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CHAPTER I 

INTRODUCTION 

For the analysis of data in practice, a linear model with homo-

scedastic error is usually assumed. However, it may be known that 

homogeneity of errors is not a realistic assumption and it may be 

suspected that the variance of the dependent variable varies with 

the mean or with the independent variables. This point ca~ be illus-

trated by a few examples. In the study of the results of family 

budget inquiries, Prais and Fouthakker (2) found that the residuals 

have variance increasing with household income. Ezekiel and Fox (1) 

found that the variance of auto stopping distance is proportionate to 

the square of the speed. In this thesis, we assume that the variance 

in the general linear regression model is a linear function of unknown 

parameters. 

Two models will be referred to throughout this thesis. 

Model I 

Let Y' = X '3 + £ denote a linear regression model where 

y is an nx1 vector of obse~vable random variables, 

X is an nxp matrix of known constants with rank (X) = p, 

13 is a px1 vector of unknown constants, 

£ is an nx1 vector of unobservable random variables such 

that V(£) = V = diagonal {a~ 
1 

1 

i=1,2, •.• ,n}, 



where (1) 

(2) 

2 
a. = 

l 

k 
E r. d .. is positive 

j=1 J lJ 

r. 1 s are unknown constants 
l 

(3) d .. f. d. 1 • for if.i 1 and d .. 1 s are known 
lJ l J lJ 

positive constants 

(4) k satisfies the conditions in Appendix A 

2 

of this article, which are requiren for the 

~. 1 s to be estimable. 
l 

Monel II 

The same as Model I except V(E) = ai + bD where 

We consider the problems of estimating the regression coEifficient 

vector' and the variance components ri' i=1, 2, ... , kin Model I. 

In Chapter II, we propose an estimator of the regression coef-

ficient vector of Model I. The proposed estimator is obtained based on 

a maximum rank transformation which results in equal variances. 

Properties of the transformation matrix and the proposed estimator are 

presented. Finally, .the estimator is proved to be consistent, unbiased, 

.and has a smaller variance than the ordinary least squares estimator 

when the relative size of the largest variance to the smallest variance 

in the regression model is large. 

In Chapter III, we combine the 1brthonormal basis of the error 



space" (OBES) technique proposed by Putter (3) and the transformation 

technique proposed in Chapter II to estimate the variance components 

3 

in Model II. We develop estimators for the variance components in 

Model II and our proposed estimators are compareq with minimum norm 

quadratic unbiased estimators (MINQUE). There always exist such 

proposed unbiased estimators in case the MINQUE do not exist. Further

more, the proposed method provides a simple calculation procedure 

where MINQUE may require a generalized inverse procedure .. 

Chapter II and III will be presented in a form acceptable to 

JASA. Chapter IV is a general summary of the two studies. Additional 

algebraic results related to the material in Chapter II, a computer 

program source list for obtaining the proposed transformation, and a 

sample output are presented in Appendix B and Appendix C. 



( 1) 

(2) 

(3) 
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CHAPTER II 

ESTIMATION OF REGRESSION COEFFICIENTS IN A 

LINEAR REGRESSION MODEL WHEN THE 

VARIANCE IS A LINEAR FUNCTION 

OF UNKNOWN PARAMETERS 

Abstract 

We proposed a transformation technique and an estimator for the 

vector of regression coefficients in a linear regression model when 

the variance is a linear function of unknown parameters. A 

maximum rank transformation matrix, which elimin~tes the var:iRnr.A 

heterogeneity, is constructed. The proposed estimator is 

BLUE based on the transformed model. Furthermore, the proposed 

estimator has a smaller variance than the estimator based on ordinary 

least squares when the relative size of the largest variance to the 

smallest variance in the regression model is large. 

Introduction 

Model I 

Let y = X S + E: denote a linear regression model where 

y is an nx1 vector of observable random variables, 

X is an nxp matrix of known constants with rank (X) = p, 

Sis a px1 vector of unknown constants, 

5 



Model II 

€ is an nx1 vector of unobservable random variables such 

that V(€) = V =diagonal {o~: i=1, 2, ... , n}, 
l 

k 
where (1) o2 = I r. d .. is positive 

i j=1 J lJ 

(2) r. 's are unknown constants 
l 

(3) d .. f. d.,. for i"fi' and d .. ' s are known 
lJ l J lJ 

positive constants 

(4) k satisfies the conditions in Appendix A of 

this article, which are required for the 

8. 's to be estimable. 
l 

The same as Model I except V(€) = ai + bD where 

b = r 2 

D = diagonal{di' i=1, 2, ••. ,nand O<d1<d2< ..• <dn}. 

We consider the problem of estimating ~ the vector of regression 

coefficients. 

In general, if the errors in the linear regression model are 

mutually uncorrelated but have differing variances, the ordinary 

6 

least squares estimates (OLSE) are unbiased and consistent (as proved) 

in (2)). However, an error will arise if we use the conventional 

formula for calculating the standard errors of the OLSE (4). As a 

consequence, tests of hypotheses are affected if we use the biased 

estimates of the variance-covariance matrix of the OLSE. It is known 

that the OLSE of the regression coefficients are not BLUE, except when 

Zyskind's (13) conditions are satisfied, in the case of unequal 
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variances (1). However, Monte Carlo evidence for some simple special 

cases indicated that OLSE may not be a bad procedure (2,3). 

Rao (?) developed the method of MINQUE to estimate the variance 

and covariance components in a linear model. Rao (8) also suggested 

estimating the regression coefficients using generalized least 

squares estimates in which the unknown variance and covariance 

components are replaced by their MINQUE's. The properties of such 

estimators remain to be investigated. 

Hartley and Jayatillake (1) estimated the regression coefficients 

and variance components by maximum likelihood under the assumption of 

a lower bound for the variance components. The asymptotic distribu

tions of these maximum likelihood estimates (MLE) of the regression 

coefficients are normal. It is known that such estimators may not 

perform optimally for small sample sizes •. 

Rutemiller and Bower (9) permitted the variance of the dependent 

variable to be a function of the independent variables in the linear 

regression model. Under the normality assumption, MLE and their vari

ance covariance ma.trix are approximated by the "Method of Scoring" 

(6) based on large samples. The properties of asymptotic normality 

are used to construct confi~ence intervals and to make other statis

tical inferences. 

Takeshi Amemlya (10) considered a regression model where the 

variance of the dependent variable is proportional to the square of 

its expectation. He estimated the regression coefficients using 

generalized least square~ estimates (GLSE) in which the unknown 

variance components, which are functions of the regression 

coefficients, are replaced by OLSE of the regression coefficients. 



It was proved that this weig~ted least squares estimator is 

asymptotically normal. 

Due to the analytical complexities of solving non-linear 

equations and of inverting a random matrix, the small sample distri-

butions of the maximum likelihood estimators and the generalized 

least squares estimators are seldom obtainable. The difficulty of 

inverting a matrix containing random variables arises in cases such 

as the following: 

A A 

cannot be rewritten as f(a,b)U, where f is a real valued function 

of a and o and U is a matrix in terms of I and D only. Therefore, 

the asymptotic approach has become a common practice in inference 

using these estimators. Although the small sample distribution 

of the ordinary least squares estimator is easily obtained, this 

estimator will be inefficient if the relative size of the largest 

variance to the smallest variance in the regression model is large 

(12). 

In this article we are interested in finding a small sample 

estimator for ~ which is free from the inefficiency resulting from 

the use of OLSE. For the specified Model II, we constructed an m x n 

matrix T such that TVT' = 0 2I where 0 2 is an urucnown constant 
m 

8 

and m {(n) is a positive integer to be justified in section 3 of th;is 

article. Let z=Ty, W=TX, and U=TE, it is clear that the ordinary 

least squares estimator of~ based on this new model, z=WB + U, is 

BLUE. 

In section 3, we are going to construct the transformation 
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matrix and propose an estimator for B. In section 4, we will 

provide the conditions for the transformation to preserve the rank of 

X in the specified Model I when p=2. In section 5, we compare the 

variance of the proposed estimator with the variance of the ordinary 

least squares estimator when p=2. Finally, in section 6, we summarize 

the results and state the unsolved problems. 

Construction of the Transformation Matrices 

and a Proposed Estimator for f3 

Given two points on the real line, any point between them can be 

represented in terms of the two end points. Based on this statement, 

we can prove the following three lemmas and a theorem. 

2 Lemma 1 : Let y. f"'V( 0, a. ) , i=1 , 2, •.• , n, be n uncorrela ted 
~ ~ 

random variables. Let a~= a2f(x.), where f is a strictly monotone 
~ ~ 

2 real valued function of x., and cr is a real valued constant. Then 
~ 

for every xi<.xj<~, there exists a A E (0,1) such that v(A yi±j1-Ayk) 

= V(y.). 
J 

Proof. Let A= f(~) - f(xj) 
f(~) f(xi) 

then 0 < \ < 1 and 

'V(J5\.yi±j1-A, yk) = V(yi)' + (1-)..)V(yk) 

_ f(~) - f(x.) 2 f(xj) - ,f(xi) , 2 
- f(~) - f(x~) cr f(xi~ + f(~) - f(xi) cr F(~) 

2 = a f(x.) 
J 

= V(y.). QED 
J 



Lemma 2: Let D =diagonal {d., i=1, 2, ... , n} such that 
r 1 . 

0 < d1 < d2 ... < dn. Let n be an odd positive integer such that 

n = 2m+1. Let 

IT; 
• 

A . • 
(m+1) x (n) IT: 

where 

• 

'/"m+1 

A = 
dm+2 - dm+1 

2 dm+2 - d m 

= dm+i - dm+1 

Ai dm+i- dm+1-i+1 

= d2m+1 - dm+1 

d2m+1 - d1 

Then ( 1 ) AA 1 = Im+1 . 

• 

1 

-/1->-2 

• 

-)1-\ 

• 
• 
• 
m+1 -}1-A J 

10 

(2) ADA' is a diagonal matrix for,any arbitrary diagonal matrix D. 

(3) ADA' = dm+1Im+1 for the specified D matrix. 

(4) A'ADA'A = dm+1A'A. 

( 5) (A I A)( A I A) = A '(AA I ) A = A I A. 

(6) Rank (A)= m+1. 



(7) Trace (A'A) = m+1 
n 2 

(8) Norm (A'A- V) = m+1-2(a+bd +1)(m+1)- L (a+bd.) . m • 1 1 
l= 

. Proof. (1) 

1 

AA' = 

J Am+1 

-/1-'A. 
1. 

-;1-·A m+1 

1 

= 'A.+(1-'A.) 
l l 

11 



(2) & (3) 

ADA' = 

= 

JT; 
I 

J""X;dm 

. 
• 

Ad ·.+2 1. m-1. 

. 
;·>-m+1d1 

1 

dm+1 

. • 

-)1-1. · m+1 

-}1->-2dm+2 
. . • 
-;1->-.d +' 1. m 1. . . 
~d m+1 n 

A 
-~ 

n::-1.. . 
• ~ fl I ni 

1 

j .-,~2 ..... 

-~· j ' '"i •• 

• -}1-A m+1 

12 

DA' 

• 



= A.d .+2+(1-A.)d +' 
~ m-~ ~ m ~ 

= 

(4) Follows from (3); (5) follows from (1) and (?) follows from the 

idempotence of A'A in (5). 
. 2 

(8) Norm (A 1A- V) =Trace (A'A- V) =Trace (A' A- V)(A'A- V) 

=Trace (A'AA'A- VA'A- A'AV + v2) 
= Trace (A'A) - Trace (VA'A) - Trace (A'AV) + 

Trace (V2) 

= m+1- Trace (AVA')- Trace (AVA')+ Trace (V2) 

n 2 
= m+1-2(a+bdm+1)(m+1)- I (a+bd.) . 

i=1 ~ 

Note: For the case n ~2m, let d = (dm + dm+1)/2 and 

13 



A= 

. . 
-/1-'A .2 

-/1-\ 
. . . 

d . - d 
Where ' = .m+1 . -1· 2 . 

1\, d d , .. ~-, , ••• ,m. 
~ m-f-1. -· m-i +1 

Then similar results and proof of Lemma 2 exist. 

Lemma 3: If there is an mxn matrix T of rank m such that T(ai+bD)T' 

14 

= ci, where T does not depend on a, b, or c, then the maximum value of 

m is n/2 if n is even and (n+1)/2.if n is odd. 

Proof: T(ai+bD)T' = aTT 1 + bTDT' = -·ci • . m 

Because T does not depend on a, b, or c, we have TT' = c1I and TDT' 

= c2I. Let c2 = kc1, then TT' = c1I and TDT' = kc1I = kTT'. 

Hence T(D-ki)T' = 0. 

Case 1: If rank (D - ki) = n, .-then by ustng the Frobenius inequality 

(5) rank ((D-ki)T')- ·rank (~(D-~T)T') =rank (D-ki)- rank (T(D-ki) 

or m = n-m or m = n/2. 

Case 2: If rank (D-ki) = n-1, then one•may shrink the dimension ofT 

and (D-ki) from mxn and nxn to mx(n-1) and (n~1)x(n-1). LetT*, and 

D* be the shrunk matrices such that rank (T*) = m or (m-1) and 
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and rank (D*) = n-1, we have T*D*T*' = 0. Again using the Frobenius 

inequality, we have m ~ (n-1)-m or (m-1) ~ (n-1)-(m-1). Hence, we 

have m ~ (n-1)/2 or m ~ (n+1)/2. To combine the results from case 1 

and case 2, we have the maximum rank of T is n/2 if n is even and 

(n+1)/2 if n is odd. 

Tbeorem: Assume the stated Model I, where k satisfies the specifi-

cation of Appendix A. Then there exists a matrix A such that 

z = Ay ~ (AX, o2r), where o2 is a real valued constant to be deter-
A -1 

mined, and ~mt = (X'A'AX) X'A'Ay is BLUE based on the transformed 

model. 

Proof. Step 1: 2 To show it is true fork= 1, or oi = r 1di1 for 

i=1, 2, •.. , n. 

Case 1; ( 1) n = 2(m1) + 1 

(2) 0 < d11 < d21 <" · < dn1 

Define ( 1 ) 
= Ym +1 z1 

1 

( 1) 
= A.2y + (1-A.2)ym1+2 z2 

m1 



(1) 
z m1+1 

where 

A2 = 

= 

= 

=A m1+1Y1 + (1-A +1)y . m1 n 

d - d 
!Jl1+2 m1+1 

d - d m1+2 m 

- d m1+1-i+1 

d - d +1 n m1 
d - d n 1 

16 



Let 

r:; . 

Then 

1 

,f>; -P-.~..2 
-~' J . "i 

= A( 1) y , E(z( 1)) = A( 1)x S, V(z( 1)) = D( 1) 
(m1 +1 )xn nx1 

where 

D( 1) = r 1d +1 I +1 by Lemma 1 and Lemma 2. 
m1 m1 

C~se 2: (1) n = 2(m1) 

Using the same approach as in case 1 and the transformation matrix 

defined in the note of Lemma 2, we would have a similar result as 

in case 1. 

Step 2: To show it is true for k = 2 

17 



Case 1: ( 1) n = ~ + 1 

(2) 111 +1 = 2(m2) + 1 

(3) 0 < d11 < d21 < • • • < dn1 

obtaining z(1) = A(1)y as step 1, we have now 
(m1+1 )x1 

z( 1) - (A(1) X S, D( 1) + D( 2)) by Lemma 1 and Lemma 2 

where D( 1) = r 1dm1+1rm1+1 and 

d 
2,~ +1 

=r 2 

by Lemma 2. 

18 

l 

I 
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Denote D( 2) = Diag {di2)}, i=1, 2, .•• , m1+1, and assume 

(4) (2) (2) (2) 
{) < d1 < d2 < • • • < dm+1 · 

Define 

z(2) = z(1) 
1 ~+1 

z(2) =r;c- z(1) + ~ z(1) 
2 J "2 m2 · 2 ~ +2 

. 
z(2) =r-x- z(1) + ~ z(1) 

~ "i m2 ~ •-"2 m2+2 
. 



Now let 

A(2) = 
(m2 +1 ) (m1 +1 ) 

. 
• 

By Lemma 1 and Lemma 2, we have 

z(2) = 
(m2 +1 )x1 

A(2) 

(m2 +1 )x(m1 +1 ) 
z 

( 1) 

(m1+1 )x1 

20 

1 

-)1 

Using the note of Lemma 2, a simila::t;" result as in case 1 can be obtained. 

Step 3: Assume k > 2 and 

Step 4: To show it is true for k + 1 

(k) (k) (k-1) .. 
z = A z as in step 3, we have 



By Lemma 2, we can denote 

D = Diag {d.} = ( ~ A(j))D(k+1)( ~ A(j)), 
. ~ j=k j=1 

Case 1: (1) mk + 1 =2m+ 1 

(2) 0 < d1 < d2 < ••• < dm+1 

Define 

A. 
~ = 

Define 

dm+i - dm+1-i+1 

d~+1 - dm+1 

dmk+1 - d1 

z (k +1) = z (k) 
1 m+1 

21 



Now let 

1 

.. 

A(1+1) = - )1-t..i 

j Am2+1 - )1-Am2+1 

and we have 

z (k+1) = A (k+1) z (~) E( z (k+1)) = t~1,A ( j)) X 3 , 
j=1 

By Lemma 2, we have 

A(k+1 >n(A(k+1)) • = \ r d(j) I + r ·d I 
i +1 +1 k+1 m+1 m+1 ._1 m. m 

J- J 

Denote 

k (j) k+1 (') 
2 = L r.d +1 + rk+1dm+1 ' and A= n A J , 

a J m. j=1 . 
j=1 J 

22 

J 



then we have 

z ( k+1 ) - (A X B , cr 2I ) • 
(m+1 )x1 . m+1 

Case 2: ~ + 1 = 2m. 

Using the ~ate of Lemma 2, a similar result as in case 1 can be 

obtained. F~nally, Bmt = (X 1A1AX)-1X1A1 AY is BLUE under the trans

formed model by applying the Gauss-Markov Theorem. QED 

The relationship among n, mi, and k is specified in Appendix A 

23 

of this thesis. The formula in Appendix A can be illustrated by the 

following example. Let n = 7, then m1 = (7+1)/2 = 4, m2 = 4/2 = 2. 

Hence, for the simple linear regression case,, k .::;, 3. 

Conditions for the Transformation to 

Preserve the Rank of X in Model I 

When p = 2 

Let A be the defined (m+1)xn transformation matrix. Then 

rank (AX) = 2 when p = 2 in Model I if at least one of the following 

equalities does not hold: 

E. 
J. 

A.i = E. +F. , i=2, 3, ... , m+1, 
J. J. 

where E. 
J. = x2,m+1x1,m+i- x1,m+1x2,m+1) and 

F. = (x1 +1x2 - x1,m+2~ix~,m+1). 
J. ,m ,m+2-i 

In practice, it would be easier to calqulate the determinant of AX 

for any positive integer p and it is not necessary to check the 

conditions provided above. 



Comparisons of the Proposed Estimators 

With OLSE as a Function of d 
n 

in Model II 

Since both the proposed estimators and the OLSE of the 

24 

regression coefficients are unbiased and consistent, it is interesting 

to compare the elements, the trace, and the determinant of the 

variance covariance matrix for the estimators of the two different 

procedures. 

In the specified Model II, 

A -1 
Bmt = (X'A 1AX) X1A1Ay,are the estimators for the two procedures, 

where A is the transformation matrix defined in section 3 of 

this article. The corresponding variance-covariance matrices 

are 

Let X' • • • 1 ]. in the stated Model II~ 
• •. • X 

n 

For the 

ordinary least squares case, it can be shown (AppendixB) that 

1 n-1 n -~ n 2 
= 2 { 2:: (a+bd.) [( 2:: x:)- X.( 2:: x.)J 

/X'X/ i=1 · ~ j=1 J ~ j=1 J 

+ (a+bd) [ (~~)-X ( ~ X.)J2 -----------(5.1) 
n j=1 J n j=1 J 
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"' A 1 n-1 n n n 
COV(B10ls' B201s) = ----~2 { L: (a+bd. )( L: X.-nX. )(X. L: X. - L: X~) 

lx•xl i=1 J. j=1 J J. J.j=1 J j=1 J. 

n n n 
+ (a+bd )( L: Xj-nX )(X L: X.- L: X~) -------(5.2) 

n j=1 n nj=1 J j=1 J 

A n-1 n 
V(B2ols) = 1 { L: (a+bd.)[ L: X.- nX.J2 

lx•xl 2 i=1 J. j=1 J J. 

n 
+ (a+bd )I L: X. - nX ]2}--------------------{5.3) 

n j=1 J n 

A 1 n-1 n-1 _2 n-1 2 
I V(B ols) I = ----~2 { ( L: (a+bd.) [ L: (a+bdi )Xi - L: (a+bd. )X. J} 

1x•x1 i=1 J. i=1 i=1 J. J. 

n-1 n-1 n""'1 
+ 1 2 { ( L: (a+bd. )~ + [ . E (a+bd. )X2 -2X L: (a+bd. )X. J} 

lx•xl i=1 J. n i=1 J. n ni=1 J. J. 

(a+bd ) ------------------------------------------------\5.4) 
n . 

Let X 1 = [ 1 • · • 1 ] in Model II. For the proposed transfor
X1 •.. xn 

mation procedure, it can be shown (Appendix B) 

z2 (~-Xn+C)-2zjdm+1 -d1 X1Xn + C(dm+1-d1) 

Dz~- 2E)dm+1-d1 z + F(dm+1-d1) 
----(5.5) 
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+ h (1-A. )] where n = 2m+1 . 
../"m m 

c = "-2(X:- X:+2) + ••• + "-m+1(~- X:)- 2}"-2(1-"-2) xmxm+2-

••• - 2J"m+1(1-"-m+1) x1xn + (x;+1 + .•• + ~) 

. 2 
F =A_ C - B 

A. m+1 

-----------( 5 • 6) 

----(5. 7) 



2 
(a+bdm+1) 

It is only a matter of algebra to prove (Appendix B) that 
"' 

the diagonal elements and the determinant of V(B 1 ) are linear 
0 s 

functions of d with positive slopes and intercepts. The off n . 
" 
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diagonal element of V(S 1 ) is a linear function of d with negative o s n 

slope and either a positive or a negative intercept. On the other 
"' 

hand, the elements and trace of V(Smt) are smooth (continuous first 

derivative) and bounded (both from above and below) functions of d n 
"' 

with two or fewer critical values. The determinant of V(Smt) is a 

smooth and bounded function of d with one critical value. Hence, , n 

analytical solutions of the intersection values of d can be obtained 
n 

by simultaneous solution of the corresponding two equations (Appendix 

B). 
' 

For any value of d which is greater than the largest value of 
n 

the intersection values of d , the proposed estimator would do better 
n 

than the OLSE in terms of the variance of the estimator. 

In the case that n=3 for Model II, the discussion in the previous 

paragraph can be demonstrated by the following five figures. 



0 -d3=d2.....__ __ I_.t ____ t ________________ d3 
d n ersec ion 
3 
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Figure 1. The Intersection of V(S101s) and V(S1mt) as 

Func'ti:ons of dn 

/ole 
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. -~// ____ - ~~~---

/// 
___ _____,__ ___ 

dintersection 
3 

-- lower bound 
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Figure 2. The Intersection of V(S2018 ) and V(S2mt) as 

Functions of dn 
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Figure 4. The Intersection of trace [V(S018 )J and trace [V(Smt)J 

as Functions of d 
n 



det [V(3)J 

Figure 5. 
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det [V( B t)J as Functions of d m · n 
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Summary and Open Problems 

We have developed a transformation technique and an estimator 

of the regression coefficients p, when the errors in the linear model 

are heterogeneous of a particular form. The proposed transformation 

matrix results in homogeneous variances and has the maximum possible 

rank. The proposed estimator is unbiased and consistent. When 

the relative size of the largest variance to the smallest variance 

in the stated regression model is large, the variances of the 

proposed estimators of intercept and slope will be smaller than the 

corresponding variances of the OLSE. The determinant of the variance 

covariance matrix of the proposed estimator is also smaller than the 

corresponding determinant of the OLSE. 

The transformation matrix is not unique. There are m! pairing 

method~m = n/2 if n is even and m = (n-1)/2 if n is odd. In 

addition, the two elements in a row of the matrix can have the same 

sign or different signs. For example, let n=5 and V = ai + bD, 

where 

D = 
5x5 

Then there are m = (5-1)/2 = 2 pairing methods. The transformation 

matrix based on pairing method 1 is 
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0 1 0 

0 0 0 = 

0 0 0 

The transformation matrix based on a second pairing method is 

0 0 1 0 0 

A2 = + J d~-d3 0 0 + Jd3-d1 0 
- d4-d1 - d4-d1 

0 ± r5-d3 
d5-d2 

0 0 ± r3-d2 
d5-d2 

Selection of the optimum pairing method needs further investigation. 

The transformation was devised to equalize the variances by 

taking a weighted average of paired d.'s to obtain a predetermined 
]. . 

common variance. For each given value of the independent variable 

in Model II, there is a corresponding value of the dependent variable 

which is the result of pooling two independent observations using the 

corresponding weights of the transformation. The transformation 

results in homoscedastic variances but the number of degrees of free-

dom is decreased and the range of values of the dependent variable 

is decreased. 

If k > 2 or there are more than two variance components in 

Model I, then the theorem in section 3 guarantees the existence of the 

homogenizing transformation matrix A. In practice, the process 
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described in this section should be repeated k-1 times to equalize 

the variances in Model I. For example, if k=3 and V = ai + bD1 + cD2 

in Model I, then the following sequence should be followed: 

First stage: Find A1 such that A1(ai+bD1+cD2)A1• = (a+bdm+1)Im+1 

+ cA1D2A1 • where A1D2A1 • is an (m+1)x(m+1) diagonal 

~atrix (by Lemma 2). 

Second stage: Assume (m+1) is an odd number, find A2 such that 

A2 ((a+bdm+1)Im+1 + cA1D2A1 1 )A2 1 = 

((a+bdm+1) ~ ce)I(m+2)/2 where e is the middle element 

on the diagonal of A1D2A1 ' · 

Hence, A= A2A1 is the transformation matrix needed to obtain 

homoscedasticity. 

Finally, in the case where V = ai + bU for any known p.s.d. 

matrix U, it is common knowledge that there exists an nxn orthogonal 

matrix P such that PVP' = ai + bD, where D = PUP' is an nxn diagonal 

matrix. Consequently, the proposed transformation technique can 

apply to a general linear regression model with 

v = a1I + a2u1 + ••. + akuk_1, 

where k satisfies the upper limits provided by the formulas of 

Appendix A, and V satisfies the assumptions of the theorem after the 

orthogonal transformation. 
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CHAPTER III 

ESTIMATION OF VARIANCE COMPONENTS IN A 

LINEAR REGRESSION MODEL WHEN THE 

VARIANCE IS A LINEAR FUNCTION 

OF UNKNOWN PARAMETERS 

Abstract 

The problem considered in this Chapter involves a linear model 

in which the variance of the observable random variable is a linear 

function of unknown variance components. The objective is to estimate 

the variance components. This is accomplished by combining the 

"orthonormal basis of error space" technique and a proposed maximum 

rank orthogonal linear transformation technique to estimate the 

variance components in a linear regression model when the variance is 

a linear function of unknown parameters. There always exists a 

proposed unbiased estimator whereas the estimator based on MINQUE may 

not exist. Furthermore, the proposed method provides a simple calcula

tion procedure where ~ITNQUE may require a generalized inverse 

procedure. 

35 
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Introduction 

Model I 

Let y = X S + E denote a linear regression model where 

Model II 

y is an nx1 vector of observable random variables, 

X is an nxp matrix of known constants with rank (X) = p, 

S is a px1 vector of unknown constants, 

E is an nx1 vector of unobservable jointly normal random 

variables such that V(E) = V =diagonal {cr~: i=1, 2, ..• , n}, 
1 

2 k 
where (1) cr. = E rjd .. is positive 

1 "-1 1J J-

(2) r. 1s are unknown constants 
1 

(3) d .. ~ d. 1 • fori~ i' and d1.J. 1s are known 
1J 1 J 

positive constants 

(4) k satisfies the conditions in Appendix A 

of this article, which is required for the 

S. 's to be estimable. 
1 

The same as Model I except V(E) = a! + bD where 

a= r 1 

b = r 2 

Some of the general methods for estimating variance components 

in a general linear model are "orthonormal basis of error space" (OBES), 
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minimum norm quadratic unbiased estimation (MINQUE), and maximum' 

likelihood estimation (MLE). 

Putter (4) proposed methods of constructing OBES and applied his 

results to estimating variance components. For the case of an 

unreplicated two-way layout, 

yjk = u + aj + bk + ejk(j=1, 2, •.. , J; k=1, 2, ... , K), 

he showed that when the relative differences among a.'s, j=1, 2, ••• , J 
J 

are large estimators obtained from OBES would have smaller variances 

compa~ed wit~ the estimators proposed b.r.Grubbs (2) and Ehrenberg (1). 

Rao (5) introduced MINQUE for yariance components in a general 

linear model. Unfortunately, the MINQUE estimators for a~= V(e.) 
. 1 1 

in y = X S 
nx1 nxp px1 

+ e , although unbiased may be negative. 
nx1 

Furthermore, 

for some structures of the X matrix, not all a~'s are estimable. 
1 

Hartley and Jayatillake (3) estimated the variance components 

~ MLE under the assumption of a lower bound for the variance 

components. The estimators are consistent and asympototically 

efficient. However, it is known that such estimators may not perform 

optimally for small sample sizes • 

. A Proposed Method of Variance 

Components Est:i,mation 

In this Chapter, we are going to combine OBES with the trans-

formation technique developed in the previous Chapter in order to 

estimate the variance components in Model I. 

For simplicity, we assume the specified Model II. Either applying 



the Gram-Schmidt orthonormalization procedure to (I-X(X'X)-1X') or 

based on methods proposed by Putter (4), we can find an (n-p)xn 

matrix H in the orthogonal column space of X such that HX = ¢ and 

HH' = I(n-p)' premultiplying both sides of the linear model by H 

leads to 

Hy = HX i3 + HE: = HE:, 

where 

E{Hy) = E(HE:) = ¢ 

V{Hy) = H(a! + bD)H' 

= a! + bHDH'. 
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Since HDH' is p.d., there exists an orthogonal (n-p)x(n-p) 

matrix P such that P(HDH 1 )P 1 = D*, where D* = diag {6., i=1, ••• ,n-p}. . 1 

Premultiplying both sides of Hy = Hs by P results in 

PHy = PHE 

where 

E(PHy) = ¢ 

V(PHy) = P(ai + bHDH 1 )P 1 

= a! + bD*. 

Define Z = PHy; then E(Z) = ¢ and the elements in Z, say 

z., i=1, 2, 
1 ... ' 

V(Z) = a! + bD*. 

S = ['s1 , s~, .•.• , 

n-p, are mutually independent since z is normal and 

Lets. = z~ = Z'.lLZ, i=1, 2, .... , n-p and 1 1 •. 1 

s ]~ where A. is a (n-p)x(n-p) diagonal matrix n-p 1 

with the ith diagonal element one and all other elements zero. 

Hence, 

(1) si, i=1, 2, ••• , n-p are mutually independent sinze zi 

i=1, 2, ••• , n-p are mutually independent. 



. 2 
(2) E(s.) = E(z.) = V(z.) =a+ b~., i=1, 2, •.. , n-p. 1 1 1 1 

(3) V(s.) = V(z~) = V(Z'A.Z) 
1 1 1 

= 2 trace (A.(ai + bD*)) 2 
1 

2 = 2(a+b6.) , i=1, 2, ••. , n-p. 
1 

In order to estimate a and b, based on the previous results, 

we define the following linear regression model: 

s n-p 

Letting W = 

= a 

1 

1 

1 

1 

1 

1 

+ b 

6 n-p 

6 
n-p 

+ 

u n-p 

and u = 

u n-p 

then the previous model can be rewritten as 

where E(u) = ¢ and 

39 
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V(u) = 

2(a+b6 )2 
n-p 

This is the'case that the variance of the dependent variable is 

proportional to the square of its expectation. As shown in the 

previous Chapter, the ordinary least squares estimators of a and b 

wi+l be inefficient compared with the proposed maximum rank transfer-

mation estimators if the relative size of the largest variance to the 

smallest variance in the regression model is large. 

V(U) = 

L 
! 

2 I 

y1 + y26 + y36 J n-p n-p 
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Without loss of generality, assume (n-p) and (n-p+1)/2 are odd; then 

using the theorem proved in the previous Chapter, there exist matrices 

A1, ((n-p+1)/2) x (n-p), and A2, ((((n-p+1)/2)+1)/2) x ((n-p+1)/2), 

such that A = ~A1 and 

where E(AU) = ~ and V(AU) 

Based on Model II, the BLUE of [a b]' is 

[ ~1 = (W'A'AW)-1(W'A'AS), 

The variance-covariance matrix of [ ~ 1 is 

Discussion 

Based on the theorem developed in the previous Chapter, the 

proposed method on variance components estimation may generalize to 

Model I. Since there always exists an (n-p)xn matrix H in the 

orthogonal column space of X, the existence of the proposed estimators 

is ensured in case the minimum norm quadratic unbiased estimators 

do not exist. Furthermore; the proposed method provides a simple 

calculation procedure where MINQUE may require a generalized inverse 

procedure. 
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Both the estimators based on MINQUE and the proposed method are 

unbiased. However, the proposed estimators may have larger variances 

in comparison with the estimators, if they exist, obtained by MINQUE. 

Although an attempt to obtain an "optimum" (uniformly most 

powerful) te·st on the variance components has been made, no concrete 

results have been obtained. Since the generalized likelihood ratio 

is the ratio of probability density functions of linear combinations 

of noncentral Chi-squares, the closed form of the distribution of the 

test statistics is not obtainable. Intuitively, an approximate F

test based on the sum of squares due to full model and restricted 

model in the .model AS = AW [: ] + AU may be used yet the properties 

of this approximate test are unknown. 
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CHAPTER IV 

SUMMARY 

Model I 

Let y = X f3 + E: denote a linear regression model where 

y is an nx1 vector of observable random variables, 

X is an nxp matrix of known constants with rank (X) = p, 

~ is a px1 vector of unknown constants, 

E: is an nx1 vector of unobservable random variables such 

that V(t:) = V =diagonal {a~ : i=1, 2, ••• , n!, 
~ 

where (1) 0~ = 
~ 

k 
L: r. d .. is posit,ive 

j=1 J ~J 

(2) r. 's are unknown constants 
~ 

(3) d.J. i d.,. fori i i' and d .. 's are known 
~ ~ J ~J 

positive constants 

(4) k satisfies the conditions in Appendix A 

of this article, which is required for the 

B.'s to be estimable. 
~ 

Model II 

The same as Model I except V("s..) = ai + bD where 

44 



a= r 1 

b = r 
2 

D =diagonal {di' i=1, 2, ••• ,nand O<d1<d2< .•. 5dn}. 

We developed methods of estimation both for the regression 

coefficients and variance components in a linear regression model 

when the variance is a linear function of unknown parameters. In 

order to obtain homoscedasticity in a linear regression model when 

the variance is a linear function of unknown parameters, a maximum 

rank transformation was developed. After the transformation, BLUE 

estimators of the regression coefficients are obtained based on the 

transformed model. 

For Model II, we proved that a full rank transformation which 

homogenizes the variances does not exist and the maximum rank of the 

transformation matrix ism= n/2 when n is even and m = (n+1)/2 
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when n is odd. So far, only one of the m! possible pairing methods 

for Model II has been studied in detail. Criteria such as determinant 

{generalized variance), norm, trace, or individual elements of the 

variance-covariance matrix of the estimates may be selected for the 

purpose of comparing any two possible pairing methods. 

The proposed procedure led to regression coefficients estimators 

that are unbiased and consistent. In Model II, it was shown that the 

variances of the proposed estimators are smaller than the estimators 

based on OLSE when the relative size of the largest variance to the 

smallest variance in the regression model is large. 

Variance components estimation was tried but with little success. 

We combined the OBES technique and the proposed transformation 
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technique to obtain unbiased estimators of the variance components in 

Model II. The proposed method provides a simple calculation procedure 

where MINQUE may require a generalized inverse procedure. Furthermore, 

there always exists a proposed estimator whereas the MINQUE may 

not exist. 

In general, most of the effort in this study was directed at 

finding small sample unbiased estimators of the regression coefficients 

and variance components in a linear regression model when the variance 

is a linear function of unknown parameters. We presented a method of 

estimation based on a maximum rank orthogonal linear transformation 

when the full rank orthogonal linear transformation does not exist. 

We proposed a method for constructing such a transformation matrix. 

Based on this transformation matrix, we derived the proposed estimators. 

We hope problems of selecting an optimum (minimum variance) transfor-

mation matrix among all possible transformation matrices, searching 

for a small sample best unbiased estimator for the regre,ssion coef

ficient vector, comparing the power of the tests of the regression 

coefficients based on the proposed procedure, ordinary least square 

estimati,on, or maximum likelihood estimation will stimulate further 
' 

investigation to the problem of heteroscedasticity in a general 

linear regression model. 



APPENDIX A 

CONDITIONS OFk IN MODEL I(~ IS A 

FUNCTION OF n AND k) 
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R., i = 1, 2, ••• , k are the number of observations which remain 
~ 

after the ith transformation. For the p regression coefficients to be 

estimable, ~ should be greater than or equal to p, where k is the 

number of variance components in Model I. 

R - n 0-

R0 + Mod(R0,2) n + Mod(n, 2) 
R1 = 2 = 2 

~-1 + Mod (~-1' '2) 

11c= > p -
2 

~ 

~~k 
............. , 1 2 3 

3 2 

4 2 

5 3 2 

6 3 2 

7 4 2 

8 4 2 

9 5 3 2 

10 5 3 2 

11 6 3 2 

12 6 3 2 

13 7 4 2 



APPENDIX B 

A A 

COMPARISON OF V(S l ) AND V(S t) o s m 

IN MODEL II 
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This appendix concerns the algebraic derivation and comparisons 
A A 

of V(S 01s) and V(Bmt)' as a function of dn' when 

• 1 J 
. X 

n 

and V = ai + bD where D =diagonal {d.: i=1, 2, ••• , n}. 
l. 

Denote 

I A 

1 V(B1ols) 
I A 

: V(S12ols) 

and 

We are going to find the values of d for which equality holds between 
n -

A A A A A 

V(B101s) and V(S1mt); between V(B12018 ) and V(B12mt); between V(B2018 ) 
A A A 

and V(B2mt); and between IV(B 01s)l and IV(Bmt)l. 

A 

I. V(S 1 ) 0 s 
A 

(X'X)-1X1VX(X'X)-l V(B 1 ) = 0 s 

n n lrn -~x] n n -r 
~~ - ~ x.l ~ (a+l;>d.) ~ (a+bd. )X. I ~ x3-

1 i=1 l. i=1 l. i=1 l. i=1 l. 1 ji=1 l. i=1 = 
(x•xi2 n j n n 1 n 

-~ X. n l i!:1(a+bdi )Xi ;l(a+bd;_}~ l ~=/i n 
i=1 l. 
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A. lvcsols)/: 

A 1 n n 2 
V(B ols) = --2 { [ ~ (a+bd.) J [ ~ (a+bd. )X. J 

IX'~ i=1 ~ i=1 ~ ~ 

n 2 
- [ ~ (a+bd.)X.J } 

i=1 ~ ~ 

1 n-1 
= -----2 {[ l: (a+bd.) J 

IX'XI i=1 ~ 

n-1 · 
[ ~ (a+bd. )X~J 

i=1 ~ ~ 

n-1 2 n-1 
+ [ ~ (a+bd. )X. J d + [ ~ (a+bd. )~ J d 

i=1 ~ ~ n i=1 ~ ~ n 

n-1 2 n-1 
+ d2x2- [ ~ (a+bd.)X.J + 2 [ ~ (a+bd.)X.J d X 

n n i=1 ~ ~ i=1 ~ ~ n n 

n-1 n-1 2 
= · 1 2 {[ ~ (a+bd. )J [ ~ (a+bd. )X. J 

IX'XI i=1 ~ i=1 ~ ~ 

n-1 2 n-1 
- [ ~ (a+bd. )X. J } + 1 {[ ~ (a+bd. )~J 

i=1 ~ ~ IX'XI 2 i=l ~ n 

n-1 n-1 
+ [ ~ (a+bd. )'X~] - 2[ ~ (a+bd. )X.J X } d 

i=1 ~ ~ i=1 ~ ~ n n 
A 

Thus, lv(B 1 )I is a linear function of d 
o s n 

where 
A 

(a) the intercept, the first term of IV(B 1 )I, is 
0 s 

positive since I X'XI 2 > 0 and Vn_1 is p.d. which 

implies I X' 1v 1x 1 1 > o, and n- n- n-



(b) 
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the slope, the coefficient of d , is positive since 
n 

n-1 n-1 n-1 
{[ E (a+bd.) ] -J?- · + E (a+bd. )~ - 2[ E (a+bd. )X ]} 

i=1 1 n i=1 1 1 i=1 1 n 

n-1 2 
- = E (a+bd1)(X- X.) > 0. 

i=1 n 1 

0 ·------------"------~---- d n 
d = d 

n n-1 

A 

Figure 6. Det [V(S 1 ) J as a Function of d o s n 



A 

B. V(B1 ols): 

A n-1 
V(B ls) = / 1 12 { ~ (a+bd.) 

lo X1X i=1 1 

n n 2 
[(~~)-X.(~ X.)J 

j=1 J 1 j=1 J 

n n 2 
+ (a+bd ) [( ~ ~) -X ( ~ X.)J } 

n j=1 J n j=1 J 

ols 

0 ~------------------------------------ d n 
d = d n n-1 

A 

Figure 7. V(B1 1 ) as a Function of d 
o s n 
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d = d 1 n n-

1 n-1 n 
2 { E (a+bd.)( E xi- nX1) 

IX'XI j=1 J i=1 

n n n 
(X1 EX. - E ~) + (a+bd )( EX. - nX ) 

i=1 ~ i=1 ~ n i=1 ~ n 

n n 2 
(X EX. - EX.)} 

n i=1 ~ i=1 ~ 

or--------------------------------------- d n 

---ols 

A 

Figure 8. V(B 12018 ) as a Function of dn 
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A 

D. V(B2ols): 

A 1 n-1 n 2 
V(B 2 1 ) = 

1 

J 2 { l: (a+bd.) [( l: X.)- nX.J 
0 8 X1X j=1 J i=1 1 J 

n 2 
+ (a+bd ) [ ( l: X.) - nX J } 

n i=1 1 n 

0 1----------------------------- d 
n 

d = d 
n n-1 

Figure 9 • V ( B 2018 ) as a Function of dn 



II. V~mt) = (X'A 1AX)-1(a+bdm+1 )' and assume n =2m+ 1. By definition 

of matrix A, we have 

. ' 

A'A = 

where >. 2 = 

'-2 i t-2( 1-t-2) 

1 

I. 
I 
r 

1 - '-m+1 J 



where 

D12 = A2(Xm-Xm+2) + ••• + Am+1(X1-Xn)~A2( 1 -A2)(Xm+Xm+2) - .•. 

-JAm+1(1-Am+1) (X1+Xn) + (Xm+1 + ••. + Xn) 

D21 = D12 

D22 = A2(X:- X:+2) + •·• + Am+1(~- X:>-2/A2( 1-A2) xmxm+2-

-2/Am+1(1-Am+1) x1xn + (X:+1 + •.• +X:>· 

Letting 

_ A = (m+1) - 2[JA2(1-A2) + .•• +)Am (1-Am) J 
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B = A2(Xm - Xm+:2) + .•. + Am(X2 - Xn_1) -JA2(1-A2) . (Xm + Xm+2)- ... 

and 

then 

n 
-jx (1-A) (X2 +X 1) + l: X. 

m m n- i=m+1 ~ 

n ' 
2/A (1-A ) X2X 1 + E ~' 

m m n- i=m+1 ~ 



A 

A. IV(I3mt)l: 

1. IV(Smt) 1=1 (X'A' AX)-1 {a+bdm+1 ) I = (a+bdm+1 )2 1 X' A' AXI-1 

· 2 dn -dm+1 __;, · _ _.2 
= (a+bdm+1 ) { d -d [ (A-1 )A.J + 2X1Xn - (A+ 1 )X~ 

n 1 . 

- 2BX - 2BX J + (AC- B2 )}-1 • 
1 . n 

Letting D = (A - 1)v2 + 2X1X - (A+1)X2 - 2B(X1-X ) + AC- B2 
~ n n _ n 

then 

2 
F = AC- B , 

IV(Bmt)l = (a+bdm+1)2(dn-d1) {(dn+dmt1)D- 2f(dn-dm+1)(dm+1d1) 

E + (dm+1- d1)F}-1. 
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2. The nature of this function is determined by evaluation at 

d = d , d + +oo and at dm, the critical point of this n n-1 n n 

function. 

a. 
A 2 

IV(Smt)ldn=dn-1 = {(a+bdm+1) (dn-1-d1)} 

/{[D(dn-1-dm+1)-2Ej(dm+1-d1)(dn-1-dm+1)+F(~+1-d1)J} 

b. I V(~ )I (a+bdm+1)2 
· ~-'mt d + +oo = -~:::.:....:-

n D 

a A 2 2 
c. :az-lv<smt)l ={[DZ -2E/dm+1-d1 Z+F(dm+1-d1)J [2Zdm+1J 

- [Z2+(dm+1-d1)J [2DZ-2E~dm+1-d1] d;+1}/{[DZ2 

-2E /dm+1-d1 Z + F (dm+1-d1) ]2} 

Let = 0, we have 

Since Z _:: o, 

is the only solution, and 



dm = d + (Zm)2 
n m+1 • 

0 ~------------~---------------------
d = d n n-1 

A 

Figure 10. Det [V(S t)J as a Function of d m n 

IX' A' AX! 

J d -d jd -d 
2 n m+1 m+1. 1 X X J 

· dn -d1 1 n 

d 
n 
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2. The nature of this function is determined by evaluation 

at d =d 1 , d +too and at dm, the critical points of this n n- n . n 

:function. 
A 

a. [V(S1mt)Jd =d = (a+bdm+1). 
n n-1 

{(dn-1-dm+1)(X1-Xn+C)-2/(dn-1-dm+1)(dm+1-d1) 111n 

+C(dm+1-d1) }/{D(dn -dm+1 )-~ml-1-d1)(dn-1<\rn-1)+F(dm+1d1)} 

A 

av(~mt) 
c 0 a z is a continuous A function I of dn since 

lx'A'AXi 2 >0, and av(f31~t) = 0 + 
. i)Z 

2(a+bdm+1 ) {Dz3(:x~ - ~ + c) - vz2j dm+1-d1 x1xn 

- 2E z2jdm+1-q1 (~ - ~ +C)+ 2EZ(dm+1-d1 )X1Xn 

2 2 2 x1xn + DZC(dm+1-d1)- EZ /dm+1-d1 (X1 - Xn +C) 

. 3/2 
+ 2 E Z(dm+1-d1 )X1Xn -EC(dm+1-d1 ) } = 0 + 



Since this is a quadratic function of Z, and hence d , 
n 

there are four possible cases for the dependence of 
A 

. V(B1mt) upon dn. These are illustrated in Figure 11. 

Case 1 

0 

Case 2 

d 
n 

0 ~~--------------------------------~---d d~ n n n-1 
A 

Figure 11. V(B 1mt) as a Function of dn 

62 



Case 3 

0 
1------------~~--~------------~---d 

Case 4 

0 
d =d n n-1 

Figure 11 • Continued 

A 

C. V(S2mt) : 

1. V(S2mt) =A - 2Jt..m+1 (1-A.m+1) 
----l:......::::..;....:..--=..;....:_ (a+bdm+1 ) 

IX'A'.A:XI 

n 

d 
n 

=A[ (dn-dm+1) + (dm+1-d1 )] - 2J~n -dm+l)(dm+1-d1) 

D (dn-dm+1)-2Ej(dm+1-d1)(dn~dm+1) + F(dm+1-d1) 

(a+bdm+1 ) 

= z2 A - 2Z Jdm+1-d1 + A ( dm+1-d1 ) 

DZ2 - 2EZJdm+1-d1 + F(dm+l-d1 ) 
(a+bdm+1 ) 
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2. The nature of this function is determined by evaluation at 
m d =d ·· d +I= and at d , the critical points of this function. n n-1' n n 

a. [V(B2mt)Jd =d = 
n n-1 

A(dn-1-dm+1) + A(dm+1-d1)-2j(dn~1-dm+1)(dm+1-d1) (a+bd +1) 

D(dn-1-dm+1) -2Ej(dn-1-dm+1) (dm+1-d1) +F(C\n+1-d1 m 

b. 

A 

c. a V(f32mt) 
az is continuous function of d since 

n 
A 

I X 1 A 1 AX I > 0, and a V ( f3 2mt ) = 0 -+ 

az 

[DZ2 - 2EZjdm+1-d1 + F(dm+1-d1)J2[2AZ-2jdm+1-d1 ] 

- [Z2A - 2Z Jdm+1-d1 +A (dm+1-d1 )J[2DZ-2Ef<\n+1-d1 ] = 0 

-+ 

z2jdm+1-d1 [- E A+ D] + ZA (dm+1-d1) [F - D] 

+ (dm+1 -d1 )~dm+1 -d1 (E A- F) = 0 

Since this is a quadratic function of Z, and hence 

d , there are four possible cases for the dependence 
n 

A 

of V(82mt) upon dn. These are illustrated in 

Figure 12. 



0 

0 

0 

0 

Case 1 

·····--------------
// 

-~_/ 

/ 
/ 

~------------------------------------------ d 

Case 2 

Case 3 

Case 4 

n 

d 
n 

d 
n 

L-------------------------------------------d 
n 

d =d 
n n-1 

A 

Figure 12. V(B2mt) as a Function of dn 
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A 

D. V(f312mt) : 

2. The nature of this function is determined by evaluation at 

d =d 1, d ~and at dm, the critical points of this function. n n- n n ··. 
A 

a. [V(S )J _ _ _1r1 ) 
12mt dn-dn-1 - (a+bdm+1){~n-1-dm+1)(B+X1-Xn 

+j (dn-1-dm+1) (dm+1-d1) (X1+Xn)-B(dm+1-d1) }/ 

/{D(dn-1-dm-1)-2Ej(dm+1-d1)(dn-1-dm-1) +F(dm+1-d1)} 

A -B + X - X 
b. [V(S12mt)Jd ++oo = n 1 (a+bdm+1) 

n D 

c. is a continuous function of d since 
A n 

av(s12mt) 
IX'A'AXI > o, and az = o + 

I 



[DZ2 - 2Efdm+1-d1 Z + F(dm+1=d1)JC-2Z(B+X1-Xn+fdm+1-d1(X1+Xn)J 

-C-z2 (B+X1-Xn)+Zjdm+1-d1 (X1+Xn)-B(dm+1-d1) ][2DZ-2E' jdm+1-d1 J = 0 

Since this is a quadratic function of Z, and hence d , there 
n 

A 

are four possible cases for the dependence of V(B12mt) upon 

d • These are illustrated in Figure 13. n 

Case 1 

0 ~--------------------------------------d n 

Case 2 

0 d 
~--------~~~---------------------- n 

d=d n n-1 

A 

Figure 13. V(B12mt) a~ a Function of dn 

I 



0 

0 

d =d n n-1 

Case 3 

Case 4 

Figure 13. Continued 

~---------__/ 
d --------n 

d 
n 

A A 

III. A. We next find dn such that V(S101s) = V(S1mt). The solution 

* will be denoted as d . 
n 

1 n n n 2 
L: (a+bd.)( L: X.- X. L: X.) 

i=1 -- ~ j=1 J ~j=1 J 

68 

V$A1mt) = (a+bdm+1){(dn-dm+1)(X~-~+c)-2j(dn-dm+1)(dm+1-d1) 

X1Xn + C(dm+1-d1)}/{D(dn-dm+1)-2o/(dn-dm+1)(dm+1-d1) 

+ F(dm+1-d1)} 



" " V(S1018 } = V(S1mt} V a,b,...ai + bD is p.d. + 

A.1 
1 n n n 2 

--:.-,-[}:(}:X X }:X}J 
IX'XI 2 i=1 j=1 j - 1j=1 j 

(dn-dm+1)(~-~+C}-2jdn-dm+1Jdm+1-d1 X1Xn + C(dm+1-d1) = 

A.2 1 . n · n n 2 
I x, x 12 c }: d1 <- }: xj - x. }: xj} J 

i=1 j=1 ~ j=1 

+ 
d +1 n n n 2 1 n n n 2 m [}: (}:X.- X }:X.} J= 2 E}: d.( LXj-X. }: Xj) J 

lx'xl 2 ~=1 j--1 J 1 .. 1 J: IX'XI . 1 ~ . 1 ~. 1 ..... ~= J= J= 

n-1 n n 2 
}: d1(}: Xj- X. }: X.} 

i=1 j=1 ' ~j=1 J 

+ 
= i;9n+1 

n n 
E X - X E X. ) 2 

j=1 j n j=1 J 

* " " if d > d then v ( s1 1 ) > v ( s1 t) n-n os- m 

A A 

B. We next find dn such that V( S2ols) = V~ S2mt). The solution 

* will be denoted as dn. 

n n 2 
}: (a+bd.. )( E xj - nX.) 

. -1 1. "-1 1. l.- J-



A A 

V(i32018 ) = V(S2mt) V a & b ~ ai + bD is p.d. -+ 

B.1 

B.2 

1 n n 2 
2 r ( r xj - nX. ) 

IX'XI i=1 j=1 ~ 

= (dn-dm+1)A-2Jdn-dm+1Jdm+1-d1 + A(dm+1-d1) 

D(dn-dm+1) - 2E}dn-dm+1fdm+1-d1 + F(dm+1-d1) 

1 n n 2 
-, x-, x--1~2 r di ( r xj - nXi) 

i=1 j=1 

-+ d +1 n n 2 1 n n ~ 
m 2: ( 2: X - nX) = l: d.( l: X.- nX1 )~ IX'XI 2 i=1 j=1 j i IX'XI 2 i=1 ~ j=1 J 

n-1 n 
- nX. )2 l: di ( l: X. 

i=1 j=1 J ~ 

* d = ih+1 n . n 
( l: X. - nX )2 
j=1 J n 

70 
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A A 

C. We next find d such that tlr( R.. ) I - IV( B ) I The n 1· '12ols - 12mt · 

* solution will be denoted as d • 
n 

A 

V( S12ols) = 1 n . n n n 2 
r (a+bd.)( r x.-nX.)(x. r x.- r x.) 

. -1 1 '-1 J 1 1 '-1 J ·-1 J 1- J- J- J-

A 

V( ~2mt) = (a+bdm+1 ){- (dn-dm+1 )(B+X1-Xn)ifdn -dm+1) (dm+1-d1) 

(X1+Xn) - B(dm+1~d1) }/{D(dn-dm+1) 

-2E j<dn-dm+1 )(dm+1-d1 )' + F(dm+1-d1)} 

A A 

V(B12018 ) = V(B12mt) V a,b ~ ai + bD is p.d. -r 

C.1 

C.2 

1 n n n n 
---=-~2 E ( EX. - nXi)(X. E X. - E ~) 
IX'X I i=1 j=1 J 1 j=1 J j=1 J 

_ _ -:-(dn-dm+1) (B+X1-Xn)+ Jdn-dm+1Jdm+1-d1 (X1+Xn)-B(\+1-d1) 

D(dn-dm+1)-2Ejdn-dm+1/dm+1-d1 + F(dm+1-d1) 

1 n n n n 
-~2 rd. (EX. -nX.)(x. EX.- r~) 
IX'X I i=1 1 j=1 J 1 1 j=1 J j=1 J 

= (-dm+1 ){-(dn -dm+1) (B+X1-Xn)+j (dn-dm+1) (dm+1-d1) 

(X1 +Xn)-B(dm+1-d1) }/{D(dn -dm+1 )-2E /(dn-dm+1) (dm+1-d1) 

+ F(dm+1-d1)} 
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dm+1 
-+ 

IX'XI2 

n n n n 
~ ( ~ Xj - nXi)(Xi ~ X. - ~ ~) 

i=1 j=1 j=1 J j=1 J 

1 n n n n 
= IX'XI2 ~ di ( ~ xj - nXi)(xi ~ xj - ~ ~) 

i=1 j=1 j=1 j=1 J 

n-1 n n n 
~ di ( ~ Xj - nX )(X ~ X. - ~ ~j) 

i=1 j=1 n n j=1 J j=1 
* a = iBn+1 
n n n n 

( ~ xj - nX ) (x ~ xj - ~ ~j ) 
j -1 n n ·~1 ·-1 - J- J-

* A 
-+ if d ~ d then IV ( B 12 1 ) I n n o s 

* A D. Find dn for lv(S018 ) I V a,b 

.~ ai + bD to be p.d. 

n 2 
- ( ~ [a+bd.J Xi) } 

i=1 J. 
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"' 
IV(Smt) I ... 

" "' 
I V(S ols)l = IV(Smt) I for all a,b 1 0 ~ ai + bD is p.d. 

D.1 dm+1 G = H 

D.2 dm+1 H = I 

2 
G I D.3 dm+1 = 

. Solve D.1 for d0 substitute into D. 2 and D. 3 if: n . 

1 • The equality of D. 2 and D. 3 holn. then 

. \ * 2. Otherwise, there does not exist a d ~ . n 

"' "' 
IV(S01s) I ~ IV(Smt)l :for all a and b ~ ai+bD is p.d. 



APPENDIX C 

LISTING OF PL/1 COMPUTER 

PROGRAM AND OUTPUT 

74 
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The following computer pr~gram is designed to eliminate the 

unequal variances in Model I specified in this thesis. The transformed 

data will be punched on cards (program statement #231 and #243) which 

may be used as input to any ordinary least squares computer program. 

In order to find the estimates of the regression coefficients in a 

single run, the transformed data would be written on a temporary file 

named TSAI (program statement #232 and #244) which can be used as input 

to the next job step for an ordinary least squares computer program. 

Either option can be eliminated by withdrawing the corresponding cards. 

A sample JCL of using SAS in job step 2 is shown below: 

II JOB 

IISTEP1 EXEC PL1LFCLG 

IIPL1L.SYSIN DD * 

(Pl1 source program) 

I* 
IIGO.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80 

IIGO.TSAI DD DSN=&TA,UNIT=SYSDA, 

II SPACE=(CYL,(4,1)),DISP=(NEW,PASS), 

II DCB=(RECFM=FB,BLKSIZE=80,LRECL=80) 

IIGO.SYSIN DD * 

(input data cards) 

I* 
IISTEP2 EXEC SAS3 

IIGO.TB DD DSN=*.STEP1.GO.TSAI,DISP=(OLD,DELETE), 

II DCB=(RECFM=FB,BLKSIZE=80) 

DATA; 



INPUT DDNAME=TB Y 1-8 X1 9-16 X2 17-24; 

I* 

II 
The input stream to the PL1 program should be ordered as 

follows: 

Number of observations(n) 

Number of regression coefficients(p) 

Number of variance components(c) 

Dependent variable observations: y(1), y(2), ••• , y(n) 

Independent variable observations(row major) 

X(1,1), ••• , 

X(2,1), ... ' 
X(1 ,p) 

X(2,p) 

X(n,1), ••• , X(n,p) 

where X(1,i), ••• , X(n,i) are then observations of the 

ith independent variable. 

Variance-Covariance matrix(row major) 

D(1,1), 

D(2, 1), 

... , 

... ' 
D(1 ,c) 

D(2,c) 

D(n,1), ••• , D(n,c) 

76 

where D(1,i), ••• , D(n,i) are then diagonal elements of the 
.th . t 
~ var~ance componen • 

The numerical values in the specified order can be punched in a 

stream on any number of cards with at least one blank between any two 

values. 



A sample output of the PL1 program and SAS are attached at the 

end of the PL1 source program list. 

77 



2 
3 
4 

. 5 
b 
7 
8 
s 

10 
11 
12 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
25 
26 
27 
28 
29 
30 
H 
J4 
38 
44 
'lO 
;? 

>3 
54 

'5 
56 
~a 
59 
bO 
61 
63 
bb 
b7 
70 
11 
74 
75 
76 
77 
19 
80 
Bl 

I NOUNDt:RfLO"'J: 

INOUIIIUtRFLOWJ: 
/'liT: PROC OPT IONS (MAIN) i 

I* CHECK DETERMINANT OF NEW XX t3EFORE RUN REGRESSION */ 

DCL IIYINJ.XIr~,NPJ,U(N,NCJ ,T(NI) BIN FLOATI53Jt CTL; 

UCL ((YY(HMJ,XXI/Ii!M,NPJ,NUD(M,>ot,NC),LAI1BIN,NCJJ BIN FLOAH53JJ CTL; 

DCL AfMM,N) diN FLOATI53J C"Tli 

OCL 1NrM.l"1.MM,NP,NC,IS,M000) BIN flOATC53J; 

UCL S BIN flOATI53J; 
DCL lllli9J.T2110JJ BIN flOAT) INITIOJi 

1S=O; 
NO•O: 

IN: GET llSTH4.NP.NCJi 
ALLOCATE Y,x.o.T,LAHBi 
GET LIS'TIY,X,Oli CAll OUT; 
LUP: INDEX=1i 
PUT PAGE; 
PUT SKIP(SJ EDifl'STAGE =•,1:)) lCOlUHNl51.AI7t 1 f(5JJ; 

PUT SKIP(5J EDITI'NUHBER UF OBSERVATIONS =',N} lCOLUMN'I5J,AIZ4J.Fil0))i 

CALL SORTO: . 

PUT S.KlP(5J EUITI'X MATRIX:') ICOLU11Nl5J,AI9J); 

PUT SK.lPI2J LISHXJ; 
PUJ SKIPt5l EOITl'O .. ATRI.X;.• l ICOLUMNI5J.,AI9U; 

PUT SK(P(l) LISTIDJ; 
IF INOEX=Q THE~ GO TO LOP: 
CALL TRANSF; 

PUT SK.IPI51 E.DiTl 1 lAHHAO MATRIX:'J lCOLUHN(5l,Ail4H; 

PUT 5KIP{2) llSTllAMB); 
PUT SKIPI5J EUIT1 1 A MATRIX:' J ICOLUMN(5J 1 A(9JJ: 

PUT SK.IP(Z} llST(AJ; 
CALL NUUATA; 
N=~M; FREE A,v.x,o,T; AllOC.A.lE. Y,X,O,T; 

UU l=l TO MH; YUJ= YY( 11; CNO; FREE YY; 

UO 1=1 TO MH; DO J=l TO NP; XllrJJ= XXHtJii END; ENOi FREE XX;· 

OU 1=1 TU MH; DO J=1 TO NC.; Oli ,J) = NUOli,Jii END; END; FREE NUO; 

It· IS<NC THEN GUTU LOP; 
PUT SKIPUOJ EOII I'THE NEW DATA ON THE FOLLOWING PAGEISPJ (COLUMN 

I 101 ,At371 J; 
NO=l i 

CAll OUT; 
SORTU: PROC.; 

N1=N-l; lS=IS+L; 
UO 1=1 TO N1; 

I 1=1 + 1; 
00 K= 11 TO N; 

If OIIrlSJ > DtK.tSJ THEN DO; 
DUM= 0(1,151; UII,ISI= D(K.,ISJ; O(K,ISJ =DUM; 

DO J1=1 TO NP; 
OUM = X(l,JlJ; Xll,JlJ = X(K,JlJ; X(K.,Jl) =DUM; 

END; 
UUM =VIII; Yll)=YlKl; Yl!'..l=DUM; 

E:NU; 
END: 

ENUi 
If lJll.ISJ = DIN,ISI THEN INOEX:O; 

RET :JI(N; 
ENU ~ORTD; 

TRANSF: PROC; 

82 
83 
85 
89 
94 
95 
96 
97 
98 
99 
10~ 

105 
109 
110 
Ill 
112 
113 
115 
118 
12 .. 
125 
128 
129 
110 
133> 
134 
115 
136 
131 
139 
140 
142 
143 
144 
145 
146 
14 7 
148 
149 
150 
151 
152 
153 
154 
155 
156 
151 
15B 
159 
100 
161 
162 
lo3 
164 
165 
lbB 
ITO 

( NOUNDERflUW I: 

MOOD = MOD& ~h21; 
1 F MOOD= 1 THEN DO; 

Ml=(N+li/Z; H:Ht-1; HM=Ml: ALLOCATE A;; 

DO I=t· TO HL; 00 J=l TO N; A(l ,JJ=O: END;; CNOi 

DO 1=2 TO Ml; 
Jill= M+l; 
HJ::M-I+li 
lAMBllrlSJ = I Ol'41,lSJ- DIH1.1Sil/l OIMl,ISJ- OtMJ,ISJJ; 

•No: 
DO J:c1 TO Ml; DO J=l TO NO All ,J) = 0 ; END; E:NO: 

All,MU.= L; 
DO 1""2 TO·Ml; 11 = l-1; Kll = Hl -· tl;. Ml2z Ml+ll: 

Atl,MilJ= SQRH LAHB(l,.lSJ Ji 
A(I,H12)= -SORT( 1- LAMIHl,ISJI; 

END; 
END: 
If MOOD=O THE:N DO; 

H = N/2; MM=M; AllOCATE A: 
l'll= H+l; 00 1=1 TOM; 00 J:l TONi AUeJI=-0; END; END; 

OM= ( UCH.ISJ+ UCHl,lSI.I/2: 
00 1=1 TOM: Mt =H+I; .142 z:M-1+1; 

LAMB( I", lSI = t 0(.141,151 - DMI/IOIHleiSJ- OIM2,1SU; 

END; 
DO 1=1 TO H; M3= H+1-li H4= H+li 

All,M3) = 5QRrtl'.t.HB(l,ISJJ; 
A(I,H4J =-SQRT(l- LAHBtl,lSJI; 

END; 
RE"TURNi 
END fRANSF: 
NUOAT A: PRO C.; 

AllOCATE YV,XX,NUO; Kl=I1M+li 

AY:: DO 1=1 TO MM.;' 

S=O: 
00 K=l TO N; 

S = S + 4. ( 1 , K I •Y l K.J ; 
END; 
YY l II = S: 
ENO: 

PUT SK.IP(5J E011( 1 AY'I lC.OU.H4N·ISJ,Al21Ji 
PUT SKIPIZI LISTITYI: 
AX: 00 J=l ·ro NP·; 

00 1= 1 TO HM; 
S=O; 

DO K=l TON;. 
.S=Sf' A(I,KI'*X(K,J.); 

END: 
XX(l,JI=S; 

END: 
END; 
PUT SKIPt5l i::OlTI'AX'J (CULUHN(5J,Al21J; 

PUT S.K.1Pt2l; 
00 1=1 TO .14M; 
PUT SKIP liSTIXXll.l),XXll.llli 

END; 
ADA: ID=IS+-1; IF lt.J<=NC THEN OC; 
IF M:JOQ -= 1 THEN· DO": 

DO K=lD TO NCi DO Kl= 2 Til MH; HK.:o:M -11.1+2; MK..o<;= M•KU 

.....J 
co 



114 
175 
178 
l7~ 

U1 
1H 

"186 
188 
18~ 

1~0 

~1 

IH 
lM 
1~6 

197 
198 
1M 
200 
mt 
202 
203 
~04 

m• 
N6 
W7 
208 
2~ 

210 
211 
212 
213 
215 
216 

217 
21H 
219 
220 
221 
222 
.U3 
225 
226 
ll. 7 
228 
Z2.4 
230 
231 
232 
233 
234 
l35 
237 
238 
239 
240 
l41 

I NOUNDERH.Oiill J: 

NUOtKl,KJ = LA!-t81KlrlSJ*Dif'IIK,t(J + H- LAMBIKl.ISJI*LHMKK,KJ; 
.END; NUUI l ,KJ = Ul MH,KJ; END; 

END; 
IF MOOD=O THEN OO; 

1..10 K=.lD TO NC; DO Kl=l- TO MM; o"1K.= H+l-K.l; MKK.:::M+Kl; 
NUDIKL,KI = lAHBIKlrlSI*lHMK,KI + (l- LAMS(KlrlSU*OIMKK,KJ; 

END; END; 
eND; 
PUT SKIP151 EUITI'AUA'J ICOLUHNI5J,AI3JJ; 
PUT SKJPIZJ; 

DO 1=1. TO MH; 00 J=lD TO NC; 
PUT SKIP LISTINUO&l,JJJ; 

E::NO; END; 
END: 
RE::TURN; 
f:NU NUOATA; 
OUT: -PROC; 

PUT PAGE i 
PUT SIC..IP EDITC'NUMBER OF OBSERVATlONSz',NI ICOUJMN(51,AI.l3J,FilO)); 
PUT SKIP EOITl'NUMBER OF REG. COEFFS. ='rNPJ(COlUMNI5J 1.AC2-\hf(9)); 

PUT SKI.P EOIJI'NUH8ER Of VAR-COMPONENTS =•,NC.JICULUMNI5J,Al26Jrfl7JJ; 
PUT SKIP (51 EDI Tl' DEPENDENT :vARI Al)l E: 1 J (COLUMN(5J ,A (19) I; 
PUT SKIP(ZJ EOIHY.I l'l0fi12,3JJ; 
DO J=l TO NP; 
PUT SKIP(5) EDITI 1 1NOEPENOENI VARIA8lfl,jJ(COLUHNI5ltAl20J 1 f(5JJ; 
DO 1=1 TO N; 
J{i)=Xtl ,JJ; 
ENO; 
PUT SKIP(2) t:OillTJ t.10Fil2,3JJ; 

t:r-tD; 
lf ND::.Q THEN DO; 
OU J=·l TO NC.; 
PUT SKlPt~J EDIT(' DIAGONAL ELEMENTS Of THE VAR-COV MATRIX: COMPONEN 

T 1 ,J} lCOLUMN(51,Al~OI,FC'>J); 

00 1=1 TO N; 
JIU::oQ(I,JJ; 
END: 
PUT SKIPfZJ t:DIT(fl ll0FilZ,3lJ; 
CNO; 
END; 

IF NO=l THEN DO; 
DU 1=1 TO N; 
K=NP; 
M=~1NtNP,9J; 

DO J=l f(J M; 
JliJJ = X(l,JJ; 
END; 
PUJ FllElPUNCHJ EOlitY(I),TlJ 110ft8 . .JJJ; 

PUT fllt.ITSAIJ EDIHY(I.),TlJ tl0F(8,3JJ; 
Kl =0; 
K=K-9; 

lUP: lf K>o· THEN 00; 
M=MIN( Kt91; 
l= lO+Kl*lO; 

DLJ J::l TOM; 
Ml = l- IL-lJ; 
T 2( Mll :: XII, JJ:; 

242 
243 
2~4 

245 
241> 
ZH 
2~8 

250 
251 
252 
253 
25~ 

( ~OUNDERFLCWl: 

END; 
PUT FILEIPUNCHI EOIJIT21 I 101'(8,311; 

PUT FlU:(TSAil EDITCTZJ ll0f(8,lll; 
Kl=K.l+l: 
END; 
K=·K-10; 
IF K>O THEN GO TO ·LOP; 

END; 
END; 
RETURN; 
END OUT; 
END MT; 

--.J 
\..0 



INPUT BEFORE THE TRANSFORMATION 

NUMSEK Uf OoSERVAllu~S; 13 
NUMHER uf ~tG. COtfFS. ~ 2 
NUII.t!EK llf VAR-CUMPONEI'<TS ~ 1 

UEPE"'UENT VARIABLE: 

1.000 .1.000 3.000 4.000 5.000 &.000 7.000 8.JOO 9.000 10.000 u.uoo 12.UOU lJ. 000 

INOEPENOtHl VARIAdL~ 

1.000 1.000 1. uoo 1.000 1.000 1.0JO 1.000 1.00() 1.000 1.000 1.0 00 1.JOO 1.000 

INCfPEI'<OENT VARIAdLE 2 

1 ~000 2.JOO 3.000 4.000 5.000 b.OOO 7 .ooo ~.ouo 9.000 10.000 11.000 12.000 13.000 

DIAGC~AL ELEMtNf~ JF fHt VAk-CJV ~AT~JX: CC~PUHt~f 

1.000 1.0u0 1o!JOO 1. 000 l. ouo 1. JUO 1.0()0 1.uuO 1.uuo 1.uuo 1.000 t.Jl)() 1.000 

UIAGU~AL tlt:MtNfS IJF THF VAK-~UV MAfkll: CCMPUNE~T 

1.uoo l..JuJ J.oou 4.000 5.uoo &.uoo 1 .o0u o.OOO 9.1)()() 1u.OOO u.uoJ 12.00J 13.000 

UIAGLNAL tlEMENIS L;F THt VAh-CUV MATKJX: CUMPil~E NT 3 

1.000 4.000 9. 000 1&.000 25.000 3&.000 49.000 &4.000 SI.OOJ 100. 000 0:) 121.000 l44.JUO 1&9.000 
0 

~ .. :~. 



OUTPUT AFTER THE TRANSFORMATION 

NUM~ER Of OdSER WATI UNS • 4 
NU MBtR Gf REG. COtff S . • 2 
NU~dER Of VAk-COMPUNEN I S • 3 

uE PENUEN I VARIABLE: 

-4 . 2 4 3 1.4~ 1 L . 'il H I O.>OS 

INO~PE~DtNT VARIABL E 

G • .D 00 o. ooo 0 . 0 00 O. dbb 

I MJE PE ~OtN l VAR IA dl l 

- 4 . 2 4 3 1. 491 L . ~LB 1 0 . 30S 

co 
-" 



S T A T I S T I C A L " N A L Y S I s SYSTEM 

ANALYSIS Of VARIANCe TABLe , ReG~ESSIGN COEFFICIENTS . ANO STATISTICS UF FIT FOR DEPENDeNf VARIA~LE Y 

SCURCE 

REGRESS I ON 

ERROR 

CORRECTED TUTAL 

~OU;{CE 

X1 
X2 

SOURCE 

!NTtRCEPT 
X'l 
X2 

Of 

2 

1 

3 

Of-

1 
l 

d VALUt:S 

O.OQOJuUOO 
Q. 00 OQUJOQ 
l. OOCOOOUJ 

SUM OF SQUARES MEAN SQUAR.E F VALUe 

l 07. 52949d 75 53.764 74937 ·99.9999.99999 

o.oooooooo o. oopo.oooo 

107.52949875 

~ 

SE..,utNTI AL SS f VALUE PRua· > f 

78.74051006 99~999.99999 0.0006 
ld.76B96667 99'1999.99999 0.0006 

FOR HO: 6=0 PRUd > IT I 

J .• QO 000 
0. 00 OUJ 

~99·;9~. ~~~9~ 

1. OJOO 
l.OO<lO 
0.0001 

PROB > .F 

o•ooo1 

PARTIAL SS 

o.oooooooo 
26.76896667 

STU cRii o 

o.oouoouoz 
0.00000011 
o.ooaoooo1 

R-S QUARE 

1. 00000000 

STD DeV 

0.00000004 

F VA.LuE 

<).00000 
999999.99999 

S TD il VALUlS 

u.o 
U.JOOOOOOO 
1.UCOU0u00 

c.v. 

0.00000 " 

Y MEAN 

2 .• 62025 

PROB > F 

1.0000 
O.Oll06 

~ 
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