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PREFACE

This paper is an expository study of Fletcher and Powell's_version
of Davidon's original variable metric method and generalizations of this
method, that is, parametric families of variable metric methods which
contain the Davidon-Fletcher-Powell method and have basic properties in
common with this method. The main emphasis is on the motivation and
basic ideas leading to the development of these methods and on the theo-
retical properties which form their foundation.
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CHAPTER I
INTRODUCTION

In 1959, W. C, Davidon [14] developed a numerical method for deter-
mining an unconstrained local minimum of a differentiable.function f of
n real variables, El’ ceey Epe This method generates a sequence of
points x = (El, cee) En)T in an effort to locate a point at which the

gradient vector g, given by ' /

af(x) af(x) \T
g(x) = y * ey ’
3% 3%

is zero and at which the Hessian matrix G, whose 1j-th element is given

by

a2£(x)

bEian

y 1, J=1, ees, n,

is positive definite. If f has continuous second partial derivatives,
then such an x is a strong local minimum of f,

The ideas which form the basis for Davidon's minimization procedure
can be described by using geometfical concepts., The variables
51. sesy £ 8TO the coordinates of the point x in the n-dimensionai
space R®, Consider the set S = {x | £(x) ='u} for some constant p., If
the point w = (w,, ...,(un_l,(uh) belongs to the set S and g(w) # O,

without loss of generality suppose (af/aEn)(w) # 0, then by the Implicit



Function Theorem there exists a neighborhood of (w., «.e, wﬁ-l) and a

n-1

unique continuously differentiable function h from R to R defined

on this neighborhood such that & = h(wy, v.u, « ;) and

f(El, veer 10 h(El. cees En_l)) = n for each point (El. cees En-l)
in this neighborhood. The graph of the function h forms an (n - 1)-
dimensional surface in Rn. For n = 2, the one-dimensional surfaces
are called contour lines of the function f. An illustration is given

in Figure 1. The point x*' is the minimum point of f,

©Of
A 4

%1

Figure 1. Geometrical Representation of x and
the Contour Lines of f

If £ has continuous second partial derivatives, then by the Taylor

expansion of f about x, for a sufficliently small change ax,

f(x + ax) = £(x) + gT(x) ax,



Differentiating with respect to x gives
g(x + ax) = g(x) + G(x) ax,

Therefore, in a neighborhood of x, the change in gradient,

ag = g(x + ax) - g(x), caused by the change in x is approximated by
ag = G(x) ax.

If £ 1s a quadratic function, then the Hessian matrix vG is constant and

for any ax,
T . T
f(x + ax) = £f(x) + g (x) ax + 1 ax" G ax,

which implies ag = G ax. If G is positive definite, then the value of
the gradient at the one point x would suffice to determine the minimum,
Since the desired change in g(x) is - g(x), the equation - g(x) = G ax
may be solved for ax, which now represents the change in x needed to
reach the minimum, However, in general, G is not constant and the min-
imum may not be obtalned by the gliven single step from the point x.
Instead, a sequence of points is génerated, starting from the point x.
Since explicit evaluation and inversion of G at points that could be
far from the minimum might not be worth the amount of computation re-
quired, an initial positive definite trial matrix H is assumed for the
matrix [G(x)]-l. The change in x i§ then determined by minimizing f in
the direction - Hg(x)., That is, the next point in the sequence, x*, is

glven by the expression

where the scalar a > 0 is chosen to minimize f(x - o'Hg(x)) with



respect to a'. This one-dimensional minimization, called a linear

search, is illustrated in Figure 2, After making this change in x, the
trial matrix H is improved on the baslis of the acfual relations between
changes in x and changes in the gradient., By iterating these steps, the

sequence of points is generated.

S
>

=1

Figure 2. Minimization of f in the Direction - Hg(x)

Associated with the positive definite matrix H is the norm defined
vy || x [h = ./ xTH-lx, for points x in the n-dimensional space Rn. Thus,
H induces the metric d(x, z) = || x - z lh. Davidon called his method a
variable metric method to reflect the fact that H is changed after each
iteration,

The change in H at each iteration affects the direction of steepest *

descent from a glven point x, because this direction depends upon how



the distance between two points’x and z in R® is measured, In general,
there 1s no reason to assume that a unit of distance along the ;i axis
1s equal to a unit of distance along the I axis, for 1 # j. The defi-
nition of distance, that is, the metric, implies a particular system of
welghting these units,

If the distance between x and z is defined by || x - 2 ”H’ then the
set of all points z at a distance p from x is given by the ellipsoid
Iz - x Ih =y, that is, {z | (z - x)TH'l(z -x) = uz}. The direction of
steepest descent in the neighborhoéd bounded by this ellipsoid may be
defined as the direction from x to that point on the ellipsoid for which
the value of the function f is smallest, It is shéwn in Appendix 1 of
[127] that, as p tends to zero, this direction approaches a limit which

is the direction of the vector
d = - Hg(x).

Therefore, this direction is called the direction of steepest descent
from x relative to H,

If H =1, then || x |h = Jf;i;-is the Euclidean norm and d = - g(x)
is called simply the direction of steepest descent from x, This is the
most common usage of the term "steepest descent." In particular, it is
the direction used in the classical method of steepest descent described
by A. Cauchy [11] in 1847, This method often converges slowly because
the direction of steepest descent and the direction to the minimum may
be nearly perpendicular., An example is shown in Figure 3. This is to
be expected since the direction of steepest descent depends not only
upon the function being minimized, but also on the metric. The distin-

guishing feature of Davidon's method is that the metric is iteratively



adjusted in an effort to make the direction of steepest descent relative

to the metric point toward a minimum.

-
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Figure 3. Direction of Steepest Descent at x
Versus Direction to the Minimum

The effect of a variable metric and its advantage over a constant
metric can be illustrated by a simple example in which the Hessian ma-

trix G is constant. Let f be the function of two variables defined by
2 2

The Hessian matrix G = diag (32, 2) is a constant positive definite
matrix., The contour lines of f are elongated ellipses whose axes are
the coordinate axes and whose centers are at the origin., Clearly, the

minimum point is (0, 0).



Figure 4 shows the sequence of points generated by minimizing in
the direction of steepest descent at each iteration. The metric is
constant and given by the Buclidean norm. Note the inefficient zigzag

behavior in the vicinity of the minimum,

Figure 4. Minimization of f£(x) = 16&% + gg in
Which a Constant Metric Is Used

In Figure 5, the direction - Hg, the direction of steepest descent
relative to the variable matrix H, is used at each iteration, In this
case, the advantage of a variable metric can be seen, particularly as

the minimum is approached.



v

Figure 5. Minimization of f(x) = léii + Eg in
Which a Variable Metric Is Used

Since G"1 is constant and known, the effect of minimiz;ng in the
direction - G'lg, the direction of steepest descent relative to G'l,
can be shown in Figure 6. Recall that in this case one steé in suffi-
cient to reach the minimum. In fact, in the metric space with metric
given by d(x, z) = || x - 2 |E-1, the equation of a circle with center
at the origin and radius p is iTGx = uz. Hence, in this metric space,
the contour lines of f(x) = 16E§ + Eg = %xTGx are circular and the di-

rection of steepest descent, - g(x), points to the minimum, as shown

in Figure 7.
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Figure 6. Minimization of f£(x) = 1655 + %5
in Which the Metric Induced
by ¢t Is Used
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R

Figure 7. Contour Lines of f(x) = %erx
in the Metric Space With

Metric Induced by Gt

Geometrically, the change in the contour lines from Figure 6 to
Figure 7 is the result of a change in scale on the El and §2 axes, In
Figure 6, a unit of distance along the El axis is equal to a unit of
distance on the 52 axis; while in Figure 7, the metric has changed the
weighting of these units so that the axes of the ellipse are of equal
length,

The function f used in the above examble is a strictly convex quad-
ratic function, and some of the results illustrated are dependent upon
that fact. However, the behavior of a method on such a function is
important, Suppose the function f has continuous second partial deriv-

atives and satisfies sufficlent conditions for a strong local minimum



11

at x'. Since the gradient of f vanishes at the minimum, the Taylor

series expansion about x* gives
£(x) = £(x') + $(x - x*)'6(x")(x - x*),

where G(x') is positive definite. Thus, the function f behaves like a
strictly convex quadratic function in a neighborhood of x'. Therefore,
the behavior of a minimization algorithm on a strictly convex quadratic
function is indicative of its behavior in the neighborhood of the mini-
mum of a more general function,

While Davidon's method was not widely publicized, it constltuted
a considerable advance over then current alternatives. In 1963,

R, Fletcher and M. J. D, Powell [26] published a simplified version of
Davidon's method, known as the Davidon-Fletcher-Powell, or DFP, method.
As in Davidon's method, the next point in the iteration, x*, is found
by minimizing f in the direction - Hg(x) from the current point x., How-
ever, while Davidon's method used some empirical devices when updating
the variable matrix H, in the Fletcher and Powell version, H is updated
by adding a symmetric matrix of rank two, defined in terms of H, the
change in x, and the change in the gradient.

The DFP method may be applied to a general differentiable function,
but proof that the sequence of points generated by thls method will al-
ways converge to a local minimum of the function, if one exists, can be
glven only for a more restricted class of functions. In their original
publication, Fletcher and Powell established convergence to the minimum
of a strictly convex quadratic function., The convergence of the DFP
method has since been extended by Powell [47, 49 to more general

classes of functions. .
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Davidon's use of the term "variable metric" was based on the fact
that the variable matrix H, as a positive definite matrix, could be used
to define a metric. However, this term has been applied by some authors
to methods in which the variable matrix is nondefinite, Therefore, the

following general definition will be used.

Definition 1.1t A variable metric method is an iterative minimizatlion
method using the following iteration. Given the point x and the matrix
H, let 4 = - ﬁTg,‘where g is the gradient of f at x. Compute the next
point x* = x + ad, where a is chosen to minimize f(x + a'd) with respect
to o', and update H to H* = H + C, where C is a glven correction matrix.
Different variable metric methods are obtained from different correction

matrices,

Parametric families of variéble’metric methods, containing the DFP
method as a speclal case, have‘beeh developed from a number of different
approaches, The first family was developed by C., G, Broyden [6] in
1967. His approach to the minimization of f by finding x such that
g(x) = 0 is to use a quasi-Newton method for solving this equation,
While Newton's method uses the inverse Hessian matrix at each point in
the 1teration, qu#si-Newton methods use an approximation which is modi-
fled at each lteration. This modification is such that the new approxi-
mation to the inverse Hesslan matrix satisfies an equation called the
quasi-NewtonAequation. The purpose of this equation is to force the
aprroximation to possess, to some extent, the properties of the inverse
Hessian matrix., Since the modification is made by adding a correction
matrix, quasi-Newton methods using linear searches are also variable

metric methods, Famllies of methods can be obtained because these
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conditions do not uniquely determine the correction matrix, Broyden's
family is based on a correction matrix satisfying the quasi-Newton equa-
tion and defined in terms of an arbitrary scalar parameter,

A similar approach was taken by D, F., Shanno [53] in 1970.‘ How-
ever, his family of methods is based on a correction matrix which is a
solution of a particular parametric separation of the quasi-Newton equa-
tion, This corréction matrix depends upon ihe parameter introduced in
the separation.

In 1970, D. Goldfarb [27] obtained a family of methods from a com-
bination of two correction matrices belonging to a family derived by
J. Greenstadt [28] using a variational approach, The variational prob-
lem formulated by Greenstadt was to find a symmetric correction matrix
of minimum norm which also satisfies the quasi-Newton equation. The
norm used was defined in terms of an arbitrary positive definite matrix.
Thus, the solution ylelded a famlly of correction matrices.

Although different approaches were used in the development of these
one-parameter families, the families of Shanno and Goldfarb are equiva-
lent to Broyden's 196% family., In addition to containing the DFP method
as a speclal case, this one-farameter family has important properties in
common with the DFP method. Therefore, this family is a generalization
of the DFP method.

Another family of correction matrices equivalent to Broyden's was
published in 1970 by Fletcher [23]. It was developed as a combination
of the DFP correction matrix and one derived by an inverse relationship
to the DFP matrix, However, Fletcher is concerned wilth properties of
the updating formula when used in an algorithm not requiring linear

searches,
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The DFP method is generally successful in practice, but numerical
difficulties have been noted by Y. Bard [3] and Broyden [6], among
others, In particular, the variable matrix H has exhibited a tendency
toward singularity. Generalizations of the DFP method offer the possi-
billity of choosing the parameter to eliminate this tendency, while still
retaining the desirable characteristics of this method. This idea has
been explored by Broyden [7, 87 and Shanno [53].

In 1972, L. C. W, Dixon [17] established a particularly useful re-
sult, He proved that, given the same initial conditions, the sequences
of points generated by different members of Broyden's 1967 family are
identical if the linear search is exact., Therefore, since the DFP meth~
od belongs to this family, Powell's general convergence theorem applles
to the other members.,

More general families of variable metric methods have also been
developed., In 1969, J. D. Pearson [42] developed a class of variable
metric methods based on the generalized solution of a set of under-
determined linear equations. This class was extended to a more general
family of methods by N. Adachil[l] in 1971, Another general family was
constructed by H, Huang [30] in 1970 using a unified approach based on
the analysis of certain desired properties. Work in classifying these
general families has been done by Huang [30], Dixon [187, and Adachi
[2].

Thus, since Davidon's original algorithm in 1959, much research
has been done on variable metric methods, The numerous papers published
have simplified Davidon's method, developed general families, and estab-
lished new theoretical results. The best known variable metric method

is Fletcher and Powell's simplification of Davidon's method. General
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families offer a choice of parameters that may lead to improved algo-
rithms, Also, the development of these families provides a general
theoretical foundation that alds in the understanding of the members.
Hence, the study of the DFP method and generalizations of this method
is justified.

The primary purpose of this dissertation is to unify the various
papers written in this area and to discuss and organize their results,
The paper will be concerned mainly with the DFP method and the develop-
ment of generalizations of this method. The major goals are explanatlion
of these methods with an emphasis on the motivation and basic ideas
leading to their development; discussion of thelr theoretical and numer-
ical properties, concentrating on those principal results which form the
foundation for these methods; and organization and classification of
these methods based upon thelr relationships and common properties,

The following organization will be used. The DFP method will be
presented first, in Chapter II. This method was the first widely used
variable metric method, and as such, provided a basis and motivation for
its generalizations, In addition, it will provide an introduction to
the basic concepts and help the reader to develop a familiarity with the
notation and terminology used. The one-parameter family of methods will
be the topic of Chapter III, which will explain the different develop-
ments of this family and will examine ihe various relationships. The
properties Qf this family and the search for an optimal parameter will
also be investigated., Chapter IV will discuss the development, prop-
erties, and relationships of the more general families. The common
properties and the interrelationships of the methods considered in this

paper will be summarized in the last chapter, Chapter V.
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Variable metric methods are a particular class of methods for
finding an unconstrained local minimum of a differentiable function f
of n real variables, Since a necessary condition for the point x' to
be a local minimum of f is that g(x') = 0, the primary objective is to
locate a point satisfying this condition, Thus, the problem of finding
a local minimum of f leads to the general problem of solving a system

of nonlinear equations

hi(El’ XEX) En) - O' i= 1. ceey M,

This system of m equations in n unknowns, El' ooy En' may be expressed
as h(x) = 0, where h(x) = (B (5}, voes T ) wuuy B (Egy veey £

For the minimization problem, m = n and h1 = af/azi. Hence, any method
used to solve a system of nonlinear equations may be applied to the
minimization problem, In addition, it is possible to introduce refine-
ments into the method to take account of the special nature of the
system, For example, the method may be modified so that the value of

f decreases at each iteration., Also, if f has continuous second partial
derivatives, then the Jacobian matrix of g, being the Hesslan matrix of
f, must be symmetric.

Alternatively, the problem of solving the system h(x) = O can be
converted into a minimization problem, Let p be a function defined on
R with the property that the point x = 0 is the unique global minimum
of p. For example, p(x) = fo. Then define the function r by
r(x) = p(h(x)). If the system h(x) = 0 has a solution, then x' is a
global minimum of r if and only if h(x') = 0. Hence, in order to find
x' 1t suffices to minimize r, In the case that h(x) = 0 has no solu-

tion and p(x) = xTx, a global minimum of r is called a least-squares
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solution of the system, since it minimizes

(x) = 1, [n, T,

The minimization of a function which is a sum of squares of non-
linear functions is an important special case., General algorithms for
unconstrained minimigation can be applied to this function, but usually
it is much more efficient to use an algorithm that takes account of the
fact that the function is a sum of squares., The least-squares problem
typically arises when attempting to estimate certain parameters in a
functional relationship by means of experimental data, For example,
suppose the quantity Y is assumed to satisfy ¥ = u(@; x), where u is a
known function of an independent variable § and an unknown parameter
vector x = (El. cees En)T. Then for various values ¢i’ 1=1, ..., W,
measurements %1. 1=1, ... n, are made in order to determine x. If
these measurements were exact, then the vector x would satisfy the

system of m equations in the n unknowns, El' seey En’

u(¢13 x) ’an 1=1, ..oy m,

However, in general, the measurements are subject to error so that more
measurements than the number of unknowns are taken, that is, m > n,

and x is determined to minimige the sum of squares of the deviations
yi - u(ff; x). That is, the problem becomes that of minimizing the

function

£(x) = T 4 - s 0F.

A comprehensive study of the iterative solution of systems of non-

linear equations may be found in the book by J., M, Ortega and
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W. C. Rheinboldt [ulj. Additional references include G. D. Byrne and
C. A, Hall [10] and J. W. Daniel [13].

It is assumed that the reéder of this paper has had an introduction
to numerical optimization. A college level background in analysis and
linear algebra will also be assumed. A good summary of the fundamentals
of function minimization is given by W. Murray [38]. This book also
contains an appendix reviewing some aspects of linear algebra relevant

to optimization,



CHAPTER II
DAVIDON-FLETCHER-POWELL METHOD
Description

The DFP method fi6r unconstrained function minimization, published
by Fletcher and Powell [267] in 1963, is a simplification of the variable
metric method developed by Davidon [14] in 1959. The basic concepts of
this variable metric method, discussed in Chapter I, also apply to the
DFP method.

The DFP method generates a sequence {xk}. k=0,1,2, ..., of
approximations to a local minimum of a differentiable function f

according to the following algorithm.

Algorithm 2.1 (Fletcher and Powell, 1963): Given an initial vector X

and an initial matrix H, = I or any positive definite matrix.

0
For k=0,1, 2, ...,

If g, = g(xk) = 0, then stop.

Else, set dk = - Hkgk’

find op > O which minimizes f(xk + udk) with respect to a,

set sk = akdk'
xk+1 = xk + Sk,
yk = gk+1 - Skn
T T
e s P
k+1 k T T °
N Sk

19
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Since the algorithm is terminated when the gradient at the current
point Xy becomes zero, this point X is a stationary point of f but
not necessarily d local minimum. That is, if f has continuous first
partial derivatives, then the point Xy satisfies necessary but not
sufficient conditions for a local minimum. However, if the function f
has continuous second partial derivatives, then the stationary point Xy
is a local minimum if the Hessian matrix G at Xy is positive definitef
In an 1mp1émentation of Algorithm 2.1 the termination criterion would
be Ilgk H; < € for some given tolerance € > O since, in general, g

will not be exactly zero for any k.
Basic Properties

The step from x, to x is in the direction d The

k k+1 k=~ Hibye
step size 1s chosen to minimize f in that direction, that is, to mini-

mize f(xk + adk) with respect to a. Hence,

df(xk + adk) o
- 1
da =t
that is,
T T
dkg(xk + akd.k) =d g, =0 (2.1)

It was established in Chapter I that, for'Hk positive definite, this
direction is the direction of steepest descent from X relative to Hk.
Thus it is expected that f(x) decreases as x moves from x, in the
direction dk' This is easily shown for a function f having contlinuous
second partial derivatives. For a sufficliently small step a > 0, the

first order terms in the Taylor series for f glve
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£(x, +0ad ) = £(x) + ad & -
kT 9y k Bk
Since a > 0, this implies that
, T
f(xk + adk) < f(xk) if and only if dig <0,

that is, the direction 4, is downhill if and only if - gEHkgk < 0.

k

Therefore, if H 1s positive definite and & # 0, there exists an a > 0

k
such that

f(xkﬂ) = f(xk + akdk) < f(xk).
This property, known as stability, is defined below.

Definition 2.1: An iterative minimization method is stable if the value
of the function being minimized is decreased at each step. That is, if
{xk}, k=0,1, 2, ..., 1s the sequence of points generated by the
method and f is the function being minimized, then f(xk +1) < f(xk) for

each k.

Stability is a desirable property for variable metric methods
since it guarantees that some progress in decreasing f is made at each
step. However, it is not sufficient for convergence because the
sequence of function values at the points generated by a.stable method
may be unbounded below.

The concept of étability may also be considered geometrically.
The gradient g 1s normal to the surface f(x) = f(xk) at the point x .
Hence the direction d, will be downhill if and only if the angle )

k

between dk and - 8 is acute. This is illustrated in Figure 8 for

n = 2. The angle f§ between the vectors d; and - g _1is defined by



-,
e, 10l e Il

Thus, the angle § is acute if and only if cos ¢ > 0, that is, if and

cos f = 0<pg<m.

T
only if dkgk < 0.

Figure 8. Downhill Direction dk

Therefore, to establish that the DFP method is stable it must be

shown that the variable matrix H, is positive definite for each k.

k
Since Ho is positive definite; an inductive argument 1s used. The
following theorem, first proved by Fletcher and Powell, will be proved

as a special case of a general family in Chapter III.

Theorem 2.1t For each k, the varlable matrix Hk in the DFP method

defined in Algorithm 2.1 is positive definite.
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Corollary 2.1s The DFP method is stable.

Fletcher and Powell also proved some properties of the DFP method
when applied to quadratic functions. For the remainder of this section,

let the function f be given by

f(x) = %xTGx +alx + Yy (2.2)

where the Hessian matrix G is positive definite. Then, since f is a
strictly convex quadratic function,_f has a unique minimum. It was
shown that the method, when applied to this function, finds the minimum
in at most n 1ter§tions. Termination in less than n iterations would
occur if Hk = G"l for some k < n, since, as shown in Chapter I, a search

in the direction 4, = - G-lgk would find the minimum. This property,

k
called quadratic termination, is defined below. It is important because
it assures rapld convergeﬁce in the final stages of minimization since,

as shown in Chapter I, even a nonquadratic function behaves approxi-

mately quadratiéally in a neighborhood of a minimum.

Definition 2.2: An iterative minimization method is quadratically
terminating if it finds the minimum of a strictly convex quadratic

function of n variables in at most n iterations.

The term "quadrétic convergence" 1s sometimes used for this prop-
erty instead of "quadratic termination.* Since the above definition
does not mean that the sequence {xk]. k=0,1, ..., converges quad-
ratically, the term "quadratic convergence" will not be used to avoid
confusion with the use of this term to mean rate of convergence.

Proof of the following theorem, establishing quadratic termination
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for the DFP method, will follow as a special case of a general family in

Chapter IV,

Theorem 2.2: If f i1s a strictly convex quadratic function of n vari-
ables, then the DFP method finds the minimum of this function in at

most n iterations.

Fletcher and Powell's proof of this theorem is an induction proof

establishing
T
sist=0,0§_1<j5k, (2.3)
HGs, =s,, 0<1 <Kk, (2.4)

for 1 < k < n. If the algorithm has not terminated due to & = 0 for

some 0 <k <n, then @, > 0, 0 <k <n. It then follows from (2.3) and

the definition of s, that the search directions dgs dys «vep 4, are
nonzero and
T .
4d,Gd, = 0, 0<i < j<n -1.
177 - -
This property, called conjugacy, is defined below.
Definition 2.3: The nonzero vectors Wor Wys eees "k are conjugate with

respect to the positive definite matrix A if

T
wiij 0, 0<1<j<k.

It is easily shown that this definition implies that the vectors

w revy W are linearly independent. The following theorem shows that

0!
termination can be obtained by performing linear searches in n

conjugate directions.
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. Theorem 2.3t Let the iterative minimization method in which each iter-

ation is a linear search in a given direction, that 1s,

X4y ™ xk + akdk’ k=0,1, ...,
where ak is such that
T
A8,y = 0 (2.5)

be applied to the function f defined by (2.2). If the search directions
'do. dl, veay dn-l are conjugate with respect to G, that 1s, are nonzero

and satsify

dIGdj=0,051<j§k,15k_<_n-l. (2.6)

then the minimum will be found in at most n iterationms.

Proof: For f defined by (2.2), the gradient 84y 3t Xp,y 1s glven by

Besl = FXpq T 2-

Using the iteration formula repeatedly, it follows that

841 = G(xk + akdk) +a

G(x1+1 oy ad g F akdk) +a

=By * O 5ugay 040y 0SSk -1,
Thus, by (2.5) and (2.6),

T

a T

T K ) i
18cs1 = Y84y * 2 gy 0540857 0 0SSk -1

Combining this equation with (2.5) gives



g6
=0, 0<1i<k, (2.7)
which, for k = n - 1, ylelds
d'g =0,0<1i<n-1
18 = V2= %

The conjugacy of the vectors do. dl' coey dn-l implies their linear
independence. Hence, 8, is orthogonal to n linearly independent
n-dimensional vectors which is possible only if 8, = 0. Since G is

positive definite the stationary point X is the desired minimum.

Theorem 2.3 is the basis for a class of quadratically terminating
methods, known as conjugate direction methods. It follows that the DFP
method is also a conjugate direction method and obtains its quadratic

termination on that basis.

Definition 2.4: A conjugate direction method is an lterative minimi-
zation method in which each iterati;n is a linear search in a gliven
direction, with the property that the directions generated for a quad-
ratic function with positive definite Hessian matrix are conjugate with

respect to that matrix.

In the DFP method, as in Davidon's method, the variable matrix H
is used to approximate G-l, the inverse Hessian matrix. For the quad-
ratic function f, an interesting result 1s that the modifications to
this variable matrix, using only evaluations of the function and its
gradient, are such that Hn = G-l. That is, the n-th approximation is
the exact inverse Hessian matrix of f. This result is obtalned for the

DFP method by modifying H, so that for each Kk, Sgr Syr erve Sy are

k
linearly independent eigenvectors of Hk+lG with elgenvalue unity.
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That 1s, from (2.4),

H 168y, =8;, 0<1<k+1. (2.8)

For k =n -1, (2.8) glives
HGs, =s,, 0<1<n. | (2.9)
If oy >0, 0<1 <n, then the vectors Sgr Sy+ +++s S,y are nonzero and

hence by (2.3) are conjugate with respect to G. This implies that they

are linearly independent, so that if E is the matrix

E = [so, Syr eees sn_1]

then E-l exists. Thus, from (2.9), HnGE = E which then implies HnG =TI,

At the k-th iteration, the matrix H, is modified by adding to it

k
the two matrices
T T
- H vy SeSk
Ak=—T—-——,andBk=T .
Vi Sk -

The form of the matrix Ak'can be deduced because equation (2.8) must be

valid for 1 = k. That 1s, the equation

He 108, = S (2.10)
must be satisfied. For f given by (2.2),
S
= (ka+1 +a) - (ka + a)
= Gs, . (2.11)

k
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Hence, equation (2.10) is equivalent to

H (2.12)

k+17k = Sk’

which, using the definition of H 41’ glves the equation

k

H + A + B =8 .,

o S 34 it 4 s *

From the definition of B, it is easily seen that B = Sy, 80 that A

k Kk k
must satsify the equation Akyk = - Hkyk. This implies that the simplest

form of A, is given by

k

T
I
k T
kk

for some vector zk. Since Hk’ and thus Ak' is to be symmetric,

T

- Eeily
k=TT :
Vit

1

B, is the factor which makes H tend to G = in the sense that for

k
the quadratic function f,

-1 n-1
¢ = 10 Bi* (2.13)

This result can be proved from the conjugacy conditions (2.3) because

these imply

T : T
E GE-f [so. Syv eees sn_l] G[so. Sy e sn-l]
T T T
= dlag (syGsys 5,68y, «+es 8 1G5 ).

Then, if D is this diagonal matrix, it follows that G = (ED‘lET)'l.
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Thus,
¢t = (ep71)ET

- [(ngso)flso, cees (Sa-lcsn—l)-lsn-ljtso’ cers Sn-l]T

= z:::;é (siGsk)'lsksi. (2.14)
Using (2.11) and the definition of B,, equation (2.14) glves

e BT G
=2 ﬁ;é | By

and equation (2.13) is established.

Equation (2.12) is also true for nonquadratic functions. From the

definition of H

k+1’
T T
Hy yH S. s
kWkYK 'k Kk .
Hen ¥y = Hevye - Ty Yt 1 Y T Sk (2.15)
Y'Yk Sk

This result is significant because equation (2.12) is the quasi-Newton
equation referred to in Chapter I. The derivation of this equation will
be discussed in Chapter III where it will be used to define a quasi-
Newton method. It will then\follow from (2.15) that the DFP method is
a quasi-Newton method.

In 1968, G. E. Meyers [3?] explored the eigenvalues and eigen-
vectors of the variable matrix H used in the DFP method with Ho = I
for the quadratic function defined by (2.2) leading to a proof that the
gradient vectors at each step are mutually orthogonal. From this, a

geometric interpretation of the H matrix in terms of the projection of



the negative of the gradient into a solutlon subspace was derived.

Since each matrix Hi is positive definite, its elgenvalues are
positive real numbers. In particular, it will be shown that at least
n -1 -1 of these are unity when the function is quadratic. It is

assumed that g, # 0, 0<1<n, The following lemma is needed.

Lemma 2.1: The scalar relatlion gng_lgi = 0 holds for 0 <1 < j<n.

Proof: From (2.7)

ggdi =0,0<1<j<n. (2.16)
Also, by the definitions of di and Hi'
T T
By 3% 9% 5151
d = -|H , --t=2di=lidol ded 222t g,
1 1-1 T o T 1
¥i1%11%14 1-191-1

Using the definition of Vi1 and (2.1) with the symmetry of Hi-l’

T T T
Yialia¥ia = &8 * 848 18 0
T T
¥i1Hy 18 = &y 18, and
T
si_lg1 = 0.
Hence, the expression for di reduces to
T T
4 . HyaYa%iafa ) %1ia%ia
= - - a2 == g
1 11~ T, T T u T 1
€M 18 T &

1-1811 %1914

T
H, .y, (gH, -&) .
- H, e 1-1¥31 ) 115/ (2.17)
gty 18 * &M 181
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Substituting this expression for d, into (2.16) gives

1
T T
T gy Y; (g 8)
ety a8 ~ T T = 0.
J gH, & + & H .8
171-18 7 €171 181
But, by the definition of y, , and (2.16),
T T
1% T &g
implying that
T
H, .8
T 17118 i}

T T
gty 18 * & 18,

For the factor in brackets on the right to be zero, gf—lni-lgi-l must be
zero. This is impossible since 81 is assumed to be nonzero and Hi-l

is positive definite. Thereforé, 3?“1-151 = 0 and the lemma is proved.

Theorem 2.4: For 0 <1 < j < n, the gradients gj are eigenvectors of

the matrix H, with eigenvalue unity.

1

Proof:t The definition of H,, for i > 0, gives

1'

T T

_ Hy 1%y (0 gy g85) sy (85 ,85)

Higs =H 185-—"—"7 - T y
Yiatiavia S31%14

T

1-185 = 0, and by Lemma 2.1 and (2.7),

But, by (2.7), s

T

L

T T
1-185 = €My 185 - & F, 185 = O

implying that Hig = H Repeated application of the above reason-

37 T8y
ing gives the result
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Higy = Hy 18y =« + = Hogy = gy

which establishes the theorenm.

An immediate consequence of this theorem is the mutual orthogonal-

ity of the gradient vectors. The theorem shows that

Hig =gy 0<1<y<n,

so that g?gj = IHigj. Then, by the symmetry of H, and (2.7), 1t fol-
lows that gfgj = - dggj = 0, Since mutual orthogonality of nonzero

vectors implies their linear independence, it is confirmed that unity is
an eigenvalue of’Hi of multiplicity n -1 - 1.

A further consequence of this theorem is that the expression for
the search diiection for a quadratic function can be reduced to a recur-

sion formula. This formula is derived in the following corollary.

Corollary 2.2: For a quadratic function, the direction vectors of the
DFP method can be given by the recursion formula
T T
_[eygyy + (gg)ly

d
1 T T
818 * &394,

, 1> 0.

Proof: From (2.17),

T
d = -H + (giHi-lg£H1~l(g1 = gi-l)
1 1-181 T T .

gy 18 * & i 18,

By applying Theorem 2.4,

T
. (&,8,)(gy +4, ;)
B - g +  —m e .
1 1 T _ T o
€18 ~ & 3%
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Combining these two terms gives the equation

T T
i T T o
€18 ~ & 1%

‘and the corollary is proved.

From these results, a geometric interpretation of the H matrix for
a quadratic function can be given, namely that the matrix H1 projects
the negative of the gradient 8y into the space spanned by di’ P dn—l'
This projected gradlent becomes the next direction of search for the
minimization of the function in this space. Since d1 = - Higi' the

following theorem establishes this interpretation.

Theorem 2.5: The direction vector di' 0 <1 <n, in the DFP method,
with Ho = I, applied to thq function f given by (2.2), is the projection
of the negative of the gradlent 8y in the space spanned by the vectors

di. s00 g dn-l.

Proof: Let W be the space spanned by di’ coey dn-l' Since the direc-
tlon vectors are conjugate wlth respect to the Hessilan matrix G, the
vectors Gdo, ceay Gdi-l span V, the orthogonal complement of W, Hence

" 1t must be shown that
“ g =4yt
where q, is in V. Noting that, by (2.11),
Gd, = (1/a,)Gs,
J ( / j) J

- (/ayy,,



it is sufficient to show that

= &y ifi1=0,

- g - ZJ-onj'ifp<i<n'

for some scalars y 3 Proof is by inductlion. Since do = - &y the

induction is valid for 1 = 0. Assume that

4y "8 - Sy Sy 01 <n

where the §. are scalars. Then

J
T o T 1-2 T
€391 = " 8181 - 2 5m0 0381 1(85n " 83)s
which, by the mutual orthogonality of the gradient vectors, reduces to

T o a_ T _s T
€41% 1 831811 ~ °1-281181

=-(1+56 (2.18)

)er
1-2/811811°

From Corollary 2.2,

(T T
&g a4 )+ (gg)Y

d T T
€18 ~ & 1%

and substituting (2.18) and the induction hypothesis gives

T
- sifl + ?;;2)(31-151-1) (gigi)(gi a2t E: 8,3,)

4 = T
grg + (1463 5)(g 18 )

which can be rewrltten as
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T T
1 T T
gy + (1 +5, 5)(e 18 )

T i-2

T T
g8y * (1 + 0, )81 18 )

Defining
_ - gigl d
Y11 3§31 +(1+ 51_2)(sf_1si_1)' "
Yy Yi-laj' j=0, ..., 1 -2,
glves
dy = -8 - Y3933 - 5523;3 ¥5%3

i-1
& 250 V)
and the theorem is proved.
Convergence

In the years following its publication in 1963, Fletcher and
Powell's modification of Davidon's variable metric method became one of
the most frequently used and most successful techniques for finding the
minimum of a differentiabie function of several real variables. How-
ever, until 1971, it had been proved only that the method is successful
if the function is a strictly convex quadratic function, (Theorem 2.2);
although in practice, it handled many types of functions successfully.
It is difficult to prove convergence because the method is intended to

be applied to general differentiable functions.
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In 1971, Powell [47] extended convergence of the method to a class
of functions more general than strictly convex quadratic functions. The
conditions the function f must satisfy are:

1) f has continuous second partial derivatives, and

2) there exists a positive constant € such that, for all x,

the elgenvalues of G(x) are not less than €, where G(x)

is the Hessian matrix of f at x.
Condition 1) restricts the class of functions to which f belongs to one
for which sufficient conditions on f at the minimum exist. Conditlon 2)
is a very strict convexity condition called uniform convexity. Since it
implies that G(x) is positive definite for all x, if f satisfles condi-
tions 1) and 2) then x' is a strong local minimum if g(x') = 0. 1In
other words, the sequence {xk}, k ¥ 0,1, ..., converges to x' if the
sequence {gk}. k=0,1, ..., tends to zero. The convergence theorem

established by Powell is stated below.

Theorem 2.6: If the function f satisfies conditions 1) and 2), then the
sequence of points, {xk}, k=0,1, ..., generated by the DFP method,

converges to x', the point at which f is minimum.

Proof of this theorem is given as proof of Theorem 1 in [47]. The

;1, to 6bta1n an

expression for the trace of Tk’ and to show that this expression implies

method of proof is to define Tk to be the matrix H

a contradiction unless the sequence of gradients {gk}, k=0,1, ...,
tends to zero.

By requiring one other condition on the function f, Powell also
proves that the DFP method converges superlinearly. The condition re-

quired is the Lipschitz condition at the minimum x' given below.
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3) There exists a constant § such that, for all vectors x

belonging to the set S = {x | £(x) < f(xo)}, the inequality

azf(x) vazf(x')
- <8 [Ix-x"|, 4, §=1, 2, ..., n, (2.19)

38,18 EJ. azi an

is satisfied.
The Lipschitz condition (2.19) need only be satisfied on the set S
since the stability of the DFP method implies that all points x, gener-
ated by the method belong to this set. The following theorem then

establishes the rate of convergence for the DFP method under these con-

ditions. Proof of this theorem is found as proof of Theorem 4 in [47].

Theorem 2.7: If the function f satsifies conditions 1), 2), and 3),

then

where the vectors {xk}. k=0,1, 2, ..., are the points generated by
the DFP method and where f(x') is the minimum value of f. That is, the

. Y
DFP method converges superlinearly.

If f satsifies conditions 1) and 2), then for each vector X the
set S defined in 3) has additional properties established by the fol-

lowing lemma.
Lemma 2.2t S = {x | £(x) < f(xo)} is closed, convex, and bounded.

Proof: Since S = f-l(-oo, f(xo)], the closure of S follows from the

continuity of the functlon f. The convexity of the set follows from
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the fact that f is a convex function, If x and z are in S and 0 <6 <1

is a scalar, then, by the convexity of f and the definition of S,
£f(ox + (1 - 6)z) <d6£(x) + (1 - 8)f(z)
< 6f(xo) + (1 - é)f(xo)

Thus, £(6x + (1 - §)z) < f(xo) which implies 6x + (1 - 8)z is in S.
Therefofe, S 1s convex.

To show that S is bounded, let d be any direction through X that
1s normalized, that is, |ld ||, = 1, and let h be the function of one

variable defined by
h(a) = f(xo + od).
Then
h'(a) = dTg(xo + ad), and h*(a) = 4'G(x, + ad)d.

If U is the orthonormal basis of eigenvectors corresponding to elgen-
values kl’ ceey ln of G(xo + ad), then for some vector ¢, d = Uc. Thus,

by condition 2),
aa(x, + ad)a = c'u'G(x, + ad)Ue
= ol diag (xl, coes Xn) c
>ellelf

That is, h"(a) > €, since the orthogonality of U implies that

Il e “2 = || 4 ”2 = 1. Then the function r defined by

r(a) = h(a) - h(0) - aa’a(x,) - o’
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is convex since
r(a) = h"(a) - €> 0.
Also, r(0) = r'(0) = 0, so that, for each a, r(a) > 0, and hence
T 1.2
h(a) > h(0) + ad"g(x,) + a%€.
But, the right hand side of this inequality exceeds h(0) if
' T
la|> 2] &(x,) 1l,/€> 2/ d"a(xy) Ve.
That is,
£(xy + ad) > £(xg) 1 | (xo + ad) - xy |}, > 2ll elxg) Il/€.
Thus, since the direction of d is arbitrary,
£(x) > 2(xp) 12 |1 x - x, I, > 21l e(x;) I}, /<.

Therefore, the set of points x satisfying the condition f(x) < f(xo) is

bounded and Lemma 2.2 is proved.

An important corollary of this lemma and the fact that f is contin-
uous is that the minimum value of f is attained at some finite point x°'.
Moreover, the minimum value of f is attalned at only one point. By the

proof of the lemma,
£(x) > £(x') 1f || x - x* ||, > 2|[ &(x*) ||,/€.

But, g(x') = 0, so if x # x', f(x) > f(x'). In addition, this lemma
and the definition of a derivative imply that if f is three times con-

tinuously differentiable at x', then f satisfies condition 3).
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It should be noted that Theorems 2.6 and 2.7 are sometimes relevant
to non-convex functions, because the conditions on f have to be obtained
only for values of x that satsify the inequality f(x) < f(xo). " More-
over, the structure of the algorithm is such that aﬁy calculated vector
X, can be regarded as a starting point for the later iterations. There-
fore, if the algorithm is applied to a non-convex function, and if it
happens that a point Xp is calculated, such that the derivative condi-
tions are met for all x satisfying the condition f(x) < f(xk), then
convergence to the minimum at a superlinear rate is implied. Moreover,
if the sequence of points {xk}. k=0,1, 2, ..., converges to a local
minimum of f that 1s not the global minimum, then it may also be pos-
sible to apply the theorems to infer superlinear convergence, by
isolating the domain of x to a neighborhood of the local minimum., How-
ever, no conclusions about the behavior of the algorithm may be drawn
when the estimates x, are in a region where the second derivative
matrices of f do not satisfy the required conditions.

In 1972, Powell [49] obtained some preliminary results that depend
on much less restrictive conditions on f. The conditions imposed on f
are:

1) {x|£(x) < f(xo)} is bounded, and

2') f has continuous second partial derivatives bounded by

the inequality || G(x) ”F <v.
The following results can then be derived from these conditions and the
conjecture stated below.

There exist functions f, satisfylng conditlons 1') and 2'),

for which the sequence of numbers {Ilgk ”2}' k=0,1, .0y

is bounded away from zero. That is, there exists a positive
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constant p such that
g llzu, k=0,1, .... (2.20)

This conjecture has not been shown to be false for general functions f.

Proofs of the lemmas may be found in Section 4 of [4#97].

Lemma 2.3: There exist positive constants iy and oy such that the trace

of T, ), is bounded by the

k+l
inequality

1
, where T, ., =H denoted by Tr(T

k+l’ k+l

2
ko ly, |E k|l 1B
WSl e,

i=0 8; Yy

Lemma 2.4: There exists a constant such that ||H, ,.&g is
S U3 v B 12

bounded by the inequality.

k
18t Sg *+ 2040 sy I

Lemma 2.5: There exists a positive constant My, such that the trace of

T 1s bounded by the inequality .

k+1
2 2
” &+l ”2 uu(k"'l)
< Tr(T,,,) < ———.
T o K/ =TT
Br+1" k+18K+1 81 kBx

Lemma 2.6: There exists a positive constant us such that

3/2 T
k ngkgk < pS.

Lemma 2.7: ) ;20 ||si “2 diverges.

If the conjecture were false, it would follow that the limit points

of the sequence {xk}, k=0,1, ..., generated by the DFP method include
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at least one stationary point of f. The term "stationary point" must
‘be used instead of "local minimum” because the conditions imposed on f
are not sufficient for g(x') = 0 to imply that x' is a local ninimum.
Although some of the consequences of the conjecture given in the above
lemmas are surprising, Powell was not able to show that they are contra-~
dictory. However, he does show that if the extra condition that f is
convex is included, then inequality (2.20) leads to a contradiction.
Thus, the DFP method converges for convex functions satisfying condi-
tions 1') and 2'). This is an advance on Theorem 2.6 which requires f
to be uniformly convex. The following lemma is also needed to prove

the convergence theorem.

Lemma 2.8: If the function f, satisfying conditions 1') and 2') 1is
convex, then the inequality
Iy, 1B

T
Kk

<v,k=0,1, ...,

holds, where v is the bound of condition 2'). That is, for each x,
I 6(x) ||z < v, where the matrix norm is the Frobenius norm induced by

the Euclidean vector norm.

Proof: Differentiation gives the equation

dtg(xk + ¢sk)]
ag

= G(xk + ¢sk)sk

which implies, from the definition of Yie» the identity

v = I alx, + gs)s, af = (15 Glx, + fs) afls, .
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That 1is,
s ‘ (2.21)

where the ij-th element of the matrixuak is

ag.

Sl 2e(x, + #s,)
0 aEia Ej

For any vector w # 0,

T= 1 T
LA IO W G(xk + ¢sk)w ag > 0

since f convex implies that

wTG(xk + ¢sk)w >0, 0<@g<1.

Thus, Gk

it has a square root. Let 2y be the vector

is positive definite or positive semi-definite and therefore
_gl/2
Condition 2') and the definition of G, give the bound 16, Il <v

which implies the inequality

T -

< Nz ILIE lliz 1,

<vilz .
Substituting the definition of Zp in this expression gives
T= T=



Then, by using equation (2.21), the inequality
T < VST
Ve = VoiIk
is obtained and, since sgyk > 0, the lemma is proved.

Theorem 2.8t If f is a convex function, having continuous second
partial derivatives bounded by the inequality || G(x) IE <V, and if the
set {x [ £(x) < f(xo)} is bounded, then if the DFP algorithm is applied
to f, the sequence of functlion values {f(xk)}, k=0,1, ..., terminates

at, or converges to, the least value of f.

Proofs It will be shown first that the conjectured inequality (2.20)
glves a contradiction. If this inequality were true, then Lemmas 2.3

and 2.8 would imply

‘ —k [
Tr(Ty ) < ”22 — Sk +1)v.
i=0 A

and therefore, from inequality (2.20) and Lemma 2.5 the inequality

2 2
M -S|
< k+1 %2

T

B

=7
K18k Bl Tee1Biend

< Tr(Tk+1)

< uZ(k +1)v

is obtained. This gives the bound

2

V) .
T

g . H g > — (2.22)
k+1 k+1°k+1 uz(k + 1)v
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However, Lemma 2.6 implies the bound

T U
8l 18 0q < -——-—5-—7-
k+1 k+1°k+l (k + 1)3 2

which contradicts expression (2.22) when k becomes large. Therefore,
the sequence {llgk “2}' k=0,1, ..., is not bounded away from zero,
so that the algorithm terminates because some 8 is zero or

liminf || g |, = O.

k > o k '2

In the latter case, there exists a subsequence {gk }, J=1, 2, ...,

J
such that
limit g = 0. (2.23)
j>o 5
Because the sequence !{x. |, k=0, 1, ..., and hence( x vy Jj=1, 2, ..,
k k

is in a compact set, namely {x | £(x) < f(xo)}, the subsequence has a
1limit point, x' say. Without loss of generality, it may be assumed the

subsequence {x }, j=1, 2, ..., converges to x'. That is,

Ky

imit x = x'. (2.24)
J=>o 7

Then, since g is continuous,
linit g = g(x*)
J2o
and by (2.23), g(x') = 0.
In the other case, if the iteratlions of the algorithm terminate,
it is convenlent to also denote by x' the point X at which & = 0.
Moreover, f is continuous and the algorithm ensures that the sequence

{f(xk)}, k=0, 1, ..., decreases monotonically, so that (2.24) implies



limit f(xk) = f(x').
k >o

Since f is convex and g(x') = 0, f(x') is the least value of f and the

~ theorem has been proved.

vaf is least at only oné point, x' say, which is the case if f is
strictly convex, then the above theorem implies that the sequence
{xk}, k=0,1, ..., converges to x'. However, if it happens that f is
least for a set of two or more points, X say, then the theorem implies

that every 1limit point of the sequence is in X.
Numerical Difficulties

The previous theorem guaraptees. in theory, the convergence of the
DFP method for a restricted class of functions. Knowledge of its be-
havior on more general functions must be based on numerical experience.
Also, the theoretlcal resultsvassume exact arithmetic which is not pos-
sible when implementing the method on a computer. For example, if t
significant digits are carried, the product of two numbers will gener-
ally require 2t digits for its representation and hence will be
represented inexactly. The error introduced by the inexactness of the
computer arithmetic operations is called rounding error. In an exten-
sive calcﬁlation,‘rounding errors will accumulate and contaminate the
results, possibly to an intolerable degree.

In practice, the DFP algorithm ﬁas been generally successful, how-
ever numerical difficulties have been reportéd. Broyden [6] notes that
negative steps have to be taken occasionally, implying that some calcu-

lated matrices H, are not positive definite. McCormick and Pearson [ 36]

k
state that for some problems, the algorithm can get "stuck", that is,
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changes in the current approximation to the minimum can become negli-
gibly small, and that resetting the matrix Hk to a constaﬁt positive
definite matrix after every n iterations improves the method's perform-
ance. Powell [45] notes that occasionally the slow progress happens
when a steepest descent step would cause a substantial decrease in the
value of the function. Bard [3] reports encountering similar behavior
in his work.

The loss of positive definiteness, contrary to Theorem 2.1, is
serious because it suggests that a calculated matrix Hk may happen to
be singular, or nearly singular. That is, Hk remains positive definite
but one or more of its eigenvalues becomes arbitrarily small and in
practical computation, it is then effectively singular. In fact, Bard
states that he found his difficulties invariably the result of the
matrix turning singular. Broyden [9] shows that the behavior observed

by McCormick and Pearson could also be caused by a singular Hk' In the

DFP algorithnm, sk = - akagk, so that Hk+1 may be written as
T 2 T
B =W - il |, kBB k _
k+1 - "k Ty T k k’
Y'Yk Sk
where
T 2 T
Nt | 9B E
M =1 - —=%%, XXX
Kk T, T
Y'Yk KWk
Thus, by induction,
Heor = B Mgry 2 1

so that ,
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H v (2.25)

Sger Gt Bt~ Tk

where v = - ak+erMk+l.'.Mk+r—1gk+r' Suppose now that Hk is singular,

so that Hw = 0 for some nonzero vector w. It follows from (2.25) that,
forr>1, "Tsk+r = wTHkv = 0. Hence, once a particular Hk becomes
singulér, all subsequent steps are orthogonal to some fixed vector and
are thus restricted to lie in a subspace of R®. Unless the minimum also
lies in this subspace, and in general it will not, the algorithm is
"stuck" in this subspace. This would explain the improvement obtained
by periodically resetting Hk to some positive definite matrix, commonly
the identity matrix. A nearly singular Hk could also result in the

search direction, dk = - Hkgk,'and the negative gradient, - 8y’ being
nearly orthogonal. As illustrated in Figure 9, a minimlzation in this
direction would allow only a small step while a steepest descent step

would give a larger decrease in the value of the function.

N
>

%1

Figure 9. Search Direction dk Nearly Orthogonal to - 8,
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Various explanations have been offered for this departure from the
theoretical positive definiteness and.nonsingularity of Hk. Broyden [6]
attributes this reported loss of positive definiteness, and hence sta-
bility, to computer rounding-error. From his experiments, he concludes
that stability depends critically upon the accuracy to which each suc-
cessive value of O is obtained.

Bard [3] shows how poor scaling can cause Hk to become singular.

For k=0,1, ..., let
T T
H vl Sk
A = ———— and B =
k TH k s'I‘
Y'Yk kVk
so that Hk+1 = Hk - Ak + Bk' If Ho = T, then the elements of HO are of

the order of magnitude of unity. If Yo = (Mys eves qn), then the ele-

ments of Ao are given by

Using the inequalities, (1& - “%)2 > 0 and (71 + 19)2 > 0, it can easlly

be shown that

1174
2 2
‘71 +. +'7n

<1, (2.26)

Hence, the elements of Ao are also of the order of magnitude of unity.

The matrix Bo may be expressed




Then, by (2.26) with y, replaced by s,, the magnitude of the elements
0 0

T
0 0

terminated due to Ilg0 ”2 < € for some given small positive number €,

of B, 1s bounded by |sgso/s y0|. Assuming that the algorithm has not

T T
Isg¥o | = 155(e; - &p) |
=|-stg |
08o
2
= aollgo ‘b

> 0.

that is, Isgyol is bounded away from zero. Since

. |
|sgyg | = Ilsg Il yg Ilcos 8,

where § 1s the angle between g and Yo this implies that cos § > o for

some positive constant 6. Thus,

T 2
T
Tyo | Tsg Il g lleos
1 ||s, |l
«-—02
o IIYO IE

Hence, the elements of Bo are of the order of magnitude of

||s0 Hz/llyo HZ' Suppose that f is scaled by a factor of §, a positive
constant. This leaves x and s unchanged, but g and y will be scaled by
a factor of 6. Thus, all elements of Bo will be scaled by 1/6. Or,
suppose x is scaled by a factor of y, a positive constant, while the
value of f is unchanged, so that the function under consideration is

f(x/y). Then s will also be scaled by y, but g and y will be scaled by
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l/y. In this case, the elements of Bo will be scaled by yz. Therefore,

the magnitude of the elements of B, depends on the scales chosen for f

0

and x. In particular, if the scaling is such that |[yb |E >> Ilso |E.

the elements of B, will be very small compared to those of Hy - Ags SO

0
that
T
Boan A -n - 2000
1 0 0 (o} TH '
Yo"0%0
Since Hlyo = Q, ihe matrix Hl is singular. Conversely, if
||y° l, << |l s Il,» the matrix By will dominate Hj - A, and so
"
- 0°0
H1 = Bo ST .
)

Again, Hl is singular, being of ‘rank one.

Once an Hk has turned singular, there is virtually no hope of re-

covery., If Hk is singular, it has a null vector z. That is, sz = 0,

Then, as 1s easily seen from the definition of Ak’ both z and Vi will

be null vectors of Hk - Ak' so that except in the improbable case of z

and Yic being linearly dependent, the rank of H, - A will be at most

k k

n - 2. Since Bk has rank one,

rank H

T+l rank (Hk -,Ak + Bk)

IA

rank (Hk - Ak) + rank B,

IN

n-lo

Thus, 1f H, is singular, all subsequent H

3 g 2Te also likely to be

singular.



52

It must be observed that the singularity is only approximate. How-
ever, Af t significant diglts are carried, and 1f ||s, |L/Il ¥, Il, = 107t
or 10t, the matrices will be singular to the precision of the calcula-
tions. - To overcome this problem, Bard recommended using double
precision or scaling the variébles so that the diagonal elements of Bo
are approximately unity. However, if the charaéter of the function
changes drastically from one region to another, then a rescaling of x
and reinitialization of Hk whenever the process seems to get stuck at a
nonstationary point is suggested.

A nearly singular or poorly scaled Hk can increase the influence of
computer rounding errors made when multiplying a vector by this matrix.
Let z' be the computed value of!a vector z, that is, 2' = 2 + e, where e
is the error made in computing z. If w = sz. then w', the computed

value of H 2, is given by

k

A = . =
W' = sz w o+ er.

Hence, the relative error in this product is given by

“"' - W “2 “ er ”2

Il 1, [l 1,
To bound this erroi, note that
He 1l < Il (Llle Il
and
-1 -1
Wz 1, = WH W L, < HES Bl L

which implies that
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-1
1 15: Sl
< k '2

el ™ Il

Therefore,

Ifwt - wll ,
2 -1

< e 1LIE

w1, Nz 1l

(2.27)

This inequality means that the relative error in z may be magnified by

as much as
ﬁKH ) = |8 |l llH-l |
k k 2 k '2

when conputinngkz. For this reason.‘Xka) is called the condition num-

ber of H,, with respect to this operation. If this number is large,

kl

then sz and H, z' may differ greatly and the matrix Hk is said to be

k
111-conditioned. The condition number of a matrix bounds the degree of
its ill-conditioning. If Xl. ve ey xn are the eigenvalues of the posl-

tive definite matrix H,, by Corollary 5.2 of [ 56, p. 308],

1R: = max {"1' 1=1, ..., n}.

x|l

Therefore,

A
X(,) = 22X,
' min
where hmax is the largest elgenvalue of Hk and lmin is the smallest

elgenvalue of H Thus, a nearly singular or poorly scaled Hk would be

k.
11l-conditioned.

By deriving a recursion formula for the determinant of Hk’
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Pearson [42] shows directly that H_ tends to become singular when the

k
Hesslan matrix G of f is 1ll-conditioned. The following lemma is needed
to establish the effect of a rank two perturbation on the determinant of

the identity matrix I. Proof of this lemma is given in Appendix B of

(427,
Lemma 2.9: For any vectors u, w, and independent vectors v and g,

det (I + uvt + sz) = (1 + uTv)(l + sz) - (zTu)(va).

Since
T T
H y s
k'k 1 | "k
iy = He [T+ (- 3) T, + (H sy T ’
Y'Yk Kk
Lemma 2.9 ylelds the equation
STy
k' k
det H , = (det Hk) T, . (2.28)
Yx'kk

Because ag = G(x) ax locally, inequality (2.27) implies that, in a

reglon where G is ill-conditioned, a small change in x can cause a large

change in g. Thus, it is possible for a small Sy to result in a large
T - . T

Yy SO that S1Vk could be small and kakyk large. Then, by recursion

formula (2.28), the matrix H_ would rapidly become singular. This type

k
of problem occurs when minimizing a penalty function, that is, when f(x)
includes a term to constrain the range of x, because the Hessian matrix
at points where one or more constraints are binding is excessively ill-

conditioned. Numerical examples glven by Pearson indicate that reset-

ting is not beneficial with simple functions but that it is especially
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valuable for penalty functions.

The best explanation of why the numerical difficulties described
can occur with the DFP method is given by Powell [48]. It is based on
the following result.

Lemma 2.10: The sequence of numbers {g{ﬁkgk}, k=0,1, ..., generated

by the DFP algorithm, decreases strictly monotonically.

Proof: Using the definitions of H , and y, and equation (2.1),

T,
T o I N il
€1 k+18k+1 ~ Bk+1| "k T y 841
kK Kk
T
H y y H
T kWkIk k
'k '

By the definition of y, and (2.1),

T T T T
g (B y v H g = g (H & e H )g, , and

T T T
Yl = S TieBrer1 + Sk

Substituting into (2.29) ylelds
T

H.g g H

T T kBk5K
Bet1 k41841 = & | Bk - Ty Bk

Kk

T T
_ (e ) (g W)
T T '
ElicBi * B fiBin

By inverting both sides of this equation, the identity



1 1 1
= +

T g T y Ty
Sl k+18k41 B+l KB+l Sk KBk

is obtained. Then the positive definiteness of Hk implies

1 1
- >

T

T
841 H

He8enl  SxlliBk

or equivalently, g£+1Hk+1$k+1 < éiﬂkgk, and the lemma is proved.

The decreasing monotonicity of this sequence can be detrimental to
the progress of the algorithm, For instance, if an unfortunate choice

of the initial matrix H, causes ggHogo to be small, then on every iter-

0
ation, gTHkgk has to be small also. This result supports the

k
importance of the scaling of Ho expressed by Bard.

Another frequently occurring event can cause g{Hkgk to be small
prematurely. If the function f has a saddle point, that 1s, a non-
optimal stationary point, it may appear to the algorithm to be like a
local minimum. In that case, a point, xj say, would be calculated that
i1s close to the saddle point and therefore gj is small, and presumably
ggﬁjgj is small also. The latter iterations usually cause the sequence
of points {xk}, k»= j+1, j+2, ..., to leave the saddle point, but
nevertheless, the values of ggﬂkgk are forced to be small, due to the
smallness of g?ngj.

The number g{Hkgk is important because it is the magnitude of the
scalar product of the gradient at Xy and the search direction dk from

the point Xy o If it is small when H, and g, are moderate in size, then

k
gither the search direction is almost orthogonal to the gradient, or

there is much cancellation in the evaluation of the vector Hkgk' Each
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of these cases can cause difficulty, because the first is a blas away
from the direction of steepest descent, and the second 1ncreases the
influence of computer rounding errors. Moreover, in both cases, the
matrix Hk is 1l1l-conditioned. ,
In'general, therefore, the numerical difficulties encountered with
the DFP method are related to the condition of the variable matrix H.
Development of generalizations of this method then naturally suggest
the possibility of choosing the parameter(s) to improve the condition
of the corresponding varlable matrix H. Indeed. analysis with this goal
was done by Broyden [?77] and Shanno [537]. Their work will be discussed

in Chapter III.



CHAPTER III
ONE-PARAMETER FAMILY

Parametric families of variable metric methods, containing the DFP
method as a speclal case, have been developed from a number of different
approaches. These families can be divided into a family containing one
parameter and‘nore general families having several parameters. The one-
parameter family is the subject of this chapter. The more general
families willl be discussed in Chapter IV.

This one-parameter family was first developed by Broyden [6] in
1967. The family of correction matrices obtained by Broyden was also
developed independently by Shanno [53], Goldfarb [27], and Fletcher
[23]. It is particularly interesting that several quite different
approaches used by these authors all lead to the development of the same
family. In addition, the different developments identify various char-
acteristics of this family of matrices. For these reasons, the

development and analyéis by each of these authors will be discussed.
Broyden

Broyden's approach to the minimization of f is to use a quasi-

Newton method to solve the equation

g(x) =0, (3.1)

that is, to find a stationary point of f. Recall that a necessary

58
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condition for x' to be a local minimum of a function f having contin-
uous first partial derivatives is that x' is a stationary point.
Quasi-Newton methods are iterative methods based on Newton's method for
solving a set of nonlinear equations. In this case, the set of equa-

tions, equivalent to equation (3.1), to be solved is

hl(x) =0, hz(x) =0, ..., hn(x) =0,

where

of

hig_——’inlp 2' esey No

aEi
If the k-th approximation to the solution is x, = (Ekl' Cppr o0 Ekn)
and the (k + 1)-st approximation is X4l = (Ek+1,l’ 41,20t €k+1.n)
then, for 1 =1, 2, ..., n, the Taylor expansion of h1 about Xy glves

n

h, (% ,4) = hy(x) + iy

3h,
N = 0 Gl 5 B, 3
J

This set of equations is eqﬁivalent to the matrix equation

g(x ) = 8lx) +6(x)(x - %), (3.2)

where g is the gradient vector and G is the Hesslan matrix. Since the
objective is to find x such that g(x) = 0, g(xk+1) is set to zero and

(3.2) then gives the basic iteration in Newton's method,

X = % - [60x) T e(x,)

-1
= xk - Gk gk.
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Because this form of the method often falls to converge to a solution
from a poor initlal estimate, a scalar parameter Oy is sometimes added

to give the iteratlion

- ol

x k = %%k 8k’

K+l X

where a, is chosen so that f(xk+1) < f(xk). The disadvantage of eval-
uating and inverting the second derivative matrix of f at each iteration
in Newton's method provides the underlying motivation for the quasi-
Newton methods.

In quasi-Newton methods, the inverse Hesslan matrix Gk is replaced

by an approximation Hk, leading to the ilteration

=x + q.d

where dk = - Hkgk and oy is a scalar parameter. This approximatlion is
modified at each iteration so that it possesses, to some extent, the
properties of the inverse Hessian matrix. The equatioh on which this
modification 1s based 1s derived by considering the speclal case in

which the function f 1s defined by
f(x) = %xTGx +alx + Y (3.4)

where the matrix G is symmetric and nonsingular. The Hesslan matrix of
f is G and the gradient of f is g(x) = Gx + a. Thus, if s, and y, are

defined by the equations

Sk T %kl T ¥k Yk T Bk+1 T Sk’

then the Hessian matrix G satisfies the equation
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¥ = (Grppy + a) - (Gx,_+ a) = Gs,. (3.5)

Since H_ is to approxiﬁate Gil. it would be desirable for Hk to satisfy

k
the equation Hkyk = Sp- But, Vi depends on 841 which depends on Xp4
which in turn depends on Hk,_so this equation cannot be used to deter-
mine Hk' However, the next approximation Hk+1 can be required to

satisfy the equation

H (3.6)

17k T Sk’
Equation (3.6) is called the quasi-Newton equation and 1s the equatlon

underlying all quasi-Newton methods. However, the quasi-Newton equation

is not sufficient to define H

k+1 °F to glve any indication of how it may

be derived. Since H, is available and possesses, to some extent, the

k
properties of Gil, it seems reasonable to obtain Hk+l by adding some

correction matrix Ck to Hk. that is,

Hpyp = He + Cp (3.7)

This development of quasi-Newton methods as applied to functlon minimi-

zation is summarized in the followling definition.

Definition 3.1 A qéasi—Newton‘method when applied to the ninimization
of a differentiable function f is an iterative method which generates a
sequence {xk}, k=0,1, ..., of approximations to the minimum. At each
iteration, given the vector Xpe and the matrix Hk' the next approximation
is given by (3.3) and the matrix H_ 1is then updated by (3.7) for some
given correction matrix Ck chosen so that the quasi-Newton equation

(3.6) 1is satisfied.
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The conditions imposed on the correction matrix Ck in the above

definition imply that C must.satisfy the equation

k
Cp¥ye = (Hppy - Hyp

= Sk - Hkyk-

This equation does not uniquely determine the correction matrix Ck' One

general solution of the equation is

T T
G = S~ il (3.8)

where Q and z, are arbitrary vectors except for the condition that

k
T T
qkyk = Zkyk = 1' (3'9)

Some additional criteria are needed to more precisely determine Ck. If
a quasi-Newton method is to sqlve effectively a general set of nonlinear
equations it is reasonable to require that it solve a general set of
linear equations in a finlte number of iterations. For a quasl-Newton
method applied to fungtion minimization, this meaﬁs the method should
minimize a quadratic function in a finite number of iterations. Exami-
nation of sufficient conditions on Ck to achieve this property leads to
Broyden's one-parameter family of correction matrices.

Let r be a positive integer denoting the number’of iterations, t a

nonnegative integer, and define the matrices
%c[%'ﬁ'””ypﬂ’
Zr = [zo, le ooy zr_l]'

T T T
By = (T = ¥y (T = Yo%) (T = Your 1 %per)
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Sr - [so, sl, ooy sr-l]’ and

T 7 T
Wo=[B) 11900 By 1 o0 +oo0 Biy 1@ o0 4] (3:20)

The following sequence of steps is obtained by repeated application of

(3.7) withk=r -1, r -2, ..., 1, 0, and C, glven by (3.8).

T T

Ho=H ) - H %% ¥ Spa%n
T

= r-l(I = Yp1%p- l) + sr 1901

T Ry T
pl CHPIED SIPS AP P S qu NI =y %) ¥ 5,00

Z(I Yp-2%p- 2)(I Yr-1%p- 1)

P T T
Sp 2% (T = Ypg%ey) 5990

T T
Ho(I - 342, Ty(1 - ¥y2) (T -y y2,.5)
T T
+50%(T - ¥y29) (T -y 2 1)
T T T
+ 5949 (I - yp25) (T - 3, 32, 5)

+n . LI

5T T
-qu 2T = ¥y a%ey) * S %
The definitions in (3.10) then imply

T
H, = HB,. +S¥. (3.11)

The first term on the right hand side of this equation consists of Ho

modified by postmultiplication by BOr' and the second term consists
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solely of information derived from the r iterations and the choice of
Q and Zyo k=0,1, ..., r -1. Since it 1ls reasonable to require that
Hr consists of the latest information derived from the r-th iteratlion,
the first term on the right hand side of (3.11), which represents essen-
tially old information, should iend to the null matrix as r increases.

If H, is nonsingular, this is achieved if and only if Bor tends to the

0
null matrix as r tends to infinity. A stronger requirement is that BOr

becomes the null matrix after a finite number of iterations. It will be

shown that B, cannot be null for r < n, and necessary and sufficient

Or
conditions for its nullity will be established.

Theorem 3.1: If Yn' Zn' and B, are as defined in (3.10), then the

On
necessary and sufficlent condition for B

ZiYn is unit upper triangular, that 1is,

on to be null is that the matrix

z’i[;ykslv k=0l 19 "'On-lt
T s
Y5 = 0,0<j<k<n-1. (3.12)

Proof: If ZgYn is unit upper triangular, then, since both Yn and Zn are

square, Y 1is nonsingular. From the definition of B, and (3.12), it

0
follows that

T T T
BonYi = (T = ¥oZ) (T - yy2y) (T -y 32, 1)y, = O,
for k=0,1, ..., n -1, that is,

B = 0.

OnYn

Therefore, since Yn is nonsingular, B n is null, and sufficiency has

0

been proved. If BOn is null, then expansion of the right hand side of
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the definition of Bon glves

T T T
0=T-y 12 o~ ¥ 5% oI = ¥, 9% ,)
P 7 T
- 729 (T - yp25) (T - 3y 47 4)
T T T
- Yo2o(T = ¥y2) (T -y 9%, 4)
T
=1-YVZ, (3.13)

where V_ 1is unit’qpper triangular. By (3.13), Y 1s nonsingular, so
that premultiplication by Y;I and postmultiplication by Y of (3.13)
implies Vn(ZzYn) =I. Since the inverse of the unit upper friangular
matrix Vn 1s itself unit upper triéngular, it follows that ZgYn is unit

upper triangular, and necessity has been proved.

Corollary 3.1: Bor cannot be null for r < n.

Proof: If r < n, then since rank Yr < r, there exists a vector w # 0

such that WTY = 0, Since B, =1 -Y V ZT, this implles WTB = wT,
r Or rrr Or

and thus B r is not null, completing the proof of the corollary.

0

Equation (3.9) and Theorem 3.1 imply that the vector Ty should

satisfy the conditlons

T ) . .
Zkyk=‘1. k‘-o' 1' e 0y I"'l,
ziyj =0,0<j<k<r-1, (3.14)

for1<r<p,1<p<n. Then, by (3.11) and Theorem 3.1,
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T T
Hn HOBOn + snwn San.

If the function f is defined by (3.4), then the above equation and

k k

Ck so that the n-th approximation Hn is exactly equal to G_1 and leads

to the following definition.

the desire that H, approximate G, suggest the possibility of choosing

Definition 3.2: The quasi-Newton method defined by Definition 3.1 is

exact 1f H_ = G™* when the method is applied to the function f defined

by (3.4).

If the quasi-Newton method used to minimige f is exact and the

matrix G is positive definite so that the solution of
g(x) =Gx +a=0

is the minimum of f, then this minimum will be found in a finite number

of iterations since

b ¢ =X - H
n+l n an ngn

-1
=x -aG (Gxn + a)

1

- -g1, (3.15)

for a, = 1. |
By (3.5) and the definitions of Y and S_ given in (3.10),

Y = GS_ so that
r r

A1
S, =G Y. (3.16)

Hence, if
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HY =s,1<r<p 1<p<n, (3.17)

then HnYn = G-lYn which would imply, by the nonsingularity of Yn’ that

By the definition o'f‘BOr given in (3.10) and conditions (3.14), for

j=0'1. -...1’—1,

BOI‘ = (I - yo 0)(I yl 1)"'(1 = yr_lz:_l)yj =0,

that 1s, By Y = 0. Thus, (3.11) implies

\

’ ) T
HrYr N (HOBOr + Srwr)Yr

=S WY,1<r<p l<p<n, (3.18)

so that equation (3.17) would be satisfied if

HTXr =7,1<r<p,1<p<n.

By the definitions of Wr and Yr given in (3.10), a simple multiplication

shows that wgtr is the r x r matrix with the ij-th element given by
T g

42”1, r-1Y 51 3
q:—lyj-l' If the vector z, satisfies conditions (3.14) then, by the

if 1 < r and the j-th element in the r-th row given by

definition of Bk.r-k

j‘k,k""l’ o-.,r-l."

,fork=1,2. ..o,r*land

B = Q3

~ Iy
k,x-k'j " (I - ¥z k)(I Y+l k+1) (T -y 2 l)yj

and for k=2, 3, ..., r~-1land j=0,1, ..., k-1,

7 T
By, r-i¥y = (T - %z )(T - yk+1 k+1) (T - ¥y 42005 = V5



68

Hence, the matrix WEYr may be expressed as

T

qoyo ) 0 o o o O 0
T T ..
%Y 4 0 0 0
Wiy = . . . .
r r [ ] L ] [ ] [ ]
T T [ ] L ] L ] T
LoV 2Ny U2 0
T T ... T T
| 1Y% YN Ya¥r2 YV

so that for Win = I, the vector Q. must satisfy the conditlons
qu =1, k=0,1 r-1
kk L ’ L LA ] ’

for1<r<p, 1 <p<n. Then, by (3.18) and (3.16),

: -1
err Sr G Yr’ l1<r<p,1<p<n.

Combining the conditions which have been placed on the correction

matrix C. leads to the quasi-Newton method:

k

Given a vector X and a nonsingular matrix Ho.

Fork=0' 1’ c-o’p_lg
set dk = - Hkgk'
Sp = oy
X4l T X Sy

e T B+l T By

T T
Hey = He * 89 - By 2 (3.19)
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where ak is an arbitrary nongzero scalar, and qk and

z, are arbltrary vectors except for the conditions
T T
QY = %Y =1, k=0,1, ..., p -1, (3.20)
quazTy=o 0<j<k<p-1 (3.21)
kj kj ’ — —_— ’ .

where 1 < p < n.
The analysis which led tolthese conditions establishes the following

theorem and corollary.

Theorem 3.2: If the quasi-Newton method given by equations (3.19)-

(3.21) 1s applied to the function f defined by (3.4), then

HY =G1Y,1<r<p, 1<p<n.
rr r - - - -

Corollary 3.2: The quasi-Newton method given by equations (3.19)-(3.21)

1s exact.
Corollary 3.3: Under the hypotheses of Theorem 3.2,
T Tve
”fr'%%nr 0,b1<r<p j=0,1, ....
Proof: From the theorem and the symmetry of G
YHS = Yot
rr r
which implies that
T,,T
Yr(Hrp - I)sj = 0.

Since Gs, = yj, it follows that

J

Yi(Hiyj - Sj) = 0.



70

Hence, by transposing and substifuting the definition of Sj' the conclu-

sion of the corollary follows.

By Corollary 3.2, the quasi-Newton method given by equations
(3.19)-(3.21) is exact. Hence q, and z, must be chosen so that equa-
tions (3.20) and (3.21) are satisfied. Because equation (3.20) implies
that the quasi-Newton equation is satisfied, (3.20) must be satisfied
when the method is applied to any differentiable function f. Assuming
that Q. and zy have been so chosen, then (3.21) must be satisfied only
when the method is applied to the function f defined by (3.4) since
exactness depends only on properties of the method for this special

- case. If the vectors Q. and z, are not chosen specifically to satisfy

k
(3.21) but are chosen in such a way that these equations are satisfied
automatically when the method is épplied to the function f defined by
(3.4), then the method is thus exact. The following theorems establish
some further properties of the quasi-Newton method given by equations
(3.19)-(3.21) when applied to this function which suggest the vectors

9 and z_ chosen for Broyden's one-parameter family of methods.

k

Theorem 3.3: If the quasi-Newton method given by equations (3.19)-
(3.21) is applied to the function f defined by (3.4) and H_ is symmetric

for 1 < r < p, then

T L T .
dr*lyj (6r + Yrar)dryj’ 0<j=r-1,

where

T
6,=1 - ar(l + qrgr), and y,,

]
HN
i

Proof: From (3.19),
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dy1 = " Bpafrn

T T
= - (Hr tada - Hryrzr)(yr * gr)

a_drbr + Hryryr.
Thus, from the symmetry of Hr’ for 0< j<r-1,

T . .T T
dr+lyj - 6rdryj + Yr'yrHryj’

that is,

T T T, \o
dr+1Yr N (érdr + YryrHr)Yr'

From Corollary 3.3 with j = r, it follows that

T ; T
dr+1Yr - (6r + Yrar)drYr’

and the theorem is proved.

Corollary 3.4: Under the hypotheses of Theorem 3.3, if d§+1ym =0

for 0<m<p-1, and Hj+1 is symmetric for j=m, m+1, ..., p -1,

then dr..y =0 for j=my m+1, ..., p - 1.

j+2ym

Proof: Repeated application of Theorem 3.3 withr=m+1, ..., P and

j = m gives the result.

Theorem 3.4: If the quasi-Newton method given by equations (3.19)-
(3.21) 1s applied to the function f defined by (3.4) and if Hj+1 is

symmetric and dT =0 for j=0,1, ..., p -1, then

#17;
d;r{yj = 0, and

Vi ¥y =0, 0< J<k<p. (3.22)



Proof: By Corollary 3.4, di+2yj =0fori=3, j+1, ..., p-1and

72

0< j<p-1l. Combining this equation with the hypothesis d§+1yj =0

for 0 < j<p -1 glves the relation

T .
= < < <
dkyj » 0, 0<J k<p,
that is, szk = 0, Thus,'by Corollary 3.3 with r = k and j = k,
T T
kakYk = akdek 0,
that is,

yinyj =0,0<J<k<np,
and the proof 1s complete.
Corollary 3.5: Under the hypotheses of Theorem‘B.h
aled. =0, 0< j<k<p.
k" J = -

Proof: By Theorem 3.2 with r = k and Theorem 3.4,

T.-1 T _
¥, &Y, = pHY =0,

Substituting (3.5) and (3.16) with r

T
SkGSk = 0, that is,

sics 0,0<j<k<p,

3T
which implies, since no oy is zero,

T.. _ .
46d,=0,0< j<k<p,

completing the proof of the corollary.

k into this equation ylelds
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If the quasi-Newton method given by equations (3.19)-(3.21) is
applied to the function f defined by (3.4) where G is positive definite,

then Corollary 3.5 implies that the search directions do. dl' ooy dn-l

are conjugate with respect to G provided they are nonzero. Then, as in
the DFP method, &, = 0, so that the exact step given by (3.15) will not

be taken. Therefore, if H,, k=0, 1, ..., n - 1, is nonsingular, then

k'

d, =-H is not zero for 8y # 0 and the method is thus quadratically

k k8K
terminating.
If the additional hypotheses of Theorem 3.4 are satisfied, then
Theorem 3.4 impiies that‘equation (3.21), with p - 1 replaced by p, will
be satisfied when the method given by equations (3.19)-(3.21) is applied
to the function f defined by (3.h)uif the vectors qi and z{ are taken to
be linear combinations of sg and y{Hk. Therefore, the vectors Qe and L

and the scalar oy will be chosen so that the additional hypotheses of
Theorem 3.4 and equation (3.20) are satisfied. In addition, the vectors
Qe and 2z, will be defined in terms of the quantities in (3.19) and an
arbitrary scalar parameter Bk' The requirements that qE and z§ be

linear combinations of si and yﬁak and (3.20) be satisfied lead to the

simple choices

sT yTH
qi - =%, and za e (3.23)
SkYk Vilk

T T
P e O S 5

sT TH
¥k Yk rk

k+l k

which 1s the DFP formula. To obtain a family of methods, for which the
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DFP method is a special case, a scalar parameter Bk is introduced into
equations (3.23), in such a way that qz and z{ are more general linear
combinations of si and yﬁHk and equation (3.20) remains satisfied. This
is accomplished by taking

T T
r (- BuH sy

-
q = T + Bkkak' and
*k'k
T T
z, = +B8.s. .
k Th k'k
Yk kk
The additional hypotheses of Theorem 3.4 must also be satisfied. If Hk
is symmetric, then H . is symmetric if C_1s symmetric. By (3.19) and
the above cholces for qg and zi,
T T
Cp = Sk ~ Hih%y
T T ) T T
_ Q- Bnddsi | 6oy - Q- B ity o iy
T Kk k Ty kK KKk’
Kk | Yk kVk

Hence, changing the sign on'Bk in qi would make Ck symmetric and Q.

would still satisfy (3.20). By the definition of d,,,+ the symmetry of

Hy, » and the quasi-Newton equation (3.6),

T

. T
Ve =~ Genl

T
k1Y% =~ 7 Bk+15k’

Hence, if 0y is chosen to minimize f(xk + adk) with respect to a, then

T
gk+1dk = 0 which implies

€r41Sy = O (3.24)

and the remaining hypothesis of Theorem 3.4 is satisfied.
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The preceding analysis leads to Broyden's one-parameter family of

algorithms given below.

Algorithm 3.1 (Broyden, 1967): Given an initial vector X and an

initial symmetric nonsingular matrix HO.

For k=0,1, 2, ...,
If g = g(xk) = 0, then stop.

Else, set dk = - Hkgk’

which minimizes f(xk + adk) with respect to a,

find ak
set sk = akdk"
X X, +s

K+l - *k © Sk’
Y = Bkl  Eg

T T
(L + By sy

T
Qe = T — - Byl
kk
T \.T
T (; - By Vi T
Z, = + B,s.,
k T K"k
Vil

T T
Hep = He + 59 - vz,

where Bk i1s an arbitrary scalar parameter.

Since equations (3.22) were obtained under the assumption that Qe
and z, satisfled (3.20) and (3.21), it can be shown by induction and

the discussion leading to Algorithm 3.1 that this algorithm is exact.
Theorem 3.5: Algorithm 3.1 is exact.

Proof: Let the algorithm be applied to the function f defined by (3.4).
The theorem will follow from Corollary 3.2 if it is shown that (3.20)

and (3.21) are satisfied for 1 < p < n. The proof is by induction.
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Assume that

T

T o
qkyk = zkyk = 1’ 0 S k .<. P - 1, ‘ (3'25)
T T
QY; = 7Yy =0 0 Jj<ks<p-1, (3.26)
‘M. =H . ,0<k<p-1 (3.27)
k¥l T R+l D S S P T :

Since oy 0< j<p-1, is chosen to minimize f(xj + adj) with respect

to a, 1t follows from the definition of dj+1' the symmetry of Hj+l’ and

(3.6) that
T T
d500¥5 = - 85af5n¥;
2 - T S
€5+1° 3
Then, by Theorem 3.4 with k = p,
yTH Y. = dTy ; 0,0<j<p-1. (3.29)
PpPJ P J -v =

Hence, for qp and zp defined by Algorithm 3.1, (3.29) implies that

(L+8y H y st
p’p 0 p’°pY ] T
. = H = 0, and
1p7; Ty " PV g
28
1 -85y )yH
Ly, = JDD PP3+ss 0,
p°J v H y P’y
PPP

for 0 < j<p -1. Thus (3.26) is valid with p - 1 replaced by p.
By the discussion which led to the definitions of Q. and 2y in

Algorithm 3.1, equations (3.25) and (3.27) are valid for all p,
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l1<p< n. Thus the induction is complete if (3.26) is valid for p = 2,

that 1s, for j = 0 and k = 1. By (3.28) with j = 0,

|
o

I S S
170 T %1% %

so that by Corollary 3.3 withr =1 and j =1,

T - T _
N Y = 4445 = O
The definitions of q, and 2z, then imply qu = zTy = 0, completing the
1 1 170 170

induction.

The proof of Theorem 3.5 shows that Algorithm 3.1 is a quasi-Newton
method of the form given by equations (3.19)-(3.21) when applied to the
function f defined by (3.4). Hence the discussion following Corollary

3.5 establishes the following corollary.

Cbrollarx 3.6: Algorithm 3.1 is quadratically terminating provided no

H k=0,1, ..., n -1, is singular or undefined due to a denominator

k'

being zero.

To ensure that the algorithm can be applied fo an arbitrary differ-
entiable function without breaking down, nonsingularity and nonzero

denominators must be guaranteed for all H The denominators in the

ko

iteration formula for H, are yinyk and szyk. By the definitions of Yy

k
and s, and (3.24),
T. _ T T T
Sk = S8+l T SkBk ~ “Bilk8k- (3.30)
If H 1is positive definite then, as in the DFP method,'dk =-Hg is

downhill and it is thus always possible to choose o poSitiVe. Hence
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it is sufficient to show that H. is positive definite for all k. The

k
following sufficient condition on Bk for Hk positive definite to imply

-Hk+1 positive definite was established by Broyden.

Theorem 3.6: If H_1is positive definite and Bk'is nonnegative, then

Hk+1 as given by Algorithm 3.1 is positive definite.

Proof: Since Hk is positive definite, there exists a real nonsingular

matrix L such that Hk = LLT. Let ¢ be an arbitrary nonzero vector and

define u, v, and w by

T T T
u=15L ger V= L'e, w=1L Vi

Note that u, v, and w are not null if 81 # 0. Then, using (3.30) and

the definition of s the iteration formula for Hk glves

Tk’
T \2 T \2
T 7 (viw) (u'v)
c Hk+1c =vyVv - T + ak T
WoW uu
Bk% , T T . T T .2
+ == (wuv'w + wwvu)“. (3.31)
uuw w

Since a, is positive, if B, is positive, then the last term on the right
k

k
hand side of (3.31) is nonnegative, so that if cTHk+lc is positive for

Bk = 0 then certainly cTH ¢ is positive for Bk positive. Hence it is

k+1

sufficient to prove that H +1 is positive definite for Bk = 0, that is,

k
for the DFP formula. For B, = 0, (3.31) becomes

(vTw)?

G
W W u u

T \2
ak(u v)
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Now, by the Schwarz lnequality,

r (Vw?

Vv - >0

WW

with equality only if v and w are linearly dependent. Furthermore,

since a, is positive,

k

with equality only if u and v are orthogonal. Thus, cTHk+1c > 0 unless

ulw = 0. But, by the definitions of ¥ and s, and (3.24),

k

T T T
ww = gty = - gle

which, by the positive definitenesé of'Hk, is nonzero if 8 # 0. Since

the algorithm is terminated if g = 0, the proof is complete.

Corollary 3.7: If Ho is positive definite and Bk is nonnegative for

k=0,1, ..., then H k=0,1, ..., is positive definite.

kl
Since Bk = 0 for each k ylelds the DFP method, Corollary 3.7

implies Theorem 2.1 and, as in the DFP method, Corollary 3.7 also

implies the following coroliary.

Corollary 3.8: Algorithm 3.1 is stable if the parameter Bk is chosen

to be nonnegative at each iteration.

To simplify notation in the next three sections, the subscript k
on the quantities C, H, s, y, g, a, and the parameters will be omitted

and the subscript k + 1 will be denoted by the superscript *.
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Shanno

Shanno's [531 method of obtaining a family of matrices is similar
to Broyden's since it is also based on finding a correcfion matrix C
defined in terms of a scalar parameter which satisfies the equation
Cy = s - Hy. However,vShanno introduces the parametér T initially into

this equation by the parametric separation
Cy =Ts +[(1 - T)s - Hy].
By grouping as indicated, this equation ylelds the solution

Tsst [ -71)s -Hy[ (2 -7T)s - Hy-]T
C= — +

sTy [(1 -T)s - HyTy

After expanding and regrouping, C may be expressed as
: (1 - T)yTHy ssT l-7 T
C=|1+ - . sy H
T T T T T
(1-7)s'y -yHy|s'y |(1-T)s'y-yHy

(1 -'r)sTy HnyH 1-7 .
-1 - - T Hys™.
T T T T
(1 -T)s’y - yHy| y'Hy (1 -7)s'y - yHy

This form of C shows that Shanno's one-parameter family of correction

matrices is equivalent to Broyden's family. For if

1 -7

=8,
_ T T
(1 -7)s’y - yHy

that is,

By Hy
T=1 + —————— (3.32)

1l -Bsy



then Broyden's correction matrix is obtained.

81

To provide insight into the significance of the parameter T, Shanno

shows that a particular choice of T leads to a zero search vector when

the gradient is nonzero, that is, a singular H. Consider the case when

T= 0, that is, when C degenerates to the rank one matrix.

(s - Hy)(s - Hy)T
C = .

(s - uy)Ty

If a =1, then
s - Hy = - Hg -’H(g* - g) = - Hgx,
and, by (3.24),
- g*Hg = g*'s = 0.
Hence,

Hgrer H Hgre* H

C = -~ - = -
e TH(g* - g)  g* Hg*

which implies that
a* = - (H +C)gx =0,

independent of the magnitude of g¥*.

Computation shows that the composition of

 and

(3.33)
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(s - By)(s - fiy)"

a \T
(s - Hy) Yy
is identical to the equation
T : T
Tss (1 -7)s -Hy[(L - Ts - Hy |
H* = H + —— + = . (3.34)
sy - [(@-ms -Hy]y

Thus, the value of T for which the search direction d* = 0 is that value
for which (3.33) glves @ = 1. Using the definitions of y and s and

(3.24), equation (3.33) gives

T oHe(s &)

sT(e* - &)

~

Hg = Hg - = (1 '+ Ta)Hg
which implies that & = 1 if 1 +Ta = a. Thus, if 7 = (a - 1)/a, then
d% = - H*g* = 0 so that H¥ is singular if g* # 0.

Shanno further restricts the choice of T by the following theorem
which shows how positive definiteness of the variable matrix depends on
the éhoice of the parameter T. Proofvof this theorem is given as proof
of Theorem 2 in [53]. It will also follow from a more general theorem

which will be established in this section.

Theorem 3.7: If H is positive definite and T > (a - l)/a. then H*

given by (3.3%4) is positive definite.

Theorem 3.7 establishes that the condition on the parameter T,
T> (a - 1)/a, is sufficient for H positive definite to imply H¥* posi-

tive definite. Thus, if H, is positive definite, then the method is

0
stable. By a further analysis of this family of methods as developed



83

by Shanno, Shanno and Kettler [541 derive necessary and sufficient con-
diiions on the range of the parameter T to guarantee stability of the

method. The following theorem used in establishing these cbnditions is
significant in itself because it shows that the parameter affects only

the length, not the direction, of the search vector at each iteration.

Theorem 3.8: The search direction d* = - H*g* can be represented as
da* = h(7), where h(T) is a scalar function of T and r is a vector inde-

pendent of T. In particular,

d* = - h(T)(sHg* + yHg),
where

5 = g'Hg, Yy = g* Hg*, and

(aT - a + 1)

h(T) =. .
(aT-a+1)5 + vy

Proof: Using the definitions of y and d and (3.24), equation (3.34)

yields

(e*"He*)[(1 - T)s - Hy)

[(1-T)s - HyTy

H¥g* = Hg* . (3.35)

By the definitions of s and y, the denominator can be expressed as
[(Q-T)s -Hyy = (-1 + a - aPe Hg - g* Hg*.

Substituting this expression into (3.35) and combining the two terms on

the right hand side glves, using the definitions of s and y,



- (aT-a+1)sHg - (aT - a + 1)yHg

H¥g*
-(aT-a+1)6 -y

aT-o +1
[ ](6Hg* + yHg). (3.36)
(ar-a+1)6 + v

Since d*% = - H*g*, this establishes the theoren.

To prove that h(T) > 0 is a necessary and sufficient condition for
H positive definite to imply H* positive definite, the following lemma

is required.

Lemma 3.1: H positive definite impliesAg*TH*g* > 0 if and only if

h(T) > 0.
Proof: Premultiplying (3.36) by g*T and applying (3.24) gives
g Hrg* = h(T)oy. (3.37)

Since H 1s positive definite, 6 and y are positive unless either g or g*
is zero, at which point the algortihm is terminated. Thus, by (3.37),

the lemma is proved.

Theorem 3.9: If H is positive definite, H* is positive definite if and

only if h(T) is positive.

Proof: Any set of n vectors which are conjugate with respect to the
positive definite matrix H are linearly independent and hence form a
basis for R®. Since g # 0, g* # 0, and gTHg* =0, let g, g*, and any
n - 2 vectors Zyr eens z#_z which are conjugate with respect to H.and

which satisfy zIHg = 0 and zgﬂg* =0,1=1, ..., n -2, be a basis for
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R". From (3.34), the conjugacy of these vectors implies

T T, T
* = * =

ziﬂ 2z, ziﬂzi, ziH.zj o,

T Toswox — o

z;H*g = 0, and zH*g* = 0. , (3.38)

fori # 3,1, j=1, ..., n -2, Let w be an arbitrary nonzero vector.

Since Zys cees Zp o0 B g* form a basis, w can be expressed as
W AT R gt e
for some scalars Hyo i=1, ..., n. Then, by (3.38),
Wi = [0 w7 * a8 +a g*T]H*[ S by ¢ ELAgN Y
=2 1_5 uszHzi + uﬁ_lgTH*g + Zun_lungTH*g* + uig*TH*e:*- (3.39)

Using the definition of y and the quasi-Newton equation (3.6), (3.24)

implies
g g = pHx(y + g) = gtlhixg
and the definition of s gives
gH*g = glH*(g* - y) = gTH*é,+ ag'He.
Hence, (3.39) becémes
witew = 57 077 uleie, + 2 jage + (w2 + 2 qu ¢ na)e e

Since H is positive definite, WTH*w is positive if and only if g*TH*g*

is positive. Therefore, the theorem follows from Lemma 3.1.

From the definition of h(T) given in Theorem 3.8, it follows that
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if H 1s positive definite, h(T) is positive if and only if T> (a - 1)/a
or T < (a - 1)/a - y/as. Thus, Theorem 3.9 establishes Theorem 3.7.
Theorem 3.6 proves that the positive definiteness of H is retained if
B is nonnegative. Theorem 3.9 extends this range. By (3;32),
T> (a - 1)/a if and only if

By Hy 1

> - - (3.40)
l -Bs'y a _

Since
sTy + ag™Hg and y'Hy = g*THg* + g'Hg, (3.41)

if H is positive definite and 1 - BsTy is positive, then (3.40) implies
B> - 1/(ag*THg*); Similarly, if H is positive definite and 1 - BsTy
is negative, then (3.40) 1mpliesiB < - 1/(ag*THg*). Therefore, if H is
positive definite then

a-1 o 1 1

if and only if - —7— <B < . (3.42)
a ag* Heg* sy

T>

By (3.32), T < (a - 1)/a - y/as if and only if

T
By Hy 1 v
._-_'f. < — -,  eemem—
1l -Bs'y a ad

which, by (3.41) and the definitions of § and Y, is equivalent to

1
B > E : (3.43)

Thus, by combining the results of Theorems 3.6 and 3.9, the following
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corollary extending the range of B for which retention of positive defi-

niteness 1s guaranteed, is established.

Corollary 3.9: If H is positive definite and B > - u, where u is the

positive number given by u = l/(ag*THg*), then H* is positive definite.

Theorem 3.9 also shows that this range of B for which H is posi-
tive definite implies H* is positive definite cannot be extended. If H
is positive definite then H* positive definite implies, by Theorem 3.9,

(3.42) and (3.43), that

1l 1 1
- ~ < B <=—m—o0rfB >—
ag*THg* sTy sTy
which implies B8 > - U.
Goldfarb

Goldfarb [27] develops a one-parameter family of variable metric
methods from a combination of £wo correction matrices belonging to a
family derived by Greenstadt [28] using a variational approach. As did
Broyden and Shanno, Greenstadt wishes to find a correction C to the
estimate H of the inverse Hessian matrix so that the Quasi-Newton
equation is satisfied. _Since C is not uniquely determined by this con-
dition, Greenstadt chooses to look for the "best" correction C. 1In
particular, he wishes to find the smﬁllest correction C in the sense of
some norm, because this would tend to keep the elements of H from grow-
ing too large, which might cause difficulty.

The norm chosen should be simple and lead to simple solutions for

C. These criteria suggest a simple quadratic form in the elements of
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C, that is,

2 n 2
e lf =01 o vy

where Y55 represents the 1j-th element of C. Because minimizing || C ]b

2 =
Yij

lem is to minimiieJN(C), where N(C) = Tr(CCT). However, this is too

is equivalent to minimizing || C |§ and Ez:i 3 Tr(CCT), the prob-
0. ,

speclalized, so C is transformed to .

c* = acaT,

where A is a nonsingular matrix. Then, by the properties of the trace,'

N(c') = of (acaTacT)AT]

TE[AT(ACATACT)j

Tr(Wewc?),

where W is the positive definite matrix ATA. Thus, the problem is to
find the symmetric correction matrix C which minimizes Tr(WCWCT) subject
to the quasi-Newton equation. The symmetry condition, which will pre-
serve the symmetrylbf H if the initial matrix H0 is symmetric, is
required because the Hessian matrix fé symmetric if the function f has
continuous second partial derivétives. The variational formulation of

this problem is
minimize Tr(WCWC®),
c

subject to Cy - r = 0, and

¢t -¢=o,

where r = s - Hy.
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'This constrained minimization problem will be solved by the use of

Lagrange multipliers. Denote the matrix C and the vectors y apd r by |
C= (Ylj)’ 1, j=1, ..;, n
y==@1.;n,7QT,mm
r = (e, e gn)T.

Then the constraints are equl#alent to

ZZ}g=1 Y575 " €1 T 0,1=1, ..., n, and

=0, i, j=1, ..., n.

i
=4
ol
.-h
[}

Thus, the composite function @ is formed as
' T n n o n '
§ = sre(Woic) + 300 M35y g5 - ey) * 30y, 5. Ba5(Ys Yy 35)
which may be expressed
1 T T ' T
§ = 4Tr(wewe™) + Tr{(Cy - r)p | + TH{D(C - C")]
- 1T T i T T T :
= irr(c'WeW) + Tx(Cyp ) - Tr(rp ) + Tr(cD) - Tr(C'D),

where the multipliers are p = (7, ...y nn) and D = (6ij)’

1, §=1, ..., n. The use of Tr(WCHCT) instead of Tr(WOWG') is for
compufational ease and does not affect the result. In order to differ-
entiate Q with respect to C, note that for any‘matrix A= (aij)’

i, j=1, ..., n, the partial with respect tovC of Tr(CA) is the matrix

whose km-th element is given by

) Zn
-_ Yy Loy =0 o
aykm 1,351 ij7°i mk



That is,

3 T
— Tr(CA) = A",
aC

Similarly,

.
— 7r(cTA) = A,
ac

Also, if WCW = (Bij) and W = (wij)’ i, j=1, .e.y n, the km-th element

of the partial with respect to C of %Tr(CT(WCW)) is given by

1l o n

- ) LETE
2 oy Lo, m I

Application of the rule for differentiating products and substitution

for the element Bji then ylelds the expression
l{zgz n 3 n n d
- . YI-—-EZ w.y.u1+§z B..,l"—"-y.1 .
2(4— 1,51 P ey T qp1 PP 1,50 P ooy Y
By taking the indicated partials, this expression reduces to
s ‘
24, 59 V3a%5t ¥ Prn)

Then, noting that W is symmetric and that Bkm =§Z:i j‘”kjyjiuim’ the

above expression reduces to Bkm' Therefore,

3 T
— 1i7r(C WCW) = WCW.
ac

Thus, using the above relations,
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a9
— = WCW + pyT + DT - D,

oC

and setting this partial derivative equal to zero implies that

| T, T | -
C=-Mpy +D -DM¥, (3.44)
where M = W_l. The multipliers p and D must nowibe eliminated from this

expression for C. The constraint CT - C =0 glves

_M(ypt -pyt +2D -20)M =0

which implies
T -T

T
D’ -D=%yp -py)-

Substituting this expression into (3.44) ylelds

T T T
¢=-Mpy +3(yp -py)M

= -.%M(ypT + pyT)M. (3.45)

Then the constraint Cy - r = O implies

T
- fu(yp" + py My - * = 0.
Premultiplying by - 2W glves
(ypT + pyT)My +2Wr =0

and then solving for £he p which is free from the inner product ylields
T T
p = - [2Wr + y(p'My) V(y My). (3.46)

Premultiplying this expression by yTM gives
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yip = - [2y'r + (y'My) (p'My) Y (yTM'y)-

- Since yTMp ='pTMy, this'equation may be solved for pTMy, getting

pMy = - (y'r)/(y'My).

Substituting this expression back into (3.46) yields
T =1r.. .T -1,.T
p=- (yMy) [20r - (yMy) (y)yl

Thus, substituting this expression for p into (3.45) completes the

elimination of the multipliers in C, giving

T
1 T T yr T
C=—F— 1|y M+ Myr - Myy M |.
T T
Yy My Y My

Finally, replacing r by s - Hy gives the solution

1 : 1
C =5 syTM + MysT - HnyH - MnyH - (éry - yTHy)MnyM
y My ' y My '

(3.47)
One obvious choice for the weighting matrix W which will lead to a rela-

tively simple formula for C is W-l =M = H, The result, denoted CH' is

. T
1 T T sy \oq
C, = syH+ Hys"- | 1 + = Hyy H
H T T
y Hy y Hy

which resembles, to some extent, the DFP correction matrix. In fact,
the resemblance between these two correctlon matrices goes deeper than
mere appearance. It is shown by Bard in the appendix of [28] that the
variable metric method using CH is also quadratically terminating and

exact. The proof follows exactly the argunént presented by Fletcher and



93

Powell for the DFP method. However, the correction matrix CH does not
preserve the positive definiteness of H as does the DFP correction
matrix, since numerical experiments by Greenstadt show that is was fre-
quently necessary to take a negative step in order to make f decrease.
Goldfarb obtains a variable metric method which..in addition to
being qua&ratically terminating and exact, preserves the positive defi-
niteness of the variable matrix by using the correction matrix obtained
by substituting H* for M in (3.47). Using the quasi-Newton equation,

.this correction matrix, denoted CH*’ can be expressed as

T
1 YHY | o

T T
CH* =7 |- sy H-Hys + |1+ T ss .
s’y sy

To show that the variable metric method with correction matrix CH* is
quadratically ferminating and exact, Bard's proof maj be followed almos£
entirely, except for some obvious and trivial changes. Proof that

H¥ = H + CH* is positive definite 1f H is positive definite follows from
observing that H* may be expressed as

H* = (H + cDFP) + (cH* - cDFP),

where CDFP 1s the DFP correction matrix,
ssT HnyH
Corp = T T,

s’y yHy

And, for an arbitrary nonzero vector w, the definitions of CH* and CDFP

glve

T

[(Hy)(w's) - (sTy)(wTuy) T
w (Cyx - Cppp)¥ = >0

(3.48)
(sTy)2(y uy)

W
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Thus, by Theorem 2.1 and (3.48), H* is posit;ve definite since it is the

sum of a positive definite m#trix and a positive,semi-definite matrix.
The two variationally derived correction matrices CH and CH* are

combined by Goldfarb to obtain the one-parameter family of correction

matrices .

C = yCy + (1 - y)cH* (3.49) -

' By substituting the given expressions for CH and C this family may be

H*’

expressed as

(1 - ¥)y'Hy |ss -y l-y| o
C=|1-y+ T - - Tt sy H
sy sy y Hy s’y
T T
¥(s"y) HyyH | -y 1l-y| o
-1+ — -l+y | - + Hys" .
y Hy y Hy YyHy sy
By setting
-y . 1-¥y ]
+ ==
T 1]
y Hy s’y

that is,

T\ T
(1 - Bs"y)y Hy
Y=

yTHy + sTy

it is clear that this famlly is also equivaient to Broyden's family.
As noted in the first section of this chapter, if B = 0, then the

DFP correction matrix is obtained. Thus, if
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T

y Hy
Y=T Tl
YHy + sy

by (3.49), the DFP correction matrix can be expressed directly as a

weighted sum of CH and C

1o namely as

T T
. (y'Hy)Cy + (s7¥)Cy,
DFP Ty + oly

It is also possible to obtain C directly from (3.47) by choice of a

DFP
sultable M. Goldfarb gives several forms of M, all of which may be

shown by substitution to gi?e the DFP correctibn matrix. One example is
1 i
M= (yTHy)zﬁ* - (sTy)"H.

Although the given matrices M are, in general, nonsingular, they and
hence, the corresponding W = M-l are not necessarily positive definite.
Thus, their substitution in (4.33) is somewhat contrived so that their

role in the variational derivation of the DFP method is not clear.
Fletcher

Fletcher [23] generates a class of updating formulae for the vari-
able matrix H by taking any linear combination of the DFP updating
formula and a new formula, such that the coefficients sum to unity.

This new formula is based upon a very simple idea. The DFP formula

1 1

= H*

forces the relationship H*y = s to hold, If T = H_l and T*
‘then by applying Householder's modification rule twice sequentially, as

in the proof of Theorem 3.13, to the DFP formula,
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T T

ss Hyy H

H* = H + — - , (3.50)
T T
s’y YyHy

T and T* corresponding to H and H* of the DFP formula are related by

T T T T

’ ys'T ~Tsy s Ts\yy
™*=T-g—-g—+|1+75— |7 (3.50)
s’y s’y sy /sy .

Since T*s = y, (3.51) gives a mapping of s into y. By the simple inter-
change of s and y in this equation, a formula is obtained which maps y

into s. Thus, the equation

, syTH HysT yTHy ssT
B =H - = -Fg—+ | 1+5— |7 (3.52)
sy Sy Sy [sY

could be used as a formula to update H. If H is updated by (3.52), then
the corresponding updating formula for T is obtained by performing the

interchange of s and y in the DFPﬁformula, that is,

yfr TssTT .

T* =T 4 —— = N (3.53)
T T, .
s’y sTs

Thus, the formulae (3.50), (3.51) and (3.52), (3.53) may be considered
as dual in this sense; Equation (3.52) is also called the complementary
DFP formula. In addition, the correction matrix in this formula is
identical to Goldfarb's correction matrix CH*'

Denoting the H* in (3.50) and (3.52) by H%-p and HE..,, respec-
tively, Fletcher's class of formulae is given by

H* = (1 - §)Hgo, + K., . (3.54)
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*
Substituting for HDFP and HDFP' glves

ss Hyy H sy H HyéT yTHy sér
=H+ (1 -g)] + @ - + |1+ —
T T T
s y y Hy s’y sy [sY
fyuy\sst g o | Hyy H
=H+| 1+—% 7 - 7(sy H + Hys h-q@- )=

sy |[sy sy y HY

which shows that this class is also equivalent to Broyden's family

through the relationship
g =8s'y.
Aﬁ 1mportént new result given(by Fletcher is that (3.54) can be
rearranged as |
ssT syTH ‘ HysT HnyH

- - +
(9% (TNGTHY)  (STy)(FPHy)  (yHy)?

T
H* = B + (5 Hy)

= HE + B, (3.55)

where

Hy
v = M - .
sy yHy

Thus, the difference between any two formulae Hﬁ and HB in the class
is given by

(8, - B)vwv

which is a matrix of rank one. Equivalently, any formula Ha in the

class differs from the DFP formula by the rank one matrix ¢va. In
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particular, the rank one property enables the following lemma to be

applied. This lemma is established in [ 58, PP. 94-98].

Lemma 3.2: If A' = A + owﬁT, c=+1, and if Ay E.XZ > e 0> kn are
the eigenvalues of A and‘ki Z_Aé > 000> k; are the eigenvalues of A',
then
= . ' ' . . (] l
i) ifo LA 2A 2N 20,2 >A 2\, and
) = - ' o o ‘ '
i1) ifo 1,x13x1:x23;éz 2 A 2 A
By (3.54) and (3.55),
HE = H% 4 yyo
DFP* DFP

so that Lemma 3.2 implies

- n . n =
det Hpny = []4og A 2 T[gog Ay = det Hy.

Thus, H¥., is "less singular" than HBFP' indicating that the use of
H¥epe 1n a variable metric algorithm might counteract the tendency

towardvsingularity of HﬁFPvdiscussed in Chapter II.

Choice of Parameter

Broyden's one-parameter family of variable metric methods contains
the DFP method as a special case.v In addition, this family possesses
the important properties, quadratic termination, exactness, and sta-
bility for B > 0, of the DFP method. It was shown in the last section
of Chapter II that the numerical difficulties encountered with the DFP
method are related to ﬁhe condition of the variable matrix H. Thus,
this family of methods offers the possibility of choosing the parameter

B to improve the condition of the corresponding variable matrix H, while
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_ still retaining the desirable characteristics of the DFP method.

In Algorithm 3.1, the matrix H,, 1 =0, 1, ..., is updated at each

il
iteration by the equation

T T T, T

where
1 +Byy,H,y, 1- Biéiyi -
uw, = , and v, = ———2, (3.57)
1 T 1 T
191 Yty

Since this updating equation is somewhat complicated, Broyden [ 7] ana-
lyzes its properties when the function to be minimized is a strictly
convex quadratic function, that is, the function f is given by (3.4),
where G is positive definite. He also transforms the problem so that
the inverse Hessian métrix G"1 is the identity matrix and the approxi-

mation to it is

Broyden's suggestion of a value for Bi to obtain an algorithm having
better numerical properties is the result of examining the updating pro-
cedure and the dependence of the matrix sequence {Ki}, i=01, ...,

upon the parameters Bi'

By (3.56) and (3.5), the updating procedure for K, is glven by
3T o b o ch
K,y = K + 1,075,567 - B,G?s, 5,CH,C
b o oTan c - p.chu.co, ofch
- v,G?H, Gs, s,GH,G? - B,G?H,Gs, s,G?. (3.58)

Since x' = - G la is the minimum of f, the error at x, is given by
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e =X, - x', so that the gradient at Xy is given by.
g =G0x, +a-= Ge, « (3.59)
Then, using the definition of Sy
: N 60)
G%s, = - ai(G H1G )(G ei) = - oK 2z, (3.60)
and
5 3 ohyc 2
G%H,Gs, = (¢ H,G )(G si) = - a,K/7,,
A
where z, = GZe,, so that (3.58) becomes
- ’ 2 T, _ T.2
Kip =K * Kiziai(uizil(i sizixi)
2 2, T.,2 T
- Kiziai(vizil(1 + 8121K1)° (3.61)

Analysis of the sequence {Ki}, 1=0,1, ..., also requires that
the properties given by Theorem 3.2 and Corollary 3.5 be expressed in

terms of K, and 2 Corollary 3.5 with k=1 and p=n - 1 glves

i i’
afed, =0, 0<j<i<n
4Gd; =0, 0= .
Applying the definition of d, and (3.59) to this equation yields
T .
zixiszj 0,0< j<ic<n. (3.62)

By Theorem 3.2 with r =1 and p=n - 1,
GHiyj = yj, 0<j<i<n,
which implies, by (3.5) and (3.60), if oy #0,

Kinzj=szj, 0<j<i<n. (3.63)
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Equation (3.61) shows that K depends on both K, and B y» and

i+l i
since Bi is arbitrary, Ki+l is also, to a certain extent, arbitrary.

But Ki 1s itself arbitrary, depending upon the choice of Bi-l' and it
might therefore be thought that Ki+1 would also depend, through Ki’ upon
Bi-l' Broyden proves that this is not the case., The following theorem

and corollary are needed,

i
definite, and B1 > 0, then

Theorem 3.10: If K, and z; are as previously defined, K1 is positive

m+1
Kin®1a = 2 per 547y (3.64)
where the &, are scalars, & ., #01if 21 #0, and m is any positive
integer.

Proof: Proof is by induction. Using the appropriate definitions and
(3.60),

2y = %y - 4Kz (3.65)
Then, by (3.61),

~ 2
Ki+1zi+1 = Kiziyi + Kiziﬂi (3.66)

for appropriate scalars and §,, If 0, then (3.66) establishes
i i 1

(3.64) for m = 1. By (3.62) and (3.63),

T T ~

2341537 = 23K aKiE =0 (3.67)
so that (3.66) implies

T K.

z1+1K§21’"1 L YSLSP IR (3.68)
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From the definition of Ki' it follows that K, is positive definite if

i .

and only if H, is positive definite. By hypothesis, Ki 1s positive

i
definite and B, > O so that by Theorem 3.6, Hy,; 1s positive definite.

Hence, K is positive definite and (3.68) implies that ¢1 #01if

i+l
Zy 7 0
Assume the validity of (3.64). Then, from (3.61),

+] m+1
K'.":+1 i+1 1+lzk =] k 1 %

m+1 "
121:—1 ékKizi + 61Kz + 8 Kzz

m+2
jz:k =] k 1 1

for appropriate scalars 6;, 6y, and ;. Since § ., # 0 implies

LPN # 0, the proof is complete.

Corollary 3.10: If zj;é 0, 3=0,1, ..., 1, vhere 0<i <m<n -1,

Bj >0, j=0,1, .e., 1 -1, and Ko is positive definite, then

_ i+l k
K23 =2 %=1 2xf0%0 (3.69)

where the &, are scalars, &, ., # 0.

k

Proof: Since (3.69) is obviously true for i = 0, assume 1 > 1. Re-

placing 1 by 1 - 1 in (3.66) gives

~ k
KiZy = 2 k= OKi-1%1-1°

Applying Theorem 3.10 to each term of this sum yields
' _ k+1 5" P
K2y = Zk=l 8, ( > 51 93Ky 2% 2)

“Zkl iEKiziz
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By successively applying Theorem 3.10 in this way, the corollary is

established.

For the remainder of this section, assume that the hypotheses of
Corollary 3.10 are satisfied, that is, the algorithm has not terminated

with the i-th iteration and K, is positive definite. Then Kizi‘f 0,

1

0 <1 <m. Corollary 3.10 shows that K may be expressed as a linear

1%

combination of the vectors Kozo; ngo, cees Ké+1zo. Equation (3.69)
may be written as
2 a1
K2, = [Kozge Kozgs ooer Ko izgy, (3.70)

where the elements of wy are the scalars ék’ k=1, 2, v, 1 + 1.

Define the matrix M by

2 +1
M = [Kyzq, Kozge =0 Ky 2ol

Equation (3.70) may now be written as

K,z, = Mv

where vi is a vector whose firstvi + 1 elements are the same as those of

w, and whose remaining elements are zero. If V is the (m + 1)x(m +1)

upper triangular matrix whose (i + 1)-st column is v,, then (3.71) is

equivalent to
[Kozgr KyZys +»es Kpz, ] =MV, (3.72)

By (3.62), the vectors K 2z, 1 =0, 1, ..., m, are mutually orthogonal,

i
and hence linearly independent since they are not null. If 9 denotes

the normalized form of Kizi,then
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[Ky2gr Ky2qs o0 Kz R =Q, (3.73)

where
Q=[ap 9 «+s ]
and ﬁ is diagonal and chosen so that
fa-1. | (3.74)
It follows from (3.72) and (3.73) that

Q = MU, (3.75)

where U = VR, The choice of R is unique apart from the signs of its
nonzero diagonal elements and since V is upper triangular with nonzero
diagonal elements, these may be chosen to make the diagonal elements of
U positive, Then U is an upper triangular matrix with positive diagonal
elements and hence is nonsingular. Since Q has rank m + 1, (3.?5)
implies that M also has rank m + 1, Equations (3.74) and (3.75) imply

U'MIMU = I, so that

w’ = (7)1, (3.76)

Since M has rank m + 1, MTM is positive definite and hence, by Theorem
3.8 of [56, Pe 140],-has a unique Cholesky decomposition, that 1s, there
is a unique lower triangular matrix L with positive diagonal elements
such that M'M = LLT, Therefore, (3.75) and (3.76) and the definition of
M 1mp1y<that, subject to the sign convention adopted, Q 1s uniquely
determined by Ko and Z(e

Using the above results, the following theorem shows that despite
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the fact that the matrix K, depends upon i arbitrary parameters Bj'

i
j=0,1, ..., 1 -1, there is only one arbitrary term in its compo-

sition.

Theorem 3.11: The matrix Ki depends only upon the initial matrix Ko

and vector z, apart from a single arbitrary additive term of rank one.

0

Proofs By Theorem 3.10 with m = 1, and appropriate scalars ¢ and ¥,

Kzz = gK

T RRG IRLINE

By substituting this expresslion into (3.61), it follows that

o o) T
i %Y

i Y] [tm
where oj. 6j' and Yj are scalars which will be determined subsequently

and the vectors q; are as previously defined. Applying (3.77) consecu-

tively with j b i - l' 1' s 00y O. @.ves
K, = K! + 'Y 'R ' (3.78)
170 T Y% .
where
Ki =Ko+ a° oqo + 35 =1 qj(° T Y5 1)cl
T
+ ZJ"l 6. (quj+l qj"‘lq'j)' (3-79)
Then by the orthonormality of the vectors qj.
Kyqg = Kyag + 0p3 + 649, and (3.80)

K =K.q. + (0. + .+ 5, — 1<j<i-1.(3.8
15 = K@y *+ (05 + vy9)a5+ 850959 + 6585, 1<t -1 (3.81)
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Equation (3.63) and the definition of 1 imply that

Kyay = a5 0<J<i.

193

Hence, premultiplying (3.80) by dg and é{ and (3.81) by dg and d§+1,

respectively, and using the orthonomality of the qj glves

- T
1l = quoqo + 00'

T

e
i

T : .
1 quOqj + Uj + Yj-l' 1<j<i-1, and

T

0 =g, Kas+65 1<t -1,

j’
Since the vectors4qj depend only upon Ko and zo,.these equations to-

gether with (3.79) imply that K} is determined solely by K, and z,,

completing the proof of the theorem,

It follows from the preceding theorem and the fact that Ki+1 de-
pends upon Bi that Yy must also depend upon Bi' To derive the precise
form of this dependence note that, by (3.66) and the definition of 9

T T :
the tem vY,q,,79;,9 in (3.78), with 1 replaced by 1 + 1, gives rise to

T..2
a term of the form KiziziKi

2 2 T2 T CL
- gV, Kz, 7K, in (3.61). Denote 2,K,z, by ej, j=1, 2, 3, and 4, to

simplify notation. Then by (3.57), (3.5), and (3.60),

which must correspond to the term, |

2. .
1l -0,B,9
v az - ....__.._1—-1__2- (3_82)
il
%3

By (3.61) and (3.65),
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K, .z, .. = Kz,[1+a (10, -B,0,) - axXu,6, - 8,047
141%341 T M4%lt T a9 T Py9 1\H1% = P393
- K22, [a?(v,0, + B,0,) + o - aX(v,6. +B,0,)]. (3.83)
1230349, T P45 1 T %\ViP3 T Pyl/ I e

Premultiplying (3.65) by éfxi and using (3.67) ylelds

a6, = 6y, . (3.84)

so that (3.83) reduces to
K, 12,,, =K, z[1 -8 az(e -0.0,)] - K%z [a/ + v az(e - 0.0,)]
i+171+1 171 iiv2 31 171471 ifiv2 ~371

which, after substituting for viai glven by (3.82), becomes

K, ..2,., = (K,2z, - K2z, 0 /9.)

1417141 171 ~ "4%152/945/0
where
. ’ i . 2
e, =1 -B,a,(0, - 93ai).

It follows immediately that

T 2 _ 2,2 2
ZynKia1%i41 = (0405705 - 0,)é)
Therefore, the coefficient of the term Kiziiin obtained from
K z éT - K
T _Y1ha%14%4174
Y39341% 41 T 2
1+1 71417141
is given by
2,.2
Y, 05/0
Lz 3 (3.85)

2,2
9492/93 - 8,

Since the coefficients of K2z,z K>

1%,z Ky from (3.61) and (3.78) must be equal,
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(3.82) and (3.85) imply
o, .
vy = 0(Byay8, - 1), (3.86)

o _
where 6 = (euez - 93)/9362. Hence Yy varies linearly with 31. Since

6, > 0 and 0, > 0 by the positive definiteness of K,,

the Schwarz inequality that 6 > 0, Thus, in general, Yy increases with

it follows from

Bi and Bi > 0 if and only if Yy > - 0. _
The parameter Yy is essentially arbitrary in that it depends upon
By» and if y, > - 0 then the resulting variable metric method will be

stable. By Theorem 3.11, K depends only upon the initial matrix K

i+l 0
T

and vector 24 apart from the additive term Yiq1+lqi+l wherg the vector

Y4 is uniquely determined by Ko and Zge Thus, to obtain a stable

method which might avoid the numerical difficulties encountered with the

DFP method, it is logical to choose Y, > - 8 having regard for the con-

dition number of K Although choosing Yy to minimize this condition

i+1°
number would require excessive computation, elementary considerations of
this nature lead Broyden to suggest that a reasonable value for Yy is
zero, If Yy were negative, A\ the smallest elgenvalue of K1+1 with

eigenvector x, and \' the smallest eigenvalue of Ki+1 with eigenvector

x', then by (3.78) and Theorem 5.7 of [ 56, p. 3127,

T T T T
] | ] . L ] 1] L 1]
L < be K;jlx ] x Ki+lx . Yy X qlflqi+lx
- xdeo vax' x'Tx'
T
x'""K! .x'
x'"'x'

That is, the smallest eigenvalue of Ki+1 would be less than that of
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L
K1+1.

would be greater than that of Ki+1. In either case, the matrix K1+1

could be'more ill-conditioned than the matrix Ki+l which 1s determined

and the consistency of

Similarly, if Yy Wwere positive, the largest eigenvalue of K1+1

0 and zo. From the definition of K

the matrix 2-norm,

solely by K 4

1
-= 112
18y Ty < 1167 (BIIK, ||y, ana

a1, < e Blegt i,
so that
Xw,) < 0UEE) P X(x,).

Hence if K, is ill-conditioned, H1 might also be ill-conditioned. Note

i
that for the DFP method, B, = 0 for all i so that by (3.86), Yy 1s in
general negative for all i. Thus, the reported behavior of the DFP
method supports the above reasoning. »

If y, 1s set equal to zero, it follows from (3.86) and (3.84) that
B1 must be chosen to satisfy
T

Biaizil(iz1 =1,

By (3.60), the definition of z,, and (3.59), this equation implies

=1 -1
B= - =
1~ TZ3 T
eiG G s1 gisi

which, by (3.24), is equivalent to

By = .
1T
S3Y3
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If this value of B, 1s substituted into the general matrix updating

formula of Algorithm 3.1, the updating gﬁgﬁula for the varlable matrix

H1 is
T
1l y.H.y. |
B T T 17494 T
Hyy =H +5— |- 5,00, -Hys +| 1+ =555 .(3.87)
5193y 543

This formula is identical to (3.52), the complementary DFP formula ob-

tained by Fletcher, who showed that the matrix H obtained by/this

1+1
formula is "less singular" than that obtained by the DFP formula. In
addition, the correction matrix in the formula given by (3.87) is iden-
tical to Goldfarb's correction matrix CH* which minimizes the norm

1

defined by Tr(WCWCT) where W~ = H

141’

This special case of Algorithm 3.1 possesses in theory all the
properties that made the DFP algorithm so successful. To determine if
this choice of the parameter Bi has improved the numerical properties,
Broyden [8] compares the performance of the new algorithm with that of
the DFP algorithm on a variety of standard test functions. Results of
the computation for a representative sample are summarized in Table I,
Computation for each function was terminated when llgk H2 < €, where €
1s the specified tolerance. These test functions are documented in the
Appendix,

Table I reveals little significant difference between the methods
except for the third and fifth functions. On the third function, the
new method is markedly inferibr. This behavior is explained by Theorem
2 of [8] which proves that if the new algorithm is applied to f given by

(3.4), where G is positive definite, and if e, ., # O, then

141
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II,K1+1 '/I ”F < “ Ki -1 ”F"

Since reducing the matrix error norm makes the iteration matrix look
more‘like the inverse Hessian matrix, the new algorithm, in this sense,
resembles Newton's method more closely than does. the DFP algorithm,
Thus its performance is expected fo reflect that of Newton's method, so
that it might perform comparatively badly if the Hessian matrix is sin-

gular at the minimum point, as in Powell's function.

TABLE I

COMPARISON-OF THE DFP METHOD AND THE
COMPLEMENTARY DFP METHOD, BROYDEN

DFP' DFP

Function a llg0 ”2 € - Iter. Eval. Iter. Eval.
Rosenbrock 2 23002  10° 19 18 23 23
Helical Valley 3 190400 100 21 167 2 167
Powell b 360003 108 26 2:1 18 182
Trigonometric 45 1.63*10%1 6.71%1075 63 480 63 499
Sum of Exponentials 6 5.70%10 10'6 33 4oy 65 886

For the fifth function in Table I, the new method is much better.
The behavior of the DFP algorithm on this and similar functions is

particularly interesting. Broyden reports that for the fifth function,
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after 33 iterations |lgk ”2 had been reduced to approximately 10-3, and
it then hovered around this value until the 60-th iteration when it was
reduced to about 10-4. Subsequent iterations then reduced Ilgk l&
steadily until at the 65-th iteration, it fell below 10-6 and the pro-
gram was terminated. Thus, the DFP algorithm appeared to get reasonably
close to the solution in only a few more iterations than required by the
new algorithm and it then proceeded to "mark time" for perhaps 20 iter-
ations or so.

These numerical results suggest that the performance of the new
algorithm is substantially the same as that of the DFP algorithm in the
initial stages of the minimization, but that the characteristics of the
algorithms during the final stages are markedly different. A consider-
vation of the values of B1 for the two algorithms shows this to be

reasonable. By Theorem 5.7 of [ 56, p. 312], if g # 0, then
T
Xminllgl |§ < giHigi < Xmax'lgi |§.

where lmin is the smallest eigenvalue of H, and kmax is the largest

i
eigenvalue of Hi' Since the gradients at the beginning of the minimi-
zation are usually large, the value for the new algorithm,

Bi = l/aig{Higi, may well approach zero, the value for the DFP algo-

rithm, provided a, is not too small. Thus, the two algorithms become

i
effectively identical. On the other hand, as the minimum is approached,
Bi for the new method becomes extrémely large and the maximum discrep-
ancy betweenithe two méthods occurs. Broyden reports a range of values
of Bi for the new algorithm from 10-4 initially to 104. Another situa-
tion that could give rise to a large value of B1 for the new algorithm

is the occurrence of a nearly singular H In this case, it would be

1-
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possible for both éi“igi and 0y to be small despite a 13rge value of
[ & ||2. Thus, the DFP algorithm would differ markedly from the new
algorithm and, by the discussion following Theorem 3.11, the DFP algo-

rithm could yield a new value of H, that would be much more badly

i
conditioned than that glven by the new algorithm., It was shown in the
last section of Chapter II that the observed poor performance of the DFP
algorithm could be explained by the occurrence of a nearly singular Hi'
Therefore, the difference between the two algorithms in this case is
highly encouraging. On the basis of his numerical experiments, Broyden
concludes that the observed behavior of the DFP algorithm is probably

due to a tendency toward singularity for the matrices H, as hypothesized

i
from the negative values of Yy and that the strategy of choosing Bi to
eliminate this tendency appears to have been largely successful.

With the exception of the third function in Table I in which the
DFP algorithm was significantly superior, for all of the funqtions
tested by Broyden the number of iterations required by the new algorithm
was comparable to, or substantially less than, that required by the DFP
algorithm. In addition, if the number of function evaluations per iter-
ation i1s taken as the measure, then the new algorithm is slightly better
in terms of work done during each iteration. Broyden reports an average
ratio of function evaluations to iterations of 8.55 for the new method
and 9.88 for the DFP method. Although these results represent only a
limited amount of numerical experience oh a restricted set of functions
and to this extent will not necessarily reflect the overall merit of the
two algorithms, they do indicate that the new algorithm is worth further
consideration, especially for difficult problems or those for which

existing methods are either unsuccessful or slow in converging.
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Shanno [ 53] investigates the conditioning of the family of matrices
(3.34) as a function of the scalar parameter T. As noted in the last
section of Chapter II, computational difficulties can arise when the
smallest eigenvalue of the variable matrix H goes to zero, since this
causes the condition number of H to become large. By Theorem 3.7, if Hk
is positive definite and T > (ak - 1)/a » then Hk+1 is positive defi-
nite. Hence, at no finite step k does the smallest eigenvalue of Hk+1
ever become zero. However, it is possible for A to approach zero as k
approaches infinity, where A is the smallest eigenvalue of Hk+1' Thus,
Shanno elects to condition the matrix Hk+1 by choosing T at each step in
such a way as to maximize the smallest eigenvalue of Hk+l' If A is the
smallest eigenvalue of Hp ., with eigenvector x such that || x IE =1,

T

then A = x Hk+1
T

W Hk+1w for an arbitrary nonzero vector w. To determine the value of T

X. Hence )\ is maximized by choosing T to maximize

which maximizes QTHk+lw, the following lemma is needed.,

Lemma 3.3: For T > (ak - 1)/(1k and H_positive definite, é£+lﬂk+lgk+l

is a monotonically increasing function of 7.

Proof: By (3.37),

T T

Lo g = (0T - o + DgHie g M8
+1 i1 8l T T .
(T - oy + VgHigy + gy My

Differentiating with respect to T yields

T T T 2
U &gy e Bisr) %811 B B My Ben)
ar [T = o + Vs + Bty T

Since Hk is positive definite, this derivative is positive and the lemma
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is proved.,

Theorem 3.12: Let w be an arbitrary nonzero vector. For

T> (ak - 1)/ak, uTHk+1w is a monotonically increasing function of T.

Prooft As in the proof of Theorem 3.9, there exists a basis for R"
composed of the vectors 8r Bpyy® Zyr crvr Bpo which are conjugate with
From (3.38), the vectors z

respect to H are also conju-

k* 1t Pn-2
T -
gate with respect to Hk+l and satisfy the conditlions zin+1gk = 0 and
T T _ T '
21Hk+1gk+1 = 0, Also, zil-lkﬂz1 = zinzi and hence is independent of T.

Then ZIHk+1yk = 0 and from the quasi-Newton equation and (3.24),
T

H - g s, =
€+l "k+1Vk = Bk+15k T
positive definite, the vectors 8ra1? Yo Zyr cver Zp o form a basis for

0. Therefore, since for T > (ak - 1)/ak, Heq 1s

Rn. Thus, w can be written as a linear combination of these vectors,

n-2
W= D0 %ty a8 B
and from the conjugacy of these vectors,

T n-2 27T 2 27
WH Y= 291 M2 T a8 a8 T Rtk Yk

The first term on the right hand side is independent of T and

VoH y. = si(g.. - &) = a8l g
kK k+1Vk = Sk\8k+1 " 8 k8 k8K

so the third term is also independent of T. Hence

T T
dwH W) 5 ey 8,)
L |
ar ar

and, by Lemma 3.3, this is positive if p_ # 0. This completes the

proof of the theorem.
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Theorem 3,12 shows that the conditlon of H as represented by

k+1

ﬁTHk+1w improves monotonically with T, Thus, it is necessary to find a
closed form representation of Hk+l forT = ®. This is done in the fol-

lowing theorem.

- Theorem 3.13: Let H be defined by (3.34). Then

k+1
: T T
(sy - uiyy) (s - iy ik
limit H =H + + (n - 1)———,
TS K k- (s, - uH.y )T yTH y
k - MY/ Yk kK Kk
where
T
Wk

B= 7 T :
SV * YTk

Proof: By Householder's modification rule [29. pp.‘123-124], if A is a
nonsingular matrix, o a scalar and w an arbitrary vector such that

A + owﬁr is nonsingular, then

(¢)

(A + O”WWT)-l ='A-l - ——ﬁ— A_IWWTA-I. (3.88)
l +0wA"w
Applying (3.88) to
T
_ T T
Hk+1 Hk + éT SpSk + 8bb,
Wk
where
1
§ = G -'T)sT T and b= (1 - T)sk - He v
Wk " Yk'kk
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ylelds
L =BT - yB’lbﬂfB‘l,
where
B=H + —2;— s ér, and y = ————-E————-,
o\l K 1+8bB b

which after applying (3.88) to B and simplifying becomes

O ooy , '
P & ¥ Y 8 ¥ Vi
-1 -1 akT akgkgk 1+ akT 1l + akT
H =H" + +
k+1 - Tk T T
1+o0,T g.s ak
k &5k
8 ¥ Vi | Sk
1+ aET
Then,
0B YT :
limit Hiil - Hil + Krk k, k k, (3.89)
T>w &Sk xSk
Since

limit H )(limit H, . ) = 1
(T’ - O k+l T >0 k+l ’

-1 \-1
limit H = (limit H )
T > k+l T > k+l

which can be obtained by applying (3.88) to (3.89) twice sequentially,

as indicated below. After some tedious manipulations,

y ir ag ér -1
_ -1 k'k k°k>k
limit Hk+1 = Hk + T + T

T =>m®

Y5k 85k




ylelds the desired result. This completes the proof of the theorem.

Computation shows that the updating formula obtained in Theorem
3.13 is identical to Broyden's special case given by (3.87). This
result also follows from (3.32) which relates the parameters B, and
and shows that By = 1/§£

. Shanno tests the methods corresponding to T = @ and T = 1 ‘for

Yy as T <> w.

varlous initial estimates on four standard test functions which are

documented in the Appendix. A representative sample of his results
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is

given in Table II. Computation is terminated, that is, convergence 1is

assumed, when Ii-th.cdmponent of skl < lO-ﬁ i-th component of xkl, and

| 1-th component of gkl < 10‘% i-th component of xkl.

TABLE II

COMPARISON OF THE DFP METHOD AND THE
COMPLEMENTARY DFP METHOD, SHANNO

DFP’ DFP

Function X0 Iter. Eval, Iter. Eval,
Sum of Two Exponentiais (5, 20) 8 33 9 49
Rosenbrock (1.2, 1) 14 5 13 65
Rosentrock (1.489, -2. 5157)~ 18 77 20 134
Wood , (-3, 1, -3, 1) 21 97 22 114
Weibull (100, 3, 12.5) 28 149 (*) (%)

*Convergence had not been attained in 50 iterations and 499
evaluations.
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Shanno rgports‘that, in virtually all cases, the DFP' method corre-
sponding to T = @ outperformed the DFP method corresponding to T =1,
aﬁd the -difference became more notable as the complexity of the function
increased. His conclusion is that the new method is preferable to the

DFP method.
Convergenée

Dixon [17 ] establishes a result which allows Powell's general con-
vergence theorem, Theorem 2,7, for the DFP method to be applied to other
members of Broyden's one-parameter family of methods. Essentially, this
result shows that under the samé initial conditions, the sequence of
points generated by Algorithm 3.1 is independent of the choice of param-
eter .at each iteration, provided the linear search is exact. However,
two other conditions must be met.

The value of a, at each iteration in Algorithm 3.1 is determined by

k
a linear search from the point X, in the direction + dk' If the search

is exact, then the gradient at X1 = Xg + akdk is orthogonal to the

T
81 +15k = 0. To ensure that, given Xy and
dk' the value of O is uniquely defined, it will also be assumed that

the search locates the nearest local minimum in the downhill direction,

step Sp = akdk taken, that is,

+ dk' from x Such a search will be called a perfect linear search,

k.
It was shown in the second section pf this chapter that the value
of T = (ak - 1)/ak, or equivalently, B, = - 1/(ak§£Hkyk = éiyk) makes

v T
_ dk+1 identically zero., In addition, 4 will be undefined if dkgk =0

k+1
since this causes Hk+1 to be undefined due to zero denominators. Hence,
it must be assumed that dk is defined and nonzero, that is, degeneracy

has not occurred.
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Dixon's main result is derived from the following theorem. The

proof of this theorem‘will follow from a general result in Chapter IV,

Theorem 3.14: If a sequence of points {xk}, k=0, 1, ..., is generated
by Algorithm 3.1, starting at a given point X with a given symmetric
nonsingular matrix Ho and using a perfect linear search at each 1tér-
tion, then provided degeneracy does noﬁ occur, the sequence of search
directions generated can be represented by dk = U Pp for some scalar Myer

where

Po = Ho8ps
S yT
0%0
ST il R
0’0
and for k > 1,
k-1 s.yx,
Py = 520 I- o Ho8k
373
| T T
k-2 k-1 sy s.&
+Z | l 1 --mm || %k
T T J

j=0 m=j+1 Sn¥m Sjyj

For a gliven point Xq and matrix Ho, a perfect linear search in the
direction dO = - Hogo yields the same point X1 and hence the same
values of Sy and Yo for all members of Broyden's family. Then, by
Theorem 3,14, d1 = ”1P1 where P, is the same for all members so that a
search in the direction d1 yields the same point Xos and hence the same
values of Sq and Yy independent of the choice of Bo. Assuming that

the same points Xgr KXo ooy Xpy and hence the same values of
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Sgr Spr seer Sp 1 and yo, yl. ceer V3o have been generated, the
expression for Py given by Theorem 3.14 is the same for all members.
Hence, a search in the direction dk = WPy yields the same point Xp41?
independent of the choice of Bk-l' Thus, Theorem 3.14 implies the

desired result,

Theorem 3.15: Under the conditions of Theorem 3.14, the sequence {xk},
k=0,1, ..., 1s independent of the cholce of the parameter at each

iteration.

Since the DFP methbd is a member of Broyden's family, Theorem 3,15
extends Powell's convergence theorem to the other members under the
stated conditions. In particular, since degeneracy does not occur if
Bk = l/szyk, the variabie metric method using the complementary DFP
formula and perfect linear searches converges to the minimum of a convex
function satisfying the conditions of Theorem 2,7. By Theorem 3.15, the
DFP' algorithm and DFP algorithm will generate the same sequence of
points if perfect linear éearches are used. Since most implementations
do not undertake accurate linear searches, this implies that the im-
proved numerical performance of the DFP' algorithm over the DFP
algorithm is crucially dependent on the nonaccurate linear search strat-
egy used in the impleﬁentations of each of these algorithms. This
conclusion is supported by a careful numerical study by Dixon [19],
which compares the performance of these formulas when used in conjunc-

tion with different strategies for determining the step length.



CHAPTER IV
GENERAL FAMILIES
Huang

A general family of variable metric methods 1is obtained by Huang
[30] using a unified approach to construct a minimization algorithm
having the following properties:
i) the algorithm uses linear searches only;
11) the algorithm is quadratically terminating;
iii) the algorithm requires function and gradient values
only; and
'iv) the algorithm employs only information from the present
and immediately preceding iterations.
In constructing this algorithm, by property 11), it is assumed that the

function f to be minimized is defined by
f(x) = %ircx +alx + Ys (4.1)

where G is an n x n positive definite matrix, a an arbitrary n-vector,
and y a scalar,
. The algorithm will generate a sequence of points {xk},

k=0, 1, ..., by the iteration formula

X =x_ +s (4.2)

k+1 k k

122
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with

S = O dps (4.3)

where the vector dk denotes the search direction and the scalar ak is
‘the step size. Thgn f(xk+1) = f(xk + akdk) depends on o and d_.

Hence, by property i), d, must be defined so that f(x, ..) becomes a

k+l
function of Oy only. In that case, Oy is deterﬁined by a linear search

along the direction + dk from x, and

k

. .
gk+ldk =0, (4.4)
where g . is the gradient g(x, ..). For f defined by (4.1),

k+1 k+l

By = & * GSe (4.5)

Then, by (4.4) and (4.3),

(gk + akGdk)Tdk =0

which implies

T
ﬁiﬁ. (4.6)
48

Thus, from the definition of f and equations (4.2) and (4.3),

O

T T - (gidk)z
: = 1 = c——
f(xk+1) - f(xk) 2sstk + &5, T
- 4, Gdy
i

Since the matrix G is positive definite, f(xk+1) < f(xk) if

. (#.7)

gd, 7 0. (4.8)
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Equation (4.8) states that 4, should not be orthogonal to g -and thus
will be called the nonorthogonality condition.
From (4.4) with k replaced by k - 1,

T =
gkdk-l =0 »

which with (4.8) implies that dp should not be parallel to the previous
search direction 4, ,. In fact, by Theorem 2.3, property ii) will be
obtained if the search direction dk is conjugate to all previous search

"directions d, with respect to the matrix G, that is, if

J

4Gd; =0, 02 j<k<p l<psn-L (4.9)

Therefore, 1f the search direction is defined by

T
de = - Hegpo

where Hk is a matrix to be determined, then the conjugacy condition

(4.9) is equivalent to

T .
ngkGdj =0,0<j<k-1. (4.10)

s

Also, by the proof of Theorem 2.3, if all previous search directions dj

are chosen so that the conjugacy condition

dcd, =0,0<1<J<k-1,

J

is satisfied, then the‘gradient 8y has the property

g‘f(dj =0,0<j<k-1. (4.11)

Comparison of equations (%4.10) and (4.11) shows that (4.10), and

hence (4.9), can be satisfied if the matrix Hk is chosen such that



HGd, =ody, 0< j<k -1,

where ¢ is an arbitrary scalar. If Yie 1s defined by

yk = gk+1 - gkl

then by (4.5),

Y = Gsk.
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(4.12)

(4.13)

Hence, the matrix G may be eliminated from (4,12) by multiplying by aj

and using (4.3) and (4.13). The .resulting equation,

H =0$j'osjsk"l'

o
may be separated into

Hy,;=0s;, 0<j<k-2,

kYj
and

H =0s

kk-1 k-1°

Subtracting (4.14) with k replaced by k - 1, that is,

Hk-lyj =°sj' OS JSk -2,
from -(4.15) ylelds
(Hk - Hk_l)yj =.0' 0<j<k-2.
Therefore, if the matrix Hk is obtained from Hk—l by
He = Hey + Cpny

(4.14)

(4.15)

(4.16)

(#.17)

(4.18)
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for some matrix C k-1

L1’ then (4.15) can be satisfied if C has the

property

C =0,0< j<k-2, (4.19)

k-1Y j

Also, (4.16):15 satisfied if Ck;i has‘the additional property

c - H (4.20)

k-1Yk-1 T 95k-1 " "k-1Yk-1°

k-1 is glven by

Equations (4.19) and (4.20) are satisfied if C
s q? H .y éT
Ue-19k-1 Zg-1Yk-1

C

where Q7 and Z,_y are n-vectors having the properties

T

T R '

217 5 0, 0<j<k-2, (4.22)
Property iv) implies that the vectors Qe _q and Zp1 must be defined
using only information from the present and immediately preceding iter-

ations. The conjugacy condition (4.9) for the previous iteration gives

T _ .
4 1645 =0, 0 < J<k -2

which, using (4.3) and (4.13), yields

T .
S1Y = 0, 0<j<k-2, (4.23)

Equation (4.11) and the same relation for the previous iteration implies

T

Vel =0 0 ISk -2,
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or, by (4.3),

T P
yk_lsj“ooQSJsk_2°

This equation then implies, using (4.17), that

T

Vi1 =0,0<j<k-2, (k.24)

He17;5

Hence, by (4.23) and (4.24), the properties given by (4.22) will be

1 are chosen as

satisfied if Q3 and Zy
B T
Uy = ¥9Sg-1 + Yo 3Ygpr and
z = §.8 + 5. HY y ' (4.25)
k-1 1°k-1 2"k-1"k-1' :

where Y10 Yoo 61, and 62 are arbitrary scalars. Thus, for k > 1, Hk is
given by (4.18), (4.21), and (4.25). It remains to choose the initial

matrix H.., The following lemmas are used,

0
Lemma 4,13 If He, for k> 1, is glven by (4.18), (4.21), and (4.25),
then the search direction dk = - ﬁigk can bé expressed as

where B 1s a scalar and

T
S, .Y
_ k-1Yk-1 | T
Sk-1Yk-1
Proof: By (4.18), (4.21), and (4.25),
T T \T T
Y 15,218k | (151 * 8 ¥y )y aHy 18

Qe _1Yk-1 Zg-1Yk-1
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Since (4.3) and (4.4) imply éi-lgk = 0 and the definitions of Yieo1 and

Sp_1 glve

T T

B Vi1 = BB * 7 (4.29)
S
equation (4.28) becomes
T T
o o | 22eaka8 e
k- T k-18k
Z-17k-1
\ T T
[} S, .Y S, Y
2 | Sk-1Yk-1 | Sk-1¥k-1 T
ol B e Tl T T He 18 (%.30)

Op-1 / Zx-1Y%k-1 J Sk-17k-1

Using the definitions of Sp_1t Yi-1’ and Zp1’

T N
6 s, .Y -
2 | Sk-1Yk-1 T T
-6 - T (- 898 1951 * 82811k

Og-1/ Zg-17k-1

T T T T
- 8o 1Yy * 8% 1k 18/ %1V
T T
B S S
- 2k -1,
}zk-lyk-l

Hence, the result follows from (4.30).

Lemma 4.2: Under the hypothesis of Lemma 4.1, if the vectors
Sgr Sy e Sk-l are defined and nonzero, the vector Pk given by this

lemma may be expressed as

k-1l s.y T
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The proof of Lemma 4.2 will follow as a speclal case of a more gen-
eral result to be established later in this section,

Since the vector Py is independent of the parameters o, Y10 Yoo 61,
and 62, Lemma 4.1 implies that the search directions dk generated by
different cholces of these.parameters arevparallel to each othgr if the
matrix Hk-l used at the point Xp 1 is the same. Hence, ihe vector Py
can be.regarded as the search direction for all the algorithms. Then,
since Sp = akukpk, the optimﬁm stepsize along the direction Py is glven
by a .. By (4.6) and (4.26),

- érP
k*k
:k“k T

kaPk

which is clearly independent of the parameters. Thus, by (4.26), for

all the algorithms, equation (4.7) becomes

T 2
- (gePy)

) -
k T :
2P 6Py

£( - f(x

Xper1)

Hence, the nonorthogonality condition (4.8) is replaced by
T
gkpkfonosksn‘l' (4.32)

Premultiplying the expression given by (4.31) for Py by éi and applying
(4.11) yields

T T
€ Pk = K08k

which implies that the nonorthogonality condition (4.32) can be satis-

fied if éiﬂogk is nonzero. Thus, if Hy is chosen such that %—(H0 + Hg)

1s positive definite or negative definite, then for & # 0,
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| i, 7.7
kY =
be (Hy + Hyle, = gHoe,

is nonzero. In particular, if HO is symmetric, this implies that HO
must be positive definite or negative definite.
The preceding analysis has constructed the following general algo-

rithm having the desired properties,

Algorithm 4,1 (Huang, 1970): Given an initial vector X, and an initial

matrix H, such that %(Ho + ﬁg) is positive definite or negative defi-

0
nite,

Fork =0, 1. 2, XKE)

If g, = g(xk) = 0, then stop.

T
Else, sqt dk = - Hkgk’

find a; which minimizes f(xk + adk) with respect to a,

set Sp = akdk'

=X

/

+ s

k k'

Yk T 81 T B
q, = Y,5, + HTy
Kk 15k T YUy
z. = 6.5, + 6.H-
k - %1% T %27k

T T

Ho o H 4o Kk %
k1 - "k T 9T T

UV 2%

where o, Y10 Yoo 61, and 62 are arbltrary scalars except
for the condltions that Yy and Yo and 61 and 62, must

not vanish simultaneously. A

Basic properties established by the development of this algorithm

are summarized in the following theorems.
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Theorem 4.1: Let Algorithm 4.1 be applied to the function f defined by
(4.1). If the search directions dg» d;, «..y 4, are all nonzero, then
A i) a .'dl, ceey dn-l are conjugate with respect to G, and

i1) g, = 0, that is, the algorithm is quadratically terminating.

Theorem 4.2: Under the hypotheses of Theorem 4.1, H = oL,

Proof: By (4.12) with k =

HGd, =o0d;, 0<j<n-1,

and by 1) of Theorem 4,1, the vectors dj’ 0<j<n-1, are linearly

independent. Therefore, HnG = oI, and the theorem is proved.

The general family of variable metric methods given by Algorithm
4,1 contains the DFP method as a special case. It is easily seen that
the DFP iteration formula will be obtained if g = 1, Y, = 1, Y, = o,
d

=0, and 6, =1, Therefore, Theorem 4,1 establishes Theorem 2.2.

1 2

The similiarities in the devglopments of Huang's family and
Broyden's family suggest a direct relationship. This relationship can
be determined by considering the differences between these two families.
Since the iteration formula of Algorithm 4.1 can be expressed formally
as

. (s, + Hkyk)T ) H ¥y (s, + 6Hkyk)T. (5.33)

Kkl Tk T T
(ysy + kyk) Ve (s + oy )y

where y = yl/y2 and § = 62/61, Huang's family contains three arbitrary
scalar parameters, o, y, and §.

Broyden's family was developed as a quasi-Newton method so that the
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iteration matrix satisfies the equation

Hen¥ie = Spe

By (4.16), Huang's iteration matrix is chosen to satisfy

HenVi = OSge

Therefore, set 0 = 1, Also, Broyden's iteration matrix is symmetric
while Huang's matrix is not necessarily symmetric. If Hk_is symmetric
~and 0 =1, then (4.33) with subscripts omitted, becomes

yssT syTH

H* = H + +
T T T T, .
ysy+yHy «ysy+yHy

HysT 6HnyH ( )
- - . L, 34
sTy + éyTHy sTy + GyTHy

This equation implies that, if H is symmetric, then H* will be symmetric

provided

1 -1

’»
YSTY + yTHy sTy + éyTHy

that is, provided

(v + 1)sTy
6 = 7 -1, (4.35)
- y Hy _

Hence, the conditions that the iteration matrix be symmetric and satisfy
the quasi-Newton equation result in an iteration formula based on the

one parameter vy,
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A comparison of (4.3%) and Broyden's iteration formula glven by
Algorithm 3,1, in particular, the first term of the correction matrix,

suggests the relation

-1
B = .
ys'y + y Hy
Then,
1 + By Hy
Y= T
-Bs'y ,
and, from (4.35),
1l - Béry
6 = .
. ByTHY

Since y = y,/Y, and & = 52/51, let
T T
Yl=1+ByHva2="Bsy!
5, = By Hy, and 6,=1 - Bsly. (4.36)

Substitution shows that if 0 = 1 and Yyr Yoo 6i, and,é2 are given by
(4.36), then the iteration formula of Algorithm 4.1 is equivalent to
Broyden's formula., Therefore, Broyden's one-parameter family may be
characterized as the subset of Huang's family for which the iteration
matrix is symmetric and satisfies the quasi-Newton equation.

By Theorem 3.15, all members of Broyden's family generate the same
sequence of points, under the conditiqns of Theorem 3.14. Since

Broyden's family is a subset of Huang's family, it is natural to ask
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whether this result can be extended to Huang's family when applied to a
certain class of functions or whether this family can be divided into
subsets that generate identical sequences of points when applied to a |
general differentiable function. Huahg shows, as a result of Lemmas 4,1
and 4.2, that for a strictly convex quadratic function, all members of
Algorithm 4,1 generate the same sequence of points. These lemmas estab-
lish that the search direction dk’ k > 1, can be expressed as dk = UpPps
where u, 1s a scalar and p, is the vector given by (4.71). 1If P, s

defined by
T

then equations (4.31) and (4.37) determine the sequence of search direc-
tions Py k > 0. By the same reasoning used for Theorem 3.15, it can be
the

concluded that, for a given initial point x., and initial matrix H

0 o’
sequence of points Xgs Xps eeey X is the same for all the algorithms,
that is, it is independent of the parameters o, Y10 Yoo 61, and 62.

Huang and A, V. Levy [31] test the behavior of some particular
algorithms belonging to Huang's family on a quadratic function and sev-
eral nonquadratic functions., On the quadratic function, the results
show that, if high-precision arithmetic and high accuracy in the linear
search are used, all the algorithms behave identically for a glven ini-
tial point and initial matrix. That is, they'ail produce the same
sequence of points and lead to the minimum in no more than n iterations,
where n 1s the number of variables, For the nonquadratic functions, the
results show that some of the algorithms tested behave identically. It
is concluded that this family could be divided into subsets that also

generate identical sequences of points on more general functions,
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Dixon [18] establishes a necessary and sufficient condition for
members of Huang's family to generate identical sequences of points when
applied to the same general nonquadratic function, The same conditions
as in Theorem 3.14 are needed to ensure that glven xk and dk' the value

of oy is uniquely defined, and that dk ié defined and nonzero.

Theorem 4,3t If sequences of points {xk}, k=0,1, ..., are generated
by Algorithm 4.1 applied to the same differentiable function, starting

at a given initial point X with a given initial matrix HO and using a

perfect linear search at each iteration, then provided degeneracy does

not occur, the necessary and sufficient condition for all the seqﬁences
to be identical is that the iteration formulas used possess the same

value of o at each iteration,

Proof: If an initial point Xy and initial m#trix H, are given, since
do = - ﬁggo, the point Xy and hence the vaiugs of g and ¥, are the same
for all members of Huang's family, >Since no quadratic properties were
used in proving Lemma 4,1, it is also valid for nonquadratic functions.
It then follows from (4.27) that P) and hence x,, s;» and y, are the
same for all members. Assume that the same points Xqs Xy eeey Xper and
| hence the same values of sot Sps eeey Sp_1? and Yor Yir eees Yi1® have
been generated. It remains to show that all members of Huang's family
generate the same direction Pp» k> 1, glven by (4.27) if and only if
they all possess the same value of g. 1In the expression for Py the
quantity dependent upon the parameters is the vector Hi_lgk. Hence, the
method of proof is to derive a substitution for Hi—lgk’ then HE_ng, and
so on, back to Hggk.
If w is an arbitrary vector, then from Algorithm L.1,
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T

S w
T T k-1 T
- Hw = H qw+o 5 (v3Sp1 + Yol 39y o)
Qe1Yk-1
T T
y, JH .w ,
- Y11 T
T (88,3 * OxH) 11 9) -
k-1Yk-1
Substituting for ﬁi-lyk-l from (4.29) gives
ST w 'Y
T k-1 : 2 T
Hyw ﬁi—l" to g vt Sp-1 Yol 18
U1 Vk-1 Qg1
T T
y, H w| 6
k-1 k-1 2 T
- QT 61 + Sl t 62Hk_1gk . (4.38)
k-1"k-1 Og-1
From Lemma 4,1,
T T
S I B L
k®k el "k-18k T
k-1Yk-1
so that
P T
1 Yy, -H .8
T _ T k-1"k-1%k
Hpe18k = - — H& + =7 Sg-1° (%.39)
Py Sg-1Yk-1

Substituting (4.39) into (4.38) and then simplifying by the use of the
definitions of U1’ Spo1’ and V-1 glves the expression
Sy Y
ﬁrw = ﬁT W + Os k-1 2 o

K k-1 k-1" | T -7 Heey
Sp-1Yk-1  MkI%-17k-1

T T Sg-1 5, i

= Yg1ka1¥ | T T K8k | *
Sp-1Yk-1  MrZk-1Yk-1
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This equation can be written as

T
S, .Y
T k-1Vk-1 T T
Hw = T - T + HSn | Heg ™
k-1Vk-1

Sg-1 T '

+0 ;T——_—__ - ¢ksk S " (4.40)
k-1Yk-1

where
_Y —6
#y = T e, and Y = .
' Mg 1Y% -1 Mei%k-1Yk-1

in the expression for Py given

Thus, substituting from (4.40) for ﬁi_igk

by (4.27) and then simplifying yields

T T
S, .Y s, ¥
_ k-1k-1 k-2Yk-2 | T
Pp=|1-7 I- Hy 28
Sg-1Yk-1 Sk-2Yk-2
s, ¥ s g
Sp-1Yk-1 k-28k
i T O F Sy-2
k-1Vk-1 Sg-2Yk-2
since
s fr ,
k-1Yk-1 T T
I- T #1511 k-2 28 = 0 and
k-1Yk-1
S yT
k-1Vk-1 T
I- T P 195K-15k-28 = O
k-1Yk-1

If the substitution from (4.40) for Hi_zgk were now made, a similar

simplification would occur. This process can be continued back to
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Hog,s elving
T
k-1 S.Y. :
Py = | l 1 - e
'l 3=0 sty. k
373
L T T
k-2 k-1 sy s.8
+Z H ~ -2 o—TMsJ.. (4.41)
J=0 m=j+1 Sp¥m S¥5

Thus, it follows from the induction hypothesis that all members of
Huang‘s family generate the same direction Py 1f and only if they all

possess the same value of 0, and the proof is complete,

Since Broyden's family is the symmetric subset of Huang's family

with 0 = 1, Theorem 3.14 is established by (4.27) of Lemma 4.1 for k = 1

and (4.41) of Theorem 4.3 for k > 1 with Hg = H,.

follows from Theorem 3.14, can also be obtained directly from Theorem

Theorem 3.15, which

4.3,
In the special case of a positive definite quadratic function, the

conjugacy of the search directions implies, by (4.11), that
T . :
&S5 = 0, 0<j<k-1, (4.42)

so that (4.41) reduces to

T
k-1 S.Y. T
P, = l I . I- ﬁ%f; Hog, o (4.43)
_ J=0 s5¥5

Expanding the first two factors of the product in brackets glves
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T T

T T
Sp-1Yk-1 Sp-2Yk-2 | _ Sg-1Yk-1  Sk-2Yk-2

I-= - |=1-7 -7
Sk-1Yk-1 Sg-2Yk-2 Sg-1Yk-1  Sk-2Yk-2

s, (¥ .8, )y
k-1‘Yk~1 k-2 k-2

+
T T .
(s)-1¥5-2) (S _2¥;p)

The definition of y, , and (4.42) implies

T T T _ .
yk-lsj = gksj - gk-lsj =0, 0<j<k-2,

Hence, the product of the first two factors of (4.43) reduces to

T T
*k-1"%-1  Sk-2¥k-2
ST Y ST Y :

k-1k-1  Sk-2Yk-2

I -

If the product of this factor and the third factor of (4.43) were now
expanded, a similar reduction would occur. This process can be contin-

ued until (4.31) is obtained. Thus Lemma 4.2 is established.
Pearson and Adachi

Pearson [hZ] develops a class of variable metric algorithms which
includes the DFP algorithm. The problem considered is to find the
minimum of the function f defined by (4.1). His approach is to obtain
a class of matrices Hk such that for dk = - Higk, the search directions
do, dl’ eeoy dn-l are conjugate with respect to G, since this will give
»quadratic termination.‘ In addition, if n iterations are needed, it is
required that Hn = G-l.

Suppose the conjugate directions do, dl' veoy dk-l have been gen-

erated, that is,
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d{Gdj =0, 0<i1<j<k -1, (4.44)

Since Sy = aidi' if ay # 0, these conjugate directions result in conju~

gate steps, Sgr Sys eces Sp1’ that is,
T _
sist =0, 0<1<j<k-1.
Define the n x k matrices

Yk = [yo, Yy KXY yk-—lj' and Sk = [so, S1s eevs sk_]_]. (4.45)

For f given by (4.1),

¥y, = Gsy (4.46)
so that
G‘lrk =S (4.47)
So, suppose Hk is a matrix satisfying
HY =5, (4.48)

k'k k

By the proof of Theorem 2.3, (4.44) implies dng

=0, 0 <1<k, thatis,

=0, 0<1i <k, which
by the definition of Sy implies szgk

T

S8 = 0. (4.49)

Then by the definitions of s, and d;, and by (4.48),

7 T.T
sk = - Y Hee
T
= - S g

| - 0, (4.50)
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that is, fgsk =0, 0<j<k-1, so that by (4.46),
T .
stsk =0,0< j<k-1, (4.51)

Therefore, if Sy # 0, the new step Sy is conjugate to the previous ones.
Equation (4.51) also implies, by (4.46), that égyk =0, 0<j<k-1,

that is,

Ty <o, | (4.52)

Sivk =

In addition, for k = n, (4.49) gives Sign = 0 and (4.48) and (4.47) give

S =HY =HGS
n n'n n n

which implies &, = 0 and Hn = G-l if Sn is nonsingular, that is, if

Sg» Sys e+s S;_; aTe all nonzero. Note that if H,_satisfies (4.48) for

every k, then Hk#lYk+1‘= Sk+1 implies, by the definitions of Yk+1 and

Sk+1’ that Hk+1yk = Sy that is, the iteration matrix satisfies the
quasi-Newton equation.
To obtain a general solution of (4.48), the following lemma is

needed. This lemma is established by Theorem 2 of [43].
Lemma 4.3t A necessary and sufficlent condition for the matrix equation
CXD = E
to have a solution is that
cc*ed'D = E,
where C' and D' are matrices which satisfy the relations

cc’c = ¢, and DD'D = D.
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In this case, the general solution of the equation is
X = ¢'Ed* + Y - c*cyo®,
where Y is an arbitrary matrix of the same size as X.
Applying this lemma, the general solution of (4.48) is

He =S, ¥p + R(I - Y, ¥¥), (4.53)

where R 1s an arbitrary n x n matrix and Yi and Yi are k x n matrices
which satisfy the relations

Y Y'Y

WY = Yy, and Y Y0¥ = Y. . (4.54)

k'k'k k

The condition that the equation (4.48) be solvable is that S YpY = Sk
By (4.47) and (4.54),

SkYiY = G YkYiYk
-1
G Yk
= Sk'

so thls condition is always satisfied.

] "
Kk and Yk
to have the form (fimxk)'lriu for positive definite matrices M = G ™% or

Pearson restricts R to be a positive definite matrix and Y

M = R, independently for each term. This leads to a class of four algo-
rithms. Given the vector X and gradient & # 0, the k-th iteration of
the general algorithm sets dk = - Higk, where H
& and Y; as specified above, and H

K’ k> 1, is defined by

(4.53) with Y = R, Then the vector

0
Xe+1 = Xg * Sy where s, = q,d; with o, chosen to minimize f(xk + adk)

with respect to a. Each of the four algorithm, if applied to the
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function f defined by (4.1), will find the minimum in at most n itera-
tions. Also, if n iterations are required, then H = ¢, These
properties are established by Theorem 2 of [42]. Particular algorithms
are obtained by alternate choices of M in Yi an& Yﬁ. Recursion formulas
for Hk+1 in terms of Hk' Vit and S, can then be found for three of these
algorithms by applying a recursion formula established in Appendix A of
[42] and using (4.50) and (4.52). The DFP formula is obtained by sub-
stituting M = G0 1n Yy and M = R in Y. Based on the same 1dea, Adacht
[17 develops a general variable metric algorithm. However, he obtains a
more general recursion formula for Hk given by (4.53) and Yi and Yﬂ sat-
isfying (4.54). This recursion formula includes those derived by

Pearson.

Define the k x n matrix Elk and n-vector e x by

| T
- TPt - YY)

1£ T - XX A0
T -v1)y K’k 7 O
e - Yy Kk Vi
1k
0, If T -YY =0,
T
e . (I -1Y.Y)
—1k kX 1£1 - 1Y 40,
- '
xo_ ) cudt - Ny
1k
0, if I -Y Y =0, (4.55)

where the vectors blk and clk are such that
T (I =YXy #0, and oF (I - Y,¥!)y, # 0
b1y Kk Yk 7 0 1k Kk 7 0

Then the following lemma defines recursively a matrix Yi which satisfies

equation (4.54).
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Lemma 4.4: The k x n matrices Y', k > 1, defined recursively by

k!
]
<, e Eix
4 =
4] T and Y} . = + . | k> 1,
100 , 0 ek
satisfy the relation
Y =Y., k=1, 2, ..., (4.56)

Proof: The proof is by induction on k, Clearly, by the definitions of

Y, and Yq, (4.56) is true for k = 1. Assume (4.56) is true. Then

’ - Y = . .
(1 YkYk)Yk 0. (4.57)
]
Using the definitions of Yk+1 and Yk+l’

[ ]
Yea¥intier = (Y w0 + By Tk * BV
7 T
®1k Kk 1k

which, by (4.57) and the definitions of E,j and oL , reduces to

1k

YTt = (e %) [ 4% 0] = [0y, n

0 1

Then, by the induction hypothesis and the definition of Y it follows

kel
that (4.56) is true for k replaced by k + 1.

in (4.53) be defined by the recursive formulas

[ ] (1]
Let Yk and Yk
[ ]
c{o et Eig
[P " "
N7 Y = . » k21,
%0%

®1k
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cgo Yk + E2k
Yy o= =, Y - , k> 1, (4.58)
0% er
2k

T T
with B, and e, glven by (4.55) and Epk apd e, &lven by

SC IR e

T ”
bbk(I YY )yk

, 1f I - Y Y2 £ 0,

Eox =
0, 11 - Y =0,
T
c.. (I -Y. Y
e k k £ 1 - XX £ 0,
T o (T = Y ¥ )yk
2k
0, 1f 1 - Y ¥ =0,

where the vectors b,, ‘and c¢,, are such that

2k 2k
T (1] ”
b2k(I Y )yk # o and cZk(I Y X )yk # 0,
Then, by (4.53),

Hen = Seaa¥ien * BT - Y0 Y5iy)

" T
[Si¥k * Sk * 5¢® lk] +R(I - [ ¥y + VB + ye,])

skclk(I - YY) S LT - 51

k(I RS hlk(I - LX)y,

=Hk

T " - "
ol Bt - N N oI - Ytp)
T " " )
o (I = Y X )yk 2k(1 YY)y,

Denote the matrices I - YkYk and I - YkYk by Ak and Bk' respectively.

Then,



A =T -[Y, Yy + Y,E

k+l

= A - 4By

Similarly,

- Yok -

Also, by (4.53),

S, Y! =H - RB

k'k k k’

k 1k

- eT
Yx®1k*

T
* Tieqy )

Ik®2k:

Therefore, the recursion formula for Hk can be expressed as

and

T
P o T Sl 2% 1K
kT kT T, T,
1Kk 1Kk
T
Cal e (1 - By b3y
T
2Pk 215Kk
where
T
W, oA LA ykclkAk
k+1 k gT
1Mk °1k kyk
T
s g LB 7By - 2l
K+l ~ Ck T 5 T
2K k'k 2K kyk

where the vectors blk' clk'

T

T

by BV # 0, and o

7
b Ak # 0 e d Ty £ 0,

218k # O

bZk' and Cop 3Te chosen so that
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(%.59)

(4.60)

(4.61)

(4.62)
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This recursion formula is used to define the following general variable

metric algorithm,

.Algorithm 4.2 (Adachi, 1971): Given an initial vector #o and initial
symmetric matrices Ho = R, Ao_= I, and Bo =1,
Fork=0, 1, 2, ...,
If g, =3g(xk) = 0, then stop.
. Else, set dk = - Higk'
find oy which minimizes f(xk + adk) with respect to a,
set S = akdk' |
Xl = X S

yk = gk+1 - gk’

update H, by equations (4.60)-(4.62).

The properties of this algorithm established by the discussion pre-

ceding Lemma 4,3 are summarized in the following theorem.

Theorem 4.4 Let-Algorithm 4.2 be applied to the function f defined by
(4.1)., 1If the vectors Sg» Sy» +++», S, are all nonzero, then
1) Sg¢ Sy +++» S, aTe conjugate with respect to G,
11) g, = 0, that 1s, the algorithm is quadratically termi-
nating, and

111) H = G-l, that is, the algorithm is exact.

Particular algorithms are obtained from the general variable metric
algorithm given by Algorithm 4.2 by appropriate choices for the vectors
byps S pr Doys and e, . If equations (4.50) and (4.52) are then applied
to the resulting iteration formula, various known formulas, including

the DFP formula, can be derived. Since these equations depend on
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Algorithm 4,2 being applied to f defined by (4.1) and are not true in
general, this relationship holds only in this case. However, another
general algorithm can be obtained from Algorithm 4.2 by choosing blk’
C1xr Popr and’cZk in (4.60) as linear combinations of s, and Hiyk and

then applying équations (4.50) and (4.52)., Let

T
b s, + 6 Hkyk’ and

kT Y3k T O3k
- . T - v
cjk = ﬂjksk + %kﬂkyk' j lv 2- (""063)
where yjk. bjk' ¢jk’ and‘%&k, j=1, 2, are scalars. Since HkYk =S
by (4.50) and (4.52),

T T T T T . T
1k (¢lksk * yikayk) - ¢1kSkYkYi - yikkakYkYk = Clp" (4.64)

Similarly,
T, T T. _ T
b1k = Pixr CoiPy = Cpe 2nd
T T
by By = by e (4.65)

Hence the recursion formula for H glven by (4.60)-(4.62) reduces to

T T
sy (Hp - BBL)y by

Hpp = H + T T -
| 1k7k 1x7k
T T
o T (- By (4.66)
T T ’ .
®2x'k LoV
where
T T
I s " R (4.67)
K+l - Pk T '

Y T
2kVk Cor'x
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This leads to Algorithm 4.2' in which equations (4.63), (4.66), and
(4.67) are used in Algorithm 4.2 instead of equations (4.60)-(4.62).
The DFP algorithm is derived from Algorithm 4.2' by letting
by = ¢ = S and by =, Hey, in (4.66) and choosing R to be

positive definite. Bquation (4.66) then reduces to

(s - Hyy + RBkyk)S RBkykyk k
H . =H +
kel = Hy T T
Kk N

Substituting for KB, given by (4.59) yields

(s, -8 R )s (H Y = STy )yoH
H L mH o+ Sk Kk Kk " Pk kKKK (.68)

kel = Hg T T
| STk | Vi x

In this case, it can be shown by induction that the matrices Skxk,

k> 1, are symmetric. Clearly, by the definitions of S, and Y!,

1
o T
So50

59 =7
So%0

is symmetric, Assume SkYi is symmetric. By the appropriate definitions

and equations (4.64) and (4.65),

[~ C P T
[s 7|1 - Tk | S yr I
a1 Tkl k1| kT T kK'k - Ty .
Kk Kk
T
k
T
sk
The symmetry of SkYi and (4.52) imply
T T
(skriyk) NS Yy = 0. (4.69)



150

Thus, Sk+1Yi+1 is symmetric and the induction is complete. Equation

(4.69) then reduces (4.68) to the DFP formula.

Adachi [2]~proves that, glven the same initial point x, and initial

0

matrix Hy = R, the sequence of points X;, X .es, generated by

l’

Algorithm 4.2 with.- b, and c,, J =1, 2, defined by (4.63) is uniquely

Jk J
determined, if it is defined in fact, independently of the parameters

Y 550 ) 3k [ 3k and y—:jk, j =1, 2, when the algorithm is applied to the
quadratic function defined by (4.1). It is first shown, under these

conditions, that given a matrix H , the (k + 1)-st search direction is

k'
uniquely determined independently of the parameters. This result is
established by the followlng theorem which shows that the parameters

affect only the magnitude, not the direction, of dk+1'

and ¢.,, j=1, 2, given by

k jk’
(4.63) is applied to the function f defined by (4.1), then the search

Theorem 4.5: If Algorithm 4.2 with bj

direction

= ..HT
dk+1 T k+lgk+1

can be expressed as

41 = O Pre1’

where 6, . 1s a scalar which depends on the parameters Y50 ij, ¢jk'

and.%&k, =1, 2, and p_ ., 1s the vector defined by

7).
= I - fk_yk HT
Pril T kSk+1
Kk

Proof: To simplify notation, the subscript k will be omitted and the

subscript k + 1 will be denoted by the superscript *. Under the stated
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hypotheses, the iteration formula for Hk used in Algorithm 4.2 given by

(4.60) reduces to the formula given by (4.66). Using this formula,

T T T T T T
*T T cls g* bly (H = RB) g* czy bzy (I - B) T
H gf==Hg*+ 5 - — T - T - T R g*
¥ by - C¥ by
T.T
b,y H g* b, c
| e - B e 2
bzy | béy czy ;
b b.
T om\T :
+y (- m)Tex| & -2 |. (4.70)
by by

Substituting for b2 given by (4.63) and using the definitions of y and

s, the first term in the right hand side of (4.70) may be expressed as

T,T T,T T . T.T T.T
T bzyHg* T styﬂg*-ézﬁg*yn’gl ézsyHg*

H gt - =g =H g* - -
T T T T
b2y bzy b2y abzy
d yTHTg* Y. sTy 6 sTy syTHTg*
2 T 2 2 .
| l-—F— |- | Tt T
: b,y by ob.y éry
2 2 2
Since
T T T T T, . T T
R S S T R P
b,y  abyy b,y ab,y by

the first term of (4.70) is a scalar multiple of the vector p*. Simi-

larly, by substituting for b, and c

> 29 the second term may be expressed

as

TT ,\.T ’ DT

e, | % | (YR &*)(s 5) (8,8, - ¥5,) TSy Hy|
by ¥ (byy)(cpy) ’ s'y
2y C2 2712
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Using the definitions of y and s, the factor in square brackets in the

right hand side reduces to

T,T T,T T.T
T T syHg¢ syHg T sy H g*
Heg -Hg-—Fg—-—F7 ~Hg-—5—

s’y ay H'g s’y

so that the second term in (4.70)vis‘also a multiple of p*. Since
" equations (4.49) and (4.52) are valid for the given function f, and

H - RB = SY' by (4.59),
S'*T(H - RB) = (gT + yT)SY' =0
and the third term of (4.70) is zero. Hence, by (4.70),
a* = - H*Tg* = p¥p*
.for an appropriate scalar 0%,

Theorem 4.6: Under the hypothesis of Theorem 4.5, if the vectors
Sg» Sy» +++» S, are defined and nonzero, then the (k + 1)-st search

direction P41 defined by Theorem 4,5 may be expressed as

P = | I - K E.I!E R (L‘, 71)
k+1 0 o Ep+1° .
ryr

Proof: From Theorem 4.5,

yTHTg

T k k°k+1

Pre1 = HiBpyy ~ Sg T, . (4.72)
Wk

Equation (4.70) with k replaced by k - 1 and then g, replaced by g .

T T
implies that Hkgk+1 is equal to Hk-lgk+1 plus a linear combination of
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. the vectors bl,k-l’ h?,k-l' and °2,k-1' BEach of these vectors as de-

T

fined by (4.63) is a linear combination of Sp1 and Hk-lyk-l' Using the

definitions of y, and s,, for an appropriate scalar o,
k k

| . YR
T Wk |.T KBkl T
Hpype = | I - T Helier * S| T - Hy8y = Py + 05,
kk | Kk |

By Theorem 4.5, P4y 1s a scalar multiple of d; , which is a multiple of
T ‘
Ska1” Thus, Hkyk is a linear combination of Sy and 8141 It then fol-

lows from (4.72) that

T

L Hk—lgkﬂ, * oS, * Oy 18k (4.73)

for appropriate scalars Ok and Op1° Since Pr+l is a multiple of Sp4l
and, for the given function f, ¥y = Gs; and Vel = Gsk-l' if s, #0

then the conjugacy of the vectors'so. Sy eeer Spiy implies

T T
ViPsy = O 304 Ty 4Py = O

These equations are also true if s, = 0. Therefore, by (4.73),

7.7 T
Vilk-18k41 * OxSiIy = 00 and

T T T

Ye-1"k-18k+1 * Ok-15k-17k-1 = O

Solving the above equations for Oy and ok—l’ respectively, and substi-

tuting into (4.73) gives

T T
*k1Vk-1 Sk |1

T T k-18Kk+1°
Sp-1¥k-1 Sk

Pesy = | I -

This same procedure may be repeated until (4.71) is obtained.
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The following corollary is the result of (4.49) and Theorem 4.6,
If the initial matrix R is positive definite or negative definite, it
implies that the algorithms are stable for positive definite quadratic

functions.

Corollary 4.1t Under the hypothesis of Theorem 4.6,

T sTHT =ooo=TR
ErPr = B k-1 K Ok’

Since Algorithm 4,2 with the parameters given by (4.63) reduces to
Algorithm 4.2' when applied to the quadratic function f defined by
(#.1), Theorems 4.5 and 4.6 and Corollary 4.1 are also valid for
Algorithm 4.2', It follows from Theorem 4,6 that, for a given initial
matrix R, all the particular algorithms derived by Algorithm 4,2 with
the parameters given by (4.63) or by Algorithm 4.2' generate a unique
sequence of search directions Pgr Pyr eoes and a corresponding unique
sequence of points Xgr Xps ecee However, Theorem 4.6 does not imply
that the minimum X' of the function f defined by (4.1) is reached by all
of these algorithms after at most n lterations, only that if the point
x' is 6btained by these algorithms after n iterations for a glven
initial point x

0
Xgr Xys eees X 10 x' is the same for all the algorithms. Some algo-

and an initial matrix R, then the sequence

rithms may stop at a nonstationary point or may not be defined at a
certain step of the iterations.

Algorithms 4.2 and 4.,2' may be applied to a nonquadratic differen-
tiable function. However, the proofs of Theorems 4,5 and 4.6 do not
hold in general since the quadratic properties of the function were

used, In the proof of Theorem 4.5, quadratic properties are used only
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to reduce the recursion formula for H_ glven by (4.60) used in Algorithm
4,2 to that given by (4.66) used in Algorithm 4.2' and to show that

(H, - RBk)Tgk+1 = 0, so that the third term in the right hand side of

(4,70) is zero. But, by the same method as used in the second ternm,

this term may be expressed as

| T T T
T T | % By | ¥ (H-EB)gyi8, - v,5) Y |
y (B - RB)"g| == - 7~ | = T I-—|He
by by (b,3) (b1 ¥) s’y

Therefore, Theorem 4.5 is valid for Algorithm 4.2' applied to non-

quadratlic functions.

Theorem 4,7: If Algorithm 4.2' is applied to the differentiable func-

tion f, then the search direction dk+1 can be expressed as

4l = Okr1Prs1’

, :
where ek+1 is a scalar which depends on the parameters ij’ ij. ¢jk'
and.ng. j=1, 2, and p_, 1s the vector defined by Theorem 4,5,

The relationship betﬁeen Adachi's general family of variable metric
algorithms given by Algorithm 4,2 or Algorithm 4.2' and Huang's family
glven by Algorithm 4.1 can be determined by comparing the criterion used
to derive the iteration matrix Hk. For Huang's famlly, the matrix Hk is
chosen to satisfy (4.41), that is, |

Hy; =0s;, 0 j<k-1.

Using the definitions of the matrices Yk and Sk given by (4.45), this

equation is equivalent to the equation HkYk = oSk. Hence, for o =1,

Huang's iteration matrix satisfies the equation
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HY =8 (&.74)

k'k k*

Adachi's iteration matrix is the general solution of this equation,

given by (4.53), that is, H =S Y4 + R(I - Y, ¥Y+), where Y} and Y} are

k “kk k
’ = " =
defined by (4.58) and sat;sfy YYY =Y and Y YFY =Y. since
R(I - YkYﬁ)Yk =0,
- ]
H =S Xt (4.75)

is a particular solution of (4.74). Applying the method used by Adachi
to obtain recursion formula (4.60) for the general solution (4.53), to

the particular solution (4.75), ylelds

b A

s éT A Yy
+ k“lk k - ka 1k k' (h.?6)

T
'k Pk

H

Hen = Hye

where A, 1is given by (4.62). If

Cuk = Y15k * VY and
T
Big = 815y + S
then, by (4.64) and (4.55),:equation (4.?6) reduces to the general
1teration formula used by Huang's family in Algorithm 4.1. Therefore,
in the case of o = 1, Huang's general family can be obtained from a
particular solution of H Y

Kk
derived from the general solution of this equation. In this sense,

Sk’ while Adachi's general family is

Theorem 4.5, Theorem 4.6, and Theorem 4,7 are generalizations of Lemma
4.1 and Lemma 4,2. However, a result corresponding to Theorem 4,3 has

not been proved,



CHAPTER V
SUMMARY

This paper is an expository study of Fletcher and Powell's version
of Davidon's original variable metric method and generalizations of this
method, that is;iparametric families of variable metric methods which
contain the DFP méthod and have basic properties in common with this
method. The main emphasis has been on the motivation and basic ideas
leading to their development and on the theoretical properties which
form the foundation of these methods.

Davidon's variable metric method introduced a variable metric into
the direction of steepest descent, leading to the search direction

dk = - Hkgk’ where the variable matrix H approximates the inverse

k
Hesslan matrix at the point Xy . The basic concepts of this method were

discussed in Chapter I. Fletcher and Powell simplified this method and

established the properties of quadratic termination and exactness. That
i1s, for a quadratic function f of n variables with positive definite

1

Hesslian matrix G, &y = 0 and Hn = G ~, if n iterations are requifed.

In addition, they proved that the method was stable by showing that Hk
was positive definite for each k. Powell's general convergence theorem
extended convergence to convex functions. Chapter II, which covered the
DFP method, concluded with a discussion and possible explanation of the
numerical difficulties encountered with this method.

The first parametric family, the topic of Chapter III, was

157
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developed by Broyden as a quasi-Newton method. This one-parameter
family was derived by modifying Hk so that the quasi-Newtoh equation,
Hk+1yk = s, 1s satisfied and Hn =g for a quadratic function f with
positive definite Hessian matrix G in order to obtain finite termina-
tion., Symmetry of Hk was also required. A range on the parameter Bk
which guarantees stability was established. Shanno's development of
the same iteration formula was also based on the quasi-Newton equation.
- However, his formulation extended the range of Bk which ensures sta-
bility. The development by Goldfarb showed that the correction matrix
could be expressed as a combination of two correction matrices of mini-
mum norm obtained from a formula derived by Greenstadt. Fletcher's
dérivation of this same family showed that any member differed from the
DFP matrix by a matrix of rank one. The analysis of Broyden and Shanno
in their search for an optimal barameter led to the complementary DFP
formula. Dixon's theorém extended Powell's convergence theorem to other
members of this family, Table III gives the different formulations of
the iteration formula for the va*iable matrix H. Table’IV summarizes
the relationships among the different formulations and gives the values
of the parameters leading to the DFP formula and the complementary DFP

formula.
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TABLE III

FORMULATIONS OF THE ONE-PARAMETER FAMILY

Author Iteration Formula

Bi‘oyden H* = H + 's.qT - Hsz

T, \ T
(1 + By Hy)s
T T
q = T _ByH
sy

T ,.T
p (-BsY)yH o

7z = + Bs
T
y Hy
T T
Tss [ -7)s -HyJ (1 -T)s - Hy ]
Shanno H* = H + T + T
sy (@ -7)s -Hy]y
* = -
Goldfardb H H+ yCy + (1 y)cH*
1 T T s'y T
C, =-—|syH+Hys" - 1+ Hyy H
H T T
yHy | y Hy ]
1 T T y Hy T
CH*=-T—-syH—Hys+ 1+T ss
s’y sy
* = - * %*
Fletcher B* = (1 - f)HE. + PHE .,
ssT HnyH
Ht  =H + = - ———
DFP T T
s’y yHy

HBFP' =H + CH*
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TABLE IV

VALUES OF PARAMETERS LEADING TO ONE-PARAMETER
FAMILY AND PARTICULAR ALGORITHMS

Author Broyden DFP DFP!
‘ : 1
Broyden —_— B=0 B = -
sy
ByTHy
Shanno T=1+ — T=1 T= o
l -Bs'y
T \.T T
(1 - Bs'y)y Hy Y Hy .
Goldfarb Yy = Y = Yy =
yTHy + sTy yTHy + sTy
T i =
Fletcher g =8sy g=0 g=1

The general families of Chapter IV were obtained by Huang, Pearson,

and Adachi by not restricting Hk to be symmetric."ln this case, the
search direction was given by dk = - ﬁigk. Since Huang's objective was
to develop quadratically terminating algorithms, the variable matrix'Hk
was chosen so that, for a quadratic function f with positive definite
Hessian matrix G, directions conjugate with respect to G would be gen-
erated. Adachi's family was based on the fact that, for a quadratic
function f with positiye definite Hesslan matrix G, the directions would
conjugate with respect to G and Hn would be equal to G-l if the variable

matrix Hk was a general solution of H, Y

Kk = Sk' Huang, Dixon, and Adachi
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showed that these general families could be classified on the basis of
ldentical behavior on certain classes of functions. The relationships
among the parémetric families of Broyden, Huang, and Adachi are summa-

rized in Table V.

TABLE V

RELATIONSHIPS AMONG PARAMETRIC FAMILIES

Huang (0 = 1) Broyden
Huang | : ‘ c=1
T
s(yls + YZH'y)T v, =1+ ByTHy
H* =H + 0
(v;5 + LNy
LSRR T
— Yo = - Bs'y
Hy(s.s + 6, H y)T
157 % .
- )T 6, = By Hy
(3,5 + 8,H'y)y
_ T
62 =1 -8s'y
T _ T
Adachi ¢ = ¥ys + Y HY c, = (1 + By Hy)s
(using H = SY*)
T ., T
T P +(-Bsy)Hy
scy Hybl
S e T iy
6y by b =68 + 6 Hy b, = (By Hy)s

+ (1 - Bs'y)Hy




162

Table VI summarizes the basic properties of the DFP method and the

conditions under which the parametric famillies studied also possess

these properties.

TABLE VI

BASIC PROPERTIES OF THE DFP METHOD AND PARAMETRIC
FAMILIES WHICH CONTAIN THIS METHOD

Property DFP Broyden Huang Adachi
Conjugate direction method X X* X* X*
Quadratically terminating X X% X* X*
Quasi-Newton method X X c=1 X
Exact X X* c = 1% X*
Stable1 - X Xxx Xxx X¥x

1prov1ded H, 1s positive definite

0
*provided degeneracy does not occur

**for positive definite quadratic functions, provided degeneracy

does not occur

T
***provided B, > - 1/(akgk+1Hkgk+1)

This paper supplies the necessary background and suggests some re-

lated toplcs for other expository papers or further research.,

exact linear searches are basic to the development of the methods stud-

led, the theoretical convergence properties presented are dependent upon
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this conditlon. However, some analysis on the convergence of certain
algorithms using less than exact linear searches has been done. The
convergence properties of the DFP method applied to a convex function
are examined by M, L. Lenard [ 34]. Powell [50, 51] studies finite
termination properties for Broyden's one-parameter family applied to a
positive definite quadratic function.

The complementary DFP formula derived as an optimally conditloned
member of Broyden's one-parameter family is also used by Fletcher [26]
_, the use of H

DFP* DFP DFP'*
in a variable metric algorithm might counteract the tendency toward

in a different algorithm. Since det H > det H

singularity of\HDFP. However, since Lemma 3.2 also implies that
the use of H

DFP* I& DFP ”2' DFP’
become unbounded. Fletcher's algorithm suggests a way to counter both

|| H > |[H alone might cause H to tend to
singularity and unboundednes. If siyk > yinyk, then H_ 1s updated by
the DFP' formula; otherwise, the DFP formula 1s used. The interpreta-
tion of this test is based on the fact that for a quadratic function
with Hessian matrix G, S = G-lyk. Hence the "larger" DFP' formula is
used whenever Hk is "smaller" than G"1 in the sense fiG-lyk > fiﬁkyk.
In addition, Fletcher chooses not to carry out a full linear search on
each iteration. Instead he uses a strategj that usually requires only
one functlon and gradient evaluation on each iteration.

Linear searches are usually done by evaluating the function and
gradient for a number of different step sizes and interpolating accord-
ing to some strategy, until a sufficiently accurate minimum is obtained.
Thus, considefable computing effort, as measured by the number of func-

tion and gradient evaluations, 1s required. Another disadvantage is

the possibility that a minimum along the search direction may not exist
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at all. Fletcher's algorithm is based on the theory that 1t may not be
worthwhlle to calculate the optimal step size very accurately. Another
approach is to consider whether the 1ineai search can be avolded com-
pletely. The importance of the linear search is that the minimum of a
quadratic function f with positive definite Héssian mat:ix G may be
found in a finite number of iterations if the search diréctions are con-
Jugate with respect to G. However, for one member of Broyden's one-
parameter family of correction matrices, finite termination can be
proved by showing Hn = G"1 for a variable metric algorithm without lin-

ear searches, This member is the symmetric rank one matrix

T
A e 4
Ck N T (5.1)
(s - Hyp) vy
obtained when
1
Bk= T T L ]

sk ~ Vil

The use of this rank one correction matrix in a variable metrié method
was first suggested by Davidon [14]. It has also been suggested inde-
pendently by Broyden [6], A. V, Fiacco and G. P. McCormick [21],

B. A, Murtagh and R. W. H. Sargent [39], and P, Wolfe [59]. The prop-
erty H = ¢ is established by Broyden in Theorem 6 of [6] for an

algorithm using the following iteration. Given the vector x,, the gra-

k'

dient 8 and the matrix Hk’

X = Xx - 8y

Heyp = He + Cpo (5.2)
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where 0y 1s an arbitrary nonzero scalar except that it must not cause

Hk+1 to be singular or undefined and where C, is the matrix given by

k

(5.1) with s, = x and y, = g, - g Although the use of (5.1)

k

K+l ~ ¥k

eliminates the need for a linear search, it presents some other prob-

lems. One 1s that H, positive definite need not imply H 1 positive

k k+
definite. Hence stability cannot be guaranteed in a basic algorithm
and Hk+1 may be singular or undefined due to a zero denominator. For
example, if o = 1 happens to minimize f(xk - aHkgk) with respect to a,

then as shown in Chapter III, H is singular. Thus, many additions to

k+1
the basic algorithm are required if this rank one updating formula is
used, Davidon's [15, 16] rank one algorithm always uses 0y = 1, that

is, b S Hkgk. If the resulting vectors S and Y, are such that

kel T Xk

Hk+1 = Hk + Ck, with Ck glven by (5.1), is not positive definite, then
Hy,; 1s defined by adding a different multiple of (sk- Hkyk)(sk-Hkykfr
to Hk so that positive definiteness is obtained. After Hk+1 has been
calculated, if f(xkfl) > f(xk), then the next iteration begins at x
instead of x, . Murtagh and Sargent [40] also propose algorithms in

which x =X, - akagk for some a, and the positive definiteness of Hy

k+l
is maintained.

An important property first noted by Wolfe [59] is that the rank
one correction given by (5.1) can yield H = G-l, for a quadratic func-
tion with positive definite Hessian matrix G, without the restriction
that Xp41 be calculated by (5.2), Recall that this property follows

from
Hys=s5H 0<j<k-1, (5.3)

for k = n, 1f the vectors Sgr Sy» eeey S, 4 are linearly independent
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since, in this case, yj = st. Equation (5.3) is true for k=1 becéuse
- the rank one ﬁpdating formula satisfies the quasi-Newton equation, As-
suming (5.3) to be true and using the relation’yj = st, which is true

for any j, glves

T T T : :
(sk - Hkyk) Y5 sk:Gs‘_j - sstj 0, 0<j<k-1.
Thus, it follows from the iteration formula Hi,q = H + C with C glven

by (5.1) and the induction hypothesis that
HegVs =85 0S5k -1,

if the vectors Sj aré such that Hk+1 is defined. Since the quasi-Newton
equation implies that the above equation is true for j = k, the induc-
tion is complete.. Algorithms which aﬁtempt to take advantage of this
flexibility in the choice of sk have been proposed by Powell [46] and

Bard [4]. In these algorithms, the matrix H_ need not be positive def-

k
inite and so is always updated by (5.1) and Sy is not always a multiple
of - Hkgk.

Routines, in particular FORTRAN subroutines and ALGOL procedures,
implementing the variéble metric methods discussed in this paper are
avaiiahle. Implementations of the_DEP method include FLEPOMIN by
M. Wells [ 57] and FMFP from International Business Machines Corporation
[32]. The complementary DFP formula is used in BROMIN by K, Fielding
[227]. DAPODIMIN by S. A, Lill [35] is an implementation of a modifica-
tion of the DFP method suggested by G. W, Stewart [55] which uses
difference approximations for the first partial derivatives, The de-

rivatives are also estimated by differences in ZXMIN from International

Mathematical and Statistical Libraries, Incorporated [ 33] which is
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based on VA10A by Fletcher [25]. Surveys of additonal existing imple-

mentations are given by Dixon [20] and Fletcher [24],
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APPENDIX
Roéenbrock
This function, introduced by Rosenbrock [52], is defined by
£y, %) = 10005, - 2%+ (1 - 7))

with the suggested initial point (-1.2, 1). The minimum value of zero
occurs at the point (1, 1). It is difficult to minimize because it has

a steep-sided valley following the curve Ei = 52.
Helical Valley
This function, given by Fletcher and Powell [26], is defined by
£(3), 5,0 55) = 200{(x; - 200(5), 5,)F + [x(5, &) - 1T} + 25,

where

arctan Ez/éi, 5,>0,

T + arctan §2/§1, 5, <0, - /2 < 2m < 31/2,

and

1
- (52 + gg)z'

(%, & 1

2)

It has a steep-sided helical valley in the ¥, direction with pitch 10

3
and radius one. The initial point is (-1, 0, 0) and the point (1, 0, 0)

glves the minimum value of zero,
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Powell

This function, introduced by Powell [447, is given by

N 2 2
£( = (;_1 +10%,)° + 5(@‘3 - %)

1! Ezl -53! EL") Ll,

",

b
+ (§2 - 253) + 1o(‘s‘1 - 54

The initial point (3, 1, 0, -1) is used and the minimum of zero occurs
at the point (0, 0, 0, 0). This function is a severe test since the

Hessian matrix is singular at the minimum point.,
Trigonometric

Fletcher and Powell [26] defined these functions to test whether a
method is suitable for finding the minimum of a function of a large num-
ber of variables., The problem is to solve the set of simultaneous non-

linear equations:

E: =1 (yijsin .+ éiacos £,) = 6o 1 =1, ..., n,

where the coefficients Yi’ and 61j' =1, ..., n, are generated as
random integers between - 100 and + 100 and the right hand sides

01, i=1, ..., n, are calculated for values of the variables

&y J =1, ..., n, generated randomly between - ™ and ™, Hence, the

-J
function of n variables to be minimized is

f(El, cees En) = EE:2=1 [ei -3 §=1 (yijsin §j + 613°°S §j)]2

with the minimum value of zero at the point (El, coey €n) generated.
The initial point is (£1+ 0.107, veepx + 0.}on), where O 5

=1, ..., n, are also generated as random numbers between - T and L



175

Sum of Exponentials

Broyden [87] designed these functions to fit m data points (¢1, Yi),
1i=1, «e., m, by a sum of q exponentials in order to combine maximum

scope for testing with minimum extra programming. The function to be

minimized is defined as

£ veer Bp) = 2 1 [ - qu £ yexp(- Ejﬂfai)]2

where n = 2q. The minimum is dependent upon the way in which the data
are obtained. For the function reported, q = 3 and the values of y;

were the sum of three exponentials evaluated at 13 values of ¢1.
Sum of Two Exponentials

Box [ 5] introduced this function which is defined by
10
£, Ez) => 1=1 [ (exp(- 511/10) - exp(- 521/10)

- (exp(- 1/10) - exp(- 1)) T2,

This function fits 10 data points (f,, 5”1% i=1, ..., 10, where ¢i
ranges from O.i to 1 in steps of 0.1, and Yi = exp(- ¢i) - exp(- 10¢1),
by a sum of two exponentials., The point (1, 10) gives the miﬁimum value
of zero. The suggested initial points are (0, 0), (0, 20), (5, 0),

(5, 20), and (2.5, 10).

Wood

This function, credited to C, F, Wood and documented by Pearson
[42], 1s given by
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£(E)) T ¥5008,) = 20005, - 5)° + (1 - £)% + 90(g, - 55)% + (1 - 5,7

3

+10.1[ (s, - 1)% + (5, - 1]+ 19.8(¥, - 1)(5, - 1).

The initial point is (-3, -1, <3, -1) and the minimum value is zero at
(1, 1, 1, 1). The function has a nonoptimal stationary point at
(-0.9679, 0.9471, -0,9695, 0,9512) which can cause an algorithm to

converge to this nonminimal point.,
Weibull
The Weibull function, introduced by Shanno [ 53], is defined by

13
99 (8 - 59"
f(Elt Ezt E3) = Z _ exp| - -501 ’

i=1 k3 1
where ¢1 =25+ [ 50 1dge(1/yi)]2/3 and Y; = 1/100., That is, the ¢1 and
Y;. i=1, ..., 99, are perfect data generated for Yi ranging from 0,01
to 0,99 in steps of 0.01 for the values El = 50, 52 =1,5, and.*;’3 = 25,
The minimum value of zero occurs at the point (50, 1.5, 25). Different

initial points may be used.



~
VITA
Rosalee Joy Taylor

Candidate for the Degree of

. Doctor of Education

Thesiss THE DAVIDON-FLETCHER-POWELL METHOD AND FAMILIES OF VARIABLE
METRIC METHODS FOR UNCONSTRAINED MINIMIZATION

Major Field: Higher Education
Biographical:

Personal Data: Born in Clinton; Oklahoma, on February 19, 1945,
the daughter of Mrs. Hulda R, Tugwell; married to David
Hartman Taylor on December 26, 1966,

Education: Graduated from Cordell High School, Cordell, Oklahoma,
in May, 1963; received the Bachelor of Science in Education
degree with a major in mathematics from Southwestern Oklahoma
State University, Weatherford, Oklahoma, in July, 1966;
recelved the Master of Arts degree in mathematics from the
University of Missouri-Columbia, Columbia, Missouri, in June,
1968; completed requirements for the Doctor of Education
degree at Oklahoma State University, Stillwater, Oklahoma, in
May, 1976,

Professional Experiences Graduate assistant in Mathematics
Department at the University of Missouri-Columbia, Columbia,
Missouri, September, 1966-January, 1967, September, 1967-
May, 1968; instructor in Business Department at Southwestern
Oklahoma State University, Weatherford, Oklahoma, September,
1968-May, 1969; instructor in Mathematics Department at
Southwestern Oklahoma State University, Weatherford, Oklahoma,
June, 1969-May, 1971: graduate assistant in Mathematics
Department at Oklahoma State University, Stillwater, Oklahoma,
August, 1971-December, 1971; graduate assistant in Computing
and Information Sciences Department at Oklahoma State Univer-
sity, Stillwater, Oklahoma, August, 1972-May, 1974,



