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Abstract:  Nearly 10 million deaths are caused by cancer around the globe every year.  

Blood cancer is responsible for roughly 86,000 deaths in the United States.  Patients’ 

lifespan is improving as new technologies and controlled drug delivery techniques emerge.  

Cancer drug resistance and high required drug dosage remain the major hurdles towards 

improving cancer treatment.  Nutraceuticals, such as resveratrol, are proven to be safe, and 

chemo-preventive action on a wide array of cancer have been used as a method to improve 

the sensitivity of the other drugs in combination therapy.  Nutraceuticals, however, are non-

specific, sparingly soluble in aqueous solution, and bioavailability in vivo is very low, lead-

ing to limited therapeutic effectiveness even at higher doses.  Clinical trials with 150 

mg/day of resveratrol given to healthy volunteers for 30 days showed plasma levels in the 

nanomolar range.  Hence, arises the need for drug delivery of combination therapy to re-

duce the dose required and drug resistance.  In this project, resveratrol is combined with 

leukemia-targeted small interfering RNA (siRNA), and encapsulated in electrospun micro-

fibers, and holo-transferrin PEG-liposomes, respectively.  Experiments were performed 

using single K562 cell cultures, as well as K562 and HUVECs co-cultures.  Resveratrol 

(40 µM) content was analyzed using HPLC and cell viability was assessed using Annexin 

V (Non-viable), and Propidium Iodide (PI) (Necrotic) based flow cytometry.  Electrospun 

microfibers with resveratrol were made using 1:1 PCL-GT blends.  BCR-ABL siRNA (36 

nM)-encapsulated holo-transferrin-conjugated PEG-liposomes were characterized using 

dynamic light scattering, and transmission electron microscopy.  RT-qPCR was performed 

to assess silencing BCR-ABL gene.  The combination therapy was additive, and controlled 

release in a timely manner resulted in 94.32 (±1.70)% K562 cells non-viability after 8-days 

of incubation.  A computational fluid dynamics (CFD) model was developed in this project 

to assess the fluid flow impact on resveratrol release from electrospun microfibers.  A cus-

tom-built bioreactor was designed to validate the model and study the stability of resvera-

trol in cell medium.  Concentration profiles over 5 days were generated.  The model sug-

gested that perfusion velocity may not have a significant effect relative to cellular uptake 

rate and porosity of the surrounding tissue represented by that in the bone marrow micro-

environment. 
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CHAPTER I 
 

 

INTRODUCTION 

Cancer treatment has gained tremendous attention due to its global impact.  Statistically, 18.1 mil-

lion new cases of cancer will be diagnosed globally in 2018, of which, 9.6 million patients are 

expected to die [1].  Chronic Myeloid Leukemia (CML), also referred to as chronic myelogenous 

leukemia, is a type of blood cancer. It starts in the blood-forming cells of the bone marrow and 

invades the blood.  Approximately every 3 minutes, a person is diagnosed with blood cancer in the 

US, and almost 171,550 people in 2016 are diagnosed with leukemia, lymphoma, and myeloma. 

Blood cancer accounts for almost 10.2% of new cancer cases in the US (Figure 1) [2].   

 
Figure 1.1: Estimated new cases of blood cancer in 2016. 

 

Some of the available treatment options, apart from chemotherapy are molecular inhibitors of BCR-

ABL pathway and tyrosine kinase pathway.  Due to significant side effects with such medications, 

alternative therapies have been explored [3].  Supplementation with many nutraceuticals has been 

explored due to their proven safety [4].  
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Resveratrol, a naturally derived product found in red wine, grapes, fruits, peanuts, and pines, has 

been extensively investigated and shown to have a chemopreventive action on a wide array of can-

cer [5].  Resveratrol is, however, sparingly soluble in aqueous solution, and its bioavailability in 

vivo is very low when administered orally, leading to limited therapeutic effectiveness even at high 

doses.  Alternatively, small interfering RNAs (siRNAs), which are 20-25 base pairs in length, have 

been shown to be very effective with local administration in silencing targeted genes since the first 

demonstration in 2010 [6].  However, systemic administration exacerbates side effects.  Further, 

siRNA half-life is near 24 h [7], necessitating a higher dosage.  In order to improve safety, targeting 

is required while minimizing the dosage, so that side effects could be eliminated.  One unique 

approach shown to be more effective in targeting siRNA based delivery to cancer cells is transfer-

rin-receptor based liposomal delivery [8, 9].  I propose combing these two approaches to treat can-

cer for its effectiveness. This is attributed to targeting different cellular pathways, through different 

mechanisms each drug induces.  Hence, combination therapy lowers the probability of drug re-

sistance in cancer cells.  In order to control the release rates independently, two different delivery 

vehicles are explored.  I hypothesize that the synchronized combination treatment through con-

trolled release of each drug, can reduce side effects, and induce higher levels of cancerous cells’ 

non-viability.  To test my hypothesis, the following three aims are investigated: 

Aim 1: Evaluate the influence of controlled release of resveratrol, in combination with siRNA 

on cell viability. Resveratrol-based therapy is hindered by achievable local therapeutic concentra-

tions.  Hence, I will test the controlled release of resveratrol using coaxial electrospun fibers.  

Poly(ε-caprolactone) (PCL) and gelatin (GT) blends were used to load resveratrol, HPLC was used 

to assess the controlled release profile.  I also tested the combination therapy using siRNA, targeted 

towards BCR-ABL pathway to reduce the needed dosage of resveratrol.  A factorial design is per-

formed to evaluate the dosage requirements.  I evaluated the apoptotic and necrotic effects of this 

treatment on K562 cells using Annexin V and Propidium Iodide staining.  In the case of lipophilic 
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resveratrol, fiber configuration showed no significant effect on the release profile.  Upon the con-

trolled release of 40 µM resveratrol from single fibers, roughly 45% non-viable leukemia cells, 

after 8 days of incubation was measured.  However, this percentage dropped to roughly 20% in the 

presence of 36 nM free BCR-ABL siRNA, which lead to further analysis in aim 2.  Detailed find-

ings of aim 1 are described in Chapter III.   

Aim 2: Assess the effect of siRNA-loaded liposomes, in combination with controlled release 

of resveratrol on cell viability.  In order to control the diffusion-dependent release of each drug 

independently, and eliminate any side interaction or side effects, a second delivery system was 

introduced.  K562 cell line was treated with BCR-ABL siRNA-loaded PEG-liposomes.  Liposomes 

123 (±6.65) nm in size were formed using established techniques.  Extrusion and dialysis were 

performed to obtain the desired size and purity.  The surface of liposomes was modified with holo-

transferrin, with 85.9 (±7.30)% conjugation efficiency, and the cell viability analysis was per-

formed.  Roughly 50% of non-viable leukemia cells was measured.  PCL-GT microfibers contain-

ing resveratrol were then used along with siRNA-containing holo-transferrin-derived nano-lipo-

somes.  The treatment was tested in both single cultures of K562 cells, and co-cultures, in the 

presence of HUVECs.  The treatment introduction was tested in a timely manner, showing that the 

delayed addition of liposomes increases K562 non-viability to 92.7 (±2.00)% and 94.32 (±1.70)%, 

in the absence and presence of HUVECs, respectively.  HUVECs non-viability level was signifi-

cantly lower.  Experimental analysis and results are discussed thoroughly in Chapter IV. 

Aim 3: Design a bioreactor to mimic the bone marrow microenvironment, and study the lat-

ter’s effect on the proposed treatment.  Due to the complexity of the biological microenviron-

ment, it is very challenging to experimentally study certain effects of that microenvironment on the 

delivery system.  A cost- and time- effective model was developed to predict these effects.  Since 

liposomes are proposed to be injected intravenously, the main challenge would be predicting the 

release profile of locally-administered micro-fibers in the bone marrow.  In order to understand the 
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various physical effects in the bone marrow microenvironment on the release of resveratrol from 

single fibers, a mathematical model is developed using COMSOL Multiphysics.  This design in-

cluded a cylindrical bioreactor, where inner walls were modified with fiber release of resveratrol.  

The model was used to test several variables, such as blood perfusion rate, cellular uptake, and the 

length of the reactor, on the release profile.  Results showed that the release kinetics are diffusion-

dominated.  Cellular uptake was found to be the main variable affecting the release profile.  The 

model parameters were obtained from literature, and in-house performed experiments, for which 

the stability of resveratrol under various conditions was established, aligning with that in literature.  

The model was successfully validated by performing a flow system experiment, under matching 

conditions such as temperature and flow rate, and analyzing the release of resveratrol using HPLC.  

To further develop the model to mimic the actual bone marrow microenvironment, an outer porous 

layer was added, showing similar simulation results.  These results are presented in Chapter V.   

Broader Impact: The proposed treatment can be applied to different types of cancer.  The pro-

posed two molecules interact additively to inhibit certain cellular pathways leading to apoptosis.  

The delivery systems allow the controlled release of each drug and can be introduced locally.  The 

mathematical model is a powerful tool to predict certain effects of the extracellular environment.  

This can be useful in other application based on the selected system-specific parameters.
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CHAPTER II 
 

 

BACKGROUND 
 

2.1 Single and multi-drug treatment for leukemia 

Various drugs are investigated for the treatment of leukemia, these drugs are tested individually 

and in combination as shown in Table 2.1.  BCR-ABL is a fusion gene found in most patients with 

CML.  BCR-ABL protein downregulation by siRNA showed a reduction in the corresponding 

mRNA and early and late-stage apoptosis.  It has been shown that 84% protein suppression can be 

achieved (no concentration specified for that suppression level, however, 50 nM and 100 nM are 

recommended) [10]. 

Myricetin, a small molecule inhibitor has shown high inhibition activity of the enzyme (hIMPDH1) 

[11]. That enzyme is partially localized in the nucleus of CML derived cells, or K562 cells (Figure 

2.1). It promotes cell growth by controlling the guanine nucleotide pool size [12].  It has been 

shown that Myricetin Inhibition % of that enzyme reaches 64.78%, with IC50 of 6.98 ± 0.22 µM. 

In comparison, other small molecule inhibitors only caused less than 25% inhibition with IC50 of 

>30 µM  [11]. The clinical potential of Myricetin has not been explored, therefore, side effects are 

not known. 
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Figure 2.1: Microscopic image of K562 cell culture (72 hours of incubation). 

 

Imatinib is a tyrosine-kinase (BCR-ABL) inhibitor that is used in CML (chronic myeloid leukemia) 

chemotherapy (3 µM lowers cell metabolism to around 20%) [13]. Imatinib is FDA approved and 

has passed clinical trials, it is used for CML treatment. Reported side effects include: mild to mod-

erate nausea, myalgias, edema, fatigue, dyspepsia, diarrhea, and skin reaction. These side effects 

occur in less than 10% of CML patients. [14]. More occurring side effects include ocular, such as 

abnormal vision and intraocular pressure (Imatinib dosage is 400 mg/day – 800 mg/day) [14]. The 

side effect is also more occurring as skin reactions, including superficial edema (48-65% of cases 

treated), and macular-papular eruption (~67% of cases treated) [15]. ABL drug-related mutation 

has also been reported [13]. 

PPP2R5C pathway downregulation was studied using PPP2R5C-siRNA which drops the expres-

sion levels of PPP2R5C mRNA and protein to less than 15% [16]. 

Mithramycin is shown to inhibit the regulatory associated protein of mTOR - raptor (which regu-

lates other downstream targets including kinases). Relative expression % of raptor dropped to 25% 

(cells were treated with 30 nM) [17]. However, mithramycin inhibition effect on K562 cells has 

been studied over the past two decades [18]. On the clinical level, it has only been shown effective 

on solid tumors [19]. Hence, it’s expected to be a feasible option for this study.  

As K562 cells are known to be TRAIL-resistant, it’s been shown that this resistance can be sup-

pressed using siRNA or Amurensin G to inhibit cell growth and cause apoptosis. The cytotoxicity 
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effect of TRAIL is induced through SIRT1 downregulation which leads to cell death. It’s been 

shown that cell apoptosis reached roughly 22% when treated with SIRT1 siRNA, and 25 ng/ml of 

TRAIL, while that percentage is roughly 27% when treated with Amurensin G and 25 ng/ml of 

TRAIL [20].   

Rilmenidine proliferation suppression effect has also been studied. Rilmenidine is a selective im-

idazoline I1 receptor agonist, that downregulates BCR-ABL pathway upon binding. It’s been 

shown that the percentage of the apoptotic cells increased from 20%, using rilmenidine alone, to 

42% when used synergistically with doxorubicin [21]. 

VEGF (Vascular Endothelial Growth Factor) has been frequently targeted to inhibit the growth of 

solid tumors. One study shows that VEGF is also expressed in leukemia cells. It’s been shown that 

antisense-VEGF can be used to downregulate the expression of endogenous VEGF which lead to 

roughly 10% cell apoptosis [22].  

Polyphyllin D, a compound derived from Paris polyphylla rhizome (Chinese herb), showed inhib-

itory activity on K562. It was shown that the IC50 is 0.8 M for an inhibition percentage of around 

90%. Induction of apoptosis takes place via the mitochondrial apoptotic pathway, through down-

regulation of BCR-ABL expression levels. Apoptosis of K562 was shown to be 25% using 0.8 µM. 

The suppression levels of BCR-ABL is 40%, while that of Bcl-2 is 85% [23]. 

Gallic acid has also been used to inhibit K562 growth. Gallic acid inhibits cell line growth by 

downregulation of COX-2, inhibition of BCR/ABL kinase, and NF-KB inactivation. Growth inhi-

bition of K562 is gallic acid concentration dependent, where 10 µM causes around 15%, while 75 

µM causes around 80% inhibition [24].  

Some inhibitors resulted in high levels of mRNA/protein suppression, with noticeably low apopto-

sis levels. It is also noticed, apart from resveratrol, that only synergistic effect of Rilmenidine and 

doxorubicin resulted in 42% cell apoptosis, while all other inhibitors resulted in less 30%. These 
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results suggest that despite inhibiting certain pathways with high percentage, cells can still survive 

by undergoing alternative pathways, hence low apoptosis level is obtained. This suggests using a 

dual effect of siRNA with another inhibitor to achieve higher apoptosis level.  

Resveratrol showed both high inhibition and apoptosis rates [25]. It inhibits the Sphingosine kinase 

1 enzyme (SPHK1). This enzyme catalyzes the formation of Sphingosine-1-phosphate (S1P), 

which is mainly involved in regulating proliferation and survival. This study shows that the inhibi-

tion rate of K562 by resveratrol (using MTT assay and ELISA kit) reaches around 63% with a 

concentration of 40 µM. Apoptosis rate with the same concentration reaches 58.28% [25].  

Many drugs have been investigated for their potential in treating cancer.  It is inferred that a com-

bination of multiple drugs gives higher cancer cell death levels.  Although combination therapies 

tackle different cellular pathways in cancer or amplify the outcome of a single target, off-site tar-

geting, and high dosing, are associated with problems.  To address those, delivery devices are de-

signed.  

Table 2.1: Single and combination drugs investigated in leukemia treatment. 

Inhibitor Target Protein/mRNA 

suppression 

Cell apoptosis Mwt 

(g/mol) 

Refer-

ence 

siRNA BCR-ABL 84% protein sup-

pression  

- 13,300 
(aver-

age) 

[10] 

Imatinib BCR-ABL 80% cell metabo-

lism suppression 

- 493.603 [13] 

Rilmenidine BCR-ABL - 20% cell apop-

tosis 

180.251 [21] 

Rilmenidine + 

doxorubicin 

BCR-ABL - 42% cell apop-

tosis 

180.251 

+ 543.52 

[21] 

Gallic acid BCR-ABL + 

COX-2 + 

NF-ƙB 

80% growth inhibi-

tion  

- 170.12 [24] 
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Myricetin  hIMPDH1 64.78% inhibition  - 318.2351 [11] 

siRNA  PPP2R5C 85% suppression of 

mRNA expression  
 13,300 [16] 

Polyphyllin D Bcl-2 85% protein sup-

pression  

25% cell apop-

tosis 
855.021 [23] 

Mithramycin Raptor 

(mTOR) 

75% suppression of 

protein expression 

- 1085.15 [18] 

SIRT1 siRNA 

+ TRAIL 

SIRT1 - ≈22% cell 

apoptosis  

120 kDa 
+ 32,509 

Da 

[20] 

Amurensin G + 

TRAIL 

SIRT1 - ≈27% cell 

apoptosis 

534.514 

+ 32,509 

[20] 

Antisense 

VEGF 

VEGF - ≈10% cell 

apoptosis 

38,200 [22] 

Resveratrol  SPHK1 63% inhibition 58.28% apop-

totic cells 

228.247 [25] 

 

2.2 Delivery devices 

Drug delivery refers to methods and techniques, developed for the purpose of transferring a certain 

drug, or multiple drugs, to the site of interest.  Further advantages include lowering the required 

dose to exert an effect on the target and control the release of the drug over a desired period of time.  

In this review, three main methods of delivery are tackled.  Scaffolds, nanoparticles, and electro-

spun fibers.  For purposes of selection, the targeted medium properties, such as porosity, are essen-

tial to consider. 

2.2.1 Scaffolds for cancer drug delivery  

In the field of tissue engineering, highly porous biodegradable scaffolds are utilized to regenerate 

or repair damaged tissues.  Mature cells and stem cells are seeded and allowed to attach to the 

porous structures.  In order to stimulate those cells, stimulants have been sequestered either directly 

in the scaffold or after encapsulation in nanoparticles in order to influence cellular behavior and 
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create a heterogeneous environment.  Similar notion has been extended for delivering molecules 

for cancer therapy.  For example, the microenvironment and cell functionality can be manipulated 

through local gene delivery from scaffolds [26].  Gene delivery using scaffolds have shown im-

proved control upon expression in promoting the regenerated tissue.  Drug release from the scaffold 

is typically controlled by diffusion and cell migration, which limits control upon drug release.  One 

group has shown that scaffolds with magnetic properties can provide remote control to deliver 

molecules such as mitoxantrone, plasmid DNA, and chemokines [27].  

Biomaterials can also be directed for immunotherapy in treating cancer.  A recent review illustrates 

immune therapies using chimeric antigen receptor (CAR)-T cell therapy, among other immuno-

therapies, using various biomaterial carriers  [28].  This review is not re-iterating the mentioned 

reference, however, scaffolds can be combined with the reviewed immunotherapies, to provide 

local immunomodulation.  This avoids systemic toxicity and allows lower dosage administration.  

A recent study has shown that locally delivered cancer drugs from engineered three-dimensional 

scaffolds, can potentially promote systemic antitumor immunity [29].  These recent studies foresee 

that immunotherapy has the potential of transforming cancer treatment in the near future.  Cancer 

immunotherapy future lies mainly in combining T cells, and checkpoint inhibitors for tumor sup-

pression [30]. 

2.2.2 Nanoparticles and ligands in cancer treatment 

2.2.2.1 Nanoparticles in cancer treatment 

Several types of nanoparticles have been investigated for delivery, mainly liposomes and polymeric 

nanoparticles (Figure 3).  A previous study covered the use of polymers in the delivery of siRNA 

[31].  Small molecule cancer therapeutics problems are associated with pharmacokinetics as well 

as the delivery method.  Using polymers can involve the incorporation of nanoparticles, such as 

carbon nanotubes, and gold nanoparticles, to enhance drug delivery.  Although using polymers is 
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advantageous due to properties including, safety, and efficacy, surgery is required to remove the 

non-biodegradable polymer after the drug is released [32].  Delivery of siRNA is the main challenge 

for this type of cancer therapy. Hence, suggesting an effective delivery system is essential for treat-

ment with the latter method. Nanoparticles are favored due to optimal achievable clearance [33].  

Lipid-based nanoparticles delivery of siRNA is preferable to other methods. This potential is 

mainly based on biocompatibility and low toxicity.  

 
Figure 2.2: Schematic representation of liposomes and polymeric nanoparticles. 

 

Endogenous characteristics of siRNA such as negative charge, rigid structure, size, and stability, 

make passive diffusion through cell membrane quite challenging. To address this challenge, endo-

cytosis becomes an effective mechanism of delivery that can be achieved using lipid-based nano-

particles. [34].  Lipid-based nanoparticles are mainly delivered by a sub-category of endocytosis 

called Clathrin Endocytosis.  In this method, vascular internalization of particles occurs with the 

aid of certain proteins, or Catherine, that can induce the formation of vesicles without direct action 

from the cell membrane [35].   

Nanoparticle-based delivery provides various advantages such as increased efficacy, high stability, 

the ability to encapsulate both hydrophilic and hydrophobic molecules, and administer-ability by 

multiple methods [36].  Nanoparticles, however, have a relatively limited carrying capacity, com-

pared to electrospun microfibers.  Premature rupture of the nanoparticle membrane can lead to 

unintended off-target release drug release.  The former self-assembles, and has a bilayer membrane 
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structure, while the latter is composed of biodegradable and biocompatible nanostructures.  Both 

types deliver hydrophilic or hydrophobic molecules, while liposomes can deliver both simultane-

ously by encapsulating each drug in a separate layer.  The inner layer of liposomes encapsulates 

hydrophilic molecules, while the outer layer encapsulates lipophilic molecules.  Drugs are dis-

solved, entrapped or conjugated to the surface of the polymeric nanoparticles [37].  Higher loading 

efficiencies are typically achieved with liposomes (~95%) [38], [39] compared to polymeric nano-

particles (~90%) [40], [41]. 

2.2.2.2 Surface functionalization of nanoparticles 

Ligand-targeted liposomes have shown great potential in many novel delivery systems, with high 

in vivo response due to their active targeting, increased stealth, and controlled drug release (Table 

2.2).  PEG coating (to overcome rapid clearance from circulation) and ligand attachment (to avoid 

non-specific binding) are specifically important to overcome the challenges associated with lipo-

somal delivery systems [42].  

Certain types of ligands (used for a certain type of cancer) provide higher binding efficiency and 

several folds decrease in IC50 value compared to non-targeted liposomes. Peptides, Lactose, mon-

oclonal antibodies, folate, glucose, and transferrin are among the several ligands provided in the 

literature. [42].  For example, cancer cell proliferation requires a high intake of iron, hence cancer 

cells express a high concentration of transferrin receptor [44].  Transferrin and Holo-transferrin 

ligands have been used in the treatment of human leukemia (K562 cells). The former enhanced 

intracellular uptake with fivefold decrease in IC50 (treated with doxorubicin in vitro), while the 

latter has been used with BCR-ABL siRNA delivery (in vitro), and 2.5-folds enhancement in tumor 

uptake (compared to free Bcl-2-siRNA in vivo). Holo-transferrin attachment also showed improved 

tumor growth inhibition, and higher survival time compared to the non-targeted liposomal system. 

[42].  Besides several folds over-expression of the transferrin receptor in malignant cells, transferrin 
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is also expressed in the brain capillary endothelial cells [43].  Accordingly, using transferrin as a 

targeting tool helps to cross the blood-brain barrier, which is an obstacle in many cases. 

Monoclonal antibodies have gained attention in cancer treatment due to overexpression of certain 

differentiation antigens and growth factors on tumor cells, e.g. epidermal growth factor.  Antibodies 

have several affecting mechanisms on target cells, such as agonist activity upon binding to the 

surface receptor, induction of immune pathways, or stromal ablation [44].  Folate receptor is over-

expressed in many tumor cells, such as ovarian, breast, and lung cancer, among others.  This ex-

pression is significantly lower in normal cells.  Folate activates certain cellular pathways, upon 

binding to the folate receptor, which eventually acts upon the nucleus, directly affecting transcrip-

tion  [45].  Nucleolin is another recent targeting method for liposomes and other nanoparticles, to 

deliver drugs such as siRNA and doxorubicin.  Nucleolin is a ribonucleoprotein, which is overex-

pressed in cancer cells and is associated with cell proliferation and apoptosis [46].  It has been 

shown successful inhibition of tumor growth, with no observed non-specific binding  [47].   

Table 2.2:  Ligands in cancer treatment targeting. 

Ligand  Treatment Target  Results Refer-

ences 

Transferrin Doxorubicin K562 Fivefold decrease in IC50 in 

vitro 

[42], [43] 

Holo-trans-

ferrin 

BCR-ABL 

siRNA 

K562 Selective in vitro delivery [42] 

Holo-trans-

ferrin 
Bcl-2 siRNA K562 2.5-fold enhancement in tumor 

uptake in vivo 

80% Bcl-2 siRNA downregu-

lation in vitro 

Tenfold decrease in IC50 in 

vitro 

[42] 

mAB Bcl-2 siRNA B-cell lym-

phoma 

Induced apoptosis by im-

munostimulatory effects  

[44] 
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Folate Doxorubicin Human cervi-
cal and ovarian 

lymphoma 

Tumor growth inhibition  [45] 

Nucleolin siRNA  MDA-MB-231 
breast cancer 

cells  

Inhibit tumor growth  [46], [47] 

 

2.2.3 Electrospun fibers for small molecules delivery  

Electrospinning is a versatile polymer processing technique for the production of micro and nano 

diameter fibers through an electrically charged jet of the polymer solution.  Characteristic diameters 

of the formulated electrospun fiber vary according to electrospinning conditions, such as voltage, 

and pumping speed.  Nano- and microfibers varying from 630 nm to 6 µm in diameter have been 

formed by varying various solution parameters and processing parameters.  Recent advances in 

electrospinning have facilitated the formation of fibers with desirable structural features such as re-

enforced core, hollow, porous, multicoated and tri-axial fibers will provide unique features for fab-

ricated fibers. Controlling the fiber size and formation techniques have been extensively reviewed.  

Readers could refer to those review articles.  This wide range of structure-dependent features makes 

electrospun fibers a good candidate for many applications (Table 2.3).  Electrospun fibers have 

provided unprecedented opportunities that were recently applied in the field of cancer diagnosis 

and therapy.   

Electrospun nanofibers and microfibers are employed in the treatment, diagnosis, delivery, and 

modeling of cancer.  These fibers possess numerous properties including; high loading capacity, 

extremely large surface area, porosity, and high encapsulation efficiency [48].  Once administered 

in the body, electrospun fibers’ degradation, like other properties, depends on their composition.  

Further information about that and the immune response is found in previous studies [49, 50].  

Electrospun nanofibers and microfibers can be modified in terms of morphology and structure to 
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serve different purposes.  Different properties were applied in different applications, those include; 

single fiber, multiaxial fibers, and surface functionalized fibers.  Detecting circulating tumor cells 

is a challenge due to their low count in the bloodstream.  Electrospun fibers have recently been 

studied as a potential selective cell capturing method, due to their cell adhesion, and high surface 

area properties. Electrospun polystyrene fibers attached to antibodies were used to detect cancer 

markers such as; alpha-fetoprotein (AFP), and vascular endothelial growth factor (VEGF) [51].  

Ligand conjugated fibers have also been investigated for cancer targeting.  For instance, folic acid 

modified electrospun poly(vinyl alcohol)/polyethyleneimine (PVA/PEI) nanofibers were used to 

specifically detect cancer cells overexpressing folic acid (FA) receptors such as ovarian and pan-

creatic cancer [52]. 

Another application based on the physicochemical properties of the electrospun fibers and their 

ability to selectively adhere to cancer cells.  This property was specifically incorporated in the 

localized photothermal ablation to tumors.  Poly(caprolactone)-based electrospun microfiber scaf-

fold with covalent surface functionalization of graphene oxide (GO) (PCLMF-GO) have enhanced 

selective cancer cell adhesion and proliferation properties. Graphene oxide can be used to enable 

localized photothermal eradication due to its near-infrared absorbance ability [53]. 

Artemisinin, a chemical compound that reacts with iron to produce free radicals, was incorporated 

in cancer cells treated for free radicals’ ability to kill cells.  Electrospun core/shell nanofibers were 

designed for the purposes of targeted delivery and preserve drug bioavailability. Hyperbranched 

poly(butylene adipate) (HB), which is used as a crystal suppressant for artemisinin, is the core 

material, and Poly(vinylpyrrolidone) (PVP) is the shell material.  This delivery system effectively 

reduced prostatic cancer cell viability [54].  Mycophenolic acid (MPA) has been approved to inhibit 

many types of cancer cells growth.  MPA degrades quickly due to liver uptake, hence a delivery 

method is essential to address this issue.  Coaxial fibers of poly(ε-caprolactone) (PCL) core loaded 
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with MPA and PCL shell was used for controlled release of MPA [55].  This fiber system was 

applied to glioblastoma multiforme (GBM) tumor cells, which indicated strong cell suppression.   

In addition to diagnosis, treatment and drug delivery, electrospun fibrous scaffolds (aligned PCL 

fibers) were employed to mimic the extracellular environment of tumors.  A fibrous scaffold with 

random and aligned orientations was designed to study the three-dimensional structure of the ex-

tracellular matrix of breast cancer [56].  Breast cancer cells showed overexpression of transforming 

growth factor β-1 (TGF β-1), which is attributed to their response to the polymer scaffold.  Despite 

promoting cell growth, it has, nevertheless, been shown that TGF β-1 can trigger cellular responses 

such as differentiation and apoptosis [57]. 

Table 2.3:  Electrospun fibers in cancer treatment. 

Electrospun Fiber Application Year Reference 

Polystyrene nanofibers Cancer markers detection (AFP, CEA, 
and VEGF) 

2013 [51] 

PVA/PEI nanofibers FA overexpressing- cancer cells 2016 [52] 

PCL-GO microfibers Breast cancer adhesion/localized pho-

tothermal ablation 

2017 [53] 

HB/PVP core/shell nanofibers Artemisinin delivery to a prostatic can-

cer cell 

2017 [54] 

PCL/MPA / PCL core/shell fibers MPA delivery to (GBM) tumor cells 2017 [55] 

PCL fibers Modelling ECM indicated by TGF β-1 

overexpression 

2011 [56] 

 

Electrospun microfibers (Figure 2.3) has the potential to deliver higher doses of nutraceuticals due 

to their high surface area, and high carrying capacity.  Microfibers, however, are associated with 

the limitation of systemic administration.  Since the latter is not possible with this method of deliv-

ery, local administration is suggested.  Similar to a bone marrow biopsy procedure, or stem cell 

local administration [58], microfibers can be placed in the bone marrow, for example, to controlla-



17 

 

bly release and deliver nutraceuticals with therapeutic effects.  This procedure requires further in-

vestigation, and future research can reveal possible methods for local administration, required 

amounts microfiber, and dosages of delivered therapeutic.  Investigating this approach might be 

challenging and would require in vivo testing, however, local delivery of therapeutic nutraceuticals 

can sensitize the target cells for further targeted treatment.  The latter can be administrated system-

ically in series with local drug delivery, where cells are primed for the targeted treatment [59].  

a 

 

b 

 

c 

 

Figure 2.3: Scanning Electron Microscope (SEM) images of electrospun microfibers at dif-

ferent magnifications (a ×9000, b ×3500, and c ×1000). 

 

2.3 Combined drug delivery  

This section will discuss the advantages and challenges associated with delivery systems for com-

bination therapy.  When selecting a delivery method, a researcher is advised to go through the 

following steps: 

1) Define the target tissue/organ/cells, and have a good understanding of the target microenviron-

ment. 

2) Define the chemical and physical properties- such as molecular weight, size, charge, and hydro-

philicity. 

3) Select the required scale; nanotechnology or Microsystems can be selected based on medical 

needs, drug loading requirements, and level of release control. 
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This section provides a comprehensive view that will help in selecting the appropriate delivery 

method based on recent literature findings. 

2.3.1 Multi-drug therapy using a single delivery method  

Combinatorial therapy has been explored for its synergistic effect in treating drug-resistant cancers 

(Table 4).  Higher doses can be delivered inducing desired effects, however, the release profile of 

each drug usually differs, creating further challenges.  Controlled release is essential to achieve the 

required dose of each drug at the site of interest.  

Nanoparticles have been used to carry multiple drug payloads.  Multiple drugs are incorporated 

into the delivery vehicle and released in a controlled manner.  Lipid bilayer spherical vesicles, or 

liposomes, are one approach for combination drug delivery.  One example is CPX-351 liposome 

used for leukemia treatment.  This liposomal system can be loaded with cytarabine and daunorubi-

cin [60].  Another method is polymeric-nanoparticles which consist of solid polymeric cores.  The 

latter is more suitable for delivering water-insoluble drugs.  Polymer-drug conjugates have also 

been explored.  They show enhanced delivery of water-soluble molecules such as paclitaxel, dox-

orubicin (DOX), and camptothecin.  The delivery system improves the pharmacokinetics and effi-

cacy of these drugs [61]. 

Others have investigated core-shell nanoparticles for combination delivery.  For example, tumor 

necrosis factor-related apoptosis inducing ligand (TRAIL) and DOX have been co-encapsulated 

into a core-shell nanoparticle, resulting in a synergistic effect by targeting different pathways [62]. 

Nanoparticles have emerged as promising carriers for multidrug delivery.  Small molecule drugs 

can be co-encapsulated into the same nanoparticle.  Both hydrophilic and hydrophobic drugs can 
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Table 2.4:  Combination of treatment delivery for cancer applications. 

Delivery method Loaded drugs Target Reference  

Polymer drug conju-

gates 

Verapamil, and DOX  Leukemia [61] 

Core-shell nanoparti-

cles  

TRAIL and DOX Lung cancer  [62] 

Liposomes  cytarabine/daunorubicin 

(CPX-351) 

Acute Myeloid Leukemia [60] 

Lipid micelles  Hydrophobic inhibitor of 

transforming growth factor 
β (TGF-β), and the hydro-

philic protein interleukin-2 

Tumors and stromal cells [63] 

Liposomal hydrogel 

scaffolds  

Regenerative cells, protein, 

and  growth factor 

Implant at the target site [64] 

Co-electrospun nano-

fibers 

BSA and myoglobin Improve cellular interac-

tions, (cell adhesion, prolif-

eration, and differentiation) 

[65] 

 

be encapsulated.  The solvent selection process for these drugs is a key requirement for successful 

encapsulation of different polarity drugs [66].  This delivery method has enhanced the synergy, and 

pharmacokinetics associated with each drug [67].  Many types of nanoparticles have been explored 

for their potential in multidrug delivery.  Liposomes have been used to deliver and enhance the 

efficacy of chemotherapy pairs.  Lipid micelles have been utilized for their high drug loading ca-

pacity and tunable sizes.  Also, they have shown promising results in clinical trial phase I for a 

variety of cancers [63].  Liposomal hydrogel scaffolds have been explored for localized delivery.  

These scaffolds can be pre-designed outside the body to form its three-dimensional shape to be 

administrated locally [64].  Others have explored co-electrospun nanofibers for multidrug delivery.  

A composite system of this delivery method can be formulated for loading multiple drugs, where 

the system is composed of a mixture of different-drugs-loaded electrospun nanofibers [65].  
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2.3.2 Multi-drug therapy using multi-delivery methods  

Although several combination delivery techniques have been explored, the multi-delivery method 

has not been thoroughly addressed.  Nanocarriers, for example, have been used as a single delivery 

method for multi-drug delivery [68].  However, using multiple, different, delivery methods can 

improve the release profiles and time of administration for combination therapy.  This method re-

duces multidrug resistance in cancer cells, attributed to the optimal synergistic effect achieved by 

sequential administration of each drug.  For instance, liposomes can be combined with other types 

of nanoparticles, such as core-shell nanoparticles, to deliver two or more different drugs.  Using 

this method of delivery introduces better flexibility regarding the time of administration, and con-

trol upon the optimal effect on each drug, based on their kinetic profiles (of uptake and release).   

Nanoparticles co-administration of multiple drugs improve both the uptake and the cytotoxicity of 

the combination therapy [69].  DOX-encapsulated nanoparticles were administrated in combination 

with verapamil-encapsulated nanoparticles, inducing higher toxicity effects on NCI/ADR-RES 

cells compared to the single delivery method [70].  Administration of electrospun fibers, however, 

remains a challenge.  As nanoparticles could be administered intravenously, local administration is 

suggested for electrospun fibers.  This procedure has been explored to promote cartilage regenera-

tion [71].  However, the area of local administration of electrospun fibers for drug release remains 

nascent. 

2.4 Kinetic and parametric modeling of electrospun fibers and nanoparticles 

Electrospun fibers delivery is carried out through two main routes: 1) drug release from the fibers 

and 2) cellular uptake of the drug.  Each step includes several factors to be taken into consideration 

when designing fibers as delivery vehicles.  In the first step, the hydrophilicity/lipophilicity of the 

drug affects its diffusion and permeability as it is released from the fiber.  These parameters can be 

modeled as discussed later in this section.  The second step occurs once the drug is released (Figure 

2.4), and it is dependent on the drug’s chemical nature, and the microenvironment at the target site. 
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Figure 2.4: Schematic representation of drug release and uptake. 

 

Certain enzymes or side targets cellular uptake may take place and may lead to significant depletion 

of the drug even if maximum release is reached.  Both steps should be taken into account in order 

to achieve a fully controlled delivery process.  As opposed to electrospun fibers, nanoparticles, 

such as liposomes, are not associated with release rates, but rather uptake rates.  Hence, loading 

efficienc and particle rigidity are more relevant parameters that are introduced in this section. 

Electrospun fibers have the potential to deliver various cancer drugs and have a wide range of 

applications.  It is essential to establish a release profile for the electrospun fiber, as the controlled 

release is achieved through a well-established release model.  A previous review [72] has shown 

various models associated with different types of electrospun fiber.  Both lipophilic and hydrophilic 

molecules have been released from electrospun fibers.  It was found that the structure of electrospun 

microfibers (single, co-axial, or tri-axial) has an effect on releasing hydrophilic molecules, while 

this effect is negligible when releasing lipophilic molecules [73, 74].  This is attributed to the mass 

transfer dominating process occurring in each case.  Lipophilic drugs are mainly replaced by water 

molecules resulting in a dominating partition coefficient factor (Eq. 1) [75].  This number is a 
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measure of solubility of molecules in an organic (octanol) versus aqueous (water) solution.  The 

larger the partition coefficient value, the more lipophilic the molecule.  Hydrophilic molecules, 

however, are released by a dominating diffusion factor which can be experimentally determined as 

given by Fick’s law (Eq. 2) [76].  The concentration profile can be generated experimentally, and 

the diffusion coefficient can be determined by the slope of flux versus concentration-distance gra-

dient line.  For release from single layer fibers of (1:1 of PCL and GT), the diffusion coefficient is 

generally > 10-10 m2/hour for lipophilic molecules, and < 10-10 m2/hour for hydrophilic molecules 

[73], [74]. 

𝐾𝑐 =  
𝐶𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝐶𝑤𝑎𝑡𝑒𝑟
    (1) 

𝐽 = −𝐷𝑎𝑏
𝑑𝐶

𝑑𝑥
    (2) 

Where 𝐾𝑐 is the partition coefficient, 𝐽 is diffusional flux (given in mol m−2 s−1), 𝐶 is drug’s con-

centration, 𝐷𝑎𝑏 is the diffusion coefficient, and 𝑥 is the diffusion path length.  

Nanoparticles are also characterized by their rigidity and loading capacity.  The diffusion coeffi-

cient of nanoparticles depends on the particle’s rigidity [77].  It has been shown that soft nanopar-

ticles (10 nm) in polymeric matrices (20 nm) increases their diffusion coefficient.  Another study 

describes rigidity models for nanoparticles [78], where the stiffness factor is given by Eq. 3. 

𝐶𝑠 = 𝜀 (
𝐶𝑎

𝐶𝑏
)

2

    (3) 

where 𝐶 = √
𝐸

𝜌
 is the one-dimensional speed of sound in the solid, E is the Young’s modulus and ρ 

is the density, a and b refer to the adsorbate and the cantilever, respectively, and 𝜀 is a dimension-

less parameter.  It is shown that the stiffness coefficient for gold nanoparticles is roughly 0.03.  
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Loading efficiency and capacity, as well as kinetic studies, can be performed on nanoparticles.  A 

recent investigation of the kinetics of polymyxin B (PMB) loading onto anionic mesoporous silica 

nanoparticles (MSN) is presented in another study [79].  The loading capacity (LC) is given by Eq. 

4. 

𝐿𝐶 =
(𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑃𝑀𝐵−𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑜𝑛𝑎𝑑𝑠𝑜𝑏𝑟𝑒𝑑 𝑃𝑀𝐵) 

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑀𝑆𝑁
  (4) 

Loading capacity depends highly on the particles and drugs chemical and physical nature.  Emul-

sions, for example, result in significantly higher loading capacities compared to suspensions.  This 

is due to drug solubilizing effect by a liquid matrix of particles, compared to that of the solid crys-

talline matrix.  It has been shown that up to 50% higher loading is achieved by emulsions compared 

to suspensions [80].  
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CHAPTER III 

 

 

 
CONTROLLED RELEASE OF RESVERATROL, IN COMBINATION WITH SIRNA, EF-

FECT ON LEUKEMIA CELLS VIABILITY 

 

 

 3.1 Introduction 

Resveratrol gained significant attention in the early 1990s, consumption of red wine in France was 

attributed to the low incidence of cardiovascular diseases, despite higher consumption of saturated 

fat [81].  This was termed “French paradox,” and provided significant impetus to exploring resvera-

trol as a dietary supplement in cardiac and cancer therapies [82, 83].  Molecular mechanisms 

through which resveratrol mediate such interactions is explored in various disease models, includ-

ing cancer [84].  In vitro studies show that resveratrol induces apoptosis via sphingosine kinase 1 

(SphK1) inhibition, which is associated in promoting various types of cancers including CML [85], 

and prostate cancer [86].  Others have shown that resveratrol causes autophagy in K562 cells, the 

erythroleukemia cell type commonly used to study CML [87] and the formation of intracellular 

autophagosomes [88].  Resveratrol is shown to cause changes in mitochondrial activity [89] using 

tetrazolium salt-based calorimetric assays, which is reduced to formazan. 

Clinical trials performed by administering 500 mg of trans-resveratrol showed no significant side 

effects [90].  Another study with 150 mg/day of trans-resveratrol given to healthy volunteers 

showed signs of calorie restricted diet effects [91].  However, plasma levels after 30 days were in 

the nanomolar range, nearly 3 orders of magnitude less than required to cause apoptosis in cancer 

cells in vitro.  
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Rapid reduction in the bioavailability of resveratrol after systemic administration is attributed to 

various factors, including biotransformation, short half-life (1-3 hours), rapid uptake by cells, and 

lipophilic characteristics with limited solubility in water [92, 93].  Metabolism of resveratrol also 

varies from person to person due to alterations in gut-associated bacteria [94].  In order to obtain 

therapeutic levels needed for inducing apoptosis, controlled release of trans-resveratrol at the site 

of interest is necessary.  In addition, combining resveratrol with other drugs targeting other cellular 

pathways could reduce the dosage requirements [95, 96].   

Recently, electrospun fibers have emerged as ideal candidates in drug delivery systems, as they 

offer a better degree of control over the release kinetics relative to competing methods such as 

nanoparticles [97].  In particular, the formation of multilayered core-shell fibers using multiaxial 

electrospinning allows sequestering stimulants in different compartments to modulate the release 

kinetics [98].  Also, one could blend lipophilic polymers, such as poly(ε-caprolactone) (PCL), and 

hydrophilic polymers, such as gelatin (GT), in various ratios and form fibers.  These combinations 

allow encapsulation of both hydrophilic and lipophilic (or hydrophobic) drugs while providing a 

high surface to volume ratio, cell attachment, and drug loading.  These polymers are also biocom-

patible and biodegradable i.e., they can be locally implanted with the expectation of complete deg-

radation.  However, there is a lack of model-based fundamental understanding of the influence of 

such layering and polymer selection on the permeability of lipophilic drugs.  

In this regard, I first tested the combination effect of resveratrol and small interfering RNA 

(siRNA), to downregulate the fused breakpoint cluster region (BCR)-Abelson (ABL) tyrosine ki-

nase gene pathway; BCR-ABL deregulation is shown to be sufficient to sustain CML phenotype 

[99, 100].  Based on the literature reports, resveratrol [85] and siRNA [10] dosage were selected.  

Combination of resveratrol and siRNA was more effective in inducing apoptosis even at lower 

doses.  Next, I selected 40 M resveratrol and formed PCL-GT hybrid coaxial fibers using a com-

mon solvent and a previously published method [101].  I evaluated the release profile of resveratrol 
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and its effect on K562 cells.  Loading resveratrol into electrospun fibers provided a delivery method 

needed to obtain dosage levels locally.  Evaluation of permeability using resistance in series model 

showed no dependency on layering, suggesting that the rate of lipophilic drug release is less de-

pendent on various layers. 

3.2 Materials and methods 

3.2.1 Materials 

PCL (80 kDa, Mn = 80,000), Type A gelatin (porcine 300 Bloom), 2,2,2-trifluoroethanol (TFE), 

Caffeine, propidium iodide (PI) powder, sterile dimethyl sulfoxide (DMSO), and trans-resveratrol 

were purchased from Sigma-Aldrich (St. Louis, USA).  A custom-synthesized BCR-ABL siRNA 

(5′-GCAGAGUUCAAAAGCCCTT-3′), and a corresponding scrambled siRNA (5’-GCCCCAA-

GATATAGGTTCA-3’) were purchased from Integrated DNA Technologies (Coralville, IA).  An-

nexin V FITC conjugate was purchased from Thermo Fisher Scientific.  K562 cells were purchased 

from ATCC (Manassas, VA) and cultured in RPMI 1640 medium (Sigma-Aldrich, St. Louis, USA), 

2 mM Glutamine, prepared with 10% FBS obtained from ATCC (Manassas, VA).   

3.2.2 Cell culture maintenance 

K562 cells were cultured in T75 cell culture flasks following the vendor’s protocol.  In brief, cells 

were incubated in 5% CO2/95% air, at 37 C and culture medium was changed every 3 days by 

centrifuging cell suspensions for 5 minutes at 840 ×g and 4 ᵒC.  The formed cell pellet was re-

suspended in 9 mL of fresh culture medium and plated in a fresh T75 flask.  All cultures were 

routinely monitored under an EvosTM AME-i2111 Digital Inverted Microscope, and when neces-

sary, phase contrast micrographs were obtained at random locations.   
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3.2.3 Resveratrol and siRNA dosage effect in solution 

For all experiments, cells were harvested, counted using the hemocytometer, and 2×105 cells/mL 

were cultured in a 6-well plate with 2 mL of fresh media for each well.  All cell cultures were 

incubated for 72 hours prior to analysis for viability as described in cell viability section.  

Resveratrol alone: A 40 mM stock solution of resveratrol was dissolved in DMSO and stored at 4 

ᵒC until further use.  Based on a previously published report [85], samples were prepared with 0, 

10, 20, 40, 80, and 160 µM resveratrol concentrations.  Zero concentration condition had DMSO 

equivalent to that present in 160 µM resveratrol condition, added directly.  

siRNA alone:  A stock solution of 625 nM siRNA in 150 mM NaCl was prepared.  Based on a 

previously published report [10], samples were prepared with 0, 12, 24, 36, 48, and 60 nM range 

of siRNA concentration.  Zero concentration condition contained NaCl equivalent to that present 

in 60 nM siRNA condition, was added directly.  Scrambled siRNA was tested at 36 nM concentra-

tion. 

Resveratrol and siRNA combination experiments: Three conditions were used based on a factorial 

design of experimental approach:  

i) 40 µM resveratrol and 36 nM siRNA.   

ii) mid-point concentrations using 20 µM resveratrol, and 18 nM siRNA  

iii) Control samples were prepared by directly adding DMSO and NaCl solution equivalent to that 

present in 40 M resveratrol solution and 36 nM siRNA solution.  

3.2.4 Cell viability analysis 

After various incubation times, cells were centrifuged at 840 ×g for 5 minutes, and washed with 

phosphate buffer solution (PBS, 7.2 pH, prepared in-house using 8 g NaCl, 0.2 g KCl, 0.2 g 
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KH2PO4, and 2.17 g Na2HPO4-7H2O in 975 mL DI water) with 0.1% BSA (1 mL for every 2×105 

cells).  Then cells were stained with Annexin V buffer, using the vendor’s protocol.  In brief, cells 

were centrifuged again and washed with Annexin V buffer solution (140 mM NaCl, 4 mM KCl, 

0.75 mM MgCl2 and 10 mM HEPES in DI water).  Cells were centrifuged and re-suspended in 

Annexin V buffer solution (50 µL per 105 cells).  Then, 1 µL per105 cells of Annexin V FITC 

conjugate were added and incubated on ice for 15 minutes.  Also, 50 µL per 105 cells of Annexin 

V buffer was added, followed by 4 µL of PI (100 mg/L), and then incubated in ice for another 15 

minutes. Cells were washed with 500 µL of Annexin V buffer solution, and the suspension was 

then discarded.  The cells pellet was re-suspended in 500 µL of Annexin V buffer solution and 

incubated on ice for 10 minutes before samples were analyzed using a FACSCalibur (Becton Dick-

inson, San Jose, CA) flow cytometer.  Unstained samples and individually stained samples were 

used as controls.  Obtained data for each sample was plotted in dot plots, where the cell populations 

separate into at least two groups: live cells with a low level of fluorescence and non-viable cells 

with substantially higher fluorescence intensity.  Dead cells were labeled with both the PI and An-

nexin V conjugate.  Based on this information, percentages of dead cells were obtained using a 

standard quadrant analysis.   

3.2.5 Stability of resveratrol in culture medium 

In order to understand the changes in resveratrol concentration during 3-day incubation, cell culture 

experiments were performed in 6-well plates in two groups: i) with 2×105 K562 cells/mL cells and 

ii) without cells, but with the same amount of cell culture medium.  In both groups, 40 M resvera-

trol was added to the culture medium using the same stock solution used in viability.  All conditions 

were incubated in 5% CO2, and 37 C.  From each group, the culture medium was collected every 

24 hours and analyzed for resveratrol content using HPLC.  Samples with cells were centrifuged at 

840×g to remove the cells.  Resveratrol concentration (released drug) was measured using an 



29 

 

HPLC, using a previously reported method with minor modifications [102].  In brief, a 4.6 × 150 

mm C18 column (Acclaim, National Scientific Rockwood, TN) was used, with a 5 µm particle 

diameter, and a 120 Å pore size.  A 4.6 × 10 mm C18 guard column with a 5 µm particle diameter 

(Acclaim, National Scientific Rockwood, TN Guard Cartridge, and Cartridge Holder) was also 

used.  The mobile phase consisting of 30% acetonitrile, and 70% 25 mM sodium phosphate mono-

basic at pH 4.0 was prepared using HPLC grade chemicals.  Mobile phase flow rate was set at 4 

mL/min, and the injection volume was set to 25 µL.  Caffeine was used as the internal standard.  

Resveratrol samples were dissolved in the mobile phase, while the internal standard was dissolved 

in methanol, and a ratio of 2:1 of resveratrol to internal standard was used.  HPLC system was 

controlled using Chromeleon software (version 6.8 Dionex Sunnyvale, CA).  A calibration curve 

was also prepared (in the range of 0 to 160 M) similarly, using known resveratrol concentrations.   

For each group, at least three samples were used.  Obtained data at different time points were plotted 

as an average (± standard deviation) and curve fitted to understand the kinetic behavior.  

3.2.6 Preparation of electrospun fibers with resveratrol 

Based on prior studies [103], 10 and 17 wt% concentrations of PCL and GT, respectively, were 

dissolved independently in the common TFE solvent.  All solutions were stirred for 24 hours.  Then 

1:1 (volume basis) ratio of PCL and GT solutions were mixed together prior to electrospinning.  

Electrospinning was performed using the methodology described previously, with minor modifi-

cations [101].  In brief, setup (Figure 3.1a) consisted of two syringe pumps (74900 series, Cole-

Parmer, Vernon Hills, IL), coaxial needles, syringes, high voltage power supply (ES30P-5W/DAM, 

Gamma High Voltage Research, Ormond Beach, FL), earth grounding, and a collection mandrel.  

Solutions were loaded into a 10 mL syringe and fed to a spinneret held at 17 kV.  Core needle inner 

diameter was 0.4 mm while the shell inner diameter was 1.00 mm.  Syringes were connected to the 

spinneret via 30 cm long 20-gauge PTFE tubing (Sigma Aldrich, St. Louis, MO).  Core solution 
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was pumped independently at 1 mL/h, while the shell solution was pumped at 3 mL/h.  Electro-

spinning was performed in low humid conditions (<50%) at 22 C.  The distance between the col-

lector plate and the spinneret was 15 cm.  A collector plate made of aluminum foil wrapped around 

a 6-well tissue culture plate was used as described previously [104].  In order to improve the han-

dling of the prepared structures, circular voids were created in the collector plate that corresponded 

to a diameter suitable to fit a 6-well plate.  The amount of resveratrol added to the fiber preparation 

was based on correlating the well area (35 mm diameter) to the volume of resveratrol added.  These 

calculations showed that 2 µL of 40 mM resveratrol stock solution was needed for each well, i.e., 

12 µL per 2 mL of fiber solution when collected on a 6-well plate.  Since fibers were deposited in 

areas around the circular void (~ 38% of the total solution), the amount of resveratrol added was 

proportionally increased.  Hence, 16.56 µL of 40 mM resveratrol stock solution was loaded into 2 

mL of core fiber solutions.  

Then setup was configured to form fibers in four configurations as follows:  

i) Control: With an outer PCL-GT and an inner core of PCL-GT without resveratrol (Figure 3.1b) 

ii) Single: Only one stream of PCL-GT with resveratrol (Figure 3.1c) 

iii) Co-Single: With an outer PCL-GT and an inner core of PCL-GT containing resveratrol, provid-

ing a single phase (Figure 3.1d), but loading resveratrol in the core increased the distance the drug 

has to travel.   

iv) Co-PCL: With an outer PCL-GT and an inner core of PCL containing resveratrol (Figure 3.1e), 

as PCL core allows evaluating resveratrol release from a hydrophobic polymer, which is compatible 

with hydrophobic (or lipophilic) resveratrol.   
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Figure 3.1: Resveratrol loaded electrospun fibers formation (a) Schematic of coaxial electro-

spinning showing various components.  (b) Control configuration showing coaxial PCL-GT fiber 

with PCL-GT inner core and no resveratrol schematic and corresponding micrograph.  (c) Single 

PCL-GT fiber with resveratrol schematic and corresponding micrograph.  (d) Coaxial PCL-GT 

fiber with PCL-GT inner core with resveratrol schematic and corresponding micrograph. (e) Coax-

ial PCL-GT fiber with PCL inner core with resveratrol schematic and corresponding micrograph.  

Small circles within the inner core represent resveratrol. 

3.2.7 Fiber characterization 

Dry fibers from all configurations were analyzed using a scanning electron microscope (SEM) (Jeol 

JOEL 6360USA Inc., Peabody, MA), similar to a previous publication [104].  In brief, samples 

were cut into 2-mm strips, attached to an aluminum stub using double-sided conductive tape, and 

sputter-coated with gold for 1 min to make the samples conductive.  Samples were visualized at 24 

kV accelerating voltage, and 1000× magnification.  Using the digital micrographs in ImageJ, fiber 

size and porosity were analyzed, similar to a previous publication [101]. 
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In order to determine the initial loading of resveratrol, it was selectively extracted from each fiber 

configuration using 30% acetonitrile, and 70% 25 mM sodium phosphate mono-basic at pH 4.0.  

Samples were incubated for 48 hours at room temperature, where the containers were completely 

wrapped using parafilm.  Samples were collected while ensuring there were no fiber components 

prior to analysis using HPLC as described above.   

3.2.8 In vitro release of resveratrol 

PCL-GT electrospun fibers from all four configurations were cut to the circular area (35 mm in 

diameter) formed at each well of the void collector plate.  Fibers were sterilized before introduction 

to cell culture using the following process: 2 mL of 100% ethanol was added to each well for 25 

minutes.  Ethanol was removed, sterile PBS was added for 20 minutes, which was replaced by 2 

mL of fresh medium.  Then, the medium was removed, and fibers were kept under UV for 1 hour 

inside a biosafety cabinet.  Then, 2 mL of 2×105 K562 cells/mL solution was added to each well 

and incubated in 5% CO2, and 37 C.  After 1, 4, 9, 24, 26, 48, 72 and 96 hours of incubation, 25 

µL samples were collected from each condition.  Each sample was centrifuged at 840×g to remove 

the cells, resveratrol concentration was determined using the HPLC method as described above.  

For each group, at least three samples were used.  Obtained data at different incubation times were 

plotted as an average (± standard deviation) and curve fitted to understand release behavior.   

In order to determine cell viability, additional experiments were performed where they were termi-

nated at day 3, day 5 and day 8.  For each day, at least three samples were used.  Cells were collected 

at these time points and viability was determined using Annexin V and PI staining as described 

above.   

Cell cultures were also performed using fibers and siRNA at 36 nM concentration added directly 

to the cell culture.  These cultures were terminated at day 3.  Cells were collected at these time 

points and viability was determined using Annexin V and PI staining as described above 
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The cell-containing samples were fixed in 3.7% formaldehyde for 30 min at room temperature, 

washed with ethanol, and stored in the desiccator for 48 hours, prior to sputter coating with gold at 

40 mA for SEM analysis.  

3.2.9 Statistical Analysis 

All experiments were repeated three or more times.  Average values along with standard deviation 

were calculated.  Significant differences between two groups were evaluated using a one-way anal-

ysis of variance (ANOVA) with a 98% confidence interval.  When P < 0.02, differences were con-

sidered to be statistically significant. 

3.2.10 Modeling resveratrol permeability in PCL-GT fibers 

In order to determine the permeability of resveratrol through different layers of coaxial PCL-GT 

fibers, the model described in the previous publication [101] was used with minor modifications.  

In brief, based on model studies using the Korsmeyer-Peppas power-law model [105, 106, 107], 

drug release from PCL-GT fibers was assumed to obey Fickian diffusion, given by: 

𝑑𝐶𝑅𝑒𝑠,0

𝑑𝑡
=  

𝑃𝑆

𝑉
(𝐶𝑀𝑎𝑡𝑟𝑖𝑥 − 𝐶𝑅𝑒𝑠,0)   (5) 

where 𝑆 is the total surface area of the matrix (7479 mm2), and 𝑉 is the total volume (2000 mm3) 

of the RPMI medium used to incubate the matrix, 𝐶𝑀𝑎𝑡𝑟𝑖𝑥  is the resveratrol concentration in the 

matrix, and 𝐶𝑅𝑒𝑠,0 is the actual resveratrol concentration in the solution prior to decay.  In order to 

calculate 𝐶𝑀𝑎𝑡𝑟𝑖𝑥 , volume of solids in the matrix was calculated using the fiber fraction () and the 

sample volume.  Then, 𝐶𝑀𝑎𝑡𝑟𝑖𝑥  was obtained by dividing resveratrol content by the volume of sol-

ids.   

Using the initial boundary condition when 𝑡 =  0, 𝐶𝑅𝑒𝑠,0 = 0, integrating Eq. 5 gives Eq.6: 
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ln (
𝐶𝑀𝑎𝑡𝑟𝑖𝑥− 𝐶𝑅𝑒𝑠,0

𝐶𝑀𝑎𝑡𝑟𝑖𝑥
) = −𝑃

𝑡𝑆

𝑉
       (6)  

From the obtained concentrations at various times, ln (1 −
𝐶𝑅𝑒𝑠,0

𝐶𝑀𝑎𝑡𝑟𝑖𝑥
) was calculated.  Using a linear 

fit, overall permeability (m/h) for each configuration was calculated based on the slope value.  In 

order to test the effectiveness of multiple layers on permeability, overall resistance (inverse of over-

all permeability) to the transport of resveratrol can be considered as the sum of the resistances 

(inverse of individual permeability) from individual layers.  This is given by Eq. 7:  

1

𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙
=  

1

𝑃 𝑃𝐶𝐿
𝐺𝑇𝑠ℎ𝑒𝑎𝑡ℎ

+
1

𝑃𝑐𝑜𝑟𝑒
   (7) 

Assuming that the Permeability of single PCL/GT fiber remains the same in the outer sheath in 

coaxial fibers as the concentrations of polymers and flow rates were identical, the resistance of the 

inner core was calculated for different configurations. 

3.3 Results 

3.3.1 Effect of resveratrol and siRNA on K562 cells in cell culture medium 

Based on literature reports regarding the effect of resveratrol concentration added directly to the 

cell culture medium [85], first I investigated that effect on K562 cells viability.  These results (Fig-

ure 3.2a) showed that when resveratrol is added directly to the cell culture medium, it induces 

K562 cell death in a dose-dependent manner, in agreement with published reports [85].  However, 

MTT assay was used in that study, rather than Annexin V and PI.  Cell death can be caused by 

either apoptosis or necrosis (death due to cell damage).  Annexin V binds to the outer membrane 

of the apoptotic cells and to the inner membrane of necrotic cells.  In contrast, PI binds to the 

nucleus of necrotic cells only as it cannot permeate through an intact cell wall.  From Annexin V 

staining, 50.35(±5.88)% of cells were non-viable with resveratrol concentration of 40 µM.  All 

cultures showed a significantly higher percentage of non-viable cells relative to control (with 
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DMSO), suggesting that the observed cell death is not due to DMSO solvent used in resveratrol.  

Both Annexin V and PI stained populations showed similar percentages, suggesting that cell death 

is primarily mediated via necrosis when directly treated with resveratrol.  To my knowledge, the 

difference between apoptotic and necrotic effects of resveratrol on K562 cell line has not been 

reported.  

Using formazan reduction assay, siRNA targeting BCR-ABL pathway is shown to induce K562 

cell death when added directly to the culture medium [10].  Similar results were observed with 

Annexin V staining in a dose-dependent manner.  These were significantly higher than the control 

sample, suggesting that these interactions are not due to NaCl present in the buffer used for siRNA.  

Further, the presence of scrambled siRNA showed significantly lower non-viable cell percentages 

at similar concentrations, confirming the specificity of the siRNA.  However, PI stained non-viable 

cells were significantly lower than the Annexin V stained population (Figure 3.2b), suggesting that 

siRNA induced cell death is primarily mediated by apoptosis.   

In order to understand whether a combination of resveratrol and siRNA act synergistically or an-

tagonistically, cells were exposed to a combination of 40 µM resveratrol and 36 nM siRNA.  These 

results (Figure 3.2c) showed that the combination was more potent than the highest concentration 

of siRNA, and nearly that of the highest concentration of resveratrol.  These increases are not due 

to the DMSO and NaCl as the control samples showed significantly less non-viable cells.  Com-

bining both molecules had an additive effect on cell death; 72 (±2.9) % cells (25 (±1.8) % mid-

point) were apoptotic and/or necrotic under these conditions.  When both siRNA and resveratrol 

were added together, the necrosis level dropped, compared to that observed when using individual 

drugs separately (indicated by PI stain).  Thus, apoptosis mechanism could be triggered when using 

combination therapy.  By inducing necrosis, the internal compartments of the cell spread out af-

fecting the surrounding environment, hence, inducing apoptosis is more desirable.  
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In order to optimize the concentrations of resveratrol and siRNA on apoptosis, experiments were 

designed via 23 full-factorial Central Composite Design, in which three experimental levels (i.e., 

concentrations) were tested for each factor (i.e., the resveratrol and siRNA).  A multiple linear 

regression model was fitted to the experimentally obtained non-viable data points using the regres-

sion function in Microsoft Excel.  A seven-parameter model was used as shown in Eq. 8: 

𝑁𝑉𝐾562 =  𝛼0 + 𝛼1𝐶𝑅𝑒𝑠 + 𝛼2𝐶𝑠𝑖𝑅𝑁𝐴 + 𝛼3𝐶𝑅𝑒𝑠
2 + 𝛼4𝐶𝑅𝑒𝑠

2𝐶𝑠𝑖𝑅𝑁𝐴        (8) 

Where 𝑁𝑉𝐾562 is non-viable K562 cell count, the 𝛼 parameters are the regression coefficients es-

timated from the factorial design, 𝐶𝑅𝑒𝑠 and 𝐶𝑠𝑖𝑅𝑁𝐴, are resveratrol and siRNA concentration in me-

dium, respectively.  Using MS Excel output, a relation between non-viable cells percentage and 

the concentrations of resveratrol and siRNA was found to be as shown in Eq. 9:  

𝑁𝑉𝐾562 =  14.31 + 0.62 𝐶𝑅𝑒𝑠 + 0.83 𝐶𝑠𝑖𝑅𝑁𝐴 − 4.65 × 10−3 𝐶𝑅𝑒𝑠
2 + 1.31 × 10−4𝐶𝑅𝑒𝑠

2𝐶𝑠𝑖𝑅𝑁𝐴  

                 (9) 

Using Eq. 9, a surface plot showing the effect of resveratrol concentration and siRNA concentration 

was generated (Figure 3.2d).  The intent was to understand the required dosages of resveratrol and 

siRNA to obtain 100% non-viable cells.  The surface plot shows several combinations of resveratrol 

and siRNA concentrations.  Predicted values using the optimization equation were evaluated using 

several experimental measurements.  These results showed 5 to 10% error in model predicated non-

viability values, suggesting that the model is valid.   



37 

 

 

Figure 3.2: Influence of resveratrol and siRNA on K562 cell viability after 72 hours. (a) Effect 

of resveratrol concentration.  Control corresponds to cell culture without resveratrol but with 

DMSO equivalent to that in 160 M resveratrol (b) Effect of siRNA concentration.  Circular sym-

bols correspond to the scrambled siRNA and control corresponds to cell culture without siRNA but 

with NaCl present in 60 nM siRNA concentration. (c) Effect of combination of resveratrol and 

siRNA.  Control corresponds to cell culture with DMSO corresponding to that present in 40 M 

resveratrol and NaCl present in 36 nM siRNA concentration. (d) Surface plot obtained using the 

factorial design of experiments equation showing the dosages of combination therapy need to ob-

tain various level of non-viable cell percentage. 

 

In order to confirm cell death via different approaches, digital micrographs were acquired during 

the culture duration of 3 days (Figure 3.3).  These results showed the presence of necrotic cells in 

resveratrol-containing cultures, indicated by cell membrane damage, and cell content leakage.  



38 

 

Smaller fragments were formed replacing the circular shaped cells indicating apoptosis.  More im-

portantly, the number of cells was significantly less in these cultures, relative to cultures not treated 

with resveratrol (control) but containing a similar amount of DMSO.  The latter showed a signifi-

cantly higher number of K562 cells.  This confirmed cell death caused by resveratrol. 

 

Figure 3.3: Effect of resveratrol on K562 cell morphology.  Micrographs were taken every 24 

hours, in both with 40 M resveratrol and without resveratrol, with the same amount of NaCl.  

 

3.3.2 Fate of resveratrol in cell culture medium 

In order to understand the fate of resveratrol during the 3-day cell culture duration, samples were 

analyzed using HPLC.  A calibration curve was developed (Figure 3.4a) using the internal standard 

caffeine.  In the presence of K562 cells, resveratrol concentration showed a linear reduction (Figure 

3.4b).  Resveratrol was not detectable in a 72-hour sample.  In order to predict the depletion time, 

the linear fit equation was extrapolated (dashed line) to determine the x-intercept, the required time 

to reach zero concentration.  This gave a value of 70.4 hours, confirming the observed complete 

depletion of resveratrol at 72 hr.   

Since drug clearance typically follows a non-linear decay in a single compartment such as cell 

cultures, a linear depletion of resveratrol could be due to the diffusion of resveratrol into the cells 
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i.e., direct uptake by cells.  Others have shown that resveratrol uptake by K562 cells is mediated 

via binding to lipoproteins and albumin found in cell culture medium [108].  In order to understand 

the stability of resveratrol in the cell culture environment, experiments were performed in the ab-

sence of cells.  These results showed an exponential decay curve, much slower than in the presence 

of cells (Figure 3.4c).  To find the decay rate, 𝑘𝐷 , resveratrol concentration at different points in 

time 𝑡, was related to the initial concentration 𝐶𝑅𝑒𝑠,0 (when 𝑡 = 0), using a first order exponential 

decay rate as shown in Eq. 10: 

𝐶𝑅𝑒𝑠

𝐶𝑅𝑒𝑠,0
= 𝑒−𝑘𝐷𝑡      (10) 

 

Figure 3.4: Resveratrol characterization and stability in the medium.  (a) Calibration curve 

using HPLC.  (b) Resveratrol concentration change in cultures with and without K562 cells incu-

bated at 37 C and 5% CO2.  Values are plotted as a fraction of the initial dosage Cres,0 of 40 M 

resveratrol.  The dashed line corresponds to the extrapolated trend line obtained using the shown 

linear equation.  

 

Experimental data were fitted with an exponential function to obtain 𝑘𝐷 values.  Using the 𝑘𝐷  value 

and the relation 𝑡1

2

=  
ln (2)

𝑘𝐷
, the half-life of resveratrol in medium the was calculated to be 89.6 hours 

in the cell culture, much longer than that reported in the plasma [92].  These differences could 
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further explain the lack of achieving a high concentration of resveratrol even with 500 mg dosage 

per day in vivo [93]. 

 

3.3.3 Resveratrol loaded fibers characteristics 

Based on the stability of directly added resveratrol in the cell culture medium, I questioned the 

possibility of encapsulating resveratrol in PCL-GT electrospun fibers.  Since these fibers have to 

interact with cells, all formed fibers had the same PCL-GT outer layer, in order to eliminate differ-

ent cell-polymer interactions at the surface.  However, resveratrol is a lipophilic molecule and re-

quires appropriate polymer selection for uniform distribution.  Hence, two inner core conditions 

were selected in co-axial fibers: i) inner hydrophobic PCL layer with resveratrol and ii) inner PCL-

GT layer with resveratrol providing a continuous phase in the fiber which could minimize interfa-

cial resistance during the transfer of resveratrol while providing a medium for uniform distribution 

of resveratrol.  Since hydrophilic GT environment is not compatible with loading lipophilic resvera-

trol, I did not consider forming coaxial fibers with PCL-GT and GT as the inner core.  In order to 

compare the effect of controlled release of resveratrol, a 40 M concentration of resveratrol was 

used in forming the electrospun fibers.   

These results showed successful formation of fibers in all these configurations, without any diffi-

culty.  Analyzing SEM micrographs (Figure 3.1b-e) showed no beaded fibers, confirming the sta-

bility of the electrospinning jet.  Also, the surface of the fibers appeared to be smooth, without any 

particulate structures on single fibers, suggesting no phase separation of resveratrol due to compat-

ibility issues between resveratrol and the PCL-GT.  It has been shown that GT is uniformly distrib-

uted within the fiber and it is stable for more than two weeks [101].  Similar to previous results, all 

configurations produced fibers in microsize range suggesting process parameters and solution pa-

rameters are adequate to form PCL-GT fibers with resveratrol [101].  Co-single coaxial fibers had 
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larger diameters compared to single fiber, due to additional layers and an increase in the volume of 

the spinning solution.  Random analysis of micrographs collected using SEM via an image analysis 

software confirmed that the fiber diameter, porosity, and matrix thickness were identical to that 

reported in the literature [101].  Hence, the addition of a small amount of resveratrol did not alter 

the fiber size and matrix characteristics relative to previous analysis.   

3.3.4 Influence of fiber configuration on the resveratrol release profile  

In order to understand the loading efficiency of resveratrol in different fiber configurations, I eval-

uated the amount of resveratrol in fresh fibers.  All three fiber configurations demonstrated a very 

high loading efficiency of 88.3 (±8.06) %, 81.8 (±1.47) %, and 76.9 (±4.55) % (Figure 3.5a), for 

single fiber, Co-single phase, and Co-PCL, respectively. 

The intent of forming different configurations was to test the possibility of controlled release of 

resveratrol and increase its concentration beyond 3 days.  The amount of resveratrol in the culture 

medium was evaluated.  These results showed a release profile saturating at day 5 (Figure 3.5b).  

The values provided were based on resveratrol available in the cell culture medium in the presence 

of cells.  They did not account for the decay or the uptake of resveratrol by cells during the incu-

bation time.  Without those corrections, nearly 95% of resveratrol was present after 100 hours from 

single fibers.  Coaxial fibers in both configurations showed similar release profiles, suggesting no 

significant influence of the outer sheath layer.  This suggests that the release of resveratrol is inde-

pendent of fiber’s configuration.   

In order to understand this, the permeability of resveratrol was calculated using resistance in series 

model [101].  Calculated permeability values for all three configurations provide similar permea-

bility values (Figure 3.5c); where single fiber matrix determined permeability was 10.6 m/h.  Alt-

hough resveratrol (MW = 228.25 g/mol) is nearly half the molecular weight as doxycycline (MW 

= 444.43 g/mol), obtained permeability was similar in single fibers [101].  Permeability of fibers 
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or membranes is a function of both lipophilicity and diffusivity.  Hence, resveratrol release process 

may be significantly dependent on its lipophilicity, as water molecules diffuse through the fiber 

layers and replace the drug, forcing it to be released.   

 

Figure 3.5: Resveratrol loaded electrospun fibers.  (a) Comparison of drug loading in different 

configurations.  The dashed line corresponds to the initial concentration of resveratrol added to the 

polymer solution.  (b) Resveratrol release behavior from various fibers.  (c) Effect of fiber config-

uration on the permeability constant.  

3.3.5. Effect of resveratrol loaded fibers on cell death 

In order to understand the bioactivity of resveratrol released from the electrospun PCL-GT fibers, 

K562 cell viability was analyzed for three, five, and eight days.  These results showed a time-

dependent increase in the level of apoptosis indicated by Annexin V (Figure 3.6a) staining, corre-

lating to the release profile.  Further, the control group containing co-single fibers but without 

resveratrol showed no significant changes during the incubation time.  This suggested that the re-

leased resveratrol from fibers is bioactive and the observed non-viability is not due to solvents used 

in fiber generation or sterilization.  More importantly, the apoptotic level at day 8 was similar to 

that observed at day 3 when 40 M resveratrol was added directly to the cell culture medium.  One 

needs to extend the studies to ten days to see whether increased cell death mimics day 5 results 

when 40 M resveratrol was added directly to the cell culture medium.  When PI staining results 

were evaluated, day 3 results were similar to that of the control group containing co-single fibers 

without resveratrol.  On day 5 and day 8, cell death increased in all containing resveratrol, in tandem 
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with the release profile (Figure 3.6b).  However, necrosis was moderately lower.  This could be 

due to the controlled release process, which enhanced the level of apoptosis.   

In order to understand further, cell cultures were observed at different days during the culture time. 

On day 8, apoptotic bodies were observed (Figure 3.6c) in all three fiber configurations compared 

to the control sample.  Apoptotic bodies were more prevalent than vacuoles formation, indicating 

lower levels of autophagy.  Using the controlled delivery system, the level of apoptosis significantly 

increases compared to that of necrosis.  Since cellular uptake is diffusion i.e., concentration-de-

pendent, it is possible that the controlled release could decrease the uptake of resveratrol by the 

cells, compared to direct introduction to the cell culture medium due to reduced concentration gra-

dient.  Hypothetically, the controlled release provides a specific concentration of the drug associ-

ated with apoptosis, over a certain period, triggering the process.  In comparison, introducing the 

same total concentration to the cell medium caused necrosis.   

 

Figure 3.6: Influence of fiber configuration on resveratrol-mediated K562 cells death. (a) An-

nexin V stained non-viable cells.  (b) PI stained necrotic cells.  Condition “Free” corresponds to 40 

M resveratrol added directly to the medium. Condition “control” corresponds to Co-Single fibers 

without resveratrol.  * represents statistical significance with p < 0.02 between Annexin V and PI 
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stained cell populations in the same fiber configuration for the same day. $ represents statistical 

significance with p < 0.02 between experiments with and without siRNA in the same fiber config-

uration stained with Annexin V. (c) Micrographs showing the morphology of K562 cells in pres-

ence of fibers in culture after eight days of incubation. 

 

In order to understand changes in fiber stability during the incubation time, samples were analyzed 

via SEM after 3 and 5 days of incubation.  Comparison of results in the presence and absence of 

resveratrol showed no significant differences between configurations (Figure 3.7).  However, sin-

gle fiber and Co-PCL configuration had more cells trapped in the fibers, which increased over time, 

compared to Co-single phase fibers.  This could be attributed to the nanostructures that formed in 

single fiber and Co-PCL configurations.  This could affect the determination of cell viability using 

flow cytometry since certain cell count is lost due to cell entrapment.  

 

Figure 3.7: Morphology of fibers after incubation for 3 days and 5 days with K562 cells.  Mi-

crographs were obtained after drying the samples from respective time periods.  Also present are 

some of the cells trapped within the fibers.   

 

3.3.6 Effect of siRNA in the presence of resveratrol-containing fibers 

Additional experiments were performed by adding siRNA to the culture medium, where PCL-GT 

fibers were present.  Interestingly, there seemed to some interaction between the siRNA and fibers.  
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In the control group (Figure 3.8), where no resveratrol was present, there was a significant reduc-

tion in non-viable cells in comparison to 36 nM siRNA concentration added directly to the cell 

culture medium (Figure 3.2b); at 36 nM siRNA alone, 46.3% non-viable cells were observed which 

reduced to 21.5% in the presence of fibers.  A similar reduction was also observed with PI staining; 

at 36 nM siRNA alone, necrotic cells were 29.5%, which reduced to 16.4% in presence of PCL-GT 

co-single fibers.  In the presence of resveratrol-containing fibers, these numbers decreased further.  

In order to realize a similar combination effect, developing a delivery system for siRNA to ensure 

controlled release needs to be studied.  Furthermore, one could investigate the targeted delivery of 

siRNA, which could further reduce the dosage requirement.   
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Figure 3.8:  Influence of a combination of 36 nM siRNA added to medium and fibers contain-

ing resveratrol on K562 cells on day 3. (a) Annexin V stained non-viable cells. (b) PI stained 

necrotic cells.  Condition “Free” corresponds to 40 M resveratrol and 36 nM siRNA added directly 

to the medium.  Condition “control” corresponds to 36 nM siRNA with the Co-Single fibers without 

resveratrol.   
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3.4 Discussion 

Based on many studies showing the protective effects of resveratrol, clinical trials have been per-

formed [90] and further explored in cancer therapy [82, 83].  However, these results have shown 

less success of resveratrol when systemically administered due to the pharmacokinetic characteris-

tics of resveratrol.  In an attempt to enhance the bioavailability of resveratrol, controlled release of 

resveratrol has been investigated [109].  Controlled release of resveratrol from electrospun PCL-

GT fibers seems to be more effective in loading and controlled release in relation to other delivery 

systems.  Using chitosan-based nanoparticles, in vitro release of resveratrol was studied at pH 6.8 

for eight hours [110].  Adherent fibroblasts non-viability showed only resveratrol to be better at 

tested doses.  Controlled release of resveratrol was tested using lecithin mixed micelles [111], 

where the release of resveratrol was extended to 24 h.  Some reported higher loading efficiency 

using mPEG-poly(-caprolactone)-based nanoparticles, and cumulative controlled release was ex-

tended to five days [112].  Others have explored forming resveratrol containing core-shell nano-

particles to improve the bioavailability [110, 113].  Hence, my delivery method using PCL-GT 

blends, to encapsulate higher loading of resveratrol, offers a new approach for delivering hydro-

phobic drugs for a longer duration. 

In coaxial PCL-GT electrospun fibers, the inner core can be chosen based on the properties of the 

therapeutic agent.  Previously, hydrophilic doxycycline was delivered using GT and PCL-GT inner 

cores, while lipophilic resveratrol can be delivered using PCL and PCL-GT inner cores.  Blended 

hydrophilic GT with hydrophobic PCL helps load a broad range of components.  The encapsulation 

efficiency of lipophilic drugs after electrospinning in hydrophobic polymers is known to be signif-

icantly higher [114], similar to my observation.  Further, electrospun PCL-GT fibers have also been 

investigated for their biodegradability and biocompatibility [115].  Hence, PCL-GT fibers can be 

locally administrated into the bone marrow to achieve a local therapeutic concentration of resvera-

trol.  Similar ibuprofen-loaded polylactic-co-glycolic acid (PLGA) biodegradable fibers have been 
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explored in reducing fibrosis after lumbar laminectomy in a local implantation model [116].  In 

order to better understand the utility of such fibrous mats, further studies are required using animal 

models.  

There have been many studies showing the usage of electrospun fibers in local delivery with many 

coaxial configurations [98].  However, the modeling of the release profile from such fibers is lim-

ited to understanding whether the release behavior is dictated by Fickian diffusion.  In this regard, 

I extended such modeling to understand the changes in the permeability of the drug with various 

combinations of the polymeric blends.  Permeability of lipophilic resveratrol was not controlled by 

the configuration of electrospun fibers, unlike that observed with hydrophilic doxycycline [101].  

Others have reported similar results in co-axial fibers using poly(butylene succinate) with lipophilic 

curcumin [117].  Curcumin release from different configurations into ethanol showed no depend-

ency on structures, consistent with my observation in this Chapter.  This suggests that the partition 

coefficient may be a dominant factor, rather than diffusion in the controlled release of lipophilic 

drugs.  In this Chapter, the mass ratio of PCL and GT were similar and as they both have similar 

molecular weight, the molecular ratio is, also similar.  In order to understand the changes in the 

partition coefficients, one has to test the effect of altering the ratio of PCL-GT in the outer sheath.  

Determining the permeability values of individual layers helps in correlating the diffusion in order 

to understand the effect of partition coefficient.  Such an analysis would be valuable in tuning the 

release profile of other lipophilic therapeutic agents.   

This study explored combining resveratrol and siRNA to induce 100% non-viability of cancer cells.  

Using a factorial design approach, I estimated the dosages required of both drugs when adminis-

tered into the cell culture medium.  However, the influence of siRNA in the presence of PCL-GT 

fibers was reduced, probably due to non-specific interactions between the naked siRNA and the 

fibers.  In addition, endogenous characteristics of siRNA such as negative charge, rigid structure, 

size, and stability, make passive diffusion through cell membrane quite challenging.  Some have 
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addressed this challenge by delivering siRNA using endocytosis with liposomes [34].  Ligand-

targeted liposomes have shown great potential in many novel delivery systems, with high in vivo 

response due to their active targeting, increased stealth, and controlled drug release.  PEG coating 

(to overcome rapid clearance from circulation) and ligand attachment (to avoid non-specific bind-

ing) are specifically important to overcome the challenges associated with liposomal delivery sys-

tems [42].  Based on the type of cancer, certain types of ligands provide higher binding efficiency 

and many fold decrease in IC50 value compared to non-targeted liposomes.  Holo-transferrin con-

taining liposomes show enhanced intracellular uptake compared to free Bcl-2-siRNA in vivo and 

decreased IC50 (treated with doxorubicin in vitro) values.  Holo-transferrin attachment also showed 

improved tumor growth inhibition, and higher survival time compared to the non-targeted liposo-

mal system [42].  Chapter IV provides a detailed study of the combined delivery system of electro-

spun microfibers and holo-transferrin-conjugated-PEG liposomes (referred to as liposomes in this 

manuscript, unless stated otherwise).
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CHAPTER IV 

 
ASSESSMENT OF THE COMBINATION TREATMENT OF LEUKEMIA CELLS, USING 

SIRNA-LOADED LIPOSOMES, AND CONTROLLED RELEASE OF RESVERATROL 

4.1 Introduction 

To eliminate side effect, and drug interaction, the combined delivery system has gained my atten-

tion towards achieving the second aim of this project.  Small interfering RNAs (siRNAs), which 

are 20-25 base pairs in length, have been shown to be very effective in silencing targeted genes 

since the first demonstration in 2010 [6].  siRNA’s half-life is approximately 24 h [7], which ne-

cessitates a higher dosage.  Although local administration of siRNA has limited side effects, sys-

temic administration exacerbates side effects, which lead to early termination of clinical trials 

[118].  siRNA endogenous characteristics such as negative charge, rigid structure, size, and stabil-

ity, make passive diffusion through cell membrane quite challenging [119].  To address this chal-

lenge, endocytosis becomes an effective mechanism of delivery that can be achieved using lipid-

based nanoparticles [34].  In order to improve safety and minimize the dosage of drugs, targeting 

based on increased expression of certain receptors in cancer cells has been a strategy.   

Leukemia-specific siRNA has been investigated to downregulate the fused breakpoint cluster re-

gion (BCR)-Abelson (ABL) tyrosine kinase gene pathway.  This silencing technique is shown to 

be sufficient to sustain CML phenotype [120].  As mentioned earlier, ligand-targeted liposomes 

with PEG coating (to overcome rapid clearance from circulation) and holo-transferrin attachment 

showed improved tumor growth inhibition, and higher survival time compared to the non-targeted 

liposomal system [42].
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In this chapter, I discussed in detail my evaluation of the effect of two different drug delivery de-

vices on inducing cancer cell death selectively.  Treatment with resveratrol or siRNA increases 

response sensitivity in cancer cells [121].  The combination of these two drugs enhanced the effec-

tiveness and drug resistance in cancer cells.  I hypothesize that combining two drugs using two 

different drug delivery devices leads to an improved therapeutic effect of each drug with reduced 

dosage.  To test the hypothesis, I used a model study comprising; i) delivering resveratrol using 

microfibers, and ii) delivering siRNA targeting BCR-ABL expression using liposomes.  This al-

lows the controlled administration of each drug in a timely manner.  In addition, I used a co-culture 

system comprised of K562 cells and HUVECs, which also helps understand the device-blood vessel 

interactions.  I show that resveratrol released from PCL-GT electrospun fibers and delayed siRNA 

delivered through holo-transferrin conjugated PEG-liposome induces 92.7 (±2) % non-viability by 

day 8.  The use of co-cultures introduces a unique tool to estimate treatment effect on healthy cells 

as well as target cancerous cells in an in vitro setting. 

4.2 Materials and Methods 

4.2.1 Materials 

In addition to materials introduced in section 3.2.1, holo-Transferrin, Traut’s reagent, and choles-

terol were from Sigma-Aldrich (St. Louis, USA).  Distearoyl phosphatidylethanolamine–PEG 

[2000 d] was purchased from Shearwater Polymers (Huntsville, AL).  HUVECs derived from sin-

gle donors were purchased from BD Biosciences (San Jose, CA).  Medium 200 phenol red free 

(PRF), low serum growth supplement (LSGS), trypsin/EDTA, and trypsin neutralizer solution were 

all purchased from Life Technologies Corporation (Carlsbad, CA).   

4.2.2 Cell culture maintenance 

K562 Cell Culture: This culture was described in section 3.2.2. 
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HUVECs Culture: HUVECs were plated in T75 flasks and fed with fresh medium every 36 hours.  

When confluent, cells were detached with 0.025% trypsin and 0.01% EDTA in PBS, neutralized 

with trypsin neutralizer solution (phosphate-buffered saline (PBS) containing calf serum), centri-

fuged at 125 ×g for 5 minutes, and re-suspended in the growth medium.  

All cultures were routinely monitored under an EvosTM AME-i2111 Digital Inverted Microscope, 

and when necessary, phase contrast micrographs were obtained at random locations. 

4.2.3 Synthesis siRNA containing liposomal particles [122], [123] 

A mixture of 260 nmol of distearoyl phosphatidylethanolamine–PEG [2000 d] and 3877 nmol of 

cholesterol was added to 5 mL of chloroform.  The lipid film was formed by allowing the solvent 

to evaporate overnight.  Then, 5 mL of MES buffer was added and stored in the dark for 2 hours.  

Liposomes were formed by strong vortex, 15 seconds of heating at 38 ᵒC in a water bath, followed 

by strong vortex.  At this stage, the samples were split into two groups: the first group was used, 

then stored for further testing, and the second group was used in holo-transferrin conjugation.  

Holo-transferrin conjugation:  A mixture of 260 nmol of holo-transferrin, and 10390 nmol of 

Traut’s reagent was prepared in 2 mL of EDTA buffer (pH: 8.5).  The mixture was shaken in the 

dark for 1 hour.  The solution was re-concentrated to 0.2 mL using Amicon® Ultra-2 filters (3 kDa, 

Sigma Aldrich) by centrifugation for 12 mins 3500 rpm at room temperature.  The concentrated 

solution was added in a 1:1 ratio to the freshly prepared micelles, as described above.  The mixture 

was stirred in the dark for 24 hours.  The samples were divided into two groups: the first group was 

stored for further testing, and the second group was used for siRNA. 

siRNA encapsulation: A 2.5 µM stock solution of siRNA was prepared in citrate buffer (pH 6.0 – 

Sigma Aldrich).  The lipid was dissolved in 100% ethanol, heated at 60 ᵒC, and added to siRNA 

solution (36 nM final concentration) under strong vortex.  Micelles were formed as stated above.  
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Sizing and purification:  The prepared liposomes solution was extruded through an extrusion device 

(T&T scientific corporation, Knoxville, TN, USA) with a 100-nm diameter filter, 21 times, follow-

ing the vendor’s instructions.  Dialysis was then performed in HBSS through MWCO 6000-8000 

(Cellu Sep T2, Membrane Filtration Products, Inc., Seguin, TX, USA) for 3 hours at room temper-

ature to remove the ethanol and raise the external pH.  Sepharose CL-4B ((Sigma Aldrich, St. Louis, 

MO) was packed into columns (Sigma Aldrich, St. Louis, MO), allowed to settle overnight at 4 C 

and used to remove unconjugated transferrin and other impurities. 

Dynamic light scattering (DLS) was performed using a zeta potential analyzer (Brookhaven Instru-

ments Corporation, NY, USA).  Using the associated software, the effective diameter of the parti-

cles population and its polydispersity were determined.  The zeta potential was also determined 

using the same apparatus.  

Transmission electron microscopy (TEM) was performed using JEOL JEM-2100 with Evex EDS 

(Peabody, MA) to visualize the liposomal particles.  Samples were stained with phosphotungstic 

acid, then placed on a TEM grid and imaged immediately.  The images show that the particles are 

spherical in shape and are less than 100 nm in size.  

4.2.4 Loading efficiency of siRNA in liposomes 

Liposomes were encapsulated with Alexa-Flour 488-conjugated BCR-ABL siRNA (F-siRNA, In-

tegrated DNA Technologies) to detect encapsulation efficiency and uptake by cells.  Since both 

free F-siRNA and encapsulated F-siRNA contributes to the fluorescence intensity, samples were 

collected before and after purification via Sepharose CL-4B packed column.  Fluorescence inten-

sities were measured using a Gemini XPS spectrofluorometer (Molecular Devices, CA) at an exci-

tation wavelength of 488nm and an emission wavelength of 530 nm.  Liposomes with siRNA were 

used as blank controls.  A calibration curve was prepared using 0 – 0.25 µM concentration of free 
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F-siRNA to convert, fluorescent intensities into concentration.  Loading efficiency was determined 

by taking the ratio of the two concentrations.   

4.2.5 Holo-transferrin conjugation efficiency 

Holo-transferrin-conjugated liposomes were purified using a Sepharose CL-4B packed column to 

remove any unconjugated particles.  The amount of holo-transferrin conjugated to liposomes was 

determined using BCA assay (Thermo Fisher Scientific, Waltham, MA), according to the vendor’s 

protocol.  In brief, absorbance was measured using Spectramax Emax (Molecular Devices, CA) at 

595 nm in a 96 well plate.  Based on a calibration curve prepared using standard solutions (125 – 

2000 µg/mL), the total amount of protein in the sample was quantified.  Using the total amount of 

holo-transferrin added during preparation, the conjugation efficiency was calculated.  

4.2.6 Determination of BCR-ABL downregulation using quantitative polymerase chain re-

action (q –PCR) 

Free siRNA (36 nM) was incubated with 2×105 K562 cells/mL for 72 hours.  The samples were 

snap frozen at -80 o C.  An RNeasy mini kit was used to purify RNA samples and RNA concentration 

in each sample was measured using NanoDrop Spectrophotometer (ND-1000).  The complemen-

tary DNA (cDNA) kit, iScript Reverse Transcription Supermix for RT-qPCR (BIO-RAD), was 

used to obtain cDNA for the collected RNA samples.  Mastercycler (Eppendorf) was used to run 

the reverse transcription process.  β-glucuronidase (GUSB) was used as the standard gene, as sug-

gested for K562 cells [124].  Primers for the GUSB were designed using Primer-BLAST while the 

primers for the BCR-ABL gene were purchased (ThermoFisher Scientific,) based on literature re-

ports [125].  SYBR Green Supermix (BIO-RAD) was added to all samples.  qPCR was performed 

by CFX Connect Real-Time System (BIO-RAD), and the results were analyzed using Bio-Rad 

CFX Manager 3.0, and MS Excel.  The expression fold change (EFC) method was used to quantify 

BCR-ABL downregulation in K562 cells. 
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4.2.7 siRNA-loaded liposomes effect on cell viability 

For all experiments, K562 cells were harvested, counted using a Hemocytometer, and 2×105 

cells/mL were cultured in a 6-well plate with 2 mL of fresh media for each well.  siRNA concen-

tration was 36 nM in all the samples as follows: i) controls prepared by directly adding citrate buffer 

solution equivalent to that present in 36 nM siRNA solution, ii) free siRNA, iii) scrambled siRNA, 

iv) PEG-Liposomes with no siRNA, v) siRNA- loaded PEG-liposomes, and vi) siRNA-loaded-

holo-transferrin conjugated PEG-liposomes.  All cell cultures were incubated for 72 hours, K562 

cells were collected by centrifugation at 840 ×g for 5 minutes, and viability was determined using 

the method previously reported [73].  In brief, cells were washed with phosphate buffer solution 

(PBS, 7.2 pH, prepared in-house using 8 g NaCl, 0.2 g KCl, 0.2 g KH2PO4, and 2.17 g Na2HPO4-

7H2O in 975 mL DI water) with 0.1% BSA (1 mL for every 2×105 cells).  Then cells were washed 

with Annexin V buffer solution and stained with 2 µL Annexin V FITC conjugate, then with 4 µL 

of PI (100 mg/L), and then incubated in ice for another 15 minutes. Samples were analyzed using 

a FACSCalibur (Becton Dickinson, San Jose, CA) flow cytometer.  Unstained samples and indi-

vidually stained samples were used as controls.  Based on the obtained information, the percentages 

of dead cells were determined using a standard quadrant analysis.   

4.2.8 Cellular uptake of siRNA and siRNA-loaded liposomes 

Free F-siRNA, F-siRNA-loaded and unloaded holo-transferrin-PEG-liposomes were prepared.  

The samples were incubated for 5 days i) without any cells, ii) with K562 cells, and iii) with K562 

cells and HUVECs.  HUVECs were seeded on 6-well plates in preparation for experiments.  The 

other cell line and treatment elements were then added.  Cell medium was prepared in 1:1 (by 

volume) of RPMI: 200 medium.  Micrographs were collected for all conditions after 0, 24, 72, and 

120 hours using an Evos digital microscope.  Non-adherent K562 cells were gently collected by 

withdrawing 100 µL cell medium each day and analyzed by flow cytometry for the presence of F-
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siRNA.  On the fifth day, all K562 cells were removed by gentle mixing and then HUVECs were 

detached using trypsin/EDTA and analyzed for the presence of F-siRNA.  In order to minimize the 

presence of both cell types, forward scatter and side scatter data were used as both cells have dif-

ferent sizes and granularity. Three biological samples were prepared for each condition.   

4.2.9 Influence of resveratrol on HUVECs   

In order to assess the effect of released resveratrol, changes in Sphingosine 1-phosphate (S1P) was 

measured using ELISA kit (MyBioSource Inc., CA) following the vendor’s protocol.  Following 

conditions were prepared in 1:1 RPMI:200 PRF cell medium: i) 2×105 cells/mL K562 cells without 

resveratrol; ii) 2×105 cells/mL K562 cells with 40 µM of resveratrol; and iii) Both K562 cells and 

HUVECs (2×105 cells/mL) where HUVECs were seeded first, allowed to attach, and then K562 

cells were added along with 40 µM of resveratrol.  Cell culture medium without any cells was also 

cultured in tandem with cell cultures.  Samples (50 µL) were collected at 0, 24, 48, and 72 hours, 

and stored at -20 ᵒC for further analyses.  Absorbance was measured using Spectramax Emax (Mo-

lecular Devices, CA) at 450 nm in a 96 well plate.  Based on a calibration curve prepared using 

standard solutions (0 – 200 ng/mL), the S1P content in the sample was quantified.  S1P activity in 

the culture medium without cells was used as blank for respective time points.  

4.2.10 Resveratrol and siRNA combination effect on K562 cell viability 

Effect of resveratrol encapsulated microfibers in combination with siRNA-loaded liposomes on 

K562 cell viability was evaluated over 8 days.  For all conditions, K 562 cells at 2×105 cells/mL 

were used with PRF cell culture medium.  The following conditions were prepared:  i) 36 nM 

siRNA and 40 M resveratrol both introduced directly to the cell culture medium; ii) Controls 

prepared by adding fresh medium only; iii) Fibers (with no resveratrol) introduced into cell medium 

on day 0; iv) Fibers with 40 M resveratrol and liposomes with 36 nM siRNA both introduced at 
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the same time on day 0; v) Fibers with 40 M resveratrol introduced on day 0, and liposomes with 

36 nM siRNA introduced on day 3 referred to as delayed liposomes + microfibers.  Micrographs 

were taken at random locations after 0, 72, 120, and 192 hours for each sample. On days 3, 5 and 

8, cultures were mixed gently and 50L samples were collected.  These samples were analyzed for 

K562 cell viability using two-color flow cytometry.   

4.2.11 Resveratrol and siRNA combination effect on K562 cell viability in the presence of 

HUVECs 

In order to understand the combination effect in presence of HUVECs, co-culture experiments were 

performed.  HUVECs were seeded first, allowed to attach, then fibers were introduced followed by 

the addition of K562 cells.  All samples were incubated in 1:1 ratio of RPMI (with 10% FBS) and 

200 PRF medium.  The following groups were used: i) controls prepared by adding fresh medium 

only; ii) Fibers with 40 M resveratrol and liposomes with 36 nM siRNA both introduced at the 

same time on day 0; iii) Fibers with 40 M resveratrol introduced on day 0, and liposomes with 36 

nM siRNA introduced on day 3 referred as delayed liposomes + microfibers.  Micrographs were 

taken at random locations after 0, 72, 120, and 192 hours for each sample. On days 3, 5 and 8, 

cultures were mixed gently and 50L samples were collected.  These samples were analyzed for 

K562 cell viability using two-color flow cytometry. 

4.3 Results 

4.3.1 Liposomes characterization 

Liposomes were prepared in-house as described in the previous section.  Hence, I first characterized 

the particle size and efficiency of holo-transferrin conjugation.  Then samples were visualized in 

TEM, which (Figure 4.1a) showed that the particles were around 100 nm in diameter and the par-

ticles were spherical with well-defined edges.  DLS analysis of five replicates showed that the 
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effective diameter of the particles was 117.2 (±1.53) nm, with a polydispersity of 0.170.  Zeta 

potential outcome of ten replicates was -11.09 (±0.82) mV.  The latter was found to be similar to 

values reported in the literature [126].   

In order to understand the total transferrin present, BCA assay was performed.  These results (Fig-

ure 4.1b) showed the concentration to be 3300 (± 334) µg/mL in holo-transferrin containing lipo-

somes and the amount of protein in unconjugated liposome was 1.8 (± 0.17) µg/mL.  Then I calcu-

lated the efficiency of loading using the total amount of holo-transferrin initial added (3850 µg/mL) 

during the conjugation.  Calculated conjugation efficiency was 85.9 (±7.30)%.  The total amount 

of siRNA added during the synthesis procedure was 0.72 µM.  After purification of liposomes, the 

measured siRNA concentration was 0.66 µM.  This resulted in the loading efficiency of siRNA in 

the liposomal particles to be 92.3 (± 2.57) %.  

 

 
Figure 4.1: Liposomes characterization. (a) TEM image showing spherical liposomes. 

(b). Comparison of total protein content in holo-transferrin-conjugated liposomes with un-

conjugated liposomes as the controls.  
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4.3.2 Silencing BCR-ABL in K562 

In order to understand the effect of RNA interference to silence BCR-ABL gene expression in K562 

cells, the RT-qPCR analysis was performed after 72 hr of exposure.  The results show (Figure 

4.2a) significant knockdown of the BCR-ABL mRNA in the sample treated with 36 nM BCR-ABL 

siRNA with respect to a control (untreated sample), and in addition to scrambled RNA.  Compared 

to the control sample, there is roughly a 60% decrease in the expression of the BCR-ABL gene.  

Liposomes loaded with siRNA samples gave similar silencing effect compared to free siRNA.  This 

is attributed to single culture effect, where the treatment is solely introduced to K562 cells.  The 

cellular non-viability level achieved with the same concentration of siRNA was 46.3 (± 2.97)% 

[73].  In contrast, scrambled siRNA showed around 20% decrease in the expression of BCR-ABL.  

This correlated to the K562 cells non-viability rate of 15% [73], observed after 72 hours of incuba-

tion with a scrambled siRNA as a positive control.  With increased siRNA dosage, it is expected 

that the knockout would proportionally increase [73].  Since I wanted to use 36 nM concentration 

in subsequent combination experiments, I did not perform dosage effects on the knockdown.  

4.3.3 Effect of siRNA-loaded liposomes on cell viability. 

In order to assess the effectiveness of loaded siRNA into holo-transferrin conjugated PEG-lipo-

somes, cell non-viability was measured using two-color flow cytometry.  The K562 cell non-via-

bility level induced by siRNA containing holo-transferrin conjugated PEG-liposomes (Figure 

4.2b), and PEG-liposomes, was slightly higher than those unconjugated.  Compared to free-siRNA, 

these results show that BCR-ABL siRNA activity was not altered, suggesting the process of loading 

and formation of liposomes does not affect siRNA activity.  These levels were similar to the apop-

tosis levels achieved with free siRNA, however, the necrosis level is significantly reduced.  Both 
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scrambled and unloaded liposomes (used as positive controls) showed significantly lower non-vi-

ability levels than siRNA treated samples.  This effect of inducing higher levels of apoptosis com-

pared to necrosis is desirable. 

 

4.3.4 Uptake of liposomes by K562 cells. 

The uptake of siRNA by K562 cells was observed using fluorescent siRNA.  The control samples 

prepared with empty liposomes showed (Figure 4.3) a very low percentage of uptake; these could 

be attributed to the background signal.  Free siRNA samples showed an uptake rate significantly 

higher than control samples, and it peaks after 4 days of incubation.  Samples, where siRNA was 

loaded into holo-transferrin conjugated PEG-liposomes, showed that after 1 day of incubation, the 

uptake percentage in K562 cells was not significantly different than that achieved with free siRNA. 

 
Figure 4.2: Effect of siRNA on K562 cells.  (a) Real-time q-PCR analysis using expression 

fold change.  Results show the relative fold change of BCR-ABL expression. (b) K562 cells 

non-viability analysis after 3 days of incubation.  Indicated non-viable cells were assessed by 

two-color flow cytometry was used to analyze apoptosis with Annexin V and necrosis with PI. 

Medium sample refers to free siRNA in k562 cell medium.  Lip + siRNA refers to holo-

transferrin conjuagated PEG-liposomes loaded with siRNA.  PEG-Lip and PEG-Lip + siRNA 

refer to unconjugated liposomes without and with siRNA loading, respectively. The asterisk (*) 

indicates P < 0.02 with reference to control or scrambled samples.  
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However, the uptake percentage significantly differed between the two groups after 2 days of in-

cubation.  With siRNA-loaded liposomes, the uptake peaks after 4 days of incubation.   

In order to test the effectiveness of prepared liposomes in targeting, I evaluated the uptake of siRNA 

by K562 cells in the presence of non-cancerous adherent HUVECs in co-culture.  Hence, both cell 

types were individually harvested without the need for cell sorting.  The same increasing trend was 

observed in the uptake of siRNA by K562 cells similar to the condition without HUVECs, with a 

minor reduction.  Uptake peaked at 4 days of incubation.  I also analyzed siRNA content in HU-

VECs by collecting after trypsin/EDTA treatment after 5 days.  On average, 23.6 (± 1.38) % of the 

HUVECs had siRNA.  In comparison, 73.1 (± 1.18) % of K562 cells had siRNA on day 5.  When 

these co-cultures were observed under a microscope (Figure 4.4), K562 cells clustered around the 

adherent HUVECs, unlike monocultures where K562 cells were uniformly distributed.  This could 
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Figure 4.3:  K562 cells uptake level of Alexa-Flour 488 conjugated siRNA (F-siRNA). Flow 

cytometry results of liposomes with no siRNA used as control samples, Free siRNA refers to 

F-siRNA in cell medium, Liposomes + siRNA refers to F-siRNA loaded-liposomes, and Lipo-

somes + siRNA + HUVEC refers to F-siRNA loaded liposomes in the presence of HUVECs. 
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interfere in nutrient distribution and/or liposomes to HUVECs.  Based on this experiment and pre-

vious findings [73], nearly all siRNA that cells uptake induces cell death.  This is interpreted by 

comparing the free siRNA uptake after 3 days, to the non-viability induced by free siRNA under 

the same conditions.  The former shows 49.03 (± 0.92) %, compared to the latter which shows 

46.32 (± 2.97) %.   

4.3.5  Stability of liposomes in cell medium.   

To test liposomes stability in cell medium, they were first loaded with fluorescent siRNA (F-

siRNA).  The prepared samples were incubated in cell medium under the same conditions used in 

all experiments, to ensure stability of liposomes under these conditions.  Stable liposomal particles 

produce a fluorescent signal, due to loaded F-siRNA, that corresponds to their size, which is sig-

nificantly larger than that of free siRNA molecules.  Results show that over 5 days period, roughly 

85% are intact and stable (Figure 4.3).  The remaining percentage is attributed to undesirable re-

lease, or unsuccessful loading of F-siRNA.  That percentage could also be due to dissociation of 

some liposomes in cell medium. 

 

 

 

Figure 4.4: Microscopic images of K562 cells in the presence of HUVECs. The control sam-

ple microscopic images are shown for K562 cells in addition to unloaded liposomes in cell 

medium. 
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4.3.6 Effect of bolus doses of resveratrol on HUVECs. 

Previously, I showed the fate of resveratrol during the 3-day cell culture in K562 cell culture me-

dium which contains 10% FBS.  The linear fit equation to the obtained data gave a value of 70.4 

hours, confirming complete depletion at 72 hr.  Experiments performed in the absence of cells 

showed an exponential decay and a half-life (t1/2) of 89.6 hours, nearly three times longer than that 

reported in the plasma [92].  In co-cultures, I used 1:1 HUVECs medium and K562 cells.  The 

absence of FBS in HUVECs culture medium reduces the total FBS content.  Resveratrol uptake by 

cells is thought to be mediated via binding to lipoproteins and albumin [108].   

Next, I tested the effect of 40 µM resveratrol alone on HUVECs viability after 3 days of exposure.  

Resveratrol-induced HUVECs death (Figure 4.5a) was not significantly different than the control 

cultures with no resveratrol.  This is similar to that reported in the literature, although their analysis 

was after 24 hr and with half the resveratrol concentration [127].  Also, the presence of K562 cells 

did not affect the viability significantly.  This suggests that the resveratrol at 40 µM dosage is not 

harmful to HUVECs.   

Resveratrol inhibits the sphingosine kinase 1, which affects the production of S1P [128].  Level of 

S1P reduced in K562 cells treated with resveratrol (Figure 4.5b) in relation to untreated K562 cell 

cultures.  K562 cells are hyperactive and are associated with a high uptake rate of resveratrol.  A 

similar influence is noted in the literature [128], while different concentrations of S1P are obtained 

due to a different cell density used in each case.  In any case, the S1P level seems to increase in 

presence of HUVECs, particularly at day 3.  Many have shown the protective effect of resveratrol 

on HUVECs to inflammatory molecules [127] and oxidative stress [129].   
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4.3.7 The release of resveratrol from microfibers.  

The release of resveratrol from different microfibers configurations, in single cell culture, as shown 

in Figure 3.5b.  The presence of both polymers and resveratrol have been confirmed by FTIR [130] 

and differential scanning calorimetry [131].  To understand the uptake and release kinetics of 

resveratrol from microfibers, its content in the medium was analyzed using HPLC analysis [73].  

The release of resveratrol from fibers without cells reached 100% by 72 hours of incubation from 

single fibers (Figure 4.6).  Similar trends were observed in the presence of K562 cells as well as 

HUVECs.  The highest concentration achieved was lower than the medium alone cultures.  I did 

not account for the decay or the uptake of resveratrol by cells during the incubation time.  Hence, 

those differences could be attributed to the uptake by cells similar to bolus experiments.  Also, 

initial release rates in HUVECs were higher, suggesting those differences are related to the uptake 

rate by cells.   

 
Figure 4.5:  Influence of resveratrol on HUVECs viability/activity. (a) Influence of resvera-

trol on HUVECs viability after 72 hours.  Control refers to untreated cells in cell medium, Co-

Control refers to untreated cells in 50:50 cell medium.  Indicated non-viable cells were assessed 

by two-color flow cytometry using Annexin V for apoptosis and PI for necrosis.  (b) Effect of 

resveratrol on Sphingosine-1-phosphate levels.  Values obtained from 1:1 culture medium was 

used as blank. Asterisk (*) indicates P < 0.02 relative to 0 (hr) sample, # indicates P < 0.02 

relative to control samples. 

(a) (b) 
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4.3.8 Effect of combination therapy using microfibers and liposomes on cell viability. 

Since our intent was to understand the effect of combination of siRNA and resveratrol control de-

livery devices on non-viability of K562 cells, first, I performed experiments using single fibers 

loaded with 40 M resveratrol and liposomes loaded with 36 nM siRNA in two treatment modes i) 

fibers and liposomes added simultaneously and ii) liposomes added three days later than fibers.  

This delay was based on the release kinetics of resveratrol from fibers in achieving drug level, 

similar to the bolus doses.  A gradual increase in apoptotic cells was observed when both drug 

delivery devices were introduced simultaneously (Figure 4.7a).  At day 8, simultaneous addition 

had 86 (± 3.8) % non-viability level, which was significantly higher than the control samples pre-

pared in PRF medium only.  I did not change medium during 8-day cultures to avoid disturbance 

introduced to the concentration of drugs and observed cell death in controls could be due to nutrient 

limitation.   

 
Figure 4.6: Resveratrol release and activity. Release study of resveratrol from electrospun 

fibers in the presence and absence of HUVECs.  Control refers to unloaded electrospun single 

fibers.   
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In cultures where liposomes were delayed by 3 days, non-viability was lower at day 3 but signifi-

cantly increased on day 5 and reached 92.7 (± 1.63) % after 8 days of incubation.  Reduction at day 

3 is expected as there is no liposome.  Over an extended time scale, however, delayed liposomes 

introduction resulted in higher total non-viability.  Also, bolus doses of 40 M resveratrol and 

liposomes loaded with 36 nM gave 78 (± 2.3)% at day 3 [73].  This suggests the possibility of 

achieving therapeutic levels locally, long-term, and more effectively.  I also assessed the necrotic 

cells using the PI (Figure 4.7b).  In relation to non-viable cells, necrotic cells were significantly 

lower in treated groups, similar to the control group.  This also suggests that the control samples 

show such levels probably due to reduced nutrition level.  

 

Next, I compared the micrographs at various time points during the culture time (Figure 4.8).  As 

expected in the control group, the number of K562 cells increased progressively.  Compared to 

control samples, K562 growth in treated samples seemed to be reduced or appeared similar to the 

 
Figure 4.7: K562 cells non-viability levels investigated under different conditions.  Indi-

cated non-viable cells were assessed by two-color flow cytometry using Annexin V for apop-

tosis and PI for necrosis.  Free samples correspond to free resveratrol in cell medium. Control 

samples correspond to K562 cells and cell medium without treatment. Fiber samples are single 

fibers loaded with resveratrol and introduced to cell medium. Lip + fiber correspond to samples 

treated with both loaded liposomes and loaded fibers, introduced to cell medium simultane-

ously. Delayed Lip + Fib samples correspond to loaded fibers introduced to cell medium im-

mediately, and loaded liposomes introduced to cell medium after 72 hours.  Part (a) shows 

Annexin V stained samples (non-viable cells), part (b) shows PI stained samples (necrotic 

cells). Asterisk (*) indicates P < 0.02        
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day zero samples.  Also, cells were distributed around the fibers.  In addition, the structure of mi-

crofibers seemed unaltered by the presence of neither K562 cells nor siRNA-encapsulated lipo-

somes. 

4.3.9 Resveratrol and siRNA combination effect on cell viability in the presence of HUVECs 

In order to understand the effect of targeted combination therapy on K562 cells, I first seeded HU-

VECs and performed experiments similar to Section 3.7.  A primary difference was the cell culture 

medium which was 1:1 mixture of HUECs culture medium and K562 cell culture medium.  These 

results showed non-viability of K562 cells (Figure 4.9a) is not higher than that observed in mono-

culture results (Figure 4.7a) for both treatment options; non-viability levels of K562 cells were 

79.99 (± 2.24) % and 94.32 (± 1.70) %.  This indicates that the treatment by inducing apoptosis in 

K562 cells is not affected by the presence of HUVECs and that the treatment is still effective.  There 

 

Figure 4.8: Microscopic images of the combination therapy on K562 cells. Controls corre-

spond to monocultures in 200 PRF medium.  
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also seemed to be an increase in non-viability with delayed addition of liposomes, particularly be-

tween day 3 and day 5.  However, the control group showed a higher percentage of non-viable cells 

on day 8.  When necrotic cells were analyzed (Figure 4.9b), there was a higher percentage of 

necrotic cells in all groups relative to monocultures (Figure 4.7b).  This could be due to an en-

hanced effect of nutrient deficiency, with increased cell number and no replenishment of culture 

medium during 8-day cultures to avoid issues with drug concentration.  

On the eighth day, I harvested HUVECs and tested viability (Figure 4.9c).  These results showed 

48.0 (± 4.35) % non-viable cells, and 40.9 (± 4.79) % necrotic cells in treatment groups and com-

parable numbers in control.  The increase in non-viability levels in controls could be due to lack of 

nutrition over 8 days of incubation in 1:1 RPMI: PRF 200 cell medium. 

 

Micrographs captured during incubation showed the presence of adherent HUVECs in the bottom 

of the cell culture, while non-adherent K562 cells were above them (Figure 4.10).  The co-culture 
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Figure 4.9: K562 cells non-viability levels investigated under different conditions. Indi-

cated non-viable cells were assessed by two-color flow cytometry using Annexin V for apopto-

sis and PI for necrosis.  Control samples correspond to K562 cells and HUVECs in 1:1 RPMI 

and 200 medium without treatment.  Lip + fiber correspond to samples treated with both loaded 

liposomes and loaded fibers, introduced to the co-culture cell medium simultaneously.  Delayed 

Lip + Fib samples correspond to loaded fibers introduced to the co-culture cell medium imme-

diately, and loaded liposomes introduced to the co-culture cell medium after 72 hours. Parts a, 

and b correspond to non-viable, and necrotic, respectively. Parts c is non-viability analysis for 

the corresponding samples after 8 days.  Part (a) shows Annexin V stained samples (non-viable 

cells), part (b) shows PI stained samples (necrotic cells).  Part (c) shows the same analysis on 

HUVECs after 8 days of incubation.   Asterisk (*) indicates P < 0.02 relative to control samples.  
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in the control samples is viable.  On day 3, HUVECs were still intact, yet slowly lost their adhesive 

feature by day 8.  K562 cell growth was also limited in co-culture.  In any case, the stability of 

fibers was not altered by the presence of HUVECs.  

 

4.4 Discussion 

Available treatment options including chemotherapeutic drugs have significant side effects apart 

from poor solubility in an aqueous environment, short circulating times, and nonspecific delivery.  

Higher dosages used to achieve therapeutic levels of promulgating toxicity.  In order to mitigate 

these issues, various controlled delivery devices with targeting have been intensely investigated 

[96].  For example, doxorubicin encapsulated in liposomes (e.g. DOXIL®) provides a therapeutic 

effect [128].  These biocompatible liposomes with very low toxicity show significant potential in 

many delivery systems, with high in vivo response [132].  PEG coating (to overcome rapid clear-

 

Figure 4.10: Micrographs of the combination therapy on K562 cells in presence of HU-

VECs.  Controls correspond to co-cultures in 1:1 RPMI and 200 PRF medium. 



69 

 

ance from circulation) and ligand attachment (to avoid non-specific binding) are important for tar-

geting [42].  Transferrin-receptors, overexpressed in cancer cells, including K562 cells, provide 

higher binding efficiency and multiple fold decrease in IC50 value compared to non-targeted lipo-

somes [42].  However, there has been significant side effects (e.g. hand-foot syndrome) due to 

premature leakage and high dosage requirement.  Forming core-shell nanoparticles have been ex-

plored to minimize premature leakage [113].  Combination treatment has been explored with mul-

tiple drugs encapsulated into liposomes, or multilayered nanoparticles [62, 63].  

In this chapter, I evaluated the possibility of combining two separate delivery methods to deliver 

two different drugs.  Aside from the advantages provided by the combination of two drugs, the 

separate delivery systems provide flexibility and better control upon release.  First, I used siRNA 

targeting BCR-ABL delivered through holo-transferrin conjugated PEG-liposome.  Second, I pre-

pared electrospun fiber for controlled release of resveratrol [98], which is proposed in cancer ther-

apy [82, 83].  In Chapter III, I showed that delivering lipophilic resveratrol and achieving thera-

peutic levels in cell culture in five days [73].  This is a significant improvement, as clinical trials 

with 150 mg/day of resveratrol given to healthy volunteers for 30 days showed plasma levels in the 

nanomolar range [91].  This is nearly three orders of magnitude less than that required micromolar 

concentration to cause apoptosis in cancer cells in vitro.  Here, I showed that resveratrol-siRNA 

combination is more potent over 8 days using non-adherent K562 cells and in the presence of HU-

VECs [87].  Others have shown complete non-viability level, using 2 µM BCR-ABL siRNA trans-

ferrin conjugated PEG-liposomes [122].  I used 36 nM BCR-ABL siRNA, in the combination de-

livery system, showing that 92.7 (± 1.63)% non-viability level is achievable. 

Liposomal delivery of siRNA is via endocytosis, for which 100 nm diameter nanoparticles are 

optimal to avoid uptake by the reticuloendothelial system [133].  Others have shown that BCR-

ABL siRNA causes up to 84% of protein level suppression [10].  However, to the best of our 

knowledge, the level of apoptosis has not been reported.  Treatment with siRNA results in nearly 
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60% BCR-ABL gene silencing, and around 46% cell non-viability.  I also observed slightly higher 

uptake with holo-transferrin conjugated liposomes than unconjugated liposomes.  Others have 

shown similar silencing levels achieved with free BCR-ABL siRNA [122].  This indicates that the 

delivery system does not alter BCR-ABL siRNA activity.  Observed non-viability level might be 

due to treating a population of K562 cells in vitro with no exposure of other cells that can contribute 

to selectivity.  The uptake study suggests that free siRNA uptake by K562 cells is achievable, how-

ever, it is not as high as that achieved with liposomes encapsulation.  The uptake level of liposomes 

by K562 is slightly altered in the presence of HUVECs.  HUVECs contribute to the uptake of the 

total liposomes population, however, this uptake level is relatively low.  This suggests that cancer-

ous cells uptake of the surface modified liposomes is not significantly altered by the presence of 

healthy cells.  Since K562 uptake is significantly higher than that of healthy cells, the delivery 

method is highly selective.  This is attributed to the holo-transferrin conjugation, which binds to 

the holo-transferrin receptor, highly expressed in K562 cells. 

By independently loading the two molecules of different sizes and different characteristics, one can 

optimize the release rates and timing of administration independently.  I investigated two-time 

schemes.  The second (delayed liposomes introduction) time scheme induces higher non-viability 

level.  This can be attributed to uptake, and release profiles, respectively.  Our approach overcomes 

the limitations imposed by using one delivery vehicle for the release of multiple components [134].  

When introduced at the same time, both siRNA and resveratrol induce their effect on two different 

cellular pathways in K562 cells, simultaneously.  However, a higher effect is achieved if the lipo-

somes introduction into the system is delayed.  The latter scenario allows for the maximal effect of 

resveratrol to take place after being released in the first 3 days.  Liposomes uptake would then take 

place and exert its effect on K562 cells, resulting in higher non-viability levels.  One could admin-

ister these intravenously and locally.  The two-time schemes show how the two delivery methods 

can be controlled timewise to produce a maximal effect.  Timing the administration of the second 
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delivery device is also important.  Similar strategies can be easily adaptable in treating other cancer.  

Introducing the proposed electrospun delivery system can be applied to a broader range of cancer 

treatment as microfibers can also be used to deliver both lipophilic and hydrophilic molecules.  As 

K562 cells don’t attach, there is no hindrance to the resveratrol release from the fiber.  However, I 

do not know how cell adhesion to the fiber surface affects the release and effectiveness of the 

delivery device.  Further studies in understanding the effect of cell adhesion on release profile are 

needed.  In any case, I believe that similar combination therapy is applicable to existing cancer 

treatments to reduce dosage and side effects. 

In summary, BCR-ABL targeting siRNA was successfully loaded into holo-transferrin-conjugated 

liposomes of 110 nm in size.  Formed liposomes showed 3:1 specificity between cancerous K562 

cells in relation to healthy HUVECs in co-cultures.  A bolus dose of 40 µM resveratrol showed 

increased K562 cell death [73] but did not affect HUVEC cell death in relation to controls.  Serum 

added to the medium influences the stability of resveratrol in cultures.  Measured S1P activity 

showed reduced content due to inhibition of sphingosine kinase 1 in K562 cells.  Similar resveratrol 

release was observed from polycaprolactone-gelatin electrospun fibers in the presence of HUVECs. 

Combination of controlled release of resveratrol and targeted liposomes significantly affected K562 

cell apoptosis over 8 days.  Delayed addition of liposomes influenced these results further.  The 

effect of resveratrol and siRNA can be maximized with controlled administration.  The uptake 

study shows that K562 uptake of liposomes is not significantly altered by the presence of HUVECs.  

This indicates that similar uptake level is expected in vivo.  As a result of lower uptake level, non-

viability level of HUVECs is significantly lower than that in K562.  The combination therapy is as 

effective in the presence and absence of HUVECs.  These results are promising and need further in 

vivo investigation.  Alternatively, I developed a model in Chapter V which can be used to predict 

the effects of biological conditions on the delivery system.  This does not necessarily eliminate the 

need for in vivo testing, however, it can reduce the amount of required experimentation.
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CHAPTER V 

 
MODELING AND DIFFUSION ANALYSIS OF DRUG RELEASE FROM ELECTROSPUN 

MICROFIBERS 

 

5.1 Introduction 

Time-dependent increase in the level of non-viable cells was observed, correlating to the release 

profile.  However, it is not clear what approach is appropriate for administering the microfibers.  

One option for the treatment of leukemia is to insert locally at a site near the genesis of cancerous 

cells, i.e., bone marrow that hub for hematopoiesis.  Similar to a bone marrow biopsy procedure, 

or stem cell local administration [58], microfibers containing resveratrol can be placed within the 

bone marrow.  However, the influence of blood flow along with the uptake of resveratrol by cells 

is not well understood. 

With the advances in computational modeling, there has been an immense interest in screening 

therapeutic agents in silico with the intent of reducing the cost and time while improving the success 

rate of candidate drugs.  However, models that translate drug stability characteristics and transient 

release profiles to conditions used in 3D tissue mimicking that in vitro conditions needs to be de-

veloped.  Bioreactors provide a suitable in vitro 3D environment with controlled desired stimuli, to 

represent the bone marrow microenvironment [135].  This bioreactor configuration was assumed 

to mimic the bone marrow microenvironment [136].  They were used to estimate the average nu-

trition consumption in the bone marrow microenvironment.  

In this regard, I investigated the effect of introducing a fluid flow system, mimicking that of the 

blood perfusion, on the release of resveratrol from electrospun microfibers.  
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I used a combination of experimental results and computational fluid dynamics (CFD) to assess the 

effect of fluid flow rate, uptake rate by cells, length of the fibrous matrix, and the porosity of the 

tissue surrounding the blood vessels on the concentration profile of resveratrol.  I used the dimen-

sions based on a recent study done to understand the related kinetics of chemicals secretion by the 

bone marrow [137].  Two cell lines were included to understand the effect of uptake rates on re-

leased stimulants: 1) endothelial cells that line the blood vessel, and 2) K562 cells suspended in the 

fluid and based on empirical uptake rates.  Non-adherent K562 cells predominantly used in under-

standing the molecular mechanisms and treatment options. First, I validated the simulation ap-

proach using static and dynamic conditions.  Then I extended the simulation approach and show 

that porosity of the tissue and uptake rates have a significant influence on the concentration profile 

of resveratrol.   

5.2 Materials and Methods 

5.2.1 Stability of resveratrol in various cell medium 

To evaluate the stability of resveratrol in the culture medium, experiments were performed in 6-

well plates and 2 mL medium K562 cells and HUVECs.  Experiments were performed using 2×105 

cells/mL (total number of cells, 50% each cell line in the case of co-culture), and 40 µM concen-

tration of resveratrol in medium containing 1:1 of RPMI (used for K562 cells): 200 PRF (used for 

HUVEC culture) cell medium for 72 hours in 5% CO2, and 37 C, with and without cells.  Three 

conditions used were i) medium alone, ii) in presence of HUVECs, and iii) in the presence of both 

HUVECs and K562 cells.  Samples were collected every 24 hours from the initial time point and 

change in resveratrol concentration was assessed in samples using HPLC, as previously described 

[73].  Obtained concentrations were normalized to initial concentration and plotted as a function of 

time.  Data were fitted with an exponential equation to determine the cell uptake rates.  
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5.2.2 Diffusion coefficient calculations 

PCL-GT electrospun single fibers were formed identical to the procedure described previously.  

The experimentally determined concentration values were then used to calculate the corresponding 

total number of moles using the medium volume [73].  The dimensions of a 6-well plate were 

obtained from the product’s data sheet.  A single well has a diameter is 34.8×10-3 m, an area of 

9.51×10-4 m2, and a volume of 2 mL (amount of cell medium added in experiments).  The path of 

diffusion can be calculated by diving the volume over the area of a single well, resulting in 0.0021 

m.  The diffusion flux, 𝐽, was calculated for each individual point knowing the total moles.  Also, 

change in concentration, dC, during that time was calculated.  Knowing the thickness of the fiber, 

diffusion flux 𝐽 was plotted for the corresponding 
𝑑𝑐𝑖

𝑑𝑧
.  Then diffusion coefficient D was calculated 

using Fick’s first law as shown in Eq. 11.    

−𝐽 =  𝐷
𝑑𝐶

𝑑𝑧
        (11) 

From the slope of the linear function.  Obtained diffusivity values were used in the simulation.  

5.2.3 Measuring resveratrol release with fluid flow 

In order to understand the effect of fluid flow on the release profile of resveratrol, an apparatus was 

constructed in-house.  It consisted of a variable speed syringe pump (74900 series, Cole-Parmer, 

Vernon Hills, IL), syringe, a 12 cm long plastic (rigid) tube with an internal diameter of 0.6 cm, 

microfiber boundary condition, and a waste collector (Figure 5.1a).  A 3.8 cm long resveratrol 

containing PCL/GT fibers were inserted into a rigid tube, closer to the exit (Figure 5.1b).  The 

opposite end of the rigid of was attached to a 10-mL syringe containing cell culture medium, which 

was connected to the syringe pump.  The pump set to 0.001 mL/min (0.59 µm/s in simulation, 

calculated using the cross-sectional area of the reaction tube), used to pump RPMI (10% FBS) 
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medium though part 2 (Figure 5.1c).  Entire apparatus was incubated in 5% CO2/95% air, at 37 C.  

Samples (100 µL each) were taken at the exit using a 100 µL micropipette.  Eight samples were 

taken at 0, 10, and 50 minutes, followed by 5, 10, 24, 48, and 72 hours.  The samples were analyzed 

using HPLC as previously described [73].  The simulation parameters were modified to match the 

experimental dimensions. 

 

Figure 5.1: Experimental setup for model validation. (a) Experimental setup apparatus. (b) Top 

view of the reaction tube showing the location of the fiber insertion. (c) Illustration showing the 

dimensions and location of the fiber. 

5.2.4 Numerical simulation of resveratrol release from fibers.   

5.2.4.1 Geometry.  First, a 3D cylindrical tube was drawn with a 0.8 cm radius and 3.8 cm length 

(Figure 5.2a) in COMSOL Multiphysics 5.4.  These dimensions were based on a previous simula-

tion in the bone marrow microenvironment [137].  When evaluating the presence of surrounding 

porous tissue, an outer shell of 2.2 cm radius (Figure 5.2b) was added to the geometry.  In addition, 
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a 34-mm flat geometry was created using the dimensions of a 6-well plate, similar to prior experi-

mental setup for the release of resveratrol from electrospun fibers.  A coarse tetrahedral mesh was 

selected with the following element size parameters with a maximum element size of 0.00208 m 

and a minimum element size of 6.4×10-4 m.  Also, the maximum element growth rate was 1.25, the 

curvature factor was 0.8, and the resolution of narrow regions was 0.5.  Mesh independency test 

was performed, showing that the model is meshed independent. Physical properties (density and 

viscosity) of the cell culture medium were assumed to mimic that of water at 310.15 K (body tem-

perature).  Hence, two materials were defined, water, and resveratrol, defined by molecular weight 

and diffusion coefficient.   

 

Figure 5.2: Bioreactor model geometry. (a) A schematic showing the dimensions, flow inlet, 

outlet, diffusion, and the microfiber location. (b) A schematic including the surrounding porous 

media representing the spongy microenvironment of the bone marrow.  

 

5.2.4.2 Governing equations.  It was assumed that the entrance of the tube had a fully developed 

laminar flow to mimic blood flow in the bone marrow, and transport of diluted chemical, repre-

senting resveratrol, from the surface boundaries.  Multiphysics model was created to account for 

transport and laminar flow physics.  The two systems are correlated using flow coupling.  Fluid 

flow was assumed to follow incompressible Navier-Stokes equations given by Eq. 12, Eq. 13, and 

Eq. 14.  
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  𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢. ∇)𝑢 = ∇. [−𝑝𝑖𝑗 + 𝜇(∇𝑢 + (∇𝑢)𝑇]    (12) 

  ∇. (𝑢) = 0        (13) 

  𝑢 =  −𝑈0𝑛          (14) 

where  is the density, p is the pressure,  is the dynamic viscosity, ij is the Kronecker delta 

function, u is the fluid velocity, U0 is the initial velocity, and n is the normal vector.  Initially, 

simulations were performed using 1.5 mm/s velocity [137].  However, while evaluating the effect 

of flow rate, these values were set to various flow rates as needed.  Also, for static condition, u was 

given a value of zero.  

In order to understand the effect of stability and uptake of resveratrol, unsteady advective- diffusion 

equation for the diluted chemical species was used.  This was represented in Eq. 15 and Eq. 16. 

𝜕𝐶

𝜕𝑡
+ ∇. (−𝐷∇𝐶) + 𝑢. ∇𝐶 =  𝑅      (15) 

𝑁 = −𝐷∇𝐶 + 𝑢𝐶       (16) 

where C is the concentration of resveratrol at any time t, D is the diffusion coefficient of resveratrol, 

R is the reaction rate, and 𝑁 is the molar flux.  The free diffusion coefficient was defined in the 

model as 1.84×10-7 m2/h.  The concentration profile was defined based on the release profile pre-

viously established [73].  The concentration profile, in the absence of cellular uptake, was defined 

from the fibers located at the boundary in Eq. 17.  

𝐶 = 5.74 + 33.45 (1 − 𝑒0.07𝑡)       (17)  

When evaluating the uptake rate and stability in the culture medium, reaction rate R was defined in 

the integral form using exponential equations from experiments.  For example, in the presence of 
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both HUVEC and K562 cells, the resveratrol uptake rates by cells as obtained from experiments 

(Eq. 18). 

𝐶𝑅 = 𝐶𝑅0 𝑒−0.015 𝑡               (18) 

where CR0 is the initial resveratrol loading concentration, and t is given in hours.  When evaluating 

the transport of resveratrol to the surrounding porous region, the diffusion coefficient was modified 

to an effective diffusion coefficient (Deff) (Eq. 19).  The transport of diluted chemical species in 

porous media, Deff was assumed to remain constant, isotropic, and was approximated using Mackie-

Meares relationship [138].  

   𝐷𝑒𝑓𝑓 = 𝐷 (
𝜀𝑝

2−𝜀𝑝
)

2

      (19) 

where p is the porosity value used in the simulation.  Based on the previously published reports a 

porosity of 8.6% was selected first and then to test the effect of porosity it was doubled.  

5.2.4.3 Boundary conditions.  No slip condition was assumed at the inner surface of the cylinder, 

where u = 0.  The Boundary condition for concentration release is defined at the surface, where 

material 2 (resveratrol) was defined at the inner surface only.  The global definitions of parameters 

and variables allow modeling for concentration release from the boundary.  The parametric values 

and model fit, as a function of time, were generated using previously established experimental re-

sults for a stagnant system [73].  These were solved using DIRECT solver system that is based on 

LU Factorization (12) to linearize and numerically solve the built-in PDE equations.   

5.3 Results 

5.3.1 Resveratrol stability as a function of medium and cellular uptake.   

When resveratrol is released into the bloodstream, it is exposed to luminal endothelial cells as well 

as cells suspended in the bloodstream.  In order to determine its fate, I performed co-culture exper-
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iments using HUVECs and K562 cells.  Also, a 1:1 mixture of the medium was used to accommo-

date the growth and survival of both the cells.  Then the fate of resveratrol in the culture medium 

of 1:1 RPMI:200 PRF medium, in the presence of K562 cells and HUVECs, was determined over 

a 3-day time period.  These results showed increased stability of resveratrol in culture medium with 

longer half-lives (Figure 5.3a).  Others have shown similar stability of resveratrol in phosphate 

buffers at similar pH conditions [139], [140].  However, I previously observed that in the presence 

of 10% serum, degradation is much faster.  Reduced serum level in the co-culture 1:1 RPMI:200 

PRF medium, reduces resveratrol degradation.   In the presence of HUVECs, the reduction was less 

compared to co-cultures, but higher than that in the medium.  Cancer cells are known to have altered 

metabolic activity [141].  In the presence of both HUVECs and K562 cells, nearly 38% remained 

in the cell culture medium at the end of 72 hours.  In addition, reduction in resveratrol seems to 

accelerate on day 3 in HUVECs, following a different trend line than the exponential decay ob-

served in K562 cell cultures.  

5.3.2 Resveratrol release profile matches with simulation results in stagnation condition.   

The release rate of resveratrol from the electrospun fibers was simulated using the 6-well geometry 

used in experiments over five days.  Five days were chosen based on available experimental results 

for the release of resveratrol using PCL-GT electrospun fibers in 6-well plates [73].  Similarly, flow 

through the reactor with zero velocity was simulated by representing simulation to occur as a 

boundary condition within the model, to generate a concentration profile (volume averaged) (Fig-

ure 5.3b).  In flat geometry, the concentration profile reached a plateau by 80 hr.  The experimen-

tally obtained concentration showed a similar release behavior, reaching a plateau by 72 hr but a 

faster release in the beginning.  The minor difference in the plateau value in simulations that ex-

perimentally obtained could be attributed to decay and variation in the loading of resveratrol.  Effect 
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of variation in the loading of resveratrol in fibers can be statically observed with the highest stand-

ard deviation obtained at the indicated time point, compared to all other experimental data points 

in the loading efficiency.  Slightly higher amount than that predicted can get loaded into the micro-

fibers used in the experiment (including the replicates). However, these do confirm that the simu-

lation approach is valid along with the underlying governing equations.  The effect of geometry 

was assessed using a cylindrical fibrous structure under fluid flow.  I used zero velocity, diffusion 

of diluted species is the only controlling phenomena dictating the observed final concentration pro-

file (Figure 5.3b).  Simulation results showed a faster release, in the beginning, relative to flat 

geometry.  Interestingly, no plateau region was observed.  I extended the simulation to 192 hr (8-

days) and no plateau region was observed.  Overall, the model successfully predicts the general 

concentration profile under stagnant conditions. 

 

Figure 5.3: Resveratrol stability and release under non-flow conditions. (a) Resveratrol degra-

dation analysis in 1:1 medium of HUVECs and K562 cells incubated at 37 C and 5% CO2. (b) 

Release profile simulation results in static conditions – no flow. 

 

5.3.3 Resveratrol release profile matches with simulation results in fluid flow condition.  

Experimental results were obtained using the tubular reactor set-up (Figure 5.1).  Nearly 8 cm near 

the inlet was purposefully introduced so that the fluid reaches a developed flow condition with 



81 

 

steady-state velocity profile that used in the simulations at the inlet condition.  These results (Fig-

ure 5.4) show that concentration profiles were identical between the experimental results and sim-

ulation results.  A minor difference was in the peak value reached by resveratrol, the simulation 

showed a lower peak relative to experimental results.  This could be attributed to a completely 

developed laminar flow inlet assumption in simulations, which might not have been perfectly 

achieved experimentally.  A flow pattern mimicking a plug flow could provide such increased con-

centration in tubular reactors.  Also, the presence of fibers and the surface roughness could alter 

the boundary layer leading to the variation in observed concentration profile.  Due to the higher 

standard deviation at the peak value could also be explained by the difference in the loading of 

resveratrol into the fiber during preparation.  In general, the model successfully predicted the actual 

concentration profile of resveratrol over five days, upon its release from microfibers.      
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Figure 5.4: Experimental results validating the model under flow conditions. Blue model fit 

represents simulation results, compared to those experimentally generated (dark pink data points). 

The experiment and the simulation are performed under the same conditions: 37 ᵒC, no cellular 

uptake, geometry/dimensions, and cell medium properties. 
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5.3.4 Alteration in resveratrol concentration along the length of the reactor assuming flow 

conditions.   

After validating the simulation results with experimental results, I assessed the changes in the con-

centration of resveratrol along the length of the reactor.  For validation, the concentration profile 

over time was generated by taking an average value of the concentration over the entire volume of 

the reactor.  To determine the concentration distribution along with specific cross-sectional areas 

along the length of the reactor, the linear integration concept can be used and represented in the 

model using a linear projection operator [142].  To simplify this estimation, and reduce the com-

putation time, a 2D model can be used.  Expressions for the linear projection were defined as in 

Eq. 20. 

𝑐(𝑧) =
1

𝐴𝑟𝑒𝑎
∫ 𝑐(𝑧, 𝑟). 2𝜋. 𝑟𝑑𝑟 

𝑅𝑎𝑑𝑖𝑢𝑠

0
     (20) 

Where z and r are the axial and radial directions in the study.  The concentration profile increases 

along the length of the reactor at a certain point in time (Figure 5.5a).  This is due to the flow effect 

starting at the inlet of the reactor and at the outlet.  Any amount of the chemical that is released at, 

or near the inlet, is carried towards the outlet.  The overall concentration distribution at the last 

point in time (120 hours) is shown in Figure 5.5b.  Table 5.1 shows selected time points where 

linear integration was performed along the length of the reactor.   
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Table 5.1.  Alterations in the resveratrol concentration along the length of the tube at various 

time points. 

 

Figure 5.5: Cross-sectional area based concentration distribution by flow along the length of 

the bioreactor. (a) Linear integration release profile simulation at a selected point in time (120 h).  

(b) A 3D model of the concentration distribution. 

 

5.3.5 Influence of various parameter on the release of resveratrol under flow conditions.   

To understand the flow effects in fully developed (assumed at the entrance) laminar flow, the model 

was modified to include an inlet velocity.  Several variables were considered, including inlet ve-

locity, uptake rates of different cell types, and the length of the reactor.   
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5.3.5.1 Impact of inlet velocity on the concentration profile.  The same model was used to predict 

the concentration profile over five days, varying three parameters: inlet velocity, cellular uptake, 

and reactor length (Figure 5.6).  Inlet velocity has a direct effect on the release kinetics.  The larger 

the velocity the faster a saturation condition is reached, and the faster resveratrol concentration 

starts to fall.  Changing the inlet velocity within the mm/s scale does not influence the concentration 

profile significantly, after 100 seconds.  Figure 5.6a shows that even 10 folds increase or decrease 

in the inlet velocity leads to the same general concentration profile.  Lowering the inlet velocity by 

an order of magnitude, however, had a significant effect on the shape of concentration profile over 

time.  As expected, the driving force reduces, leading to delayed maximum concentration level.  

The lower threshold is also encountered due to the wash away effect by inlet flow.  While it takes 

longer for the maximum concentration level to be reached, the flow effect is still washing away the 

diffused resveratrol, leading to a lower maximum level. 

The initial 2 hours of release varies based on the inlet velocity (Figure 5.6b).  This is expected due 

to having the maximum driving force initially.  As the initial concentration in the reactor is 0 µM, 

and the boundary concentration is at its maximum value, a concentration gradient is greatest, and 

therefore, mass transfer is greatest.  Once a threshold is reached, that value stabilizes, then starts to 

decrease due to flow condition.  The larger the inlet velocity the faster that threshold is reached.  

This is due to maintaining a high driving force.  As the velocity is higher, the diffused resveratrol 

is washed away quicker, leading to lower instantons concentration inside the reactor.  This driving 

force, however, leads to the higher release of resveratrol from the boundary per unit time.  The 

model, hereby, satisfies the general transfer phenomena predictions.  This shows that the process 

is convection dominant during the first few hours under the given perfusion rate. 

5.3.5.2 Impact of cellular uptake on concentration profile.  As the inlet velocity is fixed at 1.5 

mm/s, the effect of cellular uptake rates was evaluated using experimentally generated data.  the 
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simulation.  General behavior (Figure 5.6c) was similar to that in Figure 5.6a, except that addi-

tional cellular uptake reduced the available resveratrol concentration due to fluid flow.  Next, up-

take rates by different cell lines were included using the expression from experimental results.  

First, the presence of HUVECs, which line the blood vessels, were analyzed.  Due to the uptake by 

HUVECs, a lower release profile was observed, compared to no cellular presence.  The presence 

of additional K562 cells further decreased that profile.  This is expected due to the lower availability 

of the drug as the level of consumption increases.  This can be further developed to include enzy-

matic kinetics impact of the drug stability, among other biological factors.  For comparison pur-

poses an additional profile was generated using lower velocity (three orders of magnitude lower), 

compared to Figure 5.6a, the same general curve shape is obtained at a lower concentration at each 

point in time, due to the uptake rates introduced. 

5.3.5.3 Impact of reactor length on concentration profile.  To understand the effect of varying 

the bioreactor’s length, Figure 5.6d shows that increasing the length of the reactor by two, or ten 

folds does not have a noticeable overall effect on the concentration profile over the given period of 

time.  Also, different orders of magnitude in length were assessed.  Those scales, such as µm and 

m ranges produced a different release profile.  Those results, however, are unrealistic, as this model 

is supposed to represent an insertion section to the bone marrow which is realistically represented 

by the length studied in the model.  This shows that the process is diffusion dominant during the 

second part of the release.  This part covers the vast majority of the time of the entire process, under 

the given perfusion rate.  
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Figure 5.6: Impact of different variables on the release profile under flow conditions. (a) Var-

ying the inlet velocity results in a different maximum release. (b) Significant differences in the 

release profile shown during the initial release based on inlet velocity. (c) Additional uptake rate 

results in lower available resveratrol levels in the reactor. (d) Changing the length of the reactor 

does not have a significant effect on the release simulation results.   

 

5.3.5.4 Modeling the release in the presence of a porous medium.  The simulation setup was 

modified to mimic the actual microenvironment of the bone marrow or tissue surrounding the blood 

vessel.  The laminar flow was coupled with the transport of diluted chemical species in porous 

media, as well as transport of diluted chemical species.  The laminar flow was modified in the 

model to account for porous domains where the solver uses the Brinkman equation for porous do-

mains and the Navier-Stokes equation for free flow domains.  The flow was coupled with both 

transport phenomena by adding multiphysics.  The geometry was modified based on a previous 

study [137], and a porosity of 8.6% was selected using literature data [143].  For comparison pur-

poses that porosity was then doubled (17.2%) to study the effect of varying porosity on the release 
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profile.  Figure 5.7a and Figure 5.7b show the general concentration distribution at the 1000 sec-

onds, and 120 hours points in time, respectively.  The higher concentration distribution is observed 

in Figure 5.7a, in the inner cylinder, due to the higher effect of convection, and no flow resistance 

(no porosity in the inner layer).  With the progression of time, the concentration shifts towards the 

outer shell, as laminar flow washes released resveratrol in the inner cylinder due to lower flow 

resistance.  The porosity provides (Figure 5.7b) resistance for concentration drop, and hence the 

higher concentration distribution relative to the inner cylinder.  The obtained concentration profile 

shows a noticeable effect of the porous medium (Figure 5.7c).  The average, volume-based con-

centration profile in the presence of porous media is noticeably lower than that with no porous 

media, with nearly 6% reduction in the maximum level reached in the inner cylinder.  When the 

porosity is doubled, the release profile shifts further down expectedly, due to reduced resistance by 

the outer shell porous media additional diffusion path.  Thus based on where the material is im-

planted, one has to account for the diffusion through the porous medium and adjust the loading of 

the therapeutic agent.  
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Figure 5.7: Release profile and geometry of the bioreactor in the presence of flow and outer 

shell porous media. Geometric representation of the concentration distribution along the length of 

the reactor after (a) 1000 seconds of a transfer, and (b) 120 hours of transfer. (c) Release profile 

simulation of the inner reaction tube in the presence of outer shell porous media. 

 

5.4. DISCUSSION 

In this chapter, I evaluated the effect of fluid flow and cellular uptake rate on the release kinetics 

of stimulants sequestered inside electrospun fibers.  To understand the impact of fluid flow, in the 

bone marrow microenvironment, on the release of resveratrol from electrospun microfibers, a math-

ematical model was developed.  I combined the time-dependent release rate from fibers along with 
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the uptake rates by different cells.  I validated the concentration profiles from both static and dy-

namic conditions.  The model was extended by introducing an outer porous layer to further mimic 

the release in a bone marrow microenvironment.  This design includes experimental based relations, 

to define boundary conditions, and geometry.  The numerical solution of the model provides crucial 

information regarding the controlled delivery and the effect of various parameters on that process.  

The inlet velocity is typically constant on individuals basis, however, the blood perfusion rate 

slightly differs based on the individual’s age and gender [144].  This model shows the release 

mechanism does not significantly change based on inlet velocity changes within a similar scale.  

This confirms that the release process will not be affected based on the patient’s age, or gender.   

The presence of various cell types present in the blood and the blood vessel has a more significant 

effect on the release profile.  As the model predicted, however, leukemic cellular uptake is higher 

than that by healthy cells, which is the main purpose of the treatment.  The model predicted a further 

reduction in the available drug concentration as more cellular uptake is introduced.  The model 

could be enhanced by adding additional cellular and enzymatic activity, within the bone marrow 

microenvironment.  A previous model can be used as a reference for these kinetics [137].  Steady-

state transport of oxygen to the surrounding tissue is well described by the Krogh cylinder approach 

[145] and many modifications [146].  However, coupling the time-dependent release of a therapeu-

tic agent along with cellular uptake rate is not well understood.  Some have explored the release of 

various drugs sequestered into stents to mitigate restenosis issues locally [147].  Another study 

illustrated similar kinetic behavior and results for arterial drug release from stents in vivo [148].  

This shows that the model presented in this study provides an excellent base for future research.  In 

any case, compared to the proposed electrospun microfibers system in this study, stents show higher 

rigidity and better control upon the shape uniformity.   

When based on the mechanism of action, resveratrol is known to be internalized by cells.  Although 

it is not clearly understood how to control the positioning of the proposed system, it is expected 
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that perfusion rate of blood in the target bone marrow tissue will not have a significant effect on 

microfibers displacement.  It is sought to use this model as a useful tool for local delivery of resvera-

trol-encapsulated electrospun microfibers.  The microfibers can be inserted locally in the core, fatty 

inner part, of the bone marrow, after the removal of the required part.  Similar to how a biopsy is 

performed, the removed portion can be replaced with the microfibers.  This can be used as a treat-

ment [73], or to enhance treatment after chemotherapy, and a transplant, where less than 100% of 

the leukemia cells are removed [149].  The model predicts that changing the size of the bioreactor 

on a similar scale does not have a significant effect on the resultant release profile.  Hence, taking 

the suggested geometry is recommended, while other geometries can easily be tested using the 

model. 

Electrospun fibers are increasingly used in developing 3D structures.  In addition, electrospun fi-

bers are used in tissue regeneration and wound healing purposes, one could add various stimulants 

and determine the release rates [150].  With the advances in multiaxial electrospun fibers and var-

ious stimulants, one could assess the spatial distribution of components using CFD [98].  Further 

coupling of the pressure drop predictions across the scaffold, that I demonstrated previously, along 

with the nutrient consumption characteristics, one could monitor the tissue regenerative process 

[151].  However, such efforts need experimental validation.  This can be useful in other application 

based on the selected system-specific parameters.  Models, such as the one presented in this study, 

can be used to reduce animal suffering by reducing the need for in vivo testing.  The need for the 

latter might not be eliminated, however, can significantly be reduced by narrowing down experi-

mentation based on model predictions.  Similar approaches can be used to understand the release 

profile and effect in those applications.  
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CHAPTER VI 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 
6.1 Conclusions 

In aim 1, the influence of controlled release of resveratrol from electrospun microfibers, in combi-

nation with siRNA on cell viability was evaluated.  I evaluated the apoptotic and necrotic effects 

of this treatment on K562 cells using Annexin V and Propidium Iodide staining.  The combination 

effect was additive.  Non-viability analysis showed resveratrol to cause higher necrotic effects com-

pared to that of siRNA; the effect of siRNA was mainly apoptotic when introduced to the cell 

culture medium.  Fate of resveratrol in cell culture showed reduction to zero in three days.  Factorial 

design-based analysis suggested a range of effective concentrations of both drugs in achieving 

100% cell death.  In order to improve bioavailability of resveratrol, electrospun microfibers were 

successfully formed using PCL-GT combination in three different configurations.  Controlled re-

lease of resveratrol was observed for five days and its effect on cell death was confirmed, inducing 

higher apoptotic effect, using three different configurations.  Upon the controlled release of 40 µM 

resveratrol from single fibers, roughly 45% non-viable leukemia cells, after 8 days of incubation 

was measured.  However, this percentage dropped to roughly 20% in the presence of 36 nM free 

BCR-ABL siRNA, which lead to further analysis in aim 2. 

In aim 2, the effect of siRNA-loaded liposomes, in combination with controlled release of resvera-

trol on cell viability, was assessed.  
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The second delivery system is introduced to provide better control on the diffusion-dependent re-

lease, and eliminate possible side interactions.  Liposomes 123 (±6.65) nm in size were formed 

using established techniques.  Extrusion and dialysis were performed to obtain the desired size and 

purity.  Holo-transferrin was conjugated to the surface of liposomes by a thiolation reaction, with 

85.9 (±7.30)% conjugation efficiency.  Roughly 50% of non-viable leukemia cells was measured 

after treatment.  PCL-GT microfibers containing resveratrol were then introduced in combination 

with siRNA-containing holo-transferrin-derived nano-liposomes.  The treatment was tested in both 

single cultures of K562 cells, and co-cultures, in the presence of HUVECs.  The treatment intro-

duction was tested in a timely manner, showing that the delayed addition of liposomes increases 

K562 non-viability to 92.7 (±2.00)% and 94.32 (±1.70)%, in the absence and presence of HUVECs, 

respectively.  HUVECs non-viability level was significantly lower.  To better understand the im-

pact of fluid flow, present in a biological microevironment, a CFD model was built and various 

parameters were tested as part of aim 3. 

In aim 3, experiments were performed to study the stability of resveratrol in different medium and 

cellular presence conditions.  The release profile was analyzed experimentally and was also simu-

lated under both flow and non-flow conditions.  These results validated as the experimental data 

supported that predicted by the model in each case.  Several variables were then tested using the 

model, such as inlet velocity, cellular uptake rate, bioreactor’s length, and outer shell porous media.  

Results show that the release profile is mainly impacted by cellular uptake and the presence of 

porous media.  The model provides a powerful tool that predicts the behavior of the release profile 

generated by the proposed delivery method.  This delivery method can be implemented as a local 

treatment, and based on the model, is mainly controlled by mass transfer.     
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6.2 Recommendations 

Numerous single and multi-drug treatments have been explored, both in vitro and in vivo, for their 

potential in treating cancer.  Although the studies have shown the main effects of these treatments 

on cancer cells, further information is required.  This includes treatment’s effect on cellular path-

ways, and cellular processes, such as apoptosis and autophagy.  To minimize side effects, lower 

the required dosage, and enhance drug release control, drug delivery devices are designed and mod-

ified mainly for targeting purposes.  In this project, a novel drug delivery system has been intro-

duced with a promising potential in treating leukemia.  It is sought that this project can be used as 

a background for future studies in this area.   

The author foresees a great advantage in combining two different delivery vehicles for the purposes 

of delivering multiple, different drugs.  This method enables better control upon the release of both 

locally and systemically administered drugs.  It further provides a way to control the time of ad-

ministration of each drug, and whether simultaneous, or scheduled effect of each drug, is required.  

For example, microfibers can be locally administered, and the drug release can be modeled and 

controlled, as opposed to systemic administration of nanoparticles, which is eventually determined 

by cellular uptake alone.  In addition to the controlled release, electrospun microfibers allow a 

higher loading capacity relative to that of nanoparticles.  For instance, some drugs are effective 

when administered in the micromolar range, while no effect is observed with lower doses.  In such 

cases, nanoparticles provide maximum loading capacity that is not sufficient, or that would require 

high nanoparticles concentration.  One study shows that the maximum loading capacity of 75 mil-

lion-mole of doxorubicin per mole of liposomes [152].  Accordingly, I suggest that a researcher 

should follow a selection process to determine the appropriate combination delivery for their treat-

ment under study.  
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This method, like others, is associated with certain drawbacks.  To address some, local administra-

tion might be challenging.  It might introduce further unforeseen problems when tested in vivo, or 

in clinical trials.  Such delivery vehicles are to be scaled up if successful.  This introduces more 

challenges regarding time and cost of manufacturing.  The overall take away message is to take the 

state of the art introduced in this work, as a starting point for future studies in the delivery of com-

bination therapies for cancer treatment. 

Results of simulation show that the release profile is mainly impacted by cellular uptake and the 

presence of porous media, provided a realistic geometry and flow conditions as that found in a bone 

marrow microenvironment.  This model provides a powerful tool that predicts the behavior of the 

release profile generated by the proposed delivery method.  This delivery method can be imple-

mented as a local treatment, and based on the model, is mainly controlled by mass transfer.  It is 

recommended to further extend this study to investigate the diffusion of drug molecules inside the 

fibers.  This can be done by varying the ratio of PCL to GT in the core fiber gel.  To further enhance 

the diffusion model, the diffusion coefficient discussed earlier, can be included.  The overall diffu-

sion process can then be broken down into three major steps: (1) diffusion of resveratrol within the 

fiber core, (2) transfer of resveratrol molecules through the interface between fiber surface and cell 

medium, and (3) diffusion through cell medium.  The partition coefficient provides information 

about the concentration ratio at the interface between the two mediums at equilibrium. 

I have also successfully shown that applying chemical engineering tools in the field of pharmaceu-

ticals is a powerful addition to the field.  Models, such as the one presented in this study, can be 

used to reduce animal suffering by reducing the need for in vivo testing.  The need for the latter 

might not be eliminated, however, can significantly be reduced by narrowing down experimenta-

tion based on model predictions.  
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APPENDIX A 
 

 

GANTT CHART 

Task 
Fall 

2016 

Spring 

2017 

Summer 

2017 

Fall 

2017 

Spring 

2018 

Summer 

2018 

Fall 

2018 

Spring 

2019 

SPECIFIC AIM 1         

Evaluate the influence of con-

trolled release of resveratrol, in 

combination with siRNA on cell 

viability 

    

    

SPECIFIC AIM 2         

Assess the effect of siRNA-loaded 

liposomes, in combination with 

controlled release of resveratrol 

on cell viability 

    

    

SPECIFIC AIM 3         

Design a bioreactor to mimic the 

bone marrow microenvironment, 

and study the latter’s effect on the 

proposed treatment 

    

    

Repeat Failed Experiments         

Data Analysis         

Dissertation writing         
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APPENDIX B 
 

 

SUPPLEMENTARY STATISTICAL, FLOW CYTOMETRY, AND QPCR DATA 

B.1 ANOVA Analysis 

Anova: Single Factor method was used in excel to perform all statistical analysis shown in the 

paper. The Figure below shows an example of that performed on the qPCR data.  
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B.2 Histogram plots- non-viability determination procedure 

A cell quest software was used to obtain histogram and dot plot for samples analyzed in non-

viability experiments.  The histogram plots were statistically analyzed to obtain the percentage of 

non-viable (in case of Annixen V staining) and necrotic (in case of PI staining).  A default log-log 

scale is set for each stain.  

After running samples in the flow cytometer, readings were recorded on the template file in Cell 

Quest.  The recorded data were then called back in the form of a histogram plot: 
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The purple curve refers to a control population incubated for 3 days. Based on that control, non-

viability analysis is determined for the green (siRNA-loaded PEG-liposomes) and pink (siRNA-

loaded Holo-Transferrin-Conjugated PEG-liposomes) after 3 days of incubation.  

Statistical analysis is obtained in Cell Quest as follows: 

Control sample: 

 

siRNA-loaded PEG-liposomes sample: 

 

siRNA-loaded Holo-Transferrin-Conjugated PEG-liposomes: 

 

 

 

 



108 

 

Dot plots were also generated and the difference between live and dead populations is clearly 

observed. Side scatter is plotted against forward scatter, where the top controls, and the bottom is 

siRNA-loaded Holo-Transferrin-Conjugated PEG-liposomes sample: 

 

 

B.3 Real-time qPCR supplementary graphs 
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