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ABSTRACT 

Thermodynamic soundings have been constructed from the reanalysis dataset 

produced by the National Centers for Environmental Prediction (NCEP) and the 

National Center for Atmospheric Research (NCAR). This was done to expand the 

volume, resolution, and global coverage of sounding data available for research, 

particularly as it pertains to severe thunderstorm environments. The reanalysis 

describes global, three-dimensional atmospheric fields, every six hours, for a 

period of more than fifty years. Soundings were constructed using a series of 

software packages and programs designed for this project, and were compared 

with corresponding observational data. Some sounding-derived parameters had 

values in the reanalysis that were close to those calculated from observed data, 

while other parameters revealed less agreement. It was concluded that some 

reanalysis sounding-derived parameters were similar enough to observations to be 

useful analysis tools. The reanalysis soundings were also examined to assess their 

capability to differentiate between different types of severe weather environments. 

Statistical analyses indicate that the reanalysis is able to discriminate quite well in 

some instances. Thus, the reanalysis dataset represents a potentially significant 

development in the study of proximity soundings. It is reliable enough (compared 

to observations) for the increase in volume and resolution of data gained through 

its use to offset possible errors present in the reanalysis and sounding construction 

process. Further study of reanalysis soundings could yield more comprehensive 

results, and should represent a useful alternative (or supplement) to observations 

in many areas of research that utilize proximity soundings. 
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CHAPTER I 

INTRODUCTION 

Throughout the history of meteorological research, work has often focused 

on attempts to understand severe weather, and in particular, tornadoes. Studies in 

this discipline have made it clear that severe thunderstorms are very complex 

systems, and that their behavior is difficult to explain (Doswell and Burgess 

1993). A primary method of storm research has been to assume that the nature 

and evolution of these phenomena can be partially explained by the characteristics 

of the environments in which they form. By studying the atmosphere in the 

immediate vicinity (in time and space) of a developing thunderstorm, useful 

information can be gained regarding the evolution and behavior of that storm. 

Because severe weather events are three-dimensional phenomena and result from 

atmospheric conditions at many vertical levels, thermodynamic soundings are a 

critical tool in understanding their environments. 

Early studies of tornadic environments (Showalter 1943; Fawbush and 

Miller 1952 and 1954; Beebe 1955) explored the use of soundings from the same 

airmasses in whi~h tornadoes developed. These early works analyzed individual 

(and sometimes mean) soundings and the similarities and differences between 

them. These authors focused on parameters that were observed directly from 

soundings, such as the temperatures at different levels and the heights of various 

features. Fawbush and Miller (1954) were the first to note that there were 

fundamental differences in the characteristics of some airmasses they studied (i.e., 
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more than one kind of environment was being observed). They compared the 

airmass types and described the differences between them. 

Beebe (1958) was the first to identify what would become a fundamental 

concept in the research of severe weather environments - the proximity sounding. 

This type of sounding is defined as being acquired within a specified time and 

distance of a severe weather event, so that the sounding is said to be "in 

proximity" to that event. The majority of proximity sounding studies have 

assumed that the atmosphere is isotropic - that its physical properties are 

independent of direction. While this assumption is not normally valid at a 

specific time and location, it is useful when a large dataset of proximity soundings 

is analyzed. In that case, it is assumed that the total number of events in each 

direction (relative to the soundings) will be the same. The construction of 

proximity sounding datasets involves a balance between the minimization of 

misrepresentative data and the maximization of dataset size. The assumption of 

isotropy increases the number of soundings in the dataset, but also increases the 

amount of misrepresentati ve data. These concepts are further discussed in 

Chapter III. 

Soundings that previously had been studied as representative of tornadic 

environments were defined more generally by Beebe (1958) as precedent 

soundings - "those characteristic of the airmass but removed in time and/or space 

from the vicinity of tornado occurrence (p. 195)." That study also observed that a 

proximity sounding represented a change (on a smaller scale) in the environment 

previously characterized by the precedent sounding, so that the proximity 
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sounding may not have reflected accurately the previous (or larger) airmass. 

Instead, the proximity sounding more specifically resembled the immediate (and 

more localized) environment in which a tomadic thunderstorm formed. 

The formal definition of a proximity sounding in Beebe (1958) included 

specific time and space requirements: A tornado must have occurred within 50 

miles of and one hour following the release of the sounding instrument. In 

addition, the proximity definition also accounted for soundings that fit the 

space/time criteria yet did not represent the tornadic environment (e.g., post­

frontal or post-storm soundings). Since the landmark work of Beebe, this general 

method of quality control has been employed in many similar studies. Although 

Beebe (1958) established the basis for proximity sounding research, his dataset 

was small (only 24 soundings). Also, his primary goal was simply to describe the 

characteristics of tornadic storm environments. 

Darkow (1969) compared tornado proximity soundings to nearby "check" 

soundings (similar to the precedent soundings defined by Beebe (1958)). He 

noted several differences between the two (i.e., between the tornadic environment 

and the surrounding, large-scale airmass). The study by Darkow, along with 

Beebe (1963), represents the roots in the explanation of tornado formation and 

understanding the processes, which create tornadogenesis. 

The initial goal of using proximity soundings was to describe tornado 

environments. However, these tools have proven useful in identifying potential 

predictors of storm characteristics. Many studies (e.g., Rasmussen and 

Wilhelmson 1983; Brooks and Doswell 1994; Rasmussen and Blanchard 1998; 
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Craven 2001) have explored the utility of using proximity soundings to 

discriminate between the atmospheric conditions in which different types of 

severe weather occur. This concept can be useful in storm prediction, because the 

characteristics of the observed atmosphere can be compared to results of 

proximity sounding studies, to see what types of severe weather are usually 

associated with those characteristics. Discrimination is also used to analyze the 

differences among severe storm environments, which can facilitate a better 

understanding of the processes responsible for storm formation. 

The use of most sounding-derived parameters necessarily discards some 

information, because several pieces of data are combined into one quantity. 

However, these parameters have proven to be very useful tools in examining 

severe weather environments. Rasmussen and Wilhelmson (1983) demonstrated 

that some sounding-derived parameters (particularly potential buoyant energy 

[PBE] and the mean wind shear in the 0-4 km layer) could discriminate between 

the environments of tornadic, mesocyclonic, and non-severe thunderstorms. 

These authors also inferred the atmospheric processes that lead to the formation of 

different types of events. 

Brooks and Doswell (1994) and Rasmussen and Blanchard (1998) 

performed studies similar to that of Rasmussen and Wilhelmson (1983), except 

they were progressively more comprehensive in terms of the amount of data and 

number of parameters analyzed. Brooks and Doswell (1994) used proximity 

soundings to investigate differences in the environments of tornadic and 

nontornadic mesocyclones. They also applied their results to support a conceptual 
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model of low-level cyclone development and maintenance, illustrating the utility 

of proximity soundings to facilitate a better understanding of atmospheric 

processes. 

Craven (2001) is, to some extent, an observational counterpart to the 

current study. He used a large dataset (approximately 60,000 proximity 

soundings) to develop a climatology of sounding-derived parameters for different 

severe weather environments. A major finding was that sfc-1 km bulk shear 

(magnitude of vector difference of wind) and lifted condensation level height 

(LCLH) values demonstrated significant differences between significant tornado 

cases and all other severe weather types. Many methods and definitions used by 

Craven (2001) also were used in this study (see Chapter III). 

While proximity sounding research has often yielded useful results, most 

studies have been hampered by the limited (in time and space) resolution of the 

rawinsonde network. The result is either a dataset so small that it leads to 

questions about the validity of conclusions drawn from it, or definitions of 

proximity so wide that they introduce the problem of whether the soundings are 

even representative of the storm environment. Even those few works (e.g., 

Rasmussen and Blanchard 1998; Craven 2001) that compiled large sounding 

datasets still produced results that were limited in their usefulness on a global 

scale, because the majority of observed sounding data represents a very small 

portion of our Earth. 

The reanalysis dataset produced by the National Centers for 

Environmental Prediction (NCEP) and the National Center for Atmospheric 
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Research (NCAR) (Kalnay et al. 1996) presents a unique opportunity to greatly 

expand the amount of sounding data available for research. The reanalysis data 

represents a global, three-dimensional picture of the atmosphere, every 6 hours, 

for more than 50 years. Many output variables were produced in different spatial 

coordinate systems (both horizontally and vertically). The reanalysis has a much 

higher grid resolution than the rawinsonde network; the region analyzed in this 

study (as defined in Chapter III) contained 180 reanalysis gridpoints, but only 53 

observed sounding locations. As a result, datasets can be constructed that are 

much larger in size and scope than those used in previous proximity sounding 

studies. Because the reanalysis contains global fields, high-resolution data can be 

studied across areas of the globe where a lack of observations would otherwise 

make a similar study impossible. 

The primary goals of this project were to: 

1. Construct thermodynamic soundings from the reanalysis data. 

2. Determine whether or not the reanalysis soundings had characteristics 

consistent with those of observed data. 

3. Assess whether or not the reanalysis soundings were able to 

discriminate between different kinds of storm environments, in a similar 

fashion to observed data. 

If the reanalysis soundings proved to be reliable enough (as determined by 

comparisons with concurrent observations) to be useful as proximity soundings, 

the volume of data available for sounding research would be greatly expanded in 

space and time up to a global resolution. 
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This manuscript will document: 

1. The characteristics of the reanalysis data. 

2. The determination of proximity definitions and the ranges of data 

analyzed. 

3. A methodology to construct, orgamze and manipulate proximity 

soundings. 

4. The data analysis techniques employed, and interpretation of the results. 

5. A summary and discussion of the results. 
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CHAPTER II 

THE NCEP/NCAR REANALYSIS DATA 

The reanalysis dataset was created through the cooperative efforts of 

NCEP and NCAR (Kalnay et al. 1996) to produce relatively high-resolution 

global analyses of atmospheric fields over a long time period. The reanalysis data 

record has since been extended to include January 1948 through July 2002. The 

basic concept of the reanalysis was to: 

1. Recover all available observations from each time index and synthesize 

them with a static data assimilation system. 

2. Use the observational fields to initialize a model for a six-hour forecast. 

The model used (hereafter referred to as the reanalysis model) was 

identical to the NCEP global operational model, except for the horizontal 

resolution. The reanalysis model is T62 (equivalent to a horizontal 

resolution of approximately 210 km), while the operational model is Tl26 

(approximately 105 km). 

3. Use the forecast as a first-guess, in conjunction with concurrent 

observational fields, to construct the reanalysis output. Reanalysis fields 

were generated with an optimal interpolation technique. 

4. Repeat the process every six hours. 

Thus, the reanalysis used model forecasts and observations to transport 

information from regions of high observational density to those with fewer 

observations. The state of the atmosphere could thus be estimated in areas that 

are relatively devoid of data. The result of the reanalysis process was a dataset 
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consisting of a global, three-dimensional picture of the atmosphere at six-hour 

intervals during a period of more than 50 years. 

Output is available from the reanalysis on pressure and sigma levels (p/p0 , 

where p is pressure and p0 is surface pressure) in the vertical, and on spectral and 

grid coordinate systems in the quasi-horizontal. The sigma-level, spectral 

coefficient form of the data was determined to be the most useful for this study. 

The sigma-level data contains atmospheric fields on 28 vertical levels, while the 

pressure-level data contains only 10 vertical levels. In addition, the initial 

reanalysis model output was produced on sigma levels, so the data were 

interpolated in the vertical to obtain sounding information on pressure levels. 

Because the first goal of this project was to construct soundings, having almost 

three times as many vertical data points was desirable. Another advantage of 

using the sigma data is the elimination of a potential source of error (data 

interpolation). Approximately 10 sigma levels exist between the near-surface (the 

lowest having a sigma value of 0.995) and 700 mb, while in the pressure data, 

only four levels exist. Because many of the parameters that describe severe 

weather environments are heavily dependent on the behavior of the atmosphere at 

lower levels, more data close to the surface are critical. 

The pressure-coordinate, gridded data in the reanalysis are on a grid with 

144 x 73 data points on the globe. However, when the spectral coefficient data 

are translated onto an equally spaced (in latitude and longitude) grid, the result is 

192 x 94 gridpoints. The spatial resolution is 1.875 degrees (112.5 nautical miles 

[nm]) longitudinally and 1.915 degrees (114.9 nm) latitudinally. These figures 
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represent a significant increase versus the quasi-horizontal resolution of the 

gridded data, a desirable characteristic in most research and when one 1s 

concerned with proximity. For these reasons, the spectral coefficient, sigma-level 

data were used in this study. 

The reanalysis data (for spectral, sigma output) includes six atmospheric 

fields. Surface geopotential is constant over time. The other five fields are 

available every 6 hours. The natural log of surface pressure is the only one of 

these five variables not available above the surface. The other four (virtual 

temperature, specific humidity, divergence, and vorticity) are available at 28 

vertical levels. Atmospheric parameters necessary for the construction of a 

sounding (i.e., temperature, dewpoint, wind speed and direction, heights, and 

pressure) were derived from the six initial fields. This methodology is described 

in Chapter IV. 

In addition to the limitations generally associated with model data, caution 

should be used in analyzing some reanalysis fields. Specifically, the reanalysis 

model has problems with moisture (specific humidity), a common feature 

associated with model forecasts. These problems stem from, among other 

reasons, the poor accuracy of moisture observations in the original data and the 

small spatial scales associated with moisture in the atmosphere. The reanalysis 

may be even less reliable in data-poor regions (such as oceans), because 

atmospheric fields in these locations are largely derived from the reanalysis model 

itself; they are minimally influenced by the observational data. 



The variables in the reanalysis data were classified by NCEP/NCAR 

(Kalnay et al. 1996) as either: 

A: Strongly influenced by observed data (e.g., virtual temperature, 

vorticity). 

B: Directly affected by observations, but also strongly influenced by the 

reanalysis model (e.g., natural log of surface pressure, divergence, specific 

humidity). 

C: Not directly affected by observations, derived exclusively from the 

reanalysis model forecast fields (e.g., precipitation, surface fluxes). 

D: Fixed from climatological values, independent of the reanalysis model 

(e.g., surface geopotential). 

It is not clear that the classification system is easy to utilize. Most 

variables are differently influenced by the reanalysis model in some regions (e.g., 

oceans), because observational data there are sparser. Thus, the classifications of 

each field are not constant. The classifications of the reanalysis variables 

analyzed in this project were not used to interpret results. However, researchers 

that utilize the NCEP/NCAR reanalysis data should be aware that some variables 

are more reliable (i.e., more strongly based on observations) than others. 
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CHAPTER III 

DEFINITIONS 

Many studies have used the concept of proximity soundings to identify 

characteristics of the environments in which different kinds of severe weather 

form. Proximity is usually defined using specific requirements for the temporal 

and spatial distances between a sounding and an associated event - when they are 

met, the sounding is said to be "in proximity" to that event. Although these 

criteria are somewhat arbitrary (as discussed in Brooks and Doswell 1994), some 

logic can be used to redefine them for a particular study. Choosing the spatial 

distance requirement (between sounding and severe weather report) is a balance 

between expanding the size of the dataset at the expense of introducing 

misrepresentative data. As the distance is increased, more soundings are 

classified as being "in proximity". However, the likelihood increases of those 

soundings being representative of a different environment than the one in which 

the observed event formed. 

The spatial criterion for proximity in this study was 100 nm. This distance 

was the same as that used in previous work, including Craven (2001). The fact 

that the "same proximity" was used was important when the reanalysis soundings 

were compared to Craven' s observational dataset. The assumption of isotropy 

was employed; that is, the classification of events was not dependent on direction 

(relative to the associated sounding). The definition of proximity as a circle with 

a 100 nm radius introduced some misrepresentative data (due to soundings being 

located upstream from their associated events), but it also expanded the size of the 
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resulting dataset. Because the maximum distance (diagonal) between any two 

reanalysis soundings is 2.68 degrees or 160.8 nm, all severe weather reports are in 

spatial proximity to a sounding location (gridpoint). Because the distance 

between each severe weather event and the nearest reanalysis sounding is always 

available, the soundings can be sorted by distance. Thus, it is trivial to change the 

spatial proximity criterion for the purpose of data analysis. 

Previous studies defined temporal proximity in only one direction; 

namely, that an event must have occurred after the associated sounding was 

acquired. This strategy was designed to eliminate soundings that were 

contaminated by the storms themselves (i.e., convective effects), or represented an 

environment different than the one in which the severe weather event formed 

(e.g., after frontal or dryline passage). However, when the reanalysis data is used, 

convective contamination is a minor issue. The majority of contamination cases 

occur on a spatial scale that is smaller than the resolution of the reanalysis model, 

and observations affected by contamination were smoothed by the optimal 

interpolation process. Thus, the reanalysis soundings do not exhibit 

contamination as sometimes occurs when observed soundings are used. 

The criterion for temporal proximity was three hours before or after 

sounding time, the same definition used by Craven (2001). The temporal 

requirement introduced soundings representative of the post-storm environment. 

However, the criterion also greatly increased the number of soundings in the 

dataset that were representative of the storm environment. In previous studies 

(where a unidirectional temporal proximity criterion was used), the "extra" 
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soundings were excluded. The inclusion of events that occurred before sounding 

time doubled the number of severe weather proximity soundings. 

Finally, previous studies (i.e., Beebe 1958; Darkow 1969; Brooks and 

Doswell 1994; Rasmussen and Blanchard 1998) introduced various measures of 

quality control and eliminated soundings that were incomplete, contained 

erroneous data, or were otherwise misrepresentative of the storm environment. 

For example, soundings with CAPE below a minimum value were eliminated, as 

were those with incomplete wind data, soundings that did not extend above a 

certain pressure level, or soundings with an inflow relative to the event to meet a 

research objective. Because this project utilized model data, incomplete 

soundings were not an issue. The "inflow sector" method of sounding elimination 

was not used, because the assumption of isotropy was employed. The inclusion 

of some misrepresentative data was acceptable, because it also increased the 

number of proximity soundings in the dataset. No "minimum CAPE" or other 

method of sounding elimination was used, to let the reanalysis data stand on its 

own. This simplified approach resulted in a more useful baseline to examine the 

utility of reanalysis data. 

With the definition of proximity established (soundings within 100 nm and 

three hours before or after an event), the next step was to consider the spatial and 

temporal ranges of data to be analyzed. Although reanalysis data are available at 

6-hour intervals for more than 50 years, soundings were constructed only for 0000 

UTC data from a 3-year period (1997-1999). This smaller subset was necessary 

due to time constraints and limited data storage capacity; it was chosen to match 
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the time range used in Craven's (2001) study. Because his observational dataset 

is the first compared with reanalysis data, it was essential to use the same data 

range. Because these three years were characterized by an above average number 

of tornado occurrences and because the majority of tornadoes occur around 0000 

UTC (versus 0600, 1200, or 1800 UTC), the reanalysis subset is considered of 

sufficient size to yield significant results. 

The reanalysis data were produced at the same resolution across the global 

domain, but for this study, only the eastern two-thirds of the continental United 

States were analyzed. Verification data (including the record of significant 

tornadoes) within the United States were considered to be more complete and 

accurate than those found in most other regions. Furthermore, the majority of 

recorded tornadoes in the U.S. occur east of the Rocky Mountains. Thus, the 

spatial data consisted of all reanalysis gridpoints located over land, within the 

continental U.S. east of the Rocky Mountains (east of 106.88W longitude). The 

result was 180 sounding locations (reanalysis gridpoints). Based upon using data 

from the 0000 UTC analysis for this region of the United States for a 3-year 

period, a total of 197,100 soundings were constructed. 
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CHAPTER IV 

METHODOLOGY 

The reanalysis data files obtained for this study consisted of spectral 

coefficients in netCDF format. The first steps in the sounding construction 

process were to convert the data into a more useful file format and to translate it 

onto an equally spaced (in latitude and longitude) grid. The software package 

Spherepack 3.0 (Adams and Swarztrauber 1999) was essential to the achievement 

of this task. It was designed for use with reanalysis data, to translate from 

spectral space into grid space through spherical harmonic synthesis. The general 

f01m of the equation used for this transformation is: 

A[i,j] = I, [ak*f(m,n) + bk*g(m,n)] 

where ak and bk are the spectral coefficients, m and n are longitudinal and 

latitudinal wave number, respectively, f and g are trigonometric functions, and 

A[i,j] is an array of gridded values, where i and j are equally spaced points in 

latitude and longitude. 

A Fortran90 module used Spherepack functions to derive the wind field 

(zonal and meridional components) from divergence and vorticity fields. The 

program also derived temperature from virtual temperature and specific humidity, 

using the formula: 

T = [Tvl(l+(0.608*q))]-273.15 

where T = temperature (C), T v = virtual temperature (K), and q = specific 

humidity (gig). It should be noted that small negative values of specific humidity 

exist in the reanalysis data (not uncommon for model output). These values were 
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set to zero before the temperature calculation. Pressure was calculated at every 

gridpoint and vertical level using the natural log of surface pressure and the sigma 

level values: 

p = sigma*[lO*(exp(lnp 0 ))] 

where ln(p 0 ) = natural log of surface pressure (Pa), sigma = the value of sigma at 

a given level, and p = pressure (mb) at that level. Thus, the output of the gridding 

program consisted of pressure (mb), virtual temperature (K), specific humidity 

(gig), temperature (C), zonal wind (mis), and meridional wind (mis) at every 

quasi-horizontal gridpoint at every vertical level. Orography (surface 

geopotential) was output separately (due to its time invariant nature). 

The gridded data was converted into GRIB format using the lats4d script 

(Christias 2002). Programs designed by Michael Baldwin at NSSL were used to 

extract vertical profiles from the GRIB data at the 180 locations matching 

reanalysis gridpoints in the eastern continental United States. These programs 

calculated variables necessary for sounding construction from those in the gridded 

data. 

Heights were calculated usmg the hypsometric equation for a moist 

atmosphere (Bluestein 1992). Wind speed and direction were computed from the 

zonal and meridional components of the wind field, through trigonometric 

definitions. Dewpoint temperature was derived from pressure and specific 

humidity, using the formula (from Buck 1981): 

Tct = [(C-Dz)/(B-z)]-273.15 
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where z = ln(esf A), e5 = saturation vapor pressure (Pa) = (p*q)/(0.622+q), q = 

specific humidity (gig), p = pressure (Pa), A= 613.3, B = 17.502, C = 4780.8, D 

= 32.19, and Td = dewpoint temperature (C). Some relative humidity (RH) values 

that were greater than 100% were forced to 100% (i.e., Td values greater than T 

were forced to T). While supersaturation is possible in the atmosphere, it should 

occur on scales smaller than the resolution of the reanalysis model. It was 

believed that the values of RH greater than 100% occurred because the formulas 

used to calculate dewpoint are empirical in nature and can produce small errors, 

especially in conditions near saturation. The profile extraction programs output 

data files from which soundings were constructed at all gridpoints within the 

specified temporal and spatial ranges. 

The only changes made to the "raw" reanalysis data were to force limits 

on humidity (specific humidity to be non-negative and RH to be no greater than 

100%) and to compute the variables necessary for sounding construction. The 

humidity limits could only have affected dewpoints and temperatures. Because 

the humidity values in question (specific humidity below O and RH above 100%) 

were only slightly modified, the effects on resulting temperature and dewpoint 

values were minimal. The formulas used to compute sounding variables were 

either valid by definition or represented standard meteorological relationships. 

The exception was the equation used to calculate dewpoint, which was partially 

empirical in nature. 

A modified version of the NSHARP software (which was developed from 

SHARP [Hart and Korotky 1991]), called SHARPTAB (written by John Hart at 
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SPC), was used to calculate 96 parameters from each sounding (every gridpoint at 

every time index). Craven (2001) also used SHARPTAB, so the methods used to 

derive parameters from soundings were consistent between that work and the 

current study. Of the 96 parameters, 69 consisted of the same 23 calculations 

performed on three different parcels: Surface based, most unstable (the parcel in 

the lowest 300 mb with the highest wet bulb potential temperature) - hereafter 

MU, and mean layer (a parcel with the mean characteristics of the lowest 100 mb) 

- hereafter ML. These 23 quantities included standard sounding parameters 

(convective available potential energy [CAPE], convective inhibition [CINH], 

LCLH, level of free convection height [LFCH], lifted index [LI] at different 

levels, Cap, storm-relative [SR] wind at different levels, shear in the surface-Limax 

layer, and mean relative humidity in the LCL-LFC layer) as well as combined 

parameters and indices. Of the 27 parameters not computed for surface, MU, or 

ML parcels, 25 were comprised of storm-relative helicity (SRH), bulk shear, lapse 

rate, mean RH, and storm-relative wind calculated for different vertical levels and 

layers. The final two parameters were mean mixing ratio in the lowest 100 mb 

and downdraft CAPE (DCAPE). 

Although 96 parameters were output by SHARPTAB, many were not 

analyzed in this study. Of the 69 quantities calculated for surface, MU, and ML 

parcels (23 each), only 17 were included in the analysis. None of the surface 

parcel values were used, because it was believed (based on observations from 

previous studies) that these parameters would not provide useful results. Also, the 

reanalysis does not contain surface data (other than pressure and orography), 
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because the lowest sigma level (0.995) is approximately 5 mb above the surface at 

sea level. Combined parameters and indices computed for MU and ML parcels, 

with the exception of BRNShear, were eliminated. They were each calculated 

from several parameters, and it was believed that no more information would be 

gained from their use than through analysis of the parameters used to compute 

them. The value of BRNShear was equivalent for all three parcels, so only MU 

BRNShear was analyzed. Only the 500 mb level was included for LI (for both 

MU and ML parcels), because that is the most commonly used height. After these 

exclusions, 8 parameters were analyzed for both MU and ML parcels (16 total): 

CAPE, CINH, LCLH, LFCH, Cap, 3 km Cape, LI at 500 mb, and mean RH LCL­

LFC. 

Of the 25 quantities calculated for different vertical levels and layers, all 

SRH, bulk shear, lapse rate, and mean RH parameters were used, but the 7 SR 

wind values were not. This exclusion was made because SRH and bulk shear 

were sufficient to analyze the usefulness of parameters related to the wind field. 

Finally, both 100 mb mean mixing ratio and DCAPE were included. Thus, the 

analysis dataset consisted of a time, date, latitude and longitude, and 37 sounding­

derived parameters (listed in Table 1) for each of the 197,100 soundings created. 

The final step to prepare the data for analysis was the classification of 

each sounding according to the types of severe weather in proximity to it. Five 

categories initially were used for classification. "Significant tornado" (hereafter 

TOR) indicated the occurrence of an F2 or higher tornado, "significant hail" 

indicated 2-inch or larger hail, and "significant wind" indicated 65 kt or higher 
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wind. "Non-significant severe" (hereafter SVR) indicated any severe weather 

report that did not meet the criteria for any of the "significant" categories, and 

"non-severe" (hereafter NON) indicated no severe weather reports. The 

significant hail and significant wind categories were combined into "significant 

severe" (hereafter SIG), which thus indicated the occurrence of either 2-inch or 

larger hail or 65 kt or higher wind. The initial distinction between these two types 

of events was made so that future analyses that focus on only one of those 

categories (or the differences between the two) could be performed. 

Severe weather reports were obtained from Severe Plot (Hart 2002) for 

1997-1999. Only events that occurred between 2100 UTC and 0300 UTC (within 

three hours of 0000 UTC) were used. For each report, the distance to every 

reanalysis gridpoint was calculated, and the nearest sounding was classified as 

being in proximity to that event. Only "yes" and "no" classifications were used. 

Thus, if a sounding was in proximity to multiple events of the same type, it 

received only a "yes" in that category, rather than the number of reports (so that 

soundings in proximity to multiple events were not given greater weight). 

Each sounding was analyzed only as a proximity sounding for one type of 

event - the highest of the four categories (in the order TOR, SIG, SVR, NON) in 

which it received a "yes". For example, if a significant tornado report and a 

significant wind report both occurred in proximity to the same sounding, that 

sounding was classified as "yes" for both TOR and SIG, but was only treated as 

TOR during data analysis. This was done to prevent soundings that were in 

proximity to multiple types of severe weather from being given greater weight. 

21 



CHAPTER V 

RESULTS 

Of the 197,100 soundings constructed m this study, 189,450 were 

classified as NON, 6,460 as SVR, 1,031 as SIG, and 159 as TOR. While more 

than 159 F2 or higher tornadoes occurred within the time-frame and geographical 

area analyzed, some events produced more than one such tornado in proximity to 

the same sounding. A sounding in proximity to more than one significant tornado 

was only classified once for all of those observations (rather than once for each). 

A. Comparisons between reanalysis and observed sounding data 

Before the soundings could be examined for their ability to discriminate 

between different storm environments, an important issue to address was whether 

or not the characteristics of the reanalysis data were consistent with those of 

observed soundings. The dataset from Craven (2001) was used to identify 

soundings that were classified as either TOR or SIG in both the observations and 

the reanalysis. There were 287 common soundings (taken at the same time, less 

than 100 nm apart, and both with the same classification). This comparison was 

simplified by the fact that both datasets used only 0000 UTC soundings, and the 

same spatial and temporal proximity criteria. There were 11 parameters (CAPE, 

CINH, and LCLH for both MU and ML parcels, sfc-3 km and 700-500 mb lapse 

rate, sfc-1 km and sfc-6 km bulk shear, and DCAPE), calculated in both studies, 

which were used to compare the characteristics of the two datasets. 
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The 287 common soundings were sorted by distance (between observation 

and nearest reanalysis sounding location) and divided into the lowest, middle, and 

highest thirds, so that each subset contained approximately the same number of 

soundings. Values of r2 (square of correlation coefficient) and root-mean-square 

error (RMSE) were computed between each distance group of observed sounding­

derived parameter values and the concurrent group of reanalysis values. RMSE 

was calculated with the following formula (from Wilks 1995): 

RMSE = [(1/M)*I(Ym-Om)2J112 

where the sum is from m=l to M, M is the number of values in each group, Ym is 

the mth reanalysis value, and Om is the mth observed value. RMSE thus 

represented a typical error (reanalysis minus observed) magnitude for each 

distance group. 

The distributions of observed versus reanalysis values for MU CAPE and 

sfc-6km bulk shear were plotted in Figures 1 and 2, respectively. The data points 

were colored to illustrate the distribution differences among the three distance 

groups. Values of r2 for each group were also included. The 1: 1 line on each plot 

represents perfect association (i.e., reanalysis value= observed value). The plots 

also contain three linear regression lines, colored to match the respective distance 

groups for which they were computed. The slope and intercept values used to 

plot these lines were obtained with Microsoft Excel. The linear regression lines 

represent a "best fit" for the distribution of each distance group. The spread of the 

points about each linear regression line is quantified by values of r2
• RMSE 
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represents the magnitude of the distance between the points and the "best fit" 

lines. 

Table 3 contains the intercept and slope values for each of the linear 

regression lines plotted in Figures 1 and 2. These values indicate the bias of each 

distance group distribution, because they quantify the difference between each 

linear regression line and the 1: 1 line (which has an intercept of zero and a slope 

of one). Intercept increased (away from zero) with distance for both parameters. 

Slope decreased (away from one) with increasing distance for both parameters, 

except that it slightly increased between the 0-37 nm and 37-50 nm groups for 

MU CAPE. These results indicated that the differences between observed and 

reanalysis values increased with distance. This was expected, because as distance 

increased between two sounding locations, there was a greater likelihood of 

environmental variation across that distance. Slope values for sfc-6 km bulk 

shear are closer to the 1: 1 line than the MU CAPE slope values. This indicated 

that reanalysis values of sfc-6 km bulk shear match their concurrent observed 

values to a greater extent than MU CAPE values match their observational 

counterparts. 

Table 2 displays r2 and RMSE values for all 11 parameters. Low values of 

r2 (below 0.07 for MU parcels and below 0.01 for ML parcels) indicated that the 

CINH parameters were unreliable (as compared to observations). The reanalysis 

values of these parameters disagreed with observations because the vertical 

resolution of the reanalysis soundings was not sufficient to detect the inversions 

that were critical to CINH calculations. MU LCLH also appeared to be unreliable 
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(with r2 values from 0.193 to 0.308 and RMSE values from 743.8 to 884.2 m agl), 

which may be due to the fact that some reanalysis soundings indicated problems 

with low-level moisture (i.e., erroneous dewpoints). While the differences 

between reanalysis and observed dewpoints were usually relatively small (and in 

many cases almost nonexistent), even a minor error could have caused a 

significant change in LCLH values for the MU (usually low-level) parcel. 

However, the moisture problems were generally confined to the lower and upper 

(around and above the tropopause) levels of the atmosphere, and to only a few 

data points (if any) for most soundings. This was reflected in the r2 values for ML 

LCLH (with r2 values from 0.515 to 0.641 and RMSE values from 340.2 to 547.9 

m agl), which were computed for 100 mb mean parcels. The lowest r2 value for 

ML LCLH is still better (higher) than the highest r2 value for MU LCLH, and the 

highest RMSE value for ML LCLH is better (lower) than the lowest RMSE value 

for MU LCLH. In general, it can be concluded that ML parcel parameters (which 

were more resistant to small numbers of erroneous data points) were more reliable 

in the reanalysis than were their MU parcel counterparts. An exception to this 

rule was CAPE. 

MU and ML CAPE had almost identical r2 values (with differences of less 

than 0.025) at each distance interval, although the RMSE values were lower for 

ML CAPE than MU CAPE at all distances. These r2 values were unexpected, 

given the low-level moisture problems that contributed to the differences between 

the ML and MU LCLH values. However, CAPE was more resistant to such 

dewpoint discrepancies than LCLH (because it was computed using data from 

25 



many vertical levels). Both MU and ML CAPE were characterized by decreases 

in r2 (from nearly 0.50 to around 0.25) and increases in RMSE (from 866.3 to 

1387 J/kg for ML and from 1112 to 1886 J/kg for MU) as distance increased. 

This trend was expected, due to the increase in probability of environmental 

variation as distance increased. 

DCAPE was different from the other two CAPE parameters. Its r2 values 

were roughly constant between the lowest and highest distance groups (0.439 and 

0.431, respectively), with only a small increase (to 0.482) in the middle distance 

group. Its RMSE values displayed a similar pattern. While DCAPE had a lower 

r2 value than the other two CAPE parameters in the smallest distance group, it had 

larger values at larger distances. This implied that DCAPE had the same overall 

reliability (as compared to observations) as MU and ML CAPE, but that it did not 

suffer from environmental variations in the same way that the others did. This 

was due to the fact that DCAPE was calculated for a mid-level (rather than low­

level) parcel. Atmospheric conditions at mid-levels are more accurately forecast 

by models than conditions at lower levels. Thus, forecast and verification 

differences are expected to be larger at lower levels. This derives from the fact 

that mid-level conditions vary on larger spatial and temporal scales. Also, low­

level conditions are affected by many more factors (e.g., surface fluxes, 

vegetation, orography) than mid-levels, some of which are below the resolution of 

most models. The observation that r2 values for DCAPE were nearly constant 

over distance supported that mid-level conditions vary on larger spatial scales. 
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Values of r2 for 700-500 mb lapse rate increased, then decreased, as 

distance increased. Sfc-3 km lapse rate was characterized by r2 values that 

increased as distance increased. Its r2 values were much lower than those of 700-

500 mb lapse rate in the smaller distance groups (as expected, given the more 

variable nature of low-level fields), but the two parameters had almost identical 

values (0.462 versus 0.464) in the largest distance group. RMSE values for both 

parameters behaved non-monotonically, just as the r2 values did. It is possible 

that reanalysis lapse rates are unreliable in the reanalysis, because those 

parameters are each computed from only two temperature values, and are 

therefore highly susceptible to isolated erroneous data points. While their r2 and 

RMSE values are non-monotonic, the r2 values for 700-500 mb lapse rate are 

reasonable at smaller distances (0.589 for 0-37 nm and 0.678 for 37-50 nm). 

Nevertheless, it was concluded that lapse rates must be used with some measure 

of caution. 

The two bulk shear parameters displayed better agreement between the 

reanalysis and observed values. Sfc-6 km bulk shear had the highest r2 values 

(overall) of any parameter. The sfc-6 km r2 values were higher than sfc-1 km 

because mid-level conditions varied on larger scales and were better predicted by 

. 2 
the reanalysis model. Both shear parameters had r values that decreased as 

distance increased. This is expected, due to environmental variation. The RMSE 

values for these parameters were non-monotonic. However, those values were 

roughly constant at all three distances for both parameters, so the small 
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differences between distance group RMSE values for each parameter could have 

been due to statistical anomaly. 

Overall, most of the eleven parameters demonstrated only moderate 

agreement between reanalysis and observed values. The only r2 values greater 

than 0.60 (generally characteristic of marginal agreement) corresponded to sfc-6 

km bulk shear in the two smaller distance groups, ML LCLH in the smallest 

distance group, and 700-500 mb lapse rate in the middle distance group. MU and 

ML CINH were not reliable for this analysis, and any conclusions drawn from 

them were given little to no weight. MU LCLH was also determined to be 

generally unreliable. The other eight parameters displayed only marginal to 

below average agreement (in terms of r2 values) between reanalysis and observed 

values. Many parameters exhibited non-monotonic values of r2 and RMSE as 

distance was increased. 

Despite the fact that the reanalysis soundings appeared to show only 

moderate agreement with observations, most parameters were not completely 

unreliable. Also, the results of the comparison analysis (summarized in Table 3) 

provided useful insight into the reliability of different kinds of reanalysis 

parameters. It was concluded that wind-related values agreed better with 

observations than thermodynamic parameters. Parameters related to mid-level 

conditions performed better than those calculated from near-surface data. Also, 

those parameters computed from data at many vertical levels (e.g., ML parcels 

and some CAPE values) appeared to be more reliable than those that were not 

(e.g., MU parcels and lapse rate values). Parameters used in the reanalysis dataset 
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that were not computed in the observed dataset could not be compared through 

correlation coefficients. However, their reliability can be inferred through the 

observations that were made of these 11 parameters. 

B. Examination of the discrimination utility of the reanalysis soundings 

All 37 parameters in the reanalysis sounding dataset were analyzed to see 

if they were capable of discrimination between different types of severe weather 

events (hereafter, "events" refers to proximity soundings associated with events). 

Single-parameter discrimination was investigated with cumulative distribution 

functions (CDFs). These plots displayed the values of a parameter against the 

percentage of all data points that were equal to or less than each value. Plots of 

CDFs for two distributions (corresponding to two types of events) revealed 

differences between those distributions. The dashed lines in Figure 7 indicate that 

50% of the SIG sounding values of sfc-6 km bulk shear were less than or equal to 

40 kt, while only a little more than 20% of TOR sounding values were less than 

40 kt. Also, 51 kt of sfc-6 km bulk shear corresponded to the median (cumulative 

probability = 0.5) of the TOR distribution, but corresponded to the 75th percentile 

of the SIG distribution. Thus, it can be seen that the distance between the two 

curves (in this case, TOR and SIG) is proportional to the difference in the 

distribution of values for those two datasets. Also, the curve that is "below" the 

other (TOR in Figure 7) is characterized by higher values (in this case, of sfc-6 

km bulk shear), since its median value is higher. 

29 



Multiple-parameter discrimination was investigated through the use of 

scatterplots. Initially, only qualitative observations were made of the differences 

between distributions of severe weather type subsets. Once those combinations 

were identified which showed substantial discrimination, a more quantitative 

analysis was performed, using 2x2 probability tables (and associated statistical 

quantities) calculated from each set of distributions. 

Before TOR and SIG events could be compared, it was important to 

establish that the reanalysis data were capable of discrimination between "severe" 

(TOR+SIG+SVR) and NON events, and between "significant severe" 

(TOR+SIG) and SVR events. Many previous studies (e.g., Craven 2001) 

identified CAPE-shear combinations as good discriminators between these types 

of events. Figure 3 displays a plot of log(MU CAPE) versus log(sfc-6 km bulk 

shear) for TOR+SIG and SVR events. All log(MU CAPE) values were set to 

0.0001 in cases where MU CAPE = 0. Upon inspection, TOR and SIG data 

points were clustered in the high-CAPE, high-shear region of the plot, whereas 

the distribution of SVR values was more diffuse. It was apparent that this 

combination of parameters demonstrated discrimination between TOR+SIG and 

SVR events. 

To quantify this discrimination, a line was applied to the plot that 

transected the data distributions, so that the components of a 2x2 forecast table 

(see Table 4) could be calculated. All points above (below) the line were treated 

as yes (no) TOR+SIG forecasts. This line (also plotted in Figure 3) was given a 

fixed slope value of -0.25 (based upon inspection), and the intercept was varied 
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so that the best threshold line could be determined. A linear regression line might 

have resulted in a more accurate measure of discrimination, but it was believed 

that the difference would be marginal. Thus, slopes based upon inspection were 

used for all discrimination scatterplot analyses. The probability of detection 

(POD) and probability of false detection (POFD) were computed for each line 

(each combination of slope and intercept). The formulas used to compute these 

quantities were included in Table 4. These were also the two components of the 

Hanssen-Kuipers (H-K) skill score, which is simply POD-POFD, and defined the 

two axes of a relative operating characteristic (ROC) diagram (Mason 1982). A 

ROC curve represents the skill of a forecast system - in this case, the performance 

of two parameters (MU CAPE and sfc-6 km bulk shear) - in differentiating 

between two types of events (in this case, TOR+SIG and SVR). The area under a 

ROC curve (calculated in this study with the trapezoidal rule) represents the level 

of skill. An area of 0.5 (for a straight diagonal line on the diagram) indicates no 

skill. 

A ROC curve (Figure 4) for the MU CAPE versus sfc-6 km bulk shear 

scatterplot of TOR+SIG and SVR distributions was constructed for values of 

intercept from 1 to 2.7 (at intervals of 0.1), with the slope held constant at -0.25. 

The POFD (x) and POD (y) values are listed in Table 5. The upper-right dashed 

line in Figure 4 corresponds to an intercept value of 2.0, for which the POFD was 

0.762 and the POD was 0.903. This means that when a line with a slope of -0.25 

and an intercept of 2.0 was applied to the scatterplot in Figure 3, 90.3% of 

SIG+ TOR events were above the line, and 76.2% of SVR points were above the 
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line. Similarly, the lower-left dashed line plotted in Figure 4 corresponds to an 

intercept of 2.23, for which the POFD was 0.5 and the POD was 0.75. Thus, it is 

apparent that as intercept was increased (threshold line was moved "up" the 

scatterplot), POD and POFD both increased, because fewer events were above the 

line. 

The ROC area of 0.585 for the curve plotted in Figure 4 indicated a 

marginal level of skill in discriminating between TOR+SIG and SVR events. The 

point furthest toward the upper-left on the diagram represented the highest H-K 

score (because the POD-POFD value was greatest there). Thus, it can be seen 

that a ROC with more points toward the upper-left on the diagram represented 

greater forecast skill. They resulted in higher ROC area values, and higher H-K 

(POD-POFD) scores. The intercept that corresponded to the most upper-left point 

in Figure 4 represented the line that best discriminated (as defined by the H-K 

score) between TOR+SIG and SVR events. In this case, the optimal intercept 

value was the one that corresponded to a POFD value of approximately 0.4. A 

plot (Figure 5) of intercept versus H-K skill score confirmed this, and illustrated 

the unimodal nature of discrimination (forecast skill) for the scatterplot in Figure 

3. The highest score (0.269) resulted from an intercept of 2.3, which 

corresponded to a POFD value of 0.395 (in Table 5). 

These results implied that the best line for discrimination on the plot of 

TOR+SIG and SVR MU CAPE versus sfc-6 km bulk shear (Figure 3), purely in 

terms of highest H-K score, had a slope of -0.25 and an intercept value of 2.3. 

However, that line resulted in a POD value of only 0.664 (see Table 5), so only 
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66.4% of TOR or SIG soundings were "correct} y forecast". It is often desirable to 

have a higher POD, so an additional requirement was set that this value be at least 

0.90. The intercept that resulted in the highest H-K skill score and a POD of at 

least 0.9 was 2.0. Thus, the line plotted in Figure 3 had a slope of -0.25 and an 

intercept of 2.0. This resulted in a POD of 0.903, a POFD of 0.762, and a H-K 

score of 0.140. If all points below the line were eliminated, 9.7% of TOR+SIG 

soundings and 23.8% of SVR soundings would be discarded. 

The combination of MU CAPE and sfc-6 km bulk shear revealed some 

discrimination utility, and had been shown in previous studies to differentiate 

between significant (TOR+SIG) and non-significant severe (SVR) environments. 

However, it was sti11 of interest to examine the results of the same analysis 

performed on other combinations of parameters. Several thermodynamic 

parameters were paired with deep shear, and the ROC area and maximum H-K 

skill score were calculated for each combination (with a slope value determined 

by inspection for each scatterplot). The results (displayed in Table 6) indicated 

that CAPE performed better with deep shear than the other parameters. This 

combination was also used to examine discrimination between "severe" 

(TOR+SIG+SVR) and NON events. 

In the course of this analysis, the question arose of how much impact slope 

value actually had on a resulting ROC diagram. To investigate this, the MU 

CAPE versus sfc-6 km bulk shear scatterplot was reanalyzed; the slope was 

varied, and ROC curves were constructed for each slope value. The results 

(displayed in Figure 6 and Table 7) indicated that slope value had very little effect 
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on the ROC, except when it approached zero, because this was equivalent to the 

examination of the distribution of only one parameter. 

The threshold of discrimination established for TOR+SIG versus SVR 

events (slope of -0.25 and intercept of 2.0 on a plot of log[MU CAPE] versus log 

[sfc-6 km bulk shear]) was applied to NON sounding data. The resulting POD 

was 0.242, which indicated that, if NON sounding values were plotted in Figure 

3, only 24.2% would lie above the line. Thus, the elimination of points below the 

established threshold would discard 9.7% of TOR+SIG soundings, 23.8% of SVR 

soundings, and 75.8% of NON soundings. It was concluded that the reanalysis 

sounding data are capable of discrimination between severe and non-severe events 

and between significant severe and non-significant severe events. With this 

determination made, the more interesting issue of TOR versus SIG discrimination 

was examined. 

The investigation of the utility of the reanalysis data in TOR versus SIG 

discrimination initially used CDFs. Examination of these plots (constructed for 

all 37 parameters) resulted in qualitative observations as to which parameters 

exhibited significant differences between the two event type distributions. Some 

revealed good discrimination (see Figure 7, sfc-6 km bulk shear, Figure 8, sfc-1 

km bulk shear, Figure 9, ML LCLH, and Figure 10, sfc-1 km mean RH), while 

some did not (see Figure 11, MU CINH), and others showed moderate potential 

as discriminators (see Figure 12, MU CAPE). "Good" discriminators were 

generally defined as those whose CDFs were characterized by cumulative 

probability (y) differences of at least 0.2 over at least one-third of the range. 

34 



"Moderate" discriminators were generally defined as those whose CDFs were 

characterized by cumulative probability (y) differences of at least 0.1 over at least 

one-half of the range. CDFs that did not meet either of these standards were 

determined to be "poor". 

Among thermodynamic parameters, MU and ML CINH, Cap, LI at 500 

mb, MU LFCH, MU 3 km CAPE, ML CAPE, all six lapse rates based above the 

surface, 2-4 and 4-6 km mean RH, and 100 mb mean mixing ratio all displayed 

poor discrimination. DCAPE, all three surface-based lapse rates, MU CAPE, MU 

LCLH, and ML LFCH demonstrated moderate capability, and MU and ML mean 

RH LCL-LFC, ML LCLH, ML 3 km CAPE, and sfc-1 km and sfc-2 km mean RH 

indicated good discrimination. Because it had been observed that the reanalysis 

model does not predict humidity as well as most other fields, it was not 

unexpected that many thermodynamic parameters (most of which were dependent 

on dewpoint calculations) were virtually incapable of discrimination. In addition, 

many of the thermodynamic processes believed to be responsible for 

tomadogenesis are generally focused in the lower levels of the atmosphere, so it 

was not surprising that all mid-level thermodynamic parameters (MU and ML LI 

at 500 mb, six lapse rates based above the surface, and two mean RH values 

calculated above the surface) performed poorly. The surface-based lapse rates 

performed better because they were based on temperature rather than dewpoint. It 

was expected, based on the results of previous studies, that LCLH should be a 

good discriminator, and it was in the case of ML LCLH. MU LCLH performed 

more poorly because the reanalysis values of that parameter were less reliable 
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than its l\1L counterpart. Low-level moisture content should also have been a 

good discriminator, and this was reflected by the two surface-based mean RH 

parameters. Although the reanalysis model has some problems with humidity, 

· these were mean values (thus resistant to isolated erroneous data points), so they 

were more accurately predicted than single points. The fact that 100 mb mean 

mixing ratio performed poorly was due to the fact that it was based solely on 

humidity, whereas the RH parameters were based upon both dewpoint and 

temperature (which was a more accurately forecast field). 

All six wind-related parameters (sfc-1 km and sfc-3 km SRH, sfc-1 km, 

sfc-3 km, and sfc-6 km bulk shear, and BRNShear) indicated good discrimination. 

This was not unexpected, because many previous studies (e.g., Johns et al. 1993) 

have identified shear and SRH-related parameters as particularly good 

discriminators between storm types (due to the shear-induced rotational properties 

of tornadic thunderstorms). In addition, earlier analysis showed that the sfc-1 km 

and sfc-6 km bulk shear values in the reanalysis correlated well with those from 

observations, so it was concluded that the group characteristics of these 

parameters would have been maintained in the reanalysis. 

A more useful method of discrimination between TOR and SIG events 

was the analysis of combinations of multiple parameters. These distributions 

were most easily viewed using scatterplots, as was earlier done for TOR+SIG 

versus SVR and TOR+SIG+SVR versus NON events. The combinations used for 

scatterplot construction each included one thermodynamic parameter and one 

wind-related value. Only those parameters that indicated at least moderate 
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discrimination utility (through CDF examination) were used. The exception was 

that the combination of MU CAPE and sfc-6 km bulk shear was examined, so that 

the results could be compared with those previously obtained for the first two 

levels of discrimination. 

The scatterplot of log(MU CAPE) versus log(sfc-6 km bulk shear) for 

TOR and SIG events (Figure 13) was analyzed through the same methods as were 

used for TOR+SIG versus SVR and TOR+SIG+SVR versus NON discrimination. 

However, it was apparent that a slope of -0.25 was far from ideal for this 

distribution, and upon inspection, a slope of -0.10 resulted in better 

discrimination. Output statistics were computed for both slope values. The ROC 

curves for both slopes, along with those for the first two levels of discrimination, 

were plotted in Figure 14. It was apparent from the line with a -0.10 slope that a 

higher forecast skill resulted, because its ROC curve was further toward the 

upper-left of the plot than was its -0.25 counterpart. This result is consistent with 

the previously observed effect of varying slope on ROC area (see Figure 6), 

because one of the slope values (-0.10) was close to zero. The ROC area and 

maximum H-K for each curve in Figure 14 are displayed in Table 8. The 

combination of MU CAPE and sfc-6 km bulk shear revealed discrimination skill 

for TOR versus SIG events, at the same skill level as for discrimination between 

TOR+SIG versus SVR events. However, this skill level was below that of 

TOR+SIG+SVR versus NON events. Because the CDFs of MU CAPE for TOR 

and SIG events (Figure 12) showed only moderate discrimination utility, this 

result was not unexpected. 
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Several combinations of bulk shear (sfc-1 km and sfc-6 km) and 

thermodynamic parameters (sfc-1 km and sfc-2 km mean RH, ML LCLH, and 

ML 3 km CAPE) for TOR versus SIG distributions were analyzed using the same 

methods. The ROC area and maximum H-K score were computed for each 

scatterplot. The results were summarized in Table 9. Combinations that involved 

shallow (sfc-1 km) bulk shear performed better than those that involved deep (sfc-

6 km) shear, regardless of the thermodynamic parameter. The ROC curves for the 

four shallow-shear scatterplots are displayed in Figure 15. All combinations 

(especially sfc-1 km bulk shear paired with low-level mean RH and ML LCLH) 

demonstrated significant discrimination. ROC areas exceeded 0.63 (and were as 

high as 0.669) and maximum H-K values were greater than 0.39 (and were as 

high as 0.526). The scatterplot of TOR and SIG data for sfc-1 km mean RH 

versus sfc-1 km bulk shear (along with the line corresponding to the maximum H­

K score for that combination) is shown in Figure 16, and the corresponding ROC 

diagram is plotted in Figure 17. The discrimination between TOR and SIG events 

was evident in these figures, as there was a noticeable difference between the 

distribution of TOR and SIG data points, and the ROC diagram showed a good 

level of skill. 

The results of this analysis indicated that the best discriminators between 

TOR and SIG events in the reanalysis soundings were combinations of sfc-1 km 

bulk shear with sfc-1 km mean RH, sfc-2 km mean RH, and ML LCLH. The 

ROC areas for these combinations had values between 0.658 and 0.669. Each had 

a maximum H-K score greater than 0.5 (in Table 9). 
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A linear discriminate analysis (LDA) was performed on the TOR and SIG 

event data. The analysis was conducted through the CLEA VER 1.0 website 

(Stanford 2002). A thorough description and methodology of LDA is provided in 

Wilks (1995). In the context of this study, LDAs were used to identify sounding­

derived parameters in the reanalysis that could best distinguish between TOR and 

SIG events. Missing values were set to zero and the data were column 

normalized using the analysis options on the Cleaver website. Only the weight 

values output from the LDA (for each parameter) were investigated. These 

weights represented the relative importance of each parameter in discriminating 

between the two datasets (in this case, TOR and SIG events). 

Initial LDA results indicated that all lapse rate parameters were 

significantly more important (had larger weights) than all other variables in TOR 

versus SIG discrimination. The weights were so much higher for lapse rates than 

other parameters, that the results indicated that lapse rate was the only piece of 

information needed to determine whether a sounding was TOR or SIG. It was 

concluded that the lapse rate distributions must have had some characteristic that 

resulted in an inaccurate representation of their discrimination utility. It is likely 

that the bimodal nature of these parameters was responsible for the substantially 

large weights. Also, lifted index parameters received weights higher than all 

other parameters (except lapse rates). Again, lifted index values were removed 

from the LDA, because they appeared to have distribution characteristics that led 

to unreliable results. 
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Another LDA was performed for TOR and SIG events, with all lapse rate 

and lifted index parameters excluded. The resulting weights for the top ten 

parameters (ranked by absolute value of weight) are listed in Table 10. LDA 

results indicated that ML LCLH and sfc-1 km mean RH were the most important 

parameters to discriminate between TOR and SIG events. Sfc-1 km bulk shear 

and sfc-2 km mean RH were also close to the top of the list (Table 10). These 

results agree very well with those previously obtained from scatterplot analysis. 

The LDA helped to confirm the results of earlier analyses. However, 

scatterplots were considered more useful, because the LDA based its 

discrimination threshold on the minimization of total error. If the threshold is 

viewed as a yes/no forecast basis (as was done in the scatterplot analyses), the 

LDA determined the threshold that resulted in the fewest total number of incorrect 

forecasts. With scatterplot analyses, the results could be examined from a more 

operational point of view. For example, a threshold could be identified which 

resulted in the fewest total incorrect forecasts with a minimum POD, or in the 

highest H-K score. Nevertheless, the fact that the parameters determined to be the 

best discriminators through scatterplot analysis agreed with the results of the LDA 

demonstrates the reliability of these results. 
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CHAPTER VI 

CONCLUSIONS 

To expand the volume, resolution, and global coverage of thermodynamic 

sounding data available for research, soundings were constructed from the 

NCEP/NCAR reanalysis. The reanalysis dataset consists of a high-resolution, 

three-dimensional picture of the atmosphere at six-hour intervals during a period 

of more than 50 years. The reanalysis data were obtained in the form of spectral 

coefficients on sigma levels. Programs were designed and implemented to 

translate the data onto a grid and derive the necessary atmospheric variables from 

those in the initial data files. Soundings were constructed and classified 

according to the severe weather types they were in proximity to. The 

SHARPTAB software was used to derive parameters from each sounding. 

Once a dataset of sounding-derived parameters had been created, it was 

compared to concurrent observations from Craven (2001). Some reanalysis 

parameters agreed relatively well with their observed counterparts. Wind-derived 

parameters, those computed using mean layer parcels, and those incorporating 

data from many levels (e.g., CAPE) were more reliable (compared to 

observations). CINH parameters, as well as some using the most unstable parcel 

(e.g., MU LCLH) were much less reliable; they did not agree well with 

observational data. 

Other analyses examined the utility of reanalysis soundings to 

discriminate between different types of severe weather events. Figure 14 and 

Table 8 demonstrated that the combination of reanalysis MU CAPE and sfc-6 km 
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bulk shear was able to discriminate between non-severe and severe events, as well 

as between non-significant severe and significant severe events. The 

discrimination between severe and non-severe environments was particularly 

good, with a ROC area of 0.673 and a maximum H-K score of 0.543. Severe 

events were easier to distinguish from non-severe events than were significant 

events from non-significant severe events. This result derives from the fact that 

the "non-severe" subset included data for many cases in which convection did not 

occur. The difference between severe and significant severe environments was 

more difficult to identify, as evidenced by a lower level of skill in the reanalysis 

discrimination between TOR+SIG versus only SVR events. In this case, analysis 

of the combination of MU CAPE versus sfc-6 km bulk shear produced a ROC 

area of 0.585 and a maximum H-K score of 0.269. 

Several parameters indicated that the reanalysis also discriminated well 

between TOR and SIG events. In particular, low-level thermodynamic 

parameters (e.g., sfc-1 km mean RH and ML LCLH) and those related to the wind 

field (i.e., bulk shear and SRH) performed very well. Several combinations of 

low-level shear and thermodynamic parameters were analyzed. All demonstrated 

a significant level of discrimination. The best performers were combinations of 

sfc-1 km bulk shear with sfc-1 km mean RH, sfc-2 km mean RH, or ML LCLH. 

These three distributions were characterized by ROC areas in excess of 0.65 and 

maximum H-K scores above 0.50. This result is a significant finding, because 

this high level of discrimination between TOR and SIG events is more 

challenging for models than differentiating between significant and non-
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significant severe environments. LDA weights indicated that ML LCLH, sfc-1 

km mean RH, sfc-1 km bulk shear, and sfc-2 km mean RH were important 

parameters for TOR versus SIG discrimination. These results agreed very well 

those obtained through scatterplot analysis. 

In addition to the discrimination capabilities of the reanalysis data, 

parameters and combinations that performed the best in this analysis were 

consistent with those established by previous proximity sounding studies (e.g., 

Craven 2001) as being particularly useful. Several works identified CAPE-shear 

combinations as being the best discriminators between severe/non-severe and 

significant/non-significant environments. Craven (2001) also concluded that sfc-

1 km bulk shear and ML LCLH were the most useful parameters for his 

observational dataset. His results agree well with the results of this study. 

Issues that concern possible sources of error in this analysis include the 

process of sounding construction (including variable derivations), which could 

introduce interpolation error, particularly when dealing with moisture (i.e., 

specific humidity and dewpoint). Specific humidity values in the reanalysis 

output were occasionally negative; they were set equal to 0. In addition, the 

calculation of dewpoint is empirical in nature. Thus, relative humidity values 

greater than 100% were set equal to 100%. Both "forcing" measures were 

indicative of problems with dewpoint prediction and calculation. Therefore, 

moisture-related fields and the conclusions drawn from them must be used with 

caution. 
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While previous proximity sounding studies introduced methods of quality 

control to eliminate misrepresentative data, no such measures were used in this 

analysis. Thus, to increase the size of the dataset and examine the performance of 

reanalysis parameters, soundings were undoubtedly included which, although 

fitting the criteria for proximity, did not represent the environment in which 

associated severe weather events formed. It was impossible to quantify the extent 

to which these inclusions affected the results, without repeating the analysis with 

measures of quality control and comparing the output to that obtained in this 

study. 

A large number of soundings (197,100) were constructed for the purposes 

of this study. Only 159 of these soundings were classified as TOR, which should 

be a large enough dataset to draw valid conclusions. However, it is possible that a 

small number of misrepresentative soundings could have had a measurable effect 

on the group characteristics of TOR soundings. 

It is possible that some of the results of scatterplot discrimination analysis 

(e.g., ROC area and H-K scores) are unstable, that is, that the results obtained are 

not representative of the actual discrimination utility of each combination of 

parameters. Performing an identical analysis on subsets of the data obtained 

through resampling could reveal information about the stability of these results. 

Despite the inherent risks of using model data, it was clear that the 

NCEP/NCAR reanalysis presented a significant opportunity to expand the volume 

and resolution of sounding data available for research. The goals of this study 

were achieved, and it was demonstrated that reanalysis proximity soundings are 
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capable of revealing information about severe weather environments. The 

reanalysis data will doubtless prove very useful in future endeavors. 

There are many possible areas of future research. Only the eastern two­

thirds of the continental United States was analyzed in this study. The reanalysis 

dataset makes possible, for the first time, high-resolution sounding analyses in 

remote regions (e.g., oceans or the poles) where observational data is limited or 

nonexistent. Analysis of sounding-derived parameters in these areas should yield 

useful results. Only three years of data (and only one time index per day) were 

analyzed. Thus, the behavior of the atmosphere at times other than near 0000 

UTC or on very long (climatological) time-scales was not investigated. Parameter 

climatologies, the efficiency of the atmosphere, and temporal patterns (e.g., 

diurnal and annual cycles of parameters) can be investigated in future studies. 

Research in these areas should provide further insight into the atmospheric 

conditions that characterize the environments in which different types of severe 

weather occur. 
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Parameter (units) 

MU CAPE (J/kg) 
MU CINH (J/kg) 
MU LCLH (m agl) 
MU LFCH (m agl) 
MU LI at 500 mb (dimensionless) 
MU Cap (C) 
MU 3 km CAPE (J/kg) 
Mean RH MU LCL-LFC (%) 
ML CAPE (J/kg) 
ML CINH (J/kg) 
ML LCLH (m agl) 
ML LFCH (m agl) 
ML LI at 500 mb (dimensionless) 
ML Cap (C) 
ML 3 km CAPE (J/kg) 
Mean RH ML LCL-LFC (%) 
Sfc-1 km SR helicity (m2/s2) 
Sfc-3 km SR helicity (m2/s2

) 

Sfc-1 km bulk shear (kt) 
Sfc-6 km bulk shear (kt) 
Sfc-1 km lapse rate (C/km) 
Sfc-2 km lapse rate (C/km) 
Sfc-3 km lapse rate (C/km) 
2 km-4 km lapse rate (C/km) 
3 km-6 km lapse rate (C/km) 
4 km-6 km lapse rate (C/km) 
6 km-8 km lapse rate (C/km) 
850-500 mb lapse rate (C/km) 
700-500 mb lapse rate (C/km) 
Sfc-1 km mean RH(%) 
Sfc-2 km mean RH(%) 
2 km-4 km mean RH(%) 
4 km-6 km mean RH(%) 
100 mb mean mixing ratio (g/kg) 
Sfc-3 km bulk shear (kt) 
MU BRNShear (J/kg) 
DCAPE (J/kg) 

Table 1. A list of the 37 sounding-derived parameters analyzed in this study. 
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r2 RMSE r2 RMSE r2 RMSE 
Distance (nm) 0-37 0-37 37-50 37-50 50-82 50-82 

Number of soundings 95 95 95 95 97 97 
in distance group 

MU CAPE 0.481 1112 0.445 1164 0.250 1886 
MUCINH 0.069 63.05 0.009 108.8 0.047 62.23 
ML CAPE 0.493 866.3 0.422 1009 0.234 1387 
MLCINH 0.008 160.2 0.006 175.0 0.000 161.8 
MLLCLH 0.641 340.2 0.515 498.0 0.522 547.9 
MULCLH 0.233 743.8 0.193 884.2 0.308 832.7 
DCAPE 0.439 330.7 0.482 323.9 0.431 361.4 
Sfc-3 km lapse rate 0.367 1.158 0.375 1.191 0.462 1.178 
700-500 mb lapse rate0.589 0.593 0.678 0.519 0.464 0.821 
Sfc-1 km bulk shear 0.531 7.543 0.479 7.814 0.4ll 7.762 
Sfc-6 km bulk shear 0.677 10.46 0.665 9.400 0.589 11.23 

Table 2. The results of analysis of observed sounding-derived parameter values 
versus corresponding reanalysis values, for all three distance groups. 

Parameter Distance (nm) Intercept Slope 

MU CAPE 0-37 372.8 0.586 
MU CAPE 37-50 448.4 0.644 
MU CAPE 50-82 983.7 0.286 

Sfc-6 km bulk shear 0-37 8.824 0.832 
Sfc-6 km bulk shear 37-50 11.64 0.747 
Sfc-6 km bulk shear 50-82 15.64 0.661 

Table 3. The intercept and slope values for the linear regression lines plotted in 
Figures 1 and 2 (scatterplots of observed versus reanalysis MU CAPE and sfc-6 
km bulk shear, respectively), for all three distance groups. 
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Observed Yes !Observed No 
Forecast Yes I A I B I 
Forecast No I C I D I 

Probability of Detection (POD) = A/(A+C) 

Probability of False Detection (POFD) = B/(B+D) 

Hanssen-Kuipers (H-K) skill score= POD-POFD 

Table 4. The 2x2 contingency table, and formulas for probability of detection, 
probability of false detection, and the Hanssen-Kuipers skill score. 

Intercept POFD POD H-K 

1.0 0.996 0.999 0.00272 
1.1 0.994 0.997 0.00321 
1.2 0.991 0.997 0.00677 
1.3 0.986 0.997 0.0103 
1.4 0.979 0.995 0.0155 
1.5 0.966 0.989 0.0227 
1.6 0.950 0.982 0.0314 
1.7 0.921 0.971 0.0498 
1.8 0.881 0.956 0.0753 
1.9 0.830 0.929 0.0991 
2.0 0.762 0.903 0.140 
2.1 0.673 0.859 0.186 
2.2 0.546 0.790 0.244 
2.3 0.395 0.664 0.269 
2.4 0.228 0.469 0.241 
2.5 0.0974 0.234 0.136 
2.6 0.0255 0.0639 0.0383 
2.7 0.00248 0.00588 0.00341 

Table 5. The results of discrimination analysis of the scatterplot of MU CAPE 
versus sfc-6 km bulk shear for TOR+SIG versus SVR distributions. 
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Parameter 1 Parameter 2 ROC area Maximum H-K 

MUCAPE Sfc-6 km bulk shear 0.585 0.269 
MLCAPE Sfc-6 km bulk shear 0.585 0.275 
MULCLH Sfc-6 km bulk shear 0.564 0.230 
MLLCLH Sfc-6 km bulk shear 0.566 0.232 
Sfc-1 km mean RH Sfc-6 km bulk shear 0.565 0.235 
Sfc-3 km lapse rate Sfc-6 km bulk shear 0.567 0.239 
700-500 mb lapse rateSfc-6 km bulk shear 0.572 0.251 

Table 6. The results of discrimination analysis of two-parameter scatterplots for 
TOR+SIG versus SVR distributions. 

Slope ROC area Maximum H-K 

-0.5 0.58 0.248 
-0.3 0.584 0.269 
-0.25 0.585 0.269 
-0.2 0.585 0.264 
-0.1 0.578 0.255 
0.0 0.565 0.245 

Table 7. The results of discrimination analysis of the scatterplot of MU CAPE 
versus sfc-6 km bulk shear for TOR+SIG versus SVR distributions, for various 
forecast threshold slope values. 

Distributions 

TOR+SIG+SVR versus NON 
TOR+SIG versus SVR 
TOR versus SIG (slope= -0.25) 
TOR versus SIG (slope= -0.10) 

ROC area 

0.673 
0.585 
0.571 
0.594 

MaximumH-K 

0.543 
0.269 
0.236 
0.265 

Table 8. The results of discrimination analysis of the scatterplot of MU CAPE 
versus sfc-6 km bulk shear for different levels of discrimination. 
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Parameter 1 Parameter 2 ROC area MaximumH-K 

Sfc-1 km mean RH Sfc-1 km bulk shear 0.669 0.526 
Sfc-2 km mean RH Sfc-1 km bulk shear 0.661 0.513 
MLLCLH Sfc-1 km bulk shear 0.658 0.514 
ML3 km CAPE Sfc-1 km bulk shear 0.658 0.489 

Sfc-1 km mean RH Sfc-6 km bulk shear 0.633 0.437 
Sfc-2 km mean RH Sfc-6 km bulk shear 0.633 0.449 
MLLCLH Sfc-6 km bulk shear 0.634 0.421 
ML3 km CAPE Sfc-6 km bulk shear 0.632 0.398 

Table 9. The results of discrimination analysis of two-parameter scatterplots for 
TOR versus SIG distributions. 

Parameter 

MLLCLH 
Sfc-1 km mean RH 
Sfc-1 km bulk shear 
MUBRNShear 
Sfc-2 km Mean RH 
DCAPE 
Sfc-3 km bulk shear 
Sfc-1 km SR helicity 
ML3 km CAPE 
Sfc-3 km SR helicity 

ABS(weight) 

1.607 
1.120 
0.688 
0.686 
0.685 
0.612 
0.605 
0.569 
0.565 
0.560 

Table 10. The results of linear discriminate analysis of sounding-derived 
parameters for TOR versus SIG distributions. 
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Figure 1. Observed versus reanalysis values of MU CAPE, with r2 values (from 
Table 3) and linear regression lines (from Table 4) for all three distance groups. 
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Figure 2. As in Figure 1, except for sfc-6 km bulk shear. 
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SVR distributions. The line is an example of a forecast threshold. 
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Figure 4. Relative operating characteristic diagram corresponding to Figure 3. 

The dashed lines are included solely for illustration of text examples. 
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examples. 
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Figure 8. As in Figure 7, except for sfc-1 km bulk shear. 
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Figure 9. As in Figure 7, except for ML LCLH. 
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Figure 10. As in Figure 7, except for sfc-1 km mean RH. 
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Figure 12. As in Figure 7, except for MU CAPE. 
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Figure 15. Relative operating characteristic diagram, with curves corresponding 
to combinations of sfc-1 km bulk shear with sfc-1 km mean RH, ML LCLH, sfc-2 
km mean RH, and ML 3 km CAPE, for TOR versus SIG distributions. 
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Figure 16. Sfc-1 km mean RH versus sfc-1 km bulk shear for TOR and SIG 

distributions. The line is an example of a forecast threshold. 
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Figure 17. Relative operating characteristic diagram corresponding to Figure 16. 
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