered compared to the field amount recovered. 

6) SURFACTANT ENHANCED SKIMMER PUMP-AND-TREAT: A4 
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The API LDRM code with surfactant enhancements predicted 0.1 L (0.02 gal) or 0.1 kg (0.2 lbs.) 

of diesel would be removed via skimmer pump-and-treat using the minimum value estimates. The 

average parameters resulted in an estimate of 78 L (21 gal) or 65 kg (144 lbs.), and the maximum 

values for parameters predicted 136 L (36 gal) or 114 kg (251 lbs.) of diesel would be removed. 

This would be a range of 0.001% to 2% of the diesel impact. The average estimate from the 

model would be a removal of 1%. 

Of the 7571 L (2000 gal) spilled at the site, 23 L (6 gal) or 19 kg (42 lbs.) or 0.3% of diesel was 

removed through surfactant enhanced skimmer pump-and-treat. The field error was estimated to 

be 10%. The model was within range of the field data, but generally over predicted. The 

difference between the field amount and the minimum model prediction was 100% model under 

prediction. The difference between the field amount and the maximum model prediction was 

499% over prediction. The difference between the field amount and the average model prediction 

was 250% over prediction.  

7) SURFACTANT ENHANCED SOIL VAPOR EXTRACTION: A5 
 

The SVE model with surfactant enhancements with minimum parameter values predicted 12 L (3 

gal) or 10 kg (22 lbs.) of diesel would be removed. Using average values, the prediction would be 

314 L (83 gal) or 263 kg (579 lbs), and with maximum values, a predicted 457 L (121 gal) or 383 

kg (843 lbs) of diesel would be removed. These values represent a range of 1% to 9% mass 

removal, with an average model estimate of 3%. 

Of the 7571 L (2000 gal) spilled at the site, a field estimate of 8 L (2 gal) or 7 kg (15 lbs) or 0.1% 

of diesel was removed through SVE with surfactant enhancement. The field error was estimated 
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to be 10%. Overall, the model significantly over predicted the measure quantity from the field. 

The difference between the field amount and the minimum model prediction was a 59% over 

prediction. The difference between the field amount and the maximum model prediction was 

5934% over prediction. The average model over prediction was 4045%.  

NATURAL ATTENUATION 
 

8) VOLATILIZATION: NA1 
 

The volatilization model with minimum values for parameters predicted 0.96 L (0.25 gal) or 0.8 

kg (1.8 lbs) of diesel would be removed. With average parameters the amount would be 1.9 L 

(0.49 gal) or 2 kg(4 lbs), and with maximum values the model predicted 3.7 L (0.98 gal) or 3 kg 

(7 lbs) of diesel would be removed. This represents a removal of between 0.003% and 0.005% of 

the diesel mass. The average parameters resulted in an estimate of 0.003% removal. 

Of the 7571 L (2000 gal) spilled at the site, 4 L (1 gal) or 3 kg (7 lbs) or 0.05% of diesel was 

removed through volatilization. Estimated field error was 10%. The model estimates all under 

predicted the amount removed through volatilization. The under prediction ranged from 2% to 

75% with an average value of 51%. 

9) BIOREMEDIATION: NA2 

The bioremediation model with minimum values for parameters predicted 15 L (4 gal) or 13 kg 

(28 lbs) of diesel would be removed without actively aiding any bioremediation process. Using 

average parameters, the amount predicted would be 19 L (5 gal) or 16 kg (35 lbs) and with 

maximum values, 34 L (9 gal) or 28 kg (63 lbs). These model estimates represent a mass removal 
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between 0.2% and 0.5% of the original mass. The average model estimate would be 0.3%. 

Of the 7571 L (2000 gal) spilled at the site, a field estimate of 19 L (5 gal) or 16 kg (35 lbs) or 

0.3% of diesel was removed through bioremediation. Estimated error of field values was 10%. 

The model and the field data agree fairly well. The difference between the field estimate and the 

minimum model prediction is a 19% under prediction. The difference between the field amount 

and the maximum model prediction is a 79% over prediction. The difference between 

field and the average model prediction is only a 0.21% under prediction. Overall, the 

model is in excellent agreement with the field estimate. 

 

Figure 7: The sum diesel volume removed for each remedial model estimate in order from 
smallest to largest volume (colored lines) with minimum, average, and maximum estimates. The 
blue bars graph in order of smallest to largest volume the field estimates of volume removal of 

diesel for a site with known impacts and nondetect conditions post remediation. 
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CHAPTER VII 
 

 

DISCUSSION 
 

This section discusses the issues with parameter variability and estimation, model variability, 

possible error reduction, and future work to assist in hydrocarbon mass removal modeling. The 

models that were accurate within 10% of the average were SVE and bioremediation. Models that 

were moderately accurate within 11% to 60% of the average were excavation and evaporation. 

Models that did poorly, or greater than 60% of the average, were submersible pump-and-treat, 

skimmer pump-and-treat, surfactant enhanced skimmer pump-and-treat and surfactant enhanced 

SVE.  

PARAMETER VARIABILITY AND ESTIMATION 
 

Possible model uncertainties in the mass removal models were based on the variability of the 

parameters and best parameter estimations for selected models. Diesel physical properties such as 

density, interfacial tension, vapor pressure, and molecular weight vary due to crude oil origin, 

distillation methods, individual company mixtures, and diesel additives (Song et al., 1990; 

Fingas, 2001). Testing physical and chemical properties of diesel for density, interfacial tension, 

vapor pressure, and molecular weight could reduce uncertainties in prediction equations. Density 

can affect the results by 12% to 111%. Interfacial tension can affect the model results by less than 

1% to 39%. Vapor pressure can affect the model results by 71%, and molecular weight can affect 

the model results by 17%. Although free product may exist on an impacted site, these parameters 

are not commonly measured, but could significantly affect the estimates of mass removal. 
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MODEL VARIABILITY 
 

By necessity for simplified analytical models, the models rely on assumptions about flow and 

transport mechanisms. Models that calculate flow rely on several parameters that may not be well 

defined to calculate transport parameters that are assumed, ignored, or refer to previous studies. 

Most models don’t account for any change of chemical composition during the remedial process 

or areas of influence that has little or no contaminants.   

Evaporation does not calculate for infiltration into the soil, where temperatures in the soil are 

different from the atmosphere. Once the diesel infiltrates into the soil, it may begin to change 

from liquid to gas phase more readily than at colder surface conditions. This would likely not 

generate significantly different estimates for the total mass removal. 

Excavation uses an average concentration over an entire excavated pit, when some zones of the 

pit may not be impacted. This would over predict the amount removed using equation (2.2). The 

equation is also simple making it sensitive to parameter variability as changing the density of 

diesel from 0.837 g/cm3 to 0.800 g/cm3 results in a decrease of 57% while an increase from 0.837 

g/cm3 to 0.860 g/cm3 results in an increase of 59% (Song et al., 2000). Variation of pit volume 

ranges from 20% decrease and 21% increase from the average pit volume. The standard error for 

composite pit concentration of 387 mg/kg changes the excavation results by 13%. This is smaller 

than expected and suggests that compositing is a reasonable approach to get a good estimate for 

mass removal (U.S. EPA, 2002). 

The API LDRM submersible pump-and-treat model may be underestimating due to the thickness 

of the saturated column. The model is assuming the saturated thickness is the same as the well 
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screened length. For Ada WW1, the screened length is about 300 m (984 ft) and the model is 

assuming the whole borehole is pumped at 26.5 L/min (7 gpm). While drawdown may adjust for 

water above the pump intake, it is unknown how much water is flowing beneath the pump intake 

caused by the pumping. This is unique for this site with a deep production well, and may not 

affect most sites where the methods are applied. 

The API LDRM skimmer pump-and-treat model does not have an input for pumping rate; the 

pumping rate of LNAPL using a skimmer pump is calculated using equation (2.13). The pumping 

rate used in the field may be different than what LDRM calculates as the skimmer pump may be 

able to pump at higher or lower rate than calculated. Another issue is the LDRM skimmer pump-

and-treat relies on the observation well for radius of capture. The model assumes the 

contaminated observational well equals the radius of capture. At the site, none the observational 

wells CD-03, CD-05, CD-06 were contaminated with diesel. The remediation well was also the 

observational well. This may affect the prediction of diesel removal as LNAPL head at the radius 

of capture equals the thickness of the LNAPL. The thickness of LNAPL may not fully extend to 

the radius of capture and may not be the same thickness throughout the radius of capture. This 

will either over predict or under predict the saturation and recoverable volume of LNAPL. An 

additional problem for both the API LDRM submersible pump-and-treat and skimmer pump-and-

treat models may be the lack of dual permeability models for fractured and karstic aquifers.  

Soil vapor extraction uncertainty is small but could be further reduced by measuring radius of 

influence, soil temperature, and vapor concentration before each SVE event.. Measuring the 

radius of influence will determine if SVE will reach the entire contaminated area. If the radius of 

influence covers the entire contaminated area and some uncontaminated area, Johnson et al. 
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(1990) provides a scenario where a fraction of vapor flows through uncontaminated soil. Soil 

temperature can be measured to reduce the SVE error as increasing the temperature can increase 

the vapor concentration (Johnson et al., 1990). The equations do not account for vapor 

compositional changes and mass transfer resistances during SVE. While equation (2.19) estimates 

the initial concentration, it can be measured before each SVE event to predict how much vapor 

each SVE event can remove.  

Problems with the model prediction of skimmer pump-and-treat and SVE surfactant flushing 

include the wide variability of interfacial tension reduction and surfactants suppressing 

volatilization that SVE relies on. It can be difficult to determine if surfactant will not only reach 

the affected area, but also mobilize and solubilize the contaminant in the field. If it does, the 

degree of interfacial decrease varies depending on the concentration of the surfactant and soil. 

The API LDRM calculated the correct trend of increasing diesel recovered with decrease of 

interfacial tension but over predicted the field value. Surfactants can also suppress volatilization 

of the LNAPL (Chao et al., 2006; Chao et al., 2008) and equation (2.19) does not account for 

surfactant vapor suppression. This may be the reason values are so high for the minimum, 

maximum, and average values. The vapor concentration of the subsurface can be sampled to 

replace equation (2.19).  

Another issue is the models do not interfere with each other nor account previous remedial 

efforts. If SVE was conducted before any pump-and-treat methods, the model does not account 

for liquid free product in the well. This could affect the length of the exposed well screen and 

may affect hydrocarbons located at the liquid-air boundary but not below the surface of the 

LNAPL. If SVE was not used, bioremediation may not have the same effect both in the field and 
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in analytical models. If the order of remedial methods were switched or no conducted at all, the 

models may predict either different values or not account the order of remediation methods. 

FUTURE WORK 
 

Future work includes more testing and average values of diesel composition parameters for a 

database or method to determine source parameters that vary with composition. Work could also 

be done to limit the conceptual uncertainties of the analytical models utilized. Additionally, the 

parameters of a biodegradable water based blend of non-ionic ethoxylated octylphenolic 

surfactant should be more precisely determined. 

Diesel physical and chemical parameters are complex and vary based on reservoir source, oil 

distilling company procedures, distillation process, and additives (Song et al., 2000; Fingas, 

2001). These factors may change the density, molecular weight, volatility, and other parameters 

used to calculate mass removal. A database of diesel parameters showing the variability from 

reservoir source, originating company, distillation process, and additives, may make modeling 

more precise. 

Future for work for the analytical predictive models need recognition for API LDRM and 

evaporation. The API LDRM focus could be the effect of how much water is being pumped by a 

skimmer well for such a deep open borehole well. Not all 300 m (984 ft) of water could be 

flowing toward the pump to be extracted and may need to be adjusted for partially penetrating 

flow. Another possibility could be the use of van Genuchten equation with a fractured system. 

Gerke and van Genuchten developed a dual permeability model to determine the extent of 

saturation in a fractured matrix.  
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For evaporation, infiltration is not considered in the empirical equation (2.1). Infiltration rates 

could be found for different types of soil and added to empirical equation (2.1) as an additional 

empirical equation. Ma et al. (2016) has already determined diesel oil infiltration in fine sand and 

silty clay loam. Ma et al. (2016) also determined how soil texture, soil bulk density, and initial 

water content increases or decreases the rate of diesel infiltration for fine sand and silty clay 

loams. 

Future work for surfactant flushing includes the interfacial change of the biodegradable non-ionic 

ethoxylated octylphenolic surfactant for diesel and changes of biodegradation rates after 

surfactant flushing (Cole, 1994; Brusseau et al., 1995; Pope and Wade, 1995; Rouse et al., 1995; 

Martel et al., 1996). A database could be added of the surfactant brand, surfactant type, and how 

much it lowers interfacial tension of hydrocarbons and fuels based on composition and mixture. 

Biodegradation rates of diesel after surfactant flushing using a biodegradable non-ionic 

ethoxylated octylphenolic surfactant would also be possible future work to determine how much 

the surfactant may affect bioremediation. 
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CHAPTER VIII 
 

 

CONCLUSION 
 

An unfortunate spill of 2000 gallons (7571 liters) of diesel fuel into a fractured karstic dolomite 

aquifer impacted a municipal water supply well and provided a unique opportunity for field 

evaluation of analytical LNAPL mass recovery models. This work utilized the opportunity to 

investigate the accuracy and reliability of nine analytical mass removal models compared to field 

recovery data. As the aquifer was fully remediated in under two years, the controls on source and 

removal of diesel mass provides one of the best-controlled field datasets in this type of aquifer. 

This allowed not only to test the models, but also to evaluate uncertainties in the models to 

improve estimates of mass recovery in other complex aquifers.  

The impacted well site was characterized with electrical resistivity imaging followed by 

monitoring wells to characterize a perched aquifer and the regional water table. Field methods for 

removal of diesel in the fractured karst aquifer were documented and overseen by site 

consultants, various state agencies, and municipal officials to provide accurate removal data for 

diesel mass. Nine total mechanisms for mass removal occurred to eliminate diesel from the 

subsurface, with several active methods and some natural mass removal mechanisms. Analytical 

model methods consisted of either using data from the field site or literature values for either 

natural or induced methods. Model parameters were selected for minimum, average, and 

maximum parameters that were observed in the field at the site or other sites from the literature. 

Modeled values for mass removal were compared to field data for mass removal or with values of 

remnant mass, as the initial source term was well known.  
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Results were accurate for several models. Accurate models included evaporation, soil vapor 

extraction, volatilization, and bioremediation models. Models that over predicted mass removal 

included excavation, post-surfactant skimmer pump-and-treat and soil vapor extraction models. 

Models that under predicted included submersible pump-and-treat and pre-surfactant skimmer 

pump-and-treat. While many of the analytical models were not accurate, they were correct in 

relative order of magnitudes of removal, predicting which methods would be most effective at 

removing the majority of the mass. 

Uncertainties of the models were contributed by parameter variability and the model variability. 

Diesel parameters vary based on multiple factors in crude oil origin, distillation method, 

additives, and company. These free product source parameters for transport are commonly not 

measured as diesel or other fuels variability is not often considered for mass removal calculations. 

The variability in the possible values cause significant changes in predicted mass removal. Model 

variability relies on conceptual model assumptions, simplicity, and unknown parameters changes 

with the application of surfactants. Surfactant variability in parameters occurs in what mixture is 

originally utilized and how it interacts with the fuel and matrix. Overall, the models performed 

adequately in predicting the removal of diesel from the subsurface. In a porous matrix, the models 

should perform well while in a fractured system, a few modifications may need to be applied. 

With the use of surfactants, more studies are needed or the development of a separate model to 

assist in predicting diesel removal in the subsurface. 

Future work includes field-testing of diesel fuel parameters from source and free product impact 

zones to evaluate changes in parameters and the best field method for obtaining the correct 

transport parameters. The work also demonstrates possible solutions to the uncertainties of the 
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selected analytical models. Some of the uncertainties for the analytical models could be reduced 

by adding additional calculations such as infiltration, modeling saturation in a dual porosity 

matrix, or clarifying assumptions such as how much water moves in a deep well toward the 

pump, or the assumptions described by Johnson et al., (1990). Further studies of the effects of 

non-ionic biodegradable surfactants on diesel would better parameterize these reactions for 

improved modeling. Knowing diesel parameters would reduce the error of several models for 

diesel mass removal.  
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