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PREFACE 

This paper is an expository study of Fletcher and Powell's version 

of Davidon's original variable metric method and generalizations of this 

method, that is, parametric families of variable metric methods which 

contain the Davidon-Fletcher-Powell method and have basic properties in 

common with this method. The main emphasis is on the motivation and 

basic ideas leading to the development of these methods and on the theo­

retical properties which fo::Dil their foundation. 
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W. Grace, for his support and assistance in the preparation of this 

thesis. I would also like to thank the other members of my committee, 
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CHAPI'ER I 

INTRODUCI'ION 

In 1959, W. C. Davidon [14] developed a numerical method for deter-

mining an unconstrained local minimum of a differentiable;function f of 

n real variables, ;; 1, ••• , ~n. This method generates a sequence of 

points x • (.;1, ••• , ~n)T in an effort to locate a point at which the 

gradient vector g, given by 

( 
of(x) 

g(x) .,. , 
ot;l 

••• , of(x) )T, 
os n 

is zero and at which the Hessian matrix G, whose ij-th element is given 

by 

i, j = 1, ••• , n, 

is positive definite. If f has continuous second partial derivatives, 

then such an x is a strong local minimum of f. 

The ideas which form the basis for Davidon's minimization procedure 

can be described by using geometrical concepts. The variables 

~l' ••• , ~n are the coordinates of the point x in the n-dimensional 

space Rn. Consider the set S • { x I f(x) .. ·!! J for some constant !!• If 

the point w = (wl' ••• , w 1' w ) belongs to the set s and g(w) r o, n- n 

without loss of generality suppose (of/o~n)(w) r O, then by the Implicit 

1 



Function Theorem there exists a neighborhood of (~1 , ••• , wn_1) and a 

n-1 unique continuously differentiable function h from R to R defined 

on this neighborhood such that w = h("-'1, ••• , w 1) and n n-

f(~1, •••• ~n-l' h(~1 •••• , ~n-l)) = ~ for each point (~, ••• , ~n-l) 

in this neighborhood. The graph of the function h forms an (n - 1)­
n dimensional surface in R • For n "'" 2, the one-dimensional surfaces 

a.re called contour lines of the function f. An illustration is given 

in Figure 1. The point x• is the minimum point of f. 

~1 

Figure 1. Geometrical Representation of x and 
the Contour Lines of f 

2 

If f has continuous second partial derivatives, then by the Taylor 

expansion of f about x, for a sufficiently small change AX, 
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Differentiating with respect to x gives 

g(x + t:.x) = g(x) + G(x) t:.x. 

Therefore, in a neighborhood of x, the change in gradient, 

t:.g • g(x +AX) - g(x), caused by the change in xis approximated by 

t:.g "= G(x) t:.X. 

If f is a quadratic function, then the Hessian matrix G is constant and 

for any AX, 

f(x + AX) • f(x) + gT (x) AX + t AXT G t:.x, 

wh'-ch implies Ag'= G AX. If G is positive definite, then the value of 

the gradient at the one point x would suffice to determine the minimum. 

Since the desired change in g(x) is- g(x), the equation- g(x) = GAx 

may be solved for Ax, which now represents the change in x needed to 

reach the minimum. However, in general, G is not constant and the min-

imum may not be obtained by the given single step from the point x. 

Instead, a sequence of points is generated, starting from the point x. 

Since explicit evaluation and inversion of G at points that could be 

far from the minimum might not be worth the amount of computation re­

quired, an initial positive definite trial matrix H is assumed for the 

matrix [G(x)]-1• The change in x i• then determined by minimizing f in 

the direction - Hg(x). That is, the next point in the sequence, x*, is 

given b,y the expression 

x* • x - aHg(x), 

where the scalar a. > 0 is chosen to minimize f(x - a. 'Hg(x)) with 
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respect to a'. This one-dimensional minimization, called a linear 

search, is illustrated in Figure 2. After making this change in x, the 

trial matrix H is improved on the basis of the actual relations between 

changes in x and changes in the gradient. By iterating these steps, the 

sequence of points is generated. 

~1 

Figure 2. Minimization of f in the Direction - Hg(x) 

Associated with the positive definite matrix H is the norm defined 

by II x I~ = J xTH-1x, for points x in the n-dimensional space If. Thus, 

H induces the metric d(x, z) • II x - z I~. Davidon called his method a 

variable metric method to reflect the fact that H is changed after each 

iteration. 

The change in H at each iteration affects the direction of steepest 1 

descent from a given point x, ·because this direction depends upon how 



the distance between two points .x and z in Rn is measured. In general, 

there is no reason to assume that a unit of distance along the .;i axis 

. , is equal to a unit of distance along the ~j axis, fo~ i 1- j. The defi­

nition of distance, that is, the metric, implies a particular system of 

weighting these un1 ts. 

If the distance between x and z is defined by II x - z 1~. then the 

set of all points z at a distance 1.1 from x is given by the ellipsoid 

5 

{ T 1 2} II z - x I~ = ll• that is, z I (z - x) H- (z - x) = 1.1 • The direction of 

steepest descent in the neighborhood bounded by this ellipsoid may be 

defined as the direction from x to that point on the ellipsoid for which 

the value of the function f is smallest. It is shown in Appendix 1 of 

[12] that, as 1.1 tends to zero, this direction approaches a limit which 

is the direction of the vector 

d = - Hg(x). 

Therefore, this direction is called the direction of steepest descent 

from x relative to H. 

If H • I, then II x I~ = ffx is the Euclidean norm and d = - g{x) 

is called simply the direction of steepest descent from x. This is the 

most common usage of the tem "steepest descent." In particular, it is 

the direction used in the classical method of steepest descent described 

by A. Cauchy [ 11] in 1847. This method often converges slowly because 

the direction of steepest descent and the direction to the minimum may 

be nearly perpendicular. An example is shown in Figure 3. This is to 

be'expected since the direction of steepest descent depends not only 1 

upon the function being m1nim1:zed, but also on the metric. The distin­

guishing feature of Davidon's method is that the metric is iteratively 



6 

adjusted in an effort to make the direction of steepest descent relative 

to the metric point toward a minimum. 

-;;1 

Figure J, Direction of Steepest Descent at x 
Versus Direction to the Minimum 

The effect of a variable metric and its advantage over a constant 

metric can be illustrated by a simple example in which the Hessian ma­

trix G is constant. Let f be the function of two variables defined by 

The Hessian matrix G • diag (32, 2) is a constant positive definite 

matrix. The contour lines of f are elongated ellipses whose axes are 

the coordinate axes and whose centers are at the origin. Clearly, the 

minimum point is ( 0, 0) • 



Figure 4 shows the sequence of points generated by minimizing in 

the direction of steepest descent at each iteration. The metric is 

constant and given b,y the Euclidean norm. Note the inefficient zigzag 

behavior in the vicinity of the minimum. 

~1 

Figure 4. Minimization of f(x) = 16si + 5~ in 

Which a Constant Metric Is Used 

In Figure 5, the direction - Hg, the direction of steepest descent 

relative to the variable matrix H, is used at each iteration. In this 

case, the advantage of a variable metric can be seen, particularly as 

the minimum is approached. 

? 



;;2 

~1 

) 2 2 
Figure 5. Minimization of f(x = 16~1 + ~ 2 in 

Which a Variable Metric Is Used 

-1 Since G is constant and known, the effect of minimizing in the 

-1 -1 
direction - G g, the direction of steepest descent relative to G , 

can be shown in Figure 6. Recall that in this case one step in suffi-

cient to reach the minimum. In fact, in the metric space with metric 

given b,y d(x, z) = II x - z lb-1, the equation of a circle with center 

T 2 
at the origin and radius f-1. is x Gx = f-1. • Hence, in this metric space, 

the contour lines of f(x) = 16~~ + ~~ = txTGx are circular and the di­

rection of steepest descent, - g(x), points to the minimum, as shown 

in Figure 7. 

8 



Figure 6. 

~1 

2 2 
Minimization of f{x) "" 16~1 + ~ 2 

in Which the Metric Induced 
-1 

by G Is Used 

9 



;;1 

X 

Figure?. Contour Lines of f(x) ... txTGx 
in the Metric Space With 

-1 
Metric Induced by: G 

10 

Geometrically, the change in the contour lines from Figure 6 to 

Figure ? is the result of a change in scale on the ~l and s2 axes. In 

Figure 6, a unit of distance along the ~l axis is equal to a unit of 

distance on the $ 2 axis J while in Figure 7, the metric has changed the 

weighting of these units so that the axes of the ellipse are of equal 

length. 

The function f used in the above example is a strictly convex quad-

ratio function, and some of the results illustrated are dependent upon 

that fact. However, the behavior of a method on such a function is 

important. Suppose the function f has continuous second partial deriv-

atives and satisfies sufficient conditions for a strong local minimum 
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at x•. Since the gradient off vanishes at the minimum, the Taylor 

series expansion about x' gives 

. T 
f(x) = f(x•) + t(x- x') G(x•)(x- x•), 

where G(x•) is positive definite. Thus, the function f behaves like a 

strictly convex quadratic function in a neighborhood of x•. Therefore, 

the behavior of a minimization algorithm on .a strictly convex quadratic 

function is indicative of its behavior in the neighborhood of the mini-

mum of a more general function. 

While Davidon's method was not widely publicized, it constituted 

a considerable advance over then current alternatives. In 1963, 

R. Fletcher and M. J. D. Powell [26] published a simplified version of 

Davidon's method, known as the Davidon-Fletcher-Powell, or DFP, method. 

As in Davidon' s method, the next point in the iteration, x*, is found 

by minimizing f in the direction - Hg(x) from the current point x. How-

ever, while Davidon's method used some empirical devices when updating 

the variable matrix H, in the Fletcher and Powell version, H is updated 

by adding a symmetric matrix of rank two, defined in terms of H, the 

change in x, and the change in the gradient. 

The DFP method may be applied to a general differentiable function, 

but proof that the sequence of points generated by this method will al-

ways converge to a local minimum of the function, if one exists, can be 

g1 ven only for a more restricted class of functions. In their original 

publication, Fletcher and Powell established convergence to the minimum 

of a strictly convex quadratic function. The convergence of the DFP 

method has since been extended by Powell [47, 49] to more general 

classes of functions. 
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Davidon • s use of the term "variable metric" was based on the fact 

that the variable matrix H, as a positive definite matrix, could be used 

to define a metric. However, this term has been applied by some authors 

to methods in which the variable matrix is nondefini te. Therefore, the 

following general definition will be used. 

Definition 1.11 A variable metric method is an iterative minimization 

method using the following iteration. Given the point x and the matrix 

H, let d = - HT g, where g is the gradient of f at x. Compute the next 

point x* = x + ad, where a is chosen to minimize f(x + a'd) with respect 

to a', and update H to H* '"" H + C, where C is a given correction matrix. 

Different variable metric methods are obtained from different correction 

matrices. 

Parametric families of variable· metric methods, containing the DFP 

method as a special case, . have ·been developed from a number of different 

approaches. The first family was developed by c. G. Broyden [6] in 

196?. His approach to the minimization of f by finding x such that 

g(x) .. 0 is to use a quasi.-Newton method for solving this equation. 

While Newton's, method uses the inverse Hessian matrix at each point in 

the iteration, quasi-Newton methods use an approximation which is modi­

fied at each iteration. This modification is such that the new approxi­

mation to the inverse Hessian matrix satisfies an equation called the 

quasi~Newton equation. The purpose of this equation is to force the 

approximation to possess, to sOllle extent, the properties of the inverse 

Hessian matrix. Since the modification is made by adding a correction 

matrix, quasi-Newton methods using linear searches are also variable 

metric methods. Families of methods can be obtained because these 
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conditions do not uniquely determine the correction matrix. Broyden's 

family is based on a correction matrix satisfying the quasi-Newton equa­

tion and defined in terms of an arbitrary scalar parameter. 

A similar approach was taken by D. F. Shanno [53] in 1970. How­

ever, his family of methods is based on a correction matrix which is a 

solution of a particular parametric separation of the quasi-Newton equa­

tion. This correction matrix depends upon the parameter introduced in 

the separation. 

In 1970, D. Goldfarb [27] obtained a family of methods from a com­

bination of two correction matrices belonging to a family derived by 

J. Greenstadt [28] using a variational approach. The variational prob­

lem formulated by Greenstadt was to find a symmetric correction matrix 

of minimum norm which also satisfies the quasi-Newton equation. The 

norm used was defined in terms of an arbitrary positive definite matrix. 

Thus, the solution yielded a family of correction matrices. 

Although different approaches were used in the development of these 

one-parameter families, the families of Shanno and Goldfarb are equiva­

lent to Broyden's 1967 family. In addition to containing the DFP method 

as a special case, this one-parameter family has important properties in 

common with the DFP method. Therefore, this family is a generalization 

of the DFP method. 

Another family of correction matrices equivalent to Broyden's was 

published in 1970 by Fletcher [23]. It was developed as a combination 

of the DFP correction matrix and one derived by an inverse relationship 

to the DFP matrix. However, Fletcher is concerned with properties of 

the updating formula when used in an algorithm not requiring linear 

searches. 
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The DFP method is generally successful in practice, but numerical 

difficulties have been noted by Y. Bard [3] and Broyden [ 6 ], among 

others. In particular, the variable matrix H has exhibited a tendency 

toward singularity. Generalizations of the DF.P method offer the possi­

bility of choosing the parameter to eliminate this tendency, while still 

retaining the desirable characteristics of thi~ method, This idea has 

been explored by Broyden [?, 8] and Shanno [53]. 

In 1972, L. c. W. Dixon [17] established a particularly useful re­

sult, He proved that, given the same initial conditions, the sequences 

of points generated by different members of Broyden's 196? family are 

identical if the linear search is exact. Therefore, since the DFP meth­

od belongs to this family, Powell's general convergence theorem applies 

to the other members. 

More general families of variable metric methods have also been 

developed, In 1969, J. D, Pearson [42] developed a class of variable 

metric methods based on the generalized solution of a set of under­

determined linear equations. This class was extended to a more general 

family of methods by N. Adachi [1 J in 19?1. Another general family was 

constructed by H, Huang [30] in 19?0 using a unified approach based on 

the analysis of certain desired properties, Work in classifying these 

general families has been done by Huang [JO], Dixon [18], and Adachi 

[2]. 

Thus, since Davidon 's original algorithm in 1959, much research 

has been done on variable metric methods, The numerous papers published 

have simplified Davidon's method, developed general families, and estab­

lished new theoretical results. The best known variable metric method 

is Fletcher and Powell's simplification of Davidon's method, General 



families offer a choice of parameters that may lead to improved algo­

rithms. Also, the development of these families provides a general 

theoretical foundation that aids in the understanding of the members. 

Hence, the study of the DFP method and generalizations of this method 

is justified. 

15 

The primary purpose of this dissertation is to unify the various 

papers written in this area and to discuss and organize their results. 

The paper will be concerned mainly with the DFP method and the develop­

ment of generalizations of this method. The major goals are explanation 

of these methods with an emphasis on the motivation and basic ideas 

leading to their development; discussion of their theoretical and numer­

ical properties, concentrating on those principal results which form the 

foundation for these methods; and organization and classification of 

these methods based upon their relationships and common properties. 

The following organization will be used. The DFP method will be 

presented first, in Chapter II. This method was the first widely used 

variable metric method, and as such, provided a basis and motivation for 

its generalizations. In addition, it will provide an introduction to 

the basic concepts and help the reader to develop a familiarity with the 

notation and terminology used. The one-parameter family of methods will 

be the topic of Chapter III, which will explain the different develop­

ments of this family and will examine the various relationships. The 

properties of this family and the search for an optimal parameter will 

also be investigated. Chapter IV will discuss the development, prop­

erties, and relationships of' the more general families. The common 

properties and the interrelationships of the methods considered in this 

paper will be summarized in the last chapter, Chapter V. 



Variable metric methods are a particular class of methods for 

finding an unconstrained local minimum of a differentiable function f 

of n real variables. Since a necessary condition for the point x' to 

be a local minimum off is that g{x') = 0, the primary objective is to 

16 

locate a point satisfying this condition. Thus, the problem of finding 

a local minimum of f leads to the general problem of solving a system 

of nonlinear equations 

This system of m equations inn unknowns, ~1 •••• , ~n' may be expressed 

as h(x) = 0, where h(x) • (h1(.;1 , ••• , ~n), ••• , hm(~; 1 , •••• ~n))T. 

For the minimization problem, m ... n and hi = of/o'i. Hence, any method 

used to solve a system of nonlinear equations may be applied to the 

minimization problem. In addition, it is possible 'to introduce refine-

menta into the method to take account of the special nature of the 

system. For example, the method may be modified so that the value of 

f decreases at each iteration. Also, iff has continuous second partial 

derivatives, then the Jacobian matrix of g, being the Hessian matrix of 

f, must be symmetric. 

Alternatively, the problem of solving the system h(x) = 0 can be 

converted into a minimization problem. Let p be a function defined on 

rf with the property that the point x = 0 is the unique global minimum 

of p. For example, p(x) = xTx. Then define the function r by 

r(x) • p(h(x)). If the system h(x) = 0 has a solution, then x' is a 

global minimum of r if and only if h(x') = o. Hence, in order to find 

x' it suffices to minimizer. In the case that h(x) = 0 has no solu­

tion and p(x) = xTx, a global minimum of r is called a least-squares 



17 

solution of the system, since it minimizes 

The minimization of a function which is a sum of squares of non-

linear functions is an important special case. General algorithms for 

unconstrained minimization can be applied to this function, but usually 

it is much more efficient to use an al~orithm that takes account of the 

fact that the function is a sum of squares. The least-squares problem 

typically arises when attempting to estimate certain parameters in a 

functional relationship by means of experimental data. For example, 

suppose the quantity 'f is assumed to satisfy lf = u(pj; x), where u is a 

known function of an independent variable pf and an unknown parameter 

vector x = (s1, ••• , ~n)T. Then for various values pji, i = 1, ••• , m, 

measurements Yi_, i = 1, ••• m, are made in order to determine x. If 

these measurements were exact, then the vector x would satisfy the 

system of ll equations in the n unknowns, ~ 1, ••• , ~ n' 

However, in general, the measurements are subject to error so that more 

measurements than the number of unknowns are taken, that is, m > n, 

and x is determined to minimize the sum of squares of the deviations 

YJ. - u(¢; x). That is, the problem becomes that of minimizing the 

function 

A comprehensive study of the iterative solution of systems of non-

linear equations may be found in the book by J. M. Ortega and 
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, 
W, c. Rheinboldt [41], Additional references include G. D. Byrne and 

C, A, Hall [10] and J, W, Daniel [lJ], 

It is assumed that the reader of this paper has had an introduction 

to numerical optimization, A college level background in analysis and 

linear algebra will. also be assumed, A good summary of the fundamentals 

of function minimization is given by W, Murray [J8]. This book also 

contains an appendix reviewing some aspects of linear algebra relevant 

to optimization. 



CHAPTER II 

DAVIDON-FLETCHER-POWELL METHOD 

Description 

The DFP method f~r unconstrained function minimization, published 

by Fletcher and Powell [26] in 1963, is a simplification of the variable 

metric method developed by Davidon [14] in 1959. The basic concepts of 

this variable metric method, discussed in Chapter I, also apply to the 

DFP method. 

The DFP method generates a sequence { xk}, k = 0, 1, 2, •.• , of 

approximations to a local minimum of a differentiable function f 

according to the following algorithm. 

Algorithm 2.1 (Fletcher and Powell, 1963): Given an initial vector x0 

and an initial matrix H0 • I or any positive definite matrix. 

Fork- 0, 1, 2, ••. , 

If gk = g(xk) z 0, then stop. 

Else, set dk - - Hkgk, 

find ~ > 0 which minimizes f(xk + adk) with respect to a, 

set sk = akdk' 

xk+l • xk + sk, 

19 
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Since the algorithm is terminated when the gradient at the current 

point xk becomes zero, .this point xk is a stationary point off but 

not necessarily a local minimum. That is, if f has continuous first 

partial derivatives, then the point xk satisfies necessary but not 

sufficient conditions for·a local minimum. However, if the function f 

has continuous second partial derivatives, then the stationary point ~ 

is a local minimum if the Hessian matrix G at xk is positive definite •. 

In an implementation of Algorithm 2.1 the termination criterion would 

be II gk I~ < E for some given tolerance E > 0 since, in general, gk 

will not be exactly zero for any k. 

Basic Properties 

The step from xk to xk+l is in the direction ~ = - Hkgk. The 

step size is chosen to ~inimize f in that direction, that is, to mini-

mize f(~ + a~) with respect to a. Hence, 

df(xk +a~) 
== 0, 

da a~ 

that is, 

dig(xk + ak~) T 
= dkgk+l "" o. (2.1) 

It was established in Chapter I that, for·Hk positive definite, this 

direction is the direction of steepest descent from xk relative to Hk. 

Thus it is expected that f(x) decreases as x moves from xk in the 

direction ~. This is easily shown for a function f having continuous 

second partial derivatives. For a sufficiently small step a> 0, the 

first order tezms in the Taylor series for f give 
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Since a > 0, this implies that 

T 
that is, the direction ~ is downhill if and only if - gkHkgk < O. 

Therefore, if Hk is positive definite and gk r 0, there exists an ~ > 0 

such that 

This property, known as stability, is defined below. 

Definition 2.11 An iterative minimization method is sta~e if the value 

of the function being minimized is decreased at each step. That is, if 

{ xk}, k = 0, 1, 2, ••• , is-. the sequence of points generated by the 

method and f is the function being minimized, then f(xk+l) < f(xk) for 

each k. 

Stability is a desirable·property for variable metric methods 

since it guarantees that some progress in decreasing f is made at each 

step. However, it is not sufficient for convergence because the 

sequence of function values at the points generated by a-stable method 

may be unbounded below. 

The concept of stability may also be considered geometrically. 

The gradient gk is normal to the surface f(x) • f(xk) at the point xk. 

Hence the direction .~ will be downhill if and only if the angle ~ 

between dk and - gk is acute. This is illustrated in Figure 8 for 

n ,.. 2. The angle ~ between the vectors ~ and - gk is defined by 



Thus, the angle ~ is acute if and only if cos ~ > 0, that is, if and 
T 

only if dkgk < o. 

~1 

Figure 8. Downb.ill Direction ~ 

Therefore, to establish that the DFP method is stable it must be 
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shown that the variable matrix Hk is positive definite for each k. 

Since H0 is positive definite, an inductive argument is used. The 

following theorem, first proved by Fletcher and Powell, will be proved 

as a special case of a general family in Chapter III. 

Theorem 2.la For each k, the variable matrix~ in the DFP method 

defined in Algorithm 2.1 is positive definite. 
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Corollary 2.la The DFP method is stable. 

Fletcher and Powell also proved some properties of the DFP method 

when applied to quadratic functions. For the remainder of this section, 

let the function f be given by 

) T T f(x a tx Gx + a x + y, (2.2) 

where the Hessian matrix G is positive definite. Then, since f is a 

strictly convex quadratic function, f has a unique minimum. It was 

shown that the method, when applied to this function, finds the minimum 

in at most n iterations, Termination in less than n iterations would 

-1 
occur if Hk = G for some k < n, since, as shown in Chapter I, a search 

-1 
in the direction dk = - G gk would find the minimum. This property, 

called quadratic termination, is defined below. It is important because 

it assures rapid convergence in the final stages of minimization since, 

as shown in Chapter I, even a nonquadratic function behaves approxi-

mately quadratically in a neighborhood of a minimum. 

Definition 2.2: An iterative minimization method is quadratically 

terminating if it finds the minimum of a strictly convex quadratic 

function of n variables in at most n iterations. 

The term "quadratic convergence" is sometimes used for this prop-

erty instead of "quadratic termination." Since the above definition 

does not mean that the sequence { xk}, k = 0, 1, ... ' converges quad-

ratically, the term "quadratic convergence" will not be used to avoid 

confusion with the use of this term to mean rate of convergence. 

Proof of the following theorem, establishing quadratic termination 
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for the DFP method, will follow as a special case of a general family in 

Chapter IV. 

Theorem 2.2t If f is a strictly convex quadratic function of n vari­

ables, then the DFP method finds the minimum of this function in at 

most n iterations. 

Fletcher and Powell's proof of this theorem is an induction proof 

establishing 

(2.J) 

(2.4) 

for 1 ~ k ~ n. If the algor1 thm has not terminated due to gk • 0 for 

some 0 ~ k < n, then ~ > 0, 0 ~ k < n. It then follows from (2.3) and 

the definition of sk that the search directions d0, ~· •.• , dn-l are 

nonzero and 

T 
di Gd j • 0, 0 ~ i < j ~ n - 1 • 

This property, called conjugacy, is defined below. 

Definition 2.Jt The nonzero vectors w0, w1 , ••• , wk are conjugate with 

respect to the positive definite matrix A if 

It is easily shown that this definition implies that the vectors 

w0, .•. , wk are linearly independent. The following theorem shows that 

termination can be obtained by performing linear searches in n 

conjugate directions. 
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. Theorem 2.Jc Let the iterative minimization method in which each iter-

ation is a linear search in a given direction, that is, 

where ~k is such that 

be applied to the function f defined by (2.2). If the search directions 

d0, ~· ••• , dn-l are conjugate with respect toG, that is, are nonzero 

and satsify 

(2.6) 

then the minimum will be found in at most n iterations. 

Proof& For f defined by (2.2), the gradient gk+l at xk+l is given by 

Using the iteration formula repeatedly, it follows that 

. 
~ G(xi+l + ~i+ldi+l + ••• + ~kdk) +a 

Thus, by (2.5) and (2.6), 

Combining this equation with (2.5) gives 



which, for k = n - 1, yields 

The conjugacy of the vectors d0, d1 , ••• , dn-l implies their linear 

independence. Hence, g is orthogonal to n linearly independent 
n 

n-dimensional vectors which is possible only if g • 0. Since G is 
n 

positive definite the stationary point x is the desired minimum. 
n 
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(2.7) 

Theorem 2.3 is the basis for a class of quadratically terminating 

methods, known as conjugate direction methods. It follows that the DFP 

method is also a conjugate direction method and obtains its quadratic 

termination on that basis. 

Definition 2.4a A conjugate direction method is an iterative minimi-

' zation method in which each iteration is a linear search in a given 

direction, with the property that the directions generated for a quad-

ratic function with positive definite Hessian matrix are conjugate with 

respect to that matrix. 

In the DFP method, as in Davidon's me~hod, the variable matrix H 

-1 
is used to approximate G , the inverse Hessian matrix. For the quad-

ratic function f, an interesting re,sult is that the modifications to 

this variable matrix, using only evaluations of the function and its 

-1 
gradient, are such that H = G • That is, the n-th approximation is 

n 

the exact inverse Hessian matrix of f. This result is obtained for the 

DFP method by modifying Hk so that for each k, s 0, s1 , •.. , sk are 

linearly independent eigenvectors of Hk+lG with eigenvalue unity. 
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That is, from (2.4), 

(2.8) 

Fork • n - 1, (2.8) gives 

(2.9) 

If ~ > 0, 0 ~ i < n, then the vectors s 0, s1 , ..• , sn-l are nonzero and 

hence by (2.3) are conjugate with respect to G. This implies that they 

are linearly independent, so that if E is the matrix 

-1 then E exists. Thus, from (2.9), H GE • E which then implies H G ""'I. 
n n 

At the k-th iteration, the matrix Hk is modified by adding to it 

the two matrices 

The form of the matrix Ak can be deduced because equation (2 .8) must be 

valid for i = k. That is, the equation 

(2 .10) 

must be satisfied. For f given by (2.2), 

• (Gxk+l + a) - (Gxk + a) 

(2.11) 
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Hence, equation (2.10) is equivalent to 

(2.12) 

which, using the definition of Hk+l' gives the equation 

From the definition of Bk it is easily seen that Bkyk = sk, so that Ak 

must satsify the equation Akyk = - Hkyk. This implies that the simplest 

form of Ak is given by 

A = 
k 

for some vector zk. Since Hk, and thus Ak, is to be symmetric, 

A "" k 

Bk is the factor which.makes H tend toG-lin the sense that for 

the quadratic function f, 

-1 "'n-1 
G = ~ k=O Bk. (2.13) 

This result can be proved from the conjugacy conditions (2.J) because 

these imply 

Then, if Dis this diagonal matrix, it follows that G = (ED-lET)-1 • 
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Thus, 

(2.14) 

Using (2.11) and the definition of Bk, equation (2.14) gives 

and equation (2.13) is established. 

Equation (2.12) is also true for nonquadratic functions. From the 

definition of Hk+l' 

(2 .15) 

This result is significant because equation (2.12) is the quasi-Newton 

equation referred to in Chapter I. The derivation o~ this equation will 

be discussed in Chapter III where it will be used to define a quasi­

Newton method. It will then,follow from (2.15) that the DFP method is 

a quasi-Newton method 

In 1968, G. E. Meyers [37] explored the eigenvalues and eigen­

vectors of the variable matrix H used in the DFP method with H0 = I 

for the quadratic function defined by (2.2) leading to a proof that the 

gradient vectors at each step are mutually orthogonal. From this, a 

geometric interpretation of the H matrix in terms of the projection of 



the negative of the gradient into a solution subspace was derived. 

Since each matrix Hi is positive definite, its eigenvalues are 

positive real numbers. In particular, it will be shown that at least 

n ·- i - 1 of these are unity when the function is quadratic. It is 

assumed that gi r 0, 0 S i < n. The following lemma is needed, 

Lemma 2.lz 
, T 

The scalar relation gjHi-lgi = 0 holds for 0 < i < j ~ n. 

Proofs From (2.7) 

(2.16) 

Also, by the definitions of di and Hi, 

Using the definition of yi-l and (2.1) with the symmetry of Hi-l' 

Hence, the expression for di reduces to 

(2.17) 
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Substituting this expression for di into (2.16) gives 

= o. 

But, by the definition of yi-l and (2.16), 

implying that 

T 
For the factor in brackets on the right to be zero, gi-lHi-lgi-l must be 

zero. This is impossible since gi~l is assumed to be nonzero and Hi-l 

T 
is positive definite. Therefore, gjHi-lgi • 0 and the lemma is proved. 

Theorem 2.4a For 0 ~ i < j < n, the gradients gj are eigenvectors of 

the matrix Hi with eigenvalue unity. 

Proofa The definition of Hi, fori> 0, gives 

But, by (2.7), si_1gj • 0, and by Lemma 2.1 and (2.7), 

T T T 
yi-lHi-lgj • giHi-lgj - gi-lHi-lgj a O, 

implying that Higj • Hi-lgj' Repeated application of the above reason­

ing gives the result 
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which establishes the theorea. 

An iaaediate consequence of this theorem is the mutual orthogonal-

1 ty of the gradient vectors. The theorea shows that 

H1gj • gj' 0 ~ 1 < j < n, 

so that gigj • giH1gj. Then, by the symmetry of H1 and (2.7), it fol-
T T lows that g1 g j "" - d1 gj = 0. Since mutual orthogonal! ty of nonzero 

vectors implies their linear independence, it is confirmed that unity is 

an eigenvalue of Hi of multiplicity n - 1 - 1. 

A further consequence of this theorem is that the expression for 

the search direction for a quadratic function can be reduced to a recur-

sion formula. This fomula is derived in the following corollary. 

Corollary 2.21 For a quadratic function, the direction vectors of the 

DFP method can be given by the recursion toraula 

Proofa From (2.17), 

By applying Theorem 2.4, 

d - - g 1 1 
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Combining these two terms gives the equation 

· and the corollary is proved. 

From these results, a geometric interpretation of the H matrix for 

a quadratic function can be given, namely that the matrix Hi projects 

the negative of the gradient gi into the space spanned by di' ••• , dn-l· 

This projected gradient becomes the next direction of search for the 

minimization of the function in this space. Since di-- Higi, the 

following theorem establishes this interpretation. 

Theorem 2.51 The direction vector di, 0 ~ i < n, in the DFP method, 

with H0 • I, applied to th~ function f given by (2.2), is the projection 

of the negative of the gradient gi in the space spanned by the vectors 

Proofa Let W be the space spanned by di' ••• , dn-l' Since the direc­

tion vectors are conjugate with respect to the Hessian matrix G, the 

vectors Gd0, ••• , Gdi-l span V, the orthogonal complement of W. Hence 

it must be shown that 

where qi is in V. Noting that, by (2.11), 

Gdj = (1/a.j)Gs j 

= (1/a.j)yj, 



it is sufficient to show that 

if i :::0 0, 

if 0 < i < n, 

for some scalars yj. Proof is by induction. Since d0 • - g0, the 

induction is valid for i = 0. Assume that 

where the o. are scalars. Then 
J 

which, by the mutual orthogonality of the gradient vectors, reduces to 

(2.18) 

From Corollary 2.2, 

and substituting (2 .18) and the induction hypothesis g1 ves 

which can be rewritten as 
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Defining 

and 

gives 

and the theorem is proved. 

Convergence 

In the years following its publication in 1963, Fletcher and 

Powell's modification of Davidon's variable metric method became one of 

the most frequently used and most successful techniques for finding the 

minimum of a differentiable function of several real variables. How-

ever, until 1971, it had been proved only that the method is successful 

if the function is a strictly convex quadratic function, (Theorem 2.2); 

although in practice, it handled many types of functions successfully. 

It is difficult to prove convergence because the method is intended to 

be applied to general differentiable functions. 



In 1971, Powell [47] extended convergence of the method to a class 

of functions more general than strictly convex quadratic functions. The 

conditions the function f must satisfy ares 

1) f has continuous second partial derivatives, and 

2) there exists a positive constant E such that, for all x, 

the eigenvalues of G{x) are not less than E, where G(x) 

is the Hessian matrix of f at x. 

Condition 1) restricts the class of functions to which f belongs to one 

for which sufficient conditions on fat the minimum exist. Condition 2) 

is a very strict convexity condition called uniform convexity. Since it 

implies that G(x) is positive definite for all x, if f satisfies condi­

tions 1) and 2) then x' is a strong local minimum if g{x') = 0. In 

other words, the sequence {xk)' k z 0, 1, ••• , converges to x' if the 

sequence { gk}' k = 0, 1, • , • , tends to zero. The convergence theorem 

established by Powell is stated below. 

Theorem 2.6: . If the function f satisfies conditions 1) and 2), then the 

sequence of points, {xk}• k .. 0, 1, •••• generated by the DFP method, 

converges to x', the point at which f is minimum. 

Proof of this 

method of proof is 

theorem is given as proof of Theorem 1 in [47]. 
-1 

to define Tk to be the matrix Hk , to obtain an 

The 

expression for the trace of Tk' and to show that this expression implies 

a contradiction unless the sequence of gradients {gk)• k = 0, 1, ••• , 

tends to zero. 

By requiring one other condition on the function f, Powell also 

proves that the DFP method converges superlinearly. The condition re-

quired is the Lipschitz condition at the minimum x' given below. 



/ 

J) There exists a constant 6 such that, for all vectors x 

belonging to the set S = { x I f(x) ~ f(x0)}, the inequality 

is satisfied. 
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The Lipschitz condition (2.19) need only be satisfied on the set S 

since the stability of the DFP method implies that all points xk gener­

ated by the method belong to this set. The following theorem then 

establishes the rate of convergence for the DFP method under these con­

ditions • Proof of this theorem is found as proof of Theorem 4 in [ 47]. 

Theorem 2.?s If the function f satsifies conditions 1), 2), and J), 

then 

II xk+l - x• 112 --=--=---_.; -> 0 as k -> m , 
II xk - x' 112 

where the vectors { xk}' k • 0, 1, 2, • ~., are the points generated by 

the DFP method and where f(x•) is the minimum value of f. That is, the 

' DFP method'converges superlinearly. 

Iff ~atsifies conditions 1) and 2), then for each vector x0, the 

set S defined in J) has additional properties established by the fol­

lowing leuuaa. 

Lemma 2.2s S = { x I f(x) ~ f(x0)} is closed, convex, and bounded. 

Proofa Since S = f-1(-oo, f(x0)], the closure of S follows from the 

continuity of the function f. The convexity of the set follows from 
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the fact that f is a convex function. If x and z are in S and 0 ~ 6 ~ 1 

is a scalar, then, by the convexity of f and the definition of S, 

f(6x + (1 - 6 )z) ~ of(x) + (1 - 6 )f(z) 

Thus, f(ox + (1 - 6)z) ~ f(x0) which implies ox+ (1 - o)z is inS. 

Therefore, S is convex. 

To show that S is bounded, let d be any direction through x0 that 

is normalized, that is, II d 112 = 1, and let h be the function of one 

variable defined by 

h(a) = f(x0 +ad). 

Then 

If U is the orthonormal basis of eigenvectors corresponding to eigen­

values A1 , ••• ,An of G(x0 +ad), then for some vector c, d = Uc. Thus, 

by condition 2), 

2:. E II c I~ 

That is, h"(a) ~ E, since the orthogonality of U implies that 

ll.c 112 ""' II d 112 = 1. Then the function r defined by 
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is convex since 

r"(tt) • h"(tt) - E ~ 0. 

Also, r(O) = r'(O) = 0, so that, for each tt, r(tt) ~ 0, and hence 

But, the right hand side of this inequality exceeds h(O) if 

That is, 

Thus, since the direction of d is arbi tra.ry, 

Therefore, the set of points x satisfying the condition f(x) ~ f(x0) is 

bounded and Lemma 2.2 is proved. 

An important corollary of this lemma and the fact that f is contin­

uous is that the minimum value off is attained at some finite point x'. 

Moreover, the minimum value of f is attained at only one point. By the 

proof of the lemma, 

f(x) > f(x') if II x - x' 112 > 211 g(x') 11/E· 

But, g(x') = 0, so if x ~ x', f(x) > f(x•). In addition, this lemma 

and the definition of a derivative imply that if f is three times con­

tinuously differentiable at x', then f satisfies condition J). 
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It should be noted that Theorems 2.6 and 2.7 are sometimes relevant 

to non-convex functions, because the conditions on f have to be obtained 

only for values of x that satsify the inequality f(x) ~ f(x0). ·More­

over, the structure of the algorithm is such that any calculated vector 

xk can be regarded as a starting point for the later l terations. There­

fore, if the algorithm is applied to a non-convex function, and if it 

happens that a point xk is calculated, such that the derivative condi­

tions are met for all x satisfying the condition f(x) ~ f(xk), then 

convergence to the minimum at a superlinear rate is implied. Moreover, 

if the sequence of points {xk}' k = 0, 1, 2, .... converges to a local 

minimum of f that is not the global minimum, then it may also be pos­

sible to apply the theorems to infer superlinear convergence, by 

isolating the domain of x to a neighborhood of the local minimum. How-

ever, no conclusions about the behavior of the algorithm may be drawn 

when the estimates xk are in a region where the second derivative 

matrices of f do not satisfy the required conditions. 

In 1972, Powell [49l obtained some preliminary results that depend 

on much less restrictive conditions on f. The conditions imposed on f 

area 

1') {xI f(x) ~ f(x0)} is bounded, and 

2') f has continuous second partial derivatives bounded by 

the inequality II G(x) IIF ~ v. 

The following results can then be derived from these conditions and the 

conjecture stated below. 

There exist functions f, satisfying conditions 1') and 2'), 

for which the sequence of numbers {II gk 112}, k = 0, 1, •.• , 

is bounded away from zero. That is, there exists a positive 
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constant ~ such that 

llgk 112 ~J.1, k=O, 1, ·••• (2.20) 

This conjecture has not been shown to be false for general functions f. 

Proofs of the lemmas llay be found in Section 4 of [49]. 

Lemma. 2.3: There exist positive constants 111 and 112 such that the trace 

of Tk+l' where Tk+l • H;!1 , denoted by Tr(Tk+l)' is bounded by the 

inequality 

Lemma 2.4: There exists a constant 113 such that II Hk+lgk+l 112 is 

bounded by the inequality 

Lemma 2.5: There exists a positive constant 114 such that the trace of 

Tk+l is bounded by the inequality 

Lemma 2.6: There exists a positive constant 115 such that 

If the conjecture were false, it would follow that the limit points 

of the sequence { xk}' k • 0, 1, ..• , generated by the DFP method include 
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at least one stationary point of f. The term "stationary point" must 

be used instead of "local minimum" because the conditions imposed on f 

are not sufficient for g{x') • 0 to iaply that x' is a local minimum. 

Although some of the consequences of the conjecture given in the above 

lemmas are surprising, Powell was not able to show that they are contra­

dictory. However, he does show that if the extra condition that f is 

convex is included, then inequality (2.20) leads to a contradiction. 

Thus, the DFP method converges for convex functions satisfying condi­

tions 1') and 2'), This is an advance on Theorem 2.6 which requires f 

to be uniformly convex. The following lemma is also needed to prove 

the convergence theorem. 

Lemma 2.8s If the function f, satisfying conditions 1') and 2') is 

convex, then the inequality 

holds, where vis the bound of condition 2'). That is, for each x, 

II G(x) I~~ v, where the matrix norm is the Frobenius norm induced by 

the Euclidean vector norm. 

Proofs Differentiation gives the equation 

which implies, from the definition of yk, the identity 
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That is, 

(2.21) 

where the ij-th element of the matrix.Gk is 

For any vector w r 0, 

since f convex implies that 

Thus, Gk is positive definite or positive semi-definite and therefore 

it has a square root. Let zk be the vector 

Condition 2') and the definition of Gk give the bound II Gk I~~ v 

which implies the inequality 

< II zk 112 11 ck 1~11 zk 112 

~ vII zk I~. 

Substituting the definition of zk in this expression gives 
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Then, by using equation (2.21), the inequality 

T is obtained and, since skyk > 0, the lemma is proved. 

Theorem 2.8: If f is a convex function, having continuous second 

partial derivatives bounded by the inequality II G(x) IIF:; v, and if the 

set { x [ f(x) .::: f(x0) )is bounded, then if the DFP algorithm is applied 

to f, the sequence of function values {f(xk)}, k = 0, 1, •.• , terminates 

at, or converges to, the least value of f. 

Proofs It will be shown first that the conjectured inequality (2.20) 

gives a contradiction. If this inequality were true, then Lemmas 2.3 

and 2.8 would imply 

and therefore, from inequality (2.20) and Lemma 2.5 the inequality 

is obtained. This g1 ves the bound 

2 
1..1. 

TH g >----
gk+l k+l k+l 1..1.2(k + l)v 

(2.22) 



However, Lemma 2.6 implies the bound 

which contradicts expression (2.22) when k becomes large. Therefore, 

the sequence { II gk I 12 }• k "" 0, 1, ..• , is not bounded away from zero, 

so that the algorithm terminates because some gk is zero or 

liminf II gk 112 • 0 • 
k ->a:> 

In the latter case, there exists a subsequence { gkj }• 

such that 

j ""1, 2, ••. , 
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limit gk = o. 
j ->oo j 

(2.23) 

.. , Because the sequence { xk}' k == 0, 1, ••• , and hence { xkj }• j = 1, 2, 

is in a compact set, namely {xI f(x) ~ f(x0)}, the subsequence has a 

limit point, x' say. Without loss of generality, it may be assumed the 

subsequence { xkj}• j = 1, 2, •.. , converges to x'. That is, 

limit xk ... x'. 
j -> Q) j 

Then, since g is continuous, 

and by (2.23), g(x•) ""0. 

limit g = g(x') 
j ->oo kj 

(2.24) 

In the other case, if the iterations of the algorithm terminate, 

it is convenient to also denote by x• the point xk at which gk a 0. 

Moreover, f is continuous and the algorithm ensures that the sequence 

{r(xk)}, k • 0, 1, ••. ,decreases monotonically, so that (2.24) implies 



limit f(xk) ~ f(x'). 
k -i>a> 

Since f is convex and g(x•) • 0, f(x•) is the least value of f and the 

theorem has been proved. 

If f is least at only one point, x' say, which is the case if f is 

strictly convex, then the above theorem implies that the sequence 

{ xk} k "" 0, 1 , ••• , converges to x • • However, if it happens that f is 

least for a set of two or more points, X say, then the theorem implies 

that every limit point of the sequence is in X. 

Numerical Difficulties 

The previous theorem guarantees, in theory, the convergence of the 

DFP method for a restricted class of functions. Knowledge of its be-

havior on more general functions must be based on numerical experience. 

Also, the theoretical results assume exact arithmetic which is not pos-

sible when implementing the method on a computer. For example, if t 

significant digits are carried, the product of two numbers will gener­

ally require 2t digits for its representation and hence will be 

represented inexactly. The error introduced by the inexactness of the 

computer ari thmeti·c operations is called rounding error. In an exten-

sive calculation, rounding errors will accumulate and contaminate the 

results, possibly to an intolerable degree. 

In practice, the DFP algorithm has been generally successful, how­

ever numerical difficulties have been reported. Broyden [6] notes that 

negative steps have to be taken occasionally, implying that some calcu­

lated matrices Hk are not positive definite. McCormick and Pearson [J6] 

state that for some probleas, the algorithm can get "stuck", that is, 
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changes in the current approximation to the minimum can become negli-

gibly small, and that resetting the matrix Hk to a constant positive 

definite matrix after every n iterations improves the method's perform­

ance. Powell [45] notes that occasionally the slow progress happens 

when a steepest descent step would cause a substantial decrease in the 

value of the furtction. Bard [J] reports encountering similar behavior 

in his work. 

The loss .of positive definiteness, contrary to Theorem 2.1, is 

serious because it suggests that a calculated matrix Hk may happen to 

be singular, or nearly singular. That is, Hk remains positive definite 

but one or more of its eigenvalues becomes arbitrarily small and in 

practical computation, it is then effectively singular. In fact, Bard 

states that he found his difficulties invariably the result of the 

matrix turning singular. Broyden [9] shows that the behavior observed 

by McCormick and P.earson could also be caused by a singular Hk. In the 

DFP algorithm, sk 2 - akHkgk, so that Hk+l may be written as 

where 

Thus, by induction, 

so that 

M =I -
k 



48 

s =-a... H g =Hv 
k+r K+r k+r k+r k ' 

(2 .25) 

Suppose now that Hk is singular, 

so that Hkw • 0 for some nonzero vector w. It follows from (2.25) that, 

T T 
for r ~ 1, w sk+r = w Hk v = 0. Hence, once a particular Hk becomes 

singular, all subsequent steps are orthogonal to some fixed vector and 

are thus restricted to lie in a subspace of Rn. Unless the minimum also 

lies in this subspace, and in general it will not, the algorithm is 

"stuck" in this subspace. This would explain the improvement obtained 

by periodically resetting Hk to some positive definite matrix, commonly 

the identity matrix. A nearly singular Hk could also result in the 

search direction, dk = - Hkgk' and the negative gradient, - gk, being 

nearly orthogonal. As illustrated in Figure 9, a minimization in this 

direction would allow only a small step while a steepest descent step 

would give a larger decrease in the value of the function. 

~1 

Figure 9. Search Direction dk Nearly Orthogonal to - gk 



Various explanations have been offered for this departure from the 

theoretical positive definiteness and nonsingulari ty of Hk. Broyden [ 6] 

attributes this reported loss of positive definiteness, and hence sta-

bility, to computer rounding·error. From his experiments, he concludes 

that stability depends critically upon the accuracy to which each sue-

cessive value of ~ is obtained. 

Bard [J] shows how poor scaling can cause Hk to become singular. 

Fork m 0, 1, •.• ,let 

so that Hk+l • Hk - Ak + Bk. If H0 = I, then the elements of H0 are of 

the order of magnitude of unity. If y0 • (~1 •... , 1n)' then the ele­

ments of A0 are g1 ven by 

"? 2 + 
1 

2 ' i, j = 1, 2, •.. , n. 
+'7 ' 

n 

Using the inequalities, (li - ~)2 ~ 0 and ((1 + "7j)2 ~ 0, it can easily 

be shown that 

2 2 < 1. 
I + .•. +'7 

1 . n 

(2.26) 

Hence, the elements of A0 are also of the order of magnitude of unity. 

The matrix B0 may be expressed 



Then, by (2.26) with y0 replaced by s 0 , the magnitude of the elements 

of B0 is bounded by I s~sofs~y0 I· Assuming that the algorithm has not 

tenninated due to II g0 112 ~ E for some given small positive number E, 

I S~Yo ' = I s~(gl - go) ' 

= I - sTg I 
0 0 

that is, I s~y0 I is bounded away from zero. Since 

where ¢ is the angle between s 0 and y0 , this implies that cos ¢ > a for 

some positive constant cr. Thus, 

1 II s 0 112 
< --~-= 

a II Yo 112 

Hence, the elements of B0 are of the order of magnitude of 

ll s 0 112/11 Yo 112 • Suppose that f is scaled by a factor of o, a positive 

constant. This leaves x and s unchanged, but g and y will be scaled by 

a factor of o. Thus, all elements of B0 will be scaled by 1/o. Or, 

suppose x is scaled by a factor of y, a positive constant, while the 

value of f is unchanged, so that the function under consideration is 

f(x/y). Then swill also be scaled by y, but g andy will be scaled by 
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1/y. In this case, the elements of B0 will be scaled by y2 . Therefore, 

the magnitude of the elements of B0 depends on the scales chosen for f 

and x. In particular, if the scaling is such that II Yo 112 >> tl s0 112 , 

the elements of B0 will be very .small compared to those of H0 ,- A0, so 

that 

Since H1y0 =- o. the matrix H1 is singular. Conversely, if 

II Yo 112 << II s0 112 , the matrix B0 will dominate a0·- A0, and so 

Again, H1 is singular, being of·rank one. 

Once an Hk has turned singular, there is virtually no hope of re­

covery. If Hk is singular, it.has a null vector z. That is, Hkz = O. 

Then, as is easily seen from the definition of Ak, both z and yk will 

be null vectors of Hk - Ak' so that except in the improbable case of z 

and yk being linearly dependent, the rank of Hk - Ak will be at most 

n - 2. Since Bk has rank one, 

~· n - 1. 

Thus, if H1 is singular, all subsequent Hk are also likely to be 

singular. 
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It must be observed that the singularity is only approximate. How­

ever, if t significant digits are carried, and if II s 0 112/11 Yo 112 •10-t 

t or 10 , the matrices will be singular to the precision of the calcula-

tions. 'To overcome this :problem, Bard recommended using double 

precision or scaling the variables so that the diagonal elements of B0 

are approximately unity. However, if the character of the function 

changes drastically from one region to another, then.a rescaling of x 

and reinitialization of Hk whenever the process seems to get stuck at a 

nonstationary point is suggested. 

A nearly singular or poorly scaled Hk can increase the influence of 

computer rounding errors made when multiplying a vector by this matrix. 

Let z' be the computed value of. a vector z, that is, z' = z + e, where e 

is the error made in computing z. If w = Hkz' then w', the computed 

value of Hkz' is given by 

w' • H z' ~ w + H e. 
k k 

Hence, the relative error in this product is given by 

II w' - w 112 -
II w 112 

To bound this error, note that 

and 

which iaplies that 
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Therefore, 

(2.27) 

This inequality means that the relative error in z may be magnified by 

as much as 

when computing Hkz. For this reason, X(Hk) is called the condition num­

ber of Hk, w1 th respect to this operation. If this number is large, 

then Hkz and Hkz' may differ greatly and the matrix Hk is said to be 

ill-conditioned. The condition number of a matrix bounds the degree of 

its ill-conditioning. If A.1 , ... , A.n are the eigenvalues of the posi­

tive definite aatrix Hk' by Corollary 5.2 of [.56, p. JOB], 

Therefore, 

A. min 

where A.max is the largest eigenvalue of Hk and A.min is the smallest 

eigenvalue of Hk. Thus, a nearly singular or poorly scaled Hk would be 

ill-conditioned. 

By deriving a recursion formula for the determinant of Hk, 



Pearson [42] shows directly that Hk tends to become singular when the 

Hessian aatrix G of f is ill-conditioned. The following lemma is needed 

to establish the effect of a rank two perturbation on the determinant of 

the identity matrix I. Proof of this lelllla is given in Appendix B of 

[42]. 

Lemma 2.91 For any vectors u, w, and independent vectors v and z, 

T T) T ) T T )( T ) det (I + uv + wz • (1 + u v (1 + w z) - (z u v w • 

Since 

Lemma 2.9 yields the equation 

(2.28) 

Because 6g = G(x) 6X locally, inequality (2.27) implies that, in a 

region where G is ill-conditioned, a small change in x can cause a large 

change in g. Thus, it is possible for a small sk to result in a large 

T · · . T 
yk' so that SJtfk could be small and ykHJtfk large. Then, by recursion 

formula (2.28), the matrix Hk would rapidly become singular. This type 

of problem occurs when minimizing a penalty function, that is, when f(x) 

includes a term to constrain the range of x, because the Hessian matrix 

at points where one or more constraints are binding is excessively ill-

conditioned. Numerical examples given by Pearson indicate that reset-

ting is not beneficial w1 th simple functions but that it is especially 



valuable for penalty functions. 

The best explanation of' why the numerical difficulties described 

can occur with the DFP method is given by Powell [48]. It is based on 

the following result. 
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Lemma 2.10a The sequence of numbers {g~Hkgk}' k • 0, 1, ••. ,generated 

by the DFP algorithm, decreases strictly monotonically. 

Proof: Using the definitions of Hk+l and yk and equation (2.1), 

(2.29) 

By the definition of yk and (2.1), 

By inverting both sides of this equation, the identity 



1 1 1 

is obtained. Then the positive definiteness of Hk implies 

1 1 

T > T 
gk+lHk+lgk+l gkHkgk 

The decreas'ing monotonicity of this sequence can be detrimental to 

the progress of the algorithm, For instance, if an unfortunate choice 

of the initial matrix H0 causes g~H0g0 to be small, then on every iter-, 

ation, giHkgk has to be small also. This result supports the 

importance of the scaling of H0 expressed by Bard. 

T 
Another frequently occurring event can cause gkHkgk to be small 

prematurely. If the function f has a saddle point, that is, a non-

optimal stationary point, it may appear to the algorithm to be like a 

local minimum. In that case, a point, x. say, would be calculated that 
J 

is close to the saddle point and therefore gj is small, and presumably 

T g jH jg j is small also . The latter iterations usually cause the sequence 

of points {xk}' k = j + 1, j + 2, ..• , to leave the saddle point, but 

T 
nevertheless, the values of gkHkgk are forced to be small, due to the 

T 
smallness of gjHjgj. 

T The number gkHkgk is important because it is the magnitude of the 

scalar product of the gradient at xk and the search direction dk from 

the point xk. If it is small when Hk and gk are moderate in size, then 

either the search direction is almost orthogonal to the gradient, or 

there is much cancellation in the evaluation of the vector Hkgk. Each 



of these cases can cause difficulty, because the first is a bias away 

from the direction of steepest descent, and the second increases the 

influence of computer rounding errors • Moreover. in both cases, the 

matrix Hk is ill-conditioned. 
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In general, therefore, the numerical difficulties encountered with 

the DFP method are related to the condition of the variable matrix H. 

Development of generalizations of this method then naturally suggest 

the possibility of choosing the parameter(s) to improve the condition 

of the corresponding variable matrix H. Indeed. analysis with this goal 

was done by Broyden [7] and Shanno [5J]. Their work will be discussed 

in Chapter III • 



CHAPTER III 

ONE-PARAMETER FAMILY 

Parametric families of variable metric methods, containing the DFP 

method as a special case, have been .developed from a number of different 

approaches. These families can be divided into a family containing one 

parameter and aore general families having several parameters. The one­

parameter family is the subject of this chapter. The more general 

families will be discussed in Chapter IV. 

This one-parameter fa.Jlily was first developed by Broyden [6] in 

1967. The family of correction matrices obtained by Broyden was also 

developed independently by Shanno [SJ], Goldfarb [27], and Fletcher 

[2J]. It is particularly interesting that several quite different 

approaches used by these authors all lead to the development of the same 

family. In addition, the different developments identify various char­

acteristics of this family of matrices. For these reasons, the 

development and analysis by each of these authors will be discussed. 

Broyden 

Broyden's approach to the minimization of f is to use a quasi­

Newton method to solve the equation 

g(x) = 0, (J.l) 

that is, to find a stationary point of f. Recall that a necessary 



59 

condition for x' to be a local minimum of a function f having contin-

uous first partial derivatives is that x' is a stationary point. 

Quasi-Newton methods are iterative methods based on Newton's method for 

solving a set of nonlinear equations. In this case, the set of equa­

tions, equivalent to equation (J.l) 1 to be solved is 

where 

of 
hi '"" O 1; 1 i • 1, 2 1 o • • t n • 

i 

If the k-th approximation to the solution is xk = (~kl~ ~k2' · · ·, ~kn) 

and the (k + 1)-st approxiaation is xk+l = (~k+l,l' ~ k+l, 2 ' · • • • ~k+l,n) 

then, fori • 1, 2, ••. , n, the Taylor expansion of hi about xk gives 

This set of equations is equivalent to the matrix equation 

where g is the gradient vector and G is the Hessian matrix. Since the 

objective is to find x such that g(x) = 0, g(xk+l) is set to zero and 

(J.2) then gives the basic iteration in Newton's method, 
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Because this form of the method often fails to converge to a solution 

from a poor initial estimate, a scalar parameter ak is sometimes added 

to give the iteration 

where~ is chosen so that f(xk+l) < f(xk). The disadvantage of eval­

uating and inverting the second derivative matrix of f at each iteration 

in Newton's method provides the underlying motivation for the quasi-

Newton methods. 

-1 In quasi-Newton methods, the inverse Hessian matrix Gk is replaced 

by an approximation Hk' leading to the iteration 

where dk = - Hkgk and ~ is a scalar parameter. This approximation is 

modified at each iteration so that it possesses, to some extent, the 

properties of the inverse Hessian matrix. The equation on which this 

modification is based is derived by considering the special case in 

which the function f is defined by 

( ) J.. T T f x • 2 x Gx + a x + y, (3.4) 

where the matrix G is symmetric and nonsingular. The Hessian matrix of 

f is G and the gradient of f is g(x) • Gx + a. Thus, if sk and yk are 

defined by the equations 

then the Hessian matrix G satisfies the equation 



61 

(3 -5) 

-1 
Since Hk is to approximate Gk , it would be desirable for Hk to satisfy 

the equation Hkyk = sk. But, yk depends on gk+l which depends on xk+l 

which in turn depends on Hk' so this equation cannot be used to deter­

mine Hk. However, the next approximation Hk+l can be required to 

satisfy the equation 

(3.6) 

Equation (3.6) is called the quasi-Newton equation and is the equation 

underlying all quasi-Newton methods. However, the quasi-Newton equation 

is not sufficient to define Hk+l or to give any indication of how it may 

be derived. Since Hk is available and possesses, to some extent, the 

-1 
properties of Gk , it seems reasonable to obtain Hk+l by adding some 

correction matrix Ck to Hk, that is, 

(3.7) 

This development of quasi-Newton methods as applied to function minimi-

zation is summarized in the following definition. 

Definition 3.11 A quasi-Newton method when applied to the minimization 

of a differentiable function f is an iterative method which generates a 

sequence { xk}' k "" 0, 1, ••• , of approximations to the minimum. At each 

iteration, given the vector xk and the matrix Hk' the next approximation 

is given by (3.3) and the matrix Hk is then updated by (3.7) for some 

given correction matrix Ck chosen so that the quasi-Newton equation 

(3.6) is satisfied. 



The conditions imposed on the correction matrix Ck in the above 

definition imply that Ck must satisfy the equation 

62 

This equation does not uniquely determine the correction matrix Ck. One 

general solution of the equation is 

(J.8) 

where qk and zk are arbitrary vectors except for the condition that 

Some additional criteria are needed to more precisely determine C~. If 

a quasi-Newton method is to solve effectively a general set of nonlinear 

equations it is reasonable to require that it solve a general set of 

linear equations in a finite number of iterations. For a quasi-Newton 

method applied to function minimi.zation, this means the method should 

minimize a quadratic function in a finite number of iterations. Exami-

nation of sufficient conditions on Ck to achieve this property leads to 

Broyden's one-parameter family of correction matrices. 

Let r be a positive integer denoting the number of iterations, t a 

nonnegative integer, and define the matrices 

•.. ' z 1], r-



(J.lO) 

The following sequence of steps is obtained by repeated application of 

(3.7) with k • r - 1, r - 2, ••• , 1, 0, and Ck given by (J.8). 

T T 
H •H -H y z +s a r r-1 r-1 r-1 r-1 r-lir-1 

( T ) T •H I- z +s r-1 1r-l r-1 r-lqr-1 

,. . 

• H0(I- y0z~)(I- y1zi)···(I- Yr-lz~_1 ) 

+ s 0qT0(I- y zT)···(I- v zT ) 1 1 Jr-1 r-1 

+ slq Tl(I - y2zT2) ... (I - v lz T 1) Jr- r-

+ • • . 

The definitions in (J.lO) then imply 

T H = H0B0 + S W . r r r r (3.11) 

The first term on the right hand side of this equation consists of H0 

modified by postmultiplication by BOr' and the second term consists 
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solely of information derived from the r iterations and the choice of 

qk and zk' k = 0, 1, ••• , r- 1. Since it is reasonable to require that 

H consists of the latest information derived from the r-th iteration, 
r 

the first term on the right hand side of (J.ll), which represents essen-

tially ol~ information, should tend to the null matrix as r increases. 

If H0 is nonsingular, this is achieved if and only if B0r tends to the 

null matrix as r tends to infinity. A stronger requirement is that B0r 

becomes the null matrix after a finite number of iterations. It will be 

shown that Bor cannot be null for r < n, and necessary and sufficient 

conditions for its nullity will be established. 

Theorem J.l& If Y , Z , and B0 are as defined in (J.lO), then the n n n 

necessary and sufficient condition for BOn to be null is that the matrix 

zTy is unit upper tr18.llgular, that is, 
n n 

T zkyk = 1, k = 0, 1, •.• , n- 1, 

T 
ztYj = 0, 0 ~ j < k ~ n - 1. (J.l2) 

Prooft If Z~Yn is unit· upper triangUlar, then, since both Yn and Zn are 

square, Y is nonsingular. From the definition of B0 and (J.l2), it n n 

follows that 

fork • 0, 1, .•• , n- 1, that is, 

B0 Y - o. nn 

Therefore, since Y is nonsingular, B0 is null, and sufficiency has n n 

been proved. If BOn is null, then expansion of the right hand side of 



the definition of Bon gives 

- ylzTl(I - Y zT) .• ·(I - Y zT ) 
2 2 n-1 n-1 

= I - Y V ZT n n n' (3.13) 

where V is unit upper triangular. By (3.13), Y is nonsingular, so n · n 

that premultiplication by y-l and postmultiplication by Y of (3.13) 
n n 

implies V (zTy) =I. Since the inverse of the unit upper triangular 
n n n 

matrix Vn is itself unit upper triangular, it follows that Z~Yn is unit 

upper triangular, and necessity has been proved. 

Corollary 3.1: B0r cannot be null for r < n. 

Proofs If r < n, then since rank Y < r, there exists a vector w .J. 0 r- r 

such that wTY .. 0. Since B0 • I - Y V ZT, this implies wTB0 = wT, 
r r rrr r 

and thus B0r is not null, completing the proof of the corollary. 

Equation (3.9) and Theorem 3.1 imply that the vector zk should 

satisfy the conditions 

T 
z~k ~ 1, k = 0, 1, •.• , r- 1, 

T 
zkyj = 0, 0 ~ j < k ~ r- 1, (3.14) 

for 1 ~ r ~ p, 1 ~ p ~ n. Then, by ( 3 .11) and Theorem J .1, 
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H ~HOBO + S WT m S WT. 
n n n n n n 

If the function f is defined by (J.4), then the above equation and 

-1 the desire that Hk approximate Gk suggest the possibility of choosing 

-1 
Ck so that the n-th approximation Hn is exactly equal to G and leads 

to the following definition. 

Definition J.2s The quasi-Newton method defined by Definition ).1 is 

exact if H = G-l when the method is applied to the function f defined 
n 

by ('3.4). 

If the quasi-Newton method used to minimize f is exact and the 

matrix G is positive definite so that the solution of 

g(x) • Gx + a ~ 0 

is the minimum of f, then this minimum will be found in a finite number 

of iterations since 

for a =- 1. 
n 

~ x - a G-1 (Gx + a) 
n n n 

-1 = - G a 

By (3.5) and the definitions of Y and S given in (J.lO), 
r r 

Y ~ GS so that 
r r 

Hence, if 

-1 
S .. G Y • 

r r 

(3.15) 

(J.l6) 



H Y • S , 1 < r < p, 1 < p < n, 
rr r - - - - (3.17) 

then H Y = G-ly which would imply, by the nonsingularity of Y , that 
n n n n 

-1 
H = G • 

n 

By the definition of BOr given in (3.10) and conditions (3.14), for 

j = 0, 1, I • e • r - 1, 

that is, B0 Y • 0. Thus, (3.11) implies 
r r 

T H Y = (H0B0 + S W )Y rr r rr r 

T = S W Y , 1 < r < p, 1 _< p <_ n, 
r r r - -

so that equation (3.17) would be satisfied if 

(3.18) 

By the definitions of W andY given in (3.10), a simple multiplication 
r r 

T shows that W Y is the r x r matrix with the ij-th element given by rr 

qi_1Bi,r-iyj-l if i <rand the j-th element in the r-th row given by 

T 
~-lyj-l' If the vector zk satisfi,es conditions (3.14) then, by the 

definition of Bk k, for k = 1, 2, ••• , r - 1 and ,r-

j•k,k+l, ••• ,r-1, 

and for k ... 2, 3, ... , r - l and j ,., 0, 1 , ... , k - l, 



Hence, the matrix wTy may be expressed as 
rr 

0 • • • 0 

0 • • 0 

wTy ,.. 
• • 

• rr 
• • 

T T • • • T 
~-2Yo ~-2yl ~-2Yr-2 

T T • • • T 
~-lyO ~-lyl ~-lyr-2 

0 

0 

• 

• 

0 

T so that for W Y = I, the vector qk must satisfy the conditions 
r r 

T qkyk = 1, k ... 0, 1, ••• , r - 1, 

for 1 ~ r ~ p, 1 ~ p ~ n. Then, by (3.18) and (3.16), 

-1 
H Y = S = G Y , 1 ~ r ~ p, 1 ~ p ~ n. r r r r 
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Combining the conditions which have been placed on the correction 

matrix Ck leads to the quasi-Newton method; 

Given a vector x0 and a nonsingular matrix H0 . 

Fork= 0, 1, •.. , p- 1, 

set dk = - Hkgk, 

sk = akdk, 

xk+l = ~ + sk, 

yk ::0: gk+l - gk, 
T T 

Hk+l • Hk + skqk - Hkykzk' (3.19) 



where ak is an arbitrary nonzero scalar, and qk and 

zk are arbitrary vectors except for the conditions 
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(3.20) 

(3.21) 

where 1 ~ p ~ n. 

The analysis which led to these conditions establishes the following 

theorem and corollary. 

Theorem 3.2: If the quasi-Newton method given by equations (3.19)­

(3.21) is applied to the function f defined by (3.4), then 

-1 H Y = G Y , 1 < r < p, 1 _< p <_ n. r r r - -

Corollary 3.21 The quasi-Newton method given by equations (3.19)-(3.21) 

is exact. 

Corollary ),Jz Under the hypotheses of Theorem ).2, 

Proof& From the theorem and the symmetry of G 

which implies that 

Since Gsj = yj, it follows that 
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Hence, by transposing and substituting the definition of s., the conclu­
J 

sion of the corollary follows. 

By Corollary ).2, the quasi-Newton method given by equations 

(3.19)-(3.21) is exact. Hence qk and zk must be chosen so that equa­

tions (3.20) and (3.21) are satisfied. Because equation (3.20) implies 

that the q~asi-Newton equation is satisfied, (3.20) must be satisfied 

when the method is applied to any differentiable function f, Assuming 

that qk and zk have been so chosen, then (3.21) must be satisfied only 

when the method is applied to the function f defined by (3.4) since 

exactness depends only on properties of the method for this special 

case. If the vectors qk and zk are not chosen specifically to satisfy 

(3.21) but are chosen in such a way that these equations are satisfied 

automatically when the method is applied to the function f defined by 

(3.4), then the method is thus exact. The following theorems establish 

some further properties of the quasi-Newton method given by equations 

(3.19)-(3.21) when applied to this function which suggest the vectors 

qk and zk chosen for Broyden's one-parameter family of methods. 

Theorem 3.31 If the quasi-Newton method given by equations (3.19)­

(3.21) is applied to the function f defined by (3.4) and H is symmetric 
r 

for 1 ~ r ~ p, then 

dTr+lyj .. (o + y a )dTy., o < J' <r -1, 
r rr rJ - -

where 

T ) T 6 = 1 - <1 (1 + q g , and y = z g . 
r r rr r rr 

Proof: From ( 3 .19), 



= - (H + a d aT - H y !ZT)(y + g ) 
r r r~ r r r r r 

•do +Hyy. r r r-r r 

Thus, from the symmetry of H , for 0 $ j ~ r - 1, 
r 

that is, 

From Corollary J.J with j ... r, it follows that 

T · T 
dr+1Y = (o + y a )d y , 

r r rr rr 

and the theorem is proved. 

Corollary J.4: Under the hypotheses of Theorem J.J, if d;+lym = 0 

for 0$ m ~ p- 1, and Hj+l is symmetric for j = m, m + 1, ..• , p- 1, 

T . 
then dj+2ym = 0 for j = m, m + 1, ••• , p- 1. 

Proof: Repeated application of Theorem 3.3 with r = m + 1, ••• , p and 

j • m gives the result. 

Theorem J.4: If the quasi-Newton method given by equations (J.l9)­

(J.21) is applied to the function f defined by (J.4) and if Hj+l is 

T . . 
symmetric and dj+lYj • 0 for j = 0, 1, .•• , p- 1, then 
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(3.22) 



Proofa By Corollary ).4, di+2yj = 0 for i = j, j + 1, ..• , p - 1 and 

T 
0::; j ~p -1. Combining this equation with the hypothesis dj+lyj = 0 

for 0 ~ j ::; p - 1 gives the relation 

T that is, dkYk = 0. Thus, by Corollary).) with r = k and j z k, 

that is, 

and the proof is complete. 

Corollary ).5: Under the hypotheses of Theorem ).4 

Proof: By Theorem ).2 with r = k and Theorem ).4, 

Substituting (3.5) and (3.16) with r 2 k into this equation yields 

T skGSk = 0, that is, 

which implies, since no a.k is zero, 

dTkGd. = 0, 0 < j < k < p, 
J - -

completing the proof of the corollary. 
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If the quasi-Newton method given by equations (3.19)-(3.21) is 

applied to the function f defined by (3.4) where G is positive definite, 

then Corollary 3.5 implies that the search directions d0 , d1, ... , dn-l 

are conjugate with respect to G provided they are nonzero. Then, as in 

the DFP method, g 3 0, so that the exact step given by (3.15) will not 
n 

be taken. Therefore, if Hk, k • 0, 1, ••• , n- 1, is nonsingular, then 

dk = - Hkgk is not zero for gk r 0 and the method is thus quadratically 

terminating. 

If the additional hypotheses of Theorem 3,4 are satisfied, then 

Theorem 3.4 implies that equation (3.21), with p- 1 replaced by p, will 

be satisfied when the method given by equations (3.19)-(3.21) is applied 

to the function f defined by (J.4) if the vectors q~ and z~ are taken to 

T T 
be linear combinations of sk and ykHk. Therefore, the vectors qk and zk 

and the scalar nk will be chosen so that the additional hypotheses of 

Theorem ).4 and equation (3.20) are satisfied. In addition, the vectors 

qk and zk will be defined in terms of the quantities in (3.19) and an 

T T 
arbitrary scalar parameter ~k' The requirements that qk and zk be 

T T ( ) h linear combinations of sk and ykHk and 3.20 be satisfied lead to t e 

simple choices 

(3.23) 

With this choice, by (3.19), 

H~l 

which is the DFP formula. To obtain a family of methods, for which the 
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DFP method is a special case, a scalar parameter f3k is introduced into 

( ) T T equations 3.23 , in such a way that qk and zk are more general linear 

combinations of s~ and y~Hk and equation (3.20) remains satisfied. This 

is accomplished by taking 

T 
q = k 

T z = 
k 

and 

The additional hypotheses of Theorem 3.4 must also be satisfied. If Hk 

is symmetric, then Hk+l is symmetric if Ck is symmetric. By (3.19) and 

T T 
the above choices for qk and zk, 

= 

, T. ·' 
Hence, changing the sign on 'f3k in qk would make Ck symmetric and qk 

would still satisfy (3.20). By the definition of dk+l' the symmetry of 

Hk+l' and the quasi-Newton equation (3.6), 

Hence, if ak is chosen to minimize f(xk + adk) with respect to a, then 

T 
gk+ldk = 0 which implies 

(3.24) 

and the remaining hypothesis of Theorem 3.4 is satisfied. 
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The preceding analysis leads to Broyden's one-parameter family of 

algor! thms g1 ven below. 

Algorithm 3.1 (Broyden, 1967)a Given an initial vector x0 and an 

initial symmetric nonsingular matrix H0 . 

Fork c 0, l, 2, ••• , 

If gk = g(xk) = 0, then stop. 

Else, set dk = - Hkgk, 

find~ which minimizes f(xk + adk) with respect to a, 

set sk = ~dk, 

xk+l = xk + sk' 

T T 
Hk+l = Hk + skqk - Hkykzk, 

where 13k is an arbitrary scalar parameter. 

Since equations (3.22) -~ere obtained under the assumption that qk 

and zk satisfied (3.20) and (J.2l), it can be shown by induction and 

the discussion leading to Algorithm 3.1 that this algorithm is exact. 

Theorem 3.5: Algorithm 3.1 is exact. 

Proofa Let the algorithm be applied to the function f defined by (3.4). 

The theorem will follow from Corollary 3.2 if it is shown that (3.20) 

and (3.21) are satisfied for 1 ~ p ~ n. The proof is by induction. 
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Assume that 

(3.25) 

(3.26) 

. T 
Hk+ l = Hk+ l' 0 ,::; k ~ p - 1 . (3.27) 

Since ~j' 0 .:=; j ~ p - 1, is chosen to minimize f(xj + ~dj) with respect 

to ~. it follows from the definition of dj+l' the symmetry of Hj+l' and 

(3.6) that 

T T 
dj+lyj = - gj+lHj+lyj 

T 
• - gj+lsj 

= o,. 0.::; j ~ p - 1. (3.28) 

Then, by Theorem 3.4 with k = p, 

(3.29) 

Hence, for qp and zp defined by Algorithm 3.1, (3.29) implies that 

T z y ... 
p j 

for 0 ~ j ~ p - 1. Thus (3.26) is valid with p - 1 replaced by p. 

By the discussion which led to the definitions of qk and zk in 

Algorithm 3.1, equations (3.25) and (3.27) are valid for all p, 
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1 ~ p ~ n. Thus the induction is complete if (3.26) is valid for p = 2, 

that is, for j = 0 and k = 1. By (3.28) with j = 0, 

so that by Corollary 3.3 with r = 1 and j = 1, 

T T The definitions of q1 and z1 then imply q1y0 = z1y0 = 0, completing the 

induction. 

The proof of Theorem 3.5 shows that Algorithm 3.1 is a quasi-Newton 

method of the form given by equations (3.19)-(3.21) when applied to the 

function f defined by (3.4). Hence the discussion following Corollary 

3. 5 establishes the following corollary .. 

Corollary 3. 6: Algorithm 3 .1 is quadratically terminating provided no 

Hk, k = 0, 1, ••. , n- 1, is singular or undefined due to a denominator 

being zero. 

To ensure that the algorithm can be applied to an arbitrary differ-

entiable function without breaking down, nonsingularity and nonzero 

denominators must be guaranteed for all Hk. The denominators in the 

T T iteration formula for Hk are ykHkyk and skyk, By the definitionsof yk 

and sk and (3.24), 

( 3 ,JO) 

If Hk is positive definite then, as in the DFP method, dk = - Hkgk is 

downhill and it is thus always possible to choose nk positive. Hence 
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it is sufficient to show that Hk is positive definite for all k. The 

following sufficient condition on Sk for Hk positive definite to imply 

Hk+l positive definite was established by Broyden. 

Theorem 3 . 6& If Hk is posi tlve definite and S k is nonnegative, then 

Hk+l as given by Algorithm 3.1 is positive definite. 

~~ Since Hk is positive definite, there exists a real nonsingular 

T matrix L such that Hk = LL • Let c be an arbitrary nonzero vector and 

define u, v, and w by 

T T 
u = L gk' v = L c, w 

Note that u, v, and w are not null if gk f 0. Then, using (3.30) and 

the definition of sk' the iteration formula for Hk gives 

T T 
c Hk+l c = v v -

Sknk T T T T 2 
+ . T T (u uv w + w wv u) . (3.31) 

U UW· W 

Since nk is positive, if Sk is positive, then the last term on the right 

hand side of (3.31) is nonnegative, so that if cTHk+lc is positive for 

T 
Sk = 0 then certainly c Hk+lc is positive for Sk positive. Hence it is 

sufficient to prove that Hk+lis positive definite for Sk = 0, that is, 

for the DFP formula. For Sk = 0, (3.31) becomes 

T T 
c Hk+lc = v v -



Now,, by the Schwarz inequality, 

T 
vv-~T~->0 

w w 

with equality only if v and ware linearly dependent. Furthermore, 

since ak is positive, 

79 

with equality only if u and v are orthogonal. T 
Thus, c Hk+lc > 0 unless 

T u w = 0. But, by the definitions of yk and sk and (3.24), 

which, by the positive definiteness of Hk' is nonzero if gk r 0. Since 

the algorithm is terminated if gk = 0, the proof is complete. 

Corollary 3.7: If H0 is positive definite and 13k is nonnegative for 

k = 0, 1, ••• , then Hk, k = 0, 1, .•. , is positive definite. 

Since 13k = 0 for each k yields the DFP method, Corollary 3.7 

implies Theorem 2.1 and, as in the DFP method, Corollary '3.7 also 

implies the following corollary. 

Corollary ).8: Algorithm ).1 is stable if the parameter 13k is chosen 

to be nonnegative at each iteration. 

To simplify notation in the next three sections, the subscript k 

on the quantities C, H, s, y, g, a, and the parameters will be omitted 

and the subscript k + 1 will be denoted by the superscript*· 
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Shanno 

Sham1o•s [5Jl method of obtaining a family of matrices is similar 

to Broyden's since it is also based on finding a correction matrix C" 

defined in terms of a scalar parameter which satisfies the equation 

Cy .. s - Hy. However, Shanno introduces the parameter 'T' initially into 

this equation by the parametric separation 

Cy =-Ts + [(1 - -r)s - Hy]. 

By grouping as. indicated, this equation yields the solution 

TssT [(1 - 'T)s - Hy 1(1 - 'T)s - Hy lT 
c = ---- + ------------------~~------

sTy [ ( 1 - T) s - H y ]T y 

After expanding and regrouping, C may be expressed as 

1 - T ] T 
T T sy H 

- T)s y - y Hy 

[ 
T ] T ( 1 - T) s y Hyy H 

- l - T T T 
(1 - T)s y - y Hy y Hy 

[ 
1 - 'T ] T 

- T T Hys • 
(1 - T )s y - yHy 

This form of C shows that Shanno' s one-parameter family of correction 

matrices is equivalent to Broyden's family. For if 

1- ,, 
-------=:----=-- = 13 • 
(1 - T)sTy - ;,THy 

that is, 

f3yTHy 
I = 1 + T ' 

1 - f3s y 
(1.32) 
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then Broyden's correction matrix is obtained. 

To provide insight into the significance of the parameter T, Shanno 

shows that a particular choice ofT leads to a zero search vector when 

the gradient is nonzero, that is, a singular H. Consider the case when 

T= 0, that is, when C degenerates to the rank one matrix. 

(s ~ Hy)(s - Hy)T 
c ... . T 

(s - Hy) y 

If a = 1, then 

s - Hy = - Hg - H(g* - g) = - Hg*, 

and, by (J.24), 

TH T . 0 -g* g=g*s• • 

Hence, 

Hg*gltTH. Hg*g*TH 
c = - --;:T::----- :a -

g* H( g* -. g) g*THg* 

which implies that 

independent of the magnitude of g*. 

and 

Computation shows that the composition of 

T Tss 
H = H + - T 

s J 
(J.JJ) 
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(s - Hy)(s - Hy)T 
H* = H + -------:=----

(s ;.. Hy)Ty 

is identical to the equation 

'TssT [(1 - l)s - Hy 1(1 - T)s "" Hy lT 
H* = H + -T- + 

s y 
(J.34) 

Thus, the value of 1 for which the search direction d* = 0 is that value 

for which (3.33) gives a = 1. Using the definitions of y an4 s and 

(3.24), equation (3.33) gives 

'Ta.Hg(sTg) 
llg = Hg - T . "" (1 +'Ta)Hg 

s (g* - g) . 

which implies that n = 1 if 1 +'Ta =a. Thus, if T =(a- 1)/a, then 

d* = - H*g* = 0 so that H* is singular if g* f 0. 

Shanno further restricts the choice of 1 by the following theorem 

which shows how positive definiteness of the variable matrix depends on 

the choice of the parameterT. Proof of this theorem is given as proof 

of Theorem 2 in [53l· It will also follow from a more general theorem 

which will be established in this section. 

Theorem 3.7: If His positive definite and T> (a- 1)/a, then H* 

given by (3.34) is positive definite. 

Theorem ).7 establishes that the condition on the parameterT, 

I> (a- 1)/a, is sufficient for H positive definite to imply H* posi-

tive definite. Thus, if H0 is positive definite, then the method is 

stable. By a further analysis of this family of methods as developed 
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by Shanno, Shanno and Kettler [54l derive necessary and sufficient con-

ditions on the range of the parameter T to guarantee stability of the 

method. The following theorem used in establishing these conditions is 

significant in itself because it shows that the parameter affects only 

the length, not the direction, of the search vector at each iteration. 

Theorem ).8& The search direction d* = - H*g* can be represented as 

d* = h(T), where h(T) is a scalar function ofT and r is a vector inde-

pendent ofT. In particular, 

d* =- h(T)(oHg* + yHg), 

where 

0 
T T and = g Hg, y = g* Hg*, 

(exT - ex + 1) 
h(T) = 

(exT - ex + l)o + y 

Proof: Using the definitions of y and d and (3.24), equation (3.34) 

yields 

H*g* = Hg* -
(g*THg* )[ (1 - T)s - Hy] 

[(1 - T)s - Hy ]Ty 

By the definitions of s and y, the denominator can be expressed as 

(J,J5) 

Substituting this expression into (3.35) and combining the two terms on 

the right hand side gives, using the definitions of s and y, 
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- (a.T- a. + l)oHg - (a.T - d. + l)yHg 
H*g* = 

- (a. T- a. + l)o - y 

= . (oHg* + yHg). ( 
a:r-a.+l 1 

(a. -r - a. + l)o + y 
(3.36) 

Since d* = - H*g*, this establishes the theorem. 

To prove that h(T) > 0 is a necessary and sufficient condition for 

H positive definite to imply H* positive definite, the following lemma 

is required. 

Lemma J.lz 
. T 

H positive definite implies g* H*g* > 0 if and only if 

h(T) > o. 

Proof: Premultiplying {'3."36) by g*T and applying (3.24) gives 

g*TH*g* = h(i)oy. (3.37) 

Since H is positive definite, o and yare positive unless either g or g* 

is zero, at which point the algortihm is terminated. Thus, by (3.37), 

the lemma is proved. 

Theorem ).9: If H is positive definite, H* is positive definite if and 

only if h(T) is positive. 

Proofs Any set of n vectors which are conjugate with respect to the 

positive definite matrix H are linearly independent and hence form a 

basis for Rn. Since g r 0, g* f 0, and gTHg* = 0, let g, g*, and any 

n- 2 vectors z1 , ••• , zn_2 which are conjugate with respect to Hand 
T T which satisfy ziHg = 0 and ziHg* = 0, i = 1, .•• , n- 2, be a basis for 
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Rn. From (J.J4), the conjugacy of these vectors implies 

(3.38) 

fori f j, i, j = 1, ••• , n- 2. Let w be an arbitrary.nonzero vector. 

Since z1 , ••• , zn_2 , g, g* form a basis, w can be expressed as 

for some scalars ~i' i = 1, ••• , n. Then, by (3.38), 

Using the definition of y and the quasi-Newton equation (;.6), (J.24) 

implies 

and the definition of s gives 

Hence, (3.39) becomes 

T · T Since H is positive definite, w H*w is positive if and only if g* H*g* 

is positive. Therefore, the theorem follows from Lemma J.l. 

From the definition of h(T) given in Theorem 3.8, it follows that 
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if His positive definite, h(T) is positive if and only if T> (n- 1)/n 

orT < (n- 1)/n- y/n&. Thus, Theorem 3.9 establishes Theorem 3.7. 

Theorem 3.6 proves that the positive definiteness of H is retained if 

a is nonnegative. Theorem 3.9 extends this range. By (3.32), 

T > (a. - 1)/n if and only if 

ayTHy 1 
T > - -. 

1 - Ss y n 
(J.40) 

Since 

T T T T T s y + ng Hg and y Hy = g* Hg* + g Hg, (3.41) 

if His positive definite and 1 - asTy is positive, then (3.40) implies 

a > - 1/(ng*THg*). Similarly, if H is positive definite and 1 - asTy 
·. T 

is negative, then (3.40) implies a<- 1/(ng* Hg*). Therefore, if His 

positive definite then 

n - 1 1 1 
T > -- if and only if - T < a < T. 

n ng* Hg* s y 

By (3.32), T < (n - 1)/n - y/n& if and only if 

ayTHy 1 y 
T <----

1 - ss y n n& 

which, by (3.41) and the definitions of & and y, is equivalent to 

1 

a> T' 
s y 

( 3 .42) 

(3.43) 

Thus, by combining the results of Theorems 3.6 and 3.9, the following 
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corollary extending the range of~ for which retention of positive defi-

niteness is guaranteed, is established. 

Corollary 3.9: If H is positive definite and~> - ~. where~ is the 

T positive number given by~= 1/(ag* Hg*), then H* is positive definite. 

Theorem 1.9 also shows that/this range of~ for which His posi­

tive definite implies H* is positive definite cannot be extended. If H 

is positive definite then H* positive definite implies, by Theorem 3.9, 

(3.42) and (3.43), that 

1 1 1 
T < ~ < ---T or ~ > ---T 

ag* Hg* s y s y 

which implies ~ > - ~. 

Goldfarb 

Goldfarb [2?l develops a one-parameter family of variable metric 

methods from a combination of two correction matrices belonging to a 

family derived by Greenstadt [28l using a variational approach. As did 

Broyden and Shanno, Greenstadt wishes to find a correction C to the 

estimate H of the inverse Hessian matrix so that the quasi-Newton 

equation is satisfied. /Since C is not uniquely determined by this con-

dition, Greenstadt chooses to look for the "best" correction C. In 

particular, he wishes to find the smallest correction C in the sense of 

some norm, because this would tend to keep the elements of H from grow-

ing too large, which might cause difficulty. 

The norm chosen should be simple and lead to simple solutions for 

C. These criteria suggest a simple quadratic form in the elements of 
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C, that is, 

2 """""'n 2 II c I~ = L.. i • j= 1 Y 1 j • 

where yij represents the ij-th element of C. Because minimizing II C l~ 

I 2 2 ( T) is equivalent to minimizing I C I~ and I: i, j yij = Tr CC , the prob-
·. . . T lem is to minimize N(C), where N(C) = Tr(CC ). However, this is too 

specialized, so C is transformed to 

C' = ACAT • 

where A is a nonsingular matrix. Then, by the properties of the trace, 

T = Tr(WCWC ) , 

T where W is the positive definite matrix A A. Thus, the problem is to 

find the symmetric correction matrix C which minimizes Tr(WCWCT) subject 

to the quasi-Newton equation. The symmetry condition, which will pre-

serve the symmetry of H if the initial matrix H0 is symmetric, is 

required because the Hessian matrix is symmetric if the function f has 

continuous second partial derivatives. The variational formulation of 

this problem is 

where r = s - Hy. 

T minimize Tr(WCWC ), 
c 

subject to Cy - r = 0, and 
T c - c "" 0, 
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This constrained m:J,nimization problem will be solved by the use of 

Lagrange multipliers. Denote the matrix C and the vectors y and r by 

C = (y:lj), i, j "' 1, ••• , n 

T 
••• , "7 n) , ·and 

Then the constraints are equivalent to 

yji- yij ~ 0, i, j = 1, ••• , n. 

Thus, the composite function ~ is formed as 

which may be expressed 

where the multipliers are p = ( n1 , ••• , nn) and D = (oij), 
. T . T 

i, j = 1, ••• , n. The use of f-Tr(WCWC ) instead of Tr(WCWC ) is for 

computational ease and does not affect the result. In order to differ­

entiate f with respect to C, note that for any matrix A = (aij), 

i, j = 1, ••• , n, the partial with respect to C of Tr(CA) is the matrix 

whose. km-th element is g1 ven by 

o L: n 
-- Y a 
~ i • 1 ij ji gykm , J'"' 

=a • mk 



That is, 

Similarly, 

0 
- Tr(CA) 
oc 

T 
.. A • 

o T 
- Tr(C A) • A. 
oc 
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Also, if WCW • (a1 j) and V • {wij), i, j •1, ••• , n, the km-th element 

of the partial with respect to C of j-Tr(CT(WCW)) is given by 

Application of the rule for differentiating products a.nd substitution 

for the element aji then yields the expression 

1 [2: n o ~ n 2: n o } - Y .i - L.. ""' y· . w i + . a .i - Y "i • 2 i,J=l J oykm q,p=l Jq qp P i,J=l J oykm J 

By taking the indicated partials, this expression reduces to 

Then, noting that w is SyJnmetric and that akm =I:i,j""'kjYjiwim' the 

above expression reduces to akm. Therefore, 

0 .· 
-- j-Tr(CTWCW) = WCW. 
oc 

Thus, using the above relations, 
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0~ T T 
-- = WCW + py + D - D, 
oC 

and setting this partial derivative equal to zero implies that 

. T T 
C = - M(py + D - D)M, (3.44) 

where M = w-1• The multipliers p and D must now be eliminated from this 

expression for C. 
. T 

The constraint C - C = 0 gives 

T T · T - M(yp - py + 2D - 2D )M = 0 

which implies 

T T .T 
D - D = t(YP - PY ). 

Substituting this expression into (3.44) yields 

(3 .45) 

Then the constraint Cy - r z 0 implies 

T T - tM(yp + py )My - r = 0. 

Premultiplying by - 2W gives 

T . T (yp + py )My + 2Wr = 0 

and then solving for the p which is free from the inner product yields 

T 
Premultiplying this expression by y M gives 

(3.46) 
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T [ T T T )]/. T . ) y Mp == - 2y r + ( y My) ( p My ( y My • 

T T T Since y Mp =·p My, this equat~on may be solved for p My, getting 

Substituting this expression ba:ck into ( 3 .46) yields 

( T )-1[· - ( T )-1( T ) l p • - y My . 2Wr - y My y r y • 

Thus, substituting this expression for p into (J.45) completes the 

elimination of the multipliers in C, giving 

[ (
. T ] l T . T yr ·. T 

C = -r ry M + Myr - 'i'" ) Myy M • 
y My y My 

Finally, replacing r by s - Hy gives the solution 

C = r- sy M + Mys 
T · T T T T - Hyy M_ - Myy H - r-(s y - y Hy)Myy M · l [· T T 

y My 
- 1 J 

y My . 
(J.47) 

One obvious choice for the weightingmatrix W which will lead to a rela­

-1 tively simple formula for C is W = M =H. The result, denoted CH' is 

[ ( -.T·) ] _l T T . 's y T 
CH = or- sy H + Hys - 1 + -r·· Hyy H 

y Hy y Hy 

which resembles, to some extent, the DFP correction matrix. In fact, 

the resemblance between these two correction matrices goes deeper than 

mere appearance. It is shown by Bard in the appendix of [28] that the 

variable metri.c method using ~ is also quadratically terminating and 

exact. The proof follows exactly the arguaent presented by Fletcher and 
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Powell for the DFP method. However, the correction matrix CH does not 

preserve the positive definiteness of H as does the DFP correction 

matrix, since numerical experiments by Greenstadt show that is was fre-

quently necessary to take a negative step in order to make f decrease. 

Goldfarb obtains a variable metric method which, in addition to 

being quadratically terminating and exact, preserves the positive defi-

niteness of the variable matrix by using the correction matrix obtained 

by substituting H* forM in (3.47). Using the quasi-Newton equation, 

this correction matrix, denoted CH*' can be expressed as 

l T T y Hy T 
[ ( T ) J ~* = sTy - sy H - Hys + 1 + sTy ss • 

To show that the variable metric method with correction matrix CH* is 

quadratically terminating and exact, Bard's proof may be followed almost 

entirely, except for some obvious and trivial changes. Proof that 

H* = H + CH* is positive definite if H is positive definite follows from 

observing that H* may be expressed as 

where CDFP is the DFP correction matrix, 

And, for an arbitrary nonzero vector w, the definitions of~* and CDFP 

give 

[ T T T T -,2 
(y Hy)(w s) - (s y)(w Hy)j 

0DFP)w = T 2 T ~ O 
(s y) (y Hy) 

(3.48) 
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Thus, by Theorem 2.1 and (3.48), H* is positive definite since it is the 

sum of a positive definite matrix and a positive ,semi-definite matrix. 

The two variationally derived correction matrices CH and CH* are 

combined by Goldfarb to obtain the one-parameter family of correction 

matrices 

C = y~ + (1 - y)CH* (J .49) 

By substituting the given expressions for CHand CH*' this family may be 

expressed as 

By setting 

that is, 

(1 - y )yTHyJ SST [ - y 1 - y] T 
- y + T -r- - -r-- + T sy H 

s y s y · y Hy s y · 

J T [ ] 
Hyy H - y 1 - y T 

- 1 + y T - -T- + T Hys • 
y Hy y Hy s y 

(1 - fjsTy)yTHy 

y = yTHy + sTy 

it is clear that this family is also equivalent to Broyden's family. 

As noted in the first section of this chapter, if f3 = 0, then the 

DFP correction matrix is obtained. Thus, if 



y = T T ' 
y Hy + s y 

by (J.49), the DFP correction matrix can be expressed directly as a 

weighted sum of CH and CH*' namely as 

It is also possible to obtain CDFP directly from (J.47) by choice of a 

suitable M. Goldfarb gives several fonns of M, all of which may be 

9.5 

shown by substitution to give the DFP correction matrix. One example is 

T 1 T 1 
M = (y Hy)2H* - (s y)2H. 

Although the given matrices M are, in general, nonsingular, they and 

-1 hence, the corresponding W = M are not necessarily positive definite. 

Thus, their substitution in (4.JJ) is somewhat contrived so that their 

role in the variational derivation of the DFP method is not clear. 

Fletcher 

Fletcher [23] generates a class of updating formulae for the vari­

able matrix H by taking any linear combination of the DFP updating 

formula and a new formula, such that the coefficients sum to unity. 

This new formula is based upon a very simple idea. The DFP formula 

forces the relationship H*y = s to hold. If T = H-l and T*-l = H*-l, 

then by applying Householder's modification rule twice sequentially, as 

in the proof of Theorem J.lJ, to the DFP formula, 



T T ss Hyy H 
H* = H + ~ - T , 

s y y Hy 
(3.50) 

T and T* corresponding to H and H* of the DFP formula are related by 

T. T ( T) T · ys T .. Tsy s Ts yy 
T*=T-----+ 1+---T T T T sy sy sy sy, 

(3.51) 

Since T*s = y, (3.51) gives a mapping of s into y. By the simple inter-

change of s and y in this equation, a formula is obtained which maps y 

into s. Thus, the equation 

syTH HysT 
H* = H - -T- - rr- + 

s y s y 
(3 . .52) 

could be used as a formula to update H. If His updated by (3.52), then 

the corresponding updating formula for T is obtained by performing the 

interchange of s and y in the DFP formula, that is, 

(3.53) 

Thus, the formulae (3.50), (3.51) and (3.52), (3.53) may be considered 

as dual in this sense. Equation (3.52) is also called the complementary 

DFP formula. In addition, the correction matrix in this fomula is 

identical to Goldfarb's correction matrix CH*" 

Denoting the H* in (3.50) and (3.52) by H~FP and H~FP'' respec­

tively, Fletcher's class of fomulae is given by 

H* = (1 - ¢)H~FP + ¢H~FP'. 
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Substituting for H~FP and H~FP' gives 

H* = H + [
T T] [ T T ss Hyy H sy H Hys 

(l - ¢) . T - .T + ¢ - -T- - -T- + 
s y y Hy s y s y 

( 
yTHy) ssT] 1+-­T · T 
s y s y 

( 
T ·) T ¢y Hy ss ¢ · T T 

= H + 1 + - - -( sy H + Hys ) · T T T s y s y s y 

HyyTH 
- (1 - ¢)~T~ 

y Hy 

which shows that this class is also equivalent to Broyden's family 

through the relationship 

T ¢ = f:ls Y• 

An important new result given by Fletcher is that ( 3. 54) can be 

rearranged as 

T ss Hys Hyy H [ 
T 

H* = H~FP + ¢(y Hy) T 2 
(s y) 

T T J 
T T +~2 

(s y)(y Hy) (y Hy) 

( 3 . .5.5) 

where 

T .!.[ s Hy J v = (y Hy) 2 ·or- - or-- . 
s y y Hy 

Thus, the difference between any two fonnulae H~1 and H~2 in the class 

is given by 

which is a matrix of rank one. Equivalently, any formula HJ in the 

T class differs from the DFP fonnula by the rank one matrix ¢vv • In 
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particular, the rank one property enables the following lemma to be 

applied. This lemma is established in [.58, pp. 94-98]. 

Lemma 3.21 If A' ,. A + crwwT, cr = .± 1, and if >.. 1 ~ >.. 2 ~ • • · ~ A.n are 

the eigenvalues of A and A.i ~ A.z ~ • • • ~ A.~ are the eigenvalues of A', 

then 

i) 

11) 

if cr = + 1, A.i ~ >.. 1 ~ A.2 ;::: >.. 2 ~ 

if cr = - 1, >..1 ~ A.i ~ >.. 2 ~ A.2 ;::: 

By (J.54) and (3.55), 

. . 
• • 

H* a H* + vvT 
DFP' DFP 

so that Lemma ).2 implies 

• > A.' > A. , and ..., n- n 

• >A. >A.'. - n- n 

Thus, H~FP' is "less singular" than H~FP' indicating that the use of 

H~FP' in a variable metric algor! thm might counteract the tendency 

toward singular! ty of H~FP discussed in Chapter II • 

Choice of Parameter 

Broyden's one-parameter family of variable metric methods contains 

the DFP method as a special case. In add! tion, this family possesses 

the important properties, ~uadratic termination, exactness, and sta­

bility for~ ;::: 0, of the DFP method. It was shown in the last section 

of Chapter II that the numerical difficulties encountered with the DFP 

method are related to the condition of the variable matrix H. Thus, 

this family of methods offers the possibility of choosing the parameter 

~ to improve the condition of the corresponding variable matrix H, while 
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still retaining the desirable characteristics of the DFP method. 

In Algorithm ).1, the matrix Hi, i = 0, 1, •.• , is updated at each 

iteration by the equation 

(J . .56) 

where 

().57) 

Since this updating equation is somewhat complicated, Broyden [7l ana­

lyzes its properties when the function to be minimized is a strictly 

convex quadratic function, that is, the function f is given by (3.4), 

where G is positive definite. He also transfonns the problem so that 

-1 
the inverse Hessian matrix G is the identity matrix and the approxi-

mation to it is 

Broyden's suggestion of a value for ai to obtain an algorithm having 

better numerical properties is the result of examining the updating pro­

cedure and the dependence of the matrix sequence \ Ki }• i = 0, 1, ••• , 

upon the parameters ai. 

By (3.56) and (3.5), the updating procedure for Ki is given by 

(3.58) 

Since x• -1 = - G a is the minimum of f, the error at xi is given by 
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ei =xi - x', so that the gradient at xi is given by. 

(3.59) 

Then, using the definition of si, 

(3.60) 

and 

.!. 
where zi = G2 ei, so that (3.58) becomes 

(3.61) 

Analysis of the sequence { Ki} , i = 0, 1, ••• , also requires that 

the properties given by Theorem 3.2 and Corollary 3.5 be expressed in 

terms of Ki and zi. Corollary 3.5 with k = i and p = n- 1 gives 

dT1Gd. = 0, 0 < j < i < n. 
J -

Applying the definition of di and (3.59) to this equation yields 

(3.62) 

By Theorem 3.2 with r = i and p = n - 1, 

which implies, by (3.5) and (3.60), if ni r 0, 

( ).63) 



Equation (3.61) shows that Ki+l depends on both Ki and ~i' and 

since ~i is arbitrary, Ki+l is also, to a certain extent, arbitrary. 
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But Ki is itself arbitrary, depending upon the choice of ~i-l' and it 

might therefore be thought that Ki+l would also depend, through Ki, upon 

~i-l" Broyden proves that this is not the case. The following theorem 

and corollary are needed. 

Theorem 3.101 If Ki and zi are as previously defined, Ki is positive 

definite, and ~i ~ 0, then 

(J.64) 

where the ok are scalars, om+l r 0 if zi+l f o, and m is any positive 

integer. 

Proof1 Proof is by induction. Using the appropriate definitions and 

( ).60). 

(J.65) 

Then, by (3.61), 

( ).66) 

for appropriate scalars 'fi and J6i. If ¢i r 0, then (J.66) establishes 

(J.64) form = 1. ·By (J.62) and (3.63), 

(3.6?) 

so that (3.66) implies 

(J.68) 
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From the definition of Ki, it follows that Ki is positive definite if 

and only if Hi is positive definite. By hypothesis, Ki is positive 

definite and ei ~ 0 so that by Theorem 3.6, Hi+l is positive definite. 

Hence, Ki+l is positive definite and (3.68) implies that ¢i f 0 if 

zi+l r o. 
Assume the validity of (3.64). Then, from (3.61), 

for appropriate scalars ol' ol, and ok. Since om+l f 0 implies 

0~+2 f 0, the proof is complete. 

Corollary 3.101 If zj f 0, j = 0, 1, ••• , i, where 0 :S i :S m :::; n - 1, 

Sj ~ 0, j = 0, 1, ••• , i - 1, and K0 is positive definite, then 

(3.69) 

where the ok are scalars, oi+l f o. 

Proofs Since (3.69) is obviously true for i = 0, assume i ~ 1. Re-

placing i by i - 1 in (3.66) gives 

Applying Theorem 3.10 to each term of this sum yields 

"""' 3 A "Kk = ~k=l uk i-2zi-2• 
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By successively applying Theorem ).10 in this way, the corollary is 

established. 

For the remainder of this section, assume that the hypotheses of 

Corollary 3.10 are satisfied, that is, the algorithm has not te~inated 

with the i~th ~teration and Ki is positive definite. Then Kizi ·r 0, 

0 ~ i ~ m. Corollary ).10 shows that Kizi may be expressed as a linear 
. _2 i+l 

. combination of the vectors K0z0, KQz0, ••• , K0 z0 • Ji:quation ().69) 

may be Written as 

•••• 

where the elements of wi are the scalars 6k' k = 1, 2, 

Define the matrix M by 

Equation ().70) may now be written as 

( J. 70) 

..... i + 1. 

().71) 

where vi is a vector whose first i + 1 elements are the same as those of 

wi and whose remaining elements are zero. If V is the (m + l)x(m + 1) 

upper triangular matrix w:hose (i + 1)-st column.is vi, then (J. 71) is 

equ1 valent . to 

( J. 72) 

By (J.62), the vectors Kizi, i = 0, 1, ••• , m, are mutually orthogonal, 

and hence linearly independent since they are not null. If qi denotes 

the normalized form of Kizi,then 
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(J.7J) 

where 

arid R is diagonal and chosen so that 

(J. 74) 

It follows from (J.72) and (J.7~) that 

Q == MU, ( J. 75) 

where U = VR. The choice of R is unique apart from the signs of its 

nonzero diagonal elements and since V is upper triangular with nonzero 

diagonal elements, these may be chosen to make the diagonal elements of 

U positive. Then U is an upper triangular matrix w1 th positive diagonal 

elements and hence is nonsingular. Since Q has rank m + 1, (J.75) 

implies that M also has rank m + 1. Equations (J.74) and (J.75) imply 

UTMTMU = I, so that 

( J. 76) 

.· T . 
Since M has rank m + 1, M M is positive definite and hence, by Theorem 

).8 of [56, p. 140], has a unique Cholesky decomposition, that is, there 

is a unique lower triangular matrix L with positive diagonal elements 

such that MTM = LLT. Therefore, (J.75) and (J.76) and the definition of 

M imply that, subject to the sign convention adopted, Q is uniquely 

determined by K0 and z0 • 

Using the above results, the following theorem shows that despite 
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the fact that the matrix Ki depends upon i arbitrary parameters ~j' 

j = 0, 1, ••• , i - 1, there is only one arbitrary term in its compo-

sition. 

Theorem J.lls The matrix Ki depends only upon the initial matrix K0 

and vector z0 apart from a single arbitrary additive term of rank one. 

Proofs By Theorem J.lO w1 th m = 1, and appropriate scalars fA and 'f', 

By substituting this expression into (J.61), it follows that 

( J. 77) 

where crj, o ., andy. are scalars which will be determined subsequently 
J J . 

and the vectors q. are as previously defined. Applying (3.77) consecu­
J 

tive1y with j = i - 1, i, ••• , 0, gives 

where 

Then by the orthonorma1ity of the vectors q., 
J 

(J. 78) 

(J. 79) 

(J.80) 

Kiqj = K0q. +(cr.+ yj 1)q. + o. 1q. 1 + 6.q.+1 , 1:;: j ~ i- l.(J.8l) 
J. J - J J- J- J J 



Equation (3.63) and the definition of qj imply that 

Kiqj = qj, 0 ~ j < i. 

T T T T 
Hence, premultiplying (J.80) by q0 and q1 and (J.81) by qj and qj+l' 

respectively, and using the orthonormality of the qj gives 

Since the vectors qj depend only upon K0 and z0, these equations to­

gether with (J.?9) imply that Ki is determined solely by K0 and z0, 

completing the proof of the theorem. 
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It follows from the preceding theorem and the fact that Ki+l de­

pends upon f\ that yi must also depend upon Si. To derive the precise 

form of this dependence note that, by ().66) and the definition of qi+l' 

T T 
the term yi~+lqi+l in (J.?8), with i replaced by i + 1, gives· rise to 

2 T 2 
a term of the form KiziziKi which must correspond to the term, 

2 2 T2 ( ) . T · • 
- niviKiziziKi' in ).61 • Denote ziKizi by ej' J = 1, 2, J, and 4, to 

simplify notation. Then by (3.57), (3.5), and (J.60), 

(J.82) 

By (J.6l) and (3.65), 
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Ki+lzi+l = Kizi[l + ai(~iel - Sie2) - a~(~ie2 - Sie))J 

- K~zi[a~(vie2 + Sie1) + ai - a?(vie) + Sie2)]. (J.8J) 

Premultiplying (J.65) by ziKi and using (J.67) yields 

(J.84) 

so that (J.8J) reduces to 

which, after substituting for via~ given by (J.82), becomes 

where 

It follows immediately that 

T 2 2 2 2 
zi+lKi+lzi+l = (e4e2/eJ- 92)ei" 

2 T 2 
Therefore, the coefficient of the term KiziziKi obtained from 

is given by 

(J.85) 

2 T2 ( ) ( ) Since the coefficients of KiziziKi from ).61 and ).78 must be equal, 
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().82) and ().85) imply 

().86) 

2 
where e = (e4e2 - e3)/e3e2• Hence yi varies linearly with ~i· Since 

e2 > 0 and e3 > 0 by the positive definiteness of Ki, it follows from 

the Schwarz inequality that 9 ~ 0, Thus, in general, yi increases with 

~ i and 1\ ~ 0 if and only if y i ~ - e. 

The parameter yi is essentially arbitrary in that it depends upon 

Si' and if yi ~- e then the resulting variable metric method will be 

stable. By Theorem J,ll, Ki+l depends only upon the initial matrix K0 
T 

and vector z0 apart from the additive term yiqi+lqi+l where the vector 

qi+l is uniquely determined by K0 and z0• Th~s, to obtain a stable 

method which might avoid the numerical difficulties encountered with the 

DFP method, it is logical to choose yi > - e having regard for the con­

dition number of Ki+l" Although choosing yi to minimize this condition 

number would require excessive computation, elementary considerations of 

this nature lead Broyden to suggest that a reasonable value for yi is 

zero, If yi were negative, A the smallest eigenvalue of Ki+l with 

eigenvector x, and A' the smallest eigenvalue of Kl+l with eigenvector 

x•, then by (J.78) and Theorem 5.7 of [56, p. Jl2l, 

That is, the smallest eigenvalue of Ki+l would be less than that of 
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Ki+l• Similarly, if yi were positive, the largest eigenvalue of Ki+l 

would be greater than that of Kl+l• In either case, the matrix Ki+l 

could be more ill-conditioned than the matrix Kl+l which is determined 

solely by K0 and z0 • From the definition of Ki and the consistency of 

the matrix 2-norm, 

so that 

II Hi 112 ~ II G-t 11~11 Ki 1!2, and 

II H~1 112 ~ II Gt 1~11 K~1 112' 

Hence if Ki is ill-conditioned, Hi might also be ill-conditioned. Note 

that for the DFP method, f3i = 0 for all i so that by (3.86), yi is in 

general negative for all 1. Thus, the reported behavior of the DFP 

method supports the above reasoning. 

If yi is set equal to zero, it follows from (3.86) and (3.84) that 

f3i must be chosen to satisfy' 

By (3.60), the definition of zi' and (3.59), this equation implies 

- 1 - 1 

which, by (3.24), is equivalent to 
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If this value of ~l is substituted into the general matrix updating 

formula of Algor! thm J.l, the updating ~ula for the variable matrix 

Hi is 

This formula is identical to (.) • .52), the complementary DFP fozmula ob-

tained by Fletcher, who showed that the matrix Hi+l obtained by this 

formula is "less singular" than that obtained by the DFP fo:rmula. In 

addition, the correction matrix in the formula given by (J.87) is iden-

tical to Goldfarb's correction matrix CH* which minimizes the norm 

( T) -1 defined by Tr WCWC where W = Hi+l" 

This special case of Algorithm J.l possesses in theory all the 

properties that made the DFP algor! thm so successful. To determine if 

this choice of the parameter ~i has improved the numerical properties, 

Broyden [ 8 J compares the performance of the new algorithm with that of 

the DFP algorithm on a variety of standard .test functions. Results of 

the computation for a representative sample are summarized in Table I. 

Computation for each function was terminated when II gk 112 < E, where E 

is the specified tolerance. These test functions are documented in the 

Appendix. 

Table I reveals little significant difference between the methods 

except for the third and fifth functions. On ~e third function, the 
. . 

new method is markedly inferior. This behavior is explained by Theorem 

. 2 of [8] which proves that if the new algorithm is applied to f given by 

(J.4), where G is positive definite, and if ei+l f 0, then 
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Since reducing the matrix error norm makes the iteration matrix look 

more like the inverse Hessian matrix, the new algorithm, in this sense, 

r~sembles Newton's method more closely than does: the DFP algorithm. 

Thus its performance is expected to reflect that of Newton's method, so 

that it might perfom comparatively badly if the Hessian matrix is sin-

gular at the minimum point, as in Powell's function. 

TABLE I 

COMPARISON OF THE DFP METHOD AND THE 
COMPLEMENTARY DFP METHOD, BROYDEN 

DFP' Function n II g0 112 E Iter. Eval. 

Rosen brock 2 2.30*102 lo-6 19 188 

Helical Valley 3 1.90*103 lo-6 21 167 

Powell 4 3.60*103 lo-6 26 231 

Trigonometric 45 1.6)*1011 6.71*10-5 63 480 

Sum of Exponentials 6 5.70*10 10-6 33 404 

DFP 
Iter. Eval. 

23 239 

21 167 

18 182 

63 499 

65 886 

For the fifth function in Table I, the new method is much better. 

The behavior of the DFP algorithm on this and similar functions is 

particularly interesting. Broyden reports that for the fifth function, 
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after JJ iterations II gk 112 had been reduced to approximately 10-J, and 

1 t then hovered around this value until the 60-th iteration when 1 t was 

reduced to about 10-4 . Subsequent iterations then reduced II gk 112 

steadily until at the 65-th iteration, it fell below 10~6 and the pro-

gram was terminated. Thus, the l)FP algorithm appeared to get reasonably 

close to the solution in only a few more iterations than required by the 

new algorithm and it then proceeded to "mark time" for perhaps 20 iter-

ations or so. 

These numerical results suggest that the perfo:Dnahce of the new 

algorithm is substantially the same as that of the DFP algorithm in the 

initial stages of the minimization, but that the characteristics of the 

algorithms during the final stages are markedly different. A consider-

ation of the values of ai for the two algorithms shows this to be 

reasonable. By Theorem 5.? of [56, p. J12], if gi f. 0, then 

where A. i is the smallest eigenvalue of Hi and A. is the largest m n max 

eigenvalue of Hi. Since the gradients at the beginning of the minimi-

zation are usually large, the value for the new algorithm, 
T ai = 1/a.igiHigi, may well approach zero, the value for the DFP algo-

rithm, provided a.i is not too small. Thus, the two algorithms become 

effectively identical .. On the other hand, as the minimum is approached, 

a i for the new method becomes extremely large and the maximum discrep­

ancy between the two methods occurs. Broyden reports a range of values 
. ~ . 4 

of a i for the new algorithm from 10 initially to 10 • Another si tua-

tion that could give rise to a large value of ai for the new algorithm 

is the occurrence of a nearly singular Hi. In this case, it would be 
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. T 
possible for both giHigi and ai to be small despite a large value of 

II gi 112 • Thus, the DFP algorithm would differ markedly from the new 

algorithm and, by the discussion following Theorem ).11, the DF.P algo-

rithm could yield a new value of Hi that would be much more badly 

conditioned than that g1 ven by the new algorithm. It was shown in the 

last section of Chapter II that the observed poor performance of the DFP 

algorithm could be explained by the occurrence of a nearly singular Hi. 

Therefore, the difference between the two algorithms in this case is 

highly encouraging. On the basis of his numerical experiments, Broyden 

concludes that the observed behavior of the DFP algorithm is probably 

due to a tendency toward singularity for the matrices Hi as hypothesized 

from the negative values of yi' and that the strategy of choosing ~i to 

eliminate this tendency appears to have been largely successful. 

With the exception of the third function in Table I in which the 

DFP algorithm was significantly superior, for all of the functions 
. ' 

tested by Broyden the number of iterations required by the new algorithm 

was comparable to, or substantially less than, that required by the DFP 

algorithm. In addition, if the number of function evaluations per iter-

ation is taken as the measure, then the new algorithm is slightly better 

in terms of work done during each iteration. Broyden reports an average 

ratio of function evaluations to iterations of 8.55 for the new method 

and 9.88 for the DFP method. Although these results represent only a 

limited amount of numerical experience on a restricted set of functions 

and to this extent will not necessarily reflect the overall merit of the 

two algor! thms, they do indicate that the new algor! thm is worth further 

consideration, especially for difficult problems or those for which 

existing methods are either unsuccessful or slow in converging. 
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Shanno [53] investigates the conditioning of the family of matrices 

(3.34) as a function of the scalar parameter 1. As noted in the last 

section of Chapter II, computational difficUlties can arise when the 

smal~est eigenvalue of the variable matrix H goes to zero, since this 

causes the condition number of H to become large. By Theorem 3.7, if Hk 

is positive definite and T> (ak - 1)/ak, then Hk+l is positive defi­

nite. Hence, at no finite step k does the smallest eigenvalue of Hk+l 

ever become zero. However, 1 t is possible for A to approach zero as k 

approaches infinity, where A is the smallest eigenvalue of Hk+l' Thus, 

Shanno elects to condition the matrix Hk+l by choosing~ at each step in 

such a way as to maximize the smallest eigenvalue of Hk+l' If A is the 

smallest eigenvalue of Hk+l with eigenvector x such that II x 112 = 1, 
T then A.= x Hk+lx. Hence A.'is maximized by choosing T to maximize 

T w Hk+lw for an arbitrary nonzero vector w. To determine the value ofT 
T , . 

which maximizes w Hk+1w, the following lemma is needed. 

Lemma 3.31 

is a monotonically increasing function of~~ 

Proofa By (3.37), 

Differentiating with respect to I yields 

d(g~+lHk+lgk+l) 
dT 

Since Hk is positive definite, this derivative is positive and the lemma 
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is proved, 

Theorem J.l2r Let w be an arbitrary nonzero vector. For 

i> (ak- 1)/ak, wTHk+lw is a monotonically increasing function ofT. 

Proof• As in the proof of Theorem J.9, there exists a basis for Rn 

composed of the vectors gk' gk+l' z1 , ••• , zn_2 which are conjugate with 

respect to Hk. From (J,J8), the vectors z1 , ••• , zn_2 are also conju-

T 
gate with respect to Hk+l and satisfy the conditions ziHk+lgk = 0 and 
T T T · 

ziHk+lgk+l = 0, Also, ziHk+lzi = ziHkzi and hence is independent ofT. 
T 

Then ziHk+lyk = 0 and from the quasi-Newton equation and (J,24), 
T T 

gk+lHk+lyk = gk+l sk = 0, Therefore, since forT > (ak - 1)/ak, Hk+l is 

positive definite, the vectors gk+l' yk' z1 , ••• , zn_2 form a basis for 
n R • Thus, w can be writ ten as a linear combination of these vectors, 

and from the conjugacy of these vectors, 

The first term on the right hand side is independent of 1" and 

so the third term is also independent ofi, Hence 

and, by Lemma J,J, this is positive if ~n-l I= 0. This completes the 

proof of the theorem. 
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Theorem ).12 shows that the condition of Hk+l as represented by 

T w Hk+l w improves monotonically with T. Thus, it is necessary to find a 

closed fom representation of Hk+l for 'T = a>, This is done in the fol­

lowing theorem. 

Theorem ).l)z Let Hk+l be defined by (J.J4). Then 

where 

limit Hk+l = Hk + 
T ->a> 

(sk - ~Hkyk)(sk - ~Hkyk)T 
(sk - ~Hkyk)Tyk 

Proof& By Householder's modification rule [29, pp. 12)-124], if A is a 

nonsingular matrix, a a scalar and wan arbitrary vector such that· 

T 
A + crww is nonsingular, then 

a 
( T)-1 .. -1 -1 T -1 A + crww = A - ---:T=----=-1- A lfK A • 

1 +ow A w 
().88) 

Applying ().88) to 

where 
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yields 

where 

which after applying ( ).88) to B and simplifying becomes 

T 

Then, 

T T 
ex. gkgk y y 

li it H-1 = H-1 + k . + ~ 
m k+l k T T ' 

i -> oo gksk yksk 
( ).89) 

Since 

( limit Hk+ 1) ( limit Hk+ l) • I, 
T -> oo T -> 00 

( -1 ) -1 limit Hk+l = limit Hk+l 
i~oo 1->oo 

which can be obtained by applying ().88) to (J.89) twice sequentially, 

as indicated below. After some tedious manipulations, 



yields the desired result. This completes the proof of the theorem. 

Computation shows that the updating formula obtained in Theorem 

J.lJ is identical to Broyden's special case given by (J.87). This 

result also follows from (J.J2) which relates the parameters ek and 

and shows that ek -> 1/s~yk as 'T ..:><D. 

_ Shanno tests the methods corresponding to i = <D and T = 1 1for 

various initial estimates on four standard test functions which are 
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documented in the Appendix. A representative sample of his results is 

given in Table II. Computation is terminated, that is, convergence is 

assumed, when li-th component of skI ~ 10-~ i-th component of xk I, and 

I i-th component of gk I ~ 10-~ i-th component of xk I· 

'fABLE II 

COMPARISON OF THE DFP MEI'HOD AND THE 
COMPLEMENTARY DFP METHOD, SHANNO 

DFP' DFP Function xo Iter. Eval. Iter. Eval. 

Sum of Two Exponentials (5, 20) 8 3:3 9. 

Rosen brock ( -1.2, 1) 14 56 13 

Rosen brock (1.489, -2.547) 18 77 20 

Wood (-J, -1, -J, -1) 21 97 22 

Wei bull (100, J, 12.5) 28 149 (*) 

*Convergence had not been attained in 50 iterations and 499 
evaluations. 

49 

65 

134 

114 

(*) 
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Shanno reports that, in virtually all cases, the DFP' method corre-

sponding to T = m outperfo:rmed the DFP method corresponding to T = 1, 

and the-difference became more notable as the complexity of the function 

increased. His conclusion is that the new method is preferable to the 

DFP method.. 

Convergence 

Dixon [17] establishes a result which allows Powell's general con-

vergence theorem, Theorem 2, 7, for the DFP method to be applied to other 

members of Broyden's one-parameter family of methods. Essentially, this 

result shows that under the same initial conditions, the sequence of 

points generated by Algorithm J.l is independent of the choice of param-

eter -at each iteration, provided the linear search is exact. However, 

two other conditions must be met. 

The value of ~ at each iteration in Algorithm J.l is determined by 

a linear search from the point xk in the direction ±. ~· If the search 

is exact, then the gradient at xk+l = xk + ~~ is orthogonal to the 

T step sk =- ~~ taken, that is, gk+l sk = 0. To ensure that, given xk and 

~· the value of~ is uniquely defined, it will also be assumed that 

the search locates the nearest local miniJilum in_ the downhill direction, 

:t ~· from xk. Such a search will be called a perfect linear search, 

It was shown in the second section of this chapter that the value 

ofT = (~ - 1)/~, or equivalently, ak = - 1/(a.ky~Hkyk - s~yk) makes 

dk+l identically zero, In addition, ~+l will be undefined if digk = 0 

since this causes Hk+l to be undefined due to zero denominators. Hence, 

it must be assumed that dk is defined and nonzero,. that is, degeneracy 

has not occurred. 
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Dixon's main result is derived from the following theorem. The 

proof of this theorem will follow from a general result in Chapter IV. 

Theorem ).14: If a sequence of points { xk}' k = 0, 1, ••• , is generated 

by Algorithm J.l, starting at a given point x0 with a given symmetric 

nonsingular matrix H0 and using a perfect linear search at each iter­

tion, then provided degeneracy does not occur, the sequence of search 

directions generated can be represented by ~ = ~kpk for some scalar ~k' 

where 

and for k > 1, 

For a given point x0 and matrix H0, a perfect linear search in the 

direction d0 = - H0g0 yields the same point x1 , and hence the same 

values of s0 and y0 for all members of Broyden's family. Then, by 

Theorem ).14, ~ = ~1p1 where p1 is the same for all members so that a 

search in the direction ~ yields the same point x2, and hence the same 

values of s1 and y1 , independent of the choice of ~ 0 • Assuming that 

the same points x0, x1 , ••• , xk, and hence the same values of 



s0, s1, ••• , sk-l' and y0, y1, ••• , yk-l' have been generated, the 

expression for pk given by Theorem J.l4 is the same for all members. 
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Hence, a search in the direction ~ = ~kpk yields the same point xk+l' 

independent of the choice of ~k-l" Thus, Theorem ).14 implies the 

desired result. 

Theorem J.l5a Under the conditions of Theorem ).14, the sequence { xk}' 

k = 0, 1, ••• , is independent of the choice of the parameter at each 

iteration. 

Since the DFP method is a member of Broyden's family, Theorem J,l5 

extends Powell'~ convergence theorem to the other members under the 

stated conditions. In particular, since degeneracy does not occur if 
T . 

~k = 1/s~k' the variable metric method using the complementary DFP 

formula and perfect linear searches converges to the minimum of a convex 

function satisfying the conditions of Theorem 2.7. By Theorem ).15, the 

DFP' algorithm and DFP algorithm will generate the same sequence of 

points if perfect linear searches are used. Since most implementations 

do not undertake accurate linear searches, this implies that the 1m-

proved numerical performance of the DFP' algorithm over the DFP 

algorithm is crucially dependent on the nonaccurate linear search strat-

egy used in the implementations of each of these algorithms. This 

conclusion is supported b.Y a careful numerical study by Dixon [19], 

which compares the performance of these formulas when used in conjunc-

tion with different strategies for determining the step length. 



CHAPl'ER IV 

GENERAL FAMILIES 

Huang 

A general family of variable metric methods is obtained by Huang 

[30] using a unified approach to construct a minimization algorithm 

having the following propertiesa 

i) the algorithm uses linear searches only; 

ii) the algorithm is quadratically terminating; 

iii) the algorithm requires function and gradient values 

only; and 

iv) the algorithm employs only information from the present 

and immediately preceding iterations. 

In constructing this algorithm, by property ii), it is assumed that the 

function f to be minimized is defined by 

) T T 
f(x = tx Gx + a x + y, (4.1) 

where G is ann x n positive definite matrix, a an arbitrary n-vector, 

and y a scalar. 

The algorithm will generate a sequence of points txk}' 

k '= 0, 1, ••• , by the iteration formula 
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(4.2) 
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with 

(4.)) 

where the vector ~ denotes the search direction and the scalar ak is 

the step size. Then f'(xk+l) = f(xk + ak~) depends on ak and dk. 

Hence, by property i), ~must be defined so that f(xk+l) becomes a 

function of ak only. In that case, ak is determined by a linear search 

along the direction ± ~ from xk and 

(4.4) 

where gk+l is the gradient g(xk+l). For f defined by (4.1), 

(4.5) 

Then, by (4.4) and (4.)), 

which implies 

(4.6) 

Thus, from the definition of f and equations (4.2) and (4.)), 

(4. 7) 

Since the matrix G is positive definite, f(xk+l) < f(xk) if 

(4.8) 
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Equation (4.8) states that t\ should not be orthogonal to gk,and thus 

will be called the nonorthogonality condition. 

From (4.4) with k replaced by k - 1, 

which with (4.8) implies that ~ should not be parallel to the previous 

search direction ~-l' In fact, by Theorem 2.J, property ii) will be 

obtained if the search direction ~ is conjugate to all previous search 

directions dj with respect to the matrix G, that is, if 

d~Gdj = 0, 0 ~ j < k ~ p, 1 ~ p ~ n - 1. (4.9) 

Therefore, if the search direction is defined by 

where Hk is a matrix to be determined, then the conjugacy condition 

(4.9) is equivalent to 

(4.10) 

Also, by the proof of Theorem 2.3, if all previous search directions d. 
J 

are chosen so that the conjugacy condition 

is satisfied, then the gradient gk has the property 

T 
gkd. = 0, 0 ~ j ~ k - 1. 

J 
(4.11) 

Comparison of equations (4.10) and (4.11) shows that (4.10), and 

hence (4.9), can be satisfied if the matrix Hk is chosen such that 
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(4.12) 

where a is an arbitrary scalar. If yk is defined by 

then by (4.5), 

(4.1J) 

Hence, the matrix G may be eliminated from (4.12) by multiplying by a. 
. J 

and using (4.J) and (4.1J). The .resulting equation, 

{4.14) 

may be separated into 

(4.15) 

and 

{4.16) 

Subtracting (4.14) with k replaced by k - 1, that is, 

Hk 1yj = as., 0 < j < k - 2, 
- J - -

(4.1?) 

from ·(4.15) yields 

Therefore, if the matrix Hk is obtained from Hk-l ~Y 

{4.18) 



for some matrix Ck-l' then {4.15) can be satisfied if Ck-l has the 

property 

ck 1y. = o, o < j < k- 2. 
- J - -

Also, {4.16) is satisfied if Ck;..i has.the additional property 

Equations {4.19) and {4.20) are satisfied if Ck-l is given by 

T 
sk-lqk-1 
T 

qk-lyk-1 

where qk-l and zk-l are n-vectors having the properties 
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{ 4.19) 

{4.20) 

{4.21) 

{ 4.22) 

Property iv) implies that the vectors qk-l and zk-l must be defined 

using only information from the present and immediately preceding iter-

ations. The conjugacy condition {4.9) for the previous iteration gives 

which, using {4.J) and {4.1)), yields 

{4.2)) 

Equation (4.11) and the same relation for the previous iteration implies 
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or, by (4.3), 

yTk 1s. = O, 0 < j < k- 2. 
- J - -

This equation then implies, using (4.17), that 

(4.24) 

Hence, by {4.23) and {4.24), the properties given by {4.22) will be 

satisfied if qk-l and zk-l are chosen as 

{4.25) 

where yl' y2, 61' and 62 are arbitrary scalars. Thus, for k ~ 1, Hk is 

given by {4.18), {4.21), and {4.25). It remains to choose the initial 

matrix H0 • The following lemmas are used. 

Lemma 4.11 If Hk, fork~ 1, is given by (4.18), {4.21), and {4.25), 

T then the search direction dk = - Hkgk can be expressed as 

where ~k is a scalar and 

Proof1 By {4.18), {4.21), and (4.25), 

d_ = - H g - a 
K k-1 k 

{4.26) 

(4.27) 
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T 
Since (4.)) and (4.4) imply sk-lgk = 0 and the definitions of yk-l and 

sk-l give 

( 4.29) 

equation (4.28) becomes 

(4.)0) 

Using the definitions of sk-l' yk-l' and zk-l' 

Hence, the result follows from (4.)0). 

Lemma 4.2& Under the hypothesis of Lemma 4.1, if the vectors 

s0, s1 , ••• , sk-l are defined and nonzero, the vector pk given by this 

lemma may be expressed as 

( 4. Jl) 
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The proof of Lemma 4.2 will follow as a special case of a more gen-

eral result to be established later in this section. 

Since the vector pk is independent of the parameters a, y1 , y2 , 61 , 

and o2 , Lemma 4,limplies that the search directions ~ generated by 

different choices of these parameterS are parallel to each other if the 

matrix Hk-l used at the point xk-l is the same. Hence, the vector pk 

can be regarded as the search direction for all the algpri thms. Then, 

since sk = ~kpk' the optimum stepsize along the direction pk is given 

by ~~k' By (4.6) and (4.26), 

which is clearly independent of the parameters. Thus, by (4.26), for 

all the algorithms, equation (4.7) becomes 

Hence, the nonorthogonality condition (4.8) is replaced by 

(4.)2) 

Premultiplying the expression given by (4,Jl) for pk by g~ and applying 

(4,11) yields 

which implies that the nonorthogonali ty condition ( 4. 32) can be satis-

T ( T) fied if gkHOgk is nonzero. Thus, if H0 is chosen such that t H0 + H0 

is positive definite or negative definite, then for gk r 0, 



is nonzero. In particular, if H0 is symmetric, this implies that H0 

must be positive definite or negative definite. 

lJO 

The precedin~ analysis has constructed the following general algo-

rithm haVing the desired properties. 

Algorithm 4.1 (Huang, 1970)a Given an initial vec~or x0 .and an initial 

T matrix H0 such that t(H0 + H0) is positive definite or negative defi-

nite. 

Fork= 0, 1, 2, ••• , 

If gk = g(xk) = 0, then stop. 

T 
Else, set dk = - Hkgk' 

find nk which minimizes f(xk + ndk) with respect to n, 

set sk = nk~' 

xk+l = xk + sk' 

T 
qk = ylsk + y2Hkyk' 

T 
zk = 0lsk + 02Hkyk, 

T T 
skqk Hky;kzk 

Hk+ 1 = Hk + a -T- - T 
qkyk zkyk 

where cr, y1 , y2, o1 , and o2 are arbitrary scalars except 

for the conditions that y1 and y2 , and o1 and o2, must 

not vanish simultaneously. 

Basic properties established by the development of this algorithm 

are summarized in the following theorems. 
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Theorem 4.1& Let Algorithm 4.1 be applied to the function f defined by 

(4.1). If the search directions d0, ~· ••• , dn-l are all nonzero, then 

i) ... , d 1 are conjugate with respect to G, and n-
ii) gn = 0, that is, the algorithm is quadratically terminating. 

Theorem 4.2& Under the hypotheses of Theorem 4.1, H = crG-1 • 
n 

Proofa By (4.12) with k = n, 

H Gd. = crd ., 0 < j < n - 1, 
n J J - -

and by i) of Theorem 4.1, the vectors dj, 0 ~ j ~ n - 1, are linearly 

independent. Therefore, H G = crl, and the theorem is proved. n . 

The general family of variable metric methods g1 ven by Algorithm 

4.1 contains the DFP method as a special case. It is easily seen that 

the DFP iteration formula will be obtained if cr = 1, y1 = 1, y2 = 0, 

51 = 0, and 52 = 1. Therefore, Theorem 4.1 establishes Theorem 2.2. 

The similiarities in the developments of Huang's family and 

Broyden's family suggest a direct relationship. This relationship can 

be determined by considering the differences between these two families. 

Since the iteration formula of Algorithm 4.1 can be expressed formally 

as 

(4.JJ) 

where y = y1/y2 and 5 = 52/51 , Huang's family contains three arbitrary 

scalar parameters, cr, y, and 5. 

Broyden's family was developed as a quasi-Newton method so that the 
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iteration matrix satisfies the equation 

~Y (4.16), Huang's iteration matrix is chosen to satisfy 

Therefore, set a = 1. Also, Broyden's iteration matrix is symmetric 

while Huang's matrix is not necessarily symmetric. If Hk.is symmetric 

and a = 1, then (4.JJ) with subscripts omitted, becomes 

T yss T sy H 
H* = H + ~=------=:-- + ~=-----=-T . TH T TH . ys y + y y ys y + y y 

HysT 6HyyTH 
T T T T • s y + 6 y Hy s y + 6 y Hy 

(4.J4) 

This equation implies that, if H is symmetric, then H* will be symmetric 

provided 

that is., provided 

1 - 1 
~=-------=-- = -=-----=--T T T T ' ys y + y Hy s y + 6 y Hy 

6 = ---T=--- 1. 
- y Hy 

(4.J5) 

Hence, the conditions that the iteration matrix be symmetric and satisfy 

the quasi-Newton equation result in an iteration formula based on the 

one parameter y. 
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A comparison of (4.)4) and Broyden's iteration formula given by 

Algorithm 3.1, in particular, the first term of the correction matrix, 

suggests the relation 

- 1 
[3 = ,. T T • 

ys y + y Hy 

Then, 

T 1 + [3y Hy 
y = T 

- [3s y 

and, from (4.35), 

• 

T T y1 = 1 + [3y Hy, y2 = - [3s y, 

T T o1 = Sy Hy, and o 2 = 1 - [3 s y. (4.36) 

Substitution shows that if cr = 1 and y1, y2 , o1, and o2 are given by 

(4.36), then the iteration formula of Algorithm 4.1 is equivalent to 

Broyden's formula. Therefore, Broyden's one ... pa.rameter family may be 

characterized as the subset of Huang's family for which the iteration 

matrix is symmetric and satisfies the quasi-Newton equation. 

By Theorem 3.15, all members of Broyden's family generate the same 

sequence of points, under the conditions of Theorem 3.14. Since 

Broyden's family is a subset of Huang's family, it is natural to ask 



1)4 

whether this result can be extended to Huang's family when applied to a 

certain class of functions or whether this family can be divided into 

subsets that generate identical sequences of points when applied to a 

general differentiable function. Huang shows, as a result of Lemmas 4.1 

and 4.2, that for a strictly convex quadratic function, all members of 

Algorithm 4.1 generate the same sequence of points. These lemmas estab-

lish that the search direction ~· k ~ 1, can be expressed as ~ = ~kpk, 

where ~k is a scalar and pk is the vector given by ( 4. Jl). If Po is 

defined by 

(4.)7) 

then equations (4.)1) and (4.)7) determine the sequence of search direc-

tions pk, k 2: 0. By the same reasoning used for Theorem ).15, it can be 

concluded that, for a give~ initial point x0 and initial matrix H0, the 

sequence of points x0, x1 , ••• , xn is the same for all the algorithms, 

that is, it is independent of the parameters cr, y1 , y2, 61 , and 62• 

Huang and A. V. Levy [Jl] test the behavior of some particular 

algorithms belonging to Huang's family on a quadratic function and sev-

eral nonquadratic functions. On the quadratic function, the results 

show that, if high-precision arithmetic and high accuracy in the linear 

search are used, all the algorithms behave identically for a given ini-

tial point and initial matrix. That is, they all produce the same 

sequence of points and lead to ;he minimum in no more than n iterations, 

where n is the number of variables. For the nonquadratic functions, the 

results show that some of the algorithms tested behave identically. It 

is concluded that this family could be divided into subsets that also 

generate identical sequences of points on more general functions. 
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Dixon [18l establishes a necessary and sufficie~t condition for 

members of Huang's family to generate identical sequences of points when 
applied to the same general nonquadratic function. The same conditions 
as in Theorem J.l4 are needed to ensure that given xk and dk' the value 
of a.k is uniquely defined, and that dk is defined and nonzero. 

Theorem 4.Jc If sequences of points ~xk}' k = O, 1, ••• , are generated 
by Algorithm 4.1 applied to the same differentiable function, starting 
at a given initial point x0 with a given initial matrix H0 and using a 
perfect linear search at each iteration, then provided degeneracy does 
not occur, the necessary and sufficient condition for all the sequences 
to be identical is that the iteration formulas used possess the same 

value of cr at each iteration. 

Proof: If an initial point x0 and initial matrix H0 are given, since 
T d0 = - H0g0, the point x1 and hence the values of s0 and y0 are the same 

for all members of Huang's family. Since no quadratic properties were 
used in proving Lemma 4.1, it is also valid for nonquadratic functions. 
It then follows from {4.27) that p1 and hence x2, s1 , and y1 are the 

same for all members. Assume that the same points x0, ~, • o o, xk, and 

hence the same values of s0, s1 , ••• , sk-l' and y0, y1 , ••• , yk-l' have 
been generated. It remains to show that all members of Huang's family 

generate the same direction pk' k > 1, given by (4.27) if and only if 
they all possess the same value of cr. In the expression for pk, the 

T quantity dependent upon the parameters is the vector Hk-lgk. Hence, the 
T T method of proof is to derive a substitution for Hk-lgk, then Hk_2gk' and 

T so on, back to H0gk. 

If w is an arbitrary vector, then from Algorithm 4ol, 
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Substituting for H~_1yk-l from (4.29) gives 

(4.38) 

From Lemma 4.1 , 

so that 

( 4. 39) 

Substituting ( 4. 39) into ( 4. 38) and then simplifying by the use of the 

definitions of qk_1 , sk_1, and yk_1 gives the expression 
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This equation can be written as 

(4.40) 

where 

Thus, substituting from (4.40) for H~-igk in the expression for pk given 

by ( 4.27) and then simplifying yields 

[I _ 8~-ly~-ll [I 8k-2y~-2l T p = - Hk-2gk k 
sk-lyk-1 sk-2Yk-2 

+[I _ •tly~-1 J (a 
sk-lyk-1 

T ) sk-2gk 
T sk-2' 

sk-2Yk-2 

since 

) T . If the substitution from (4.40 for Hk_2gk were now made, a similar 

simplification would occur. This process can be continued back to 
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l ( TJJ T k-2 · k-1 smym. s jgk 
+ I--T- crT s .• I j=O TT m= j+ 1 s y s .y . J · · m m J J 

( 4.41) 

Thus, it follows from the induction hypothesis that all members of 

Huang's family generate the same direction pk if and only if they all 

possess the same value of cr, and the proof is complete. 

Since Broyden's family is the symmetric subset of Huang's family 

with cr = 1, Theorem J.l4 is established by (4.27) of Lemma 4.1 fork= 1 
. T and (4.41) of Theorem 4.J for k > 1 with H0 = H0• Theorem 3.15, which 

follows from Theorem J.l4, can also be obtained directly from Theorem 

4.). 

In the special case of a positive definite quadratic function, the 

conjugacy of the search directions implies, by (4.11), that 

( 4.42) 

so that (4.41) reduces to 

( 4.4J) 

Expanding the first two factors of the product in brackets gives 



The definition of yk-l and (4.42) implies 

T 
sk-2Yk-2 
T 

-sk-2yk-2 

Hence, the product of the first two factors of (4.43) reduces to 

I -

T 
sk-11k-l 
T 

sk-lyk-1 

T 
sk-21k-2 
T 

sk-2yk-2 
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If the product of this factor and the third factor of (4.43) were now 

expanded, a similar reduction would occur. This process can be contin-

ued until (4.31) is obtained. Thus Lemma 4.2 is established, 

Pearson and Adachi 

Pearson [42] develops a class of variable metric algorithms which 

includes the DFP algor! thm. The problem considered is to find the 

minimum of the function f defined by (4.1). His approach is to obtain 

T a class of matrices Hk such that for dk = - Hkgk' the search directions 

d0, d1 , ••• , dn-l are conjugate with respect toG, since this will give 

quadratic termination. In addition, if n iterations are needed, it is 
-1 required that H = G , 

n 

Suppose the conjugate directions d0, ~· ••• , ~-l have been gen-

erated, that is, 
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dT1Gd. • 0, 0 < 1 < j < k - l. 
J - -

( 4.44) 

Since si ~ aidi' if ai f O, these conjugate directions result in conju­

gate steps, s0, s1 , •.. , sk-l' that is, 

Define the n x k matrices 

For f given by (4.1), 

(4.46) 

so that 

(4.47) 

So, suppose Hk is a matrix satisfying 

(4.48) 

T By the proof of Theorem 2.), (4.44) implies digk = 0, 0 ~ i < k, which 

T by the definition of si' implies sigk =- 0, 0 ~ i < k, that is, 

Then by the definitions of sk and ~· and by (4.48), 

T 
• - a.S g -·g k k 

.. 0, 

(4.49) 

(4.50) 
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T that is, y jsk .. 0, 0 _!S j _!S k - 1, so that by ( 4.46), 

(4.51) 

Therefore, if sk f 0, the new step sk is conjugate to the previous ones. 

Equation (4.51) also implies, by (4.46), that s~yk = 0, 0 ~ j ~ k - 1, 

that is, 

T 
Skyk = 0. (4 • .52) 

In addition, fork,.. n, (4.49) gives STg ""0 and (4.48) and (4.47) give nn 

Sn • H Y ... H GS n n n n 

-1 
which implies gn ... 0 and Hn = G if Sn is nonsingular, that is, if 

s 0 , s1 , ••• , sn-l are all nonzero. Note that if Hk satisfies ( 4.48) for 

every k, then Hk+lyk+l = Sk+l implies, by the definitions of Yk+l and 

Sk+l' that Hk+lyk ... sk, that is, the iteration matrix satisfies the 

quasi-Newton equation. 

To obtain a general solution of (4.48), the following lemma is 

needed. This lemma is established by Theorem 2 of [4J]. 

Lemma 4.Jc A necessary and sufficient condition for the matrix equation 

CXD = E 

to have a solution is that 

+ + where C and D are matrices which satisfy the relations 

+ + 
CC C = C, and DD D = D. 
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In this case, the general solution of the equation is 

where Y is an arb1 tra.ry matrix of the same size as X. 

Applying this lemma, the general soluilon of ( 4.48) is 

(4.5J) 

where R is an arbi tra.ry n x n matrix and Yk and Yk are k x n matrices 

which satisfY the relations 

{4.54) 

The condition that the equation (4.48) be solvable is that SkYkYk = sk. 

By {4.47) and {4.54), 

so this condition is always satisfied. 

Pearson restricts R to be a positive definite matrix and Yk and Yk 

( T )-1 T . -1 to have the form YkMYk YkM for positive definite matrices M = G or 

M • R, independently for each term. This leads to a class of four algo­

r! thms. Given the vector xk and gradient gk r} 0, the k-th iteration of 

T the general algor! thm sets dk • - Hkgk' where Hk' k 2:, 1, is defined by 

(4.5J) with Yk and Yk as specified above, and H0 = R. Then the vector 

xk+l = xk + sk' where sk =~~with ak chosen to minimize f{xk + adk) 

w1 th respect to a. Each of the four algor! thm, if applied to the 
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function f defined by (4.1), will find the minimum in at most n itera­

-1 tions. Also, if n iterations are required, then Hn = G • These 

properties are established by Theorem 2 of [ 42 ]. Particular algorithms 

are obtained by a1 ternate choices of M in Yk and Yk:· Recursion formulas 

for Hk+l in terms of Hk, yk, and sk can then be found for three of these 

algorithms by applying a recursion formula established in Appendix A of 

[42] and using (4.50) and (4.52). The DFP formula is obtained by sub-
-1 sti tuting M = G in Yk_ and M = R in Yk. Based on the same idea, Adachi 

[ll develops a general variable metric algorithm. However, he obtains a 

more general recursion formula for Hk given by (4.5J) and Yk_ and Yk sat­

isfying (4.54). This recursion formula includes those derived by 

Pearson. 

Define the k x n matrix Elk and n-vector e1k by 

o, 

cik(I - YkYk_) 

clk(I - YkYk)yk 
, 

o, ( 4.55) 

where the vectors ~k and c1k are such that 

Then the following lemma defines recursively a matrix Yk which satisfies 

equation (4.54). 
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Lemma 4.4: The k x n matrices Yk_, k ~ 1, defined recursively by 

Y' = 1 k ~ 1, 

satisfy the relation 

Proof& The proof is by induction on k. Clearly, by the definitions of 

Y1 and Yi, (4 • .56) is true for k = 1. Assume (4 • .56) is true. Then 

(4.57) 

Using the definitions of Yk+l and Yk+l' 

which, by (4.57) and the definitions of Elk and eik' reduces to 

Then, by the induction hypothesis and the definition of Yk+l' it follows 

that (4 • .56) is true fork replaced by k + 1. 

Let Yk_ and Yk in (4.53) be defined by the recursive formulas 

y• "" 1 k ~ 1, 
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(4 • .58) 

T T with Elk and elk given by (4.55) and E2k and e2k given by 

o, 

where the vectors b2k and c2k are such that 

Then, by (4.5J), 

SkYkykl{k(I - YkYk) 

bik(I - YkYk)yk 

Denote the matrices I - YkYk and I - YkYk by Ak and Bk, respectively. 

Then, 



Similarly, 

Also, by (4.5)), 

Ak+l = I - [YkYk + YkElk + ykeikJ 

T 
~ Ak - YkElk - ykelk" 

Therefore, the recursion formula for Hk can be expressed as 

where 

where the vectors blk' elk' b2k' and c2k are chosen so that 
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(4.59) 

(4.60) 

(4.61) 

(4.62) 
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This recursion formula is used to define the following general variable 

metric algorithm, 

Algorithm 4. 2 (Adachi, 1971) 1 Given an initial vector x0 and initial 

symmetric matrices H0 .. R, A0 ... I, and B0 = I. 

Fork z O, 1, 2, ••• , 

If gk • g(xk) ... 0, then stop. 
T Else, set ~ = - H g , 

:Jt k k 

find~ which minimizes f(xk + a.~) with respect to a., 

set sk = ~dk' 

yk = gk+l - gk, 

update Hk by equations (4.60)-(4.62), 

The properties of this algorithm established by the discussion pre-

ceding Lemma 4,J are summarized in the following theorem. 

Theorem 4.4: Let Algorithm 4.2 be applied to the function f defined by 

( 4.1). 

i) 

11) 

iii) 

If the vectors s0, s1 , ••• ,, sn-l are all nonzero, then 

s0 , s1 , ••• , sn-l are conjugate with respect toG, 

gn = 0, that is, the algorithm is quadratically texmi­

nating, and 

-1 H = G , that is, the algorithm is exact. n 

Particular algorithms are obtained from the general variable metric 

algorithm given by Algorithm 4.2 by appropriate choices for the vectors 

blk' elk' b2k' and c2k. If equations (4.50) and (4.52).are then applied 

to the resulting i.teration formula, various ~own formulas, including 

the DFP fonnula, can be derived. Since these equations depend on 



Algorithm 4.2 being applied to f defined by (4.1) and are not true in 

general, this relationship holds only in this case. However, another 

general algorithm can be obtained from Algorithm 4.2 by choosing blk' 

elk' b2k' and c2k in ( 4.60) as linear combinations of sk and H'iyk and 

then applying equations (4.50) and (4.52). Let 

T 
bjk = yjksk + ojkHkyk, and 
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T 
cjk = ~jksk + YjkHkyk' j = 1 • 2• (4.6)) 

where y jk' o jk' ~ jk' and Yjk' j = 1, 2, are scalars. Since HkYk = Sk, 

by (4.50) and (4.52), 

Similarly, 

( 4.65) 

Hence the recursion formula for Hk given by (4.60)-(4.62) reduces to 

(4.66) 

where 

( 4.67) 
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This leads to Algorithm 4.2' in which equations (4.6)), (4.66), and 

(4.67) are used in Algorithm 4.2 instead of equations (4.60)-(4.62). 

The DFP algorithm is derived from Algorithm 4.2' by letting 

T 
blk =- ,k = sk and b2k = c2k "" Hkyk in ( 4.66) and choosing R to be 

positive definite. Equation (4.66) then reduces to 

Substituting for RBk g1 ven by ( 4. 59) yields 

In this case, it can be shown by induction that the matrices SkYk, 

k ~ 1, are symm.etri c. Clearly, by the definitions of s1 and Yi, 

T s s 
s y• = _Q_Q 

1 1 Ty so 0 

(4.68) 

is symmetric. Assume SkYk is symmetric. By the appropriate definitions 

and equations (4.64) and (4.65), 

The symmetry of SkYk and (4.52) imply 

(4.69) 



Thus, Sk+l Yk+l is symmetric and the induction is complete. Equation 

(4.69) then reduces (4.68) to the DFP formula. 

1.50 

Adachi [2] .proves that, given the same initial point x0 and initial 

matrix H0 • R, the sequence of p~ints x0, x1 , • o o, generated by 

Algorithm 4.2 With-bjk and cjk' j = 1, 2, defined by (4.6J) is uniquely 

determined. if it is defined in fact, independently of the parameters 

y jk' 6 jk' - jk' and }ljk' j = 1, 2, when the algoz1: thm is applied to the 

quadratic function defined by (4.1). It is first shown, under these 

conditions, that given a matrix Hk, the (k + 1)-st search direction is 

uniquely determined independently of the parameters. This result is 

established by the folloWing theorem which shows that the parameters 

affect only the magnitude, not the direction, of ~+lo 

Theorem 4.5: If Algo~thm 4.2 With bjk and cjk' j = 1, 2, given by 

(4.6J) is applied to the function f defined by (4.1), then the search 

direction 

can be expressed as 

where ek+l is a scalar which depends on the parameters y jk' 6 jk' - jk' · 

and Y'jk' j = 1, 2, and pk+l is the vector defined by 

Proof: To simplify notation, the subscript k Will be oll1. tted and the 

subscript k + 1 Will be denoted by the superscript * o Under the stated 
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hypotheses, the iteration fomula for Hk used in Algorithm 4.2 given by 

(4.60) reduces to the formula given by (4.66). Using this fomula, 

( 4.70) 

Substituting for b2 given by (4.63) and using the definitions of y and 

s, the first tem in the right hand side of. (4.70) may be expressed as 

TT TT 
T b2y H g* T y2sy H g* 

Hg*- H"'* T = 6 - T 
b2y b2y 

Since 

the first term of (4.70) is a scalar multiple of the vector p*. Simi-

larly, by substituting for b2 and c2, the second term may be expressed 

as 
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Using the definitions of y and s, the factor in square brackets in the 

right hand side reduces to 

T T 
HT ""* T sy H g'lt 

e;-Hg- T 
s y 

so that the second term in (4.70) is also a multiple of p*. Since 

equations (4.49) and (4.52) are valid for the given function f, and 

H - RB = SY' by (4.59), 

and the third term of (4.70) is zero. Hence, by (4.70), 

T d* = - H* g* = 9*p* 

for an appropriate scalar 9*. 

Theorem 4.61 Under the hypothesis of Theorem 4.5, if the vectors 

s0, s1 , ••• , sk are defined and nonzero, then the (k + 1)-st search 

direction pk+l defined by Theorem 4.5 may be expressed as 

(4. 71) 

Proof 1 From Theorem 4. 5, 

( 4. 72) 

Equation (4.70) with k replaced by k - 1 and then gk replaced by gk+l 
T T implies that Hkgk+l is equal to Hk-lgk+l plus a linear combination of 
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the vectors \, k-l, b2 , k-l, and c2 , k-l. Each of these vectors as de­

fined by (4.63) is a linear combination of sk-l and Hi_1yk-l" Using the 

definitions of yk and sk' for an appropriate scalar a, 

By Theorem 4.5, pk+l is a scalar multiple of ~+l which is a multiple of 

T 
sk+l" Thus, Hkyk is a linear combination of sk and sk+l" It then fol-

lows from ( 4. 72) that 

( 4.?3) 

for appropriate scalars crk and crk-l" Since pk+l is a multiple of sk+l 

and, for the given function f, yk ~ Gsk and yk-l = Gsk-l' if sk+l f 0 

then the conjugacy of the vectors s 0 , s1 , ••• , sk+l implies 

These equations are also true if sk+l = 0. Therefore, by {4.73), 

Solving the above equations for crk and crk-l' respectively, and substi­

tuting into (4.73) gives 

T 
sk-lyk-1 
T 

sk-lyk-1 

This same procedure may be repeated until (4.71) is obtained. 
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The following corollary is the result of ( 4.49) and Theorem 4.6. 

If the initial matrix R is positiv~ definite or negative definite, it 

implies that the algorithms are stable for positive definite quadratic 

functions. 

Corollary 4.lc Under the hypothesis of Theorem 4.6, 

Since Algorithm 4.2 with the parameters given by {4.63) reduces to 

Algorithm 4.2' when applied to the quadratic function f defined by 

(4.1), Theorems 4.5 and 4.6 and Corollary 4.1 are also valid for 

Algorithm 4.2'. It follows from Theorem 4.6 that, for a given initial 

matrix R, all the particular algorithms derived by Algorithm 4.2 with 

the parameters given by (4.63) or by Algorithm 4.2' generate a unique 

sequence of search directions p0, p1 , ••• , and a corresponding unique 

sequence of points x0, x1 , •••• However, Theorem 4.6 does not imply 

that the minimum x• of the function f defined by {4.1) is reached by all 

of these algorithms after at most n iterations, only that if the point 

x' is obtained by these algorithms after n iterations for a given 

initial point x0 and an initial matrix R, then the sequence 

x0, x1 , ••• , xn-l' x• is the same for all the algorithms. Some algo­

rithms may stop at a nonstationary point or may not be defined at a 

certain step of the iterations. 

Algorithms 4.2 and 4.2' may be applied to a nonquadratic differen­

tiable function. However, the proofs of Theorems 4.5 and 4.6 do not 

hold in general since the quadratic properties of the function were 

used. In the proof of Theorem 4.5, quadratic properties are used only 
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to reduce the recursion formula for Hk given by (4.60) used in Algorithm 

4.2 to that given by (4.66) used in Algorithm 4.2' and to show that 

(Hk- RBk)Tgk+l = 0, so that the third term in the right hand side of 

(4.70) is zero. But, by the same method as used in the second term, 

this term may be expressed as 

. sy 
TJ - T HTg*. 

s y 

Therefore, Theorem 4.5 is valid for Algorithm 4.2' applied to non-

quadratic functions. 

Theorem 4. ?1 If Algorithm 4.2' is applied to the differentiable func-

tion f, then the search direction ~+l can be expressed as 

where ek+l is a scalar which depends on the parameters Yjk' 6jk' ¢jk' 

and Jbjk' j = 1, 2, and pk+l is the vector defined by Theorem 4.5. 

The relationship between Adachi's general family of variable metric 

algorithms given by Algorithm 4.2 or Algorithm 4.2' and Huang's family 

given by Algorithm 4.1 can be determined by comparing the criterion used 

to derive the iteration matrix Hk. For Huang's family, the matrix Hk is 

chosen to satisfy (4.41), that is, 

Using the definitions of the matrices Yk and Sk given by (4.45), this 

equation is equivalent to the equation HkYk = osk. Hence, foro = 1, 

Huang's iteration matrix satisfies the equation 
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(4.74) 

Adachi's iteration matrix is the general solution of this equation, 

given by (4.5)). that is, Hk = SkYk + R(I - YkYk), where Yk and Yk are 

defined by (4 • .58) and satisfy YkYkYk = Yk and YkYkYk = Yk. Since 

R(I - YkYk)Yk = 0, 

(4.75) 

is a particular solution of ( 4. 74). Applying the method used by Adachi 

to obtain recursion formula (4.60) for the general solution (4.5J), to 

the particular solution (4.75), yields 

( 4.76) 

where Ak is given by (4.62). If 

then, by (4.64) and (4.65), equation (4.76) reduces to the general 

iteration formula used by Huang's family in Algorithm 4.1. Therefore, 

in the case of a = 1, Huang's general family can be obtained from a 

particular solution of HkYk = Sk, while Adachi's general family is 

derived from the general solution of this equation. In this sense, 

Theorem 4.5, Theorem 4.6, and Theorem 4.7 are generalizations of Lemma 

4.1 and Lemma 4.2. However, a result corresponding to Theorem 4.) has 

not been proved. 



CHAPI'ER V 

SUMMARY 

This paper is an expository study of Fletcher and Powell's version 

of Davidon's original variable metric method and generalizations of this 
.•. 

method, that is, parametric families of variable metric methods which 

contain the DFP method and have basic properties in common with this 

method. The main emphasis has been on the motivation and basic ideas 

leading to their development and on the theoretical properties which 

form the foundation of these methods .• 

Davidon' s variable metric method introduced a variable metric into 

the direction of steepest descent, leading to the search direction 

~ = - Hkgk' where the variable matrix Hk approximates the inverse 

Hessian matrix at the point xk. The basic concepts of this method were 

discussed in Chapter I • Fletcher and Powell simplified this method and 

established the properties of quadratic termination and exactness. That 

is, for a quadratic function f of n variables with positive definite 
-1 ' 

Hessian matrix G, -~ • 0 and Hn = G , if n iterations are required. 

In addition, they proved that the method was stable by showing ~at Hk 

was positive definite for each k. Powell's general convergence theorem 

extended convergence to convex functions. Chapter II, which covered the 

DFP method, concluded with a discussion and possible explanation of the 

numerical difficulties encountered with this method. 

The first parametric family, the topic of Chapter III, was 

157 
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developed by Broyden as a quasi-Newton method. This one-parameter 

family was derived by modifying Hk so that the quasi-Newton equation, 
-1 Hk+lyk = sk' is satisfied and Hn = G for a quadratic function f with 

positive definite Hessian matrix G in order to obtain finite termina-

tion. Symmetry of Hk was also required. A range on the parameter ak 

which guarantees stability was established. Shanno's development of 

the same iteration formula was also based on the quasi-Newton equation. 

However, his formulation extended the range of ak which ensures sta­

bility. The development by Goldfarb showed that the correction matrix 

could be expressed as a combination of two correction matrices of mini-

mum norm obtained from a formula derived by Greenstadt. Fletcher's 

derivation of this same family showed that any member differed from the 

DFP matrix by a matrix of rank one. The analysis of Broyden and Shanno 

in their search for an optimal parameter led to the complementary DFP 

formula. Dixon's theorem extended Powell's convergence theorem to other 

members of this family. Table III gives the different formulations of 

the iteration formula for the variable matrix H. Table IV summarizes 

the relationships among the different formulations and gives the values 

of the parameters leading to the DFP formula and the complementary DFP 

formula. 
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TABLE III 

FORMULATIONS OF THE ONE-PARAMETER FAMILY 

Author Iteration Formula 

Broyden 

T T 
T (1 + Sy Hy)s T 

q = T - Sy H 
s y 

Tsl [(1 - T)s - Hy l(l - 'T)s - Hy ]T 
Shanno H* = H + - + ----------:=-----

sTy [(1 - T)s - Hy ]Ty 

Goldfarb H* = H + yCH + (1 - y)CH* 

1 l T T CH = or-- sy H + Hys 
y Hy 

l l T T CH* = ~ - sy H - Hys + 
s y 

Fletcher H* = (1 - d)H* + dH* 
P DFP P DFP' 



Author 

Broyden 

Shanno 

Goldfarb 

Fletcher 

TABLE IV 

VALUES OF PARAMETERS LEADING TO ONE-PARAMETER 
FAMILY AND PARTICULAR ALGORITHMS 

Broyden DFP 

s = 0 

T Sy Hy 
T=l + . T T=l 

1 - Ss y 

T ) T (1 - Ss y y Hy T y Hy 
y ... T T y = T T y Hy + s y y Hy + s y 

T 
~ = Ss Y ~ = 0 

160 

DFP' 

1 
s =-T s y 

I = CD 

y = 0 

~ = 1 

The general families of Chapter IV were obtained by Huang, Pearson, 

and Adachi by not restricting Hk to be symmetric. In this case, the 

T search direction was given by ~ = - Hkgk. Since Huang's objective was 

to develop quadratically terminating algorithms, the variable matrix Hk 

was chosen so that, for a quadratic function f with positive definite 

Hessian matrix G, directions conjugate with respect toG would be gen-

erated. Adachi's family was based on the fact that, for a quadratic 

function f with positive definite Hessian matrix G, the directions would 

-1 conjugate with respect to G and H would be equal toG if the variable n 

matrix Hk was a general solution of HkYk = Sk. Huang, Dixon, and Adachi 



161 

showed that these general families could be classified on the basis of 

identical behavior on certain classes of functions. The relationships 

among the parametric families of Broyden, Huang, and Adachi are summa-

rized in Table V. 

TABLE V 

RELATIONSHIPS AMONG PARAMETRIC FAMILIES 

Huang 

H* = H +a 

Adachi 
(using H = sy•) 

T H tf_ s; Y-1 
H*=H+---. c{y l{y 

Huang (a .., 1) Broyden 

a= 1 

T 
y1 = 1 + ay Hy 
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Table VI summarizes the basic properties of the DFP method and the 

conditions under which the parametric families studied also possess 

these properties. 

TABLE VI 

BASIC PROPERI'IES OF THE DFP MB:l'HOD AND PARAMB:l'RIC 
FAMILIES WHICH CONTAIN THIS MB:l'HOD 

Property DFP Broyden Huang 

Conjugate direction method X X* X* 

Quadratically terminating X X* X* 

Quasi-Newton method X X a= 1 

Exact X X* a = 1* 

Stabl.e1 X X*** X** 

1 provided H0 is positive definite 

*Provided degeneracy does not occur 

Adachi 

X* 

X* 

X 

X* 

X** 

**for positive definite quadratic functions, provided degeneracy 
does not occur 

This paper supplies the necessary background and suggests some re-

lated topics for other expository papers or further research. Since 

exact linear searches are basic to the developaent of the methods stud-

ied, the theoretical convergence properties presented are dependent upon 
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this condition. However, some analysis on the convergence of certain 

algorithms using less than exact linear searches has been done. The 

convergence properties of the DFP method applied to a convex function 

are examined by M. L. Lenard [34]. Powell [50, 51] studies finite 

temination properties for Broyden 1 s one-parameter family applied to a 

positive definite quadratic function. 

The complementary DFP formula derived as an optimally conditioned 

member of Broyden 1 s one-parameter family is also used by Fletcher [ 26] 

in a different algorithm. Since det HDFP, ~ det HDFP, the use of HDFP, 

in a variable metric algorithm might counteract the tendency toward 

singularity of HDFP" However, since Lemma J.2 also implies that 

I I HDFP 1 112 ~ II HDFP 112, the use of HDFP, alone might cause H to tend to 

become unbounded. Fletcher's algorithm suggests a way to counter both 

T T 
singularity and unboundednes. If skyk ~ ykHkyk' then Hk is updated by 

the DFP' fonnula; otherwise, the DFP fonnula is used. The interpreta-

tion of this test is based on the fact that for a quadratic function 

-1 with Hessian matrix G, sk == G yk. Hence the "larger" DFP' fonnula is 

-1 T -1 T 
used whenever Hk is "smaller" than G in the sense y.kG yk ~ ykHkyk. 

In addition, Fletcher chooses not to carry out a full linear search on 

each iteration. Instead he uses a strategy that usually requires only 

one function and gradient evaluation on each iteration. 

Linear searches are usually done by evaluating the function and 

gradient for a number of different step sizes and interpolating accord-

ing to some strategy, until a sufficiently accurate minimum is obtained. 

Thus, considerable computing effort, as measured by the number of func-

tion and gradient evaluations, is required. Another disadvantage is 

the possibility that a minimum along the search direction may not exist 
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at all. Fletcher's algorithm is based on the theory that it may not be 

worthwhile to calculate the optimal step size very accurately. Another 

approach is to consider whether the linear search can be avoided com-

pletely. The importance of the linear search is that the minimum of a 

quadratic function f with positive definite Hessian matrix G may be 

found in a finite number of iterations if the search directions are con-

jugate with respect to G. However, for one member of Broyden's one-

parameter family of correction matrices, finite termination can be 

proved by showing H = G-l for a variable metric algorithm without lin­n 

ear searches. This member is the symmetric rank one matrix 

(5.1) 

obtained when 

1 

ak = T T • 
skyk - ykHkyk 

The use of this rank one correction matrix in a variable metric method 

was first suggested by Davidon [14]. It has also been suggested inde­

pendently by Broyden [6], A. V. Fiacco and G. P. McCormick [21], 

B. A. Murtagh and R. W. H. Sargent [39 ], and P. Wolfe [59]. The prop­

erty Hn = G-l is established by Broyden in Theorem 6 of [6] for an 

algorithm using the following iteration. Given the vector xk, the gra­

dient gk' and the matrix Hk, 
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where ~ is an arb! trary nonzero scalar except that 1 t must not cause 

Hk+l to be singular or undefined and where Ck is the matrix given by 

(5.1) with sk = xk+l - xk and yk = gk+l - gk. Although the use of (5.1) 

eliminates the need for a linear search, it presents some other prob-

lems. One is that Hk pos1 t1 ve def1n1 te need not imply Hk+ 1 pos1 t1 ve 

def1n1 te. Hence stab111 ty cannot be guaranteed in a basic algor! thm 

and Hk+l may be singular or undefined due to a zero denominator. For 

example, if~= 1 happens to minimize f(xk - aHkgk) with respect to a, 

then as shown in Chapter III, Hk+l is singular. Thus, many additions to 

the basic algor! thm are required if this rank one updating formula is 

used. Davidon's [15, 16] rank one algorithm always uses ak = 1, that 

is, xk+l = xk - Hkgk. If the resulting vectors sk and yk are such that 

Hk+l = Hk + Ck' with Ck given by (5.1), is not positive definite, then 

Hk+l is defined by adding a different multiple of (sk- Hkyk)(sk- Hkyk)T 

to Hk so that positive defin1 teness is obtained. After Hk+ 1 has been 

calculated, if f(xk+1) > f(xk), then the next iteration begins at xk 

instead of xk+l' Murtagh and Sargent [40] also propose algor! thms in 

which xk+l = xk - akHkgk for some ak and the positive definiteness of Hk 

is maintained. 

An important property first noted by Wolfe [59] is that the rank 

one correction given by (5.1) can yield H = G-l, for a quadratic func­n 

tion with positive definite Hessian matrix G, without the restriction 

that xk+l be calculated by (5.2). Recall that this property follows 

from 

( 5.3) 

fork= n, if the vectors s0 , s1 , ••• , sn-l are linearly independent 
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since, in this case, yj = Gsj. Equation (5,3) is true fork= 1 because 

the rank one updating formula satisfies the quasi-Newton equation. As­

suming {5.3) to be true and using the relation'yj = Gsj, which is true 

for any j, gives 

Thus, it follows from the iteration formula Hk+l = Hk + Ck with Ck given 

by (5.1) and the induction hypothesis that 

if the vectors sj are such that Hk+l is defined. Since the quasi-Newton 

equation implies that the above equation is true for j = k, the induc­

tion is complete. Algorithms which attempt to take advantage of this 

flexibility in the choice of sk have been proposed by Powell [46] and 

Bard [4l. In these algorithms, the matrix Hk need not be positive def­

inite and so is always updated by (5.1) and skis not always a multiple 

of - Hkgk. 

Routines, in particular FORI'RAN subroutines and ALGOL procedures, 

implementing the variable metric methods discussed in this paper are 

available. Implementations of the DF.P method include FLEPOMIN by 

M. Wells [57] and FMFP from International Business Machines Corporation 

[32]. The complementary DF.P formula is used in BROMIN by K. Fielding 

[22]. DAPODMIN by s. A. Lill [35] is an implementation of a modifica­

tion of the DFP method suggested by G. W. Stewart [55] which uses 

difference approximations for the first partial derivatives. The de-

rivatives are also estimated by differences in ZXMIN from International 

Mathematical and Statistical Libraries, Incorporated [33] which is 
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based on VAlOA by Fletcher [25]. Surveys of additonal existing imple­

mentations are given by Dixon [20] and Fletcher [24]. 
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APPENDIX 

Rosen brock 

This function, introduced by Rosenbrock [52l, is defined by 

with the suggested initial point (-1.2, 1). The minimum value of zero 

occurs at the point (1, 1). It is difficult to minimize because it has 
. 2 

a steep-sided valley following the curve 51 = s 2• 

Helical Valley 

This function, given by Fletcher and Powell [26], is defined by 

where 

{ 
arctan ~ 2/ ~l, ~ 1 > 0, 

2rre(~1 , s2) = 
rr + arctan ~2/s1 , ~1 < o, - rr/2 < 2rre < Jrr/2, 

and 

It has a steep-sided helical valley in the ~J direction with pitch 10 

and radius one. The initial point is (-1, 0, 0) and the point (1, 0, 0) 

gives the minimum value of zero. 
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Powell 

This function, introduced by Powell [44], is given by 

f(~ 1' "~;2' ~ J' ;; 4) = (sl + 10s2)2 + 5( sJ - s4)2 

4 4 
+ (~2- 2~3) + 10(51- ~4) • 

The initial point (J, 1, 0, -1) is used and the minimum of zero occurs 

at the point ( 0, 0, 0,_ 0). This function is a severe test since the 

Hessian matrix is singular at the minimum point. 

Trigonometric 

Fletcher and Powell [26l defined these functions to test whether a 

method is suitable for finding the minimum of a function of a large num-

ber of variables. The problem is to solve the set of simultaneous non-

linear equations 

where the coefficients yij and oij' i, j = 1, ••• , n, are generated as 

random integers between - 100 and + 100 and the right hand sides 

pi, i = 1, 

s., j = 1, 
.J 

... ' 

... ' 
n, are calculated for values of the variables 

n, generated randomly between - TT and TT. Hence, the 

function of n variables to be minimized is 

with the minimum value of zero at the point (~ 1 , ••• , !n) generated. 

The initial point is (41 + O.lcr1 , ••• , ~ n + O.lcrn), where cr j' 

j = 1, ••• , n, are also generated as random numbers between- TT and n. 
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Sum of Exponentials 

Broyden [Bl designed these functions to fit m data points (¢i' ~), 

i = 1, ••• , m, by a sum of q exponentials in order to combine maximum 

scope for testing with minimum extra programming. The function to be 

minimized is defined as 

' 

f(~1' •••• ~n) == 2:~=1 CYi- LJ=1 ;;jexp(- sj+q¢irf 

where n = 2q. The minimum is dependent upon the way in which the data 

are obtained. For the function reported, q = J and the values of ~ 

were the sum of three exponentials evaluated at 13 values of ¢i. 

Sum of Two Exponentials 

Box [5] introduced this function which is defined by 

2· - (exp(- i/10) - exp(- i))l • 

This function fits 10 data points (¢i' Yi_), i = 1, ••• , 10, where ¢i 

ranges from 0.1 to 1 in steps of 0.1, and Yi, = exp(- ¢1) - exp(- 10¢i), 

by a sum of two exponentials. The point (1, 10) gives the minimum value 

of zero. The suggested initial points are (0, 0), (0, 20), (5, 0), 

(5, 20), and (2.5, 10). 

Wood 

This function, credited to c. F. Wood and documented by Pearson 
I 

[42], is given by 



1?6 

( ) ( 2) 2 ( )2 ( 2)2 2 r~1 .~2.~3,s 4 =l00$2 -~ 1 + 1-~1 +901i4 -~3 +(1-F,J) 

2 2 ' 
+ 10.1[(12 - 1) + (~4 - 1) J + 19.8(12 - 1)(~4 - 1). 

The initial point is (-J, -1, -J, -1) and the minimum value is zero at 

(1, 1, 1, t). The function has a nonoptimal stationary point at 

(-0.96?9, 0.9471, -0.9695, 0.9512) which can cause an algorithm to 

converge to this nonminimal point. 

Wei bull 

The Weibull function, introduced by Shanno [5J], is defined by 

~ 99 r [ (~ _ ~- ) ~2] J2 
f(<l' 0 2' ~3) = L., 1•1 t exp - 1 < 1 ~ - \'J. ' 

where ~i = 25 + [50 l~ge(l/Yi)]2/J and~ = i/100. That. is, the ~i and 

~' i = 1, ••• , 99, are perfect data generated for~ ranging from 0.01 

to 0.99 in steps of 0.01 for the values ;;1 = 50, ~ 2 = 1.5, and~ J = 25. 

The minimum. value of zero occurs at the point (50, 1.5, 25). Different 

initial points may be used. 
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