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ABSTRACT: Pavement visualization and crack detection are two important components 

supporting modern pavement condition survey. In this dissertation, two major goals are 

accomplished based on implementable algorithms. 1) The long-distance pavement 3D 

visualization is developed based on an effective Level-of-Details (LOD) algorithm named 

“Geometry Clipmap”. The Geometry Clipmap is able to render large-scale 3D scene by 

caching pavement height data in a set of nested grids. During 3D rendering process based 

on Geometry Clipmap, the data size uploaded to video memory is reduced significantly, 

while the detailed high-resolution pavement surface data are still retained for further 

detailed inspection. As a consequence, Geometry Clipmap provides long-distance 

pavement display with excellent visual continuity and stable frames per second (FPS). In 

addition, the size of large-area surface distresses can be directly measured under long-

distance pavement 3D environment. This is the first study that applies LOD algorithm to 

long-distance 3D pavement visualization and large-scale distress measurement. 2) The 

pixel-level automated crack detection is achieved through the modifications of Cell-based 

Convolutional Neural Network (CNN) on 3D pavement surface. CNN is a deep learning 

algorithm that targets at recognizing Cell-based imaging objects. Based on combination 

of specific pre-process layers and new gradient computational strategy, the network for 

pixel-level detection is developed in the study for effective feature learning. In addition, 

consecutive convolutional layers and a new activation unit are introduced to improve the 

detection performance at fine and shallow cracks. Furthermore, GPU parallel computing 

techniques are utilized to speed up the proposed pixel-level detection network. As a result, 

the CNN based pixel-level crack detection outperforms traditional imaging algorithms in 

terms of F-Measure. Lastly, the highly-efficient Deep-Learning network for speedy 

processing fits well for big pavement datasets processing. 
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Chapter 1 INTRODUCTION 

 

 

1.1 Background 

Roads are the fundamental infrastructure contributing to national productivity and employment. 

Among all the transportation systems (including railway, air, waterway, etc.), road transportation 

system can handle 87.6% of passenger-miles and 40.9% of freight ton-miles (Bureau of 

Transportation Statistics, 2012). Every $1 billion invested in highway roads would support 

13,000 jobs in construction and maintenance sectors, in supplier industries, and throughout the 

economy (FHWA, 2017). In addition, road network system plays an important role in daily 

traveling, commodity delivery, military equipment and personnel transfer, evacuation of natural 

disaster victims, etc. 

To provide and sustain the road system in a condition that is acceptable to the traveling public at 

the least life cycle cost, the American Association of State Highway and Transportation Officials 

(AASHTO) defines a series of pavement management activities related to pavement planning, 

budgeting and programming, design, construction, monitoring, maintenance and rehabilitation, 

etc. (AASHTO, 1985). All of these management activities are treated in a systematic and 

coordinated manner according to Pavement Management System (PMS). In fact, the effective 

decisions made by PMS on management activities heavily relies on accurate and timely pavement 

condition data. In other words, the accuracy and efficiency of data collection and analysis are 

critical to pavement management activities. 



14 
 

Pavement condition survey is one essential PMS component for pavement data measurement and 

collection (Timm and McQueen, 2004; Attoh-Okine and Adarkwa, 2013; Wang et al., 2015). The 

condition survey data includes surface distress data, structural deformation, ride quality, skid 

resistance, etc. (CDOT, 2013; Abdelaty et al., 2015; National Research Council, 1970; FHWA, 

2006; Carvalho et al., 2012; Sayers et al., 1986; Sayers et al., 1986; Highway Research Board, 

1972). Traditionally, most of pavement condition is investigated in a manual manner: either 

walking or windshield survey on the roads. By this manual approach, pavement condition data is 

identified and measured by well-trained inspectors or engineers in the field. However, 

conventional manual approaches based on visual inspection and field measurement are found to 

be subjective, time-consuming, expensive and even hazardous for engineers (Sivaneswaran et al., 

2004). Besides, there are almost 4.1 million miles of roads in the United States, with over 45,000 

miles composing the Interstate Highway System (Sullivan, 2006). Such a large road network is 

impossible to be completely investigated accurately and efficiently only by human resources.  

In recent years, automated pavement condition survey has gained increasingly acceptance by 

most transportation agencies (Pierce et al., 2013). The automated pavement survey involves two 

major tasks: automated data collection and interpretation (Wang and Smadi, 2011). The 

automated pavement data collection utilizes customized vehicles fitting with advanced sensing 

equipment to collect pavement images or videos by traveling on the road at or near highway 

speeds. Due to technological innovations in hardware equipment such as cameras or lasers, 

automated data collection tends to become increasingly accurate and popular. Multiple agencies 

have been utilizing customized optical devices for years to implement automated data collection 

in both 2D and 3D pavement images (Koch and Brilakis, 2011; Mancini et al., 2013; Laurent et 

al., 2008; Laurent et al., 2012; Moreno et al., 2013). Most notably, the Digital Highway Data 

Vehicle (DHDV) (Fig. 1.1) equipped with PaveVision 3D Ultra System, which is developed by 

WayLink Systrems Corp. at Oklahoma State University (OSU), is able to acquire full-lane-scale 
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pavement 2D and 3D data in 1-mm resolution quality at a highway speed up to 60 mph during 

night- or day-time (Wang et al., 2011). 

 
(a) Digital Highway Data Vehicle 

 
(b) 3D Pavement Data Collected by DHDV 

Figure 1.1. DHDV (WayLink) & 1-mm Resolution 3D Pavement Data 

 

1.2 Problem Statement 

1.2.1 Emergence of Big Pavement Data 

Data collection is no longer a challenge by using laser imaging in recent years for pavement 

condition survey. The remaining problem is the pavement data processing or interpretation that 

can provide valuable information for pavement management activities. However, pavement data 

interpretation is an extremely difficult task due to the big data size and complexity: 

 Pavement data size is undergoing an explosion driven by automated data collection 

universalization. During the past few decades, pavement engineers only needed to 

process data in the size of MegaBytes for pavement management activities. At the present 

time, however, pavement data size skyrockets from MegaBytes to TeraBytes because of 

automation in data collection and high resolution data. In other words, such a huge 

increase of data volume makes efficient data interpretation more difficult.  

 Pavement data complexity and diversity continue to increase due to the use of higher 

resolution sensors, which poses great difficulties to develop effective algorithms for data 

interpretation. In the past, many automatic analysis algorithms are developed based on 
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observations and assumptions of specific small datasets. These algorithms tend to lose 

their effectiveness due to the increasingly complexity and diversity in modern big 

pavement data. In other words, effective and highly-generalized algorithms are strongly 

desired in the complex and diverse big data interpretation. 

 

1.2.2 Primary Challenges 

Visualization and automated crack detection are two major tasks of pavement data interpretation. 

Despite tremendous efforts in the past, pavement visualization and crack detection still face 

challenges: 

 Visual inspection is inevitable in pavement condition survey in the form of automation or 

manual processing. For instance, one of the most widely used indices in pavement 

engineering is the Pavement Condition Index (PCI) that rates pavement condition 

between value 0 and 100 (U.S. Army, 1982). Essentially, the PCI is calculated based on 

field visual survey of identifying the number and types of distresses on pavement surface. 

At present, field pavement observation tends to be replaced by the image-based pavement 

observation in the office with rapid development of computer technology. As an 

important component for the office image-based observation, 3D virtual pavement is 

usually generated by either stereo imaging or laser triangulation. Nevertheless, due to the 

limitations on computer memory and processing capability, 3D virtual pavement 

visualization usually uses partial pavement data, resulting in only a short-distance 

pavement display. The short-distance 3D virtual pavement is not able to offer a whole 

pavement viewing for both visual inspection and surface distress measurement. 

 Pavement crack information is valuable for pavement management and planning. 

Pavement cracking is a typical type of pavement surface distresses caused by various 
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factors such as repeated heavy traffic loads, temperature cycles, poor pavement mix 

design, etc. (FHWA, 2006). The continuing development of pavement cracks will 

significantly reduce pavement load-bearing capacity, resulting in bad ride quality, high 

cost for travelling, or even potential safety hazard to traveling publics. Thus, accurate and 

timely surface crack information is required by transportation agencies to plan pavement 

maintenance activities. Over the past decades, many efforts have been dedicated to 

automating pavement crack detection. However, such automations still face tremendous 

challenge in terms of accuracy and efficiency due to difficulties in computerizing human 

cognition for crack detection. 

 

1.3 Objectives 

The objectives of this dissertation are to develop automated algorithms for both large-scale 

pavement 3D visualization and advanced pixel-level detection of surface cracks based on 1-mm 

3D laser pavement images. The sub-objectives are summarized as following: 

 Comprehensive literature reviews are conducted to assess traditional approaches for 

pavement visualization and surface crack detection 

 LOD based algorithm is implemented to achieve long-distance pavement 3D 

visualization and large-area surface distress measurement 

 Convolutional Neural Network is utilized to perform crack detection on grid-like image 

cells, which is a preliminary research on deep learning 

 Convolutional Neural Network is modified to have capacity for training at each pixel of 

pavement images, resulting in the detection accuracy can be improved from the Cell-

based to pixel-level 
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 Efficient convolutional strategy and new activation unit are proposed to improve pixel-

level detection performance at fine and shallow cracks 

 General-purpose computing on graphics processing units (GPGPU) are utilized to 

accelerate network computation for high-efficient processing based on large pavement 

datasets. 

According to the objectives aforementioned, the structure of this dissertation is outlined as 

follows: 

 Chapter 1: Introduction 

 Chapter 2: Literature Review 

 Chapter 3: Three-D (3D) Visualization for Long Pavement Surfaces 

 Chapter 4: A Deep Learning System for Cell-based Automated Crack Detection  

 Chapter 5: A Deep Learning Methodology for Pixel-Level Detection of Pavement Cracks 

 Chapter 6: Conclusions and Future Work 
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Chapter 2 LITERATURE REVIEW 

 

 

2.1 Visual Pavement Distress Inspection 

Accurate, consistent, and repeatable pavement condition survey plays a vital role in the pavement 

management activities. The major target of pavement condition survey is to identify and quantify 

the amount and severity of surface distress in a given segment of pavement (ODOT, 2010). At 

present, automatic distress analysis based on imaging data tends to become popular in pavement 

condition survey (SD DOT, 2017). However, it is still necessary to interconnect the visual 

inspection into surface distress analysis because of the following two reasons. In the first place, 

the accuracy and consistency of automatic distress assessment based on imaging data are 

sometimes under a certain of skepticism due to data complexity and diversity in pavement texture 

(Timm and McQueen, 2004). In this case, human visual inspection can be regarded as an 

alternative method to provide reliable surface distress information (Metro Nashville, 2018). 

Furthermore, not all pavement distresses can be detected automatically. For example, polished 

aggregate (Fig. 2.1) is a type of pavement distress defined as surface binder worn away to expose 

coarse aggregate (FHWA, 2003). There are only limited research activities so far in automatic 

polished aggregate detection due to the lack of high-resolution data (Coenen and Golroo, 2017). 

Under this circumstance when automatic analysis is not available, the visual inspection is the 

unique approach to providing distress data. 
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Figure 2.1. Pavement Distress Example – Polished Aggregate 

 

Although visual inspection is inevitable, it does not mean the return to traditional field survey. In 

fact, the office image-based visual inspection is gradually replacing the old-style fieldwork with 

the rapid development of automated data collection and computer graphics. Comparing to 

traditional field inspection, the office survey is considered as a safer and more efficient manner. 

Through digital computers in the office, surface distresses in automated imaging data can be 

identified and classified elaborately by well-trained personnel following evaluation criteria of 

either the “PCI ASTM Standard”, the “Distress Identification Manual for the Long-Term 

Pavement Performance Program”, or other protocols.  

Currently, there are two common types of pavement imaging data: 2D and 3D data. The early 

office survey is usually based on 2D images. However, the 2D data encounters problem of losing 

information on realistic pavement surface characteristics with height characteristics (e.g. cracks, 

rutting, shoving, potholes, etc.), which poses difficulties to accurately identify surface distresses. 

On the other hand, the surface characteristics lost in 2D data can still be captured and stored in 

the 3D data, which is helpful to improve accuracy for both visual inspection and automatic 
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analysis (Wang et al., 2004; Wang et al., 2011; Wang et al., 2015). In recent years, 3D data 

analysis become increasingly popular due to the technological innovations in data collection 

equipment. In the meanwhile, visual inspection in the office as well is based more on 3D imaging 

visualization. 

Stereo 3D pavement surface visualization are commonly implemented by following two 

techniques. The first technique is called “Stereo Imaging” that reconstructs virtual 3D pavement 

images by using couples of 2D images at different viewpoints. According to stereo imaging 

principle, 3D information is extracted by analyzing and matching feature points in different 2D 

images (Fig. 2.2) (Saleh et al., 2016). However, this technique lacks in accuracy as well as 

requires a lot of computational power due to the fact that it is a conversional process between 2D 

and 3D (Zhang and Elaksher, 2012; Lei et al., 2014; Mathavan et al. 2015; Coenen and Golroo, 

2017). Another technique is to utilize 3D Graphic API for stereo pavement visualization based on 

3D imaging data collected by laser sensors. By using 3D graphic API, pavement geometrical 

characteristics can be visualized directly in stereo virtual pavement surface (Fig. 2.3). The effects 

of virtual pavement visualization are directly determined by the actual quality of automated 3D 

imaging data (i.e. the height maps or 3D models). However, due to the big pavement data size 

and the limited resources of computer hardware, 3D pavement surface is usually visualized as a 

short-distance pavement section based on single image instead of a long adequate part for 

representing the state of the pavement as a whole. Besides, some types of large surface distresses 

(e.g. cracks, patches, etc.) may be sectioned and distributed inside two or more consecutive 

images, which causes inconvenience for their size measurement if pavement surface is visualized 

by single image. 

 



22 
 

         
(a) Stereo Pair of Pavement Surface Captured with a Stereo Camera 

 
(b) 3D Pavement Surface Constructed from Stereo Images Shown Above 

Figure 2.2. Three-D (3D) Pavement Surface Reconstruction based on Stereo Matching 

 

 
Figure 2.3. Pavement Surface Visualization based on 3D Graphic API 
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2.2 Automated Pavement Crack Detection 

Although researches on automating identification and classification of other pavement distresses 

have been studied for many years, the pavement crack detection still receives a great deal of 

interests in pavement engineering (Wang and Smadi, 2011). As one major task of automated 

condition survey, traditional pavement crack detection has been demonstrated at a certain level of 

success. Thresholding algorithms were proposed to separate cracks from local background 

(Koutsopoulos and Downey, 1993; Elbehiery et al., 2005; Teomete et al., 2005; Katakam, 2009; 

Oliveira and Correia, 2009). However, the thresholding algorithms failed to achieve high 

accuracies for most of the time due to unevenly distributed illuminance on images. Although 

Morphological Algorithms were also introduced to reduce false detections (Tanaka and Uematsu, 

1998; Coster and Chermant, 2001; Iyer and Sinha, 2005; Oliveira and Correia, 2009), the 

detection results were still heavily dependent on the choices of threshold values. Wavelet-based 

Approaches utilized Wavelet Transform to decompose the original pavement data into different 

frequency sub-bands so that cracks can be captured more easily following the assumption that 

cracks are mainly preserved in high frequency sub-bands (Zhou et al., 2005; Wang et al., 2007; 

Chambon et al., 2009; Liang and Sun, 2010; Georgieva et al., 2015). Nevertheless, the 

decomposition of original data into frequency domain adversely impacts the spatial entirety of 

pavement cracks and thus may result in discontinued cracks. Filter-based Algorithms were also 

introduced by researchers to transform original data and seek for cracks with anticipated 

responses (Chaudhuri et al., 1989; Abas and Martinez, 2003; Subirats et al., 2006; Chambon et al., 

2009; Zhang et al., 2013). However, the filter-based approaches may fail to detect some cracks 

that have weak responses to the predesigned filters. Machine Learning Algorithms, such as 

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), can also be found in 

many studies to perform classifications on pavement cracks (Kaseko and Ritchie, 1993; Chou and 

Cheng, 1994; Hsu et al., 2001; Nguyen et al., 2009; Moussa and Hussain, 2011; Daniel and Preeja, 
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2014). However, these machine learning techniques generally represent only one or two layers of 

abstraction and may not fully reflect the complexity of pavement surface. 

The traditional automated algorithms above for crack detection have demonstrated various 

successes under specific pavement environments. However, none of them have demonstrated 

consistently high accuracies on diverse road surfaces. Over the past decades, the private and 

public endeavors on worldwide basis vastly underestimated the challenges and difficulties in 

developing automated analysis tools for pavement cracks with full considerations on the 

complexity as well as the diversity of pavement surfaces (Zhang et al., 2016a). The limitations of 

traditional automated algorithms are primarily resulted from attempts to mimic human cognition 

capability based on shallow level of abstractions or simple and uncomprehensive hypotheses 

(Zhang et al., 2017b). 

The recent progresses in deep learning show an opportunity to improve the performance of 

automated crack detection algorithms through learning from diverse examples. Deep learning is 

an effective machine learning approach that allows computers to understand the world by 

learning multiple levels of data representations from experiences (LeCun et al. 2015; Goodfellow 

et al., 2016). The powerful adaptability of deep learning for complex problems has been 

demonstrated in many recent researches (Sutskever et al., 2014; Jean et al., 2015; Silver et al. 

2016; Shrivastava et al., 2016; Ledig et al., 2016). Meanwhile, deep learning based transportation 

solutions were also developed recently for traffic data imputation (Duan et al., 2016), traffic flow 

prediction (Polson et al., 2017), and passenger demand forecasting (Ke et al., 2017).  

Automated pavement crack detection also experiences a technical revolution inspired by deep 

learning, especially by the deep Convolutional Neural Network (CNN).  The CNN structure is 

specifically designed to classify grid-like images based on shift- and distortion-invariant features 

obtained via sparse connectivity combined with shared weights and pooling layers (LeCun et al., 
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1998a). Since AlexNet won the champion in ImageNet Large Scale Visual Recognition 

Competition (ILSVRC) in 2012, deep CNN structure has been continuously improved and 

revealed remarkable capability in image classification based on large-scale comprehensive 

datasets (Krizhevsky et al., 2012; Russakovsky et al., 2014; Szegedy et al., 2014; Simonyan and 

Zisserman, 2014; He et al. 2016). Based on the CNN structure, several applications have also 

been introduced in pavement crack detection. An application of CNN in crack recognition was 

developed for classifying small image cells with size of 99×99, demonstrating the superior 

performances of deep CNN in comparison with Support Vector Machines (SVMs) and Boosting 

methods (Zhang et al., 2016b). Similarly in 2017, another deep CNN was proposed for crack 

recognition based on pavement image cells and further showed the advantages of deep learning 

techniques over traditional algorithms such as Canny and Sobel edge detectors (Cha et al., 2017). 

However, both of the two aforementioned networks were not developed on the basis of true pixel-

level accuracy, and did not train the networks with a large set of diversified pavement surface 

data representing varying textures. Also in 2017, an improved CNN network named “CrackNet” 

was developed for crack detection based on a large set of diverse 3D pavement surface data 

(Zhang et al., 2017b). Unlike the traditional CNN architecture, CrackNet does not use any 

pooling layers that downsize the original data. Consequently, the supervised learning can be 

conducted at pixel level with invariant data size. It was demonstrated that CrackNet achieved 

high level of pixel-perfect accuracy in detecting cracks on asphalt surfaces and outperformed 

traditional algorithms such as SVM and 3D Shadow Modeling (Zhang et al., 2017a). However, 

the feature generator used in CrackNet implements fixed operations and produces handcrafted 

features using pre-designed line filters, which resulted in some limitations in learning capability. 

More importantly, the processing speed of CrackNet is slow due to huge number of parameters 

and large data depth at hidden layers. 
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2.3 Summary 

Visual inspection is inevitable in modern pavement condition survey when automatic algorithms 

are unavailable or not accurate enough. Currently, the office visual inspection based on imaging 

data tends to replace the old-style field inspection due to the rapid development of automated data 

collection and computer graphic techniques. As the basic requirement of office visual inspection, 

3D pavement surface reconstruction can be implemented by either stereo matching or 3D graphic 

API. However, stereo matching lacks in accuracy as well as efficiency due to the conversion from 

2D to 3D data. On the other hand, 3D graphic API is unable to visualize long enough pavement 

for general condition evaluation and distress measurement due to limited capacity of computer 

graphic cards. Therefore, one objective in this dissertation is to investigate 3D graphic algorithms 

for better reconstructing 3D pavement geometrical characteristics. 

Secondly, as major components of automatic distress survey, traditional pavement crack detection 

algorithms encounter the problems of losing accuracy and consistency due to diverse, complex, 

and massive pavement texture data. The Convolutional Neural Network (CNN), as one of the 

deep learning based algorithms, is proposed in the dissertation to improve the performance of 

automatic crack detection based on imaging data. However, most of the CNN algorithms for 

crack detection are at Cell-based, which are not practical for providing detailed crack information. 

Even though some pixel-level CNN based crack detections are proposed, the low-efficient speed 

of them is not fitting for processing big pavement datasets. Therefore, another objective of this 

dissertation is to explore the improvements of CNN algorithm to achieve high-accurate and high-

efficient pixel-level crack detection. 
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Chapter 3 Three-D Visualization for Long Pavement Surfaces 

 

 

3.1 Introduction to Level-of-Details (LOD) Methodologies 

Three-dimensional (3D) graphics is an important subject of computer graphics, aiming at creating 

vivid or life-like visual representations using computer. The first public appearance of 3D 

graphics was in the movie Star Wars: A New Hope in 1977, which generated a great deal of 

interests in 3D graphic studies at that time. Afterwards, due to a series of successes in 3D graphic 

algorithm studies, the modern application area of 3D graphics covers user interfaces to scientific 

simulations, product designs, special effects in movies, and even full-length animated filters. 

Nowadays, 3D technologies are inseparable from various practical applications such as Google 

Earth, 3D GPS Navigation, cartography projects, urban planning and architecture, website 

advertisement, video games, etc. (Dicker, 2003; Pulli et al., 2008; Ruzinoor et al, 2012; Kim, 

2004; Google Inc., 2018; Garmin Ltd., 2018). 

The process of automatically generating a photorealistic 2D images based on 3D datasets using 

computer is called “3D Rendering”. The 3D datasets can be obtained by either actual data 

collection or virtual data creation. Since 3D geometrical datasets can be too complex to be 

rendered in a desired performance with limited computer resources (i.e. CPU, GPU, RAM, etc.), 

an algorithm called “Level-of-Detail (LOD)” is proposed for geometry simplification of a 3D 

object as it moves away from the viewer (Luebke and Hallen, 2001). As shown in Fig. 3.1, the 

same object can be represented by 3D model at different detail-levels. The more detailed 3D  
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model is applied to render an object in high resolution if it is close to viewer, while the less 

detailed 3D model is applied to represent a small, distant, or unimportant object. In other words, 

the LOD algorithm is able to find a balance between 3D object fidelity and rendering 

performance by automatically picking object at different detail-levels. 

The LOD frameworks can be divided into three basic groups (Luebke et al., 2003): Discrete LOD, 

Continuous LOD, and View-dependent LOD. The original scheme of discrete LOD (Clark, 1976) 

was applied to pre-create multiple models for an object at different LODs in advance of 3D 

rendering. Only one appropriate LOD model is selected during 3D rendering based on its distance 

to viewer or other similar criteria. But sometimes discrete LOD is not the best approach for 3D 

object simplification, especially for those large objects (e.g. stadium) that could be subdivided 

into small objects, or those small objects (e.g. machine components) that could be combined as a 

whole. 

Instead of pre-processing LODs, continuous LOD approach creates a simplified data structure to 

extract desired LOD extraction in a real time. This method results in better fidelity since the LOD 

for each object is exactly specified rather than chosen from fixed number of preprocessed results. 

Meanwhile, because no redundant polygons are used to display an object, computer resources can 

be better utilized for other objects’ rendering. 

View-dependent LOD, derived from Continuous LOD, is able to obtain the best representation of 

the current visual field based on various viewing parameters. In this case, a single object may 

have several different levels of detail to be rendered at one time. For example, the adjacent 

portion of an object can be shown at high resolution while the farther portion goes to the opposite. 

This approach provides the best overall fidelity and enables excellent simplification of huge 

objects such as large stadium or outdoor terrain, or a long pavement section at 1-mm resolution. 
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Figure 3.1. Concept of Level-of-Details (LOD) 

 

3.2 Geometry Clipmap 

Generally, the pavement surface geometry in 3D graphic API is rendered in the form of numerous 

adjacent triangles (Fig. 3.2). The more triangles are rendered, the more computer resources are 

consumed. However, the number of triangles will skyrocket dramatically to cover a long 

pavement surface geometry. Such a great number of triangles can lead to significant decrease of 

rendering performance or even stop on rendering. In this case, geometry clipmap is a good 

algorithm to reduce the number of triangles that are required to be rendered so that the long 

pavement surface geometry can be displayed. 

Geometry clipmap utilizes a nested grid structure to effectively decrease the number of rendered 

triangles for huge 3D terrain visualization (Losasso and Hoppe, 2004). Assuming a viewer is 

located in the center of a height map, only the geometry close to the viewer is rendered with high-

resolution triangles, while the geometry far away from the viewer is rendered with low-resolution 

triangles. Fig. 3.3 illustrates an example of nested grids to represent a height map. For a height 

map with 17 * 17 pixels (Fig. 3.3(a)), traditional rendering method displays the height map for all 

the evenly distributed discrete triangles (Fig. 3.3(b)), and the number of triangles is 512 (i.e. 16 * 

16 * 2). For the nested grids structure (Fig. 3.3(c)), it uses 3 different sizes of triangles, and the 

number of rendered triangles decreases to 80. Comparing with traditional method, nested grid 
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structure reduces the geometrical complexity of a terrain and therefore improve 3D rendering 

performance for large-scale 3D scene visualization. 

In addition, the nested grid structure renders multiple height maps with the same size but with 

different resolution levels at one time, as shown in Fig. 3.4. Height map at the finest level of data 

is pre-filtered (Fig. 3.4(a)), and the same size of height data is grabbed at different levels of 

height maps and stored as multiple 2D elevation textures in the program flow (red, green and blue 

region). Combined with corresponding scaling and translation factors, 2D elevation textures are 

rescaled and projected onto the same plane (Fig. 3.4(b)). Only the finest level data is rendered as 

a 1:1 scale grid square (red region), while other level data is enlarged and rendered as a hallow 

ring (green & blue region), and finally a regular nested grid structure is established (Fig. 3.4(c)). 

 

 
(a) 3D Rendering in Graphic API 

 
(b) Numerous Adjacent Triangles 

Figure 3.2. Pavement Surface Geometry in 3D Graphic API 
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(a) 17 * 17 Height Map 

 
(b) Traditional Rendering  

 
(c) Nested Grid Structure 

Figure 3.3. How the Nested Grids Represent a Height Map 

 

 

(a) Height Maps with 
Different Levels 

 

(b) 2D Elevation Textures 
Projection 

 

(c) Nested Grid Generation 

Figure 3.4. How Geometry Clipmap Works with Multiple Height Maps 

 

3.3 Long Pavement Surface Visualization 

3.3.1 Initial Implementation 

Traditionally, 3D scene is generated based on three steps in OpenGL graphic API pipeline: 3D 

model determination, lighting model establishment and texture mapping if it is required. In this 

dissertation, the first two steps are applied for the initial implementation of 3D pavement.  

The first step of 3D pavement display is to determine pavement surface geometry. In computer 

graphics, an object is made of a series of adjacent triangles that define the outer surface of an 

object, and such series of triangles are often called “geometry” (McKesson, 2012). As Fig. 3.2 

shown before, the pavement surface geometry is generated from thousands of adjacent triangles. 

Those triangle vertices coordinate data (3D height data) is collected using the 3D Ultra laser 
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imaging technology at 60 mph (100 km/h) and stored as a series of raw image data with the size 

of 4096 pixel wide and 2048 pixel long. Through the programmable graphic rendering pipeline, 

the 3D coordinate data from each raw image can be converted to 2D image that is projected onto 

screen.  

Lighting model, an important part of 3D graphic rendering pipeline, is vital for determination of 

how pavement surface interacts with lights. Properly modeling the interaction between light 

source and pavement surface is critical in restoring the realistic visual effects of pavement 

features, such as crack, pothole, groove etc. Combined with ambient light, diffuse light, specular 

light, and emissive light, lighting model computes the pixel colors for every rendered triangle 

vertex to simulate the realistic lighting effects on the final projected 2D image. In this dissertation, 

Gaussian Lighting Shader is applied to compute the colors of every triangle vertex for 

composition of pavement surface. 

Fig. 3.5 shows the height map converted from one raw image which provides pavement surface 

geometry information. Fig. 3.6 shows the 3D pavement surface with Gaussian Lighting Model. 

 
(a) 3D Height Map Displayed in Grayscale Form 
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(b) Corresponding 3D Pavement Surface with Gaussian Lighting Model 

Figure 3.5. Raw 3D Height Map & Corresponding Stereo Pavement Surface 

 

3.3.2 Grid Structure 

Pharr and Fernando (2005) proposed a simple grid structure (Fig. 3.6) to hide the boundaries 

between successive resolution levels and maintaining a watertight mesh structure. There are four 

key points for a nested grid structure: a) the grid size n = 2k – 1 (k is determined by programmer); 

b) grid square (white region) in the innermost of grid structure is made of the finest triangles; c) 

other hallow rings consist of triangles that is twice-coarser than those at adjacent high resolution 

level; and d) each hallow ring is broken into twelve square blocks (red regions), four ring fix-up 

blocks (green regions), one L-shape block (blue region) and one degeneration block (gold line) 

for graphic card memory saving and view culling. The degeneration block contains triangles that 

is perpendicular to the grid plane for gap-fill between adjacent resolution levels. 
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Figure 3.6. Simple grid structure (Pharr and Fernando 2005) 

 

3.3.3 Alpha Blending Region 

Alpha blending region is a geometric-blending or transition region that is vital for smooth 

transition and gap-fill between adjacent resolution levels. As Fig. 3.7 shows, three height maps 

with the same size but different resolution levels are rescaled and rendered into the nest grid 

structure, in which alpha blending region is shown as the red zones. The height value “𝑯” of 

triangle vertices at arbitrary location (𝒙, 𝒚) (i.e. vertex coordinate is (𝒙, 𝒚, 𝑯)) is co-determined by 

three parameters: the height value “𝑯𝒇” at (𝒙, 𝒚) in the world coordinate, the height value “𝑯𝒄” at 

the same location (𝒙, 𝒚) but in next-coarser level height map, and blending parameter “𝜶” (Eq. 

3.1). The blending parameter “𝜶” is the maximum value of blending component “𝜶𝒙” and “𝜶𝒚” in 

both x-direction and y-direction (Eq. 3.2). “𝜶𝒙” and “𝜶𝒚” is derived from the linear interpolation 

shown in Eq. 3.3 and Eq. 3.4, where (𝒙, 𝒚) is arbitrary location coordinate of current height map, 

(𝒗𝒙 , 𝒗𝒙) is view point coordinate, “𝒏” is grid size, “𝒘” is the width of transition region (in this 

dissertation, “𝒘” is “𝒏 /𝟏𝟎”), and “𝒄𝒍𝒂𝒎𝒑” is a OpenGL Shading Language (GLSL) built-in 

function to clamp a value between two given numbers (in this dissertation, the 𝜶𝒙 and 𝜶𝒚 are 
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clamped between 0 and 1). The desired property of Eq. 3.2, Eq. 3.3, and Eq. 3.4 is that “𝜶” is 

started as 0 when the coordinate locates at the inner boundary, then “𝜶” ramps up linearly in the 

transition region and finally reaches 1 at the outer boundary. 

Fig. 3.8 shows the geometric difference between height maps without alpha blending (Fig. 3.8(a)) 

and with alpha blending (Fig. 3.8(b)). Based on Fig. 3.8, the geometrical gap can be completely 

removed by alpha blending so that different height maps can be smoothly stitched together. 

 

 
Figure 3.7. Alpha Blending Illustration 

 

𝑯 = (𝟏 − 𝜶) ∗ 𝑯𝒇 + 𝜶 ∗ 𝑯𝒄 Eq. 3.1 

 

𝜶 = 𝒎𝒂𝒙(𝜶𝒙, 𝜶𝒚) Eq. 3.2 

 

𝜶𝒙 = 𝒄𝒍𝒂𝒎𝒑 {(𝒙 − 𝒗𝒙 − (
𝒏 − 𝟏

𝟐
− 𝒘 − 𝟏)) , 𝟎, 𝟏} Eq. 3.3 
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𝜶𝒚 = 𝒄𝒍𝒂𝒎𝒑 {(𝒚 − 𝒗𝒚 − (
𝒏 − 𝟏

𝟐
− 𝒘 − 𝟏)) , 𝟎, 𝟏} Eq. 3.4 

 

 
(a) Geometry before Alpha Blending 

 
(b) Geometry after Alpha Blending 

Figure 3.8. Geometric Gap Elimination by Alpha Blending 

 

3.3.4 View Frustum Culling 

Since usually only a small portion of terrain is visible in computer screen at one time, view 

frustum culling is applied to determine which geometrical block in each hallow ring to be 

rendered so that the computer resources can be saved. Generally, the Axis Aligned Bounding Box 

(AABB) could be applied to implement view frustum culling in CPU (Assarsson and Moller, 

2000; Brettell and Mukundan, 2005). This excessive and complex culling computation may 

consume significant amount of CPU resources for 3D rendering. In this dissertation, considering 

the height information on a long pavement is relatively uniform, 2D projection of view frustum is 

utilized to substitute for traditional 3D AABB method. 

View frustum is a hexahedron that determines how 3D object inside it is projected from camera 

space to projection space (Microsoft Developer Network 2015). Each block in each hallow ring 
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can be viewed as an independent 3D model. As Fig. 3.9 shows, both view frustum and 3D model 

are projected onto the same plane. There are three conditions for the 2D projection: 

 model projection is contained by view frustum projection 

 model projection intersects with view frustum projection 

 model projection is outside of view frustum projection 

The 3D model is rendered for the first and second conditions, while the 3D block is not rendered 

for the third condition. Fig. 3.10 shows the result of view frustum culling implemented by this 

method. The red region represents the actual visible portion based on the 2D projection of view 

frustum. Most of blocks in each ring have been culled to avoid redundant 3D rendering. 

 

 
Figure 3.9. View Frustum Culling based on 2D Projection 
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Figure 3.10. Results of Proposed 2D Projection Method 

 

3.3.5 Data Update 

As the viewer wanders in the 3D scene, the surface textures should be updated dynamically to 

guarantee the viewer remained in the center of grid structure. For each elevation texture, it is 

unnecessary to update all the height data. Instead, only the data in two to maximum four 

(depending on the location of update region) quads need to be updated for each elevation texture, 

and the height data can be accessed toroidally for final 3D display (Losasso and Hoppe, 2004). To 

put it simply, the key idea is that the way of data storage in elevation texture is not the actual way 

for final display (Fig. 3.11). In case of Fig. 11(a), viewer located in the center of terrain tends to 

move in a short length towards top-right direction. After viewer movement happens, only the data 

in zone 1, 2, and 3 is updated for current elevation texture, while the data in the old data region 

remains unchanged (Fig. 11(b)). Both new and old data of the elevation texture are retrieved 

using OpenGL shaders and repositioned for final display as shown in Fig. 11(c). 
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(a) Move Towards Top-right 

Corner 

 
(b) Save Updated Elevation 

Texture Data 

 
(c) Display Updated Elevation 

Texture 

Figure 3.11. 3D Texture Data Update Illustration with A Street Pavement Section 

 

3.3.6 Vertex Normal Computation in GLSL Shader 

Shaders are several mini-programs for manipulation of each vertex property (such as vertex 

position shifting, vertex color computation, texture color query, etc.). Shader programs are 

composed of specific shaders and executed simultaneously by separate threads of Graphics 

Processing Unit (GPU) with incredibly efficiency (Wolff, 2013). Generally, the normals of all 

triangle vertices are computed in CPU and sent to shaders for vertex color calculation based on 

the lighting model. In this dissertation, the vertex normals are directly computed in shaders based 

on texture color query to save both CPU resources and data transmission time between CPU and 

GPU. 

Vertex normal is a critical component for smooth lighting effects on every triangle piece. In 

computer graphics, the vertex normal can be viewed as a normal of an underlying smooth surface 

approximated by the facets sharing that vertex, and estimated as a weighted sum of the normal of 

facets (Max, 1999). The coordinate’s data for vertex normal computation can be obtained in 

OpenGL shaders based on commands of texture color query. The texture color represents the 

elevation data at specific location because geometry clipmap is implemented by the projection of 

elevation textures.  
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Fig. 12 shows how to calculate normal at a vertex O. In case of Fig. 12(a), the vertex O which 

locates in the center of a geometry made by nine successive vertices (black points) is shared by 

four facets: AOB, BOC, COD and DOA. Therefore the normal at vertex O can be obtained as the 

normalized result of the sum of four surface: Vaob, Vboc, Vcod, and Vdoa. If the vertex O is located in 

the boundary or corner of an elevation texture, the “fake vertices” are created during vertex 

normal computation for smooth lighting effects. As Fig. 12(b) shows, a corner vertex O is located 

in a corner of a geometry made by four adjacent vertices (black points) and possessed by only one 

surface BOC. The two fake vertexes A’ and D’ (red points) are created in the OpenGL shader 

using the same height value of vertex O but different location value. Assuming the coordinate of 

vertex O is (XO, YO, HO). The fake vertex A’ coordinate is (XO - 1, YO, HO), and D’ is (XO, YO - 1, 

HO) which make three fake surfaces A’OB, COD’ and D’OA’ for vertex normal computation.  

Fig. 13 shows the different lighting effects caused by the “fake vertices”. In Fig. 13(a), since no 

“fake vertices” are created during normal computation for vertex locating at the boundary or 

corner of an elevation texture, abrupt lighting effects are observed between two adjacent elevation 

textures. In Fig. 13(b), the lighting effects are much smoother by a large degree because “fake 

vertices” contributes to normal computation for the boundary and corner vertices in the elevation 

texture. 
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(a) normal calculation when vertex is located 

inside elevation texture 

 
(b) normal calculation when vertex is located 

in the corner of elevation texture 

Figure 3.12. Calculation of Normal at a Vertex “O” 

 

 
(a) lighting effects without “fake vertices” 

 
(b) lighting effects with “fake vertices” 

Figure 3.13. Lighting Effects based on “Fake Vertices” 

 

3.4 Experimental Results 

3.4.1 3D Visualization Results 

The experimental virtual 3D long pavement surface visualization is based on 32 consecutive 1-

mm resolution 3D raw images, around 65 meter length and 4 meter width with a total of 270 

million pixels. Table 1 lists the hardware configuration and software tools applied for developing 
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and executing program. Based on geometry clipmap, the virtual 3D long pavement surface is 

rendered as a relative stable frame per seconds (FPS) for visual evaluation of pavement condition. 

Fig. 14 provides screenshots of visualization of the long pavement surface based on geometry 

clipmap. This algorithm provides a bird-view of the pavement surface when viewer is far away 

from pavement (Fig. 14(a)), and a detailed view of the 1-mm resolution pavement surface when 

viewer is close to pavement (Fig. 14(b)). Fig.14(c) provides the visualization of the pavement 

surface while the viewer roams on the surface. 

 

Table 3.1. Development Environment for 3D Long Pavement Visualization 

Development 

Environment 

Name Description 

CPU i7-3930K Main frequency: 3.2GHz 

Video Card GTX 770 Nvidia Kepler GK104, 4GB Graphic Card Memory 

Software Tool VS2013 MFC Microsoft Foundation Classes (MFC) is applied for future 

software development 

Graphics API OpenGL A open standard 3D graphic API 

Language GLSL A flexible language to program with OpenGL 

 

 
(a) long pavement surface bird view 

 
(b) 1-mm resolution crack on surface 
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(c) walking on long pavement surface 

Figure 3.14. Visual Results for 3D Long Pavement Surface 

 

3.4.2 Statistics of Frames per Second (FPS) 

The experimental pavement surface dataset is around 270 million pixels (i.e. 2048 * 4096 * 32). 

To evaluate the performance of geometry clipmap, the FPS of 3D display in 1 minute is 

summarized as Fig. 3.15. The same pavement is rendered in three different configurations: (a) 

grid size of 2047 with 6 layers of textures, (b) grid size of 1023 with 7 layers of textures, and (c) 

grid size of 511 with 8 layers of textures.  Configuration (b) achieves the higher FPS, which is 

more stable than configurations (a) and (c) who have approximately identical FPS. The results 

seem to be logical since the number of rendered triangles grows as square when grid size doubles. 

On the other hand, even though gird size shrinks, the increase of rendered texture levels causes 

lower FPS. Therefore, the highest FPS is balanced between grid size and the number of texture 

levels. 

 



44 
 

 
Figure 3.15. Frame Rate of the Same Datasets Rendered by Different Configurations 

 

3.4.3 Distress Measurement on Long Pavement 

The benefits of large pavement 3D visualization are not only to provide an overall condition of 

the pavement for visual inspector, but also to offer the actual field environment helpful to 

pavement distress size measurement. For instance, there is a long crack distributed in multiple 

consecutive images that is easier to be observed on the long pavement surface (Fig. 3.16(a)). 

Through large pavement 3D visualization and proper computer programming, the size of long 

crack can be directly measured in the software as Fig. 3.16b shows. In Fig. 3.16b, software users 

can easily use mouse to draw a blue box (i.e. the blue box that covers the whole crack) on stereo 

pavement surface and get the crack information for the crack. In other words, the pavement 

surface distresses (e.g. thick asphalt patching, wheel path cracking, etc.) can also be direct 

measured with aid of large-scale pavement visualization, even if their imaging data are at 

different consecutive images during automated data collection. On the contrary, if the stereo 

pavement is visualized only based on single image as traditional method does, the whole long 

crack will be broken into incomplete cracks on consecutive stereo images, which causes 

inconvenience to measure the entire crack when need arises. 
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(a) A Crack across Multiple Images on Long Pavement Surface 

 
(b) Direct Size Measurement of the Long Crack in OpenGL Graphic API 

Figure 3.16. Distress Size Measurement on Long Pavement Surface 

 

3.5 Summary 

A robust 3D pavement model is a necessary component to support pavement condition survey. 

However, limited research has directed toward long pavement visualization in 3D environment. 

In this dissertation, the Geometry Clipmap is first-time utilized to display the virtual long-

distance pavement surfaces using 1-mm 3D laser imaging data, a LOD application to long-
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distance pavement 3D visualization. The results of the experiment demonstrates that all the 1-mm 

details of long virtual pavement are retained for the comprehensive pavement condition survey 

while it also provides the bird’s eye view for the overall pavement condition evaluation. Besides, 

both visual continuity and frame rate keep uniform during rendering at run-time. In addition, 

pavement surface defects distributed across multiple images can be measured in a simulated 

realistic environment with a software tool specifically developed in the dissertation. 

Two technical concepts are proposed and their implementations in the research make geometry 

clipmap algorithm useful to practical pavement visualization. First, the 2D projection of view 

frustum is presented to replace traditional AABB method for removing geometrical blocks that 

are not need to be rendered, so that the time required for 3D rendering can be saved. Further, the 

vertex normal computing based on fake vertexes is utilized to take full advantage of graphic card 

resources so that the data size required by the 3D rendering can be further decreased for better 

computational efficiency. 

For future work, 3D virtual long pavement should be rendered in a specific mesh grid structure 

instead of the square structure to further decrease the GPU resource consumption. More work is 

also needed to implement a more efficient algorithm to address the long computing time required 

for preparation of full pyramid data structure. 
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Chapter 4 A Deep Learning System for Cell-based Automated Crack Detection 

 

 

4.1 Introduction to Convolutional Neural Network (CNN) 

The term “Deep Learning” increasingly attracted public attentions since Google computer 

program named “AlphaGo” defeated South Korea Go Master in earlier 2016. In fact, deep 

learning has had a theoretical prototype for a long time. Historically, deep learning has many 

different terms in history: it was known as “Cybernetics” in the 1940s-1960s, as “Connectionism” 

or “Artificial Neural Networks” (ANNs) in the 1980s-1990s, and finally renamed as “Deep 

Learning” after 2006. All the changes involved substantial increase in complexity and 

functionality. Through self-modification of network internal adjustable weights, deep learning is 

able to identify objects in images, transcribe speech into text, make intelligent decisions, and 

realize human-machine interaction, etc. Nowadays, numerous amazing unmanned applications 

based on deep learning have emerged, such as the driverless vehicles, unmanned aerial vehicles, 

and medical robots. What’s even more exciting is that deep learning has assisted NASA in the 

discovery of two new planets in a far-away solar system (i.e. Kepler-90 Planetary System), which 

may be an important step in future space colonization or extraterrestrial life exploration. (Hinton 

et al., 2006; Hagan et al., 2014; LeCun et al., 2015; Goodfellow et al., 2016; Sahllue and 

Vanderburg, 2017). 
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Deep Convolutional Neural Network (CNN) is a representative model of deep learning that 

achieves remarkable successes in recent years. CNN are designed to process data that come in the 

form of multiple arrays, for example a color image composed of three 2D arrays containing pixel 

intensities in the three color channels. The layer-wise structure of CNN is inspired by the natural 

visual perception mechanism of the living creatures. The weights of each CNN layer are 

responsible for the connections inside the model, such that input features can be abstracted or 

extracted hierarchically for meaningful outputs. Different from traditional algorithms with hand-

designed input feature extractors, CNN has a capacity to automatically learn good features from 

the input datasets by adjusting weights based on general-purpose training procedure. Besides, the 

quality of features learnt in CNN is positively proportional to the amount of both weights and 

available training data, which is a critical characteristic benefitting for big data processing. 

(LeCun et al., 1998a; Krizhevsky et al., 2012; LeCun et al., 2015; Goodfellow et al., 2016). 

A primary application of CNN is in the field of 2D image recognition though it can also involve 

1D or 3D data processing like signals or videos. The ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) is a yearly competition to evaluate algorithms for object detection and 

classification on large-scale image datasets. In ImageNet datasets, over 1.2 million images 

labeled in 1,000 different categories are used for image detection, classification and localization. 

Most of the well-known CNNs trained by ILSVRC data wins the ILSVRC competition with 

outstanding performance. As early as 2012, AlexNet demonstrated the powerful capability of deep 

CNN on large-scale image recognition. In the next few years, various deep CNNs (e.g. VGG, 

GoogleNet, ResNet, etc.) had been proposed to improve image recognition ability by continuously 

increasing the network depth (Fig. 4.1). It was noteworthy that in 2015, ResNet with 152-layer 

reached as low as 3.57% of top-5 error at ILSVRC, which was already more excellent than 

human-level performance on image recognition (5.1%). (Krizhevsky et al., 2012; Russakovsky et 
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al., 2014; Simonyan and Zisserman, 2014; Szegedy et al., 2014; He et al. 2015; PaddlePaddle, 

2018). 

 

 

Figure 4.1. ImageNet Classification Top-5 Error (%) (PaddlePaddle, 2018) 

 

4.2 CNN Work Principle 

It is important for pavement engineers to understand the work principle of CNN so that the 

powerful CNN capacity on image classification can be applied on automated pavement surface 

crack detection. A basic CNN model (Fig. 4.2) can be regarded as a variant of the Multi-layer 

Perceptron (MLP) based feedforward network (Fig. 4.3). The whole architecture is mainly 

composed of multi-layer cascaded convolutional layers, pooling layers (i.e. subsampling layers), 

and fully connected layers. Based on internal connections of CNN structure, digital image can be 

hierarchically abstracted as a series of feature maps and propagated layer by layer starting from 

the input node all the way to the output node. Through reversely propagating the errors 

computing at output node (i.e. the Back-Propagation), all the parameters in CNN can be self-

adjusted based on Stochastic Gradient Descent (SGD). As a result, the outputs of CNN can be 

gradually approximated to the expected targets after repeatedly weights update. (Rosenblatt, 1958; 
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Minsky, 1969; Rumelhart et al., 1986; LeCun et al., 1990; Kreinovich, 1991; LeCun et al., 1998a; 

LeCun et al., 1998b; Hagan et al., 2014; Goodfellow et al., 2016). 

There are three critical concepts in CNN for image pattern recognition (LeCun et al., 1998a; 

Krizhevsky et al., 2012): 1) local receptive field, 2) shared weights, and 3) pooling layers. Firstly, 

inspired by the neural structure in cat’s visual system, the local receptive field is utilized to 

extract locally-sensitive, orientational-selective low-level features that can be combined together 

for high-level abstract features. The second idea is the shared weights: the parameters in each 

filter are shared to detect the same features at all possible locations in the inputs, and then to 

generate feature maps so that units in this map were connected by the same parameters. Thirdly, 

the down-sampling method is applied to decrease the spatial resolution of the feature map while 

to reduce the output sensitivity to object shifts and distortions. With these key notions, the CNN 

structure largely lowers the number of weights in the network while still ensures the accuracy to 

small image processing tasks. 

 

 

Figure 4.2. LeNet-5 Network Structure (LeCun et al., 1998a) 
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(a) A Perceptron Connects Inputs by 

Weights and Bias 

(b) Multi-layer Perceptron for Pattern 

Recognition 

Figure 4.3. Feedforward Network based on Multi-layer Perceptron (MLP) 

 

4.3 Cell-based Automated Crack Detection 

4.3.1 Network Architecture 

The CNN architecture for crack detection on pavement image cells is shown in Fig. 4.4. As the 

CNN structure is designed to classify grid-like images, the network inputs are pavement image 

cells in size of 64×64 came from standard image in size of 1024×512. In other words, each 

standard image has 128 (i.e. 16×8) image cells that can be imported in the network. The network 

output is a number ranged in [-1.7159, 1.7159]. If the output is larger than 0, then a single input 

image cell is considered having cracks; otherwise it is considered having no cracks. This network 

architecture consists of three major components: two convolutional layers, two max-pooling 

layers and three fully-connected layers (including the output layer).  

In the convolutional layers, feature maps are extracted from the inputs in each layer by different 

filters in each layer. The first convolutional layer C1 is connected by 16 filters, while the second 

convolutional layer C3 is bridged by 32 filters. The filter sizes for both convolutional layers are 

all set to 9×9 for feature maps generation. After convolutional operations, the feature map size is 

reshaped as following equation: 𝐹𝑠𝑖𝑧𝑒 = 𝐼𝑠𝑖𝑧𝑒 − 𝐹𝑡𝑟𝑠𝑖𝑧𝑒 + 1, where Fsize is the size of feature map, 
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Isize is the size of input image before convolution, and Ftrsize is the size of filters that convolute the 

input images. Therefore, the image sizes in C1 and C3 layer are 56×56 and 20×20 respectively.  

In the pooling layers, the size of feature maps is down-sized to remain shift- and scale-invariant 

features while reduce the number of weights to train. Max-pooling is applied to keep features in a 

pool window with size of 2×2. In other words, the maximum value of a 2×2 image block is the 

value of an individual pixel on the down-sized image. The stride of the pool window is set as 2, 

which means there is no overlap area when pool window sampling on the input images. After 

max-pooling operation, the image sizes in S2 and S4 are 28×28 and 10×10 respectively. 

Finally, Fully-connected layers (i.e. F5, F6, and Output Layer) are used to construct the Multi-

layer Perceptron for crack recognition on image cells. As mentioned in Fig. 4.3 before, the MLP 

in CNN grabs feature maps in S4 as inputs, and then propagates features in forward direction to 

generate the output value. The number of neurons are set to 64 and 96 for F5 and F6 layer 

respectively. What needs to notice is that all the pixels in S4 feature maps are connected to 

corresponding neural node, which means S4 and F5 layers are bridged by a series of filters in size 

of 10×10. At the Output Layer, convolutions using 1×1 filters are applied to merge results from 

F6 layer and then to generate a predicted value. 

As shown in Table 4.1, the CNN for Cell-based crack detection has roughly 250,000 parameters 

need to be trained. The amount of parameters is much less than it in those large networks with 

millions of parameters such as AlexNet or GoogleNet. However, the number of parameters should 

be adequate for the 2-objects classification on image cells (i.e. having crack or non-crack). 

Besides, redundant parameters for only 2-objects classification can result in greater possibility of 

errors instead of performance improvement. In addition, training a network with massive 

parameters requires more extra labeled image datasets, which are expensive and laborious to 

obtain. 
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Figure 4.4. CNN Architecture for Crack Detection on Image Cells 

 

Table 4.1. Trainable Weights and Biases in Each CNN Layer 

Layer #inputs #Nodes Ftr Size Weights Biases Total 

C1 1 16 9×9 1296 16 1,312 

C3 16 32 9×9 41472 32 41,504 

F5 32 64 10×10 204,800 64 204,864 

F6 64 96 1×1 6,144 96 6,240 

Output 96 1 1×1 96 1 97 

Total - - - 253,808 209 254,017 

 

4.3.2 Convolutional Layers 

Convolution is a process of modifying the spatial frequency characteristics of the images using 

the given filter kernels. For instance, there is a classic filter type named “Gabor” for image edge 

detection (Marčelja, 1980; Daugman, 1985). Simply speaking, as Fig. 4.5 shows, Gabor filters 

simulate human visual system to concentrate on looking more details in the center (i.e. white 

color) while ignoring some information in the surroundings (i.e. black color). Also, Gabor filters 

possess characteristics at different angles. The convolution process is to compute a weighted sum 
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of each element from the image based on a given filter as Fig. 4.6 shows. Therefore, as Fig. 4.7 

shows, the edge features of different angles on an image can be extracted after getting the 

maximum response of the convolutional results between a given image and a set of Gabor filters. 

Similarly in the CNN for Cell-based crack detection, the convolutional process attempts to extract 

meaningful features from the inputs at each convolutional layer. In the meanwhile, the noises or 

non-relevant information of the inputs can be suppressed or eliminated during convolutional 

process. Thus, the useful information can be propagated in layer-wised form to the output layer so 

that the final object classification can be conducted correctly. However, different from traditional 

convolutions based on hand-designed feature extractor like Gabor filters, the weights of each 

filter kernel in the network can be self-learnt with given inputs and corresponding targets, which 

gets rid of the limitations in pre-designed or fixed feature extractors. In other words, the 

convolutional layers in the network can be more flexible to extract the optimal features for image 

classification, hence the name “Convolutional Neural Network”. 
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Figure 4.5. Gabor Filters at Different Angles 
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Figure 4.6. Convolutional Process between Image and Filter 

 

  

 
(a) Original Images 

 
(b) Edge Detection Results 

Figure 4.7. Edge Detection Results based on Gabor Filters 
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4.3.3 Pooling Layers 

Max pooling method is adopted to remain the shift-, distortion- and scale-invariant features on 

input images. The pooling process is a down-sampling process. For example, Fig. 4.8 shows a 

pooling process using a 2×2 window to sample inputs with stride of 2. Based on max pooling 

method, S11 = max(I11, I22, I33, I44), which means S11 is the maximum response in the 2×2 red area. 

As a result, S11 is possible to keep invariant feature even if the objects on image inputs have a 

little position shift or scale change, etc. (Fig. 4.9). 

Another advantage of pooling layer is to reduce the number of weights that requires to be trained. 

Assume there are no pooling layers in the CNN structure as Fig.4.4 shown before, the size of 

each feature map before F5 layer is 48×48, which means 2,304 weights required to connect the 

single feature map. On the other hand, with two pooling layers S2 and S4, the size of single 

feature map before F5 layer is 10×10, which means only 100 weights are needed. In other words, 

the decrease in number of weights caused by pooling layers is able to reduce the network model 

complexity, such that the overfitting phenomenon in neural network can be prevented. 

 

 

Figure 4.8. Pooling Process Using 2×2 Window to Down-Sample on Image Input 
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(a) Max Pooling Results before Image Object Translation 

 
(b) Max Pooling Results after Image Object Translation 

Figure 4.9. How the Max Pooling Remain Shift-Invariant Features 

 

4.3.4. Weights Initialization 

Effective weights initialization is extremely important to a network training since poor 

initialization may result in limited network performance or even unmanageable behaviors during 

network training. There are many weights initialization techniques such as Gaussian Initialization 

(Krizhevsky et al., 2012), Xavier Initialization (Glorot and Bengio, 2010), He Initialization (He et 

al., 2015), etc. In this dissertation, Xavier Initialization is applied to initialize all the parameters of 

CNN model.  

Simply speaking, Xavier technique keeps the data variance in the reasonable range during both 

forward- and backward-propagation, so that the network can be trained easily. Due to Xavier 

technique requires inputs in a “zero mean” range, the pixel values on image cells before imported 
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in the network will subtract their own mean values. Based on this technique, the weight of a 

neuron in a certain layer should be drawn from a uniform distribution as Eq. 4.1 shows below: 

𝑾~[−√
𝟔

𝒏𝒊 + 𝒏𝒋
, √

𝟔

𝒏𝒊 + 𝒏𝒋
 ] Eq. 4.1 

where 𝒏𝒊 is the number of input connections and 𝒏𝒋 is the number of output connections. 

Besides, it is worth noticing that the weights of filters in convolutional layers are initialized based 

on variant of Eq. 4.1. For a 𝑤 × ℎ filter connecting between 𝑛𝑖 feature maps from the previous 

layer and 𝑛𝑗  feature maps in the current layer, the weights in this filter are uniform distribution as 

Eq. 4.2 shows below: 

𝑾𝒇𝒕𝒓~[−√
𝟔

𝒘 × 𝒉 × 𝒏𝒊 + 𝒏𝒋
, √

𝟔

𝒘 × 𝒉 × 𝒏𝒊 + 𝒏𝒋
 ] Eq. 4.2 

 

4.3.5 Activation Functions 

In neural network, the activation function of a node defines the output of that node given an input 

or set of inputs as Fig. 4.3(a) shows before (Hagan et al., 2014). When the activation function is 

non-linear, then a two-layer neural network can be proven to be a universal function 

approximator (Cybenko, 2006). Therefore, non-linear activation units are inevitable for CNN 

structure to approximate general functions for problem solutions. 

In this dissertation, all except the output layer applies a general activation unit Leaky Rectifier 

Linear Unit (Leaky ReLU) (Maas et al., 2013). The Leaky ReLU is defined as Eq. 4.3 (Fig. 

4.10(a)). Mathematically, Leaky ReLU directly transfer the inputs x to next layer if this unit is 

active, otherwise the inputs x are suppressed in small and non-zero signals controlled by alpha 

parameter and then sent to next layer. Based on Leaky ReLU, the sparse representations for 
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image object can be easily obtained in CNN, which is helpful to enhance the network 

classification capacity.   

A sigmoid-like unit is applied at output layer for a 2-objects classification problem. The 

recommended activation unit at output neuron is the LeCun Tanh (LeCun et al., 1998b). 

The LeCun Tanh is defined in Eq. 4.4 (Fig. 4.10(b)). Compared with the traditional sigmoid unit, 

the LeCun Tanh has several advantages (Fig. 4.11). First of all, the range of LeCun Tanh is larger 

than that of traditional sigmoid unit, which means the learnable parameters have more space to be 

adjusted by Back-Propagation algorithm. Secondly, LeCun Tanh has both positive and negative 

parts in y-axis, which is very suitable for a typical binary classification problem. Lastly, the first 

order derivative of LeCun Tanh is larger and more effective than that of sigmoid unit, which 

means the gradients can be better back-propagated inside the network. 

𝝈(𝒙) =  {
𝒙                                             𝒊𝒇 𝒙 > 𝟎
𝒂𝒍𝒑𝒉𝒂 × 𝒙                     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 Eq. 4.3 

 

𝝈(𝒙) =  𝟏. 𝟕𝟏𝟓𝟗 × 𝒕𝒂𝒏𝒉 (
𝟐

𝟑
𝒙) Eq. 4.4 

 

 

(a) Leaky ReLU 

 

(b) LeCun Tanh 

Figure 4.10. Activation Units in Cell-based CNN for Crack Detection 
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(a) Activated Units Comparison 

 
(b) 1st  Order Derivatives Comparison 

Figure 4.11. Comparison between the LeCun Tanh Unit and Traditional Sigmoid Unit 

 

4.3.6 Learning Rule 

The network is trained through supervised learning. In supervised learning, the training datasets 

consist of input examples 𝒙 and corresponding targets 𝒕 that participate network training together. 

Assume the network outputs by given inputs 𝒙 are 𝒚 = 𝒇(𝒙). The goal of network training is to 

adjust weights, so that the outputs 𝒚 by given inputs 𝒙 can gradually approximate the targets 𝒕. 

In supervised learning, the cost function is set at the output layer of a neural network to measure 

the errors between network outputs 𝒚 to targets 𝒕. There are two basic properties for a cost 

function: 1) cost function should be non-negative; and 2) the cost function is close to zero when 

the network outputs 𝒚 are close to the expected targets 𝒕. This dissertation adopts the cost 

function in the form of cross-entropy combined with L2 weight decay. The cross-entropy is 

helpful to speed up training as the errors between predicted and target values are directly back-

propagated (Solla et al., 1988). On the other hand, L2 weight decay prevents network overfitting 

by penalizing large weights in the network (Krogh and Hertz, 1992). The cost function can be 

expressed as: 

𝑪 = 𝟎. 𝟕𝟓 × [(𝒕 − 𝟏. 𝟕𝟏𝟓𝟗) × 𝑳𝒏(𝟏. 𝟕𝟏𝟓𝟗 − 𝒛) − (𝒕 + 𝟏. 𝟕𝟏𝟓𝟗)
× 𝑳𝒏(𝟏. 𝟕𝟏𝟓𝟗 + 𝒛)] + 𝟑. 𝟒𝟑𝟏𝟖 + 𝑳𝟐 𝑰𝒕𝒆𝒎 

Eq. 4.5 
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where 𝒕 is the target value of a pixel; 𝒛 is the predicted value of a pixel; 𝑪 is the evaluated error of 

a pixel; 𝑳𝟐 𝑰𝒕𝒆𝒎 equals to 𝟎. 𝟓 × 𝝀 × ∑ 𝑾𝟐 (𝝀 is the weight decay parameter, and 𝑾 represents 

all learnable weights in the network). 

The internal weights update is based on Back-Propagation (BP) combining with Stochastic 

Gradient Descent (SGD). BP is a chain-rule based process of reversely propagating cost function 

errors after completion of each network forward propagation. Subsequently, SGD is utilized to 

compute gradients for weights update so that the cost function errors can be minimized. In this 

dissertation, momentum based SGD is adopted to compute gradients, where the momentum is a 

common method for fast training. Besides, Mini-batch SGD is implemented to update weights 

accurately at each iteration. Thus, the weights update with momentum γ during training at each 

iteration can be expressed as: 

{
∆𝑾𝒊+𝟏 = γ ∗ ∆𝑾𝒊 − (𝟏 − γ) ∗ 𝜺 ∗ (

𝝏𝑪

𝝏𝒘
|𝒘𝒊)

𝑩𝒊

𝒘𝒊+𝟏 = 𝒘𝒊 + ∆𝑾𝒊+𝟏

 Eq. 4.6 

 

where 𝒊 is the iteration index; 𝒘𝒊 is the weights updated at ith iteration; ∆𝑾𝒊is the momentum 

variable at 𝒊 th iteration; γ is the momentum parameter (usually be set as 0.9); 𝜺 is the learning rate; 

(
𝝏𝑪

𝝏𝒘
|𝒘𝒊)

𝑩𝒊

 is the average gradient over the batch 𝑩𝒊 evaluated at 𝒘𝒊. 

 

4.4 Experimental Results 

4.4.1 Standard Pavement Image Library 

For machine learning purposes, the research team built an image library that consists of more than 

6,000 3D pavement images collected by WayLink PaveVision3D system and corresponding 

ground-truth images with hand-labeled pavement cracks. All 3D pavement images in the image 
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library were collected by the PaveVision3D system in last 5 years on different pavements. Each 

image covers an area of 4-meter (width) by 2-meter (length). The established image library 

represents diversified variations of cracks and pavement surface textures. There is no overlap 

between any two images, and no more than 100 images are from the same pavement section. The 

ground-truths of cracks on all images are manually processed with close supervisions on pixel-

perfect accuracies by multiple teams. A three-round inspection is conducted to ensure the ground-

truths are accurate at pixel level. For the first round, several well-trained operators manually mark 

the cracks on provided 3D pavement images with full resolution. For the second round, several 

other well-trained operators examine and refine the ground-truths for correcting errors and 

reducing subjectivity. Finally, the ground-truths are further inspected and verified by experts. The 

entire process of preparing ground-truths of cracks is completed on continuing basis for more 

than one year. Each image then is downsized in a standard image size from 4096×2048 to 

1024×512 using the min-pooling method. In other words, the minimal value of a 4×4 data block 

becomes the value of an individual pixel on the downsized image. Fig. 4.12 shows several 

examples of 1-mm 3D pavement images with corresponding ground truths. All the data used in 

the remaining chapters in this dissertation are came from this image library. 

 

    

    

Figure 4.12. Examples from Image Library and Corresponding Manually Labeled Ground-

Truths 
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4.4.2 Evaluation Method 

Due to the fact that the output is only a 2-objects classifier to determine if a single image cell has 

cracks or not, the index “accuracy” is not proper to measure the performance of the classification 

results. Instead, the performance indicators precision (𝑷𝒓), Recall (𝑹𝒆), and F1 score (𝑭𝟏) are 

utilized to evaluate the network performance during both training and testing process (Fawcett et 

al., 2006; Zhang et al., 2016a). The precision and recall can be computed on true positive (𝑻𝑷), 

false negative (𝑭𝑵) and false positive (𝑭𝑷) as following equations: 

𝑷𝒓 =  𝑻𝑷 (𝑻𝑷 + 𝑭𝑷)⁄  Eq. 4.7 
 

𝑹𝒆 =  𝑻𝑷 (𝑻𝑷 +  𝑭𝑵)⁄  Eq. 4.8 
 

𝑭𝟏 =  𝟐 × 𝑷 × 𝑹 (𝑷 + 𝑹)⁄  Eq. 4.9 
 

where 𝑻𝑷  is a crack recognized correctly on an image cell; 𝑭𝑷  is a non-crack recognized 

incorrectly on an image cell; and 𝑭𝑵 is a crack recognized incorrectly on an image cell. 

 

4.4.3 Network Training 

Roughly 2,500 asphalt pavement images from the standard image library with corresponding 

manually labeled target images are used as training set to train the crack detection network. The 

image cell size is of 64×64, which means each standard image in size of 1024×512 has 128 image 

cells in totally. If an image cell contains cracks, it will be assigned with binary value “1.7159”, 

otherwise it will be assigned with binary value “-1.7159”. 

10 asphalt images are selected as validation set. “Validation set” is a subset from the entire 

dataset used to estimate the network performance during the training process. In the training 

process, the estimation on the validation set contributes to network configuration settings (e.g. 

learning rate, number of batch size, etc.) and best-performing weights selection. Both the errors of 
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cost function and F-1 Measure are monitored in the training phase. In addition, 10 asphalt images 

are considered to be adequate for the binary classification task. There is no overlap between 

training set and validation set. 

The network training is based on the BP and SGD algorithm. The mini-batch size is 32 at the 

beginning and then gradually increases to 128 as training continues. The momentum variable is 

set as 0.9, which is found to be very helpful for stabilizing network training. L2 weight decay is 

0.0005 during entire training process. All layers share the same learning rate. The learning rate is 

set as 0.01 at the beginning, and then divided by 2 (i.e. 0.005) after 200 iterations training or 

divided by 3 (i.e. 0.0033) after 500 iterations training. Finally, the network is fine-tuned with 

learning rate 0.0025 after 1,000 iterations and rate 0.001 after 2,000 iterations to seek for further 

optimization. No Drop-Out technique is applied in the network. The network training with 3,000 

iterations is completed in roughly one and half day with the aid of a single GPU device (NVidia 

GeForce GTX 1080Ti). 

Fig. 4.13 shows the performance on validation set in the training phase. In Fig. 4.13(a), the errors 

of cost function decrease as training goes on, which indicates that the network attempts to 

minimize the difference between network outputs and excepted targets. The error decrease is very 

significant on the first 1,000 iterations. After 1,000 iterations, the error tends to become stable 

even though the learning rate is set at a small value. In Fig. 4.13(b), the F1-Score increases as 

training continues. Similarly, F-1 score increases obviously at the first 1,000 iterations and 

gradually tends to become stable from 1,000 to 3,000 iterations. Therefore, the training for crack 

detection on image cells are stopped at the 3,000th iteration. 
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(a) Errors of Cost Func. vs. Iterations 

 
(b) F1-Measure (%) vs. Iterations 

Figure 4.13. Network Performance on Validation Set 

 

4.4.4 Performance on Test Data 

The weights configuration with the best performance is used for the final test data. The test set 

consist of 200 asphalt images that do not participate the training process. The F1-Score on 200 

asphalt images is 70.45% (with precision 60.67% and recall 83.99%). Fig. 4.14 shows several 

examples of Cell-based CNN performance on the test set. The blue box with crossed lines means 

there is no cracks in a single image cell, otherwise it means an image cell having cracks. 

Generally speaking, the crack detection results based on CNN is reasonable because most cracks 

on image cells can be recognized correctly. 

On the other hand, the Cell-based CNN crack detection may not meet the practical requirements 

of pavement crack detection. For example, the practical crack detection is able to provide two 

important indices: the crack width (i.e. severity) and crack length. However, those two indices are 

unable to be obtained based on Cell-based results because the CNN structure is specifically 

designed for “grid-like” image object recognition. Even though continuous improvements can be 

achieved, the Cell-based accuracy does not catch up with the accuracy in the practical pavement 

crack detection. In other words, there is a need to modify CNN structure so that it can be 

improved to a higher accuracy level in detection. Therefore, the goal next chapter is to achieve 

the pixel-level crack detection while improve the network performance. 
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(a) Original Images (b) Target Images (c) CNN Results 

Figure 4.14. Results of Cell-based CNN Crack Detection 

 

4.5 Summary 

Because of the excellent performance of Convolutional Neural Network (CNN) on image object 

recognition, it was natural to investigate a CNN application on a typical and most interesting 

development: crack detection. This dissertation section adopts CNN algorithm for Cell-based 

crack detection on 1-mm 3D pavement laser images. The data source is the standard image library 
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that consists of over 6,000 pavement images in total and corresponding target images manually 

labeled by multiple research teams. Through 3,000 iterations of weights update, the Cell-based 

crack detection performance achieves the F1-Score 70.45% (with precision 60.67% and recall 

83.99%). The crack recognition results are found to be reasonable, which demonstrates the 

potentials of deep learning on crack detection task. 

However, the accuracy of CNN structure is at Grid-Level, which is not able to provide for the 

detailed crack indices such as crack width and length. Thus, it is necessary to develop a deep-

learning based network at a higher accuracy level such as at pixel-level. This objective and its 

development is detailed in the next chapter to explore the CNN modification to achieve the pixel-

level crack detection. 
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Chapter 5 A Deep Learning Methodology for Pixel-Level Detection of Pavement Cracks 

 

 

5.1 Difficulties in Pixel-Level CNN 

Chapter 4 demonstrates the feasibility and performance of Convolutional Neural Network (CNN) 

for pavement crack detection. On the one hand, CNN was revealed to have the potentials to make 

reasonable predictions of surface cracks based on huge amount of 1-mm pavement data. On the 

other hand, however, CNN framework itself is specifically designed for image cell recognition, 

which impedes the determination of actual crack positions and the further crack classification. To 

implement the pixel-level accuracy on crack detection, several problems of present CNN 

framework need to be solved as summarized below: 

 Pavement Unevenness 

The elevations of realistic pavement surfaces are more or less up-and-down instead of 

being totally flat as Fig. 5.1(a) shows. This type of pavement unevenness negatively 

impacts the feature extraction process based on the concept of “shared weights” by using 

traditional CNN frameworks, resulting in limited performance of pixel-level crack 

detection. Assume a CNN network is able to approximate the function z = 𝝈(x), where x 

and z are the inputs and outputs respectively, function 𝝈 can be regarded as the shared 

weights in CNN. Due to the significant height difference hd between h1 and h2 as Fig. 

5.1(b) shows, (h1) is not equal to 𝝈(h2) (i.e. 𝝈(h1) ≠ 𝝈(h1+ hd)). As a result, cracking  
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pixels at different surface elevations cannot have consistent outputs using the same set of 

shared weights in the network. 

 Pooling Layers 

As discussed in Chapter 4, pooling layers in cell-based CNN are critical for cell-based 

image recognition by keeping shift-, distortion- and scale-invariant features while 

reducing the number of trainable parameters as well as preventing overfitting in the 

network. In contrast to cell-based CNN model, pixel-level crack detection aims at 

determining a specific pixel is crack or not. In this case, the advantages of pooling layers 

for cell-based detection, such as shift-invariant feature extraction, can contrarily impact 

the accuracy of pixel-level detection.  

 Error Regularization 

In cell-based CNN model, each image block has only one error factor (i.e. the difference 

between learning target and network output) that needs to be propagated backward at 

each iteration. By contrast, pixel-level CNN model predicts the cracking probability for 

every pixel in the input image simultaneously, which means there are over one hundred 

thousands of error factors at the output layer. Accumulation of such amount of errors 

during back-propagation can easily cause gradient explosion, which leads to limited 

network performance or even a termination in network training. In other words, error 

factors in pixel-level CNN model can not directly participate in training process. 

 Time-Efficiency 

After the optimization using General-Purpose Graphics Processing Unit (GPGPU), the 

cell-based CNN model in Chapter 4 spends roughly 2.4 second generating results for all 

128 image cells on a standard image. If the cell-based CNN structure is directly applied 

to check each pixel in an image, it would consume much longer time to calculate results 

for huge amounts of pixels from the input. In other words, considering there are gigabytes 
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to terabytes of pavement imaging data for miles of roads, direct application of cell-based 

CNN on the pixel-level detection is unacceptable in time efficiency due to extremely long 

time computational needs with commonly available computer hardware. 

 

 
(a) Pavement Data under 3D Visualization 

 

 
(b) Pavement Side Profile Illustration 

Figure 5.1. Unevenness in Pavement Surfaces 

 

5.2 CrackNet-V for Pixel-Level Detection 

To achieve the pixel-level detection accuracy on pavement cracks, it is necessary to find an 

effective framework to overcome problems mentioned above. In the meanwhile, the network 

performance as well as the speed efficiency are required to be enhanced for big pavement data 

processing. Therefore, the CNN architecture named “CrackNet-V” based on concept of “shared 

weights at each pixel” is designed and developed in the dissertation to complete the pixel-level 

crack detection with needed accuracy and efficiency. 
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5.2.1 Network Architecture 

 

Figure 5.2. Architecture of CrackNet-V 

 

As shown in Fig. 5.2, the “CrackNet-V” architecture designed for pixel-level crack detection 

consists of three major components: a) one pre-processing layer; b) eight deep convolutional 

layers and c) one output layer. At the beginning of this model, the pre-processing layer prepares 4 

rectified inputs in a standard data range. Subsequently, deep cascaded convolutional layers are 

implemented for hierarchical feature extraction and then to generate a series of feature maps. 

Finally, the output layer merges feature maps to generate a possibility map for crack recognition 

at each pixel from the input image. 

In convolutional layers, feature maps between adjacent layers are generated by corresponding 

filter kernels. Each pixel of input maps at previous layer shares the same set of filters. The first 

six convolutional layers (C1 to C6) with a series of fixed 3×3 filters are utilized to hierarchically 

extract spatial invariant features and then summarize them as feature maps. At the seventh 

convolutional layer (F7), a series of 15×15 filters are applied to connect a small visual receptive 

field surrounding at each pixel. The subsequent two fully-connected layers (F8 and output layer) 
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use 1×1 convolutions to provide more non-linear activations for accuracy improvement of crack 

pixel detection. In addition, F7, F8 and output layers together can be regarded as fully-connected 

Multi-layer Perceptron (MLP) for pixel-level pattern recognition using feature maps from 

previous convolutional layers. 

It is noticeable that in the first six convolutional layers, the sizes of all filter kernels are set as 3×3 

for reducing the number of learnable parameters while increasing network depth at the same time 

to introduce more non-linear transformations for network performance enhancement (Simonyan 

and Zisserman, 2014). As Fig. 5.3 shows, two successive convolutional layers using 3×3 kernels 

(Fig. 5.3(a)) are able to represent a 5×5 visual receptive field, which are almost equal to one 

single convolutional layer using a 5×5 kernel (Fig. 5.3(b)). However, the number of parameters 

in Fig. 5.3(a) is 2×3×3 = 18, which is much fewer than that in Fig. 5.3(b) (i.e. 5×5 = 25). 

Similarly, three successive convolutional layers using 3×3 kernels have a 7×7 effective receptive 

field, but the number of parameters are only 27. Based on such a concept, CrackNet-V increases 

the depth of convolutional layers while introducing only a small number of extra parameters. 

  

(a) A Stack of Two 3×3 Conv. Layers (b) One 5×5 Conv. Layer 

Figure 5.3. A Stack of Two 3×3 Conv. Layers Has an Effective Receptive Fields of 5×5 
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Different from traditional CNN, no any pooling layers are involved in this network. Pooling layer 

is an important characteristic of CNN to reduce trainable parameters while still keeping the useful 

information for classifying an object even if this object has shifting or scale-change (e.g. the 

position of a car may be shifted to anywhere in an image, which causes negative impacts for 

object classification). However, the goal of pixel-level crack detection is to determine a specific 

pixel centered at its surrounding neighbors is crack or not. Therefore, if the position of a cracking 

pixel is shifted away from the center pixel, the information of this shifted pixel is not necessary to 

be remained, which means pooling layer is not necessary in the case of pixel-level crack detection. 

In fact, some experiments indicate that pooling layers can increase computational costs while 

have little helpful effects for network accuracy enhancement (Springenberg et al., 2014; Zhang et 

al., 2017b). 

Similar to those used in the cell-based CNN of Chapter 4, the sigmoid-like activation unit LeCun 

Tanh is adopted at the output layer of the CrackNet-V for a binary classification problem at each 

pixel. The Xavier Initialization is applied to initialize all the parameters in the network. The 

Back-Propagation (BP) combining with mini-batch Stochastic Gradient Descent (SGD) is utilized 

to compute gradients and update weights at each iteration. 

Table 5.1 summarizes the parameter configurations in CrackNet-V. CrackNet-V only has 64,113 

learnable parameters in total, which is much fewer than roughly 250,000 parameters in the cell-

based CNN of Chapter 4. Although there are fewer parameters to be tuned automatically, 

CrackNet-V is able to implement binary classification at each pixel using a deeper network 

structure. Due to the decrease in trainable parameters, the time efficiency of CrackNet-V is higher 

than that of cell-based CNN. 
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Table 5.1. Trainable Weights and Biases in CrackNet-V 

Layer #inputs #Nodes Ftr Size Weights Biases Total 

C1 4 8 3×3 288 8 296 

C2 to C6 8 8 3×3 576 (2880)* 8 (40)* 584 (2920)* 

F7 8 32 15×15 57600 32 57632 

F8 32 96 1×1 3072 96 3168 

Output 96 1 1×1 96 1 97 

Total - - - 63,936 177 64,113 

    *the data in brackets are the sum of the five layers from C2 to C6 

 

5.2.2 Pre-Processing Layer 

Image pre-processing is a critical step to prepare input data for CrackNet-V. As shown Fig. 5.4(a), 

the original pavement 3D surfaces have shape distortion caused by the unevenness of pavement 

surface. This type of data distortion, regardless of its severity degree, can adversely impact on 

pixel-level detection performance because the pixel cracking features are extracted using the 

concept of “shared weights at each pixel”. In other words, the cracking information at each pixel 

should be processed for information uniformization as much as possible so that the results at 

varying locations can be consistent through the same network. Therefore, the pre-processing layer 

is a necessary component to rectify surface data distortions, so that the corrected images with 

higher quality can be obtained for further cracking detection purpose. 

The goal of rectifying process is to remain details on the pavement images while remove 

pavement unevenness as much as possible. Two procedures are conducted at the pre-processing 

layer to maintain the local details while ignoring global surface unevenness. First, median filter is 

used to determine the representative elevation of a local region. Subsequently, the elevation of 

each pixel within the local region is then adjusted based on the representative local elevation. 

Second, Z-score Normalization is implemented to confine the data in a standard range. 

Median filter is a nonlinear low-pass filter with capability of removing high-frequency 

information (e.g. cracks or spot noises on pavement) while introducing minor distortion to low-
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frequency parts (e.g. terrain surface) (Huang et al., 1979). In other words, the height value of a 

local image patch around a specific pixel can be estimated by the median filter. Consequently, the 

rectified height of a pixel can be represented by the difference between its original height and 

estimated height of the local terrain surface. Such a rectifying procedure for each pixel is defined 

as follows: 

𝐻(𝑥,𝑦) = 𝒎𝒆𝒅(𝐼(𝑥−𝑟,𝑦−𝑟), … , 𝐼(𝑥,𝑦), … , 𝐼(𝑥+𝑟,𝑦+𝑟)) Eq. 5.1 

 

𝐼(𝑥,𝑦)
′ = 𝐼(𝑥,𝑦) − 𝐻(𝑥,𝑦) Eq. 5.2 

 

where 𝐼(𝑥,𝑦) is the original height of pixel (𝑥, 𝑦); 𝑟 defines the kernel size of the median filter; 

𝐻(𝑥,𝑦) is the estimated local terrain surface height around pixel (𝑥, 𝑦); 𝐼(𝑥,𝑦)
′  is the rectified height 

of pixel (𝑥, 𝑦); and 𝒎𝒆𝒅(𝑥) is the median value among the heights of pixel sets 𝑥. 

After completion of the rectifying process using median filter, a common normalization technique, 

Z-Score Normalization, is applied to the whole image to guarantee the input data has a zero mean 

and a standard deviation of 1. The Z-score Norm is expressed as the following equation: 

𝑍(𝑥,𝑦) =
𝐼(𝑥,𝑦)

′ −  𝒎𝒆𝒂𝒏(𝐼′)

𝒔𝒕𝒅(𝐼′)
 Eq. 5.3 

 

where 𝑍(𝑥,𝑦) is for the z-score of pixel (𝑥, 𝑦); 𝒎𝒆𝒂𝒏(𝐼′) is the mean value of rectified image 𝐼′; 

and 𝒔𝒕𝒅(𝐼′) is the standard deviation of rectified image 𝐼′.  

As a result, the pre-processing can greatly suppress the negative effects caused by surface 

unevenness presented on the down-sampled 3D image (Fig. 5.4(b)), and prepare well-rectified 

input data for CrackNet-V. It should be noticed that the pre-processing layer produces 4-channel 

input data. As the optimal size of median filter is hard to be determined, 4 different sizes of 

median filters are respectively applied for each channel in the pre-processed layer. In other words, 
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totally 4 pre-processed images participate as input data in network training and testing. The 

median filter size at the 1st channel is set to 9×9, and then gradually expands by 2×2 so that the 

4th channel eventually reaches the size of 15×15. According to experiments, the network 

performance based on multiple pre-processed inputs is significantly improved by contrast with 

that based on only one pre-processed input. 

 

  

  
(a) before Pre-processing (b) after Pre-processing 

Figure 5.4. OpenGL Visualization for Pavement 3D Image before and after Pre-processing 

 

5.2.3 Activation Units in Hidden Layers 

3D data sets are able to represent realistic pavement cracks at different depths. However, the 

responses of cracks after convolution may have a large difference due to the variation of crack 

depths. After passing through the general activation unit Leaky Rectifier Linear Unit (ReLU) 

(Maas et al., 2013), such a difference is still remained for the following layers of the network, 

which causes the network to concentrate on learning the depth range of cracks. Besides, the depth 

range of cracks is not unique when other noise patterns are considered. The uniqueness of cracks 

is highly related with the morphological information instead of the depth information. 



77 
 

In fact, the proposed network always ignores some shallow cracks if Leaky ReLU is applied at 

the hidden layers. To solve this problem, the new activation unit called Leaky Rectified Tanh is 

proposed in this dissertation to control the magnitude of convolution results such that the shallow 

cracks have similar responses with deeper cracks. 

The proposed activation unit Leaky Rectified Tanh with 𝛼𝑙𝑝ℎ𝑎 = 0.1 can be defined as: 

𝝈(𝑥) = 𝑚𝑎𝑥 (1.7159 × 𝑡𝑎𝑛ℎ (
2

3
 𝑥) , 0) + 𝑚𝑖𝑛 (0.1 𝑥, 0) Eq. 5.4 

 

The 𝑡𝑎𝑛ℎ with scale factors of 1.7159 in y-axis and 
2

3
 in x-axis is adopted to regulate data 

magnitude as same as data magnitude of output neuron. Fig. 5.5 describes the difference between 

Leaky Rectified Tanh and Leaky ReLU. Generally speaking, the pattern of Leaky Rectified Tanh 

is almost as same as Leaky ReLU when 𝑥 ∈ (−∞, 1]; however, Leaky Rectified Tanh can 

effectively control the data magnitude if 𝑥 ∈ (1, +∞]. In other words, if the responses after 

convolution are negative, the parameter α can compress the responses into a small range. On the 

other hand, if the convolutional responses are positive, the differences among responses of cracks 

with different depths can be suppressed with Leaky Rectified Tanh. 

 

Figure 5.5. Comparison between Leaky Rectified Tanh and Leaky ReLU 
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5.2.4 Sensitivity Regularization at Output Layer 

Since the output layer of CrackNet-V utilizes the activation unit LeCun Tanh for binary 

classification at each pixel, the cost function is the corresponding cross-entropy of LeCun Tanh 

combined with L2 weight decay. And the derivative of cost function 𝑪 with respect to network 

weights 𝒘 determines the amounts of weights updating as following equations express: 

𝝏𝑪

𝝏𝒘
=

𝝏𝑪

𝝏𝒛
∗

𝝏𝒛

𝝏𝒘
 Eq. 5.5 

 

𝒛 = 𝝈(𝒘 ∗ 𝒙 + 𝒃) Eq. 5.6 

 

where 𝒙 are the inputs of a network layer; 𝒘 and 𝒃 are the weights and bias respectively in this 

layer; 𝝈 is the activation function of this layer; and 𝒛 is the output.  

In Eq. 5.5, 
𝝏𝑪

𝝏𝒛
 is defined as the “sensitivity”. Since the output neural utilizes cross-entropy to 

evaluate the errors between network outputs and targets, the sensitivity at output layer can be 

computed through the following equation: 

𝑺𝒐𝒖𝒕 =
𝝏𝑪

𝝏𝒛
= 𝒕 − 𝒛 Eq. 5.6 

 

where 𝑺𝒐𝒖𝒕 is the sensitivity value at the output layer; 𝒕 is the network target; and 𝒛 is the network 

output.  

Different from the cell-based CNN, however, CrackNet-V cannot directly use the sensitivity 

values for weights updating during training process. In the cell-based CNN model of Chapter 4, 

single image is divided as 128 image blocks, which means only 128 sensitivity factors at output 

layer for each block are back-propagated once. In CrackNet-V, by contrast, single image passing 

through the network has over one hundred thousands of sensitivity factors (i.e. 512×256 = 
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131,072). Back-propagation of such a large number of sensitivity factors can easily cause 

gradient explosions, resulting in the failure of network training process. Therefore, it is necessary 

to regularize the sensitivity factors at the output layer so that the network can be trained 

successfully. 

In this dissertation, a regularization rule is proposed to prevent gradient explosion caused by 

accumulation of sensitivity factors, while still remaining valid information for network training. 

This regularization rule is conducted at each pixel of the sensitivity map at output layer based on 

the number of both cracking pixels and non-cracking pixels, which is summarized as following 

equation: 

𝑺𝒄 = 𝑺𝒐𝒖𝒕 / 𝒑𝒄 Eq. 5.7 

 

𝑺𝒏𝒄 = 𝑺𝒐𝒖𝒕 / 𝒑𝒏𝒄 Eq. 5.8 

 

where 𝑺𝒐𝒖𝒕 is the sensitivity factors at the output layer;  𝑺𝒄 and 𝑺𝒏𝒄 are the sensitivity factors of 

cracking and non-cracking pixels respectively that are used in back-propagation process; 𝒑𝒄 is the 

number of cracking pixels in an image; and 𝒑𝒏𝒄 is the number of non-cracking pixels in an image. 

Fig. 5.6 illustrates the sensitivity regularization rule on an output map. Assume this sensitivity 

map at the output layer is in size of 4×4 with 5 pixels labeled as cracks in it. Before beginning 

back-propagation of this map, the sensitivity values at all cracking pixels are divided by 5, while 

those at non-cracking pixels are divided by 11. It means that the regularization rule is equivalent 

to setting the ratio of cracking samples to non-cracking samples as 1:1. In other words, this rule 

can be considered as a way to balance the number of training samples (i.e. cracking and non-

cracking pixels).In addition, this regularization computes the average of all sensitivity values, so 

that the noises in sensitivity map can be suppressed for accurate weight updating. Moreover, 

although there are still one hundred thousands of sensitivity values needing to be propagated 
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backward, the magnitudes of gradients for weight updating are controlled in a reasonable range 

due to value decreasing in the sensitivity map. As a result, the network can be trained successfully 

using this regularization strategy. 

 

 

Figure 5.6. Illustration of Sensitivity Regularization 

 

5.2.5 Summary of CrackNet-V 

Table 5.2 summarizes the difference between cell-based CNN and pixel-level CrackNet-V. 

According to this table, the essential concept applied in CrackNet-V is to implement shared 

weights at each pixel. Particularly, Pooling layers are removed from the network to prevent 

cracking pixel from position shifting. In addition, pre-processing layer is specifically designed to 

remain local crack characteristics while ignore pavement surface unevenness. Moreover, 

convolutional layers utilize a series of filters in the size of 3×3 to reduce the number of 

parameters while increase network depth for performance improvements. It is noticeable that 

decrease in the number of parameters means increase in the network speed, which benefits for big 

pavement data processing. Furthermore, the change of activation units in pixel-CNN is able to 

suppress the difference in convolutional responses of cracks at varying depths, resulting in 

improved detection results on shallow cracks. Last but not least, a special regularization rule is 

implemented on the sensitivity map at output layer of CrackNet-V for network training purpose. 
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Table 5.2. Comparison between Cell-Based CNN and CrackNet-V 

Modifications Cell-based CNN CrackNet-V Targets of Modifications 

Concept 
Weights Shared by 

Image Cells 

Weights Shared by 

Pixels 

Conversion of detection accuracy from 

grid-level to pixel level 

Pooling Layers Yes No Prevention of pixel shifting 

Pre-processing 

Layer 
No Yes 

Elimination of pavement unevenness 

for sharing weights at pixels 

Conv. Layers 
Two Layers with 

Filter Kernel (9×9) 

Six Layers with 

Filter Kernel (3×3) 

Reducing the number of parameters, 

while introducing more non-linear 

transformation 

Activation Units 

in Hidden 

Layers 

Leaky ReLU Leaky Tanh 
Uniformization of convolutional 

responses for cracks at varying depths  

Sensitivity 

Regularization  
No Yes 

Prevention of gradients explosion for 

network training 

 

5.3 Experimental Results 

5.3.1 Evaluation Method 

The indicators precision (𝑷𝒓𝒑𝒊𝒙𝒆𝒍), recall (𝑹𝒆𝒑𝒊𝒙𝒆𝒍), and F1 score (𝑭𝟏𝒑𝒊𝒙𝒆𝒍) are utilized to 

evaluate CrackNet-V performance during both training and testing process. The pixel-level 

precision and recall can be computed on true positive (𝑻𝑷), false negative (𝑭𝑵) and false positive 

(𝑭𝑷) as following equations: 

𝑷𝒓𝒑𝒊𝒙𝒆𝒍 =  𝑻𝑷 (𝑻𝑷 + 𝑭𝑷)⁄  Eq. 5.9 

 

𝑹𝒆𝒑𝒊𝒙𝒆𝒍 =  𝑻𝑷 (𝑻𝑷 +  𝑭𝑵)⁄  Eq. 5.10 

 

𝑭𝟏𝒑𝒊𝒙𝒆𝒍 =  𝟐 × 𝑷𝒓𝒑𝒊𝒙𝒆𝒍 × 𝑹𝒆𝒑𝒊𝒙𝒆𝒍 (𝑷𝒓𝒑𝒊𝒙𝒆𝒍 + 𝑹𝒆𝒑𝒊𝒙𝒆𝒍)⁄  Eq. 5.11 

 

where 𝑻𝑷 is a crack classified correctly at a pixel; 𝑭𝑷 is a non-crack classified incorrectly at a 

pixel; and 𝑭𝑵 is a crack classified incorrectly at a pixel. 
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Considering that the pixel-level ground truth is manually labeled and there may be transitional 

areas between crack pixels and non-crack pixels in real images, small distance between the 

detected results and the truths is accepted during evaluation. In this dissertation, the detected 

pixels which are no more than 3 pixels away from the manually labeled truths are considered as 

true positive pixels.  

 

5.3.2 Validation Set 

To estimate the network performance during the training process, 15 different asphalt images are 

carefully selected from the standard image library mentioned in Chapter 4. As Fig. 5.7 shows, 

validation sets from #1 to #7 are selected to represent normal cracks on asphalt pavements; sets 

from #8 to #10 are selected to represent tiny cracks; sets from #11 to #12 have pavement 

shoulders on the right side of the images; sets from #13 to #14 have shallow cracks near the 

pavement markers on the left of the images; #15 is applied to validate performance on the 

pavement without any cracks. During training process, both the error of cost function and F1 

indicator are measured on the validation set. 

Although validation set only contains 15 samples, it is sufficient for monitoring the network 

performance during training process because only two objects need to be classified, and the 

quality of entire 3D dataset is stable and consistent. In addition, the small scale of validation set 

can save time in the entire training process. 
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Valid Set #1 Valid Set #2 Valid Set #3 

   

   
Valid Set #4 Valid Set #5 Valid Set #6 

   

   
Valid Set #7 Valid Set #8 Valid Set #9 

   

   
Valid Set #10 Valid Set #11 Valid Set #12 

   

   
Valid Set #13 Valid Set #14 Valid Set #15 

Figure 5.7. Validation Set for Monitoring Network Performance during Training Process 
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5.3.3 Network Training 

To evaluate the effectiveness of Leaky Rectified Tanh proposed in the dissertation, two networks 

with different activation units in the hidden layers are trained for comparison study. The network 

with proposed Leaky Rectified Tanh is denoted as “Config-A”, while the network with traditional 

Leaky ReLU is denoted as “Config-B”. 

The target value of a pixel is set as 1.7159 if it is a cracking pixel, otherwise it is -1.7159. The 

mini-batch size is 4 at the beginning and then gradually increases to 8 as training continues. The 

momentum variable is set as 0.9, which is found to be very helpful for stabilizing network 

training. L2 weight decay is 0.0005 during entire training process. All layers share the same 

learning rate. The learning rate is set as 0.01 at the beginning, and then divided by 2 (i.e. 0.005) 

after 200 iterations training or divided by 3 (i.e. 0.0033) after 500 iterations training. Finally, the 

network is fine-tuned with learning rate 0.0025 to seek for further optimization after 1,000 

iterations. No Drop-Out technique is applied in the network. The network training with 3,000 

iterations is completed in only one day with the aid of a single GPU device (NVidia GeForce 

GTX 1080Ti). 

Totally 2,568 images are involved in network training. Fig. 5.8 shows the comparison on the 

validation set between the two networks at every 10 iterations. Fig. 5.8(a) shows the cost function 

values through iterations. The Config-B is slightly faster than the Config-A to reduce the cost 

function value. However, there is no significant difference at last 600 iterations. In Fig. 5.8(b), 

Config-B yields higher F-1 scores at the first 400 iterations compared with Config-A. In other 

words, Config-B learns faster at the beginning. This is reasonable because Leaky Rectified Tanh 

uses sigmoid-like function and may result in zero gradients due to saturation. In a general view, 

the Config-B yields more consistent F-1 scores. 
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However, for the first 1,000 iterations, the best F-1 score achieved by Config-A on validation data 

is better than that produced by Config-B (Table 5.3). The best F-1 score has little change from 

1,000 to 3,000 iterations, thus the network training is finally stopped after 3,000 iterations. As 

shown in Table 5.3, the best F-1 score of Config-A performs generally better than Config-B, 

particularly with higher Recalls, indicating that Config-A is able to detect more shallow cracks. 

 

 
(a) Objective Function 

 
(b) F-1 Measure (%) 

Figure 5.8. Performance Comparison on Validation Set during Training Process 

 

Table 5.3. Comparison between Leaky Rectify Tanh and Leaky ReLU on Valid Set 

Config Iter. Precision (%) Recall (%) F1 Score (%) 

A (Leaky Rec. Tanh) 

1,000 87.36 87.77 87.56 

2,000 87.54 88.42 87.98 

3,000 88.08 88.54 88.31 

B (Leaky ReLU) 

1,000 86.96 83.96 85.43 

2,000 87.73 84.57 86.12 

3,000 88.80 84.45 86.57 

 

For Config-B (Leaky ReLU) (Fig. 5.9), the network works well during training process for most 

validation images excepting for validation set #13 and #14 (i.e. the two used to represent shallow 

cracks on asphalt road). At the 20th training iteration, crack responses (i.e. color blue: true-

positive) begin to appear for all validation images with a lot of noises (i.e. color red: false-

positive pixels). As training goes on, crack responses become more and more stable especially on 
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#1 to #7. Besides, more tiny cracks on #8 to #12 can be captured, while noise responses on 

pavement shoulders (#11 to #12) or on non-cracking environment (#15) are largely removed by 

the network. However, Config-B suffers a problem in detecting shallow cracks. For validation 

image #13 and #14, shallow cracks near the pavement marker on the left-side are gradually 

abandoned during network training. In other words, the network with Leaky ReLU tends to detect 

middle and fine cracks more but miss shallow cracks. 

On the other hands, different performance is shown in Config-A (Leaky Rec. Tanh) (Fig. 5.10). 

At the 20th training iteration, there is no crack responses shown up for all validation images (i.e. 

color green: false-negative), which also demonstrates the learning speed of Config-A is slower 

than it of Config-B. As training goes on, crack responses also become to appear and then to 

stabilize while noise responses are mostly removed. Generally speaking, the Config-A 

performance on validation set is similar to Config-B. For several images with fine cracks (#8 to 

#10), Config-A perform slightly worse than Config-B, but it is worth to notice that the shallow 

cracks on #13 and #14 are still remained under Leaky Rec. Tanh while those are discarded by 

Leaky ReLU, which causes the recall of Config-A is a little higher than it of Config-B. 
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Figure 5.9. Performance Changes during Training Process (Leaky ReLU) 
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Figure 5.10. Performance Changes during Training Process (Leaky Rec. Tanh) 

 

5.3.4 Performance on Test Set 

After the network training is completed with 3,000 iterations, the network parameters that yield 

the highest F1 score on validation data set are applied to the testing data for further evaluating the 

network performance. In all 500 asphalt images are used as the testing data to evaluate the 

network performance. Fig. 5.11 shows several representative outputs produced by CrackNet-V 
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with Config-A (Leaky Rectified Tanh). Table 5.4 summarizes the performance of CrackNet-V on 

the testing data. According to this table, there is no big difference between Config-A and Config-

B. However, both precision and recall in Config-A are slightly higher than those in Config-B. As 

a result, the F1 score of Config-A (87.12%) slightly surpasses that of Config-B (86.46%). The 

difference between Config-A and Config-B is discussed in next section. It is noticeable that the 

performance on testing set shown in Table 5.4 is similar to those on validation set in Table 5.3, 

which indicates that the small scale of validation set is sufficient for assessing the pixel-level 

accuracy of a two-object classification when the quality of entire dataset is consistent. 

 

   

 

3D Testing Images and Corresponding Detection Results (#1-3) 

   

 

3D Testing Images and Corresponding Detection Results (#4-6) 

Figure 5.11. Representative Detection Results of Pixel-Level CNN (Config.A) 

 

Table 5.4. CrackNet-V Performance on Test Set 
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Config. Precision (%) Recall (%) F1 Score (%) 

A (Leaky Rec. Tanh) 84.31 90.12 87.12 

B (Leaky ReLU) 83.51 89.63 86.46 

 

5.4 Discussion 

5.4.1 Leaky Rectified Tanh vs. Leaky ReLU 

Comparing to the traditional activation unit Leaky ReLU, CrackNet-V with proposed Leaky 

Rectified Tanh has better performance in detecting shallow cracks, as illustrated in Fig. 5.12. Fig. 

5.12(a) and (b) show several typical cracks that have shallow depths under 3D environment. 

These shallow cracks are difficult to be perceived even by human eyes under the 3D environment. 

In Fig. 5.12(c), the network with activation unit Leaky ReLU tends to detect cracks whose depths 

exceed certain values, while omitting the shallow cracks. On the other hand, the network with 

Leaky Rectified Tanh can yield more accurate detection on shallow cracks, as illustrated in Fig. 

5.12(d). This demonstrates that the bounding property of Leaky Rectified Tanh intends to 

minimize the difference between a shallow crack and a deep crack, and thus encourages the 

network to learn more geometrical features of cracks instead of being purely dependent on the 

depth information. As a result, Leaky Rectified Tanh is able to detect more shallow cracks by 

contrast with Leaky ReLU. Fig. 13 provides more comparisons between Leaky Rectified Tanh 

and ReLU on shallow crack detection. 

 

   
(a) 3D Testing Images 
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(b) 3D Rendering of Testing Images 

  
(c) Detection Results of Leaky ReLU 

  
(d) Detection Results of Leaky Rectified Tanh 

Figure 5.12. Comparison between Leaky ReLU and Leaky Rectified Tanh - I 
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Original Image 
Config-A 

(Leaky Rectified Tanh) 
Config-B 

(Leaky ReLU) 

Figure 5.13. Comparison between Leaky ReLU and Leaky Rectified Tanh - II 

 

5.4.2 CrackNet-V vs. CrackNet 

To further estimate the CrackNet-V performance, CrackNet (Zhang et al., 2017b) is utilized for a 

comparison study. Table 5.5 summarizes the comparison results between CrackNet and 

CrackNet-V on the same test set containing 500 asphalt images. Although the parameters in 

CrackNet-V is roughly 17 times fewer than those of CrackNet, the F1 score difference in between 

is very little. The F1 score of CrackNet-V (87.12% or 86.46%) slightly surpasses the F-1 score 

produced by CrackNet (85.62%). CrackNet yields a high Precision up to 90.86%, while the 

Precision of CrackNet-V is roughly 84%. However, CrackNet-V can achieve a significantly 

higher Recall 90.12% in comparison with the Recall 80.96% resulted from CrackNet. Generally, 

CrackNet-V is more robust in detecting fine or shallow cracks, while CrackNet performs better 

for wide cracks. Fig. 5.14 and Fig. 5.15 illustrate the comparison between CrackNet and 

CrackNet-V in detecting fine cracks and wide cracks respectively. 

 

Table 5.5. Comparison between CrackNet and CrackNet-V on Testing Data 
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Network 

Type 

Number of 

Parameters 
Configuration 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

CrackNet 1,159,561 N/A 90.86 80.96 85.62 

CrackNet-V 64,113 
A (Leaky Recti. Tanh) 84.31 90.12 87.12 

B (Leaky ReLU) 83.51 89.63 86.46 

 

Fig. 5.14(a) and (b) show some typical fine cracks under 3D environment locating on the right-

side of the images. In Fig. 5.14(c), CrackNet is able to detect most cracks in the middle but 

misses some fine cracks on the right-side, although these fine cracks have no obvious changes in 

width compared with other cracks in the middle. A possible reason is that these fine cracks are 

not fully extracted by the pre-designed filters used in CrackNet due to their shallow depths. In Fig. 

5.14(d), the fine cracks missed by CrackNet are captured by CrackNet-V successfully. In other 

words, CrackNet-V is more sensitive to fine cracks, which probably benefits from the use of filter 

kernels with extremely small size (3×3). 

In Fig. 5.15, however, CrackNet outperforms CrackNet-V in detecting wide cracks. Fig. 5.15(a) 

and (b) show some wide cracks near the pavement markers on the left-side of images. In Fig. 

5.15(c), CrackNet is able to detect the whole of wide cracks near the markers. In Fig. 5.15(d), 

CrackNet-V only recognizes parts of the wide cracks while missing some wide parts, which is 

probably caused by the adverse impacts of small filters. Even though the successive layers with 

small filters theoretically represent a wide range of local receptive fields, the wide cracks could 

not be completely perceived by such small filters. 

In a summary, the small size of filter kernels used in CrackNet-V has both advantage and 

disadvantage. On the one hand, small filters concentrate on feature extraction in small receptive 

field, thus they are more sensitive and efficient in detecting fine cracks. On the other hand, small 

filters in successive layers could not perfectly represent a wide receptive field, resulting in partial 

detection of wide cracks. 
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 (a) 3D Testing Images 

   
(b) 3D Rendering of Testing Images 

  
(c) Detection Results of CrackNet 

  
(d) Detection Results of CrackNet-V 

Figure 5.14. Comparison between CrackNet and CrackNet-V (Config-A) on Fine Cracks 

 

Fine Crack Fine Crack 
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 (a) 3D Testing Images 

      
(b) 3D Rendering of Testing Images 

  
(c) Detection Results of CrackNet 

  
(d) Detection Results of CrackNet-V 

Figure 5.15. Comparison between CrackNet and CrackNet-V (Config-A) on Wide Cracks 

 

Wide Crack Wide Crack 
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5.4.3 CrackNet-V vs. CrackForest (SVM) 

In order to further assess the performance of CrackNet-V, a road crack detection framework 

called CrackForest is introduced for a comparison study on the public dataset named CFD (Shi et 

al., 2016). This CFD dataset consists of 118 urban road surface images with manually labeled 

ground truth contour. 60% of this dataset is used for training and 40% for testing. Since CFD 

dataset is composed of color images, the original pre-processed layer for 3D surface correction is 

removed from CrackNet-V architecture. Instead, the images from CFD dataset are gray-scaled 

and then normalized into the range from -1 to 1. During the testing process, the detected pixels 

which are no more than five pixels away from the manually labeled pixel are assumed as true 

positive pixels.  

The comparison results between CrackForest (SVM) (Shi et al., 2016) and CrackNet-V (Config-

A) are shown in Fig. 5.16 and summary statistics are in Table 5.6. Fig. 5.16 and Table 5.6 show 

that the CrackForest (SVM) generates 89.44% recall and 82.28% precision. CrackNet-V (Config-

A) yields 86.03% recall, slightly lower than that in CrackForest. However, the precision of 

CrackNet-V reached to 92.58%, a much higher value indicating that CrackNet-V has higher 

accuracy in pixel-level crack classification. As a result, the overall F1 score of CrackNet-V is 

89.18% versus 85.71% of CrackForest. 

 

Table 5.6. Comparison between Crackforest and Cracknet-V on CFD Data 

Network Precision (%) Recall (%) F1 Score (%) 

CrackForest (SVM) 82.28 89.44 85.71 

CrackNet-V (Config-A) 92.58 86.03 89.18 
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(a) original testing images 

  

(b) detection results of CrackForest (SVM) 

   

(c) detection results of CrackNet-V (Config-A) 

Figure 5.16. Comparison between CrackForest (SVM) and CrackNet-V (Config-A) on CFD 

Data 

 

5.4.4 Network Speed 

A speed comparison between CrackNet and CrackNet-V is presented here to evaluate the 

computational efficiency of CrackNet-V. Both of these two networks are optimized based on 

CUDA, the parallel computing architecture developed by NVIDIA Company that enables 

Graphics Processing Units (GPU) to complete highly parallel computations, such as image 

processing or deep learning tasks. As the number of parameters is much fewer than that of 

CrackNet, CrackNet-V is more time-efficient.  

Table 5.7 summarizes the speeds of CrackNet and CrackNet-V on a single 512×256 image. With 

single GPU device NVidia GeForce GTX 1080Ti, the time of forward pass and backward pass for 

CrackNet are 1.21 and 8.25 second respectively, and the training of CrackNet using 512×256 

images normally needs four days. With the aid of the same GPU device, by contrast, the time of 

forward pass and backward pass for CrackNet-V are 0.33 and 2.28 second respectively. As a 

result, the training time takes only one day. Generally, CrackNet-V is roughly 3-4 times faster 
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than CrackNet. Such improved computational efficiency of CrackNet-V is beneficial for 

developing real-time applications in the future. 

 

Table 5.7. Average Network Speeds on Single 512×256 Image 

Network 
Forward-Prop Speed 

(sec.) 

Backward-Prop Speed 

(sec.) 

Training 

Time (day) 

CrackNet 1.21 8.25 4 

CrackNet-V 0.33 2.28 1 

 

5.5 Summary 

A CNN-based framework named “CrackNet-V” is proposed and developed for pixel-level 

automated crack detection on 3D asphalt pavements. CrackNet-V does not use any pooling layers 

so that pixel-perfect accuracy can be retained. All filters used at the first six convolutional layers 

are set to small size of 3×3 for effective feature extraction while decreasing trainable parameters. 

In addition, the successive deep convolutional layers used in CrackNet-V also introduce plenty of 

non-linear transformations to enhance network performance. To share the network weights at 

each pixel, median filter based pre-processing layer is proposed to eliminate the negative impacts 

caused by pavement unevenness. Moreover, the activation unit named “Leaky Rectified Tanh” is 

proposed to minimize the convolutional differences among cracks at varying depths. It is 

demonstrated that the proposed Leaky Rectified Tanh yields more accurate detection on shallow 

cracks than that based on the traditional Leaky ReLU. As a consequence, CrackNet-V is able to 

achieve 87.12% F1-score on test set, which slightly outperforms its predecessor named 

“CrackNet”. Besides, CrackNet-V also reaches 89.18% F1-score on a public urban road data set, 

surpassing the traditional SVM-based machine learning approach. It is noticeable that CrackNet-

V only introduces 64,113 trainable parameters, resulting in fast processing speed of 0.33 second 
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per image. Such improved computational efficiency can enhance the application of CrackNet-V 

in the planned real-time processing in the future. 

Although CrackNet-V is effective for most 3D asphalt images, its performance may suffer due to 

the limitations caused by the extremely small size of filters. Particularly, the detection accuracy 

on wide cracks are still not satisfactory. Future developments can be conducted to enlarge the 

receptive fields by stacking more 3×3 convolutional layers or using other means. In addition, 

since there are only two targets (i.e. cracks and non-cracks) annotated in the training images, the 

features of other pavement patterns (i.e. well lids, joints, markers, etc.) are not able to be learnt 

automatically by the network, resulting in false cracking detections caused by interferences from 

other pavement patterns. In the future, multiple targets need to be annotated in the standard image 

library, so that deep learning network can be trained for multiple surface distress features. 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Conclusions 

With the explosive increase in pavement surface imaging data size, pavement survey based on big 

data becomes increasingly critical for pavement management activities. Pavement surface 

visualization and automated crack detection are two vital tasks for pavement data interpretation. 

Using 1-mm automated pavement imaging data, this dissertation investigates available automated 

algorithms as well as their modifications for both large-scale pavement visualization and 

advanced cell-based and pixel-level crack detections. 

Chapter 3 proposes the Geometry Clipmap as an effective approach to visualizing long pavement 

surfaces in 3D environment for simulation of field survey. Geometry Clipmap utilizes nested 

grids based on level-of-details concept to reduce the complexity of 3D pavement model, while 

still retaining the highest resolution of original pavement data for detailed surface inspection. In 

addition, the 2D projection of view frustum is proposed as an alternative method for save 

computer resources by removing redundant geometrical blocks. Furthermore, vertex normal 

computation based on virtual information is applied to smooth visual effects for realistically 

reconstruction of actual pavement surface conditions. In the preliminary system based on 

Geometry Clipmap, a virtual ruler is developed to measure the size of surface distresses or any 

inspector-interested-regions. The significant conveniences of pavement survey based on  



101 
 

large-scale 3D environment can improve the efficiency to make decisions on pavement 

management activities. 

Chapter 4 investigates the Convolutional Neural Network (CNN) for automated pavement crack 

recognition using 3D pavement surface imaging data. CNN utilizes convolutional processes to 

achieve a variation of traditional multi-layer perceptron (MLP) for feature extractions and object 

classifications. In this dissertation, a standard pavement image library containing over 6,000 

samples with manually labeled cracks is established. It is demonstrated that CNN is capable of 

automatically learning meaningful features from manually annotated images for cell-based 

pavement crack recognition. In addition, the performance of CNN for surface damage detection is 

reasonable and consistent over a large data set. However, since CNN is specially designed for 

cell-based image analysis, the accuracy level of automated crack detection is based on image cells, 

which is not able to satisfy practical requirements for pavement management activities. Thus, 

further modifications of CNN model are studied and implemented in Chapter 5 to explore an 

innovative framework that replaces the cell-based crack perception with techniques for the pixel-

level. 

Chapter 5 proposes a novel CNN-based model named “CrackNet-V” as a fast and effective 

approach for the automated pixel-level crack detection. Different from the traditional CNN 

concept, CrackNet-V shares network weights at each pixel to recognize cracking pixels from the 

input image. The sizes of all filters in CrackNet-V are set as 3×3 to extract available features 

while maximally reducing computational needs. In addition, a well-designed pre-processing layer 

is proposed to eliminate the adverse impacts caused by pavement unevenness, while retaining the 

meaningful crack characteristics for enhancing feature extractions. Moreover, a new activation 

unit called “Leaky Rectified Tanh” is created to minimize the convolutional differences between 

shallow cracks and deep cracks, so that cracks at varying depths can be perceived consistently. 

Furthermore, to prevent the gradient explosion during network training process, an effective 
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strategy for sensitivity regularization at the output layer is recommended to balance the sample 

numbers of cracking and non-cracking pixels. As a result, CrackNet-V is able to achieve the 

robust performance of crack detection at pixel-level (87.12 in F1-score) in a short time (0.33 

second per image). The performance and efficiency advantages of CrackNet-V can be further 

exploited for future real-time processing during automated pavement data collection. 

 

6.2 Future Work 

Geometry Clipmap is designed as a nested structure for rendering quadrate shape of terrain 

instead of rectangular pavement surface. In other words, redundant geometrical regions outside 

from long pavement surfaces based on Geometry Clipmap can be removed by other methods for 

saving more computational resources. In addition, the preparation of pyramidal data consumes 

huge amount of time before 3D rendering implementation. There should be some rooms for 

improvement in this type of hierarchical data preparation. Further, other terrain visualization 

techniques (e.g. Quadtree, Chunked LOD, GPU Terrain, etc.) need to be investigated to seek the 

best algorithm for long pavement rendering. 

Even though CrackNet-V reveals remarkable potentials of deep learning on pixel-level asphalt 

crack detection, the performance on other types of pavement surfaces, especially on concrete 

pavements with joints, still requires further development and improvements. In addition, 

CrackNet-V loses a certain of accuracy on wide crack detection due to a series of extremely small 

filter sizes. Furthermore, due to only two targets annotated in pavement surface images, the 

features of other surface patterns (e.g. joints, well lids, potholes, etc.) are not able to be learnt 

automatically and effectively, resulting in lack of distinctions between cracks and other surface 

patterns. In other words, the standard pavement image library may require multiple clean labels 
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(cracking and other distresses) for multiple objects recognition, so that the false-detections of 

pavement cracks caused by other surface patterns can be reduced. 
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