
 
 

  

SYNTHESIS OF LANTHANIDE MOLYBDATES VIA  

REACTION OF MOLYBDENUM(VI) OXIDE WITH 

 AQUEOUS ACETATE SALTS 

 

 

By 

KHALID ALRASHIDI 

Bachelor of Science in Chemistry  

King Saud University  

Riyadh, Saudi Arabia 2012 

 

 

 

Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF CHEMISTRY 

   DECEMBER 2018  

 

 

 

 

 

 

 

 



II 
 

 

SYNTHESIS OF LANTHANIDE MOLYBDATES VIA  

REACTION OF MOLYBDENUM(VI) OXIDE WITH 

 AQUEOUS ACETATE SALTS 

  

  

Thesis Approved:  

  

Dr. Allen W. Apblett  

 

Thesis Adviser  

Dr. Nicholas F. Materer  

 

  

Dr.  Gabriel Cook 

 

 

  

 

 

 

 

 

 



III 
 

 

ACKNOWLEDGEMENTS 

 

 Thanks to merciful Allah for all the countless gifts you have offered and thanks to 

my family and my friends for their love and support. My deepest thanks and gratitude to 

my mother for her extraordinary support, prayers, and unconditional love.  

 It is a great pleasure to acknowledge my deepest thanks to my adviser Prof. Allen 

Apblett. I am thankful for Professor Apblett, a faculty member at Oklahoma State 

University, for his encouragement, creative, and comprehensive advice until this research 

work came to existence. It is a great honor to work under his supervision. This thesis would 

not have been possible without the help, support and patience of my principal advisor Prof. 

Apblett, which I am extremely grateful. Also, I would like to thank Prof. Nicholas F. 

Materer and Dr. Gabriel Cook for their advice and help. 

 I would also like to express my extreme sincere gratitude and appreciation to all 

my Saudi Arabian Cultural Mission (SACM) as well as King Saud University for 

sponsoring and supporting. 

  



IV 
 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS……………………………………………………………III 

TABLE OF CONTENTS………………...………………………………………...…. IV 

LIST OF TABLES………………………………………………………………….…. VI 

LIST OF FIGURES……………………………………………………..…………..…VII 

CHAPTER I……………………..………………………………………...……………..1 

 INTRODUCTION……………………………………………………………….1 

 Molybdenum Trioxide/The structure of molybdenum trioxide ………..……..2 

 Lanthanide Molybdate Oxide Conductors……………………………………...4 

 Lanthanide Molybdates………………………………………………………….5 

CHAPTER II……………………………………………………………………………10 

ROUTES FOR THE SYNTHESIS OF LANTHANUM AND CERIUM 

MOLYBDATES CHARACERIZATION……………………………………..10 

Introduction……………………………………………………………………..10 

Experimental/Reaction of molybdenum trioxide with lanthanum acetate…..12 

Reaction of cerium acetate Ce(O2CCH3)3 with molybdenum trioxide (MoO3)12 

RESULTS AND DISCUSSION/Reaction of  MoO3 with lanthanum acetate.13 

Kinetic of  the Lanthanum Acetate/MoO3 Reaction…………………………...22 

  Reaction of Cerium acetate with MoO3………………………………………..25 

 Conclusions…………………………………………………………………...…29 

CHAPTER III…………………………………………………………………………...30 

SYNTHESIS OF YTTRUIM AND PRASEODYMIUM HYDROXIDE 

MOLYBDATES AND PRASEODYMIUM/LANTHANUM ACETATE 

MOLYBDATES………………………………………………………………...30 



V 
 

Introduction……………………………………………………………………..30 

Experimental/Reaction of yttrium acetate Y(O2CCH3)3 with molybdenum 

trioxide (MoO3)………………………………………………………...………..31 

Reaction of praseodymium acetate Pr(CH3COOH)3 hydrate with 

molybdenum trioxide (MoO3)………………………………………………….31 

Reaction of molybdenum trioxide with lanthanum acetate and praseodymium 

acetate mixture…………………………………………………...……………..32 

RESULTS AND DISCUSSION/Reaction of molybdenum trioxide with 

yttrium acetate………………………………..…………………………………33 

Reaction of  MoO3 with praseodymium acetate……………………………….35 

Preparation of La2Mo2O9:Pr3+ phosphors and Related Compounds…….….38 

Conclusions……………………………………………………………………...44 

REFERENCES………………………………………………………………………….46 

 

 

 

 

  

 

 

 

 



VI 
 

 

LIST OF TABLES 

 

 CHAPTERII                                                                                                                Page 

 

Table 2.1. Concentration of lanthanum (ppm) Versus Time for an 8-Day reaction.23 

Table 2.2. Concentration of lanthanum Versus Time for Reaction of Lanthanum 

Acetate with MoO3 over an 8-Hour Time Period…………………………………….24 

  



VII 
 

 

LIST OF FIGURES 

 

CHAPTER I                                                                                                                 Page 

Figure 1.1.  Idealized representation of the layered structure of molybdenum trioxide 

as reported by Chippendale and Cheatham1………………………………………...….3 

Figure 1.2. Layered Structure of MoO3 (Drawn by Crystal Maker X using data from 
2)………………………………………………………………………………..………….6  

Figure 1.3. Periodic Table Representation of the Metals Used in this Investigation and 

their Ionic Radii in Angstrom….…………………………………………...…….…….10 

 

CHAPTER II 

Figure 2.1.  Thermal Gravimetric Analysis of La(O2CCH3)(MoO4)●1.05H2….……15 

Figure 2.2.  Infrared Spectrum of La(O2CCH3)3●1.5H2O……………………..……...16 

Figure 2.3.  Infrared Spectrum of La(O2CCH3)(MoO4)●1.05H2O…………..………17 

Figure 2.4. Infrared Spectra of products from firing La(O2CCH3)(MoO4)●1.05H2O 

at 300 ℃ and 500……………………………………………………………………….18 

Figure 2.5. The XRD Pattern of the Product Ceramic Product by Heating 

La(O2CCH3)(MoO4)●1.05H2O to 500 ℃……………………………………...………19 

Figure 2.6. The XRD Pattern Match for Ceramic Product by Heating 

La(O2CCH3)(MoO4)●1.05H2O to 500 ℃……………………………………...………20 

Figure 2.7. Carbon-13 NMR Spectrum of La(O2CCH3)(MoO4)●1.05H2O……..…..21 

Figure 2.8.  Infrared Spectra of the Product from Reaction of MoO3 with one molar 

Equivalent of Lanthanum Acetic………………………………………………………22 

Figure 2.9. Concentration of Lanthanum Versus Time During the Reaction of 

Lanthanum Acetate with MoO3……………………………...………………………...23 

Figure 2.10. Plot of Concentration of Lanthanum Versus Time for Reaction of 

Lanthanum Acetate with MoO3 over an 8-Hour Time Period………..………….….25 



VIII 
 

Figure 2.11. The XRD Pattern of Lanthanum Molybdate Acetate………….………26 

Figure 2.12. The XRD Pattern of Cerium Molybdate Acetate……………..………..26 

Figure 2.13.  Thermal Gravimetric Analysis of the Product from the Reaction of 

Cerium Acetate with MoO3………………………………..………………...…………27 

Figure 2.14.  A Comparison of Infrared Spectrum Between Cerium Acetate  

and Ce(MoO4)(O2CCH3)●1.4H2O……………...………………………………...……28 

Figure 2.15.  The Infrared of Dehydrated Ce(MoO4)(O2CCH3)●1.4H2O…………..29 

 

CHAPTER III  

Figure 3.1.  Infrared Spectrum of  Y(MoO4)(OH)•H2O………………………….…..34 

Figure 3.2. Metal Oxide Cluster Present in CoMoO4•H2O (Taken from3)………….34 

Figure 3.3.  Thermal gravimetric analysis of Y(MoO4)(OH)•H2O…………..……....35 

Figure 3.4.  Infrared spectrum of Pr(MoO4)(OH)•H2O……………………..……….36 

Figure 3.5.  Thermal gravimetric analysis of the product from praseodymium 

acetate with MoO3………………………...…………………………………………….37 

Figure 3.6.  A comparison of the Infrared spectra of Y(MoO4)(OH)•H2O and 

Pr(MoO4)(OH)•H2O…………………………………………………………………….37 

Figure 3.7. Dependence of the emission intensity on praseodymium content of            

La2-xPrxMo2O9 as reported by Zhang and co-workers.4…………………………...….39 

Figure 3.8 Emission spectra of La1.93Pr0.07Mo2O9 prepared by a solid-state reaction at 

900 ℃. The excitation wavelength was 450 nm. The figure was adapted from that 

reported by Zhang and co-authors.4……………………………………………...……39 

Figure 3.9.  Thermal gravimetric analysis of La0.9Pr0.1(O2CCH3)(MoO4)•H2O...…..40 

Figure 3.10.  Raman Spectrum for La0.9Pr0.1(O2CCH3)(MoO4)•H2O…………...…..42 

Figure 3.11.  Raman Spectrum of La0.5Pr0.5(O2CCH3)(MoO4)•H2O…………..…….42 

Figure 3.12. Raman Spectrum of Pr(OH)(MoO4)•H2O……………………...…….…43 

Figure 3.13. Emission Spectra of La1.8Pr0.2Mo2O9……………………….………..….43 



1 
 

 

 

 

 

 

CHAPTER I 

 

 

Introduction  

 

Introduction  

 

The chemistry of molybdenum is important due to its ability to form complexes 

with valence states 0, +1, +2, +3, +4, +5, and +6. Molybdenum trioxide, with +6 oxidation 

state is particularly important to chemists to form lanthanide molybdate. Molybdenum is 

in Group VI of the periodic table and is located in the 4d-block between Nb and Tc. It is a 

very refractory metal with an extremely high melting point of 2610 ℃. For this reason, 

molybdenum can be used as a high strength material in the high temperature conditions. 

Molybdenum has conductivity, so it can be used as an electrical material for so many 

applications. Molybdenum slowly oxidizes in air at 350 ℃ but it is rapidly oxidized at 650 

℃ and above.  

Molybdenum compounds have a wide range of applications. For instance, they are used in 

such technological areas as catalysis, lubrications, refractories, paints, and allied industries. 

For instance, liquid and MoS2 can be utilized to prepare lubricants in both form.5 Over the 
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past decade, molybdenum has expanded into other markets that employ the extraordinary 

characterizations of this many-sided element.5-14 

Molybdenum Trioxide  

The structure of molybdenum trioxide  

 The molybdenum oxides are noted for their very rich chemistry and multiple 

structures. For instance, the binary oxides include the dioxide and the trioxide as well as 

an extensive series of intermediate phases with the general formula MonO3n-m. However, 

the ternary oxides are more extensively because of their versatility ranging from complex 

polymolybdates based on MoⅥ to metal cluster compounds with molybdenum in oxidation 

states as low as 2.5.  

 Molybdenum trioxide adopts the layered α-structure shown in (Figure 1.1). It is a 

fascinating and important material as well as the ultimate oxidation product of most 

molybdenum compounds. The color of the molybdenum trioxide is a pale yellow. It 

sublimes at temperatures above 700 ℃ to produce a vapor that contains cyclic Mo3O9, 

Mo4O12 and Mo5O15 clusters that are based on corner shared MoO4 tetrahedra. In most 

materials, molybdenum oxide is most likely to have either tetrahedral or octahedral 

coordination, but in the α-MoO3, the molybdenum environment is square pyramidal within 

the layer of the structure (Mo-O bond lengths of 1.67, 1.73, 2*1.95 and 2.25 A˚), with a 

more distant sixth oxygen from an adjacent layer forming highly distorted octahedron (Mo-

O bond length of 2.33A˚)  
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Figure 1.1.  Idealized representation of the layered structure of molybdenum trioxide 

as reported by Chippendale and Cheatham1
  

 Moreover, MoO3 and its hydrates are soluble in alkaline solutions since they react 

to form soluble molybdate(Ⅵ) ions. MoO3 can also be reacted with DMSO, pyridine and 

methanol to form isopolymolybdates.1 The molybdenum compounds have higher activities 

for the water-gas shift reaction than nickel and iron except MoS2 and MoO3.
15 

Lanthanide Molybdate Oxide Conductors  

Lanthanide molybdate is solid oxides to conduct ions and fast oxide-ion conductors 

(or oxide electrolytes) are used for several purposes ranging from oxide fuel cells to oxygen 

purification isolation. For practical purposes, these oxide electrolytes have to have high 

oxide-ion mobility at low operating temperatures. High mobility can be found for materials 

that possess certain structural aspects because of the size of the cations and the interaction 

of oxygen ions with the cationic network. Thus, high oxide ion mobility has only been 
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observed in a small number of structural types includes as fluorite, perovskite; intergrowth 

perovskite/Bi2O2 layers, and pyrochlores. A class of solid oxides based on, La2Mo2O9 (that 

has with a different crystal structure from all known oxide electrolytes) shows fast oxide-

ion conducting characteristics. Furthermore, the material has a structural transition around 

580 ℃ that leads to an increase in conductivity by approximately two orders of magnitude. 

The similar structure of La2Mo2O9 to β-SnWO4 suggests a structural model for the origin 

of the oxide-ion conductivity. In general, replacement of a cation that has a lone pair of 

electrons by a different cation that does not have a lone pair and has a higher oxidation 

state can be used as a method to make novel oxide-ion conductors.16-29 

 

 

 

Lanthanide Molybdates 

Synthesis of Lanthanide Molybdates and Characterization Methods  

 One might expect the facile synthesis of lanthanide molybdates by a precipitation 

reaction between aqueous lanthanide metal salt and aqueous sodium molybdate as shown 

in Scheme 1. However this metathesis reaction usually fails to produce the ortho 

molybdates, Ln2(MoO4)3, due to preferential formation of NaLn(MoO4)2. Furthermore 

such reactions are not suited for the synthesis of other useful lanthanide molybdenum oxide 

bimetallic oxide phases such as Ln2Mo2O9 and Ln2MoO6. 
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3 Na2MoO4(aq) +2 LnCl3(aq)  →  Ln2(MoO4)3(s) + 6 NaCl(aq) 

 

2Na2MoO4(aq) + LnCl3(aq)  → NaLn(MoO4)3(s) + 3 NaCl(aq) 

 

Scheme 1. Aqueous Metathesis Reactions of Lanthanide Salts with Sodium 

Molybdate 

 

 The Apblett group discovered an alternative for the synthesis of lanthanum 

molybdenum oxide phases in aqueous media during an investigation of the usefulness of 

molybdenum trioxide for the removal of metal ions from simulated radioactive waste. 

Molybdenum oxide has a layered structure composed of chains of edge-shared distorted 

MoO6 octahedra that are interconnected through corner linking to form infinite chains 2. 

These chains are further linked by edge-sharing to form double-layer sheets.  The sheets 

stack together via Van der Waals forces to give the final layered structure (Figure 1.2). 

Based on this structure, the Apblett research group decided to explore the possibility that 

intercallation of metals between the sheets followed by a reaction to form molybdate phases 

would be a promising approach for immobilization of radionuclides from nuclear waste 30-

33. 
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Figure 1.2. Layered Structure of MoO3 (Drawn using Crystal Maker X and 

crystallographic data from Reference 2)  

 

 It was discovered that the reaction of MoO3 with aqueous uranyl failed to go to 

completion due to a sharp decrease in pH as protons were produced according to Equation 

193131. Therefore, an acetic-acid/acetate buffer was used (pH=4.75) so that reactions could 

proceed to completion. Later, a strategy of using metal acetates instead of chlorides was 

adopted so that over-acidification was prevented by reaction of acetate ions with protons 

to form acetic acid, a weak acid with a pKa of 4.75. Notably, if a sufficient excess of metal 

acetate is used in these reactions, the reaction mixture will be self-buffered since a mixture 

of acetic acid and its conjugate base will be produced. 

 

 MoO3(s) + H2O(l)  → MoO4
2-

(aq) + 2 H
+

(aq)                           (1) 
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Chehbouni and Apblett performed a prolonged reaction of molybdenum trioxide with an 

aqueous solution of uranyl acetate to determine the maximum uptake of uranium and 

identify the product of the reaction 32. The ratio of MoO3 to UO2
2+ used was 1:1.43. Over 

a period of one week, the MoO3 absorbed 165% by weight of uranium. This equated to 

6.94 millimoles of uranium per gram of MoO3 and, therefore, a 1:1 ratio of molybdenum 

to uranium. The product had the characteristic yellow color of hexavalent uranium and its 

infrared spectrum was consistant with the formation of a hydrated compound containing 

uranyl ions and molybdenum oxide octahedra. This was confirmed by X-ray powder 

diffraction that identified the product as the mineral umohoite, (UO2)MoO4(H2O)2. Heating 

of this product to 600˚C produced phase-pure UMoO6. The reaction between uranyl ions 

and molybdenum trioxide performed at pH 4.7 in a 0.1 M acetic acid/acetate buffer was 

found to be first order in both reactants (Equation 2) with a rate constant, k, of 0.084 

L/mol·min.9 Note that the “concentration” of solid MoO3 is represented as molarity in 

Equation 2. 

 

Rate = k[MoO3][UO2
2+] (2) 

 

The reaction of metal acetates with molybdenum trioxide to form hydrated 

bimetallic molybdenum oxide phases was extended to a wide range of divalent transition 

and lanthanide metals and it was found that this is a quite general reaction 31. Relevant to 

the investigation reported herein is the reaction of aqueous gadolinium acetate with 

molybdenum trioxide 30. This reaction was performed with 2:3 Gd:Mo molar ratio at reflux 

for seven days using 0.10 M gadolinium acetate. At the end of the reaction all of the 
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gadolinium had been absorbed from solution to yield a white solid. The formula of this 

product was determined to be Gd2(MoO4)3·2.2H2O (Equation 3). XRD analysis showed 

that the product was a crystalline phase but no match to known gadolinium or molybdenum 

phases could be found. Upon heating to 600˚C the solid was converted to Gd2Mo3O9. When 

the reaction was performed with a molar ratio of 1:1 Gd:Mo, a different compound was 

formed with the formula GdMoO4(OH)•1.5H2O (Equation 4). The product can be 

described as gadolinium molybdate hydroxide but the infrared spectrum indicates that it is 

not a true molybdate but contains molybdenum with a higher coordination number. A novel 

Gd2Mo2O9 phase is produced upon heating to 550˚C. On the other hand, when, lanthanum 

acetate was reacted with MoO3 under similar conditions, a lanthanum molybdate acetate, 

La(MoO4)(O2CCH3)•H2O was produced that served as a precursor for the oxide ion 

conductor, La2Mo2O9, upon heating to 550˚C. 

2 Gd(O2CCH3)3 + 3 MoO3 + 5.2H2O  → Gd2(MoO4)3·2.2H2O + 6 CH3CO2H     (3) 

 

Gd(O2CCH3)3 + MoO3 + 3.5 H2O  → GdMoO4(OH)•1.5H2O + 3 CH3CO2H     (4) 

 

La(O2CCH3)3 + MoO3 + 3 H2O  → La(MoO4)(O2CCH3)•H2O + 2 CH3CO2H    (5) 

 

The purpose of this investigation was to determine what factors influence the formation of 

lanthanide molybdate hydroxides versus lanthanide molybdate acetates. The hypothesis 

was that the path of the reactions of molybdenum trioxide with lanthanide acetates was 
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dependent on the ionic radii of the lanthanide(III) ions. Thus, reactions were performed 

with yttrium, lanthanum, cerium, and praseodymium with different ionic radii (Figure1.3). 

This investigation also targeted the synthesis of new lanthanide phases with the formula 

Ln2Mo2O9 that could be useful catalysts and oxide conductors. Also, the lanthanide ions do 

not affect the molybdate ion vibrational behavior. Finally, the lessons learned about the 

formation of lanthanide molybdate acetates were used to produce phosphors based on 

praseodymium-doped La2Mo2O9. 
34-42 

Y3+ 

0.900 

  

La3+ 

1.032 

Ce3+ 

1.010 

Pr3+ 

0.990 

Figure1.3. Periodic Table Representation of the Metals Used in this Investigation and 

their Ionic Radii in Angstrom.43 
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CHAPTER II 

 

 

ROUTES FOR THE SYNTHESIS OF LANTHANUM AND CERIUM 

MOLYBDATES CHARACERIZATION  

 

Introduction  

 

Recently, many chemists have been interested in the synthesis of  rare earth 

molybdates Ln2(MoO4)3 (where Ln can be lanthanum, cerium, gadolinium, praseodymium, 

yttrium, or any of the respective rare earth element in the periodic table).44 Ln2Mo2O9 is 

another ternary phase formed by lanthanides and molybdenum. These compounds have 

extensive applications as oxide conductors, phosphors, and catalysis. The use of 

molybdenum trioxide to remove lanthanides and actinides from water was described in 

Chapter 1. For example, it was reported that MoO3 could absorb up 165% by weight of 

uranium, Umohite, a hydrated uranium molybdate.44 The synthesis of lanthanide 

molybdates via reaction of molybdenum(VI) oxide with aqueous acetate salts was also 

reviewed in chapter 1. In this investigation, reaction of the aqueous solutions of either 
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lanthanum or cerium acetate with molybdenum(VI) oxide (MoO3) was found to produce a 

mixed lanthanide molybdate acetate Ln(O2CCH3(MoO4))•XH2O where Ln can be either 

La or Ce. The products serve as excellent single source precursor for stoichiometric 

La2Mo2O9 and CeMoO5. The lanthanum molybdate acetate and cerium molybdate acetate 

were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric 

analysis (TGA), NMR spectroscopy, X-Ray Powder Diffraction (XRD), and microwave 

plasma atomic emission spectroscopy (MP-AES). The conversion of the products to 

lanthanide molybdenum oxides is discussed along with the possibility of producing 

phosphors, La2Mo2O9:Ln3+ by doping lanthanum molybdenum oxides with other 

lanthanide metals such as praseodymium. The phosphor La2Mo2O9:Pr3+, and red light 

emitter, was previously prepared by high temperature solid state reaction from 800-900 

℃4. In the previous work,  optimal doping amount of Pr3+ was determined to be x=0.07 

La1-xPrxMoO4.5. This phosphor was targeted in this investigation via the preparation of a 

praseodymium-doped lanthanum molybdate acetate and its thermal conversion to the 

corresponding oxide.45-52 
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Experimental 

Reaction of molybdenum trioxide with lanthanum acetate 

La(CH3CO2)3●1.5 H2O (7.138 g, 20 mmol) was dissolved in 100 ml of distilled 

water in a round bottom flask. Next, molybdenum trioxide (MoO3) (1.446 g, 10 mmol) was 

added to the solution of lanthanum acetate. The pH was determined to be 7 at the beginning 

of the reaction. The mixture was heated to reflux for nine days. After that, the reaction was 

placed on a bench to cool it down to room temperature. The lanthanum molybdate acetate 

was isolated by filtration and was washed extensively with water. At the of this time, the 

pH had fallen to 4.3. After drying in vacuum at room temperature for two days, a white 

solid later identified as La(O2CCH3)(MoO4)●1.05H2O was isolated in a yield of  3.757 g 

99.94 % based on the amount of MoO3 used. Thermal gravimetric analysis (TGA) indicated 

the presence of 5.03 mass % water (Figure 2.1.) There was also a 13.93 % weight loss due 

to conversion of acetate ions to oxide ions. Heating La(O2CCH3)(MoO4)●1.05H2O to 700 

℃ produced La2Mo2O9 in a ceramic yield of 82.49 %. 

 

 

 

 

Reaction of cerium acetate Ce(O2CCH3)3 with molybdenum trioxide (MoO3) 

 Ce(CH3COO)31.6 H2O (6.140 g, 20 mmol) was dissolved in 100 ml of distilled 

water in a round flask. Molybdenum trioxide (MoO3) was subsequently added to the result 
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solution. The mixture was then heated to reflux for one day. The pH at the beginning of 

the reaction was found to be 7.1 while at the end it was 4.3. The yellow product was isolated 

by filtration, washed with water, and then dried in a vacuum for 24 hours. The yield of the 

Ce(O2CCH3)(MoO4)●4H2O was 3.506 g, or 91.23 % based on the amount of MoO3 used.  

 

RESULTS AND DISCUSSION  

Reaction of  MoO3 with lanthanum acetate 

A mixture of a stoichiometric amount of molybdenum trioxide and a solution of 

lanthanum acetate in water was heated at reflux for eleven days. During that time, 

lanthanum was absorbed from the solution to produce a white solid. The composition, 

La(O2CCH3)(MoO4)●1.05H2O was determined from its thermal gravimetric analysis. The 

TGA trace, shown in (Figure 2.1.), had two weight loss steps. The first step occurred over 

the temperature range of 200 ℃ to 240 ℃ can be attributed to dehydration. This was 

confirmed by FTIR spectroscopy as discussed below. The weight loss for this step was 

5.05 % corresponding to 1.05 equivalents of water. the second weight loss 13.93 %, 

occurred over the range of 460 ℃ to 480 ℃ and corresponded to the conversion of one 

equivalent of acetate to oxide. A strong exotherm indicated that this step involved 

combustion of the organic residues. The formula La(O2CCH3)(MoO4)●1.05H2O was 

confirmed by carbon analysis by combustion. The calculated percent carbon for this 

formula is 6.39 % while the analytical result was 6.43 %. 
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Figure 2.1.  Thermal Gravimetric Analysis of La(O2CCH3)(MoO4)●1.05H2O 

 

The infrared spectrum of lanthanum acetate is provided in (Figure 2.2) and that of 

La(O2CCH3)(MoO4)●1.05H2O is shown in (Figure 2.3). 

Both spectra show bands attributable to acetate groups in the range 1400 cm-1 to 

1500 cm-1  that are due to the symmetric and asymmetric stretching vibrations of the CO2 

group of acetate confirming the presence of acetate in the product from the reaction of 

lanthanum acetate with MoO3. The latter compound actually shows three absorption peaks 

of this type suggesting the presence of two different types of acetate groups. It also has 

strong bands at 849, 803, 787 cm-1. These are analytical of a tetrahedral molybdate ion 

suggesting that molybdenum is present as an octahedral ion or polymeric or oligomeric 

species. There is also a small peak at 1649 cm-1 that can be attributed to the bending 

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900

M
as

s 
%

Temperature (℃)

 

 



15 
 

vibration of a water molecule attached to a metal ion. The water stretching modes are not 

resolved in the spectrum, possibly due to being very broad and weak. 

 

Figure 2.2.  Infrared Spectrum of La(O2CCH3)3●1.5H2O 

 

 

Figure 2.3.  Infrared Spectrum of La(O2CCH3)(MoO4)●1.05H2O 
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 The precursor was fired at two different temperatures at 300 ℃ and 500 ℃ in a 

muffle furnace. The infrared spectroscopy of the dehydrated product produced at 300 ℃ 

had peaks 1508, 1460, 1401 cm-1 at 300 ℃ (Figure 2.4) over the precursor converted into 

a bimetallic oxide Ln2Mo2O9 after firing at 500 ℃. The infrared spectrum showed 

disappearance of the acetate groups and marked changes in the molybdenum oxygen 

vibrations. The narrower vibrations were replaced with a very broad unresolved peak that 

extended over the range from the 535 to 940 cm-1. 

 These are not very different from those in the hydrated product (1502, 1463, and 

1405 cm-1) indicting that dehydration did not have a major effect on the coordination mode 

of acetate in the compounds. Dehydration did have a major effect on the Mo-O stretching 

frequencies. A new strong broad band was observed at 782 cm-1 and the higher 

wavenumber peaks in the hydrated compound disappeared. This suggests that the initial 

product from reaction of MoO3 with lanthanum acetate contains molybdenum oxide 

moieties that can have bound water molecules. For example, The MoO5(OH2) octahedra 

observed in transition metal hydrated molybdates. Notably, the peak at 1649 cm-1 for the 

H-O-H bending mode of metal- bound water disappears upon dehydration.  
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Figure 2.4. Infrared Spectra of products from firing La(O2CCH3)(MoO4)●1.05H2O 

at 300 ℃ and 500 ℃ 

 

The X-ray powder diffraction pattern of the ceramic produced by heating the 

lanthanum molybdate acetate had an excellent match with the cubic phase of lanthanum 

molybdenum oxide (Ln2Mo2O9) (Figure 2.6.). The as-prepared lanthanum acetate 

molybdate La(O2CCH3)(MoO4)●1.05H2O was determined to be crystalline but the pattern 

did not match a known phase.  

In agreement with the infrared spectrum, the solid-state carbon-13 NMR spectrum 

contained peaks for two different acetates (Figure 2.7). There were two peaks for 

carboxylate groups at 191 and 189 ppm and two peaks for methyl groups observed at 30 

and 27 ppm. It is not possible to determine which pair of peaks are associated with each 

other of this time.  
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Figure 2.5. The XRD Pattern of the Product Ceramic Product by Heating 

La(O2CCH3)(MoO4)●1.05H2O to 500 ℃. 

 

 

 

Figure 2.6. The XRD Pattern Match for Ceramic Product by Heating 

La(O2CCH3)(MoO4)●1.05H2O to 500 ℃.

Product: La2Mo2O9 

La2Mo2O9: Cubic 

ICDD#: 00-023-1145 
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Figure 2.7. Carbon-13 NMR Spectrum of La(O2CCH3)(MoO4)●1.05H2O 

 

 In order to be able to make praseodymium doped La2Mo2O9 is necessary to prepare 

the lanthanide molybdate acetate without using excess metal acetate. The excess acetate is 

used to buffer the reaction mixture. For example, the 2:1 lanthanum acetate:MoO3 reaction 

had a pH of 4.5, close to the pka of acetic acid. When the reaction was performed with a 

1:1 ratio of the reactants, the pH was 3.1. Infrared spectroscopy indicated that the product 

was the same as that from the 2:1 reaction. Therefore, the 1:1 reaction is a viable method 

for making the lanthanide molybdate acetate (Figure 2.8) 
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Figure 2.8.  Infrared Spectra of the Product from Reaction of MoO3 with one Molar 

Equivalent of Lanthanum Acetic 

 

Kinetic of  the Lanthanum Acetate/MoO3 Reaction  

 Therefore, Microwave plasma-atomic emission spectroscopy (MP-AES) was used 

to follow the change of the concentration of lanthanum as lanthanum acetate reacted with 

MoO3. Similar to reaction described above, La(CH3CO2)3●1.5H2O (7.138 g, 20 mmol) was 

dissolved in 100 ml of distilled water, and then molybdenum trioxide (MoO3) was added. 

The reaction was then refluxed for eight days while, 80 microliters (0.08 g) of the samples 

were collected approximately every twenty four hours. After that, all samples were diluted 

by 250 ml of distilled water and the lanthanum concentrations were determined by MP-

AES (microwave plasma atomic emission spectroscopy). Interestingly,  the reaction 

reached completion in the first day of the reaction (Table2.1). Since a one-fold excess of 
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lanthanum acetate was used, the reaction ended when the concentration of lanthanum had 

dropped 50 %. This approaches to have occurred at some point in the first 25 hours.  

Table2.1. Concentration of lanthanum (ppm) Versus Time for an 8-Day reaction 

Time  

(Hours) 

Concentration 

of lanthanum 

(ppm) 

Time (Hour) Concentration 

of lanthanum 

(ppm) 

0 2.65*104 90.9 1.29*104 

0.5 2.26*104 116.9 1.29*104 

25.3 1.29*104 137.9 1.33*104 

44.9 1.28*104 162.9 1.35*104 

68.9 1.31*104 186.9 1.35*104 

 

 

Figure 2.9. Concentration of Lanthanum Versus Time During the Reaction of 

Lanthanum Acetate with MoO3 
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 The experiment was reported over an 8-hour period with sampling every hour. This 

gave the data tabulated in (Table 2.2) and shown graphically in (Figure2.10). 

The lanthanum concentration data was analyzed and it was found the reaction of 

lanthanum acetate with MoO3 had a first order dependence on La3+. The calculated rate 

constant was 0.32 hr-1. This value was quite similar to that of the uranyl ion with MoO3 

that had a value of 0.34 hr-1 under similar conditions.  

 

 

Table 2.2. Concentration of Lanthanum Versus Time for Reaction of Lanthanum 

Acetate with MoO3 over an 8-Hour Time Period  

 

  

Time (Hour) Concentration of La 

(ppm) 

Time (Hour) Concentration of 

La (ppm) 

0 2.44*104 4 2.27*104 

1 2.37*104 6 2.25*104 

2 2.31*104 7 2.23*104 

3 2.29*104 8 2.23*104 
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Figure 2.10. Plot of Concentration of Lanthanum Versus Time for Reaction of 

Lanthanum Acetate with MoO3 over an 8-Hour Time Period 

 

Reaction of Cerium acetate with MoO3 

 The reaction of cerium acetate with MoO3 proceeded in the same manner as that of 

lanthanum acetate. A drop in pH from 7.0 to 4.3 occurred as the reaction proceed acetic 

acid and reached the buffer point of the acetic acid/acetate system. Unlike the white 

lanthanum product, the cerium product was a light-yellow color. X-ray powder diffraction 

showed that both products are isostructural. The individual patterns are shown in patterns 

for lanthanum molybdate acetate and cerium molybdate acetate respectively (Figure 2.11) 

and (Figure 2.12).  
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Figure 2.11. The XRD Pattern of Lanthanum Molybdate Acetate  

 

 

Figure 2.12. The XRD Pattern of Cerium Molybdate Acetate 
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Figure 2.13.  Thermal Gravimetric Analysis of the Product from the Reaction of 

Cerium Acetate with MoO3 

The thermal gravimetric analysis trace for the cerium molybdate acetate is shown 

in (Figure 2.13). An initial weight loss of loosely bound water was observed between 29 

℃ and 71 ℃. The change was 1.4 % and corresponded to loss of 0.30 equivalents of water. 

Tightly bound water was lost over the range 105 ℃ to 252 ℃ giving a mass loss of 5.2 % 

due to release of 1.10 equivalents of water. The weight change as acetate is removed is 

complicated by overlap with a weight gain due to oxidation of cerium (Ⅲ) to cerium (Ⅳ). 

Acetate removal began at 252 ℃ and as this decomposition progressed, cerium (Ⅲ) was 

destabilized and reached with oxygen carbon dioxide to form [Ce2(CO3)]
4+. This 

transformation is calculated to cause a weight gain of 0.78 % while the actual change was 

found to be a gain of 0.79 % over the temperature range 380 % to 409 %. The 

decomposition of acetate and carbonate continued up to 475 % when the ceramic yield was 

82.3%, corresponding to CeMoO5. CeMoO5 has been observed in the gas phase above a 
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conversion of CeMoO5 to Ce2Mo2O9 as oxygen evolved white Ce (Ⅳ) was reduced to Ce 

(Ⅲ). The thermal gravimetric analysis results are consistent with a formula of 

Ce(MoO4)(O2CCH3)●1.4H2O for the product isolated from reaction of MoO3 with cerium 

acetate. This formula was also supported by elemental analysis for carbon: that calculated 

for the above formula 6.25 % and that found was 6.24 %. 

The infrared spectrum of cerium acetate molybdate (Figure 2.14) was very similar 

to that of lanthanum molybdate acetate. It had an intense peak due to a stretching vibration 

of molybdenum oxide 781 cm-1, and three peaks at 1401, 1462, 1404 cm-1 due to C-O 

stretching vibrations of acetate. Furthermore, when the product was dried at 250 ℃, it 

produced a material with an infrared spectrum (Figure 2.15) identical to that of the dried 

lanthanum acetate molybdate.  

 

Figure 2.14.  A Comparison of the Infrared Spectra of Cerium Acetate  

and Ce(MoO4)(O2CCH3)•1.4H2O  
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Figure 2.15.  The Infrared of Dehydrated Ce(MoO4)(O2CCH3)•1.4H2O 

  

Conclusions 

 The reaction of cerium acetate and lanthanum acetate both produce lanthanide 

acetate molybdates. This defines the range of lanthanide ionic radii formation of acetate as 

1.032 Å to 1.010 Å. These materials are useful precursors for Ln2Mo2O9, materials with 

useful ionic conductivity and catalytic and optical properties.  
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CHAPTER III 
 

 

 SYNTHESIS OF YTTRUIM AND PRASEODYMIUM HYDROXIDE 

MOLYBDATES AND PRASEODYMIUM/LANTHANUM ACETATE 

MOLYBDATES 

 

Introduction  

 Mixed-metal oxides play a remarkable role in many chemical fields, physics, and 

materials science53. The combination of two metals in an oxide compound can produce 

materials with superior performance in industrial applications54. Pure yttrium oxide, for 

example, can be doped with a variety of metals for use several applications. For example,  

Y2O3:Eu is important that can be used in plasma display panels and fluorescent lamps. 

Also, several methods have been reported in literature to prepare yttrium oxide from solid-

state decomposition reactions55. In this research, praseodymium was doped into lanthanum 

molybdate acetate, La(O2CCH3)(MoO4)•XH2O and fluorescence spectroscopy was used to 

investigate luminescence of the La2Mo2O9:Pr prepared from it. Raman spectroscopy was 

used to follow structural changes before and after doping. 

 



31 
 

Experimental 

Reaction of yttrium acetate Y(O2CCH3)3 with molybdenum trioxide (MoO3) 

 Another metal acetate that was chosen based on its ionic radius was a transition-

metal. Yttrium is located just above lanthanide in the periodic table. MoO3 (1.44 g, 10 

mmol) was allowed to react with a solution of yttrium acetate tetrahydrate (6.89 g, 20 

mmol) in 100 ml of water at reflux for a week. Upon cooling, the solid was isolated at room 

temperature by filtration through a fine sintered glass filter. The yield was 2.84 g (100 %) 

of Y(MoO4)(OH)•H2O. Product was characterized by the thermal gravimetric analysis 

(TGA) and inferred spectroscopy. 

Reaction of praseodymium acetate Pr(CH3COOH)3 hydrate with molybdenum 

trioxide (MoO3) 

MoO3 (1.446 g, 10 mmol) was added to a solution of  praseodymium acetate (6.29 

g, 20 mmol) in 100 ml of water and the mixture was heated to reflux for six days. The 

product was isolated by filtration and was dried in vacuum in room temperature for two 

days to give a yield of 3.01 g (89.5 %) of Pr(MoO4)(OH)•H2O. The product was 

characterized by inferred spectroscopy and the thermal gravimetric analysis. 
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Reaction of molybdenum trioxide with lanthanum acetate and praseodymium acetate 

mixture.  

 MoO3 (1.44g, 10 mmol) was reacted with a solution of lanthanum acetate (3.06 g, 

0.9 mmol) and praseodymium acetate (0.333, 1.0 mmol) in 100 ml of the distilled water at 

reflux for a week. the resulting white solid was isolated by filtration and vacuum-dried at 

room temperature for one day. The yield La0.9Pr0.1(O2CCH3)2(MoO4)•H2O was 3.547 g 

(94.1 %). 

 The reaction was reported with equivalent amounts of the lanthanide were made in 

order to test the amount of praseodymium that can be included and to still form acetate 

molybdate phase. Therefore, a solution of lanthanum acetate (1.695 g, 5.0 mmol and 

praseodymium acetate (1.666 g, 5.0 mmol) were dissolved in 100 ml of the distilled water 

was prepared. Upon cooling, the product was isolated by filtration and dried in vacuum at 

room temperature overnight. The weight of the product was 3.473 g. Next, 1.43 g (10 

mmol) of MoO3 was added to this solution and the mixture was refluxed for one week. The 

product was isolated by filtration and dried in a vacuum over ambient temperature 

overnight. The yield of  La0.5Pr0.5(O2CCH3)2(MoO4)•H2O was 3.473 g (92.1 %) all these 

products were run in Raman spectroscopy. 
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RESULTS AND DISCUSSION  

Reaction of  molybdenum trioxide with yttrium acetate 

 An extremely sharp peak was observed at 3569 cm-1 in the infrared spectroscopy 

of Y(MoO4)(OH)•H2O that corresponds to a stretching vibration of O-H and the sharpness 

implies that there is no H-bonding (Figure 3.1). Unlike, the lanthanum and cerium products, 

the product contained very little acetate. There were weak peaks of 1546 cm-1 and 1400 

cm-1 that likely due to traces of acetate at the surface of the yttrium product. Analysis for 

carbon gave a result of 0.43 % or only 0.02 per yttrium.  

 In the range where molybdenum oxygen stretches are expected, there are a series 

of sharp bands at 943, 913, and 823 cm-1 and an intense broader bond at 704 cm-1 with a 

shoulder at 638 cm-1. This is very similar to the infrared spectrum reported by the Apblett 

research group for cobalt molybdate hydrate 3. There an almost identical pattern of peaks 

was observed at 960, 913, 817, and 725 cm-1. Cobalt molybdate has a structure that contains 

a cluster of two cobalt CoO5(OH2) and two MoO4 tetrahedra shown in (Figure 3.2)56. If the 

Co2+ ions were reported by [Y(OH)]2+ ions, a similar cluster could be produced. Further 

research is required to confirm this proposed structure.  
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Figure 3.1.  Infrared Spectrum of  Y(MoO4)(OH)•H2O 

 

 

Figure 3.2. Metal Oxide Cluster Present in CoMoO4•H2O (Taken from3). 
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 Figure 3.3 shows the TGA trace for the yttrium acetate/MoO3 produced. The 

dehydration of Y(MoO4)(OH)•H2O was also similar to that of CoMoO4•H2O
3. Loosely 

bound water lost at lower temperature while the last half equivalent of water required 

temperatures above 350 ℃. The higher weight loss step as observed in (Figure 3.3) is likely 

due to loss of the hydroxide groups as water. Note that the mass continues to fall slowly 

up to 900 ℃. This is the hallmark of a solid in which hydroxides must diffuse in order to 

combine to form water and oxide ions.  

 

 

Figure 3.3.  Thermal gravimetric analysis of Y(MoO4)(OH)•H2O 

 

Reaction of  MoO3 with praseodymium acetate 

 The reaction of MoO3 with praseodymium acetate produced Pr(MoO4)(OH)•H2O 
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3.4). Again, traces of acetate were present and elemental analysis showed 0.42 % carbon 

or about 0.023 molar equivalents per praseodymium. 

 

 

Figure 3.4.  Infrared spectrum of Pr(MoO4)(OH)•H2O 

 

 Thermal gravimetric analysis of Pr(MoO4)(OH)•H2O also showed similar series of 

weight losses (Figure 3.5) as those observed for the yttrium analogue. The similarities in 

the thermal analysis and the infrared spectra suggest that the yttrium and praseodymium 

molybdate hydroxides are isostructural. These compounds should also serve as precursors 

for Ln2Mo2O9 (Ln = Y, Pr) but higher temperatures will be required for synthesis of the 

oxides due to difficult and slow dehydroxylation. However, the slow loss of water at high 

temperature suggests the possibility of production of active catalyst materials in the same 

way that dehydration of Al(OH)3 produces activated alumina. 
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Figure 3.5.  Thermal gravimetric analysis of the product from praseodymium 

acetate with MoO3. 

 

Figure 3.6.  A comparison of the Infrared spectra of Y(MoO4)(OH)•H2O and 

Pr(MoO4)(OH)•H2O 
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Preparation of La2Mo2O9:Pr3+ phosphors and Related Compounds  

La2Mo2O9 has two phases, a high-temperature forms β-La2Mo2O9 is cubic and a 

low-temperature forms α-La2Mo2O9. The first type is an oxide ion conductor. On the other 

hand, β-La2Mo2O9 has satisfactory chemical and thermodynamic stability for use as a host 

for phosphors. Ions can be doped either into the lanthanum site or the  molybdenum site. 

Therefore, this allows the selection of appropriate ion doping compositions to enhance the 

luminescence of the system4. Previously, praseodymium was doped into β-La2Mo2O9. A 

series of phosphors La2xPrxMo2O9 (x=0.01–0.10) were prepared by solid state reaction at 

high temperature (800 – 900 ℃). Finally, samples were cooled to room temperature for 

characterization purposes. All samples produced a red emission peak at 650 nm under 

excitation by 450 nm blue light. As shown in (Figure 3.7) increasing Pr content (x) 

increases the emission intensity up to the optimal amount where  x = 0.07. Three sharp 

lines were observed of 604 nm, 620 nm, and 650 nm (Figure 3.8).4 
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Figure 3.7. Dependence of the emission intensity on praseodymium content of            

La2-xPrxMo2O9 as reported by Zhang and co-workers.4 

 

Figure 3.8 Emission spectra of La1.93Pr0.07Mo2O9 prepared by a solid-state reaction at 

900 ℃. The excitation wavelength was 450 nm. The figure was adapted from that 

reported by Zhang and co-authors.4 
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As discussed in chapter 1, reactions of molybdenum trioxide with lanthanide 

acetate were found to generate a lanthanide molybdate acetate. The thermal gravimetric 

analysis (Figure 3.9) for La0.9Pr0.1(CO2CH3)2(MoO4)•H2O was almost identical to that of 

pure lanthanum compound, shown a 4.15 % weight loss due to dehydration followed by a 

13.24 % loss as acetate decomposed to oxide.  

 

Figure 3.9.  Thermal gravimetric analysis of La0.9Pr0.1(O2CCH3)(MoO4)•H2O 

 Figure 3.10 and Figure 3.11 show the Raman spectra for La1-xPrx(O2CCH3) 
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feature of the spectra is an insert peak at 914 cm-1 for an M-O stretching mode. Other peaks 

in the region for M-O stretches are seen at 968, 823, 819 and 781 for both the low and high 

praseodymium content samples. Both compounds also have common peak for O-H 

stretching at 2918 cm-1 and low-frequency bands at 324 and 142 cm-1. 

 Notably, the praseodymium molybdate hydroxide shows very similar peaks in the 

molybdenum-oxide stretching region as the molybdenum acetate compounds. The three 

most intense bands observed at 910, 823, and 783 cm-1 are within the instrument resolution 

of 914, 823, and 781 cm-1 observed for the acetate molybdate. Furthermore, the two most 

intense peaks are also very similar to the peaks for CoMoO4•H2O observed at 918 and 821 

cm-1.56  

 Earlier in this chapter, the similarity of the infrared spectra of the lanthanide 

molybdate hydroxides of hydrated cobalt molybdate was commented on. The combination 

of both Raman and infrared spectroscopy strongly suggests that the hypothesis that the 

lanthanide and cobalt compounds have similar metal oxide building blocks has merit. It 

also appears that the lanthanide molybdate acetates also have a similar metal oxide cluster. 

The weaker Mo-O peaks vary from each other, 968 vs 933 cm-1, and 810 vs 783 cm-1 for 

the acetate and hydroxide compounds, respectively. As expected, the low frequency region 

where lanthanide oxygen stretching vibrations are observed is quite different since acetate-

metal stretches are different from hydroxide-metal stretches.  
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Figure 3.10.  Raman Spectrum for La0.9Pr0.1(O2CCH3)(MoO4)•H2O 

 

 

 

Figure 3.11.  Raman Spectrum of La0.5Pr0.5(O2CCH3)(MoO4)•H2O 
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Figure 3.12. Raman Spectrum of Pr(OH)(MoO4)•H2O 

 

 

Figure 3.13. Emission Spectra of La1.8Pr0.2Mo2O9 
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 A sample of 10 % praseodymium doped lanthanum molybdate acetate was fired at 

800 ℃ to convert it to La1.8Pr0.2Mo2O9. The solid-state fluorescence was measured on a 

Cary Eclipse spectrometer using 450 nm excitation. Two emission peaks at 610 and 650 

nm were observed in accordance with previous data reported for La2Mo2O9:Pr4.  In this 

study, the peaks are broad because a weak light source and a difficult to align solid state 

stage made it necessary to use wide slits on the fluorimeter. The emission peaks are similar 

to those reported by Zhang and co-workers at 604 nm, 620 nm, and 650 nm if (Figure 3.18) 

if the first two peaks are unresolved. However, the intensities are reversed with 650 nm 

being the weaker emission band in this study. Thus, it must be concluded that this data is 

only preliminary and the fluorescence investigation will need to be repeated with an 

instrument that is more capable of measuring the fluorescence of solid-state compounds. 

 

Conclusions 

 The ionic radius range in which the reaction of trivalent metal acetates with 

molybdenum trioxide will produce a metal acetate molybdate has that been defined. Y3+ 

(0.900 Å) and Pr3+ (0.990 Å) appear to be too small and instead form a molybdate 

hydroxide phase. On the other hand, La3+ (1.032 Å) and Ce3+ (1.010 Å) form the acetate 

phase readily. Unfortunately, it is not possible to test large trivalent metal ions since those 

available are either extremely air sensitive, radioactive, or both.  

 Both the molybdate hydroxide and the molybdate acetate phases appear to have a 

common lanthanide molybdenum oxide core base on similarities in vibrational 

spectroscopy. Further, that cluster may be similar to that found in CoMo4•H2O. 
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Interestingly, the presence of lanthanum appears allow praseodymium to also form the 

lanthanide molybdate acetate with up to 50 % praseodymium and probably beyond. This 

suggests layered compound where the presence of lanthanum acetate mortise open the 

interlayer gap leading to coordination of praseodymium by acetate as well. Otherwise, 

praseodymium (and acetate) presumably prefers acetate because it is smaller size makes 

binding of the smaller hydroxide ion more favorably. Both the lanthanide molybdate 

hydroxides and the lanthanide molybdate acetates are excellent precursors for 

stoichiometric Ln2Mo2O9, materials that have several useful applications. 
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Abstracts:  

Reaction of aqueous solutions of either lanthanum or cerium acetate with 

molybdenum(VI) oxide (MoO3) produces a mixed lanthanide molybdate acetate, 

Ln(O2CCH3(MoO4)•XH2O (Ln= La, Ce) that is an excellent single source precursor 

for stoichiometric Ln2Mo2O9. The reaction is very sensitive to the radius of the 

lanthanide metal used: metals with smaller radii (e.g. yttrium, praseodymium or 

neodymium) produce a hydroxyl molybdate product, M(OH)x(MoO4)1-x,  instead 

of an acetate molybdate. The products were fired at high temperatures for further 

investigation. The products were characterized by thermal gravimetric analysis 

(TGA) and infrared and NMR spectroscopy. The conversion of the products to 

lanthanide molybdenum oxides was used to study the possibility of producing 

phosphors, La2Mo2O9:Ln3+  by doping lanthanum molybdenum oxides with other 

lanthanide metals such as praseodymium acetate. Also, fluorescence spectroscopy 

was run to study the doping material.  

 

 


