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Abstract 
 
The need for a forecasting model of road conditions is becoming evermore critical, given the 

effects of ever-increasing severity in weather. Drastic changes in weather, especially cold fronts, 

often lead to dangerous roads. Consequently, traffic efficiencies are diminished and, even worse, 

accidents resulting in loss of life and property could increase.  Across the nation, states are 

responsible for anticipating inclement weather and treating roads accordingly. Treatment costs can 

be reduced with more precise road condition predictions. The development of machine learning 

capabilities has enhanced the utilization of Big Data Systems throughout various sectors, including 

road climatology, making weather forecasting much more efficient and reliable. 

The study reported in this thesis analyzed various road climatology data, including sub-surface 

temperature at two- and six-inches from Road and Weather Information Systems (RWIS) deployed 

by Oklahoma Department of Transportation (ODOT) along the I-35 corridor at various road-bridge 

intersections aimed at producing a reliable and robust forecast model for predicting road surface 

temperature in the near and distant future. The predicting importance of each factor is analyzed 

statistically, and then manually, to determine its requirements for the forecast model. The study 

also determined the best forecast model after comparing a newly developed neural network with 

common regression techniques previously available through Machine Learning. Results showed 

that the novel neural network model offered a reliable 12-hour prediction for road surface 

temperature at a frequency of five minutes, depending on available historical data from RWIS. 

Two additional classification models provided Road Conditions Classes. The first was based on 

time series historical data from RWIS, and the second was based on historical and future data from 

a GFS (Global Forecast System). Together, these models accurately forecast local road surface 
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temperatures 12-hour in advance of inclement weather in five-minutes frequencies at RMSE of 

±1.67. They also accurately classified road conditions at a rate of more than 87.984%. 
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1 Introduction 
 

Predicting the road surface temperature during the coldest months is essential for determining road 

conditions and the likelihood of ice formation. According to United States Department of 

Transportation (USDOT) data for a 10year average, icy pavement was the cause for 156,164 

crashes and 521 fatalities in the United States [1]. During the mid-February deep-freeze, billion-

dollar disaster of 2021, at least 125 people died as a direct or indirect result of arctic weather [2].   

Roadway ice fatalities far outnumber those resulting from severe tornadoes. Winter cold fronts 

drop temperatures below freezing, causing freezing rain and sleet. As rain falls on surfaces with 

below-freezing temperatures, roadways form an ice coating that presents a significant hazard to 

the vehicles. Weather forecasts can be misleading, as a cold front brings a sharp change in 

temperature—from warm to freezing levels. Although typical forecasting models will predict 

snowfall, the snow will melt once it reaches the road surface because the roadway does not 

immediately react to the sudden drop of ambient temperature. Rather, the decrease is sublinear. 

Hence, if a model is trained using historical surface temperature data along with additional 

meteorological features, the model can learn how surface temperature (ST) will react to sudden 

changes in ambient temperatures, and then provide accurate predictions for dangerous road travel 

due to freezing rain, sleet, and snow fall. Such a model will predict BST separately, as bridges 

become icy before roadways due to more surface area exchanging energy with the atmosphere and 

more rapid cool down [3]. RST and BST prediction will assist ODOT with making more cost-

effective salting decisions. Because it takes several hours to salt a highway, the proposed model’s 

advance predictions will provide good indication of road surface temperature and aid road 

maintenance planners in determining the best time to initiate salting the roads. 
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The proposed models predict RST and BST for the next 12 hours using developed forecasting 

models that integrate regression kernels and neural networks. Two additional models are used to 

predict road conditions. The first uses Window Forecasting to predict the next six hours, and a the 

second makes a 12-hour prediction using a pipeline of GFS forecasting model and the regression 

model detailed in this thesis. This automated model will send an HTTP request to parse future data 

from an online server and update RST and BST conditions for the next 12 hours. The GFS 

forecasting model is parsed by ClimaCell API service, which provides the model developed for 

this thesis with weather information for next 12 hours at a frequency of one hour.  

Various regression models were tested, including a deep neural network regression learning model 

for predicting road surface temperature based on collected meteorological data from stations 

deployed by ODOT along the I-35 highway corridor at road-bridge intersections. Models were 

validated on historical data collected during winter storms and from online data collected by 

ClimaCell API online server. The work reported here is investigated various models; these are 

briefly described below. Performance results for each model are based on Root Mean Square Error 

(RSME). The same model was tested on different stations to validate performance in different 

locations based on an Ensample model of combined regression models, which included a pipeline 

of information as part of an international model for the I-35 corridor. 

 
1.1 Thesis Objective 
 
This thesis was developed with the objective of furthering the utilization of RWIS real-time 

weather data. Analyses focused on road conditions and data forecasting collected during the winter 

from October 2020 to late March 2021. The analysis is divided into two sections. The first forecasts 

both the BST and RST temperature for indicating if the road surface temperature is below the 

freezing level at 32 °F. The second is a classification approach to validate road condition severity 
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based on previous incidents that occurred between January 2019 and February 2021. This work 

reported in this thesis explored data acquisition from RWIS system that reports information 

gathered along highway I-35, including 15 stations that collect the same data in real time. The 

analysis Data collection utilized restful API and post processed regression and classification model 

information for road conditions.  

The main contributions of this thesis are summarized below. 

[1] Describe the RWIS system—number of stations, their locations, type of systems that 

collect weather data, and type of collected data 

[2] Determine the optimal method to prepare RWIS data for sample observations of supervised 

learning algorithms to achieve data cleaning, pre-processing, and data analysis 

[3] Discuss the methodology to prepare data for regression and classification, as well as 

demonstrate the importance of data engineering to determine road condition class  

[4] Train multiple models for supervised learning, neural network algorithms, ensemble 

models, and comparing model performance using validation equations to determine the 

most optimal model for road condition forecasting and classification.  

As per the aforementioned stated objectives, this thesis is divided into multiple sections. Section 

1 introduces the RWIS system, as well as the thesis objectives. Section 2 summarizes the 

background and various related works that have investigated forecasting road surface temperature. 

Section 3 details the RWIS system, station number, system design, and data types. Section 4 

explains the exploratory data analysis performed on the RWIS data and demonstrates the way in 

which API acquires data after preprocessing. This section also explains how regression model data 

is prepared for long sliding window in post-processing and how classification model data is 

analyzed. Section 5 focuses on various models for regression and classification, and then compares 
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the proposed model’s performance using model validation formulas. Section 6 summarizes the 

work completed for this thesis and suggests future investigations to enhance model performance.  
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2 Background 
 
In this section, we will briefly summarize existing research and development in road climatology, 

focusing on forecast methods. Notably, although researchers have rigorously pursued climatology 

forecast, attention on road climatology is sparse and lacking. 

The thesis focusses on the relation between road surface temperature, moisture caused by dew 

point and precipitation, as well as road condition. A study spearheaded by the Washington 

Department of Atmospheric Sciences [4] examined the correlation between the freezing level (i.e., 

below 32 °F) and moisture caused by frost, fog, melted snow, and freezing snow and rain. Clouds 

act as blankets on overcast nights, preventing heat radiation loss from the ground surface and 

causing snow to melt into black ice. Also, strong winds stir up the atmosphere and force the warmer 

air loft down the ground. As warm air starts to raise road surface temperatures above freezing, 

snow melts and turns into wet slush. Each of these dangerous conditions must be monitored and 

studied separately to enhance the quality of road condition prediction, which is an important aspect 

of traffic safety for all governments. Germany has developed various forecasting models and real-

time radars to aid its road condition predictions. [5]. The UK Met Office offers road surface 

forecasts for 24-hour periods, detailing the likely amount of snowfall [6]. Most models are based 

on numerical analyses using a significant amount of data, atmospheric variables, and 

computational fluid dynamics (CFD). Many researchers have performed RST forecasting using 

various modeling techniques and features other than the meteorological features utilized for the 

research presented in this thesis.  Much published literature details research about statistical 

models based on government forecasts and manual reports to predict road conditions. Authors in 

[7] used historical snow event accident data obtained from an ODOT RWIS station. The statistical 

study reported a high correlation between storms that had road temperature fall below freezing 
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during snowfall and traffic accidents. Researchers in [8] introduced a numerical model divided 

into 15 measurement layers that begin with above-the-ground surfaces at 3.5 meters. Using heat 

transfer equations, model inputs include ambient temperature, relative humidity, wind speed, 

wave-radiation, and precipitation. When input into the model, the features output road surface 

temperature, road conditions, traffic index, and surface friction. The model forecasts 24 to 48 hours 

depending on the amount of available input data. The model is used by the Finnish Meteorological 

Institute. The Korea Meteorological Administration (KMA) [9] uses a forecasting model 

developed by researchers at the Korea Institute of Construction and Technology for forecasting 

temperature from three to 24 hours using real-time data. The model is based on heat transfer 

between road surfaces and the atmosphere. 

 

Machine learning models have not been implemented or tested by any meteorological institute to 

predict RST. Rather, heat transfer models have primarily been used to predict RST based on 

atmospheric temperature predicted by physical models. None of these forecasting models utilized 

future attributes to predict sudden drop in the temperatures. It is important to note that the state of 

Oklahoma is frequently exposed to sharp temperature drops following a cold front. For example, 

on February 21, 2018 [10] Oklahoma experienced a 21-degree drop in temperature in a four-minute 

time period. followed by severe freezing rainfall that affected major highways. Such sudden drops 

can misinform a model by giving inaccurate RST estimations, as shown in Figure 1-1. Drop in 

ambient temperature (AT) did not affect RST and BST. Ambient temperature remained at a 

freezing temperature, while RST and BST were almost 8°F above freezing. The proposed model 

can predict the difference between the BST and RST primarily because a bridge always freezes 

before the roadway, as explained in section I.  
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Figure 2-1. Cold-front temperature values on February 5, 2020. 
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3 Road Weather Information System (RWIS) 
 
The ODOT Road Weather Information System (RWIS) is an automated with a communication 

system for data transfer.  The station measures real-time data, some of which is used by the United 

States National Weather Service (NWS) to assist with forecasting in specific regions.  

RWIS was designed and developed for ODOT by Dr. Hazem Refai’s research team at OU-Tulsa. 

The system collects specific weather data for monitoring highway road weather conditions. Fifteen 

stations are deployed along 209 miles of the Oklahoma’s I-35 corridor, starting from Tonkawa city 

in Kay County and ending at Thackerville in Love County. The distance between each station is 

approximately 16.5 miles (See Figure 3-1). Each station has multiple sensors for collecting various 

data..  

 
Figure 3-1. RWIS locations. 
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Figure 3-2 shows RWIS station locations with six components on the mast. The first component 

is identified as THESIS CLIMA [11] and collects weather data, including wind speed and 

direction, gust-wind speed and direction, temperature, humidity, air pressure, brightness and 

brightness direction, precipitation event, as well as precipitation intensity and type.  The second 

component houses the Surface Sentinel sensors [12], which collects surface temperature. One 

sensor collects road surface temperature, and another collects the bridge Surface temperature. The 

third component houses two sub-surface temperature probes [13]: one located two inches below 

the surface level and the other six inches below the surface. The fourth component is a live camera 

that records road conditions in real time and archives a photo in the system every five minutes. 

The fifth component is a cabinet that controls the system by collecting data and sending it to the 

server. Figure 3-3 shows the cabinet schematic, including the power controller; dataloggers for 

controlling each system and parsing data from it; and the Roadside Embedded Extensible 

Computing Equipment (REECE) [14]—a Linux-based embedded system for collecting data and 

sending it to the server via a Sierra cellular gateway [15] to a cloud server. The final component is 

the solar-based power circuit (See Figure 3-4), which has two 100W solar panels, two 100 AH 

batteries, and a controller.   
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Figure 3-2. RWIS station illustration. 
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Figure 3-3. RWIS cabinet schematic. 

 
 

 
 

Figure 3-4. Solar panel circuit. 
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4 RWIS Data Analysis 
 
Data collected from all 15 stations is sent to a local server via JSON packets, as shown in Figure 

4-1, and saved in an SQL database. A user dashboard [16] will parse data and plot it into line and 

bar graphs to visualize current data. Hence, the graphical user interface (GUI) can be manipulated 

to select a specific range of dates (See Figure 4-2). The user dashboard has a sidebar showing all 

stations and a map illustrating current weather conditions for each station location. When a user 

selects the station with a full report, the conditions during that previous 24 hours is displayed (See 

Figure 4-3).  

 
Figure 4-1. Weather information message. 
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Figure 4-2. Main graphical user interface (GUI) dashboard. 

 

 
Figure 4-3. Station data dashboard. 
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The collected data shown in Figure 4-4 were generated from three systems—CLIMA, IR, and 

probes. Although more than 30 data attributes are sent to the database (See Section III), only 22 

attributes were used for the research reported in this thesis.  

 
Figure 4-4. RWIS data attributes. 
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4.1 Data Preprocessing and Preparation 
 

Before exploring the data and developing models, a number of features must be preprocessed and 

analyzed to detect erroneous readings. Data collection rate varies from 30 seconds to five minutes, 

depending on approaching weather events. Faster data collection is automatically triggered when 

the temperature is dropping rapidly. For a forecasting model, the time-series data must be spaced 

in equal time steps. Data was resampled into three datasets—5-minutes, 15-minutes, and 1-hour 

time periods.  

Stations might experience occasional failure (i.e., stop collecting data). When batteries are not 

charged by the sun for a long period of time, data loss is experienced and could range from one 

hour to a few days. To overcome this performance shortcoming in the modeling, days with more 

than four hours of data loss and days with data loss resulting from sensor failure were removed. 

To ensure that the data is sampled in a correct sequence, stations with minimum data loss and good 

data quality without faulty sensing or inaccurate position oriented were picked for the modeling 

process. Figure 4-5 shows that stations 235, 213, 199, 51, 32, and 1 had the lowest number of down 

days, making them the best stations to use for this thesis.  

 
Figure 4-5. Number of days stations were offline. 
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Data were analyzed for outliers, NaN, and inf values. The dataset was first cleaned from NaN 

values by removing rows that contains any NaN values. CLIMA system data were then 

analyzed by comparing values with a valid range. A query function was performed on all 

attributes to remove any data point outside a valid range. Second, a sensor with processed data 

was processed is the IR sensors; infrared is sensitive to the outdoor atmosphere and may 

mislead the users to erroneous results [17].  For an IR sensor to measure road surface, vehicles 

travel on the road must pass through the measuring range of the sensor. Their reflective surface 

emits less infrared energy than normal objects, causing the sensor to deliver inaccurate 

readings. Figure 4-6 shows an example of reading errors (See sharp drops in the chart). To 

overcome this issue, a query function was used to correct temperature from 0 to 130 °F. Figure 

4-7 demonstrates that this process did not correct the problem. IR readings are not smooth, and 

the figure still shows minor drops in temperature readings that can’t be removed by adding a 

data range. Hence, a smoothing filter method was employed. A one-dimensional Gaussian 

Kernel [18] generated an impulse response function with standard deviation of 10 pixels. Array 

function f and kernel g indicated that f has a length of n and g has a length of m. The convolution 

function f*g of f and g is defined in function 1.  

(𝑓𝑓 ∗ 𝑔𝑔)(𝑖𝑖) =  �𝑔𝑔(𝑖𝑖) ∙ 𝑓𝑓 �𝑖𝑖 − 𝑗𝑗 +
𝑚𝑚
2 �      (1)

𝑚𝑚

𝑗𝑗=1

 

This same function is applied to RST and BST; successfully output                                                         

smoothed data can then be used in the forecasting model. Figure 4-8 shows results after data 

processing. The remaining sensors serve as underground probes. Probe’s data were accurate 

and did not require conditioning.   
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Figure 4-6. Raw RST and BST data output. 

 

Figure 4-7. RST and BST data after outlier removal. 

Figure 4-8. RST and BST data after convolution filtering. 

 
A python code (i.e., functions) was constructed using preprocessed data and a RESTful API 

for parsing data using an HTML request. As mentioned earlier, data was resampled into three 

datasets. Likewise, three functions were developed to call the datasets. The first will call the 
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dataset of specific station; the second will call datasets with a resampled size based on user 

choice; and the third will parse each attribute from all stations and combine them into one 

dataset. The third function has a nested loop to parse data from north to south. The loop will 

also verify if a station is offline. Given that the statement is true, the loop will use data from 

the previous station.   

Function 1: Parse data of a specific station into a dataset 
Function Get_RWIS (Station ID, From, To) 

Request: HTTP Data 
Append: Attributes 
X → Length of JSON message  
For each X   

Add Append: Attributes 
       DF → sum of attributes  

Remove: Nan  
Set Index: Date  

 Query: Dataset   
 Convolve Filter → IR Data 
 Return DF 
 
Function 2: Parse data of a specific station into a dataset with a desired resample size   
Function Get_RWIS_Resampled (Station ID, From, To, Sample Size) 

Request: HTTP Data 
Append: Attributes 
X → Length of JSON message  
For each X   

Add Append: Attributes 
       DF → sum of attributes  

If Sample Size is 5 then 
 Resample_5: DF 
Elif Sample Size is 15 
 Resample_15: DF 
Else Sample Size is 1H 
 Resample_1H: DF 
End If 
 
Remove: Nan  
Set Index: Date  

 Query: Dataset   
 Convolve Filter → IR Data 
 Return DF 
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Function 3: Parse data in real time from all stations for a specific attribute  
Function Get_RWIS_Real (Data) 

Request Datetime.now 
Request HTTP Data 
Append Attributes 
X → Array of stations ID’s   
If Data is Name of variable then 

For each X   
Add Append: Stations 
N → length of Attributes  
If not Stations 
 Stations is Null  
End If 
For each N  
 Add Append: Attributes  

        If not Attributes 
   Attributes equal previous Attributes  
  End If 
  Mean Attributes equal mean Attributes  

Delete Attributes  
DF → Mean Attributes 

 
Running Function 1 assists modeling and simplifies the steps by merely applying station name 

and date duration. A user can plot the data and visualize the fetched data. Table 4-1 shows 

chosen attributes from Function (1), shown below, with the data index selected by the user. 

Data were selected using the Function (2). This function parses all current values within the 

last hour of each station, calculates the mean value, and adds it to the dataset, as shown in 

Table 4-2. Output data is cleaned and ready for a user to import into the model. Figure 4-9 

shows preprocessed data in a plot of Ambient, RST, BST, and 2- and 6-inch probe temperature 

data with black line indicating freeze level. In this figure, data indicates that surface 

temperature crossed the freezing level while ambient temperature was still below the freezing 

level.   

data = Get_RWIS_Resampled('35ST213','2021-01-09','2021-02-18',15)    
(1) 

 
data = Get_RWIS_Real('RST')    (2) 
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Table 4-1  

Parsed Data from Function 1 
Index Wind 

Speed 
Wind 
Direction 

Precipitation Temperature … RST BST 2” UG 6” 
UG 

2021-01-
09 

00:00:00 

1.98 120.0 0.0 11.87 … 7.29 8.16 23.95 29.42 

2021-01-
09 

00:15:00 

1.14 232.67 0.0 11.79 … 8.48 9.54 24.13 29.41 

… … … … … … … … … … 
2021-02-

18 
23:30:00 

2.68 321.0 0.0 24.65 … 14.59 16.47 35.33 37.13 

2021-02-
18 

23:45:00 

1.64 259.52 0.0 25.70 … 12.39 13.96 35.49 37.21 

 
 

Table 4-2  
Parsed Data from Function 2 

Station ID Value 

213 24.36 

199 23.78 

187 23.78 

… … 

31 31.87 
15 32.14 

1 32.08 

 

 
Figure 4-9. API function temperature plot.  
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4.2 Road Conditions Classification  

 
A roadway has several types of conditions that can be classified as safe or hazardous. Snowstorms 

bring various snow precipitation types. Some wintery precipitations are significantly dangerous 

for vehicles traveling on the road and have the potential for causing deadly accidents. Furthermore, 

temperature, per se, is not a significant factor on road condition classification. For example, it is 

possible for temperature to drop below freezing level during a precipitation event and the road 

surface to remain safely drivable. Hence, it is important to investigate data patterns to assist with 

model development.  

During the winter months, the state of Oklahoma typically experiences four types of precipitations: 

rain, freezing rain, sleet, and snow [19].  The current mechanism for predicting these four types is 

examining all atmospheric layers. Meteorological events usually occur only in the troposphere 

layer, which reaches from four to 12 miles above the earth surface. 70 to 80% of the earth’s 

atmosphere falls within this layer [20], and temperature may drop to as low as -60°F.  

The change variation in temperature through the troposphere layer aids in predicting precipitation 

type. A constant decrease in temperature as we move away from the earth surface is ideal. 

However, according to atmospheric thermodynamics, this is not always the case. The atmosphere 

layer is a non-equilibrium system, wherein a buoyant force causes warm, less dense air rises and 

forms condensation in the upper layers. The European Centre for Medium-Range Weather 

Forecasts explains that in an atmospheric thermodynamics study [21], sun radiation causes the 

release of heat energy into the atmosphere, making the air rise above the cold air mass. Figure 4-

10 shows a cold-front system affecting Oklahoma and causing convection dynamics. Figure 4-11 

illustrates the way in which a warm air mass rises and flows into the convective core, causing air 

saturation and forming a severe thunderstorm. 
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Figure 4-10. Side view of a cold front [22]. 

 

 
Figure 4-11. Convection formation [23]. 

 

Air dynamics demonstrates how air mass can cause temperature change in atmospheric layers 

wherein clouds and precipitation forms. Meteorologists use an energy diagram (i.e., Temphigram) 

to obtain a clear picture of expected precipitation.  The graph collects data along all atmospheric 

layers as dewpoint, wind direction and speed, temperature, and moist adiabatic lapse rate (i.e., 

cooling rate of rising saturated air).  
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The skew-T graph in Figure 4-12 illustrates the entire atmospheric elevation, which reaches up to 

25 km. Temperature lines run from southwest to northeast across the diagram, and dashed lines 

represent saturation wherein a mass of water vapor is divided by a mass of dry air. The y-axis 

shows air pressure in millibar; the x-axis shows wind bars, indicating wind speed and direction. 

The graph is characterized with three-line plots:  leftmost is the cape, middle is dewpoint 

temperature, and rightmost is the environmental temperature. Once dew and environmental 

temperature lines cross each other, a saturation level occurs and, with the help of the cape, cloud 

formation starts. After two lines diverge, as illustrated at 300 mb, cloud formation stops. 

Precipitation point temperature is just above freezing from surface, which can completely melt 

frozen precipitation before it reaches the earth’s surface. In such a case, rain will form.  

 
Figure 4-12. Cold rain sounding skew-T graph [24]. 

 
As mentioned earlier, different road conditions can occur during a winter event; three types of 

winter events precipitations are possible (See Figure 4-13). Oklahoma typically experiences all 

three types of wintry precipitation each winter. For normal snow (type one) to occur, surface level 

through saturation level temperatures must remain below the freezing level. Sleet (type two), in 
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which snow melts and then freezes on the surface, occurs when the atmosphere experiences a thin, 

warm air mass in the upper level between saturation and surface levels. Freezing rain (type three) 

occurs when a shallow freezing layer forms just above the surface. During this condition, raindrops 

freeze at the point of contact with the surface layer, creating extremely hazardous driving 

conditions.  

 

 
(a)                                                            (b) 

 
(c) 

Figure 4-13. Three types of wintry precipitation: (a) snow (b) sleet (c) freezing rain [25]. 
 
These three weather classes must be accurately added to the dataset for indicating hazardous or 

safe driving conditions from an upcoming wintry event. The Oklahoma National Weather Service 

collects historical data of precipitation events from images captured by maintenance trucks 
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traveling on state roadways and saves them on updated road condition maps [26]. Snow and wet 

conditions were indicated as safe road conditions; slick, freezing rain is indicated as hazard. Some 

snow events were later recorded as hazardous due to a mix of air masses that caused snow to melt 

and then freeze again, which caused hazard driving conditions. For the sake of classification, a 

dataset obtained between October 1, 2020 and February 16, 2021 for Oklahoma county was 

manually parsed and added to Station 235, located in Oklahoma county. See Table 4-3 for a 

summary of events per class.  

 

Hazard events are indicated by blue bars in Figure 4-14. The red line represents BST; green line 

indicates dew point temperature; and yellow line indicates precipitation intensity. Note that each 

drop in BST and a precipitation event is followed by a hazard condition. The study reported in this 

thesis focuses on four events that occurred in October 2020, December 2020, January 2021, and 

February 2021.  

 

Table 4-3  
Precipitation Event Count Recorded in Historical Dataset 

Class event Event count 

Dry & Wet 36805 

Snow 341 

Sleet & Freezing rain 4402 
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Figure 4-14. Road condition classification graph. 
 
 
4.3 GFS data Parsing  
 
Section 4.2 explained why it is important to gather information about changes in higher layers of 

the atmosphere. Figure 4-15 illustrates how the RWIS monitors only a small region of the overall 

atmosphere and that temperature is irrepressibly changing as elevation increases. Abrupt changes 

in top atmosphere layers are the primary cause for severe weather conditions and precipitation type 

indications. RWIS collected data is unable to forecast such changes due to lack of information 

about changes in these upper atmospheric layers. As such, a future indicator of the changes is 

needed to link with RWIS data and increase road condition prediction accuracy.  
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Figure 4-15. Atmosphere temperature changes in upper layers. 
 

A variety of models are used to forecast the weather (e.g., GFS, ECMWF, CMC, JMA and 

HWRF). GFS has a highly accurate forecast for 72+ hours and is regularly used by NOAA. The 

agency recently upgraded a higher version (e.g., HRRR) for local regions inside the US. This thesis 

utilizes an API restful data function operated by ClimaCell [27] to parse temperature and 

precipitation data for two cases that are highlighted in Sections 5.1.4 and 5.2.3. Data location is 

required for parsing the data Figures 4-16 and 4-17 illustrate how nine blocks were added along 

the I-35 corridor, each block’s precipitation or temperature data will be parsed and averaged, and 

then add to a data frame with projected time series for a 24-hour future forecast. A function has 

been built to parse data from the nine regions and add it to the model scheme. The only requirement 

is region ID.  
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Figure 4-16. Forecasted atmosphere temperature. 

 

 
Figure 4-17. Forecasted total precipitation. 
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Function 4: Parse data of GFS Model   
Function Get_RWIS_Resampled (Zone ID) 

ZZ = Get_Corr (Zone ID) 
Request: HTTP Data (Attributes, ZZ) 
Append: Attributes 
X → Length of JSON message  
For each X   

Add Append: Attributes 
       DF → sum of attributes  

Set Index: Date  
 Return DF 

  
4.4 Exploratory Data Analysis  
 
To better understand acquired data used in this thesis, the information was processed and scripted 

to generate an exploratory data analysis (EDA).  The main goal was using data to predict RST/BST 

and classify road conditions. Hence, regression and classification models were employed.  

Weather data has a seasonal shape dependent upon max value temperature at noon and min value 

at night. Simple forecasting models can easily predict and feed this information into the model 

based on historical data. The research presented in this thesis focuses on cold fronts that force the 

seasonal shape into non-uniform shapes. Figure 4-18 illustrates the period from October 21 to 25 

(i.e., 1 and 2), demonstrating a seasonal shape. Note that temperature has max and min peaks until 

a cold front arrives on October 26, which forces the temperature to display a flat line of data, as 

indicated in 3. The goal of the proposed model is to predict the timing of the drop, and then indicate 

whether or not the line will cross the freezing level.  Figure 4-19 shows dew point  drops during 

the cold front to the point a level of saturation is reached in the upper level as a result of warm air 

mass upward movement. This phenomenon strongly indicates the formation of precipitation prior 

to its occurrence. Figure 4-20 shows the low levels of brightness during the cold front, which 

proves to be a huge factor on road surface temperature. In such a case, the roadway absorbs solar 

energy, melts wintry precipitation while ambient temperature remains below freezing  
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Figure 4-18. Temperature readings during a cold front. 
 

 

Figure 4-19. Dew point temperature during a cold front. 
 

 

Figure 4-20. Brightness readings during a cold front. 
 
 
For regression modeling, the correlation of each individual attribute and correlation between each 

attribute and the remaining attributes is required. To measure such linearity, a Pearson correlation 

coefficient (r), was used in Equation 2. The x and y features were utilized to calculate the amount 

of linear correlation between equal length arrays and output a value between -1 and 1. Figure 4-21 
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shows correlation results. Note a correlation between wind direction and pressure due to the fact 

that the cold front changes wind direction  after it enters the region. Brightness also has high 

correlation as a consequence of cloudy weather during wintery events. These correlation factors 

are important for regression models and are significant for predicting target BST and RST when 

using a series of supervised data sequences.  

𝑟𝑟 =  𝑛𝑛(∑𝑥𝑥𝑦𝑦)−(∑𝑥𝑥)(∑𝑦𝑦)
�[𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2][𝑛𝑛∑𝑦𝑦2−(𝑦𝑦)2] 

  (2) 
 

To visualize the relationship between the array of each feature and prove linear relationship in 

each feature data, each attribute was visualized to provide a general overview of the observed value 

with class, trend, seasonal, residual, histogram, boxplot, and auto  and partial correlation. Notably, 

autocorrelation is a lag plot that ensures data is free from random structure versus time series. Lag 

is a fixed time displacement wherein each point in the data array is plotted against the point 

following it. ACF at lag k of the time series is defined in Equation 3, where n is the total number 

of values inside the array and 𝑦𝑦𝑘𝑘 is the covariance of 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑘𝑘. Plot variation ranges between -1 

and 1, which describes correlation, respectively. Number of lags is limited to 40 for eliminating 

noise   

 

𝑦𝑦� =
1
𝑛𝑛
�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,   𝑆𝑆𝑘𝑘 =  
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)(𝑦𝑦𝑖𝑖+𝑘𝑘 − 𝑦𝑦�)  (3)
𝑛𝑛−𝑘𝑘

𝑖𝑖=1
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Figure 4-21. Correlation map of data features. 

 
Subplot figures show time series exploratory analysis of each feature. First  left is a line plot of the 

value. Red indicates safe road conditions; green indicates hazard conditions. First right is a trend 

value (i.e., additive time series). The array will combine to create a time series. An increase 

indicates the same peak size with relative changes. Second left is seasonal with a short-term cycle 

in series. Second right is residual, representing leftovers after fitting a model. This amount is equal 

to the difference between observations and corresponding fitted values. Third left is the histogram, 

showing distribution and value variation inside the array. Third right is a box plot showing max, 

min, and mean values. The last two are auto and partial autocorrelation. Figures 4-22 to 4-27 show 

that all attributes have a strong indicator that aids regression predictions alongside strong indicators 
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following hazard conditions as temperature drops and wind direction rotates. The one exception is 

total precipitation value, which has a very random occurrence. For this reason, the GFS model is 

useful for the modeling process (See Section 5). 

 

Figure 4-22. Temperature attribute EDA. 
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Figure 4-23. Road surface temperature attribute EDA. 



35 
 

 

Figure 4-24. Dew point temperature attribute EDA. 
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Figure 4-25. Total precipitation attribute EDA. 
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Figure 4-26. Gust wind speed attribute EDA. 
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Figure 4-27. Wind direction attribute EDA. 
 
High correlation between temperature values can affect the modeling process negatively. This 

multicollinearity [28] effect occurs when one predictor variable in a regression model can be 

linearly predicted from others with a high degree of accuracy. Results can be misleading, however. 

For the research reported in this thesis, temperature declines are monitored only during cold fronts. 

Correlation value will be low, as surface temperature will not follow other temperature sensors. 
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Figure 4-28  demonstrates how the correlation pattern does not work for a winter event. On 

February 18t, 2021, BST and RST crossed the freezing level (See black line) and ambient 

temperature did not (See blue area). Snow melted even though ambient temperature indicated 

perfect conditions for snow accumulation.  

At 6 a.m. on February 11, 2020, a deadly 133-car pileup occurred in north Texas on I-35 due to 

slick road conditions [29]. Figure 4-29 shows Love County Station 1 temperature data. BST and 

RST crossed the freezing line for few hours while clear skies allowed solar energy to melt an ice 

layer, making road surfaces very slippery. Ambient temperature remained within a range of 20° to 

29°F., This phenomenon indicates the importance of data and the ability to capture temperature 

differences during potentially hazardous conditions.  

 
Figure 4-28. Temperature readings during February 2021 blizzard (ST235). 
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Figure 4-29. Station 1 temperature readings during February 2021 blizzard. 

 

Figure 4-30 shows typical surface temperature distribution along the I-35 highway corridor. 

Temperatures increase as long as vehicles travel from north to south. This scenario is very different 

during a wintry event (See Figure 4-31). Snow and ice accumulation varied on each road segment 

and affected road surface temperatures accordingly. The highlighted square in Figure 4-31 shows 

two neighboring segments wherein temperature differs nearly 12° F. Figure 4-32 offers an 

explanation of the difference, as Segment ST154 is cleared from snow while ST165 has snow 

accumulation remain on the road.  

 
Figure 4-30. Surface road temperature on a typical day. 
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Figure 4-31. Surface road temperature during a winter event. 

 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 4-32. Road view difference between neighboring stations 154 and 165. 
 

4.5 Feature Extraction   
 
Data must first be processed for uniformity in robust time series analysis, as the model only 

analyzes data by according to row, not column. As such, data must be reshaped so that the model 

can analyze it throughout a time series. Data engineering must be applied to convert a time series 
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into a supervised algorithm that a model can developed. Two types of modeling (e.g., regression 

and classification) are examined in this thesis. Each model must have data reshaped in a specified 

format to predict temperature value and road condition class.  

4.5.1 Regression  
 
In a normal regression problem, a row of historical data is entered into the model in real time for 

predicting future output based on data array values. Based on the data examined for the research 

reported herein, output had to be predicted, even though a historical input sequence was not 

available. Hence, a converted supervised learning sequence was utilized to overcome this issue.  

Figure 4-33 shows the dataset. The blue columns represent variables, and the green columns 

represents target value. V(t) is the current time. the range from v(t) to v(t+n) represents the future, 

while v(t-n) represents the past. It is important to note that the machine learning model only learns 

sequence from rows, not columns. A regression model must learn attribute trends to overcome this 

issue.  

 
Figure 4-33. RWIS data layout. 

 
To accommodate this, the data frame was changed to the sequence shown in Figure 4-34. All input 

variables were added in one row in a repeated sequence for a specific past range to ensure that the 

model captured the past data trend. The goal was obtaining the BST or RST future attributes for a 
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specific range in one row. Each row had one step forward to make available additional data and 

training sets.   

 
Figure 4-34. Time series transformed into supervised learning dataset. 

 
The more futures target attribute is added, the less accurate the result will be; therefore, various 

inputs and outputs were used to study model performance. The following Functions 5 and 6 served 

as data adjustment. Function 5 split the data based on the amount required for prediction need to 

predict (i.e., one to 12 hours. Function 6 shift the data based on given hours in 5-minute windows.   

n_in, n_out = SV_5min (6) (3) 
 

df = shift_data (data = ‘values’, n_in=n_in, n_out=n_out) (4) 
 
 

Function 5: Calculate range of historical and future timeseries data 
Function SV_5min (value) 

Define: Switcher from 1 to 12 
Define 1: n_in=16, n_out=13 
Define 2: n_in=28, n_out=25 
….. 
Define 12: n_in=148, n_out=145 

 Return n_in, n_out 
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Function 6: Convert timeseries data into supervised dataset 
Function Shift_data (DF, From, n_in, n_out) 

If DF is List 
 Else DF is shape [1] 
Append: col list, names list 
For each i in range n_in, 0, 1 

Add Append: cols Shift DF in i 
V (t-(j+1, i) 

For each i in range 0, n_out 
Add Append: cols Shift DF in -i 
V (t+(j+1, i) 

       DF → concat col   
Remove: Nan  
Set Index: names  

 Return DF 
 

 
Table 4-4  

Precipitation Event Count Recorded in Historical Dataset 
Index V1(t-20) … V1(t) V2(t-20) … V2(t) V16(t+1) … V16(t+12) 

1 25.25 … 23.47 1.32 … 1.57 27.42 … 29.42 

2 17.67 … 17.24 1.87 … 2.11 18.68 … 19.41 

… … … … … … … … … … 

120 45.36 … 44.14 4.89 … 4.59 35.47 … 46.31 
121 38.78 … 37.21 3.21 … 3.87 41.96 … 48.21 

 
 
4.5.2 Classification  
 
Using a classification model on time series data is challenging and requires innovative approaches 

to solve (e.g., some hand crafting features from the time series data based on fixed-sized windows). 

The only solution is using LSTMs, which provide state-of-the art results. Another challenge is the 

unbalanced data variation due to lack of data for hazardous conditions over the last two years. 

Figure 4-35 shows over 350 safe events versus only around 50 hazardous events. Notably, some 

models do not work properly with imbalanced data, and results will be characterized by a poor f-

score, primarily because the model predicts all events as safe and ignores hazardous conditions. 
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For the work reported in this thesis, the number of safe conditions was reduced, and all hazardous 

events were combined into one “dangerous” class.  

 
Figure 4-35. Target class count per event. 

 

A parallel coordinates plot (i.e., a multi-dimensional feature where the vertical axis is duplicated 

horizontally for each feature) was used to allow the visualization of many dimensions in one image. 

Due to the tremendous range between the numerical value of each variable, Figure 4-36 does not 

clearly show the diversity between features. For example, brightness ranges between 36,000 and 

10,000 while precipitation ranges between 5 and 0.1. Hence, data were normalized and scaled to 

obtain a clearer picture. Figure 4-37 shows each feature ranging from -5 to 25, where feature mean 

is set to zero and each feature has a unit variance between 1 and -1 applied. The graph provides a 
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better sense of feature distribution and informs if any attribute has a high value with respect to 

another class.  

 
 

Figure 4-36. Parallel coordinates for RWIS features before rescaling. 
 

 
 

Figure 4-37. Parallel coordinates for RWIS features after rescaling. 
 
As previously mentioned, all attributes were rescaled and transformed for classification. Next, a 

percentage change between a current and prior element was applied to indicate the significant 

changes in each row and correlate each to conditions recorded at the same time. Figure 4-38 shows 

the changes in wind direction, precipitation value, and temperature. PCT change boosted the 

model’s accuracy; this will be discussed in Section 5.   
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Figure 4-38. Scaled, transformed, and PCT attributes. 
 
 

After preprocessing the dataset for use in the classification models, a data analysis was performed 

to compare attributes and classes. First, a correlation study was conducted using Pearson 

correlation similar to the one discussed in Section 4.4. Figure 4-39 shows precipitation attributes, 

brightness, and temperature have high correlation readings.   
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Figure 4-39. Correlation map of data features versus road condition class. 
 
 

Next, a covariance ranking algorithm was applied, which attempts to compute the mean value of 

the product of deviations from their means. Covariance detects colinear relation between attributes. 

When comparing Figure 4-40 and 4-41, one can see how covariance shows more inverse 

correlation between temperature values and precipitation events. Also, air pressure and change in 

temperature values show high correlation, proving the relation between pressure, precipitation, and 

pressure changes when a cold front approaches the highway. Such atmospheric disturbance causes 

severe road conditions.  
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Figure 4-40 Two-dimensional Pearson ranking. 

 

 
Figure 4-41. Two-dimensional covariance ranking. 
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Another ranking method (i.e., one-dimensional ranking for data features versus road condition 

class) was added to the data analysis. The Shapiro-wilk algorithm was used to obtain the normality 

of the distribution for each feature, providing an overview of which feature strongly affects model 

predictions. Figure 4-42 shows that all temperature values have strong rank followed by 

precipitation values.  

 
Figure 4-42. Shapiro data ranking features. 

 
Next, a Radviz Visualizer plot [30] is provided. The multivariate data visualization algorithm plots 

each feature dimension on the circle and shows separability between classes, given an opportunity 

to detect a clustering method. Otherwise, data is randomly distributed and difficult to classify 

based on the distribution. Figure 4-43 clearly shows that the safe class tends to be more distributed 

toward temperature data while the dangerous class is distributed near the precipitation data. Both 

classes are randomly distributed and difficult to separate when near wind data.  
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Figure 4-43. RadViz visualizer for features versus class. 

 

For a better overview of data features, a PCA decomposition was used to decompose 16 features 

into three dimensions so it can be plotted, visualized, and tested; if it can be interpreted to 

determine if spherical distance metrics can be used in the modeling scheme. Figure 4-44 shows a 

3D PCA projection of the classes, the graph shows that the 3D dimensional setup did not show 

any related variance that we can use in any further analysis.  

Next, I did a Manifold Visualization of the dataset. The method output the same result as PCA, 

but it uses other functions, as it uses nearest neighbors approaches to embedding, while allowing 

them to capture non-linear structures. The result can show clear separability and make it easier for 

the model to create decision space. Figure 4-45 shows a promising result using only 3 features to 

predict the model classes, this Manifold feature is used in Section 5 later in classification method 

that can be implemented in real time models to have fast accurate predictions.  
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Figure 4-44. 3D PCA visualization. 

 

 
Figure 4-45. Three features manifold visualization. 
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5 RWIS Model Forecasting 
 
This section discusses all models studied for regression and classification. Regression models 

predicted road surface temperature in a sequence between one and 12 hours. Model performance 

was measured in RMSE, as shown in Equation 4. Classification model predicted road conditions 

in two classes—safe and dangerous. Model performance was measured in accuracy according to 

Equation 5. Additional score metrics are detailed in Section 5.2.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (4) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
  𝑥𝑥  100   (5) 

 
5.1 Supervised Regression Models 
 
After converting the dataset from a timeseries format to a supervised format, supervised linear and 

nonlinear regression models were applied to the dataset. Converted datasets assist models in 

detecting the seasonal shape of the array in a dataset row. Neural network models were applied as 

LSTM, which provided the highest performance as a result of the short-term memory application 

(See Section 5.1.2).  

5.1.1 Classic Machine Learning Regression Models  
 
Scikit learn package offers a number of supervised learning linear and nonlinear models. SL is a 

task wherein the model learns a function that maps an input to an output based on a variety of input 

to output pairs in the testing portion of the dataset.  A simple linear model was first used to verify 

data quality and indicate performance. Figure 5-1 shows that model data output was overfit due to 

data leakage in the conversion metric portion from time series to supervised learning. The output 

target value as the road surface temperature appears in data input and output. Figure 5-2 shows 

that this value that moves from t-n to t and will appear later in dataset output as t+1. The model 
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learned this sequence and overfit the data, resulting in an inaccurate perception of low RMSE. The 

target was removed from the input data, and data leakage did not occur. 

 
Figure 5-1. Overfitting linear regression model. 

 

 
Figure 5-2. Target output data leakage. 

 
Next, five regression models were each trained 12 times with a sequence from one to 12 hours. 

RMSE value was recorded to show performance at each sequence. Each target had a row of results. 

For example, if a dataset of six hours was sequenced, a row was generated in 5-minute frequencies, 

resulting in 72 values, and expressed as [x, x+1, …., x+72]. To achieve an acceptable indicator for 

measuring RMSE of each row, each point in the row was compared by calculating mean value of 
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each row, and then calculating total mean value of the dataset. A histogram of RMSE of each row 

was also plotted to obtain a good indication of model quality.  

The Ridge regression model was first trained, as it addressed problems of ordinary least squares 

by imposing a penalty on coefficient size [31]. As value of α increased, shrinkage increased, and 

collinearity became more robust. Model alpha was 0.5. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3. Ridge regression RMSE histogram at six and 12 hours. 
 

 

The model was characterized by a mean RMSE of 3.4 at 6 hours. Figure 5.4 reveals poor 

performance after the 60-pace mark at five hours forecasting. Also, the model did not recognize 

knife edges (i.e., the points at which temperature falls as a result of a cold front). These results 

prove that this model is not acceptable for road condition forecasting.  
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(a) 

 
(b) 

 
Figure 5-4. (a) three-hour forecast; (b) 12-hours forecast using RIDGE regression 

 
Next model is Lasso regression, using least-angle regression (LARS) algorithm for high 

dimentional data. The model showed good performance for 6 hours predicition, also it predicted 

the sharp drops. Figure 5-5 shows how the model followed the tempeature drop in a 12 hours 

prediction, however it didn’t had a good RMSE performance, as there was a gap between the true 

and predicted value. Figure 5-6 shows the RMSE performance versus forcasted hours.  
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Figure 5-5. 12-hour forecast LARS lasso model. 
 

 

Figure 5-6. Mean RMSE value versus forecasted hours. 
 

 
The Stochastic Gradient Descent (SGD) model is useful for large samples. Its functionality to fit 

models for regression using loss functions suggested a logistic model function for training the 

dataset. While the model showed good performance for the first three hours of forecasting, it did 

not perform well for the following nine hours forecast (See Figure 5-7).  
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Figure 5-7. Nine-our forecast Stochastic gradient model. 
 
Next, a powerful ensamble regression model —based on a randomized decision tree regression 

model— was trained. The model combines multiple outputs from a weak classifier and determines 

a final regressor based on majority vote from multiple decision tree regression models. The model 

uses 34 estimators. The estimators’ value was selected based on the model accuracy, as it will stop 

getting better at a certain number of estimators.  

The random forest showed good results for mean RMSE for all forecasting hours invtervals. A 

histogram (See Figure 5-8) reveals that some specific trends are not detected by the model. The 

histogram has several RMSE trend bins above 5.0. Figure 5-9 illustrates that a quick tempearture 

rise in the afternoon was not detected by the random forest model, indicating a lack of promising 

performance overall.  
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Figure 5-8. RMSE histogram at 12-hour random forest. 

 

 
Figure 5-9. Six-hour forecast random forecast. 

 
 
The kernel ridge model was evaluated last and outperformed all other regression models. This 

model combines ridge regression with kernel trick and corresponds to a non-linear function in the 

original space. Kernel ridge is similar to SVR, although it is characterized by different loss 

functions. The model uses squared error loss combined with l2 regularization. Figures 5-10 and 5-

11 show the forecast for six and 12 hours. It is important to note that the model selects the low 
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temperature as it rises and crosses the freezing level. The graph demonstrated good performance 

for forecasting six- and 12-hour projections.  

 
Figure 5-10. Six-hour kernel ridge forecast. 

 

 
Figure 5-11. 12-hour kernel ridge forecast. 
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Figure 5-12 displays the overall performance of each model described above. The y-axis represents 

mean RMSE value of the model; the x value represents the forecasted hour for each model. The 

kernel ridge (See red line) proved to be the best model.  

 
Figure 5-12. RMSE value of all models versus forecasted hour. 

  
5.1.2 LSTM Recurrent Neural Network Model 
 
Recurrent neural network (RNN) is considered one of the best models for time series dataset 

prediction. RNN is an optimal neural network method for regression. The model mechanism 

ensures that current output is dependent on previous information [32]. Given that RNN depends 

on backpropagation through time, gradient gradually becomes an issue. Architecture depends on 

long short-term memory (LSTM) [33] to manage the gradient problem via a constant error flow. 

This process will also manage the complex long time-lag problem. The difference between RNN 

and LSTM is the internal gate of LSTM wherein three gates determine the weight and importance 

of each time-step value for information. RNN information flows through a tanh function, thus 

cannot retain prior information and fails to follow data array trend.  Figure 5-13 indicates that 
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LSTM has three additional neural network layers interacting in a unique way. The sigmoid layer 

output numbers between zero and one describe the amount of each component that should pass 

through. LSTM uses three components to protect and control cell state.  

 
(a) 

 
(b) 

Figure 5-13. (a) RNN; (b) LSTM internal structure. 
 
LSTM architecture was designed through trial and error and by comparing scoring metrics as 

RMSE and histogram distributions. Table 5-1 details the model architecture. The model begins 

with an input of 128. Data then passes through three layers of neurons at a size of 256 and a dropout 

layer of 0.1 to prevent overfitting. The training set has 500 epochs with an early monitoring 

function to stop training at a threshold of 1 × 10−4 . Loss function was mean absolute error. The 

final output layer has a size of 121. 
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Table 5-1  
LSTM Model Architecture 

Layer 
Type 

Output 
Shape Param Activation 

Function 

LSTM  (None, 
128) 671 Relu 

LSTM 1 (None, 
265) 3300 Relu 

LSTM 2 (None, 
265) 45692 Relu 

Dropout (0.1) 0 - 

Dense 1 (None, 
121) 257 adam 

 

   

    
The loss curve (See Figure 5-14) provides a snapshot of the training process and the direction 
wherein the network learns. The figure shows a good learning rate without over- or under-fitting. 
 

 
Figure 5-14. LSTM model loss curve, 

 
The model outperformed overall for forecasting results. Figure 5-15 indicates a very low RMSE 

distribution in the histogram for the three- and six-hour forecast. The model also outperformed 

for the nine- and 12-hour forecast.  Table 5-2 shows the mean RMSE value for the four forecast 

hours. 
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Figure 5-15. Histogram distribution of three-, six-, nine-, and 12-hour forecast from LSTM 
model. 

 
Table 5-2  

Mean RMSE Value of LSTM Forecast Hours 
Forecasted Hours RMSE value 

3-Hour 1.569 

6-Hour 1.957 

9-Hour 2.328 

12-Hour 2.505 

 

The model also captured falling temperatures in mid-day when cold fronts dropped temperatures 

to minimum values. Figure 5-16 illustrates a 20°F decline on February 6, 2020, prior to the 

blizzard.  
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Figure 5-16. LSTM model 12-hour forecast. 
 
5.1.3 Ensemble LSTM  
 
Section 4.1 describes the way in which this research uses data from six stations to train the models. 

This section details how models trained from all six stations were combined to output a single 

model. The resulting model was tested individually in hopes of generating a reliable international 

model that can fit any station. The resulting technology should function with any variation of data 

sans limiting factors. To build an ensemble stacked model, six models were merged into one (e.g., 

ST1, ST2, ST3, ST4, ST5, and ST6). Each model will have its own hidden layers, yet and output 

results in a combined layer. Leveraging the merging function in the Keras package output the 

ensemble model depicted in Figure 5-17.   
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Figure 5-17. LSTM ensemble layers architecture. 
 

The six-station ensemble model significantly enhanced forecasting RMSE over a more typical 

LSTM model using all six stations. Table 5-3 shows RMSE difference for February 11, 2020, 

forecasting temperature declines during nighttime hours. Figure 5-18 and 5-19 show information 

for two different stations (e.g., 213 and 1) on the same forecasting day. Note that the model clearly 

captured both trends without using one specific model for each station.  

Table 5-3  
RMSE Difference Between LSTM and Ensemble 

Station 

ID 

RMSE 

Normal LSTM 

RMSE 

Ensemble LSTM 

ST213 1.57 1.71 

ST199 3.45 1.67 

ST235 3.11 1.54 

ST51 2.89 1.42 

ST32 3.79 1.87 

ST1 3.49 1.77 
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Figure 5-18. ST235 ensemble forecast. 

 

 
Figure 5-19. ST001 ensemble forecast. 

 
A subsequent case study was performed on the ensemble’s and its ability to predict additional 

hours based on the amount of historical training data (e.g., up to 100 years of progress archived by 

NWS/NOAA for forecasting models [36]). Figure 5-20 shows in red the correlation between actual 

and GFS forecast data. As the amount of historical data increases, the model accuracy increases, 

as well, with the exception of modeling improvement and NWP contribution. To simulate graph 

similar to a smaller scale model generated by NWS, the model was trained using a 5-week period 

of data for seven months to generate RMSE for every trained sample. Figure 5-21 summarizes 
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RMSE performance. Notably the score declined after an October winter event was added to the 

model. This result suggests that the more winter events are added to the model, the more 

performance will increase. An ARIMA model was also added to the graph to project future 

enhanced model performance (i.e., RMSE could decline to nearly 0 for the 12-hours forecast).  

 
Figure 5-20. 500-hPa anomaly correlation in the Northern Hemisphere for 120-h forecasts by 

GFS model.  

 
Figure 5-21. ARIMA model forecast of ensemble model overtime. 
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5.1.4 Regression with GFS Forecasted Model  
 
This section uses the method detailed in Section 4.3 (e.g., parsing future forecasted data from GFS 

model). Future data from GFS with RWIS current real time data was used to predict the next 24 

hours. For model evaluation, RMSE and accuracy with a threshold of ±1.5°F was used to test 

performance. Linear, polynomial, support vector, decision tree, and random forest were studied. 

Overall, random forest exhibited the best performance among all models, as shown in Figures 5-

22 and 5-23. Random forest achieved 0.9 average RMSE and 95.41% accuracy.  

 
 

 
Figure 5-22. RMSE measurements for regression models. 
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Figure 5-23. Accuracy measurements for regression models. 

 

Further analysis of random forest model performance is shown in Table 5-4. RMSE was 1.36 for 

RST and 1.30 for BST; accuracy was 91% for RST and 85% for BST.  Two additional formulas 

for R-Squared and Pearson correlation coefficient (PCC) were used for further analyses (See 

Equations 6 and 7). A scatter plot shows RST and BST predicted values versus observed values. 

Figure 5-24 indicates a strong correlation as points become proximate to the dashed horizontal 

trend line.  

𝑅𝑅2 = 1 − ∑(𝑦𝑦−𝑦𝑦�)2

∑(𝑦𝑦−𝑦𝑦�)2
 (6) 

𝑝𝑝𝑝𝑝𝑝𝑝 =  ∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦−𝑦𝑦�)
(𝑁𝑁−1)𝑆𝑆𝑋𝑋𝑆𝑆𝑌𝑌

 (7)  
 

Table 5-4  
Random Forest Regression Model Results 
Accuracy RST BST 

RMSE  1.36 1.30 
MAE 0.80 0.79 

R-Squared 0.99 0.99 

PCC 0.995 0.995 
Accuracy 91% 86% 
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(a) 

 
(b) 

Figure 5-24. (a) RST; (b) BST RF scatterplots of predicted versus observed values. 
 

Forecast aims to predict sharp edge declines and temperatures rising above the freezing level. No 

correlation exists between surface temperature and ambient temperature. Random forest 

performance was tested on two wintry events on February 6 and February 21, 2020. Tables 5-5 

and 5-6 provide model evaluation for the two wintry events. Figure 5-25 shows a rise and fall in 

BST and RST predictions, as well as model prediction accuracy.  
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Table 5-5  
6 February 2020 RF Results 

Accuracy RST BST 
RMSE  2.10 2.21 
MAE 1.29 1.30 

R-Squared 0.95 0.95 
PCC 0.995 0.995 

Accuracy 91% 88% 
 

Table 5-6  
21 February 2020 RF Results 

Accuracy RST BST 
RMSE  3.75 3.34 
MAE 1.69 1.67 

R-Squared 0.90 0.93 
PCC 0.994 0.994 

Accuracy 94% 84% 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-25. Predicted, actual, and ambient temperature for (a) February 6 RST; (b) February 6 
BST; (c) February 21 RST; (d) February 21 BST.  

 
 
5.2 Classification Models 
 
This section describes data analysis described in Section 4.5.2 for road surface condition 

forecasting classification models. As previously mentioned, the model will only predict two road 

classes—safe and dangerous. The dataset was preprocessed (e.g., rescaling, transformation, and 

percentage change difference) as detailed in Section 4.5.2. Notably the classification model must 

have a historical data trend to predict one class for each attribute window. This means that the 

dataset must be reshaped in separate window sizes with a class target for each window. Selected 
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window size is 72, providing six hours of data. Data shape input into the model will take on a 

shape of [X, 72, Y], where X represents attributes and Y represents target class.  

 
5.2.1 Supervised Classification Machine Learning Models 
 
Classification model is a type of supervised learning wherein data fed to the network is labeled 

with the features previously separated into different categories. Hence, the network knows which 

input parts are important and if a specific target of the model can be verified. Results for each 

trained model is available below, and optimal performance is summarized using score metrics 

defined in terms of true / false positives and true / false negatives. Metrics employed are precision, 

which is defined as ratio of true positives to the sum of true and false positives and recall, which 

measure classifier completeness (i.e., the ability of the classifier to correctly find all positive 

instances). The F1 score is the harmonic center between precision and recall. The harmonic center 

optimizes balance between precision and recall. Model testing reported in this section predicts only 

the next 3 hours due to lack of memory learning, as well as limited window size and one-dimension 

target class value.  Since machine learning classification models take only two-dimensional input, 

data in one row was repeated in a sequence of t-n to t. The ‘n’ value selected for all trained models 

was 5, and class value was shifted by 41. These provided three and half hours of data projection. 

Figure 5-26 shows the dataset shifting and reshaping procedure.  



75 
 

 

Figure 5-26. Dataset reshape and shifting. 
 

Four models showed acceptable results. The logistic regression model was superior, with a 

pression of 0.84 for dangerous class and 0.93 for safe class (See Figure 5-28). Dangerous class had 

an acceptable F1 score of 0.54 and 0.96 for safe class. The threshold plot in Figure 5-27 visualizes 

all metric scores with respect to binary classifier discrimination threshold (i.e., probability at which 

positive class is chosen over negative class attribute). Figure 5-29 details the confusion matrix of 

the model.   

 
 
 



76 
 

 
Figure 5-27. Logistic regression model discrimination threshold. 

 

 
Figure 5-28. Logistic regression model metric scores. 
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Figure 5-29. Logistic model confusion matrix. 

 
 

KNN classifier at two neighboring classifiers delivered the next best results. Precision metric had 

high score for safe class and an acceptable score dangerous class. Figure 5-30 reveals that the 

precession score increased at 0.7 threshold. The F1 and recall score was also acceptable, measuring 

above 0.5. Results for the confusion matrix are shown in Figure 5-32 and demonstrate low false 

positive and false negative.  
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Figure 5-30. KNN model discrimination threshold. 

 

 
Figure 5-31. KNN Model metric scores. 
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Figure 5-32 KNN Model confusion matrix. 

 
 

Gaussian naïve bayes (NB) ranked next and did not exhibit promising metric scores (See Figure 

5-33). Precision score for the dangerous class was 0.423, and the confusion matrix exhibited a 

false positive of 555 (See Figure 5-34).  
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Figure 5-33. Gaussian NB model metric scores. 

 

 
Figure 5-34. Gaussian NB model confusion matrix. 
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The final model under review was the gradient boosting classifier. Not only did it score the best 

performance for positive class indicating hazardous road conditions, but it also demonstrated a 

promising score for F1 and recall. Figure 5-35 shows an acceptable F1 score above 0.5.   

 

 
Figure 5-35. Gradient boosting classifier metric scores. 

 
Figure 5-36.  Gradient boosting classifier confusion matrix. 
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5.2.2 LSTM Classification Model  
 

Section 5.1.2 highlighted information about the LSTM model mechanism and its ability to learn 

input data sequences. Because this research trained on a time series dataset, LSTM proves to be 

the best model for this process. Section 5.2 also described the way in which a sliding window of 

T was used on the dataset for reshaping into three dimensions—X, T, Y. In this way, the model 

can predict a bunch of classes every sequence. Discussion in the previous section emphasized that 

reshaping works only in one dimension and can predict one class each 3.5 hours. The model 

architecture is similar to that previously presented in the regression section, although three batch 

normalization layers were added to the model to account for the high dimensionality of the input. 

The model must be stabilized in the learning process to reduce the number of training epochs in 

the process.  

 

Table 5-7 
LSTM Model Architecture 

Layer Type Output 
Shape Param Activation 

Function 

LSTM  (None,120, 
8) 800 Hard 

Sigmoid 
Batch 

Normalization 
(None, 
120,8) 32 - 

LSTM 1 (None, 
120,8) 544 Hard 

Sigmoid 
Batch 

Normalization 
(None, 
120,8) 32 - 

LSTM 2 (None, 
120, 8) 544 Hard 

Sigmoid 
Batch 

Normalization 
(None, 
120,8) 32 - 

Dropout (0.1) 0 - 
Dense 3 (None, 1) 9 Sigmoid 
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Figure 5-37 shows LSTM model loss curve learning and demonstrates that the model reached 

accuracy within the first 15 epochs. Accuracy was 87.98% and was calculated based on a number 

of test sets, which were calculated each time the window rolled through the test set. The confusion 

matrix in Figure 5-38 shows one of the samples. Accuracy tends to be high in many test sets. 

Additional classes were tested to verify model accuracy for detecting slick and snowy conditions. 

Results proved good accuracy at 78% (See Figure 5-39).  

 
Figure 5-37. LSTM classification model loss and accuracy curve. 

 

 



84 
 

Figure 5-38. LSTM model confusion matrix. 

 
Figure 5-39. LSTM model three class confusion matrix. 

 
 

5.2.3 Regression and Classification Model using GFS forecasted Model 
 
A bridge model is described in this section. Road surface temperature data is forecasted using the 

ensemble LSTM model discussed in Section 5.1.3. This model merges forecast precipitation from 

the GFS model discussed in Section 4.3 and will trigger weather advisories based on freezing level 

threshold and precipitation type event. Based on the findings discussed in section 4.2, The model 

will trigger a dangerous condition in case there is a wintry precipitation as Sleet, Freezing rain and 

Ice Pellets. Another dangerous event will be triggered if the temperature crossed the freezing level 

twice with a wintry precipitation of snow, otherwise it will trigger a Safe event.  
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Figure 5-40. LSTM and GFS classification model. 
 

Although the model was not tested in real time based on forecasted GFS data, it was tested on 

recorded historical data and past events that satisfied the conditions.  Two tested events were 

selected from among October and December 2020 winter events characterized by a mix of wintery 

precipitation with temperatures fluctuating above and below the freezing level. Figure 5-41 and 5-

42 of the two testing sets proved 100% accurate at detecting road condition class. Notably, the 

GFS model provides 100% accuracy at predicting time, type, and amount of precipitation in the 

upcoming 12-hour period. The ensemble LSTM provided accurate detection of temperature 

fluctuation (i.e., 1.67 RMSE value), which aided the model in accurately detecting road class..  
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Figure 5-41. October 27, 2020, confusion matrix using LSTM and GFS models. 

 

 
Figure 5-42. December 1, 2020, confusion matrix using LSTM and GFS models. 
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6 Conclusion and Future Work 
 
 
The work presented in this thesis details a variety of analyses aimed at predicting road surface 

temperatures and conditions using model testing, training, and validation. The optimal approach 

for acquiring data from an RWIS server utilized restful API with time series model forecasting and 

LSTM neural network models. Research proved that the ensemble LSTM model was the best 

performing regression model, delivering an average RMSE of ±1.67 and 87.98% accuracy for 

detecting hazardous road conditions. Most referenced papers and meteorology agencies have 

previously reported near or lower scores than those reported in this thesis. Results demonstrated 

that the RWIS system offered reliable data and the possibility of implementing a real-time model 

for road conditions analyses and prediction.   

The RWIS system showed significant potential for analyzing road conditions and traffic when 

leveraging traffic flow data and weather conditions in real time and providing analytical data and 

modeling methods implemented in the server.  

RWIS historical data is able to record more complicated events with hazardous road conditions 

and contribute to the modeling scheme for enhancing metric scores utilized in this thesis. The 

bigger the training data size, the more accurate and reliable the model, as evidenced in Section 

5.1.3. ARIMA model projects demonstrated that the RWIS model can accurately forecast 

temperatures for an upcoming 12 hours at nearly 0 RMSE.  

ODOT and OU-Tulsa’s WECAD are working together to deploy more roadway systems for 

analyzing traffic and road conditions using smart technologies. Models developed by researchers 

can enhance the learning processes and help guide future research teams toward solving future 

obstacles (e.g., accidents and road congestion). This thesis showed the importance of an LSTM 
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and time series model approach for capturing future weather events., These models can be utilized 

for solving many other traffic issues.  
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Appendix A: Algorithms and Functions 
 

1. Parse RWIS data using API 
 

def Get_RWIS_Data_15min(var2, var3,var4): 
  import requests 
  import numpy as np 
  import pandas as pd 
  import json 
  from astropy.convolution import convolve, Box1DKernel 
  var1 = "https://rwis.tulsa.ou.edu/rwis/api/weatherAll/data?" 
  vr = "station=" 
  var = "&" 
  varr = "date_from=" 
  varrr = "date_to=" 
  varT = "".join([var1, vr,var2,var,varr,var3,var,varrr,var4]) 
  Json_data = requests.get(varT).json() 
  n= len(Json_data) 
  station = []  
  date_time = [] 
  wind_speed = [] 
  wind_direction = [] 
  gust_wind_speed = [] 
  temperature = [] 
  air_pressure = [] 
  precipitation_event = [] 
  precipitation_intensity = [] 
  total_precipitation = [] 
  precipitation_type = [] 
  brightness = [] 
  temp1_surface_temperature = [] 
  temp1_dew_point = [] 
  temp2_surface_temperature = [] 
  temp_probe_1 = [] 
  temp_probe_2 = [] 
  gust_wind_direction = [] 
  for x in range(n): 
    station.append(Json_data[x]['station']) 
    date_time.append(Json_data[x]['date_time']) 
    wind_speed.append(Json_data[x]['wind_speed']) 
    wind_direction.append(Json_data[x]['wind_direction']) 
    gust_wind_speed.append(Json_data[x]['gust_wind_speed']) 
    gust_wind_direction.append(Json_data[x]['gust_wind_direction']) 
    temperature.append(Json_data[x]['temperature']) 
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    air_pressure.append(Json_data[x]['air_pressure']) 
    precipitation_event.append(Json_data[x]['precipitation_event']) 
    precipitation_intensity.append(Json_data[x]['precipitation_intensity']) 
    total_precipitation.append(Json_data[x]['total_precipitation']) 
    precipitation_type.append(Json_data[x]['precipitation_type']) 
    brightness.append(Json_data[x]['brightness']) 
    temp1_surface_temperature.append(Json_data[x]['temp1_surface_temperature']) 
    temp1_dew_point.append(Json_data[x]['temp1_dew_point']) 
    temp2_surface_temperature.append(Json_data[x]['temp2_surface_temperature']) 
    temp_probe_1.append(Json_data[x]['temp_probe_1']) 
    temp_probe_2.append(Json_data[x]['temp_probe_2']) 
  RWIS_Dataframe = pd.DataFrame({'Station':station,'Date':date_time,'Wind 
Speed':wind_speed,'Wind Direction':wind_direction,'Gust Wind Speed':gust_wind_speed, 
                          'Gust Wind 
Direction':gust_wind_direction,'Temperature':temperature,'Air Pressure':air_pressure, 
                          'Precipitation event':precipitation_event,'Precipication 
Intensity':precipitation_intensity, 
                          'Total Precipitation':total_precipitation,'Precipitation 
type':precipitation_type,'Brghtness':brightness, 
                          'Road Surface Temp':temp1_surface_temperature,'Due Point 
Temp':temp1_dew_point,'Bridge Surface Temp':temp2_surface_temperature, 
                          '2 inch Underground Temp':temp_probe_1,'6 inch Underground 
Temp':temp_probe_2}) 
  RWIS_Dataframe['Date'] = pd.to_datetime(RWIS_Dataframe['Date']) 
  RWIS_Dataframe.set_index('Date', inplace=True) 
  df = RWIS_Dataframe.resample('15Min').mean() 
  df = df.iloc[::-1] 
  df = df.query('`Road Surface Temp` < 85') 
  df = df.query('`Road Surface Temp` > -10') 
  df = df.query('`Bridge Surface Temp` < 85') 
  df = df.query('`Bridge Surface Temp` > -10') 
  df = df[df['Road Surface Temp'] != 0] 
  df = df[df['Bridge Surface Temp'] != 0] 
  smoothed_signal_Train = convolve(df['Road Surface Temp'], Box1DKernel(10)) 
  smoothed_signal_Train = pd.DataFrame(smoothed_signal_Train) 
  smoothed_signal_Train = smoothed_signal_Train.set_index(df.index) 
  df['Road Surface Temp'] = smoothed_signal_Train 
  smoothed_signal_Train1 = convolve(df['Bridge Surface Temp'], Box1DKernel(10))  
  smoothed_signal_Train1 = pd.DataFrame(smoothed_signal_Train1) 
  smoothed_signal_Train1 = smoothed_signal_Train1.set_index(df.index) 
  df['Bridge Surface Temp'] = smoothed_signal_Train1 
  return df 
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2. Parse RWIS data in real time for the last hour 
 
import requests 
import numpy as np 
import pandas as pd 
import json 
import statistics  
from datetime import date, datetime 
from pytz import timezone 
import os  
import geopandas as gpd 
import pandas as pd 
from bokeh.io import show 
from bokeh.models import (CDSView, ColorBar, ColumnDataSource, 
                          CustomJS, CustomJSFilter,  
                          GeoJSONDataSource, HoverTool, 
                          LinearColorMapper, Slider) 
from bokeh.layouts import column, row, widgetbox 
from bokeh.palettes import brewer, Category20, Turbo256 
from bokeh.plotting import figure 
from bokeh.embed import file_html 
from bokeh.resources import CDN 
from bokeh.models import FixedTicker 
from bokeh.models import Legend, LegendItem 
tz = timezone('US/Central') 
tz1 = timezone('US/Mountain') 
time = datetime.now(tz) 
time1 = datetime.now(tz1) 
t = time.strftime("%Y-%m-%d") 
t1 = time.strftime("%H:%M:%S") 
t2 = time1.strftime("%Y-%m-%d") 
t3 = time1.strftime("%H:%M:%S") 
comma = ' ' 
S1 = 'https://rwis.tulsa.ou.edu/rwis/api/weatherAll/data?station=' 
P1= '&datetime_from=' 
P2 = '&datetime_to=' 
st = 
['35ST213','35ST199','35ST187','35ST165','35ST154','35ST141','35ST235','35ST107','35S
T092','35ST074','35ST058','35ST051','35ST032', 
      '35ST015','35ST001'] 
st_n = ['213 - Road','213 - Bridge','199 - Road','199 - Bridge','187 - Road','187 - 
Bridge','165 - Road','165 - Bridge','154 - Road','154 - Bridge' 
        ,'141 - Road','141 - Bridge','235 - Road','235 - Bridge','107 - Road','107 - 
Bridge','92 - Road','92 - Bridge', 
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        '74 - Road','74 - Bridge','58 - Road','58 - Bridge','51 - Road','51 - 
Bridge','32 - Road','32 - Bridge', 
        '15 - Road','15 - Bridge','1 - Road','1 - Bridge'] 
temp1 = [] 
for x in range(len(st)): 
    #print(x) 
    temp1_surface_temperature = [] 
    time_now = [] 
    temp2_surface_temperature = [] 
    total_msg = ("".join([S1,st[x],P1,t2,comma,t3,P2,t,comma,t1])) 
    data = requests.get(total_msg).json() 
    if not data:  
        temp = temp1[-1] 
        tempp = temp1[-2] 
        temp1.append(tempp) 
        temp1.append(temp) 
    else: 
        time_now.append(data[0]['date_time']) 
        n= len(data) 
        for i in range(n): 
            temp1_surface_temperature.append(data[i]['total_precipitation']) 
            Not_none_values = filter(None.__ne__, temp1_surface_temperature) 
            temp1_surface_temperature = list(Not_none_values) 
        if not temp1_surface_temperature:  
            temp = temp1[-1] 
            temp1.append(temp) 
        else: 
            temp1.append(statistics.mean(temp1_surface_temperature)) 
     
        for i in range(n): 
            temp2_surface_temperature.append(data[i]['total_precipitation']) 
            Not_none_values = filter(None.__ne__, temp2_surface_temperature) 
            temp2_surface_temperature = list(Not_none_values) 
        if not temp2_surface_temperature:  
            temp = temp1[-1] 
            temp1.append(temp) 
        else: 
            temp1.append(statistics.mean(temp2_surface_temperature)) 
        del data 
        del temp1_surface_temperature 
        del temp2_surface_temperature 
        time_st = time_now*30     
df = pd.DataFrame( 
    {'Time': time_st, 
     'codes': st_n, 
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     'speed': temp1 
    }) 
os.chdir(r"C:\Users\Afify\Documents\ArcGIS")  
fp = 'stationsI35_Merge2.shp' 
map_df = gpd.read_file(fp) 
merged = map_df.set_index('Name').join(df.set_index('codes')) 
merged.reset_index(level=0, inplace=True) 
merged1 = merged.loc[~merged['NAME_0'].isin(['United States'])] 
geosource = GeoJSONDataSource(geojson = merged.to_json()) 
geosource1 = GeoJSONDataSource(geojson = merged1.to_json()) 
 
 

3. Parse specific parameters in real-time 
 
def RWIS_data_Now(argument):  
    switcher = {  
        'W'  : Wind(),  
        'T'  : Temperature(),  
        'P'  : Pressure(),  
        'Pr' : Precipitation(),  
        'U_2': Underground_2(),  
        'U_6': Underground_6(),  
        'G'  : Gust(),  
        'S'  : Surface() 
    }  
    return switcher.get(argument, "Invalid input, please choose a correct one from 
the list")   
if __name__ == "__main__":  
    argument=0 
    print (numbers_to_strings(argument))     
 

4. Parse Underground 6-inch temperature Function  
 
def Underground_6(): 
    import requests 
    import numpy as np 
    import pandas as pd 
    import json 
    import statistics  
    from datetime import date, datetime 
    from pytz import timezone 
    tz = timezone('US/Central') 
    tz1 = timezone('US/Mountain') 
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    time = datetime.now(tz) 
    time1 = datetime.now(tz1) 
    t = time.strftime("%Y-%m-%d") 
    t1 = time.strftime("%H:%M:%S") 
    t2 = time1.strftime("%Y-%m-%d") 
    t3 = time1.strftime("%H:%M:%S") 
    comma = ' ' 
    S1 = 'https://rwis.tulsa.ou.edu/rwis/api/weatherAll/data?station=' 
    P1= '&datetime_from=' 
    P2 = '&datetime_to=' 
    st = 
['35ST213','35ST199','35ST187','35ST165','35ST154','35ST141','35ST235','35ST107','35S
T092','35ST074','35ST058','35ST051','35ST032', 
      '35ST015','35ST001'] 
    temp1 = [] 
    for x in range(len(st)): 
        temp_probe_2 = [] 
        time_now = [] 
        total_msg = ("".join([S1,st[x],P1,t2,comma,t3,P2,t,comma,t1])) 
        data = requests.get(total_msg).json() 
        if not data:  
            temp = temp1[-1] 
            temp1.append(temp) 
        else: 
            time_now.append(data[0]['date_time']) 
            n= len(data) 
            for i in range(n): 
                temp_probe_2.append(data[i]['temp_probe_2']) 
                Not_none_values = filter(None.__ne__, temp_probe_2) 
                temp_probe_2 = list(Not_none_values) 
            if not gust_wind_speed:  
                temp = temp1[-1] 
                temp1.append(temp) 
            else: 
                temp1.append(statistics.mean(temp_probe_2)) 
            del data 
            del temp_probe_2 
            time_st = time_now*15 
    gust_df = pd.DataFrame( 
        {'Time': time_st, 
         'ST': st, 
         'Probe 2': temp1 
        }) 
    return UG2_df 
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5. Parse GFS Dataset for 24 hours 
 
headers = {'accept': 'application/json','apikey': 'TfvwMAIRVIF7NkNuB7RAEJIEJA437sdM'} 
    response1 = 
requests.get('https://api.climacell.co/v3/weather/forecast/hourly?lat=35&lon=-
97&unit_system=us&fields=precipitation&start_time=now', headers=headers) 
    RR1 = response1.content 
    RR1 = json.loads(RR1) 
    m= len(RR1) 
    date = []  
    Temp = [] 
    for x in range(m): 
        date.append(RR1[x]['observation_time']['value']) 
        Temp.append(RR1[x]['precipitation']['value']) 
     

6. Convert Time series data to Supervised learning dataset  
 
def shift_data(dataa, n_in=1, n_out=1, dropnan=True): 
    from pandas import DataFrame 
    from pandas import concat 
    n_vars = 1 if type(dataa) is list else dataa.shape[1] 
    df = DataFrame(dataa) 
    cols, names = list(), list() 
    for i in range(n_in, 0, -1): 
        cols.append(df.shift(i)) 
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 
    for i in range(0, n_out): 
        cols.append(df.shift(-i)) 
        if i == 0: 
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 
        else: 
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 
    agg = concat(cols, axis=1) 
    agg.columns = names 
    if dropnan: 
        agg.dropna(inplace=True) 
    return agg 
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