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Abstract 

Determination of the ground’s thermal conductivity is a significant challenge facing designers of 

Ground Source Heat Pump (GSHP) systems applied in commercial buildings. The number of boreholes and 

the depth and cost of each borehole are highly dependent on the ground thermal properties. Hence, 

depending on the geographic location and the local drilling costs, the ground thermal properties strongly 

influence the initial cost to install a GSHP system. In order to be able to predict ground thermal properties, 

an experimental apparatus has been built capable of imposing a heat flux on a test borehole, and 

measuring its temperature response. Parameter estimation techniques in conjunction with a two-

dimensional numerical model are used to determine the thermal conductivity of the surrounding ground.  

Independent measurements of the soil conductivity test results are reported for several test boreholes and a 

laboratory experiment.  An uncertainty analysis of the thermal conductivity prediction is presented. 
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Introduction 

Although originating in the residential building sector, ground source heat pump systems have 

become increasingly popular for use in commercial and institutional buildings.  Many of these buildings 

require comparatively large and expensive ground loop heat exchangers.  Although “ground source heat 

pump systems” may include a range of system configurations, closed-loop systems, where the ground loop 

heat exchanger consists of a series of vertical boreholes, are usually preferred in commercial applications 

due to minimal required surface area and ease of maintenance. Particularly for large systems, an extensive 

effort is made to design the ground loop heat exchangers so that they are not too large (resulting in too high 

of a first cost) or too small (resulting in entering water temperatures to the heat pumps being too high or too 

low).   

There are a number of design tools used to size ground loop heat exchangers (Ingersoll 1954, 

Kavanaugh 1984, Eskilson 1987, Deerman 1991, Cane 1991, IGSHPA 1991 and Spitler et al. 1996).  All of 

the design tools rely on some estimate of the ground thermal conductivity and volumetric specific heat.  

This estimate is critical to the design, yet it is very difficult to make. The required borehole depth or length 

is highly dependent on the thermal properties of the ground.  This in turn strongly influences the cost of the 

system and its competitiveness with conventional systems. 

The traditional approach to estimating the ground thermal properties has been to first ascertain the 

type (or types) of soil or rock that surrounds the borehole.  Once the type of soil or rock is determined, its 

thermal conductivity can be estimated from tabulated data, such as that contained in the Soil and Rock 

Classification for the Design of Ground-Coupled Heat Pump Systems Field Manual (EPRI, 1989).  For 

each rock type, a horizontal band is drawn to indicate the range of thermal conductivity expected.  

Considering one rock type, “Quartzose sandstone, wet”, the thermal conductivity varies from about 1.8 

Btu/h-ft-°F (3.1 W/m-K) to about 4.5 Btu/h-ft-°F (7.8 W/m-K).  This is a significant variation, and the 

prudent designer will probably choose the lower value of about 1.8 Btu/h-ft-°F (3.1 W/m-K), even though 

the extra borehole depth required may not allow the ground loop system to be competitive on either a first 

cost basis or a life cycle cost basis. 

A method for more accurately estimating the ground thermal conductivity is therefore highly 

desirable.  This paper focuses on a method for experimentally measuring the ground thermal conductivity 
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using a test borehole.  The portable experimental apparatus for data collection and a parameter-estimation-

based data analysis procedure are described.  The parameter estimation method used utilizes the downhill 

simplex minimization algorithm of Nelder and Mead (1965) to estimate the ground thermal conductivity.  

A transient, two-dimensional numerical finite volume model for the vertical borehole (Yavuzturk et al. 

1999) is used to evaluate the performance of a ground loop heat exchanger for parameter estimation.  

Background 

The ground thermal conductivity can not be directly measured – its value must be inferred from 

temperature and heat flux measurements.  The method presented in this paper relies on an experimental 

measurement of the ground thermal response to a heat flux imposed on a test borehole.  Mogensen (1983) 

described the concept of using such a measurement to estimate the ground thermal conductivity.  

Subsequently, development of an experimental apparatus began in 1995 at Oklahoma State University and 

was described by Austin (1998).  Simultaneously and independently, a similar approach was taken by Eklof 

and Gehlin (1996) who present and discuss a mobile testing facility that is used to determine the thermal 

capacity of underground thermal energy storage systems based on thermal response tests of underground 

storage volumes.  Gehlin and Nordell (1998) report on results from in-situ thermal response tests conducted 

using the mobile testing facility at various locations in Sweden to predict ground thermal conductivities. 

In order to determine the ground thermal conductivity from the temperature and heat flux 

measurements, some model of the heat transfer in the ground must be utilized.  A number of different 

ground heat transfer models, typically used for estimating the performance of vertical ground loop heat 

exchangers, are available. They are of interest here for possible inverse use—estimating the ground thermal 

properties from the performance rather than the performance from the ground thermal properties.  

Specifically, we are interested in imposing a heat pulse of “short” duration (1-7 days) and determining the 

ground thermal properties by analysis of the temperature response of the ground.   

One of the models currently used for inverse application is the line source model.  Ingersoll and 

Plass (1948) applied the model to ground loop heat exchangers.  Mogensen (1983) applied the model to 

estimate the ground thermal conductivity from an experimental test.  The second model that is currently 

used is the cylinder source model.  Carslaw and Jaeger (1947) developed analytical solutions with varying 

boundary conditions for regions bounded by cylinder geometry.  Ingersoll et al. (1948, 1954) investigated 
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the applicability of the line source approach to buried pipes as used in applications of ground source heat 

pump systems. Kavanaugh and Rafferty (1997) describe the use of the cylinder source model in designing 

ground loop heat exchangers. 

Although the line source and the cylinder source approaches may be used inversely to estimate the 

ground’s thermal conductivity, they require several simplifying assumptions, the effects of which cannot 

easily be quantified. In fact, the authors know of no published analysis of the uncertainties resulting from 

using either simplified approach.  A detailed numerical model reduces the uncertainties associated with 

these simplifying assumptions by providing a detailed representation of the borehole geometry and thermal 

properties of the fluid, pipe, grout, and ground. It may therefore be expected to provide a more accurate 

estimate of the ground thermal conductivity.   

Methodology 

Parameter Estimation using the Nelder-Mead Simplex Method. 

Parameter estimation involves minimizing the differences between experimentally obtained results 

and results predicted through an analytical or numerical model by adjusting inputs to the model.  In this 

case, the results from a transient, two-dimensional numerical finite volume model of the borehole and 

surrounding ground are compared to the experimental results. Some inputs to the model, such as time-

varying power and borehole geometry are fixed, and other inputs, such as the thermal conductivity of the 

ground and the thermal conductivity of the grout are allowed to vary.  By systematically varying the 

thermal conductivity of the ground and the thermal conductivity of the grout so that the minimum 

difference between the experimental results and the numerical model is attained, a best estimate of the 

thermal conductivities may be found. 

The objective function algorithm uses the following as inputs: 

*   power input in 2.5 minute intervals (obtained from experimental measurement) 

*   average borehole temperatures in 2.5 minute intervals as a response to the power input 

(obtained from experimental measurement, determined by averaging the inlet and outlet 

temperatures of the loop) 

*   undisturbed ground temperature (measured at beginning of the experiment.) 



Final manuscript submitted to ASHRAE Transactions     

 Page 5 of 37 

*   geometric information: (pipe size, pipe wall thickness, borehole diameter,  pipe spacing, 

borehole depth) 

*   ground thermal properties (conductivity and volumetric specific heat) 

*   grout thermal properties (conductivity and volumetric specific heat) 

*  pipe thermal properties (conductivity and volumetric specific heat) 

*   fluid properties (conductivity, volumetric specific heat, flow rate and viscosity) 

Most of the inputs will be determined based on knowledge of the borehole installation.  A few, 

however, will be treated as independent variables in an optimization. The objective function for the 

optimization is the sum of the squares of the errors (SSE) between the numerical model solution and the 

experimental results, specifically: 

 

∑
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Where,   

N = The total number of data points over the duration of the experiment. 

 Texp = Average of the calibrated input and output temperature at the nth data point. 

Tnum = Average fluid temperature at nth data point as predicted by the numerical model. 

SSE = Sum of the squares of the errors. 

The optimization is performed with a non-linear “downhill simplex” optimization technique of 

Nelder and Mead (1965) although other methods might be used.  The independent variables for the 

optimization may be almost any of the inputs, although the obvious choices include the ground thermal 

properties, the grout thermal properties and the pipe spacing.  The summary information flow diagram for 

the parameter estimation algorithm is provided in Figure 1. 

 



Final manuscript submitted to ASHRAE Transactions     

 Page 6 of 37 

if SSE is minimum per
a specified fractional

tolerance.

Transient, Two-Dimensional
Numerical Finite Volume Model

Objective Function to Compute
Sum of the Squares Error (SSE)

between Texp(time) and Tnum(time)

Update Variables
kground
kgrout

per Nelder-Mead
simplex algorithm

START - Initial guess for the
variables kground and kgrout

YES

NO

STOP
write final values of
 kground and kgrout

Texp(time)

kground

kgrout

SSE

Power Input
(power data
used in the
experiment)

Borehole
Thermal

Characteristics

 Borehole
Geometry

Tnum(time)

Texp   =   Experimental temperature.

Tnum  =  Temperature predicted by the numerical model.

kgrout =  Grout thermal conductivity.

kground   =   Ground thermal conductivity.

SSE    =   Sum of the squares of the error.

 
Figure 1  Information flow diagram for the parameter estimation algorithm. 
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Two-Dimensional, Numerical Finite Volume Model. 

The line source approach assumes an infinitely long heat source in the ground and attempts to 

determine ground temperatures at certain radial distances from the line source by solving a one-

dimensional, transient heat conduction problem with a source term.  This model has no way of accounting 

for geometric characteristics of the borehole elements, such as the U-tube pipes.  The line source model 

may be used for vertically buried pipes with significant errors, especially for temperatures near the 

borehole.  The cylinder source model, on the other hand, may be used to represent the ground loop heat 

exchanger as a cylinder by introducing a so-called equivalent diameter to represent the two pipes of the U-

tube heat exchanger as a single pipe.   

A numerical approach can more accurately model the ground loop heat exchanger by representing 

each component of a ground loop heat exchanger  (U-tube, grout-filled borehole, and the surrounding 

ground).  This section will briefly summarize the steps taken to model the borehole using a numerical 

modeling technique based on a transient, two-dimensional finite volume model in polar coordinates 

described by Yavuzturk, et al. (1999). 

 A sketch of the numerical domain is provided in Figure 2. Since there is a symmetry axis through 

the borehole, only one half of the borehole is modeled. For a typical borehole, a grid resolution of about 

100 finite volume cells in the angular direction and about 150 to 200 cells in the radial direction is utilized. 

The exact grid resolution is a function of the borehole and U-tube pipe geometry and is determined by an 

automated parametric grid generation algorithm. The radius of the numerical domain is 12.0 ft (3.6 m) to 

allow for reasonably long simulation times.  
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Figure 2  Simplified representation of the borehole numerical model domain. 

 

The geometry of the circular U-tube pipes is approximated by “pie-sectors” over which a constant 

flux is assumed to be entering the numerical domain for each time step. The pie-sector approximation 

attempts to simulate the heat transfer conditions through a circular pipe by matching the inside perimeter of 

the circular pipe to the inside perimeter of the pie-sector and by establishing identical heat flux and 

resistance conditions near the pipe walls. The convection resistance due to the heat transfer fluid flow 

inside the U-tubes is accounted for using fluid properties through an adjustment on the conductivity of the 

pipe wall material. 

The initial condition of the numerical model stipulates a constant, undisturbed domain temperature 

corresponding to the far field temperature. Due to the symmetry in the numerical domain a zero heat flux 

condition is implemented in the angular direction while the heat transfer from/to the U-tube pipes (the pie-

sectors that model the U-tube pipes) are input as time-varying boundary flux conditions. Since the total 

amount of boundary heat flux over each U-tube pipe is not the same, a 60% vs. 40% heat transfer 

distribution over the pipes of the U-tube is assumed. Finally, the boundary condition in the radial axis is set 

to be the constant far field temperature. The simulation time step is 2.5 minutes. 

The numerical model requires two input files, one of which gives borehole thermal and geometry 

parameters such as the fluid properties, borehole radius and depth, ground undisturbed far-field 

temperature, etc.  The grid is automatically generated from this data. The other file gives the experimental 
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input power at 2.5-minute intervals. The power input over the specified time interval is assumed to be the 

average between the measurement at the beginning of the time interval and the measurement at the end of 

the time interval.  

Using the experimentally measured power as an input to the numerical model allows the 

estimation procedure to adapt to the typical power fluctuations introduced with the use of portable power 

generators or utility power supply lines. 

Experimental Apparatus 

Description of the Experimental Configuration 

The experimental apparatus is housed in a trailer that can be towed to the site and contains everything 

needed to perform a test – the apparatus, two generators, and a purge tank containing 80 gallons (304 l) of 

water.  A simplified schematic of the test system is shown in Figure 3. Once connected to a U-tube that has 

been inserted into a borehole, and after the system has been purged, a heat flux is imposed on the borehole 

using the three in-line water heaters, and the temperature response (average of inlet and outlet fluid 

temperatures, which changes with time) of the borehole is measured.  A brief description of the 

experimental apparatus follows.  A more detailed description is available in Austin (1998). 

In addition to the components shown in Figure 3, a purge tank and two additional pumps are used to 

remove all air from the piping system before the heat pulse phase of the experiment begins.  Also, when 

electricity is not otherwise available, two 7000 W capacity gasoline generators are used to power the 

experiment.  
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Figure 3  In-situ thermal conductivity test system schematic. 
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Once the system has been purged, the three-way valves shown in Figure 3 are turned to close the 

connection to the purge system.  The following components are then used to impose a heat pulse on the 

borehole, and measure both the power and the temperature:   

 The circulating water inside the closed loop system is heated with (up to) three in-line water heaters 

shown schematically in Figure 3.  The water heaters are ordinary water heating elements (typically 

used in residential water heaters) mounted in piping tees.  The heater elements are rated at 1, 1.5, and 2 

kW.  The 2 kW water heater element is connected to an electronic power controller, so that by 

switching individual elements on or off, and by adjusting the controller, the power can be adjusted 

continuously between 0 and 4.5 kW.   

 Two circulating pumps are used to circulate heated water through the U-tube in the borehole. 

 A needle valve is used to adjust the flow rate.  Typically, a flow rate of approximately (2.50 gpm [0.16 

l/s]) was used. 

 All of the plumbing, inside and outside is insulated.  The interior pipe insulation is fiberglass, about 1.5 

inches (38.1 mm) thick.  The tubing between the trailer and the borehole is insulated with three layers 

of insulation, a 0.5 inch (12.7 mm) thick foam rubber, and two layers of fiberglass duct insulation, 5 

inches (127.0 mm) and 9 inches (228.6 mm) thick respectively. 

 The power consumption of the heaters and the circulating pumps is measured using a watt transducer. 

 Inlet and outlet temperatures are measured using two high accuracy thermistors, immersed in the 

circulating fluid. 

 The flow rate is measured using an in-line flow meter. 

Experimental measurements are made every 2.5 minutes using a data logger, and the power input, 

the entering/exiting fluid temperatures of the loop and the volumetric flow rate are downloaded to an on-

board computer.   

Model Validation  
A completely independent estimate of the ground thermal conductivity is required for validation of 

the parameter estimation model predictions.  To accomplish this, several tests have been conducted where 

the ground conductivity was established independently. 
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One test was performed on a borehole that was drilled with a coring bit.  The core samples were 

carefully preserved in sealed PVC cases and stored in climate-controlled rooms to avoid changes in the 

moisture content of the sample.  The conductivity of 19 representative samples was then measured in a 

guarded hot plate apparatus (Smith 1998; Smith, et al. 1999a) to obtain an independent estimate for its 

thermal conductivity. The guarded hot plate apparatus requires core samples 3.0 inches (76.2 mm.) in 

length and 3.0 inches (76.2 mm.) in diameter.  A constant heat flux is imposed on one end of the sample, 

while the other end is cooled.  The resulting temperature difference is used to determine the sample’s 

thermal conductivity.  The method has been validated on stainless steel samples, which have a thermal 

conductivity that is about 3 to 5 times higher than soil, with an error of about ± 1%. 

Another test was performed using a medium-scale laboratory experiment (Smith 1998; Smith, et 

al. 1999b) where the geometry and thermal characteristics of a borehole are replicated under controlled 

conditions.  The thermal conductivity of the soil material used in the experiment was determined 

independently with a calibrated soil conductivity probe. 

Various other types of indirect confirmation have also been looked at to verify that the parameter 

estimation method works correctly.  For example, measurements of thermal conductivity taken at nearby 

boreholes with different grout types and pipe types should give approximately the same value of thermal 

conductivity.  Austin (1998) reports on extensive field experience obtained from a series of in-situ tests at 

various locations in Oklahoma.  However, the results presented in this paper focus on the tests with 

independent measurements of thermal conductivity. 

Cored Borehole (Oklahoma State University, Test Site A #6) 

A series of test boreholes were drilled at an experimental field on the premises of the Oklahoma 

State University in Stillwater, Oklahoma (Test Site A).  Core samples of the soil from one (Site A borehole 

#6) of the boreholes were obtained and analyzed using a modified guarded hot plate method as 

implemented by Smith (1998) to determine the effective thermal conductivity of the borehole core.  

At present, 19 representative samples have been analyzed.  (Analysis of additional samples is 

ongoing, and may eventually result in an improved estimate of the average ground thermal conductivity 

surrounding the borehole.)  The samples were chosen so that they represent identifiable layers.  Since the 

thermal conductivity of the formational layers of the core sample varies, a thickness-weighted average 
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thermal conductivity value is calculated.  The resulting thermal conductivity then represents the effective 

thermal conductivity for the Test Site A #6 borehole. 

The results of the guarded hot plate tests are provided in Figure 4 (Smith 1998; Smith, et al. 

1999a) where the measured ground conductivity for various layers of the borehole core is plotted against 

the depth of the borehole.  The weighted average ground conductivity is calculated to be approximately 

1.351 Btu/hr-ft-°F (2.337 W/m-K).  The ground thermal conductivity varies between approximately 1.9 

Btu/hr-ft-°F (3.3 W/m-K) and 0.9 Btu/hr-ft-°F (1.6 W/m-K).  The strong variation in the thermal 

conductivity along the depth of a given borehole serves to reinforce the fact that the average thermal 

conductivity is really an “effective” thermal conductivity for the ground surrounding the borehole. 
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Figure 4  Thermal conductivity vs. the cored borehole depth based on the guarded hot plate core 

experiments for Oklahoma State University site A #6 borehole.  
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Medium-Scale Laboratory Experiment 

 A medium-scale laboratory test where a homogeneous soil surrounds a simulated 

borehole was conducted to provide a validation for the in situ measurement procedure (Smith 1998; Smith, 

et al. 1999b).  The flexible configuration of the simulated borehole allows for a series of borehole 

parameters such as the shank spacing of the U-tube and the exact geometry of the borehole to be controlled, 

as it is also easily modified for various grout and soil types for testing.  The test apparatus utilizes its own 

data acquisition system, rather than the in situ apparatus described above. 

The dimensions of the wooden structure that contains a homogenous soil (either dry or saturated 

sand) are 48.0 ft (14.6 m.) in depth, 4.0 ft (1.2 m) in width and height.  The simulated borehole is created 

by placing a U-tube and bentonite-based grout inside of a horizontal 5.25-inch (133 mm) diameter 

aluminum pipe.  The U-tube position inside the borehole is controlled with spacers, and the aluminum pipe 

is centered within the wooden structure. 

Saturated and dry sands were tested.  The thermal conductivity of the sands was independently 

determined using a 6 inch (150 mm) probe at various locations in the test apparatus.  The thermal 

conductivity of the dry sand was determined to be between 0.142 Btu/hr-ft-°F (0.246 W/m-K) and 0.155 

Btu/hr-ft-°F (0.268 W/m-K) based on five different measurement locations with an average of 0.149 

Btu/hr-ft-°F (0.258 W/m-K).  Similarly, the thermal conductivity of the saturated sand was measured to be 

between 1.272 Btu/hr-ft-°F (2.201 W/m-K) and 1.565 Btu/hr-ft-°F (2.708 W/m-K) with an average of 

1.353 Btu/hr-ft-°F (2.341 W/m-K).  The dry and saturated sands were chosen for the medium scale 

laboratory tests since they represent a relatively wide range of ground thermal conductivities in addition to 

being relatively homogenous and readily available.  The dry sand, however, is representative of extremely 

low ground conductivity.   

The length of the tests was limited to between 46 and 50 hours to avoid edge effects.  The far-field 

temperature of the ground was estimated to be the average initial temperature of the sand at five different 

locations at different radial distances from the center of the borehole.  The temperature at the outer domain 

boundary of the wooden structure was observed throughout the experiment and the numerical simulation to 

insure that the domain temperature was unchanged from the initial ‘far-field’ temperature. 
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Overview of the Parameter Estimation Results 

There are a number of ways that the parameter estimation might be approached.  Specifically, one, 

two, or more parameters might be estimated simultaneously.  Although a number of approaches were tried, 

including estimating up to five parameters (soil conductivity, grout conductivity, soil volumetric specific 

heat, grout volumetric specific heat, and shank spacing) simultaneously, only the most promising approach 

is presented in this paper.  

The approach used involves simultaneous estimation of both soil conductivity and grout 

conductivity.  This has the advantage of allowing for an approximate accounting for several borehole-

related parameters: grout conductivity, shank spacing and even borehole diameter. (The borehole will not 

necessarily be exactly the diameter of the drill bit.)  The estimated grout conductivity might be considered 

as effective grout conductivity in this case.   

Austin (1998) first attempted a single variable approach, involving only the estimation of the soil 

conductivity.  This has the advantages of simplicity and computational speed, since only one parameter is 

varied for each function evaluation.  The disadvantage of using only one variable is that all of the other 

inputs must be “correct”: shank spacing, grout conductivity, and grout volumetric specific heat, etc.  While 

the grout conductivity and grout volumetric specific heat might be independently determined, the actual 

location of the U-tube in the borehole and the effective shank spacing cannot be determined with typical 

installation techniques.  Although it is possible to control some of the parameters such as the shank spacing 

and the U-tube spacing in the borehole, further investigation is needed to determine its practicality. 

Nevertheless, parameter estimation of only one variable cannot adequately account for 

uncertainties in the tube placement, grout conductivity and the exact borehole geometry.  Although the 

ground thermal conductivity will obviously still be one of the estimated variables, a second variable is 

needed to be estimated to account for these uncertainties in the borehole.  In this respect, the grout 

conductivity as the second independent variable is a good surrogate for the other borehole parameters.  

As discussed by Austin (1998), other approaches that involved estimation of additional parameters 

often gave very good fits to the experimental data.  Unfortunately, some of the estimated parameters, 

especially the volumetric specific heats, were outside of what might be considered physically possible.  

Also, as more simultaneous parameters are estimated, more computational time is required.  
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Furthermore, simultaneous estimation of both soil conductivity and soil volumetric specific heat is 

problematic.  In a transient conduction heat transfer problem, the governing equation is often written with 

only the thermal diffusivity, the ratio of the thermal conductivity to the volumetric specific heat.  From this, 

one might conclude that it is impossible to estimate conductivity and volumetric specific heat 

simultaneously, as there are an infinite number of combinations that represent the same value of diffusivity.   

However, the boundary condition at the wall of the pipe is an imposed heat flux, and therefore 









∂
∂

n
Tk Grout  is fixed at any point in time.  This does allow simultaneous estimation of thermal 

conductivity and volumetric specific heat, even if the results are not always satisfactory.   

Consequently, the recommended procedure expects that the engineer analyzing the test will 

estimate the volumetric specific heat based on knowledge of the rock/soil formation and treat it as a known 

value.  The effect of this assumption on the thermal conductivity prediction is discussed below.   

Validation of the Parameter Estimation Procedure 

A summary of the two-dimensional parameter estimations on the simulated borehole and the cored 

borehole configurations is provided in Table 1 along with the independently measured values of the thermal 

conductivities.  The parameter estimations used between 46 and 50 hours of measured data, as discussed in 

the next section.  A comparison shows a very reasonable agreement between the predicted values of 

thermal conductivities using the parameter estimation method based on the downhill simplex algorithm 

with the numerical model of the borehole and the known and/or measured values for the same. A maximum 

deviation of about 2.1% is observed (cored borehole Okla. State Univ. Site A6) while the simulated 

borehole with dry sand and the simulated borehole with saturated sand display a deviation of only about 

2.0% and 1.3% respectively.  As expected, the errors associated with the predictions of the thermal 

conductivity of the grout are greater since the second independent parameter is used as a surrogate to 

account for uncertainties in the borehole. 
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TABLE 1 Thermal conductivity estimations for the cored borehole and the simulated borehole 

configuration.   

 Okla. State University SiteA6 Experiment - Dry Sand Experiment - Saturated Sand 

 
predicted  

indep. 

measured 
predicted  

indep. 

measured 
predicted  

indep. 

measured 

kground  Btu/hr-

ft-°F (W/m-K)  
1.379 (2.386) 1.351 (2.337) 0.152 (0.263) 0.149 (0.258) 1.336 (2.311) 1.353 (2.341) 

kgrout  Btu/hr-ft-

°F (W/m-K) 
0.758 (1.311) 0.850 (1.471) 0.540 (0.934) 0.430 (0.744) 0.496 (0.858) 0.430 (0.744) 

Avg. Error of 

the Fit °F (°C) 
0.11 (0.06) N/A 0.23 (0.13) N/A 0.22 (0.12) N/A 

Iterations  47 N/A 72 N/A 83 N/A 
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Figure 5  Comparison of in-situ experimental temperatures to predicted temperatures using the 

numerical function evaluation model based on the estimated parameters (ksoil and kgrout) using the Nelder-

Mead simplex minimization.  Oklahoma State University site A #6 borehole. 
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 The absolute average error of the predicted temperatures using the estimated parameters ranges 

from about 0.11°F (0.06°C) to about 0.23°F (0.13°C).  Figure 5 shows a typical comparison between the in-

situ measured temperatures and the predicted temperatures with the numerical finite volume model using 

estimated ground and grout thermal conductivities.  The temperature versus time plot in Figure 5 is 

provided for the cored borehole (OSU Site A #6).  Although fluctuating power input was observed from the 

in-situ test, the parameter estimation method was capable of predicting the ground conductivity within 

about ±2% of the measured value. 

Sensitivity Analyses 
  A series of sensitivity analyses have been performed to evaluate the influence of a 

number of input parameters that cannot be determined exactly, but estimated with some uncertainty.  (The 

term “input parameters” refers here to parameters that are not estimated with the parameter estimation 

procedure, e.g. far-field temperature, volumetric specific heats, shank spacing, borehole radius)  The 

uncertainty in the input parameters has a corresponding uncertainty in the estimated ground thermal 

conductivity.   In addition, the duration of the test and experimental errors impact the results, so a 

sensitivity analysis is performed for both.  The sensitivity analyses are described individually below. 

Because all of the other uncertainties depend on the length of test, sensitivity of the predictions to the 

length of test is described first. 

Length of In-Situ Testing 

One of the most commonly asked questions about in situ testing is “How long does the test need to 

be?”  One of the best approaches available for answering this question may be to run long tests, and to 

observe the sensitivity of the ground thermal conductivity estimations to the length of the data used.  As the 

duration of data used increases, there should be a point in time beyond which the estimated value of the 

ground thermal conductivity does not change very much.   

Field experience suggests that the estimate of the ground thermal conductivity reaches 

convergence between 80 and 100 hours.  To illustrate the point, Figure 6 shows the typical dependency of 

the ground thermal conductivity on the test duration observed for three test boreholes (Oklahoma State 

University site A#1 and A #2 boreholes and a test borehole located in Chickasha, Oklahoma).  The total 

duration of the in-situ test on the site A#2 borehole was slightly longer than170 hours while the in-situ tests 
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on site A#1 borehole and the Chickasha borehole were each about 100 hours long.  For each data set, the 

ground thermal conductivity is estimated for various data lengths starting from the 20th hour.  The data sets 

shorter than 170 hours have been logarithmically extrapolated up to the 170th hour for comparison.  The 

estimated ground thermal conductivity values appear to converge after about 80 to 100 hours from which 

time on no significant changes are observed.   
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Figure 6  Ground thermal conductivity estimation vs. in-situ test duration.  Oklahoma State 

University site A #1 and #2, and Chickasha test boreholes.  (Dotted lines indicate logarithmic 

extrapolations.) 

 

It is often not feasible to conduct a test of this length.  Therefore, a significant effort has been 

made to find a suitable compromise between test length and test accuracy.  Although the choice is 

somewhat subjective, the authors have settled on a test length of 50 hours based on analyses conducted on 

the current in-situ test data and field experience (Austin 1998).  With in-situ tests shorter than 50 hours, the 
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error in the ground thermal conductivity prediction can be significant.  This error is quantified in Table 2 

where the thermal conductivity estimations and associated errors from the converged value for the 

Oklahoma State University Site A#1, #2 and Chickasha test boreholes are provided.  The deviation between 

the ground thermal conductivity estimation of the 20-hour test and the estimations of the 170-hour test for 

the site A#2 borehole is approximately 14.2%.  The absolute error diminishes rapidly as the length of data 

is increased.  It is about 4.6% by the 50th hour.  A very similar trend is observed on the site A#1 and 

Chickasha test boreholes where the absolute errors at the 50th hour from the converged estimations are 

observed to be about 2.2% and 2.8% respectively. 

TABLE 2 Thermal conductivity estimations and associated errors from the converged value for 

the Okla. State University Site A#1, #2 and Chickasha test boreholes.   
Duration of 

In-Situ 
Testing [hr] 

Okla. St. Uni.;Site A1; 6-2-97 Okla. St. Uni.;Site A2; 1-9-97 Chickasha; 9-26-97 
kground Btu/hr-ft-

°F(W/m-K) 
Error [%] 

kground Btu/hr-ft-

°F(W/m-K) 
Error [%] 

kground Btu/hr-ft-

°F(W/m-K) 
Error [%] 

20 1.254 (2.169) 12.48 1.323 (2.289) 14.20 1.461 (2.528) 4.04 

30 1.280 (2.214) 10.15 1.381 (2.389) 9.46 1.513 (2.618) 0.49 

40 1.344 (2.325) 4.93 1.423 (2.462) 6.18 1.460 (2.526) 4.10 

50 1.380 (2.387) 2.20 1.445 (2.500) 4.60 1.478 (2.557) 2.81 

60 1.396 (2.415) 1.00 1.461 (2.528) 3.43 1.488 (2.574) 2.15 

70 1.400 (2.422) 0.70 1.480 (2.560) 2.08 1.499 (2.593) 1.40 

80 1.401 (2.424) 0.64   1.510 (2.612) 0.65 

90   1.509 (2.611) 0.15   

100 1.409 (2.438) 0.08   1.519 (2.628) 0.07 

110   1.514 (2.619) 0.15   

130   1.517 (2.624) 0.36   

150   1.508 (2.609) 0.24   

170 1.410 (2.439)* 0.00 1.511 (2.614) 0.00 1.520 (2.630)* 0.00 

 (*) Projected      

 

A series of in-situ tests on other nearby boreholes at the Oklahoma State University test site A 

were performed.  Although one additional long-term test (longer than 100 hours) was conducted, the 

majority of the tests were about 70 hours.  Analysis of the 100+ hour tests and the 70 hour tests indicated 

that the estimated ground thermal conductivity values, based on 50-hour test length, were typically within 



Final manuscript submitted to ASHRAE Transactions     

 Page 21 of 37 

±6.5% of the converged value, although about half of the long tests had values within ±2.5%.  On the 

shorter (approximately 70 hours) tests, it was not always possible to determine the converged value.  

Therefore, it is possible that the uncertainty associated with the thermal conductivity estimates at the 50th 

hour might be somewhat greater, although current field experience appears to bound its range within 

±6.5%.   
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Figure 7  Thermal conductivity estimation vs. duration of in-situ testing. Simulated borehole. 

 

 In addition, there appears to be a correlation between the ground thermal conductivity and the 

required length of in-situ testing.  Figure 7 illustrates that the dry sand with low conductivity and low 

diffusivity converges significantly faster than the saturated sand with higher conductivity, while in each test 

case identical grout of thermal conductivity of 0.43 Btu/hr-ft-°F (0.74 W/m-K) was used.  As shown in 

Figure 7, the simulated borehole tests with dry sand estimates the converged conductivity within ± 8% 
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with only 15 hours of in-situ test data, while the simulated borehole test with saturated sand requires about 

35 hours of in-situ test data to achieve the same accuracy. 

Far-Field Temperature 

 Since the borehole temperature response to an imposed heat flux is sensitive to the undisturbed far 

field temperature of the ground, the value of the far field temperature has a significant impact on the 

estimated ground thermal conductivity. There are several maps  (IGSHPA 1991) available that give a 

general idea of the undisturbed ground temperatures for the continental U.S. using well water isotherms.  

However, such maps cannot possibly yield locally accurate information.  Although several experimental 

procedures have been tried for obtaining the undisturbed ground temperature, the best procedure seems to 

be lowering a thermocouple (or other calibrated temperature sensor) down the U-tube and measuring the 

temperature of the heat transfer fluid along the borehole depth before each test.  The undisturbed far field 

temperature is then determined by averaging the measured temperatures along the depth of the borehole 

below 10ft (3m). Even then, there is some uncertainty in the measurement.  Although the ground thermal 

conductivity predictions will be strongly affected by variations in the assumed far field temperature, the 

impact on the borehole design is mitigated as long as the design value and the value used for the parameter 

estimation are the same.  

The sensitivity of the parameter estimation model to the uncertainties in the measurement of the 

undisturbed far-field ground temperature can be seen in Figures 8 and 9 for the cored borehole and the 

simulated borehole in the medium-scale laboratory tests.  For one particular experimental data set, five 

different far-field temperatures were used as input parameters.  The analyses demonstrate the ground 

thermal conductivity prediction sensitivity based on a ± 1.0 °F (± 0.6 °C) error range.  For each far-field 

temperature point, all other input parameters were kept constant.   
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Figure 8  Ground thermal conductivity estimation vs. the undisturbed far-field ground temperature. 

Oklahoma State University site A #6 borehole. 

 

 Figures 8 and 9 show that the parameter estimation model is very sensitive to the estimate of the 

ground far-field temperature.  It is also observed that this sensitivity is stronger for high thermal 

conductivity soils than for low thermal conductivity soils.  As expected, the predicted ground thermal 

conductivity decreases with increasing far-field temperature, since, for unchanged series of heat transfer 

rates the temperature differences between the average borehole temperatures and the far-field temperature 

becomes larger.  The analyses based on the simulated and cored boreholes show that if the ground far-field 

temperature can be determined within ± 1.0 °F (± 0.6 °C) the associated error in the thermal conductivity 

estimation will be limited to about ± 4.9%.   
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Figure 9  Thermal conductivity estimations vs. the undisturbed far-field temperature. Simulated 

borehole. 

 

Shank Spacing 

The sensitivity of the ground thermal conductivity estimations to uncertainties in the shank 

spacing (the distance between the two pipes from pipe outer wall to pipe outer wall of a U-tube) is 

presented in this section.  Since it is difficult in practice to control the shank spacing, this parameter was 

varied to examine its sensitivity to the ground thermal conductivity estimations. 

Figure 10 shows the results obtained from the cored borehole and the simulated borehole tests.  In 

each of these cases, five different shank spacing values that would not violate the borehole geometry were 

used.  Since the inclusion of the second independent variable (kgrout) in the parameter estimation is expected 

to act as a surrogate for the uncertainties in the shank spacing, the sensitivity analyses have shown that even 

significant uncertainties (errors in the initial estimate) in the U-tube shank spacing only yield small changes 
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in the ground conductivity predictions.  A ± 40% change in the ‘effective’ shank spacing only causes a 

± 1.6% change in the ground thermal conductivity estimation.   
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Figure 10  Thermal conductivity vs. the shank spacing of the U-tube. Oklahoma State University site 

A #6 borehole, and the simulated borehole in the medium-scale test unit with dry and saturated sand. 

 

Although there is a strong correlation between the grout thermal conductivity estimates and the 

shank spacing values, the ground thermal conductivity is affected only slightly.  The simulated borehole 

tests with dry and saturated sands suggest that very low thermal conductivity sand is significantly less 

sensitive to uncertainties in the shank spacing than saturated sand with higher thermal conductivity. 

Volumetric Specific Heat  

Since the transient conduction heat transfer problem depends strongly, but not solely, on the 

thermal diffusivity, it is inevitable that the estimated thermal conductivity will be dependent on the 

assumed value of the volumetric specific heat of the ground. 
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In order to determine the sensitivity, the effect of volumetric specific heat values ranging from 20 

Btu/ft3-°F (1340 kJ/m3-K) to 50 Btu/ft3-°F (3350 kJ/m3-K) have been investigated.  This range of 

volumetric specific heat, as reported by EPRI (1989) represents almost the entire practical range for 

commonly occurring soil types.  In order to accommodate the medium-scale laboratory test cases involving 

dry sands with very low diffusivity, a relatively low volumetric specific heat value of 14 Btu/ft3-°F (938 

kJ/m3-K) is also investigated. 

Figure 11 shows the results of the sensitivity analyses for the simulated borehole tests.  A 

relatively strong correlation is observed between ground thermal conductivity and ground volumetric 

specific heat.  The ground thermal conductivity estimations decrease as the volumetric specific heat of the 

ground increases, although this trend is not as strong in the case of the saturated sand as it is for soils with 

very low thermal conductivities.  The low thermal conductivity soils appear to be more sensitive to 

uncertainties in the soil’s volumetric specific than higher conductivity soils that are typical for soil types 

encountered in practice. 
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Figure 11  Thermal conductivity estimations vs. the volumetric specific heat. Simulated borehole. 

 

However, the analyses show that, if the volumetric specific heat of the ground can be estimated 

within ± 5 Btu/ft3-°F (± 335 kJ/m3-K), which represents about 10% to 25% of the practical range for 

commonly occurring soil types, the ground thermal conductivity estimations vary by about ± 2.6% for the 

cored borehole and the simulated borehole with saturated sand while it varies by about ± 6.3% for very dry 

sand.   

Power Input and Temperature Calibration 

Errors due to improperly calibrated instrumentation can affect the in-situ test data.  This may 

manifest itself in the form of incorrect power-input (errors on the watt transducer) and/or entering and 

exiting loop temperature readings (errors in temperature sensor calibration).  Therefore, an error estimate 

for the experimentally collected data is required to investigate the sensitivity of the ground thermal 

conductivity predictions to uncertainties in power and/or temperature measurements   
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In order to accomplish this, artificial errors were introduced to the power and temperature sensor 

calibrations.  For the temperature data, the slope of the sensor calibration curve was increased by 2% for 

both the borehole entering and exiting fluid temperatures.  The experimental average borehole temperature 

was then ‘re-computed’ based on the artificially adjusted loop temperatures.  The ground thermal 

conductivity estimations were then obtained based on the actual power-input data and the modified 

temperature response data.  The results are reported in Table 3.   

The sensitivity analysis of the ground thermal conductivity to uncertainties in the power-input 

measurements is implemented by an artificial modification of the power-input values.  The power-input 

values for each time step were increased by 5% while the corresponding temperature responses to the 

changes in power were unchanged.  The results of the power sensitivity analyses are reported in Table 3. 

The analyses for the specific cases investigated show an almost linearly proportional relationship 

between an increase of the calibration curve slope of the temperature sensors used or the increase in the 

power input, and the predicted thermal conductivity values for the cored and the simulated borehole cases. 

TABLE 3 Change in ground thermal conductivity Btu/hr-ft-°F (W/m-K) estimations based on 

changes in power input and temperature measurement  

 
Base Power up 5% Change [%] Base 

Temp. Calib. 

Coeff. up 2% 
Change [%] 

kground-OSU SiteA6   1.379 (2.386) 1.445 (2.500) 4.79 1.379 (2.386) 1.400 (2.422) 1.52 

kground - Dry Sand  0.152 (0.263) 0.160 (0.277) 5.26 0.152 (0.263) 0.154 (0.266) 1.32 

kground - Sat. Sand   1.336 (2.311) 1.428 (2.470) 6.89 1.336 (2.311) 1.364 (2.360) 2.10 

 

 In summary, a ± 2% change in the slope of the thermistor calibration curve causes an estimated 

uncertainty of about ± 2%.  However, based on a simple statistical analysis of the sensor calibration, the 

uncertainty in the slope is expected to be less than ±0.12%.  This will cause a negligible uncertainty in the 

ground thermal conductivity estimate.   

The watt transducer used in the experimental apparatus has an accuracy of approximately ± 1.5% 

for the conditions encountered during in-situ tests.  Based on this, the resulting uncertainty in the thermal 

conductivity estimations is projected to be about ± 1.5%. 
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Borehole Geometry 

The drilling of boreholes under field conditions introduces uncertainties due to drilling processes 

used and the ground conditions at the field.  The actual borehole diameter may be both larger than the drill 

bit in some places, and smaller than the drill bit in other places.  Since it is not feasible that these 

occurrences be controlled (and are not controlled in typical practice) a series of sensitivity analyses are 

required to assess the impact of uncertainties introduced through inaccurate borehole depth and radius. 

These uncertainties are analyzed only for the cored borehole.  The borehole radius was varied 

between 0.149 ft (0.045 m) and 0.229 ft (0.070 m), a range that is within ± 20% of the nominal borehole 

radius.  Again, for each estimation, all other input parameters were kept constant.   

Figure 12 illustrates the dependency of the ground thermal conductivity estimations on the 

uncertainty of borehole radius for the cored borehole.  As the radius of the borehole becomes larger the 

estimated ground conductivity increases due to increased borehole resistance.  This is expected, since, as 

the borehole resistance increases through the larger borehole diameter, the estimates for the ground 

conductivity have to increase to adjust for the unchanged average borehole temperatures.  However, 

analyses suggest that, if the borehole radius can be determined within ± 0.04 ft (± 0.012 m), the 

uncertainty in estimating the ground thermal conductivity is reduced to about ± 3.6%. 
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Figure 12  Ground thermal conductivity estimation vs. the borehole radius. Cored borehole 

Oklahoma State University site A#6. 

 

The sensitivity of the estimated ground thermal conductivity to uncertainties in the depth of the 

borehole was also investigated.  The estimated conductivity decreases with increasing depth, since, in the 

analyses, the total amount of heat transferred over the borehole is unchanged.  Consequently, for shorter 

borehole depths, the amount of heat transferred per unit borehole depth increases while the average 

borehole temperatures and other input parameters are kept unmodified, resulting in higher ground thermal 

conductivity estimations.  Similarly, lower ground thermal conductivities are estimated for increased 

borehole depths.  The analyses indicate that the uncertainty in the ground thermal conductivity due to a 

± 0.5 ft (0.15 m) uncertainty in the borehole depth is ± 0.15% for a 250 ft (76.2 m) deep borehole.  This 

uncertainty is negligible when added in quadrature with the other uncertainties. 
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In addition to the uncertainties discussed above, the numerical finite volume model of the borehole 

also represents a source of uncertainty in the estimation of the ground’s thermal conductivity.  Yavuzturk et 

al. (1999) provides detailed discussion on the numerical model and its validation against an analytical 

solution using six different test cases that simulate a typical range of heat flux, model geometry and thermal 

properties.  However, the analytical solution does not correspond exactly to the borehole geometry with 

differing ground and grout conductivities.  Therefore, it is difficult to determine the exact impact of the 

uncertainties in the numerical model on the estimate of the ground conductivity.  It appears, but probably 

cannot be proven, that the inaccuracies in the numerical model are reflected in the estimate of the grout 

conductivity.  Accordingly, a heuristic estimate of the impact of the uncertainty in the numerical model on 

the ground conductivity is made.  The ± 1.2% uncertainty corresponds to the error in the numerical model 

results at 12 hours.  

Summary of Uncertainties on the Ground Thermal Conductivity Estimations. 

A summary of the sources of uncertainties and their effect on the ground thermal conductivity 

estimation is given in Table 4.  Since the uncertainties described in Table 4 pertain to parameters that are 

all independent or nearly independent from each other they may be added in quadrature.  Thus, the total 

estimated uncertainty of the ground thermal conductivity estimations falls within a range of about 9.6% - 

11.2% depending on the level of the estimated thermal conductivity, since very low conductivity sands 

appear to be more sensitive to the estimate of the volumetric specific heat.  The overall uncertainties 

compare very well with the range of values that was obtained from other tests in nearby locations (Austin 

1998).  (Uncertainties smaller than 0.2 % have been ignored, as their contribution to the overall uncertainty 

is negligible.) 
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TABLE 4 Summary of primary sources of uncertainties in the estimation of thermal conductivity of 

the ground. 

Source Estimated uncertainty  
in predicted kground 

Length of Test – approx. 50 hours ± 6.5% 

Power Measurement.   

(± 1.5% uncertainty.) 
± 1.5% 

Estimate of the volumetric specific heat of the 

ground.  

(± 5 Btu/ft3-°F [± 335 kJ/m3-K]) 

± 2.6% (average soils)  

or 

± 6.3% (extremely dry soils)  

Estimate of the borehole radius.  

(± 0.5 inches [12.7 mm]) 
± 3.6% 

Estimate of the shank spacing. 

(± 40%) 
± 1.6% 

The numerical model.  ± 1.2% 

Estimate of the far-field temperature. 

(± 1 °F [± 0.6 °C]) 
± 4.9% 

Total Estimated Uncertainty ± 9.6% - 11.2% 

 

It is obvious that the estimated uncertainty is somewhat higher than the errors found when the 

parameter estimation procedure was applied to the validation test cases.  It should be noted that, for these 

cases, a number of the input parameters, e.g. far field temperature, volumetric specific heat, borehole 

radius, and shank spacing were determined more accurately than what might be feasible under typical field 

conditions.   

Conclusions and Recommendations 

An experimental apparatus has been described that is capable of imposing a heat pulse on a test 

borehole, and measuring its temperature response.  The ground thermal conductivity is estimated using a 

parameter estimation technique in conjunction with a two-dimensional numerical model.  Independent 

measurements of soil conductivity test results are reported for a cored borehole and a simulated borehole 
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with different types of sands in a medium scale laboratory experiment to validate the parameter estimation 

method.  The sensitivity of the estimated ground thermal conductivity is investigated to assess the 

uncertainties associated with determining the values of volumetric specific heat of the ground, the 

undisturbed far-field temperature, the borehole geometry and instrumentation. 

Specific conclusions and recommendations regarding the design of the in-situ test apparatus and 

experimental procedure are discussed in detail by Austin (1998).  Additional conclusions and 

recommendations related to the length of in-situ test and the parameter estimation procedure, and overall 

accuracy of the estimates are as follows: 

•  Using the in-situ procedure described, the length of test should be no less than 50 hours to obtain a 

value of ground conductivity that would be within about ± 6.5% of that obtained with a much longer 

tests.  Preliminary analyses suggest that the ground thermal conductivity to be estimated may have a 

significant influence on the length of in-situ testing.  It appears that low thermal conductivity soils 

require less time to converge than higher thermal conductivity soils. 

• An error analysis suggests that with data measured by the experimental apparatus, the two-variable 

parameter estimation procedure can be expected to predict the ground thermal conductivity within a 

range of about ± 9.6% and ± 11.2%. 

• Validation test cases using saturated and dry sands under laboratory conditions and the cored borehole 

show that the two-variable parameter estimation model estimates the ground thermal conductivity 

within a maximum range of ± 2.1%.  As noted, the errors here are smaller than the general error 

estimate because several of the input parameters were estimated more accurately than what might be 

feasible under typical field conditions. 

It is obviously desirable that the required time for the in situ test and parameter estimation be reduced.  To 

that end, the following recommendations for further investigation are offered: 

• In order to quantify the relationship between the required length of in-situ tests and the ground’s 

thermal conductivity, further research is suggested utilizing test data from an even wider range of 

ground thermal conductivities.   

• Since the duration of the test depends on the desired accuracy, any improvement in accuracy of the 

method may allow for a shorter test.  Accordingly, methods for reducing the uncertainty of the input 
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parameters should be investigated.  In particular, methods for more accurately estimating the far-field 

temperature, the average borehole radius (perhaps by measuring the total grout volume), and the 

ground volumetric specific heat should be pursued. 

• The current recommended duration of the in situ test is 50 hours.  In practice, it is highly desirable to 

be able to do the test in a significantly shorter amount of time.  One possible approach for this is to 

improve the model’s accuracy in the first few hours.  This might be done by extending the numerical 

model to 3 dimensions and/or more closely matching the actual geometry by using a boundary-fitted 

coordinate grid.  Presumably, any improvements made in the first few hours will help allow for a 

shorter test.  At the same time, it will probably be useful to physically control the position of the U-

tube in the borehole.  Whether the reduced test time will be worth the increased computational time for 

the parameter estimation remains to be seen. 

• The parameter estimation algorithm is a computationally intensive procedure.  For acceptable 

estimation accuracy, about 50-80 objective function evaluations are typically required, with each one 

requiring a simulation using the detailed numerical model of the borehole.  In order to reduce the 

computational time, a better initial guess for the conductivities may be made by using a simple 

analytical model in conjunction with the parameter estimation procedure.  This estimate can be made 

very quickly, and used to reduce the number of objective function evaluations made with the detailed 

numerical model  

• In order to reduce the time from the start of the experiment to final parameter estimation results, the 

parameter estimation may be performed simultaneously (on-line) instead of subsequently (off-line).  

The suitability of on-line parameter estimation methods, such as recursive and/or adaptive techniques 

should be investigated.  This could also have the advantage of being able to tell the operator when the 

experiment is “done”, rather than running a predetermined number of hours. 
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Nomenclature 

k = conductivity (Btu/hr-ft-°F [W/m-K]). 

Q  = Heat transfer rate (Btu/hr-ft [W/m]). 

r = radius (ft [m]). 

T = temperature (°F [°C]). 

t = time (hr). 

SSE = sum of the squares of the error. 

Array variables and Subscripts 

N = number of data points. 

exp = experimental. 

num = numerical. 

ff = far field. 
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