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CHAPTER I 

INTRODUCTION 

Biological processes have long been used to treat the waste efflu

ent of society. In the past, the efficiency of these processes was of 

less concern to society, because few streams and rivers were seriously 

damaged by pollution. As waste discharges increased because of contin

ued growth and industrialization, more and more streams became low in 

dissolved oxygen, and fish kills became apparent. To rescue the aes

thetic and economical resources of water bodies and conserve these 

resources which have not yet been ruined, users will be required to 

produce effluents of increasing quality. For many industries, waste 

treatment costs have become a significant item of economic analysis in 

manufacturing. As this trend continues, more effective waste treatment 

systems will become mandatory. 

Primary sedimentation, a simple and cheap method for separating 

settleable solids from liquids, and microbial processes, or secondary 

treatment, have become the most widely used methods of waste treatment. 

The advantages of 11 secondary 11 biological treatment systems relate to 

their natural place in the decay portion of the carbon cycle. Waste 

organic matter is oxidized to carbon dioxide, and microorganisms are 

produced to maintain the process. The only major energy requirement is 

that needed to keep the system well mixed and aerobic. A significant 

cause for concern with these processes is characterization and control 

1 
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of response to environmental change. Practically all municipal and many 

industrial waste treatment systems have no provision for control over 

the quantity and quality of the waste entering the process; thus, the 

biota are constantly responding to changes in the influent waste stream. 

These changes can upset process performance and cause variation in bio

chemical oxygen demand (BOD) removals over a wide range. 

Control measures and improvements in the process have come slowly, 

resulting predominantly from work done in field installations. However, 

over the past decade, large amounts of data on continuous flow acti

vated sludge systems have been amassed by various researchers. It was 

found by Srinivasaraghavan and Gaudy that under relatively steady oper

ating conditions, an activated sludge system employing constant cell 

feedback concentration, XR (Figure 1}, was extremely useful in steadying 

the inherent dynamic (unsteady) nature of this heterogeneous biomass (1) 

(2)(3). However, little is known of the response of such an activated 

sludge model to severe changes in the external environment, i.e., 

shock loading conditions. Based upon past work in the author•s labor

atory, some guidelines are emerging with respect to the ability of con

tinuous culture systems to accommodate change, but more work is needed. 

The long-range objective of this thesis was to examine the stability of 

an activated sludge process operated with constant solids recycle con

centration. The general plan was to operate a laboratory scale pilot 

plant similar to that run by Srinivasaraghavan and assess steady state 

performance of this system at various growth rates prior to applying 

various environmental perturbances. In the current studies, the steady 

state was disrupted by administering various changes in hydraulic inflow 

rate (hydraulic shock loadings) and in substrate concentration 



Figure 1. Flow Diagram for Model Employing Constant Recycle 
Sludge Concentration, XR 
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{quantitative shock loadings). After characterizing the transient 

response to the step change, the system was run until it attained a new 

steady state. The major aim of this study was to characterize the 

nature of the transient response in going from initial to final steady 

state. However, another important phase of the study involved sub

jecting the system to various pulsing hydraulic shock loads and quanti

tative shock loads. The aim of this part of the study was to determine 

if steadiness in effluent substrate concentration could be maintained 

under continuous transient loading conditions, and to gain scientific 

insight into the causative mechanisms for the response. 



CHAPTER II 

LITERATURE REVIEW 

A. Activated Sludge Process: Review and 

Development 

The activated sludge method has been widely emplyed for over half 

a century. This process enjoys ever~increasing popularity as a major 

means of biological treatment. Various researchers have shown the 

process to be extremely adaptable, and many process modifications have 

been proposed to meet specific requirements and conditions. 

The activated sludge process can be considered as having been 

spawned by blowing air through wastewater. Among recorded incidents 

are those of Dr. Angus Smith (1882), Dupre~ and Didbin (1884), and 

Hartland and Kaye-Perry (1888) in Europe, and Dr. Drawn (1891), Mason 

and Hine (1891), and Col. Waring (1892-94) in the United States (4). 

By 1917, the Manchester Corporation had brought a 250,000 gpd 

(946,000 1/day) continuous flow plant into operation in Washington. 

The next step was the evolution of a satisfactory theory to explain 

its unusual characteristics. By 1930, a theory of action based on bio

logical considerations was well established. The studies of Seizer 

(5) in Germany and Buswell and Long (6) provided very convincing data. 

Studies on oxygen requirements can be considered as important landmarks 

in the development of the process. New knowledge concerning oxygen 

6 



requirements in relation to sludge concentration, temperature, sub

strate, nutrition, and bacterial growth response served as a base for 

the following activated sludge methods: 

Tapered aeration based on the rapidly diminishing oxygen require

ments as the treatmentprogresses was considered by Kessler, Rohlich, 

and Smart (7). In order to save aeration tank capacity, Gould (8) 

7 

proposed a system of operation referred to as 11 step aeration~ .. This 

system is best adapted to multiple-pass tanks, with three or four chan

nels. The first pass is reserved for reaeration of the returned sludge. 

Sewage is added stepwise--usually one-third in the beginning of each of 

the second, third, and fourth passes in a four-pass system. 

Settled Waste Water 

Sludge 
Reaeration 

pass pass pass 

B c D 

Slud e Return 

1-----+ Eff. 

Waste 
Act. Sludge 

Attempts are made in this method to keep the oxygen demand at fairly 

uniform levels. In this scheme of treatment, much of the ammonia nitro

gen escapes in the final effluent (9). Step aeration has been applied 

widely in spite of its having been a proprietary process until recently. 
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It is reported to produce well settling sludges as well as savings in 

tank volume (9). Studies by Setter and Edwards (10) in New York City 

showed that an activated sludge process could be operated to produce 

an intermediate degree of treatment in a reliable manner if the aera

tion solids were restrictedto low levels of 300 to 600 mg/1 with 

aeration periods in the range of 1.2 to 2 hours. This new scheme of 

treatment was referred to as 11modified aeration~ .. It accomplishes a 

degree of BOD and suspended solids removals in the range of 6~ to 75 

percent. Sludges compact well and are readily digestible; the flow 

pattern is the same as for a conventional system. Aeration tankage is 

almost one-third of that for conventional activated sludge. 

Aeration b Tan~ Tank ied. 

Return Sludge 

In 1945, Kraus (11) reported on the use of aerobically condi

tioned sludge mixed with digester overflow liquor as a means of con

trolling bulking of activated sludges. Digester overflow liquor, 

digested sludge, and activated sludge are aerated for many hours 

under aerobic conditions. The resultant mixture is highly nitrified 

and contains biologically active sludge with low volatile solids and 

good settl,ing properties. By adding this mixture in proper propor

·ti~ns ~ the returned activated sludge and modifying the method of 
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aeration, Kraus (12) has been able to control sludge bulking and to 

maintain a high degree of purification while handling BODs loadings in 

the range of 100 to 17S lbs/day/1000 cu ft of aeration tank capacity. 

Aeration Sed. 
Tank Tank 

Return Sludge 

Nitrif. Digester- Sludge 
Unit 

Li uor igeste 
q v 

The biosorption process, which is characterized by using the sup

posed adsorptive properties of a well conditioned activated sludge, was 

not widely known until 19Sl. Ulrich and Smith (1~) estaplished the 

flow diagram shown below in which the activated sludge, well condition

ed by reaeratian, -is brought into contact with the unsettled waste

water under intense aeration for a period of about 30 minutes. BODs 

loadings in the range of lSO lbs/day/1000 cu ft of aeration tank 

capacity have been treated with purification efficiency in excess of 

90 percent. It has been stated that the process produces sludges that 

are difficult to concentrate in excess of 2-S percent solids by gravity. 

This modification is referred to_as 11 contact stabilization application 11 

(9). Contact stabilization, wherein settled wastes are treated, has 
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been used successfully in many plants {14){15). It has been claimed 

that such modification has provided a greater flexibility of operation 

and better protection against shock loadings imposed by industrial 

waste discharges {16). The rapid removal of waste {as BOD) was attri-· 

buted to adsorption, as it was considered unlikely that biological 

purification could proceed so rapidly. However, Gaudy and Engelbrecht 

{17) have shown that rapid purification of soluble wastes by activated 

sludge is biochemical in nature rather than adsorptive. 

Contact 
Tank 

Stabilization 
Tank 

Clarifier 

Excess 
Sludge 

In 1967, a process flow sheet shown below, which utilizes two 

aerators, was proposed for treatment of nitrogen-deficient industrial 

· wastes. In the first, or feeding, aerator nitrogen-free effluent is 

produced since no nitrogen is added to the waste and the waste. is 

removed by non-proteinaceous oxidative assimilation. The sludge to be 

recycled is regenerated by addition of ammonia nitrogen in a second 

{endogenous) aerator. A considerable savings in the cost of nitrogen 



has been realized since a COD:N ratio much higher than that used in 

traditional methods of treatment can be employed (18). Laboratory 

scale pilot plant studies using several synthetic wastes and sugar 

refinery waste have demonstrated the feasibility of the proposed con

tinuous oxidative assimilation process for the treatment of nitrogen

deficient industrial wastes (19)(20). 

Nitrogen
deficient 

---Waste--~ 
Feeding 
Aerator 

Endogenous 
Aerator ~--------1 

Nitrogen 
Source 

Excess 
Sludge 

11 

Many workers have concluded that activated sludge processes could 

perform more efficiently than they are usually run in the field. Wuhr

man (21), Pasveer (22), and many others demonstrated in pilot plant 

operation that BODs loadings of 190 lbs/day/1000 cu ft could be treated 

with removals on the order of 80 percent. Pasveer, in laboratory 

studies, demonstrated that it is possible to accomplish complete nitri

fication at BOD5 loadings of 112 lbs/day/1000 cu ft, and that BOD 

removals as great as 93 percent can be accomplished at BODs loadings as 
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high as 37S lbs/day/1000 cu ft if adequate oxygen is supplied. Aera

tion solids were maintained in the range of 4000 to 10,000 mg/1. The 

process is essentially the same as conventional activated sludge except 

that completely mixed aeration systems are used with high aeration sol

ids and aeration periods of 1 to 1.S hr. In practice, activated sludge 

is designed and operated with BODs loadings up to 3S-40 lbs/day/1000 cu 

ft of aeration tank capacity. 

The large amount of waste sludge that must be disposed of is one of 

the major problems of nearly all activated sludge systems. The extended 

aeration system was conceived as a means of alleviating the sludge dis

posal problem while producing a highly purified effluent. It has made 

the activated sludge process a practical system of treatment for many 

small communities. In general, it functions best at BODs loadings of 

less than lS lbs/day/1000 cu ft of aeration capacity or less than 0.1 

lb of BODs/lb mixed-liquor solids. 

Aerated lagoons as treatment devices have shown that biologically. 

active systems can be maintained with detention periods in the range of 

three to five days. Such systems are capable of producing biological 

floc that can be settled with reasonable detention times and will pro

duce BOD removals in the range of 80 to 90 percent. 

In spite of all of the processes that have been advanced to over

come some of the shortcomings of the conventional activated sludge 

process, the main drawback of all of these modifications is that the 

organisms are not subjected to constant loading during the entire aera

tion period. Busch and Kalinske (23) have indicated that certain con~ 

ditions have to be satisfted for the best operation of the activated 

sludge process. These are: young flocculent sludge in the logarithmic 



13 

stage of growth; maintenance of the log growth state by controlled 

sludge wasting; continuous organic loading to the organisms, and elim

ination of anaerobic conditions at any point in the oxidative treatment. 

The process known as 11 complete niixing 11 activated sludge can meet 

most of the above mentioned requirements; howevert a 11 Complete mixing 11 

system can be operated on the basis of high synthesis of sludge with 

controlled wasting of sludge, or on the total oxidation principle with 

no intentional wastage of sludge. McKinney {24) defines complete mix

ing as a basic process in which the incoming wastes are completely mixe~ 

with the entire contents of the aeration. tank. He considered that the 

aeration tank acts as a surge tank and tends to level out wide fluc

tuation in the organic load and that the use of the entire mass of 

activated sludge to stabilize the organic load distributes the load 

uniformly over the entire aeration tank and pennits better utilization 

of the air blown into the mixed liquor. Eidness {25) was the first to 

report on the significance of intense mixing in activated sludge plants. 

Pilot plant studies indicated that with complete mixing it was possible 

to produce an effluent of 25 mg/1 BOD in a 2.5-hour contact time with 

domestic sewage. 

A process proposed by McKinney {26) to overcome the shortcomings 

of conventional activated sludge processes is called 11 hi-lo 11 activated 

sludge; the wastes are introduced along the entire length of the aera

tion tank. Biological solids are allowed to build up to 20,000 mg/1. 

This process also serves to absorb various organic contents of the 

waste, and effects dilution on mixing with the contents of the aera

tion tank. Hence, no high initial oxygen demand is exerted. The high 

solids concentration also serves as a buffer against incoming wastes 
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with a pH below 6.5 and above pH 9.0. This process closely approximates 

the more general present day concept of completely mixed systems. 

Intense aeration and/or agitation serves the dual purpose of supplying 

oxygen to the growing organisms and effecting complete mixing in the 

aerator. Grieves, et al. (27) studied the effect of shortcircuiting in 

the completely mixed activated sludge process. They indicated that the 

effect of a stagnant zone is equivalent to that of an increase in load

ing which increases the effluent BOD by an amount proportional to the 

amount of shortcircuiting. 

The use of completely mixed activated sludge processes has made 

possible the treatment of many industrial wastes which could not be 

treated in a conventional activated sludge process without some form of 

pre-treatment. The following few references will show the importance 

of this process for the treatment of industrial wastes: 

McKinney, et al. (28) have reported on the treatment of highly 

alkaline textile wastes without pre-neutralization in a completely mixed 

system. Effluent with less than 50 mg/1 BOD could be produced and var

iations in organic loading did not upset the process as severely as they 

do a conventional activated sludge system. 

· Haterfield and Strong (20) used complete mixing in preference to a 

conventional activated sludge process for the treatment of toxic wastes. 

They indicated that higher organic loadings could be handled by this 

system. 

Busch and Kalinske (23) have reported an average treatment effi

ciency of 89 percent with BOD loadings up to 350 lbs/1000 cu ft aerator 

volume per day in an 11 aero-accelerator 11 pilot plant. The aero

accelerator is an aeration tank manufactured by the Infilco Company. 
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Coe (30) studied the treatment of petroleum wastes in a laboratory- · 

size activated sludge unit. His results indicate BOD reduction of 90-

95 percent at organic loadings up to 140 lbs BOD/1000 cu ft aerator 

volume/day. 

Ross and Sheppard (31) made use of an aero-accelerator to remove 

phenol from petroleum waste. Their results indicate that this plant 

can successfully treat up to 600 lbs phenol/day with an efficiency of 

99.9 percent. They indicated that phenol was oxidized to co2 and water. 

Gehm (32) has indicated the desirability of using a commercial fer

mentor for the treatment of wastes high in BOD. He reported that it is 

possible to treat boardmill wastes up to BOD loadings of 400 lbs/1000 

cu ft aeration volume/day at an efficiency of over 90 percent using 

these aerators. Completely mixed systems have been used extensively to 

obtain design data for the treatment of industrial wastes containing 

aniline, nitrobenzol, phenol, and 2,4-dichlorophenol, chemical wastes 

containing antibiotics, synthetic vitamins, cortisone, and pharmaceuti

cal wastes (33)(34)(35)(36). The great advantage of the complete mix

ing system lies in the fact that the size of the unit is not a factor 

in getting useful information for design purposes. The only criterion 

to be satisfied either in a laboratory scale unit or full scale treat

ment plant is that of complete mixing. Once this condition is satis

fied, the shape and size of the pilot plant unit are of little con

sequence. 

Tenney, et al. (37) have·used a completely mixed system to study 

the effect of high organic loading, and they varied loadings from 60 

lbs to 1690 lbs COD/1000 cu ft aerator volume/day. They indicated that 

88 percent of the influent COD was biologically processed either to co2 



16 

and H20 or resultant solids. Of the COD utilized, 48 percent was lost 

from the system, and the remainder converted to solids. Solids yield 

was found to be independent of loading. 

Data from batch operated activated sludge processes have been used 

to design completely mixed systems. Weston and Stack (38) have indi

cated that batch data can be used for the prediction of the behavior or 

completely mixed systems by calculating the apparent BOD transfer coef

ficient. 

Busch (39)(40)(41) has indicated that the design of a complete 

mixing system on the basis of batch grown solids is hazardous. He has 

indicated that batch experiments using cells grown in continuous flow 

units will yield information on the rate of waste purification and that 

the settling characteristics of batch grown cells are a function of 

solids age, while in the continuous system the applied surface loading 

determines the settling characteristics of the solids. Gaudy (42) has 

used cells grown in a completely mixed system to evaluate the effect of 

qualitative shock loading under batch aeration. 

One of the modifications of the completely mixed activated sludge 

process which has been mentioned previously is the so-called total oxi

dation system. Kountz and Forney (43) stated that solids balance could 

be reached when some wastage was practiced, whereas for total recycle, . 

solids balance could not be reached within a reasonable time period 

because of solids accumulation of 20 percent by weight of the solids 

produced. 

McCarty and Broderson (44) indicated that total oxidation of sludge 

is not feasible. They studied the effect of three different loadings--

40, 80, and 120 lbs BOD/1000 cuft/day on the performance of total 
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oxidation systems over a period of 48 days. Their results indicated 

that a total oxidation system operates satisfactorily at a loading of 

40 lbs BOD/1000 cu ft aerator volume/day. The problem of rising sludge 

due to denitrification in the secondary settling tank was also indicated 

by their work. In batch systems, evidence in favor of the concept of 

total oxidation was presented in 1971 by Thabaraj and Gaudy (45). Long

term continuous flow pilot plant studies were undertaken in which there 

was obtained evidence for periods of biological solids accumulation and 

periods of de-accumulation due to autodigestion of the biological sol

ids in the reactor (46)(47). 

Deindoerfer and Humphrey (48) and Herbert (49) have presented 

types of classification of continuous flow biological processes based 

on (a) biochemical, and (b) chemical engineering principles. The bio

chemical approach to classification takes into account the fact that 

biochemical transformation can be brought about either with accompanying 

growth of microorganisms or in the absence of growth. They are referred 

to as (a) growth, and (b) non-growth systems. In the process which 

involves growth, the biocatalytic activity is a function of limiting 

nutrient concentration attained as well as the amount of limiting nu

trient utilized. In the non-growth process, the suspended cell concen

tration provides the enzyme to convert substrate to extracellular prod

ucts in a manner analogous to the chemical reactions carried out by 

solid catalysts. Even resting cells can bring about the chemical trans

formation, provided the necessary enzymes are present. The latter 

process is also referred to as a 11 catabolic11 process, or breakdown to 

simpler molecules, and an example would be the breakdown of glucose to 

ethanol. The process is exergonic and can be brought about even by 
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resting cells. The growth process has been termed as a "biosynthetic" 

process, and an example would be the production of penicillin (49). 

The chemical engineering classification offers several different 

criteria. One important distinction is between homogeneous and hetero

geneous systems. In a homogeneous system, the composition of reactor 

liquid is uniform throughout. In the heterogeneous system, there may 

exist a concentration gradient of cells, or substrates, or any other 

or all of the system parameters. Microorganisms passing through a 

heterogeneous reactor will undergo something akin to the growth cycle 

of a batch culture. 

All continuous flow systems can be classified as either single 

phase or multiphase systems. In the single phase system, the biochem

ical transformation takes place in one phase--generally the liquid 

phase. Single phase systems can be either homogeneous or heterogeneous. 

The multiphase system, as the name implies, involves more than one 

phase. A typical example of a multiphase system is the trickling fil

ter. The operation of trickling filters involves a solid and a liquid 

phase. The waste is passed through a filter bed during which time the 

microorganisms attached to the bed metabolize the organic substrates 

present in the waste. Multiphase reactors are necessarily heterogen

eous systems. 

Classifications such as "open" and "closed" systems have been pre

sented by Herbert (49). In the closed system, the microorganisms never 

leave the reactor and may be retained by means of a semi-permeable mem

brane. Such a system is formally analogous to the so-called total oxi

dation or "total recirculation" system employed in wastewater treatment 

in which there is no sludge wasting. Thus, the continuous flow process 

provides much flexibility in operation with uniform quality of end 
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products over an indefinite period. Because of the uniformity of 

reaction products and reaction rates in continuous flow completely mix

ed reactors, they are more suitable for the study of biochemical 

reactions than fill-and draw or batch processes. In the fill-and-draw 

or batch process, the overall operational conditions are selected empir

ically for optimizing the various steps such as energy transfer, cata

lyst synthesis, and product formation. This can result in the ineffi

cient operation of the process, since each of the above steps might 

require quite different optimum conditions. Continuous flow processes 

offer a striking advantage in this aspect, since a series of reactors 

can be used for optimizing each of the above steps. 

Even though the continuous flow process appears to be far superior 

to batch systems, it does have disadvantages. The major disadvantage 

is that failure in any one of the unit operations will result in total 

failure of the system. When the process involves the use of pure cul

tures, contamination or generation of mutants will also result in the 

shutdown of the process. However, in the main, continuous flow proc

es~es are more promising than fill-and-draw operations for nearly all 

bioengineering systems and in particular for wastewater treatment. 

Extensive investigation was done by Gaudy and co-workers to gain 

insight into growth characteristics of heterogeneous microbial popula

tions cultivated continuously in completely mixed reactors of the once

through type and with cell feedback~type operations {50)(51). These 

studies were undertaken for the purpose of assessing the applicability 

of various models relating values of kinetic growth parameters to con

centrations of limiting nutrients, and for the purpose of determining 

whether steady state operation with respect to biological solids 



concentration, X, and substrate concentration, S, could be approached 

for heterogeneous populations. It was found that the Monad equation 

was applicable. 
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llmax·S 
ll = K+ S 

s 
(1) 

It was found also due to the heterogeneity of the population, that some 

variation in the maximum logarithmic growth rate constant, Jlmax' and 
saturation constant, K5 , was to be expected. It was also found that the 

value of cell yield, Yt' could be expected to vary. The kinetic con
cepts could be employed, but a usable range of values rather than a pre

cise numerical value should be employed. Concerning the attainment of 

a steady state with respect to S and X, it was found that a steady state 
could be approached rather closely for S and less closely for X. 

One such model that has an inherent operational control parameter 
is that of Herbert (49). The steady state equations for Sand X, 

according to this model, are shown in Table I. There are three biologi-

cal 11 Constants, 11 llmax' Ks' andY, and two hydraulic parameters, a and c. 
These five parameters control S and X at any selected dilution rate, D. 

An operational system constant is the ratio of recycle solids concen

tration to the aeration tank solids concentration (XR/X = c). The 

requirement of this model is that c should be held constant. The growth 
rate in the system can be controlled by selection of c for a particular 
a and D. Since ll = D(l +a- ac), it is seen that a relationship 

between ll and c can be developed for various combinations of a and D. 
Thus, the system can be run at desired growth rates or cell ages by 
proper choice of a, D, and c. 



TABLE I 

COMPARISON OF STEADY STATE EQUATIONS ACCORDING TO MODELS OF HERBERT AND OF RAMANATHAN AND GAUDY 

Herbert 

Constant c (c = X:) 

X = y 
l+a-ac 

K5D(l+a-ac) 
S = -J.l ___::.....,._ D ...... (..-1+-a--a-c..,...) 

max 

J.l = D(1+a-ac) 

Ramanathan & Gaudy 

Constant XR 

Y [s; -( 1 +a) S] +aXR 
(2a) I = l+a . 

(3a) S = -b! ~ 
a = J.lmax-(1+a)D 

b = D [ S; - ( l+a ) KJ 

c = K5 DS; 

(4a) " = D (l+a~a :R) 
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(2) 

(4) 
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Here the model failed insofar as its use with heterogeneous popu

lations is concerned. It is realized from the equation for growth rate 

that 1l is very sensitive to the value of c. Thus, it is essential that 

c be maintained constant at the desired value. In order to keep c con

stant, XR should be adjusted for every change in X. Operating such a 

laboratory pilot plant causes problems when dealing with heterogeneous 

populations. 'The value of X fluctuates within practical limits, and 

any alteration in XR to maintain constant c will disrupt the system. 

This was observed experimentally by Ramanathan and Gaudy (51). When XR 

was increased for an increase in X to keep c constant, X was increased 

further and pushed the system further away from steady state, acting 

directly against the purpose of the control procedure. Therefore, 

operation with constant XR' rather than a constant value of c, might 

exert a steadying influence on the biological solids concentration . 

. Writing materials balances for X and S in the steady state, hold

ing XR constant and assuming that the concentration of S in the recycle 

solids was negligible, led to the equations shown in Table I. These 

equations are those evolved as a consequence of an operational decision 

to employ XR rather than cas a constant in the kinetic model. Another 

difference between this model and Herbert's theoretical analysis of 

continuous culture systems of the completely mixed type in the steady 

state was the assumption of neglecting S in the recycle flow. Herbert 

developed his model to depict the behavior of X and S as D was varied. 

The main purpose of the model developed by Ramanathan and Gaudy was to 

obtain a workable system at dilution rates one might reasonably con

sider for activated sludge processes. From a theoretical standpoint, 

as a consequence of assuming zero substrate concentration in the 
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recycle rather than S, the value of S cannot approach Si as D approaches 

very high values. Instead, it approaches the value of Si (l!a)· It is 

realized that this is an unrealistic assumption at the extreme upper 

boundary of D values. Concerning the assumption of.constant XR at very 

high dilution rates, the value of X would approach XR ( l~a); there 

would be no new growth, and the only cells in the aeration tank would 

be those due to recycle flow. High dilution rates would result in 

inefficient clarification due to lack of flocculation as well as low 

biochemical efficiency at higher loading (Si) conditions. Such high 

dilution rates would also make the system very unstable even under mild 

shock load situations, either quantitative or hydraulic. A computa

tional program was set up to determine the behavior of the kinetic 

equations for ~ and X of this model as the biological parameters, maxi

mum specific growth rate, ~max' saturation constant, Ks' and cell or 

sludge yield, Y, as well as the engineering constants, hydraulic recycle 

rate, a, and recycle solids concentration, XR' were varied. These 

results have been reported and the kinetic consequences and ramifica

tions of the equations discussed (52). 

In order to account for the variability in cell yield in the past, 

two methods have been adopted by various investigators. Either a yield 

constant and a decay coefficient are included in materials balance 

equations, or cell yield is considered as a variable of the system, 

depending on the operating conditions. The use .of a yield constant and 

a decay coefficient is a more practical approach as well as one more 

closely associated with the theory of continuous culture. It allows 

one to retain the "true cell yield," Yt' as a property of the biomass 

rather than a joint property of .the biomass and the op~rational 
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conditions. 

A study of the effect of this additional biological constant, i.e., 

the maintenance energy coefficient, a decay coefficient, on the steady 

state equations for X and ~ in the model employing constant XR has been 

made by Gaudy and Srinivasaraghavan {1)(3). The modified model equa

tions employing constant XR are shown in Table II. 

The main advantage of this model over others used for design and 

operation is that .operational parameters for the control of the process 

are inherent in the design model. It provides for control over selec

table variables to aid in operating the system steadily. The parameter 

XR in this model is more easily measured or estimated in a short time 

than are other parameters in other models {e.g., F/M or ec) .. In prac

tice, it is assumed that solids concentration in the clarifier under

flow remains constant. From field experience in treatment plants, it 

is known that this assumption is not valid, because the compacted 

sludge concentration in the clarifier depends on the characteristics 

of the particular sludge and the blanket level. This may vary if the 

wastage rate is varied. Thus, an increase in the volume of sludge 

wasted will not ensure a proportional increase in total wastage. The 

independent control of a without control of XR is ineffective. An 

increase or decrease of pumping rate of sludge will not ensure a pro

portional change in the total amount of cells being recycled to the 

aeration basin. Thus, when XR is maintained constant in a sludge con

sistency tank, there will be three available independent hydraulic 

parameters for control: a, XR-, and D. These parameters provide the 

designer with an opportunity to consider the economic and operational 

aspects without having to sacrifice the efficiency of treatment. The 



TABLE II 

STEADY STATE EQUATIONS INCLUDING MAINTENANCE ENERGY 
COEFFICIENT FOR THE MODEL EMPLOYING CONSTANT XR 

~rs. - (l+a)Sl + aXR 
~=ttl ~ 

l+a+kd/D 

+-~ S = -b- \1 b~-4ac 
2a 

a = ~ -(l+a)D-kd max 

b = D [s;-(l+a)KJ - ~:x [s;+ ~tRJ + kd [ ~1. - K5 J 

c = K5 S; ( D+ l:~ ) 

25 

(5) 

(6) 

Xw = VX ~n mg/day (7) 

= ~n~/D mg/1 (to convert to mg/day multiply Eq. (8) by F) (8) 

Xw 1 1 
~ =- = = -8 (where Xw is given in mg/day) n v~ sludge age c 

(9) 

= Xw·D = 1 X sludge age (where Xw is given in mg/1) (10) 
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equations tabulated previously concerning this model consider all of 

·the biochemical aspects, llm x' Ks, Y, and kd' and all of the hydraulic , a . 
and loading aspects, a., XR, D, and Si. This model is an engineering 

adaptation of continuous culture theory, and it is closer to the theory 

than are other models. 

So far as F/M ratio is concerned, this model can control this 

ratio by adjusting XR or a., which brings about an increase or decrease 

in X which, in turn, controls F/M. Thus, XR has a direct control on X 
as opposed to the ec method, which provides an indirect method of 

arriving at steady state by sludge wastage control. In other words, 

the ec technique controls the solids in the system by wastage rate which 
requires measurement of suspended solids concentration. An increase in 
organics would mean a higher wastage rate to maintain the same ec' and 
vice versa. This would require rather frequent monitoring of solids 

concentration in the underflow. 

B. Transient.State, Prediction, and Behavior 

As pointed out by Gaudy and Englebrecht (53), four types of tran

sients are possible in activated sludge systems. These are quantitative 
shifts in the concentration of nutrients in the influent; qualitative 

shock Toads caused by changes in the chemical composition of the waste; 
hydraulic loads caused by changes in the inflow rates, and toxic shock 
produced by the addition of substances inhibitory to biological growth. 

Quantitative transients have the greatest potential for producing oxygen 
stress, which could result in new metabolic and physical characteristics 
for the mixed liquor of a system, because the culture is acclimated to 
the substrate and can react rapidly to increases in the influent 
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nutrient. Completely mixed processes with sludge recycle provide maxi
mum hydraulic protection from all types of shock loading because the 
aeration basin functions as a surge basin to dampen the effect of 
changes in the influent. 

The early work in continuous. cultures was achieved by microbiolo
gists who were interested primarily in growth in steady state systems. 
The classical kinetic model used to describe these systems was devel
oped by Monod (54) and by Novick and Szilard (55). The model is based 
upon two postulates: 

1) the cell yield factor is constant, and 

2) the relation between specific growth rate for a culture and 
concentration of growth~limiting nutrient can be defined by a single 
continuous function. 

Considerable controversy has been generated over these postulates. 
Herbert, et al. (56) reported a varying yield factor when the dilution 
rate was increased. Rick~rd and Gaudy (57) observed decreasing cell 
yield with increasing liquid turbulence. Hetling and Washington (58) 
demonstrated that cell yield varied with substrate, organism, and 
detention time. Gaudy and Gaudy (59) in reviewing the literature, 
reported cell yield was not constant, but for engineering purposes a 
usable range of values was suitable. 

In the activated sludge process, hydraulic detention time and 
sludge recycle are used to control. growth. The yield factor observed in 
a particular installation might, therefbre, .be expected to be a function 
of these two process variables. The Monod relationship (see Equation 
1) is an empirical equation whfchbest described, for Monod, the growth 
rate observed in batch systems. Modifications to the relationship have 
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been proposed by Teissier (60), Schulze (61), and Contois (62). How
ever, the Monod equation has remained dominant in the field because it 
is relatively simple and because a great deal of experimental data can 
be fitted to this relationship. Also, there are no points of discon
tinuity in a plot of 11 vs. limiting nutrient concentration. This lat
ter feature is especially appealing from the standpoint of mathematical 
model development. 

Various techniques used for prediction of transient response of 
continuous cultures have been based on the functional relationship 
derived for steady state systems (63)(64), and the Monod equation for 
specific growth rate substrate concentration dependence (65)(66) has 
been used in their development. 

Predictions of the continuous fermentation performance from batch 
data based on the assumption that the continuous system is physio
logically identical in growth rates and metabolic activities with the 
organisms of the corresponding batch fermentation at the same population 
have been made (67). However, it has proven very difficult to predict 
performance of continuous flow systems solely from batch data. 

Mateles and Goldthwaite (67) investigated a product-limited con
tinuous culture of Saccharomyces carlsbergensis and Pseudomonas ovalis. 

There were no oscillations inS and X resulting from changes in glu
cose concentrations. 110vershoot 11 phenomena on approach to near steady 
state conditions did occur upon changes from one steady state dilution 
rate to another. This finding agrees with the transient prediction 
model of Luedeking and Piret (64). An experiment in which step changes 
in ammonium sulfate concentration and dilution rate were imposed gave 
non-osciallatory transient responses for the yeasts. oerevisiae growing 
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on dilute, chemically defined media in continuous culture with either 

glucose or ammonium sulfate as the growth-limiting ingredient {68). 

Another technique combining continuous culture with continuous 

indirect measurement of the cell mass concentration has permitted 

·accurate estimation of unsteady state growth rates {69). A steady 

state was maintained for 15 hours, then an increase in dilution rate 

was made. Nitrogen was used as the limiting nutrient. The results 

indicated that protein and RNA biosynthetic activities in the cell 

increased immediately when the feed rate of the limiting nutrient was 

increased. However, the increase in growth was not great enough to 

match that predicted by the Monod equation. The authors indicate that, 

contrary to the views of Herbert, et al. {56), a significant lag in 

adjustment of growth rate to dilution rate does exist,. and that this 

lag should be taken into account in experimenting with single or multi

stage continuous culture systems. 

Eckhoff and Jenkins {70) proposed a mathematical model for contin

uous flow systems subjected to transient loading. They proposed an 

equation for calculating the effluent COD due to transient loading. In 

their formulation they assumed that solids concentration remains con

stant. Having observed that the experimental data did not fit their 

theoretical equation,· they modified their equation by introducing a 

coefficient.for adsorption. Including a coefficient of adsorption did 

not bring the calculated values closer to the experimental data. 

A formal discussion by Gaudy {71} of the Eckhoff model {70} accu

rately points out many of the inconsistencies and misconceptions 

regarding the Monod equation as a transient model. 

Storer and Gaudy {72) found that accurate prediction of transient 
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behavior by use of the Monad equation and constant yield factor is not 
possible. Characteristic behavior of the system during step increases 
could best be found by observation of a variety of systems and inter
pretation of the data to delineate and quantitatively describe the 
general properties. Examination of the biochemical structure was 

•. 
needed to describe the kinetic properties of the transient state. It 
was determined experimentally that during a quantitative increase in 
influent substrate, the 11growth rate hysteresis 11 phenomenon previously 
described by Piret was observed to occur. This made it theoretically 
impossible to use the Monad relationship, since instantaneous changes 
in growth rate to changes in substrate would be required. It was fur
ther indicated that the cell yield may not be constant during the 
transient phase. 

Ierusalimskii, et al. (73) ascribed the delay in change of specific 
growth rate (~) due to change in the substrate concentration to the 
time needed for synthesis of ribosomes. They also felt that oscilla
tory effects were possible, but emphasized that they do not always 
appear. They developed a mathematical model to describe the oscilla
tory state employing some specific biochemical and physiological para
meters; however, there was no experimental verification of this model. 

Mor and Fiechter (74) used continuous cultures of s. cerevisiae 

to study the effect of changes in dilution rate on the behavior of 
cells. 

Adams and Eckenfelder (75) fed an internal recycle activated 
sludge system industrial and/or domestic wastes, and they recorded 
transient substrate and oxygen uptake responses to quantitative shock 
loadings. In evaluating the substrate response to the shock load, 
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biochemical parameters peculiar to Eckenfelder•s design equation 
obtained in steady operational conditions were applied to the steady 
state. Oxygen uptake rates were shown to increase immediately after 
increasing the substrate loading. They investigated the effe.ct of step 
increases in dilution rate for various magnitudes of increase in D, 
starting from various initial dilution rates. When the dilution rate 

. -1 -1 was rather low, e.g., 0.011 hr , a step change to D = 0.102 hr 
caused a damped oscillation in X as the new steady state was approached. 
The biological solids concentration overshot the new steady state con-
centration, then reversed, and eventually levelled out as the new 
steady state was approached. On the other hand, when the dilution rate 

-1 -1 was changed from 0.066 hr to 0.127 hr , there were no oscillations 
in X and the new steady state was approached in a smooth transition 
curve. 

Schaezler, et al. (76) used mixed cultures in a chemostat and an 
internal recycle system in an investigation of growth rate interactions 
and transient response. They hypothesized that the specific growth 
rate coefficient was independent of reactor substrate concentration for 
values greater than 5 mg/1, and that the controlling factor was the 
substrate flux rather than the substrate concentration as predicted by 
Monod-type equations. They found that slower growing cultures responded 
more rapidly to increases in influent substrate concentration, S, and 
dilution rate, D, than did faster growing cultures. 

Thabaraj and Gaudy (77) showed that there could be immediate sue-
cessful response to 100 percent increase in substrate concentration, but 
it could be followed by severe disruption due to predominance changes. 
In a more severe shock, there was an immediate leakage of substrate 



which was attributed to release of metabolic intermediate products by 
the existing population. In this case it was reasoned that these 
metabolic intermediates could have shifted the population and caused 
a secondary response. 

Grady (78) performed a modeling study of activated sludge shock 
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load response using an analog computer. It was concluded that the bio
chemical response to quantitative shock load is primarily a function of 
the change in the mass rate of substrate input to the reactor and is 
relatively independent of the manner in which it is applied. It was 
further concluded that at a given hydraulic retention time, the bio
chemical response to a shock load is strongly dependent upon the steady 
state specific growth rate constant prior to the shock, and the lower 
the growth rate constant prior to the shock, and the lower the growth 
rate, the better the response. It is significant to note that in the 
recent report on thermal shock loading by George and Gaudy (79) in 
which the step increase in temperature was applied at the same rate 
independently of dilution rate, D, or specific growth rate, ~' systems 
growing at slower values of~ responsed more favorably, i.e., showed 
less leakage of carbon source during the transient state. Also, studies 
on quantitative shock loading by Krishnan and Gaudy (80) for both once
through and cell recycle systems using different values of hydraulic 
retention time (f) led to the conclusion that the higher the f, the less 
leakage of substrate as the shock loading was increased. They indicated 
that the ce 11 recycle had some beneficia 1 effect with regard to transient 
substrate leakage and will smooth out the fluctuations in the effluent 
substrate curve during the transient state. 

Sterkin, et al. (81) studied transitional stages occurring in 
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continuous cul~ures of Escherichia coli and Pseudomonas fluorescens 

with rapid changes of temperature, dilution rate, growth-limiting sub

strate, and also with a delta-type of pulse in growth-limiting sub

strate. The delta-type shock was recurring pulses of equal amounts of 

glucose. It was concluded that transitional states are affected by the 

age of the population and conditions of cultivation at the moment of 

sudden change. 

The steady state model suggested by Ramanathan and Gaudy for oper

ation of heterogeneous biomass systems with cell feedback has proven to 

be useful in steadying the inherent or internal dynamics of the system 

which result simply because of the heterogeneity of the population 

regardless of the steadiness or unsteadiness of the external environ

ment (51)(52). 

From their studies on shock loading, Gaudy and his co-workers have 

generally concluded that under conditions of severe change in external 

environment (i.e., shock loading conditions), some guidelines are 

emerging with respect to the ability of continuous culture systems to 

accommodate to change (82). The results of the once-through chemostat 

studies (79)(83) gave tentative guidelines which were conservative for 

systems with cell feedback. Systems operating at dilution rates com

monly employed in field processes for wastewater treatment can be 

expected to accommodate without serious disruption a change in D or in 

Si of 100 percent. In general, the growth history prior to the shock 

may play a significant role in determining the nature of the response. 

The system growing at the slower growth rate prior to the shock 

responds more successfully (79). It also seems reasonable that the 

more biomass in the reactor, the less will be the leakage of substrate 



during the shock. Cell recycle systems should thus be particularly 
advantageous, since they both lower the specific growth rate and 

increase X compared to once-through systems. 

For recycle models with constant recycled sludge, the following 
expression is applicable. 
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{11) 

Thus, it can be seen that in addition to the hydraulic control imparted 
by D and a, the recycle solids concentration, XR' plays a significant 
role in detennining lln as well as providing a high concentration of bio
mass to resist change. Also, Si can affectlln since it affects X. Also, 
the cell or biomass age, Gc' may have a separate effect on response. 
For example, less deleterious blockage of one substrate by introduction 
of another for populations of greater cell or biomass age have been 
reported {84). Since lln = ~, the role of the net specific growth rate 

c 
in determining the response to change may be of considerable signifi-
cance. Also, from an ecological point of view, slower growth rate 
enhances the opportunity for greater diversity and co-existence of 
bacteria and higher forms of microorganisms and, thus, stability in the 
ecosystem. Thus, there are possible relations between some of the con-
trollable variables which may enhance ultimate control over the dynamics 
of biological response to change. 



CHAPTER III 

SHOCK LOADINGS - GENERAL THEORETICAL 

CONSIDERATIONS 

Activated sludge systems have been designed primarily on data col

lected from mixed liquor acclimated to a certain waste and to various 
conditions of operation, i.e., substrate, temperature, pH, and flow 

rate (detention time). However, sometimes for combined treatment pur
poses, multi-wastes may have to be treated, resulting in various shock 

conditions in regard to composition and flow. One of the major types 

of shock load that could occur is an increase in BOD loading. However, 

there are several different types of waste stream changes which can be 

classified as shock loads. Generally, any sudden change in the physi

cal or chemical environment in a biological system can be classified 

as a system shock or shock load. The major types of shock loads which 

may impair plant efficiency are as follows: 

A. Quantitative Shock Loads 

This type involves generally an increase (or sometimes decrease) 
in the concentration of the biologically degradable organic matter or 

BOD in the effluent. This type of shock load occurs in all treatment 
plants, whether or not they treat one or multiple types of wastes. 

35 
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B. Qualitative Shock Loads 

This type of shock loading involves a change in the chemical 
structure of the carbon source. This concept of a shock load was 
originally described by Gaudy (42). He theorized that a successful 
response to such a shock load depended upon changes in predominance, 
shifts to different metabolic pathways, and the induction of necessary 
enzymes. 

C. Hydraulic Shock Loads 

This involves a change in the rate of flow of the influent waste 
stream, which causes a change in detention time in the aerator. This 
type of shock load may or may not be accompanied by a concurrent change 
of organic matter in the influent. Thus, a hydraulic shock load may 
frequently be accompanied by a quantitative shock load and the system 
response may be adversely affected. The occurrence of a hydraulic 
shock load is incidental to variations in waste flow caused by hourly 
variations of water usage, both domestic and industrial, and is of con
siderable importance where combined sewers are in use. 

D. pH Shock Loads 

This is a change in pH of the incoming waste due, for example, to 
a change in industrial processes. The change in pH is very important 
biochemically, as all enzymatic reactions are pH-dependent. 

E. Temperature Shock Loads 

This type of shock load occurs by sudden change in temperature of 
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the influent waste stream or reactor. Cooling or heating processes in 

industries may result in changes in waste streams which will affect 

enzymatic activities in the reactor. 

F. Toxic Shock Loads 

This type of shock involves an influx of wastes which contain cer

tain toxic components, e.g., heavy metals, which disrupt the established. 

metabolic reactions in the activated sludge. 

Generally, response to any type of shock load may depend upon the 

type and severity of the change in the environment and the immediate 

past growth history of the system. Physical properties of the activated 

sludge may also change in response to shock. Therefore, successful 

response may depend on several factors, summarized as follows: 

1) severity of the shock load 

2) dilution rate prior to the shock 

3) biochemical and physical characteristics of the sludge 

4) solids concentration in the returned sludge 

5) degree of heterogeneity in the microbial populations, and 

6) amount of oxygen in the reactor. 

In general, activated sludge may be defined as a continuous cul

ture of mixed populations. They operate in a dynamic steady state, con

verting the reactants (organic matter) into products (cells and meta

bolic products), but never at an equilibrium with regard to number of 

each species present. Several control mechanisms are set in motion 

during the shock load, so that the population adjusts to the environ

ment. Analysis of the effects of shock loads on sludge and substrate 

removal efficiency as well as a discussion of the mechanistic aspects 
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may lead to analysis of the observed responses. The response of a 
mixed population may be classified a~ either intracellular or inter
cellular. The first deals with changes in the types, activity, and 
concentration of enzymes, the rate of chemical reactions, and the dif
ferent biochemical components in the cell, whereas the latter deals 
with the different species present in the biological population making 
up the activated sludge. The intracellular response involves biochemi
cal acclimation of all or a portion of the population, whereas the 
intercellular response involves adaptation of the population resulting 
in a natural selection of the organisms best suited for the new environ
ment. 

Intracellular response may be the result of two separate responses, 
i.e., a response controlled by enzyme synthesis or repression of syn
thesis; a response due to an effect on the activity level of synthesis, 
and a response due to an effect on the activity level of the enzymes 
existing in the system. Both responses will lead to changes in the 
efficiency of the microorganisms. Bacterial mass will change accord
ing to changes in the amount of intracellular constituents, i.e., pro
tein, carbohydrates, lipids, RNA, and DNA. One can affect growth rate 
of microorganisms in a completely mixed reactor by hydraulic dilution 
rate, and a number of other parameters, e.g., a, XR. To translate 
these external controls into biochemical action, a period of adjustment 
is needed before reaching a new steady state. This period is called a 
"transient" period, and it is an aim of this thesis to investigate the 
ramifications of the transient state to effluent quality when a system 
operating under the model of "constant XR" is subjected to various 
changes in inflowing waste. In studying the response to shock, it is 
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also necessary to characterize the steady state before and after shock. 

The steady state data are valuable in continuing assessment of the 

kinetic behavioral patterns of the model. 



CHAPTER IV 

MATERIALS AND METHODS 

A. Experimental Apparatus 

The experimental apparatus (pilot reactor) used in these studies 
is shown in Figure 2. The aeration vessel (aeration tank #1) was made 
of Pyrex glass; the volume of reaction fluid was two liters. The 
capacity of the settling vessel was five liters. A sludge consistency 
tank (aeration tank #2) with a capacity of two liters was used in the 
recycle line. The air supply was adjusted to provide adequate mixing 
of the reactor contents and maintenance of a dissolved oxygen concen
tration level of 90 percent of the saturation value. Cells were first 
grown in batch operation, using primary effluent from the municipal 
waste treatment plant at Stillwater, Oklahoma, as initial inoculum. 
After growing sufficient cells, continuous flow operation was begun. 
The composition of the feeds employed in this study is shown in Tables 
III, IV, and V. The synthetic waste was pumped to aeration tank #1 by 
a dual positive displacement pump. The pump and motor unit employed 
for pumping the waste was manufactured by the Milton Roy Company (Model 
MM1-B-96R). The detention time was controlled by varying the rate of 
inflow of the synthetic waste, at a pre-detennined rate, to give the 
desired mean hydraulic retention time, t (t = ~). Alternately, each 
of the feed lines was cleaned by pumping a one percent solution of 
Clorox in distilled water. Thus, one of the lines was being disinfected 
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Figure 2. Activated Sludge Pilot Plant for Operation With 
Constant XR 
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TABLE I II 

COMPOSITION OF GROWTH MEDIUM PER 500 mg/1 GLUCOSE 

Constituents 

Glucose 

Ammonium sulfate (NH4)2so4 
Magnesium sulfate, MgS04·7H2o 

ferrtc chloride, FeC1 3·6H2o 

Manganous sulfate, Mnso4·H2o 

Calcium chloride, CaC1 2 

1M phosphate buffer solution, pH 7.0 

Tap water 

Amount 

50Q mg/1 

250 mg/1 

50 mg/1 

0.25 mg/1 

5.0 mg/1 

3.75 mg/1 

5 ml/1 

50 ml/1 

-'=" w 



TABLE IV 

COMPOSITION OF GROWTH MEDIUM PER~l500 mg/1 GLUCOSE 

Constituents 

Glucose 

Ammonium sulfate (NH4)2so4 

Magnesium sulfate, MgS04·7H20 

Ferric chloride, FeC1 3·6H20 

Manganous sulfate, MnS04·H20 

Calcium chloride, CaC1 2 

1M phosphate buffer solution, pH 7.0 

Tap water 

Amount 

1500 mg/1 

750 mg/1 

150 mg/1 

0. 75 mg/1 

15.0 mg/1 

11.25 mg/1 

15.00 ml/1 

150 ml/1 

~ 
~ 



TABLE V 

COMPOSITION OF GROWTH MEDIUM PER 3000 mg/1 GLUCOSE 

Constituents 

Glucose 

Ammonium sulfate (NH4)2so4 

Magnesium sulfate, MgS04·7H20 

Ferric chloride, FeC1 3·6H20 

Manganous sulfate, Mnso4·H20 

Calcium chloride, CaC1 2 

1M phosphate buffer solution, pH 7.0 

Tap water 

Amount 

3000 mg/1 

1500 mg/1 

300 mg/1 

1.50 mg/1 

30.0 mg/1 

22.50 mg/1 

30.0 ml/1 

300 ml/1 

~ 
0'1 



while the other was being used. This procedure adequately prevented 
growth in the feed line. The system was checked for complete mixing, 
using procedures described by Komolrit and Gaudy (85). The mixed 
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liquor from the reactor overflowed into the settling tank. The settled 
sludge in the settling tank was withdrawn from the bottom at either 
12- or 24-hour intervals. A concentrated sample of sludge was diluted 
to a range in which optical density was directly proportional to solids 
concentration in mg/1, and the OD values were compared to the previously 
prepared standard curve. The standard curve was obtained by preparing 
samples of various solids concentrations and measuring the optical den
sity on the spectrophotometer. These samples were analyzed for solids 
concentration by the membrane filter technique (86}. The suspended 
solids in mg/1 were plotted against the optical density. A typical 
plot of this type is shown in Figure 3. The spectrophotometer reading 
is linear and most reliable between 120 mg/1 and 320 mg/1 suspended 
solids concentration. This curve was checked several times for its 
reliability at different intervals by repeating the same procedure men
tioned above. Using the optical density reading of the diluted sample, 
the suspended solids concentration of the thickened sludge was calcu
lated. According to the desired XR concentration, the thickened sludge 
was then diluted. The required volume of the returned sludge was 
poured into the sludge consistency tank (aeration tank #2), from where 
it was pumped at the desired flow rate. The pump used for returning 
sludge from the consistency tank to aeration tank #1 was a Sigmamotor 
11 finger 11 pump, Model T-8. Aeration was used in the consistency tank to 
keep the sludge mixed and aerobic. The excess volume of the diluted 
sludge used in preparing XR represents the major portion of excess 



Figure 3. Relation Between Optical Density and Solids Concen
tration 
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sludge, XW' produced due to the suostrate utilization. In calculating .· 

Xw, the solids in the effluent, Xe, as well as those removed for var

ious samples were included in the total amount of Xw. 

B. Batch Experiment Studies 

During each steady state continuous run, cells from aeration tank 

#1 were employed as initial inoculum for batch experiments to deter-
• 

mihe ~rna~,. Ks, and Yt ,·using methodologies de~cribed previously (50) , . . B . 
(87) (88). · The medium used for batch experiments was the same as that 

employed in continuous flow studies. The cells were grown in 250 ml

Erlenmeyer flasks with ~lucose concentrations ranging from 100 to 1000 

mg/1 as the limiting nutrient. Initial inoculum concentration was the 

same in all flasks with an initial optical density of approximately 

0.036 (percent transmission = 92 percent). The total volume of reaction 

fluid per flask in these experiments was 40 ml. These flasks were 

placed on an oscillating shaker .(Eberba~h), which was adjusted to 100-

110 oscillations/min. The growth curve was obtained by measuring OD at 

frequent intervals. The initial and final suspended solids and sub

strate concentration were measured (86), which allowed determination of 

the batch cell yield, VB. The ~max and Ks were calculated by plotting 

the data obtained from batch growth experiments. 

C. Development of the System in Steady State 

Prior to Administering the Shock Loads 

Each experiment was initiated by seeding the synthetic waste with 

sewage from the primary clarifier of the sewage treatment plant, 

Stillwater, Oklahoma. The sewage was aerated under batch conditions 



for a period long enough to build up sufficient microbial growth con

centration to supply the consistency tank with recycle sludge~ XR" 
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The system was then fed with synthetic waste by continuous pumping from 

a feed reserv,oir along with recycled sludge from aeration tank #2 until 

a steady state was ensured. Steady state conditions were checked by 

periodic measurement of the mixed liquor solids concentration~ sub

strate concentration in the effluent, and the excess sludge produced 

per day. 

D. Shock Loading Procedures 

After the system had remained in a steady state condition for 7 to 

10 days, shock load procedures were initiated. 

1. Quantitative Shock Loads 

In this study, shock loading was administered by changing the glu

cose concentration in the feed to a value greater than that employed at 

the previous steady state condition. This type of shock loading was 

administered without changing the flow rate. 

2. Hydraulic Shock Loads 

In the hydraulic shock loading, the conditions studied were termed 

as shock loads with "constant organic concentration." In this type of 
experiment, the glucose concentration in the feed was maintained cons

tant (500 mg/1) at all times, and the flow rate (detention period) was 

varied by increasing the dilution rate from that which would yield an 
v 8-hour detention time, f· The concentration of returned sludge was 

changed for each run along with dilution rate in order to establish 
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different net growth rates. It can be.seen that under condition~ of · 
.· constanf concentration of carbon source in the inflow, the daily organic 
loading increased in proportion to the increase of flow rate. The 
stea.dy state flow rate maintained before applying any shock load was 
one which provided an 8-hour detention time in the aerator, i.e., the 
8-hour detention time was used as a base value for flow rate. Any other 
base flow could have been chosen, but the 8-hour detention time is one 
commonly employed in the field. 

3. Pulsing Shock Loads 

These experiments involved subjecting the system to various pulsing 
hydraulic shock loads and quantitative shock loads. The main point of 
interest was in determining if the system approached a new steady state 
between the cyclic changes in inflow rate and/or substrate concentra
tion. Determination of conditions which provided steadiness in sub
strate concentration in the effluent was the main aim of this study. 
Four runs were conducted. 

a. Cyclic Hydraulic Shock Load With Constant a. The system was 
run at steady state for almost 12 days, after which a cyclic hydraulic 
loading was maintained over the 24 hours of each day. The detention 
period was changed three times daily. Starting from 12 midnight to 12 
noon, twas eight hours; it was then changed to four hours until 6 P.M., 
at which time it was changed to 16 hours. It was held at 16 hours 

. until midnight, at which time the cycle was repeated. The feed con
centration was maintained constant at 500 mg/1. Cyclic loading con
tinued for 17 days. 
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b. Cyclic Hydraulic Shock Load With Varying a. Previous to 
' pulsing the load, a steady state was maintained for eight days. The 

load was then pulsed hydraulically as before, except that a was changed. 
The aim of this run was to study the effect of the ratio a (the ratio 
between the sludge recycle and the inflow rates) on the behavior of the 
model while loading was changing over the 24 hours of each day. The 
feed was maintained at 500 mg/1. 

c. Cyclic Quantitative Shock Load With Constant a. The system 
operated in a steady state for 12 days with an 8~hour t and a equal to 
0.25. Si during this time was 500 mg/1. A triple increase in,sub
strate was then made for 12 hours, beginning at 12 noon. At midnight 
the concentration of Si was returned to 500 mg/1, and at noon a new 
cycle was begun. This cyclic quantitative shock was repeated for 17 
days. Finally, the system was again operated under steady conditions 
at 500 mg/1 glucose. 

d. Cyclic Quantitative-Hydraulic Shock Loading With Constant a. 

Starting with a steady state as before (Si = 500 mg/1; t = 8 hrs), a 
combined hydraulic and quantitative shock load was imposed at noon; Si 
was increased to 1500 mg/1, and twas decreased to four hours. This 
triple increase in substrate concentration along with the doubling in 
hydraulic flow rate resulted in a six-fold increase in mass loading 
rate. At midnight the Si and t were returned to 500 mg/1 and 8 hours, 
respectively. At noon another cycle was begun. The system was operated 
in this cyclic manner for 16 days and then returned to the initial 
steady ~tate condition. 

In order to accomplish these types of shock it was desirable to 
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employ a number of pumps which had been pre-adjusted and calibrated to 
the desired flow ratio rather than attempting to change the flow rate 
of a single pump. Thus for the cyclic hydraulic shock, three pumps 
were employed and an additional one was held in ·standby. 

E. Analytical Procedures I 

From the foregoing text it can be seen that, in general, shock 
loading experiments were accomplished in three stages: 

1) Steady state was examined for 7-12 days at t = 8 hours. 
2) Transient state in response to shock load (either quantitative, 

hydraulic, or cyclic) was examined. In cases of step changes, the sys
tem was examined in the new steady state. 

3) Transient state during return to the initial condition was 
examined. 

4) The final steady state was compared to the initial steady state. 
During all stages, samples were collected to determine the behav

ior of the system. 

During the transient state, solids concentration in reactor #1 as 
well as effluent characteristics were determined at short time inter-
vals in order to facilitate graphical representations of response in 
the transient state. The following analyses were run: 

1) Feed: 

a) COD (daily) 

b) NH3-N (periodically) 

2) Effluent: 

a) filtrate 

1) COD (daily) 



2) NH3-N (periodically) 

3) N03-N (periodically) 

4) anthrone (periodically) 

b) supernatant 

1) COD (daily) 

2) suspended solids (daily) 

3) BOD (periodically) 

4) total organic carbon {in only one experiment) 

3) Aeration tank mixed li~uor: 

a) biological solids (daily) 

b) dissolved oxygen (daily) 

c) pH (daily) 

4) Sludge consistency tank: 

a) suspended solids (twice daily) 

b) filtrate COD (daily) 

c) protein (periodically) 

d) carbohydrate (periodically) 

e) endogenous oxygen uptake (only twice) 

A summary of the analytical methods follows: 

1. Chemical Oxygen Demand 
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The COD test was performed to measure the total organic concentra

tion in various samples. The procedure adopted was as described in 

Standard Methods (86). Silver sulfate and mercuric sulfate were used 

for all COD determinations. 
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2. Suspended Solids Concentration 

· This test was performed to measure the cell concentration in var

ious samples. The po~e size of the filters was 0.45 wm (Millipore 
I 

Filter Corp., Bedford, Mass.). Samples with high cell concentration·. 

were first centrifuged and then ·filtered for more rapid determinations. 

The general procedure was as given in Standard Methods (86). 

3. Nitrogen 

Ammonia nitrogen, NH3-N concentration in the influent and effluent 

wa.s determined by a methOd deve 1 oped by Ni ss and described by Ecker and 

Lockhart (89). Nitrate-nitrogen determinations were in accordance with 

Standard Methods (86). 

4. Biochemical Oxygen Demand 

The azide modification of the Winkler Method (86) was employed for 

periodic determination of BOD of the effluent supernatant from the 

pilot plant. 

5. Protein and Carbohydrate 

· Periodic analyses of sludge for protein and carbohydrate content 

were performed, as outlined by Gaudy (90). 

6. Anthrone Test for Carbohydrate 

Spot checks for carbohydrate concentration in the effluent fil

trate were made using anthone reagent, adopting the procedures des

cribed by Ramanathan, Gaudy, and Cook (91). 
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7. Oxygen Uptake · 

The oxygen uptake rate of the sludge from the recycle tank was 
measured during continuous runs using the Warburg apparatus by employ
ing the method outlined in 11Manometric Techniques, .. by Umbreit, et al. 
(92). 

8. Total Organic Carbon 

At times during steady state operation, samples from the effluent 
were taken for analysis of total organiccarbon {TOC). After the COD 
sampl~ was taken from the filtrate, the remaining filtrate was placed 
in a small sampling bottle, capped, and kept in a freezer for later TOC 
analysis. The TOC sample bottles were covered and sent to the Oklahoma 
State University Zoology Department for analysis using a Model 915 
Beckman total organic carbon analyzer. 

In addition to the above mentioned analyses, regular microscopic 
examinations of mixed liquor from the reactor and aeration tank #2 were 
performed to follow changes in predominance and morphological form of · 
microbes. The pH was measured by a Beckman Expandomatic SS-2 pH meter. 
Dissolved oxygen of the mixed liquor in aerator #1 was measured per
iodically using a DO meter {Weston and Stack Model No. 300). Temper
ature was measured throughout the study; it averaged 23 ! 0.5°C. The 
pH was monitored two to three times daily in aerator #1. The synthetic 
waste was designed to hold the pH near 7.0. The daily determination 
indicated it ranged from 6.9 to 7.3. 



CHAPTER V 

RESULTS 

The experimental data will be presented in three major sections 
dealing with (1) hydraulic, (2) quantitative, and (3) cyclic shock 

loads. In general, the results of each experiment are presented in one 
figure, except those for the cyclic shock load, in which case each run 
is presented in two separate figures. In general, each figure gives 
such parameters as the influent characteristics, effluent characteris
tics, biological solids, cell protein, cell carbohydrate, recycled 

sludge, filtrate COD in aerator #1, filtrate COD in aerator #2, and 
excess sludge production. For all figures, the data to the left of the 
indicating arrow show steady state conditions prior to the initiation 
of a shock. The vertical line to which the arrowhead points indicates 
time at which shock loading was initiated, and the data to the right of 
that line show the post-shock conditions. The termination of the tran
sient state is indicated by another arrow, after which a new steady 
state is established. In all cases, the system was operated in the new 
steady state for several days. The steady state was terminated by the 
initiation of another shock, and this is indicated by an arrow. In all 
cases, the experimental run was ended by operation under steady state 
conditions. 

The units along the abscissa are in days. At times, an expanded 
scale is employed in order to provide enough space for plotting the data 
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which were taken at short intervals during the transient state. In 

Table VI are summarized all parameters measured during all steady state 

periods for all experiments. These average steady state results are 

listed chronologically and are referred to each figure. 

A.· Hydraulic Shock Loads With Constant Influent 

Organic Concentration 

In this series of experiments, the responses to stepwise increases 

in dilution rate when the feed consisted of constant influent organic 

concentration were studied. 

1. Response to an Increase in Dilution Rate of 

300 Percent With XR = 10,000 mg/1 

It was decided to test the model under severe hydraulic shock load 

conditions by increasing the dilution rate 300 percent while the recycle 

sludge concentration was kept as close as possible to 10,000 mg/1. The 

organic feed concentration was kept constant while changing the inflow 

feed rate. In Figure 4 the different parameters monitored during the 

experiment are shown. The. feed concentration, Si, was kept very close 

to 500 mg/1. The solid triangles represent loading rate in mg/hr 

before and after the shock. The transitional change in loading is shown 

by a dilute-in curve, while the reverse change is shown by a dilute-out 

curve. The average steady state conditions for the first steady period 

shown in Figure 4 are given in line 21 of Table VI. For this 10-day 

period with ·nominal s1 = 530 mg/1 glucose COD and XR = 10,000 mg/1, the 

a~erage biological solids co~centration was 2200 mg/1, and it is seen 

in Figure 4 that the system was rather steady with respect to X. The 
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TABLE VI 

MEAN STEADY STATE VALUES OF FEED, EFFLUENT, AND BIOLOGICAL SOLIDS 
FOR THE ACTIVATED SLUDGE PROCESS WITH CONSTANT X ·~~ . R 

Line , From To 
Fig. , 

3-21-74 3-31-74 
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6-20 
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7-14 

7-21 
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10 g_ 5 
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13 10-11 

14 10-16 

15 10-25 

16 11- 9 

17 11-15 

18 11-22 

]g 12- 7 

20 12-14 

21 12-18 

22 1- 3-75 

23 1-10 

24 1-27 

25 3- 1 
26 3-11 

27 3-20 

28 3-28 

29 4-2D 

30 5-20 

31 9-26 

32 10-10 
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35 1l-13 

36 11-19 
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5-31 10 

6-17 10 

6-25 10 

7- 5 11 

7-20 11 

7-27 11 

8-31 

9-11 
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10-15 

10-24 
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11-14 
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11-30 

12-14 
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3-27 
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0.125 

0.125 

0.125 
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0.125 

0.125 

0.25 
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0.25 

0.125 

0.125 

0.25 

0.125 

0.125 

0.25 

0.125 

0.125 

0.5 

0.125 

0.125 

0.125 

0.125 
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0.125 

0.125 

0.125 

0.125 

0.125 
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Figure 4. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an Si 
of 500 mg/1 Hydraulically Shock Loaded by Change 
in Dilution Rate From 0.125 hr-1 to 0.50 hr-1 and 
From a Dilution Rate of 0.5 hr-1 to 0.125 hr-1 
(from 12-18-74 to 1-17-75) 
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XR values ranged from 9,847 to 10,312 mg/1, and the average was 10,075 
mg/1. The COD values for recycle sludge filtrate, SR, indicat~ very 
1 ittle substrate., with an average value of 12 mg/1. Determination of 
protein and carbohydrate content of the sludge indicated values in the 
expected range, i.e., protein 47 percent, and carbohydrate 22 percent. 
The bottom graph in Figure 4 shows the daily production of excess 
sludge. The values varied between 1210 and 1481, with an average of 
1280 mg/day, and it is seen that excess sludge production remained rel
atively steady. The mean effluent filtrate COD, Se, was 15 mg/1, 
yielding a substrate removal efficiency of 97 percent. The suspended 
solid$ concentration in the effluent in this steady state run was 28 
mg/1. The range of values for filtrate COD, Se, was zero mg/1 to 24 
mg/1, while Xe varied between 14 mg/1 and 48 mg/1. 

After running the system for almost thirteen days, the hydraulic 
loading was increased by 300 percent; i.e., D was increased from 0.125 
hr-1 to 0.5 hr-1. The first noticeable effect was a slight washout of 
reactor solids. A drop in solids concentration of about 17 percent was 
recorded on the second day of the shock. After the middle of the second 
day after application of the shock, the biological solids concentration 
increased to a value of 2264 mg/1 .. Then it decreased slightly to 2228 
mg/1, after which a steady state was maintained. During the transient 
state there were some changes in effluent characteristics. The total 
substrate in the effluent, St' as measured by COD, reached 125 mg/1. 
Although a rather high COD value was recorded in the clarifier, total 
effluent filtrate COD, Se' did not rise significantly. The maximum Se 
during transient was 34 mg/1. The physical properties of the sludge 
floes had changed and effluent biological solids concentration, Xe' 
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rose to 91 mg/1. The total COD, St' started to decrease during the 

third day of transient. The excess sludge produced per day increased 

by approximately 400 percent. A new steady state was established three 

days after initiating the shock loading. An average value of the bio

logical solids concentration, X, in the reactor during the six days of 

new steady state was 2249 mg/1 (see line 22 of Table VI). There was a 

small increase in biological solids concentration from the previous 

steady state. The total COD, St' from the effluent clarifier was, in 

this new steady state, relatively high. The average value of St was 69 

mg/1. Most of this COD was due to leakage of cells since the filtrate 

COD, Se, was 25 mg/1, i.e., a biochemical efficiency of 95 percent was 

observed. The average biological solids concentration in the effluent 

was 43 mg/1 and the excess sludge produced per day attained a steady 

state value of 6724 mg/day. The recycle sludge, XR' was very close to 

10,000 mg/1, having a range from 9,912 to 10,212 mg/1. The dilution 

rate was returned to its original value of 0.125 hr-1. Another new 

steady state was rapidly attained without any significant transient 

response. The average steady state data obtained during the new steady 

state are given in line 23 of Table VI. The main parameters indicating 

the performance characteristics are plotted in the right portion of 

Figure 4 for this period. The COD of the influent ranged from 484 to 

541 mg/1, with an average of 506 mg/1. The effluent characteristics as 

measured by filtrate COD, Se' were excellent; the mean Se was 13 mg/1, 

providing 97 percent removal of the substrate. The Se value varied 

from zero to 25 mg/1, while Xe varied between 14 and 41 mg/1. In 

general, the system provided very satisfactory steady state performance 

as well as very fast recovery from the shock. 



Growth studies were made during all operational periods, and 

results are summarized in Table VII. The table shows the values for 
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the biological constants, 11max' Ks, and VB. Values shown on lines 21 

and 23 were obtained from batch growth studies during the be~inning and 

final steady states, when D was 0.125 hr-l, while on line 22 are given 

the biological parameters,' Ks, 11max' and VB during a batch growth study 

when D increased to 0.5 hr-l. The value of 11max varied in the range 

from 0.49 to 0.54, while VB 

Jlmax and Ks were determined 

equation 

ranged from 0.55 to 0~59. The values of 

by plotting f- vs. ~' and employing the 
0 

l _ _s__ _1 +-1-
jl 11max So 11max 

2. Repeat of the Previous Experiment After 

10 Months 

It was interesting to determine the reproducibility of the 

response to the 300 percent increase in dilution rate after a reason-

able period of time had elapsed. New seeding material obtained from 

the Stillwater sewage treatment plant was used to develop the activated 

sludge. The experiment was run under the same conditions as the pre

vious run; however, one additional parameter was measured--the filtrate 

COD in reactor #1. The results are shown in Figure 5 and lines 36 

through 38 of Table VI. Prior to shock, the feed concentration ranged 

from 511 to 553, with an average of 535 mg/1, and the feed loading rate 

averaged 134 mg/hr. The filtrate COD in aerator #1, SR, was fairly 
l 

low. The observed filtrate COD in the clarifier effluent varied from 



TABLE VII 

·VALUES OF THE BIOLOGICAL CONSTANTS, MAXIMUM SPECIFIC GROWTH 
RAIE, ~max' SATURATION CONSTANT, K5 , AND CELL YIELD, Y, 

OBTAINED IN BATCH EXPERIMENTS USING CELLS HARVESTED 
FROM THE COMPLETELY MIXED REACTOR DURING 

CONTINUOUS FLOW STEADY STATE RUNS 

Ma«imYm Specific Batch Yield 
FeeGI lil11 Ytien !tate Iii 

lin Growth Rate SitYration Constant 
yt 

Glu:ose -1 B 

Exp. il m!J/1 hr-1 hr-l lolm•x' hr K5 , -mg/1 mg/mg 

5QQ 0.125 0.0145 --
2 510 0.125 .0149 
3 r~ 0.125 .0166 ·. 0.50 110 0.46 
4 1588 0.125 .0445 0.55 181 0.49 
5 518 0.125 .0153 0.45 161 0.43 
6 500 0.125 .0148 0.46 123 0.45 
7 30ilil 0.125 .0742 0.5i 108 0.56 
s 501 lil.lU .0165 0.49 115 0.42 
9 581il 1.125 .0066 0.54 164 0.38 

Hl SQQ 0.25 .0213 0.47 125 0.45 
11 501' Q.l25 .0086 0.43 140 0.38 
12 500 0.125 .0142 0.42 208 0.53 
13 500 0.25 .0299 0.47 94 0.58 
14 SiO 0.125 .0146 0.49 110 0.56 
15 SQO 0.125 .0240 0.50 177 0.56 
16 500 IUS .0554 0.51 214 0.60 
17 500 0.125 .0214 0.53 204 0.54 
18 500 0.125 .0063 0.35 . 63 0.38 
.19 500 lil.25 .0220 0.34 144 0.60 
20 500 0.125 .0079 0.31. 185 0.40 
21 {~ 0.125 .0131 0.49 112 0.58 
22 500 0.50 ::~,,,,. .0629 0.53 176 0.59 
23 500 0.125 .... 0146 0.54 145 0.55 
24 500 0.125 .0138 0.5.0 217 0.50 
25 500 0.125 .0129 0,45 115 0.42 . 

26 1500 0.125 • 04i7 0.54 J96 0.52 
27 3000 0.125 .0675 0.62 131 0.52 
28 500 0.125 .0138 0.44 110 0.45 
29 500 o, 125 .0143 0.46 270 0.49 
30 500 0.125 .0163 
31 

!'" 
0.125 .0171 0.45 141 0.50 

32 3000 0.125 .0729 0.61 87 0.59 
33 500 0.125 .0163 0.46 129 0.49 
34 500 0.125 .0492 0.52 110 0.55 
35 500 0.125 .0154 0.51 140 0.46 
36 

{'00 
0.125 .0096 0.47 131 0.49 

37 500 0.5 .0575 0.51 85 0.53 
38 500 0.125 .0146 0.48 141 0.46 

Average 0.50 145 .50 
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Figure 5. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an Si 
of 500 mg/1 Hydraulically Shock Loaded b1 an 
Increase in Dilution Rate From 0.125 hr- to 0.5 
hr-1, and a Decrease in Dilution Rate From 0.5 
hr-1 to 0.125 hr-1 (from 11-19-75 to 12-14-75) 
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15 to 26 mg/1, with an averageS of 20 mg/1 COD. Thus, the effluent 

was, on the average, very good; efficiency of substrate removal was 96 

percent, and the value of S was relatively steady. Similarly, the bio

logical solids concentration, X, remained rather steady, ranging from 

2ll0 to 2410, with an average value of 2132 mg/1 {line 36, Table VI). 

It is interesting to note that the average recycle sludge concentration 

was exactly 10,000 mg/1. The range observed was from 9,810 to 10,270. 

One cannot expect to be able to make up the XR concentration with this 

accuracy at all times; however, these results attest to the applica-

bility of the optical density technique for estimating the recycle 

sludge concentration. 

COD concentration in the filtrate of the recycle, SR, was con-

siderably lower than Se; the average COD was 14 mg/1. Thus, the assump

tion that SR is low enough to be neglected {i.e., SR = 0), seems jus

tified. Excess sludge, Xw, produced at this loading level, varied from 

1185 to 1231 mg/day, with an average of 1209 mg/day. This value 

included the amount taken for analysis as well as biological solids in. 

the effluent. 

After six days of steady operation, the shock load was applied. 

COD determinations of filtrate in aerator #1 {SR ) showed a gradual 
1 

increase. The maximum value was 114 mg/1 and was attained 12 hours 

after beginning the shock. At the same time the filtrate effluent COD, 

Se, was only 35 mg/1. Filtrate COD from aerator #1 continued to "leak 11 

in the range from 63 to 96 mg/1 until the end of the transient period, 

which took two and a half days. The total effluent COD, St, was in 

the range from 46 to 132 mg/1, which was due to an increase in the bio

logical solids in the effluent, Xe. 
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It was interesting to note the decrease in biological solid~ con

centration in aerator #1. There was a washout phase for 22 hours in 

which the concentration decreased at a rate of 20 mg/hr (an approxi

mation was made by drawing a straight line through the decreasing leg 

of the biological solids curve). Biological solids started to increase 

after reaching a minimum level of 1970 mg/1. This increasing rate, 

measured as previously indicated, was 35 mg/hr. Excess sludge produc

tion, Xw, was remarkably increased to five times or more the amount 

produced during the previous steady state. 

A-new steady state was established at the high loading rate. The 

new steady state was accompanied by a decrease in the filtrate COD, 

SR, which was, on the average, 25 mg/1. The effluent characteristics 
1 

improved as a result of a decrease in the biological solids in the 

effluent, Xe. The total COD, St' was in the range from 64 to 95 mg/1, 

with an average of 70 mg/1. The filtrate COD, Se, was in the range 

from 10 to 34 mg/1. Biological solids, Xe' was, on the average, 63 

mg/1. Carbohydrate concentration in the clarifier filtrate effluent 

was 13 mg/1. 

Biological solids concentration in aerator #1 was fairly steady, 

with an average of 2240 mg/1, which was slightly higher than the aver-

age value in the previous steady state. Excess sludge production, Xw, 

was in the range from 6098 to 6391, with an average of 6221 mg/day. 

After six days of steady state operation under this high loading 

rate, it was interesting to determine the effect of a decrease shock 

loading on the behavior of the system. There was no drastic change in 

the filtrate COD from aerator #1, SR , or in the effluent characteris-
1 

tics from the clarifier. A noticeable and predictable change was a 
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drop in excess sludge production, XW. Biological solids concentration 

in aerator #1, X, was fairly steady' during the transient state, and 

returned to approximately the same concentration as in the first steady 

state. Transient state in Xw lasted for approximately two and a half 

days. 

The feed COD during the last steady state varied from 504 to 539 

mg/1, with an average Si of 525 mg/1. The observed filtrate COD of the 

effluent varied from 10 to 33 mg/1, with an averageS of 20 mg/1 COD. 

The efficiency of substrate removal was 96 percent, and the value of S 

was relatively steady. Similarly, the biological solids concentration, 

X, remained rather steady, ranging from 2112 to 2340 mg/1, with an 

average value of 2210 mg/1. The sludge recycle concentration was kept 

very close to 10,000 mg/1, averaging 10,028 mg/1. 

Average excess sludge production, Xw, was slightly highe~ than 

that observed in the starting steady state. The values ranged from 

1191 to 1368, with an agerage of 1260 mg/day, whereas previous Xw 

averaged 1209 mg/day. 

Microscopic examination of the biomass in aerator #1 during the 

first transient state, i.e., the increase in loading rate~ showed a 

significant change in the number and type of protozoa present in the 

system. Before the shock, high numbers of rather large protozoa were 

present; however, very small-size protozoa were in the system during 

the transient. These small-size protozoa persisted during the high 

loading steady state period., There was also an increase in filamen

tous growth during the high loading steady state; however, settling 

characteristics of the biomass remained rather good. Although the 

biomass showed a sludge volume index (SVI) of 230, which is higher 
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than the recommended values (50-150), there was no problem in obtain-
ing the required concentration for recirculated sludge. 

During each steady state period, samples of cells from aerator #1 
were employed in batch growth studies to determine ~max' Ks' and Yt. 
The values of the biological constants for each batch experiment during 
each steady state run are given in Table VII (see lines 36, 37, and 
38). The value of~ in both steady states in experiments 36 and 38 . max 

( -1) . agreed rather closely 0.47 and 0.48 hr . The saturat1on constants, 
Ks' were 131 and 141 mg/1, respectively, while the true yield values 
were 0.49 and 0.46, respectively. During the high loading steady 
state (see line 37), the biological constants determined from the 
batch experiment were 0.51 hr-l for ~max' 85 mg/1 for Ks, and 0.53 for 
the yield. 

3. Response to an Increase in Dilution Rate 

of 100 percent With XR = 6000 mg/1 

Since it had been shown that a system operated using the model 
with constant concentration of recycle solids, XR' was capable of 
withstanding a 300 percent increase in hydraulic loading at a reason
able XR concentration of 10,000 mg/1, it was of interest to determine 
the effect of XR on ability of the system to accommodate hydraulic 
shock. The next four series of results show the response obtained for 
XR values of 6000, 8000, 12,000, and 15,000 mg/1. The same procedure 
was applied, i.e., developing a steady state with D = 0.125 hr-l for· 
ten days using Si = 500 mg/1, but XR was 6000 mg/1 instead of 10,000 
mg/1. In Table VI, the average performance characteristics of the 
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pilot ·p 1 ant with an S i 1 oad i ng which ranged from 465 to 561 mg/l COD, 

with an average recycle solids concentration of 6014 mg/1 are shown in 

line-15. The steadiness of the system is exhibited by the effluent 

characteristics as well as by the biological solids concentration, X, 

as shown in Figure 6. The. effluent ·filtrate COD varied from 8 to· 39 

mg/1, while anthrone samples indicate lower values. The average X 

value for this steady state run was 1421 rng/1. The effect of XR on X 

when ~ is held constant can be readily seen by comparing. the steady 

state values for solids concentration in aerator #1 at different 

recycle solids concentrations (see Table VI). The ratio X/XR ranges 

fr-om i : 5 to 1 :4 throughout the study. Thus, it is s'een that XR exerts 

a controlling effect on X. The range of solids concentration in the 

aerator in this run was 1348 to 1488 mg/1. The excess sludge produc

tion, Xw, in this case was 1430 mg/day on the average, and was rela

tively steady throughout the run. 

On the ninth day, the system was subjected to a change in dilu

tion rate from 0.125 hr-1 to 0.25 hr-1, which resulted in a change in 

loading rate from 253 mg/2 hrs to 503 mg/2 hrs. In that day, a slight 

decrease in solids concentration in the reactor from.l425 mg/1 to 1399 

mg/1 was observed. On the second day of the shock, the reactor showed 

a faster decreasing rate in solids concentration, and the solids reach-

ed a value of 1210 mg/1. During the second half of the second day, 

biological solids in the reactor started to build up rapidly and 

reached a value of 1540 mg/1 at the end of the third day of the t·ran

sient. In the transient state, effluent characteristics on the second · 

day indicated COD, St, of 110 mg/1, which indicates only 80 percent 

removal efficiency. On the basis of Se (filtrate COD), 88 percent 



Figure 6. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 6000 mg/1 at an Si of 
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From a Dilution Rate of 0.25 hr-1 to 0.125 hr-1 
(from 10-25-74 to 11-22-74) 
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removal efficiency was recorded. The system did not recover rapidly, 

and St values remained rather high. It was interesting to note that 

75 

Se concentration was more than the Xe concentration during the tran

sient state. The filtrate COD, Se, was approximately 67 mg/1, while Xe 

was 45 mg/1; i.e., the increase in dilution rate did not disrupt the 

effluent characteristics with respect to biological solids as much as 

in respect to filtrate co~, se. 

At the lowest solids concentration in aerator #1, protein and car-

bohydrate solids content were approximately the same. As the solids 

recovered during the third day of the transient, the protein and carbo

hydrate content exhibited more normal composition ratios. After the 

end of the fourth day, the system behaved steadily with respect to 

effluent characteristics and solids concentration in the reactor. 

Although St was somewhat high (72 mg/1 on the average), it exhibited 

considerable steadiness during the new steady state (D = 0.25 hr-1). 

The values of Se and Xe during the new steady state averaged 33 and 38 

mg/1, respectively. Average biological solids concentration in the 

reactor was 1450 mg/1, showing a very small difference from the average 

during operation at the previous dilution rate; i.e., solids concen-

tration did not change significantly when dilution rate changed since 

Si and XR were kept constant. High loading steady state continued for 

seven days, and solids concentration in the reactor as well as effluent 

characteristics showed marked steadiness (Figure 6, middle portion). 

In addition to the characteristics shown, spot checks were made for 

carbohydrate in the filtrate effluent, Se. The overall biochemical 

efficiency based on the average feed COD of 540 mg/1 and effluent fil

trate of 33 mg/1 was 94 percent. The anthrone test indicated nearly 
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all of the carbohydrate feed was removed; the maximum amount of car
bohydrate was 43 mg/1 with an average of 15 mg/1. However, since the 
effluent COD averaged 33 mg/1, it can be seen that carbohydrate com
prised approximately 50 percent of the effluent COD in the filtrate. 
The biological solids concentration in the aerator was slightly higher 
than at the lower dilution rate (only 29 mg/1 greater). The recycle 
sol ids concentration, XR, was controlled within 300 mg/1 of the desired 
6000 mg/1. The average amount of excess sludge produced was 3558 
mg/day (Table VI, line 16). The dilution rate was then returned to 
0.125 hr-1, while XR was kept at 6000 mg/1 and Si at 500 mg/1. There 
was a noticeable drop in average solids concentration in the reactor. 
About 50 mg/1 reduction in solids concentration was observed. There 
was also a decrease in total effluent COD, St. Although there was a 
noticeable transient disturbance as evidenced by an increase in efflu
ent COD, the system was observed to withstand the shock rather well. 

The average solids concentration in the effluent during the 
steady state stayed almost the same as before, but a reduction in Se 
COD was recorded. There was a slight decrease in average protein con
tent. An average of 43 percent was recorded for protein, and 21 per
cent for carbohydrates, whereas in the steady state of the higher 
loading, protein and carbohydrate content averaged 49 and 22 percent. 

Steady state operation was continued for seven days (Figure 6). 
The average excess sludge production was less than half the average in 
the previous steady state (compare lines 16 and 17 in Table VI). 

The batch growth pattern and relationship between ~ and S0 during 
the three steady states were determined from shaker experiments .. The 

. . -1 ~max values for the two steady states at D = 0.125 hr were 0.5 and 
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-1 . 0.53, and forD= 0.25 hr , 1t was 0.51. The Ks values were somewhat 

higher than those usually observed, although they were not abnormally 

high. These values were 177 and 204 mg/1 for cells harvested with D 

at 0.125 hr-1, and 214 mg/1 for the run at 0.25 hr-1 (see lines 15, 16, 

and 17 in Table VII). 

4. Response to an Increase in Dilution Rate 

of ldO Percent With XR = 8000 mg/1 

A hydraulic shock study with recycle solids concentration, XR, of 

8000 mg/1 was made. The pilot plant was operated at the same nominal 

Si concentration, 500 mg/1. The actual range of values was from 469 to 

534 mg/1 COD with an average recycle solids concentration of 8075 mg/1. 

In Table VI, the average performance characteristics of the pilot plant 

during these periods are shown in line 12. The steadiness of the oper

ational model is exhibited by the effluent characteristics as well as 

by the biological solids concentration, X, as shown in Figure 7 (left 

portion). The effluent filtrate COD varied from 6 to 30 mg/1; the 

carbohydrate concentration as measured by the anthrone test was 4 to 

21 (not plotted in Figure 7). The values for SR were in the range 8 

to 18 mg/1 COD. The average X value for this steady state run was 

1775 mg/1. The effect of XR on X can be readily seen by comparing the 

steady state values of XR of 8000 mg/1 in this steady state, and XR of 

6000 mg/1 in the previous experiment (i.e., compare lines 12 and 15). 

It is evident, therefore, that X is controlled mainly by XR' which is 

itself a controllable parameter in this model. The recycle sludge, 

XR' in this run ranged from 7584 to 8850 mg/1. The excess sludge pro

duction in this case was 1422 mg/day compared to 1430 at the same S; 



Figure 7. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 8000 mg/1 at an s; of 
500 mg/1 Hydraulically Shock Loaded by Change in 
Dilution Rate Prom 0 .. 125 hr-1 to 0.25 hr-1 and 
From a Dilution Rate of~0.25 hr-1 to 0.125 hr-1 
(from 9-24-74 t6 10-25-74) 
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concentration, but with XR of 6000 mg/1. This will be discussed later. 
The excess sludge production in this case was relatively steady. Deter
mination of protein and carbohydrate content of the sludge indicated 
values in the expected range, i.e., protein 42 percent, and carbohy-
drate 21 percent. During the eleventh day, the hydraulic rate of feed 

-1 was doubled in order to increase dilution rate from 0.125 hr to 0.25 
h -1 r . Recycle flow, FR, was also doubled in order to keep a constant. 
Biological solids concentration decreased through the second day and 
reached a value of 1630 mg/1. On the third day, solids in the reactor 
started to build up, and by the end of the fourth day reached 1840 mg/1. 
After the fifth day, the system was adjudged to be in the steady state. 
During the transient, protein content of the biological solids decreased 
and the carbohydrate content increased. The protein and carbohydrate 
content of the lower solids concentration during the transient were 36 
and 34 percent, respectively. Two days after starting the shock, the 
total effluent COD rose to a high value of 108 mg/1. During these few 
days, the effluent COD rose steadily. It is interesting to note that 
during the transient response, unlike the previous experiment, the 
major contribution to St was due to effluent solids, Xe, rather than to 
soluble COD, Se. 

Excess sludge production, Xw, rose to 2450 mg/day. Over the next 
three days there was a 10 percent reduction in excess sludge production .. 
Excess sludge production, Xw, then increased and appeared to reach a 
steady state on day 17. Between days 17 and 22, Xw averaged 2502 mg/ 
day .. All steady state data obtained at the new dilution rate are shown 
on line 13 of Table VI. The protein and carbohydrate content of the 
cells rose slightly to 45 and 26 percent, respectively. The carbohydrate 
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in the effluent showed an average value of 12 mg/1. The biochemical 

efficiency based on the average feed COD, Si, of 497 mg/1 and effluent 

filtrate COD of 15 mg/1, was 97 percent. The average biological sol-

ids concentration in the reactor was clsoe to the average in the pre

vious steady state period. The average biological solids concentration, 
X, was 1794 mg/1 compared to 1775 mg/1 for the previous steady state 
(line 12). The system exhibited a very high degree of steadiness with 

respect to aerator solids concentration, as well as effluent character

istics. The recycle solids concentration, XR, was controlled within 
500 mg/1 of the desired 8000 mg/1. The excess sludge production during 

this ~eriod was more than one and a half times the previous value. 

After determining the steady state condition, the dilution rate was 

again returned to its original value, 0.125 hr-1. There was no sig

nificant change in biological solids concentration in aerator #1 during 
transient; the only change was a decrease in excess sludge production, 
Xw- A new steady state was maintained for seven days, then the experi

ment was terminated. The average biological solids concentration in the 
reactor was 1760 mg/1 compared to 1775 mg/1 in the first steady state, 

and 1794 mg/1 in the steady state for the high dilution rate. Thus, it 
can be seen that the change in D did not change significantly the bio
logical solids concentration, X, during the entire experiment. After 

returning D to 0.125 hr-1, the system still exhibited a high degree of 
steadiness with respect to aerator solids concentration as well as 

effluent characteristics. The recycle solids concentration, XR, was 
controlled within 300 mg/1 of the desired 8000 mg/1. The COD of the 
recycle sludge, SR, was 11 mg/1. The biochemical efficiency based on 
the average feed of 512 mg/1 and effluent filtrate COD of 13 mg/1 was 
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97 percent (see line 14, Table VI). The anthrone test indicated very 
little of the carbohydrate remained in the effluent; the maximum amount 
found was 14 mg/1, with an average of 9 mg/1. The batch studies during 
each steady state were made to determine the biological constants. The 
~max values obtained from the three individual growth studies were very 
similar, i.e~, 0.42, 0.47, and 0.49 hr-1, and Ks values were 208, 94, 
and 110 mg/1. The yield values were 0.53, 0.58, and 0.56, respectively 
(see experiments 12, 13, and 14 in Table VII). 

5. Response to an Increase in Dilution Rate 

of 100 Percent With XR = 12,000 mg/1 

The system was operated at a steady state for eleven days at an Si 
loading of 500 mg/1 and XR of 12,000 mg/1. The average data obtained 
during this run are shown in Table VI (lines 9, 10, and 11). The per
formance characteristics are plotted in Figure 8. The biochemical 
efficiency based on the average feed COD, Si' of 500 mg/1, and effluent 
filtrate COD, Se' of 12 mg/1, was 98 percent. Carbohydrate concentra
tion in the filtrate clarifier overflow ranged between zero and 14 mg/1. 
The biological solids concentration in aerator #1, X, was 2513 mg/1 on 
average, with a range from 2318 to 2601 mg/1. The recycle solids con
centration, XR' was controlled within 500 mg/1 of the desired 12,000 
mg/1. The recycle sludge filtrate, SR, was only 7 mg/1 COD on average. 
The excess sludge production during this run was 1140 mg/day on aver
age. Determination of protein and carbohydrate content of the sludge 
indicated values in the expected range, i.e., protein 48 percent, and 
carbohydrate 17 percent. After operating the system for eleven days 
under steady state conditions, it was subjected to a 100 percent 
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Figure 8. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 12,000 mg/1 at an S; 
of 500 mg/1 Hydraulically Shock Loaded by a Change 
in Dilution Rate Prom 0.125 hr-1 to 0.25 hr-1 and 
From a Dilution Rate of 0.25 hr-1 to 0.125 hr-1 
(from 8-21-74 to 9-21-74) 
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increase in flow rate (D changed from 0.125 to 0.25 hr-1). There was a 
decrease in biological solids concentration, X, in aerator #1. Solids 
decreased rapidly from a value of 2524 mg/1 to 2173 mg/1 in about 29 
hours. After this period, there was a slight increase in biological 
solids concentration for a period of seven hours, after which a sus
tained increase was maintained for 30 hours. The decrease in the bio-
logical solids concentration in aerator #1 during transient was accom
panied by an increase in the total effluent COD concentration, St. 
Total COD, St, rose to a value of 114 mg/1 twenty-four hours after 
applying the shock. The filtrate COD, Se' rose to 50 mg/1. The total 
effluent COD, St, decreased rapidly, indicating speedy recovery in 
overall purification efficiency in the system. The system returned to 
a·new steady state within three days after applying the shock. Protein 
and carbohydrate content of the biological solids at the lowest biologi
cal solids concentration, X, during the transient state were 38 and 35 
percent, respectively. Thus, it is seen that during the transient 
there was a decrease in protein and an increase in carbohydrate content 
of the biomass. As the system approached the new steady state, there 
was an increase in protein and a decrease in the carbohydrate content. 
The new steady state at D = 0.25 hr-l was monitored for eight days, and 
the average biological solids concentration in the reactor was 2554 
mg/1. The recycle sludge concentration, XR' was maintained very close 
to 12,000 mg/1. The average excess sludge production, Xw, during the 
new steady state was 2697 mgjday (see Table VI, line 10). Determina
tion of protein and carbohYdrate content of the sludge indicated values 
in the range of 42 and 26 percent, respectively. The biochemical effi
ciency based on the average feed concentration, Si, of 521 mg/1 and 
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effluent filtrate COD, Se, of 6 mg/1 was 99 percent. After assessing 

the new steady state, a 50 percent decrease in dilution rate was 

applied (D was decreased to 0.125 hr-1). There was a slight increase 

in biological solids concentration and a value of 2704 mg/1 was attain

ed two and one-half days after administering the shock. The protein 

and carbohydrate content of the cells did not vary. There was no change 

in effluent characteristics during the shock. The system was operated 

seven days to assess the new steady state. The effluent quality 

remained excellent, yielding 93 percent efficiency based on supernatant 

COD, St' and 98 percent based on filtrate COD, Se. The mean effluent 

solids concentration during this period was 24 mg/1 (see Table VI, line 

11). The average carbohydrate content in the effluent was 11 mg/1, and 
\ 

some of the anthrone analyses indicated zero concentration. The dif-

ference between the high and low values of XR was only 260 mg/1, with. 

an average of 12,060 mg/1. The average biological solids concentra

tion was 2553 mg/1. With this experiment, as with all preceding pilot 

plant runs, the filtrate COD in the recycle sludge was very low, and 

in some cases, zero COD was recorded. The amount of excess sludge pro-

duced during the final steady state was 1137 mg/day on average. 

Values of the biological constants, ~max' Ks' and VB are recorded 
in Table VII, lines 9, 10, and 11. The maximum specific growth rates, 

~max' observed in these experiments ranged between 0.43 and 0.54 hr-l, 

and Ks varied between 126 and 164 mg/1; the VB values ranged between 

0.38 and 0.45. 
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6. Response to an Increase in Dilution Rate 

of 100 Percent With XR = 15,000 mg/1 

Responses to the three previous shocks indicated a less deleter
ious response as XR was increased from 6000 to 12,000 mg/1; i.e., the 
higher the XR' the more rapid was the recovery. Therefore, it was 
decided to study the response to the same percent increase in dilution 
rate, but with even higher recycl~ solids concentration, i.e., 15,000 
mg/1. Figure 9 shows the biochemical response of the system before, 
during, and after the hydraulic shock. The system, as before, was 
operated under steady state for nine days. The average feed COD was 
495 mg/1. The effluent quality was excellent, yielding better than 92 
percent efficiency based on supernatant COD, St, and 97 percent effi-

. ciency based on filtrate COD, Se (see Table VI, line 18). The mean 
effluent solids concentration during this period was 23 mg/1. The bio-
logical solids concentration, X, varied over a very narrow range during 
this period. The difference between the high and low values of XR was 
only 600 mg/1, with an average of 14,963 mg/1. The average biological 
solids concentration, X, was 3115 mg/1. The filtrate COD of the 
recycle sludge, SR, was low, with an average of 12 mg/1. The average 
amount of excess sludge produced, Xw, was 1120 mg/day. 

After maintaining the system at steady state for nine days, the , 
shock load was applied. There was a small decrease in biological sol
ids concentration in reactor #1. The biological solids, X, decreased 
from 3124 to 2980 in about twenty hours and statyed fairly steady for 
almost eight hours, after which it started to increase. Biological 
solids concentration, X, in reactor #1 continued to increase during 



Figure 9. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 15,000 mg/1 at an S; 
of 500 mg/1 Hydraul icall'y Shock Loaded by a yhange 
in Dilution Rate From 0.125 hr-1 to 0.25 hr- and 
From a Dtlutton Rate of 0.25 hr-1 to 0.125 hr- 1 

(from 11-22-74 to 12-22-74) 
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the second and third days after the shock. Biological solids rose to 
3264 mg/1 at the end of the third day. Effluent characteristics were 
monitored by total COD, St, biological solids, Xe' and filtrate COD, Se, 
indicating little leakage of substrate from the unit. Effluent COD, 
St, rose to 75 mg/1 in the second day of shock load, while filtrate COD, 
Se, did not show any rise. The biochemical efficiency based on the 
filtrate COD, Se, was 97 percent. The anthrone test indicated nearly 
all of the carbohydrate was removed. During the transient state, excess 
sludge production nearly tripled. A new steady state was established 
after three days. Average values are shown in Table VI, line 19. The 
average biological solids concentration in the reactor was 3224 mg/l. 
The biochemical efficiency was 91 percent based on the total COD, St' 
and 96 percent based on the filtrate COD, Se. The anthrone test indi
cated very low values for carbohydrate in the effluent. After maintain
ing the new steady state for ten days, the feed dilution rate was 
returned to the previous level. There was no significant response to 
the decrease in dilution rate. The only response was a decrease in the 
excess sludge production (50 percent). The system was operated for six 
days, and a high degree of steadiness in the biological solids concen-
tration in the reactor as well as in the effluent characteristics was 
observed (see Table VI, line 20). The biological solids concentration, 
X, averaged 3170 mg/1 compared to 3115 mg/1 in the previous steady state 
(Table VI, line 18). The effluent quality remained excellent, yielding 
better than 94 percent based on supernatant COD, St, and 98 percent 
efficiency based on filtrate COD, Se. The mean effluent solids concen
tration, Xe' was 19 mg/1 on average. Excess sludge produced, Xw, was 
1087 mg/day on average. 
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The values of the biological constants obtained from the batch 
growth plots made during the :three runs, D = 0.125, 0.25, and 0.125 
hr-1, are reported in Table VII, experiments 18, 19, and 20). The maxi~ 
mum specific growth rate, l.l , observed in these experiments, were , max . 
0.35, 0.34, and 0.37, respectively, and Ks varied from 63.0 mg/1 to 185 
mg/1. 

B. Quantitative Shock Loads 

To evaluate the overall system response of an activated sludge to 
quantitative shock loads, step changes in substrate loadings were 
studied. Responses to three-fold and to six-fold increases in Si were 
examined. Each shock was repeated in order to determine the repeat
ability of the general response. 

1. Three-fold Substrate Increase. 

Prior to increasing substrate concentration from 500 to 1500 mg/1, 
the pilot plant was operated in the steady state. The average steady 
state values obtained during the continuous flow run with Si of 500 mg/1 
glucose and 8000 mg/1 XR are given in Table VI, line 3. The performance 
characteristics are plotted in Figure 10. Also shown in Table VI line 
3 are the averages of the relatively few determinations of the filtrate 
carbohydrate of the clarifier supernatant (not plotted in Figure 10). 
The COD of the influent ranged from 456 to 588 mg/1, with an average of 
503 mg/1. The effluent quallty as measured by filtrate COD, Se, was 
excellent; the mean Se was 24 mg/1, providing 95 percent removal of the 
substrate. The biological solids concentration in the effluent, Xe' in 
this steady state was 27 mg/1, and this resulted in 93 percent efficiency 



Figure 10. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 8000 mg/1 at an s; of 
500 rng/1 Quantitatively Shock Loaded by a Change in 
S; of 500 mg/1 to 1500 mg/1 and from an Sj of 1500 
mg/1 to 500 mg/1 (from 5-26-74 to 6=26-74} 
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on the basis of total COD, St' in the effluent. The range of values 

for filtrate COD, Se' was 12 mg/1 to 36 mg/1, while Xe varied between 
12 and 43 mg/1. In general, the system provided very satisfactory 

treatment and delivered effluent of high quality. The biological sol
ids concentration in aerator #1 varied between 1677 and 1860, with a 
mean of 1776 mg/1. The XR values ranged from 7443 to 8510 mg/1, and 
the average was 7935 mg/1. The COD for recycle sludge filtrate, SR, 
indicates very little substrate was being returned to the aerator with 
recycle sludge, justifying the basic assumption made in the derivation 
of the steady state equation (1). 

The bottom graph of Figure 10 shows the daily production of excess 
sludge. The values varied between 1305 and 1430 mg/day; it is seen 
that Xw remained relatively steady. Six days of steady state data were 
recorded before starting the shock. The increase in influent substrate 
concentration is represented by a vertical line (see top portion of 
Figure 10). Mixed liquor biological solids concentration in the aera
tion tank rose to a value of 2840 mg/1 at the end of 28 hours. Daily 
production of excess sludge increased to 4136 mg/day after three days 
from application of the shock. Total COD, St' ranged from 28 mg/1 to 
65 mg/1, and filtrate COD, Se, ranged from 8 mg/1 to 46 mg/1; i.e., the 
system recorded a successful total as well as biochemical response 
recovery during the transient stage. The biological solids concentra
tion in aerator #1 gradually decreased after a maximum concentration of 
2840 mg/1. The biological solids kept decreasing for four days and 
reached a value of 2270 mg/1. A new steady state was established with 
regard to biological solids concentration, X, and effluent character
istics (see Table VI, line 4). Biological solids concentration ranged 
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from 2170 to 2338 mg/1, with an average of 2237.mg/l. Recycle sludge 

concentration, XR' ranged from 7600 to 8470, with an average of 7998 

mg/1. ·Influent substrate concentration, Si' was kept close to the nom

inal glucose concentration, i.e., 1500 mg/1, with an average of 1496 

mg/1. The filtrate effluent COD, Se' attained a~ average of 19 mg/1, 

providing a 99 percent removal efficiency. Excess sludge production, 

Xw, in this new steady state rose to 4850 mg/day. The sludge settling 

properties remained very good, and there was essentially no change in 

the apparent color of the biomass. After maintaining the system in 

the new steady state for almost twelve days, the influent substrate was 

returned to 500 mg/1. This step decrease in influent substrate concen

tration did not change the effluent characteristics. The biological 

solids concentration in aerator #1 decreased steadily for almost two· 

days. During this time, the solids concentration decreased from 2300 

mg/1 to 1710 mg/1. The filtrate COD, Se' as well as total COD, St' 

concentrations were very low, and the excess sludge production, Xw, 

decreased by 75 percent. A steady state was attained after three days. 

The biological concentration, X, in aerator #1 varied in the range from 

1740 mg/1 to 1832 mg/1, with an average of 1774 mg/1. This average 

value was very close to that for the previous steady state at the same 

Si (compare lines 3 and 5 in Table VI). The effluent characteristics 

as measured by filtrate COD, Se, were still excellent; the mean filtrate 

COD, Se, was 15 mg/1, providing 97 percent removal of the substrate. 

The average biological solids concentration in the effluent in this 

steady state run was 18 mg/1. Carbohydrate in the filtrate effluent as 

measured by anthrone ranged from zero mg/1 to 16 mg/1. The biological 

constants for the three steady state runs are reported in Table VII 



(experiments 3, 4, and 5). Values of ~max ranged from 0.45 to 0.55 
-1 hr , K5 from 110 to 181, and v8 from 0.43 to 0.49. 

2. Six-fold Step Substrate Increase 

96 

A steady state was maintained for almost eight days with a nominal 

Si loading of 500 mg/1 glucose concentration at the same recycle sludge 

concentration, XR {8000 mg/1), as the previous run. The average data 

obtained during this run are shown in Table VI, line 6. The perform~ 

ance characteristics before, during, and after the shock are plotted in 

Figure 11. Effluent characteristics were monitored in terms of clari

fier effluent COD, St, filtrate COD, Se, and supernatant solids concen

tration, Xe. Also, spot checks were made for anthrone tests on the 

clarifier filtrate supernatant, Se, to determine the amount of carbohy

drate in the effluent (not plotted in Figure 11). The chemical oxygen 

demand removal efficiency based on the average feed COD of 545 mg/1 and 

effluent filtrate COD of 14 mg/1 was 98.0 percent. The anthrone test 

indicated that there was very little carbohydrate in the effluent. The 

maximum amount of carbohydrate found was 16 mg/1, with an average of 8 

mg/1. The biological solids concentration in aerator #1 was almost the 

same in average as the previous steady state runs {compare lines 3 and 

5 with line 6). The average biological solids concentration, X, was 

1782 mg/1. The system exhibited a very high degree of steadiness 

through the 8-day pre-shock period with respect to all parameters. 

The recycle solids concentration, XR' was controlled within 800 mg/1 of 

the desired 8000 mg/1. It is interesting to note that the COD in the 

recycle sludge filtrate was only 7 mg/1 compared to the effluent fil

trate COD of 14 mg/1. The average amount of excess sludge produced, XW' 



Figure 11. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 8000 mg/1 at an S; of 
500 mg/1 Quantttattvely Shock Loaded by a Change in 
S; Prom 500 to 3000 mg/1 and Prom an S; of 3000 
mg/1 to 500 mg/l (f~om 6-28-74 to 7-28~74) 
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was 1330 mg/day. Cell protein and carbohydrate contents were 48 and 18 

percent, respectively. 

After administering the shock (500 to 3000 mg/1 glucose COD), the 

biological solids concentration in aerator #1 increased sharply from 

approximately 1820 to 3093 mg/1 within about fifty-two hours and stayed 

approximately constant for five hours; then it rose again to a maximum 

value of 3550 mg/1 sixty-two hours after administering the shock. After 

this peak, biological solids concentration decreased steadily until it 

reached a level of 2975 mg/1 after approximately three days. A new 

steady state was maintained for seven days (Table VI, line 7), with an 

average biological solids concentration of 3095 mg/1. In the transient 

stage, the effluent characteristics changed significantly one and one-

half days after applying the shock. The total COD, St' increased due 

to an increase in biological solids, Xe. The filtrate COD, Se, did not 

rise for almost five days. The biological solids, Xe' increased to 276 

mg/1, while Se was only 12 mg/1. The biochemical removal efficiency for 

the system remained very high for five days while the total efficiency 

was low due to leakage of cells. The filtrate COD, Se, increased after 

the fifth day and continued to increase to a value of 106 mg/1. On the 

seventh day, the biochemical removal efficiency was 96 percent based on 

filtrate COD, S , and the total removal efficiency was 95 percent based e . 

on the effluent COD, St. The highest value of St recorded during the 

transient was 360 mg/1, yielding an efficiency of 90 percent. Excess 

sludge production, Xw, rose to an average value of 10,272 mg/day. The 

system was adjudged to have attained a new steady state on day 15. The 

biological solids concentration in aerator #1 averaged 3095 mg/1, with 

a range of 2980 to 3304 mg/1. The average values for effluent quality 
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were as follows: St, 46 mg/1, X , 28 mg/1, and S , 30 mg/1 (see Table e e 
VI, line 7). Carbohydrate and protein contents of the sludge were 

determined at three- to six-hour intervals during the transient state. 

The cell carbohydrate rose to 53 percent, and cell protein decreased to 

35 percent by the fourth day after applying the shock. Thereafter, car-

bohydrate content decreased and protein increased. Protein and carbo

hydrate contents fluctuated during the steady state period in X and S, 

but an average was 52 and 24 percent, respectively. After eight days of 

steady state operations at Si of 3000 mg/1, the substrate concentration· 

was decreased to 500 mg/1. There was no significant change in effluent 

characteristics. The only change was a decrease in both the biomass in 

aerator #1 and the excess sludge production, Xw. The biomass in aera

tor #1 was reduced by 43 percent, and the excess sludge, XW' was 

reduced by 36 percent. 

In Table VI, line 8, the performance characteristics of the pilot 

plant in the new steady state are given. The s. loading ranged from 483 . 1 

to 535 mg/1 COD, with an average value of 514 mg/1. Recycle solids con-· 

centration ranged from 7704 to 8241, with an average of 7946 mg/1. The 

steadiness of operation is exhibited by the effluent characteristics, 

as well as by the biological solids concentration, X, as shown in Figure 

11 (right portion). There was no transient leakage of substrate. The 

effluent filtrate COD, Se' varied from 6 to 25 mg/1. The anthrone 

samples indicate lower values; they ranged from 0 to 14 mg/1, with an 

average of 9 mg/1. The filtrate COD in aerator #2, SR, was low, ranging 

from 4 to 14 mg/1. The average X value for this steady state run was 

1777 mg/1. Thus, it is readily apparent that the system returned to the 

previous steady state condi'tions (compare lines 6 and 8 in Table VI). 
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It is also apparent that the system needed little or no time to recover 

from a step decrease in Si. It is interesting to note that, at the low 

loading, X consists mainly of sludge which is recycled, whereas, at the 

higher loading, one-half of the biolo.gical solids in the reactor were 

due to new growth. Biological solids concentration in aerator #2 

(sludge consistency tank) was measured at the beginning and end of each 

12-hour period (and often at more frequent intervals). There was no 

evidence for autodigestive decrease in biological solids concentration 

in this tank. The average beginning concentration was 7929 mg/1, 

and the average ending concentration was 7958 mg/1. 

The biological constants for the biomass during the three steady 

state periods were determined by batch growth experiments and are 

recorded in Table VII (experiments 6, 7, and 8). The maximum specific 

growth rate, ~max' ranged between 0.46 and 0.58 hr-1. The saturation 

constants, Ks, were in the range 108 to 123 mg/1. It is interesting to 

note a significant increase in VB during the high loading steady state. 

A value of 0~56 was recorded, compared to 0.42 and 0.45 in the low 

loading state. 

3. Repeat of the Three- and Six-fold Shocks 

After 13 Months of Operation of the Pilot Plant 

Thirteen months after performing the previously described experi

ments, it was decided to repeat the three- and six-fold quantitative 

shocks. The main idea of repeating these experiments was to test the 

reproducibility of response using an entirely different heterogeneous 

population. It was also interesting to gain more insight into the kin

etics of the response during the transient state by determining the 



102 

filtrate COD in the mixed liquor exiting from aerator #1, as well as 

filtrate COD in the clarifier effluent. Also, it was decided to start 

with the severe shock, i.e., increase the feed concentration from 500 

IDg/1 to 3000 mg/1. Figure 12 shows the results of the complete shock 

load experiment. Steady state was monitored for almost twelve days. 

The heterogeneous microbial population comprising the activated sludge 

was one newly developed from municipal sewage. Again, it is seen 

that rather steady operational results were achieved; that the system 

de 1 i vered an exce 11 ent effluent, and that the va 1 ues for each parameter 

are approximately the same as those previously shown in line 6, Table 

VI (compare lines 6 and 31). The theoretical COD of 500 mg/1 glucose 

is approximately 530 mg/1, and the feed concentration in these studies 

varied from 498 to 545 mg/1, with an average Si COD of 527 mg/1. The 

total effluent COD, St, ranged from 41 to 59 mg/1, with an average of 

50 mg/1. The observed filtrate COD of the effluent varied from 8 to 14 

mg/1, with an average COD, Se, of 1.1 mg/1, while Xe varied between 26 

and 39 mg/1. Thus, the effluent was, on the average, very good; effi-

ciency of substrate removal was 98 percent, and the value of Se was 
• relatively steady. The filtrate COD in aerator #1 ranged from 8 to 14 

mg/1, with an average of 11 mg/1. Similarly, the biological solids 

concentration, X, remained rather steady, ranging from 1714 to 1904 

mg/1, with an average value of 1820 mg/1. It can also be seen in this 

figure that it was possible to control the sludge recycle concentra

tion at a value of approximately 8000 mg/1. The range observed was 

from 7889 to 8241 mg/1, with an average of 8107 mg/1. It is important 

also to note in this run that the filtrate of the recycle sludge, SR, 

was considerably lower than Se. The average COD, SR' was 8 mg/1. 



Figure 12. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 8000 mg/1 at an S; of 
500 mg/1 Quantttatively Shock Loaded by a Change in 
St From 500 to 3000 mg/1 and From 3000 mg/1 to 500 
mg/1 (from 9-26-75 to 10-30-75) 
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Excess sludge, Xw, produced at this loading level varied from 1321 to 

1561, with an average of 1419 mg/day. 

When feed substrate was increased to 3000 mg/1, the response was a 

rapid increase in biomass concentration in aerator #1. The maximum 

concentration of biological solids re~ched a value of 4130 mg/1 after 

one and one-half days, approximately. The solids in aerator #1, after 

reaching this high level of concentration, decreased and in one day 

reached a value of 2862 mg/1. Analysis for filtrate COD in aerator #1 

during the transient indicated considerable leakage of soluble COD. A 

value of 164 mg/1 was recorded six hours after beginning the shock. The 

filtrate COD in reactor #1 reached a maximum of 512 mg/1. The filtrate 

COD, Se' in the clarifier reached a maximum of 288 mg/1 approximately 

two days after applying the shock. This difference may be attributed 

to biological activity in the sedimentation tank. There was a consider

able disruption in effluent characteristics. Total COD, St, showed 

high values due to an increase in both biological solids and filtrate 

COD in the clarifier effluent, Se. Fluctuations in the filtrate COD in 

aerator #1, SR, followed the same trend as did the filtrate COD of 
' 1 

the clarifier supernatant, Se' except at the first half .of the third day 

of shock when the filtrate COD in aerator #1 was 200 mg/1 COD more than 

the filtrate COD, Se. There was a noticeable change in color as well 

as changein the size of floc as revealed by microscopic examination. 

Filamentous growth increased and became predominant in the sludge. 

Protozoa seemed to disappear during the transient state and in the first 

days of the steady state at the higher loading. Six days after the 

shock, both filtrate COD in aerator #1 and the filtrate COD in the 

effluent clarifier decreased to 55 and 45 mg/1 on average, respectively. 
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The color, after maintaining steady state at the feed concentration of 

3000 mg/1, changed from milky to yellowish-brown. The performance of the 

system at Si of 3000 mg/1 is shown in Figure 12 (middle portion). The 

mean steady state values are recorded in TAble VI, line 32. The effluent 

filtrate COD varied from 25 to 85 mg/1, with an average of 45 mg/1. It .· 

is interesting to point out that 80D5 analyses were made during the 

steady state run on a regular basis. An average value of 27 mg/1 80D5 
was recorded for the clarifier effluent. It is interesting also to note 

again that values of ~R were relatively smaller than ~e (average SR = 22 

mg/1). This observation attests to the fact that the residual COD in 

the effluent is subject to further removal. The biological solids con

centration in aerator #1 ranged from 2856 to 3148 mg/1, with an average 

of 3018 mg/1, which is very close to the average observed previously 

under the same conditions (X= 3095 mg/1, Table VI, line 7). Settling 

tests were conducted and showed a sludge volume index (SVI) of 210, 

which is higher than that usually considered to be desirable, but the 

biomass was still showing fair settling results. Excess sludge pro

duction, Xw, ranged from 9980 to 11,220 mg/day, with an average of 

10,630 mg/day. 

After monitoring the system for steady state for about six days, 

the system was shockec;l again by decreasing the feed concentration to 

500 mg/1. This type of shock did not produce any deleterious effect on 

either the clarifier supernatant or on the filtrate COD in aerator #1. 

The only change was a decrease in the biological solids concentration 

in aerator #1 as well as decrease in the amount of excess sludge pro

duction. A new steady state was monitored for ten days, and the average 

of the steady state data is recorded in Table VI, line 33. The 
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biological solids concentration in aerator #1 ranged from 1738 to 1970 

mg/1, with an average of 1799 mg/1. Filtrate COD in aerator #1 ranged 

from 22 to 78 mg/1, with an average of 30 mg/1. Recycle sludge was 

kept very close to 8000 mg/1, with an average of 8055 mg/1. Excess 

sludge production, XW' was in the range of 1288 to 1660 mg/day, with 

an average of 1428 mg/day. As before, filtrate COD in aerator #2 

showed an average value of 18 mg/1, which was much lower than the fil

trate COD in the clarifier effluent (Se = 42 mg/1). 

It is interesting to note the behavior of protein and carbohydrate 

content during the transient and at the high loading steady state. Both 

the concentration of protein and carbohydrate increased after appli

cation of the shock. The protein concentration increased more rapidly 

than did the carbohydrate content. This trend changed one day after 

applying the shock. The protein concentration after reaching a value of 

2000 mg/1, started to decrease while the carbohydrate concentration:was 

constant for almost a day. However, carbohydrate concentration contin

ued to increase and soon was higher than protein. It remained higher 

for a period of 35 hours, after which the protein concentration started 

to increase again and carbohydrate decreased. After returning the load

ing to 500 mg/1, the carbohydrate and protein concentrations of the cell 

returned to approximately 400 and 900 mg/1, respectively. It was close 

to the concentration observed at the previous feed of 500 mg/1 (com

pare lines 31 and 33, Table VI). 

After ten days of steady state at Si = 500 mg/1 (Table VI, line 

33), the feed concentration was increased to 1500 mg/1. The first 

noticeable effect was an increase in the biomass concentration in aera

tor #1 (Figure 13). The biomass increased steadily for two days after 



Figure 13. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 8000 mg/1 at an S; of 
500 mg/1 Quantitatively Shock Loaded by a Change 
in St Prom 500 to 1500 mg/1 and From 1500 mg/1 to 
500 mg/1 (from 10-23-75 to 11-20-75} 
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applying the shock, attaining a maximum value of almost 3000 mg/1 .. 

It was interesting to compare both biomass responses to the six- and 

three-fold increases in feed substrate concentration. If the rate of 

increase in the biological solids is approximated with linear kin

etics, the rate of the biomass increase was 100 and 32 mg/1/hr, 

respectively. It was also noticed that the biolgical solids concentra

tion took less time to reach the peak concentration when the high 

shock was applied. 

After the biomass reached a concentration of 3000 mg/1, it decreas

ed steadily. The highest value recorded for the filtrate COD in aera

tor #1, SR, was 128 mg/1. The system recovered rapidly. Total COD in 
1 

the clarifier effluent showed two peaks, 129 and 110 mg/1, while the 

filtrate COD, S , did not rise to more than 88 mg/1. The biological 
e 

solids concentration, Xe' was in the range from 8 to 45 mg/1. The fil-

trate COD in the recycle sludge for aerator #2 averaged only 11 mg/1 

during the three-day transient period. Also, the carbohydrate concen

tration in the clarifier filtrate averaged only 11 mg/1 during the 

transient period. The carbohydrate concentration of the cells followed 

the same pattern as the biomass; i.e., it increased for half a day and 

then decreased for one day while protein did not change significantly. 

Protein concentration dipped to 875 mg/1, and recovered rapidly to a 

value of 1400 mg/1. The average excess sludge production, Xw, changed 

significantly from 1428 mg/day to 4683 mg/day. This increase required 

almost three days. 

The system was operated in the steady state for seven days at the 

loading of 1500 mg/1 (Table VI, line 34). The biological solids con

centration, X, ranged from 2310 to 2482, with an average of 2,359 mg/1. 
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The BOD test was used to characterize the filtrate substrate in aera-

tor #1, SR, the effluent filtrate, S , and total clarifier effluent, 
1 e 

St. The average BOD values were 15, 8, and 28, respectively. The 

filtrate COD in aerator #1 was in the range from 32 to 72 mg/1, 

with an average of 46 mg/1. In regard to the clarifier, the filtrate 

COD, Se' was 31 mg/1, and the total COD, St, was 64 mg/1, with an 

average of 36 mg/1 biological solids concentration, Xe. The filtrate 

in the recycle line for aerator #2, SR' was 15 mg/1, again justifying 

the assumption that SR = 0 in the model. The biological solids concen

tration in the consistency tank was in the range from 7913 to 8380, 

with an average of 8090 mg/1. Excess sludge production, Xw, ranged 

from 4310 to 4716 mg/day, with an average of 4683 mg/day. Protein 

and carbohydrate were both in the normal concentration with respect to 

the total cell mass. Averages of 49 and 18 percent for protein and 

carbohydrate content were recorded. 

The feed concentration was decreased to 500 mg/1. The response of 

the system to this decrease in feed concentration was characterized by 

a decrease in biological solids concentration in aerator #1 as well as 

a decrease in excess biomass production, Xw. A new steady state 

ensued without any disruption in effluent characteristics. The aver

age steady state values are recorded in Table VI (line 35). The fil

trate COD in aerator #1, SR, did not rise, but ranged from 12 to 45, 
1 

with an average of 28 mg/1. The biological solids in aerator #1 

varied from 1724 to 1860 mg/1, with an average value of 1804 mg/1. 

The total COD in the effluent, St' ranged from 34 to 54 mg/1, with an 

average of 44 mg/1, while filtrate COD, Se, was in the range from 10 

to 30 mg/1, with an average of 24 mg/1. Biological solids, Xe' was 



112 

25 mg/1, on average, with a range from 15 to 34 mg/1. The average car

bohydrate co~tent in the effluent filtrate as measured by the anthrone 

test was 11 mg/1. The recycle sludge concentration, XR' was kept very 

close to 8000 mg/1, with an average of 8142 mg/1. Excess sludge pro

duction, Xw, varied in the range from 1291 to 1361 mg/day, with an 

average of 1342 mg/day. 

During each steady state period, samples of cells from aeration 

tank #1 were employed in batch growth studies to determine ~max' Ks, and 

Yt . The sludge yield was determined as the ratio of the weight of the 
B 

biological solids produced, ~X, and the substrate removed, ~COD, at the 

end of the removal period. The values of the biological constants for 

batch experiments during each steady state are given in Table VII 

(experiments 33, 34, and 35). The maximum specific growth rate values, 

~max' ranged from 0.46 to 0.52 hr-1, and the saturation constants 

ranged from 110 to 140 mg/1. The batch yields recorded were 0.55 in 

experiment 34, and values of 0.49 and 0.46 for experiments 33 and 35, 

respectively. 

C. Pulsing Shock Loads 

1. Cyclic Hydraulic Shock Loads With 

Constant a. 

The aim of this experiment was to study the cyclic effect of fluc

tuation in hydraulic loading during each 24-hour period. The mode of 

hydraulic cycling to which the system was subjected is outlined in 

Table VIII. Three separate hydraulic flows were employed, twas 

changed from 8 to 4 to 16 hrs. In the laboratory pilot plant these 



TABLE VIII 

RELATION BETWEEN MEAN HYDRAULIC RETENTION TIME, t, DILUTION 
RATE, D, REACTOR DILUTION RATE, D1, RECYCLE FLOW RATIO, 

a, AND REACTOR VOLUME, V t20-day run) 

Time t D Dl a v 

hours hr-1 hr-1 FR 
1 i ters T 

12M-12N 8 0.1250 0.156 0.25 1. 92 

12N-6PM 4 0.250 0.313 0.25 1.92 

6PM-12M 16 0.0625 0.080 0.25 1.92 

_, 
_, 
w 
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corresponded to flow rates F, of 4, 8, and 2 ml/min, and they were main

tained in the system for durations of 12, 6, and 6 hours, respectively 

(Figure 14). Thus, the system was exposed to three different mass load

ing rates: 3000, 6000, and 1500 mg/day of glucose during each 24-hour 

period. At the same time, recycle sludge flow rate, FR' was varied in 

order to keep the ratio between recycle flow rate and the influent flow 

rate, a, constant at 0.25. Steady state data prior to shock loading 

are not shown in Figure 15, but during the 12-day steady state period, 

the average steady state data obtained with 500 mg/1 glucose as feed and 

10,000 mg/1 XR are given in Table VI, line 24. The biochemical effi

ciency based on the average feed COD of 527 mg/1 and effluent filtrate 

COD of 10 mg/1 was 98 percent. During this run, volatile suspended 

solids determinations (VSS) were added to those usually run. However, 

they were run each two days rather than daily. During the pre-shock 

steady state, VSS ranged between 71 and 79 percent. The filtrate COD 

in the recycle sludge was only 8 mg/1. The biological solids concen

tration in aerator #1 ranged from 2041 to 2418 mg/1, with an average of 

2210 mg/1. The recycle solids concentration, XR' was controlled within 

200 mg/1 of the desired 10,000 mg/1, with an average value of 10,071 

mg/1. The average amount of excess sludge produced, Xw, was 1291 mg/ 

day. The batch growth curves were plotted to obtain the biological 

constants. The ~max value obtained was 0.5 hr-l, and the Ks value was 

217 mg/1 (Table VII, experiment 24). It was interesting to determine 

the endogenous rate of oxygen uptake of the biological solids in aera

tor #1 as well as in aerator #2. Sludge concentrations of 135 mg/1 

were placed in the Warburg apparatus. The endogenous 02 uptake of 

sludge in reactor #1 was 11 mg 02/hrjgm solids, while the endogenous o2 



Figure 14. Mode of Operatton During Cyclic Hydraulic Shock Load 
Wtth Constant q 
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uptake in aerator #2 was 7 mg 02/hr/gm solids. In another experiment 
during this steady state, values of endogenous 02 uptake in reactors #1 
and #2 were 11 and 4 mg 02/hr/gm solids, respectively. 

Figure 15 shows the behavior of the system under the cyclic shock 
load condition. It can be seen that when the dilution rate was increas-
ed at noon (twas changed from 8 to 4 hrs), the biological solids in 
aerator #1 decreased slightly, while at 6 PM, when the dilution rate was 
decreased {twas changed from 4 to 16 hrs), the solids concentration 
increased in the reactor, and when the dilution again increased at 12M 
(twas changed from 16 to 8 hrs), the biological solids decreased 
slightly. The cyclic behavior of the biological solids concentration 
in aerator #1 was recorded until the ninth day, after which a greater 
steadiness in biological solids concentration developed and continued 
until the end of the experimental run {see Figure 16). 

In Table IX, the average biomass in aerator #1, the effluent 
characteristics, recycle sludge and excess sludge production are tabu
lated for each cyclic period in the 24-hour day for the whole experi
ment. Average values for all parameters remained approximately the 
same regardless of the change in hydraulic flow. However, as seen in 
Figures 15 and 16, there was considerable variation during each day. A 
maximum of 70 mg/1 was recorded for the total effluent substrate COD, 
St. The settling characteristics of the sludge did not change dras
tically, and the solids concentration in the effluent, X , varied in 

e 
the range of 25 mg/1, with a maximum value of 50 mg/1. 

Insofar as steadiness of the system is concerned, biological sol
ids concentration, X, in the reactor was kept in the range between 2000 
and 2500 mg/1, and total effluent substrate, St' ranged between 16 and 



Figure 15. Operational Characteristics for an Activated Sludge 
Process Wtth Constant XR of 10,000 mg/1 at an S; 
of 500 mg/1 Subjected to Cyclic Hydraulic Shock 
Loading at Dtlutton Rates of 0.125, 0.25, and 
0.0625 hr-1 Every 24-hour Pertod (from 2-8-75 to 
2-18-75) 
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Figure 16. Operational Characteristics for an Activated Sludge 
Process With Constant X~ of 10,000 mg/1 at an s; 
of 500 mg/1 Subjected to Cyclic Hydraulic Shock 
Loading at Dilution Rates of 0.125, 0.25, and 
0.0625 hr-1 Every 24-hour Period (from 2-18-75 to 
2-28-75) 
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TABLE IX 

AVERAGE CYCLIC HYDRAULIC SHOCK LOAD DATA AT S; = 500 mg/1 GLUCOSE 
XR = 10,000 mg/1 AND a = 0.25 (20-day run) 

s. 
1 st se xe X XR xw 

Time mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/day 

12M.-12N 39.0 12.0 24.0 2176.0 10,175 

12N-6PM 524 39.0 13.0 26.0 2179.0 10 '137 1500 

6PM-12M 42.0 12.0 27.0 2195.0 10,117 

_, 
N 
N 
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70 mg/1. It was noticed, also that after the thirteenth day, effluent 
characteristics as monitored in terms of clarifier effluent COD, St' 
filtrate COD, Se, and supernatant solids concentr.ation, Xe' were sub
ject to less fluctuation (compare Figures 15 and 16}. Excess sludge 
production ranged from 1400 to 1600 mg/day, and appeared to be somewhat 
cyclic. On day 20, batch studies to determine ~max' Ks, and Yt were 
performed. These values were 0.5 hr-1, 131 mg/1, and 0.55, respec
tively. Average protein and carbohydrate contents for the cells were 
52 and 19 percent, respectively. It was also found that very little 
substrate was left in the recycle filtrate, SR (12 mg/1}. The volatile 
suspended solids was in the range of 70 to 75 percent. 

2. Cyclic Hydraulic Shock Loads With Varying a 

It was interesting to study in this experiment the effect of cyc
lic fluctuation in hydraulic loading along with a change in the recycle 
flow ratio, a, during a 24-hour period. The mode of hydraulic loading 
and cycling to which the system was·subjected is given in Table X. 
Three separate hydraulic retention times were employed; the changes were 
from 8 to 4 to 16 hrs. In the laboratory pilot plant these correspond 
to flow rates, F, of 4, 8, and 2 ml/min and they were maintained in the 
system for periods of 12, 6, and 6 hrs, respectively. On the other 
hand, the recycle flow ratio, a, was varied by keeping the recycle flow 
rate, FR' atone ml/min. This resulted in variation of a from 0.25 to 
0.125 to 0.50 (Figure 17). 

The system was operated for eight days under steady state con
ditions before applying the shock (Figure 18}. The feed concentration, 
s1, was 500 mg/1, recycle solids concentration was kept very close to 



Time 

12M..:12N 

12N-6PM 

6PM-12M 

TABLE X 

RELATION BETWEEN MEAN HYDRAULIC RETENTION TIME, t, DILUTION 
RATE, D,. REACTOR DILUTION RATE, D1, RECYCLE FLOW RATIO, 

a, AND REACTOR VOLUME, V l14-day run) 

t 

hours 

8 

4 

16 

D 

hr-1 

0.125 

0.250 

0.0625 

Dl 

hr-1 

0.1563 

0.2813 

0.0938 

a 

FR 
F 

0.25 

0.125 

0.50 

v 

1 i ters 

1.92 

1.92 

1.92 

..... 
N 
~ 



Ffgure 17. Mode of Operation During Cyclic Hydraultc Shock 
Load Wtth Varytng a 
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Figure 18. Operation&l Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an s. 
of 500 mg/1 Subjected to Cyclic Hydraulic Shock1 

Loading at Dilution Rates of 0.125, 0.25, and 
0.0625 hr-1 Every 24-hour Pertod With Varying a 
(from 3-28-75 to 4-7-75) 
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10,000 mg/1, which is close to the values observed in the field. In 

Table VI, line 28, the average performance characteristics of the 
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pilot plant are shown. The loading ranged from 482 to 535 mg/1 COD, 

with an average of 508 mg/1, and recycle solids concentration, XR, ranged 

from 9880 to 10,280 mg/1, with an average of 10,075 mg/1. The effluent 

filtrate COD varied from 5 to 22, with an average of 12 mg/1, and the 

filtrate substrate in the recycle biomass, SR' varied between zero and 

20, with an average of 7 mg/1. The average biological solids concen~ 

tration, ~'in aerator #1 was 2210 mg/1, ranging from 2021 to 2374 

mg/1, and the volatile suspended solids ranged from 70 to 76 percent. 

The excess sludge production, Xw, was 1222 mg/day on average, with a 

range of 1000 to 1361 mg/day. In Table VII, experiment 28, the biologi

cal constants, ll , Ks' and Yt, determined from the batch growth pat-max 
tern, are shown. The llmax value was 0.44 hr-1, the Ks value was 110 

mg/1, and the batch growth yield was 0.45. 

After determining the steady state performance, the system was 

subjected to cyclic hydraulic shock loading for almost twelve days. 

Figures 18 and 19 show the behavior of the biological solids in aerator 

#1, X, the effluent characteristics as indicated by total COD, St, 

filtrate COD, Se, and the biological solids in the effluent, Xe. The 

biological solids showed a cyclic trend with a cycling increase and 

decrease in amplitude of approximately 500 mg/1. It was noticed that 

the biological solids concentration decreased slightly in the period 

from 6 PM to 12 midnight, when f was changed from 4 to 16 hrs and a 

from 0.125 to 0.50. The fluctuation in biological solids concentration 

in aerator #1 was not accompanied by severe losses of cells and sub

strate in the effluent; however, as seen in Figures 18 and 19, the 



Figure 19. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an si 
of 500 mg/1 Subjected to Cyclic Hydraulic Shock 
Loadtng at Dtlutton Rates.of 0.125, 0.25, and . 
0.0625 hr-1 Wtth Varytn9 a Every 24-hour Period 
(from 4-7-75 to 4-17-75) 
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effluent characteristics during the cyclic shock load, as monitored by 

the total substrate COD, St' reached a maximum value of 76 mg/1, which 

. resulted in a minimum total removal efficiency of 85 percent. The max

imum filtrate COD, Se' was 40,mg/l, giving a 92 percent biochemical 

removal efficiency. During this experiment, total organic carbon deter

minations for effluent filtrate (TOC) were added to those usually run. 

However, they were run each two days rather than daily. During the 

cyclic shock, TOC ranged between 2.1 and 4.45 mg/1, with an average of 

3.5 mg/1. In Table XI, the average biomass in aerator #1, ·the efflu

ent characteristics, recycle sludge and excess sludge production are 

tabulated for each loading period in the 24-hour day for the entire 

experiment. The average values for the effluent characteristics in the 

periods 12M-12N and 6PM-12M remained approximately the same, while the 

period 12N-6PM gave slightly higher values. The average biomass in the 

period 12M-12N was higher by 200 and 300 mg/1 than in the periods 12N-

6PM and 6PM-12M, respectively. However, regardless of the changes in 

the biomass in aerator #1, on the average basis the effluent character

istics did not change drastically. Excess sludge production~ Xw, during 

the entire cycling experiment stayed fairly steady, with an average of 

1139 mg/day. On day 19, batch studies to determine J.lmax' Ks, and Yt were 
-1 . d 1 performed. These values were 0.5 hr , 285 mg/1, an 0.54, respective y 

(not recorded in Table VII). 

3. Cyclic Quantitative Shock Loads With Constant a 

Quantitative shock loads of a cyclic nature were also investigated. 

The normal 500 mg/1 standard feed solution was pumped for twelve hours, 

and a triple increase in substrate concentration was introduced into the 



Time 

12M-12N 

12N-6PM 

6PM-12M 

TABLE XI 

AVERAGE CYCLIC HYDRAULIC SHOCK LOAD DATA AT S; = 500 mg/1 
GLUCOSE, XR = 10,000 mg/1 AND WITH DIFFERENT VALUES 

OF RECYCLE FLOW RATIO, a (14-day run) 

s. 
1 st se xe X XR 

mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 

525 32.0 13.0 15.0 2426.0 10 '136 

525 45.0 20.0 26.0 2249.0 10,104 

525 33.0 13.0 16.0 2147.0 10 '177 

xw 
mg/day 

1139.0 

__, 
w 
w 
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reactor for the rema1n1ng 12-hour period. The feed dilution rate, D, 

was kept constant (D = 0.125 hr-1) during the 24-hour period as well as 

t~e recycle flow ratio (a.= 0.25). The mode of quantitative cycling to 

which the system was subjected is entered in Table XII. The mean 

hydraulic retention time was eight hours during the entire run. The 

feed flow rate applied to the pilot plant was 4 ml/min, while the 

recycle flow rate was one ml/min (Figure 20). 

Before administering the new quantitative shock load, a steady 

state was maintained for twelve days (in the interest of brevity, not 

shown in Figure 21). The recycle solids concentration, XR' at which 

the behavior of the system was tested during this experiment, was 

10,000 mg/1. In Table VI (line 29), the average performance character

istics of the pilot plant for an Si loading ranging from 492 to 541 

mg/1 COD and recycle biological solids concentration ranging from 9814 

to 10,140 mg/1, with an average of 10,008 mg/1, are recorded. Ammonia 

in the feed was in the range from 48 to 60 mg/1, with an average of 52 

mg/1. The total effluent COD, St' was in the range from 21 to 38 mg/1, 

with an average of 29 mg/1, and the biological solids in the effluent 

was in the range from 10 to 25 mg/1, with an average of 17 mg/1. The 

effluent filtrate COD varied from 4 to 14, with an average of 10 mg/1, 

while the 5-day BOD samples indicated lower values ranging from zero to 

12 mg/1. Ammonia in the effluent was in the range from 30 to 38 mg/1, 

and TOC ranged from 1.4 to 8.6 mg/1. The percent volatile suspended 

solids was in the range from 68 to 78, with an average of 74 percent. 

Nitrate was determined for the filtrate effluent, and very low concen

trations were observed, varying between zero and 3 mg/1. Protein and 

carbohydrate contents of the sludge averaged 40 and 23 percent, 



TABLE XII 

RELATION BETWEEN FE~D SUBSTRATE CONCENTRATION, S;, HYDRAULIC 
RETENTION TIME, t, DILUTION RATE, D, REACTOR DILUTION 

RATE, D1, AND RECYCLE FLOW RATIO, a (17-day run) 

Time 

12M-12N 

12N-12M 

s. 
1 

mg/1 

500 

1500 

t 

hours 

8 

8 

D 

hr- 1 

0.125 

0.125 

Dl 

hr-1 

0.15625 

0.15625 

a 

FR 
F 

0.25 

0.25 

__. 
w 
U1 



Ptgure 20. Mode of Operation Durtng Cyc1tc Quantttattve Shock 
Load 
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respectively. The average biological solids concentration in this 

steady state was 2204 mg/1, with a range from 2048 to 2304 mg/1. The 

excess sludge production, Xw, was 1316 mg/day on average, and was rel

atively steady throughout the run. The cyclic quantitative shock load 

was imposed for seventeen days. Table XII and Figure 20 show the oper

ational parameters and cyclic schedule during any given 24-hour period. 

The system biomass fluctuated in a cyclic manner every day. In Figures 

21 and 22 it is seen that the biological solids concentration increased 

in response to the three-fold increase in substrate concentration, and 

decreased upon decreasing the feed substrate concentration to 500 mg/1. 

It should be noted that although the inflowing feed concentration was 

changed abruptly from 500 to 1500 mg/1 glucose, the 12-hour cyclic per

iod was not long enough to have permit~ed complete dilute-in of this Si. 

For a feed COD of 1590 mg/1 (due to 1500 mg/1 glucose), the S in the 

reactor, were it not removed by the cells, could attain a value of 1590 

(lla) = 1272 mg/1. In twelve hours, 1200 mg/1 concentration according 

to the theoretical dilute-in curve could attain a value of 1200 mg/1 and 

would follow the course of the dotted line shown in the top graph of 

Figures 21 and 22. The dotted lines are shown simply to given an idea 

of the rate at which the loading came on and off the system. The dif

ference between the maximum and the minimum biological solids concen

trations during the day was 300 mg/1. This difference in biomass con

centration was observed for almost twelve days, after which a 200 mg/1 

difference was recorded. The total effluent COD, St, showed a maximum 

value of 70 mg/1, while the filtrate effluent substrate COD, Se, did 

not rise higher than 26 mg/1. It was interesting to note that there was 

a greater steadiness in effluent characteristics after the fifth day, 
I 



Figure 21~ Operational Charactertsttcs for an Activated Sludge 
P·rocess Wi'th Constant XR of 10,000 mg/1 at an S; 
of 500 mg/1 Suojected to Cycl tc Quantttattve Shock 
Loadtng.of 500 and 1500 ~g/1 Every 24~hour Pertod 
(froni 5-2-75 to 5-10-75l 
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Figure 22. Operational Characteristics for an Activated Sludge 
Process Wtth Constant XR of 10,000 mg/1 at an Si 
of 500 mg/1 Subjected to Cycltc Quantitative Shock 
Loadtng at an s1 of 500 and 1500 mg/1 Every 24-
nour Period (from 5-10-75 to 5-19-75) 
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and the trend continued until the end of the experimental run. After 

the fifth day of operation, the total effluent COD, St' did not rise to 

a value more than 40 mg/1. A few samples were checked for the filtrate 

COD, SR, in aerator #1. They were approximately the same values 
1 - . 

obtained in the effluent filtrate COD:~ Se. The recycle sludge concen-

tration was very close to the desired 10,000 mg/1. The excess sludge 

produced per day was in the range of 3100 to 3300 mg/day. In Table 

XIII, the average biomass in aerator #1, the effluent characteristics, 

recycle sludge and excess sludge production are tabulated for each 

applied period in the 24-hour day for the entire experiment. The aver

age values for effluent characteristics were almost the same regardless 

of the fluctuation in loading. The biomass concentration in the period 

from 12M-12N was higher by approximately 300 mg/1 than the average in 

the period 12N-12M. 

Checks for protein and carbohydrate content of the cells indicate 

fluctuation of values (not plotted in Figures 21 and 22). Excess 

sludge produced, Xw, during the cyclic experiment was two and one-half 

times the average in the previous steady state (compare values in 

Table XIII and line 29 in Table VI). It ranged from 3019 to 3306 

mg/day, with an average of 3260 mg/day. 

4. Cyclic Quantitative-Hydraulic Shock 

Loading With Constant a. 

It was decided to study in this experiment the response of the 

system to simultaneous cycHc fluctuation tn substrate and hydraulic 

loading during each 24-hour period. The mode of quantitative and 



TABLE XIII 

AVERAGE CYCLIC QUANTITATIVE SHOCK LOAD DATA AT S; OF 
500 TO 1500 mg/1 GLUCOSE, XR = 10,000 mg/1 

AND WITH CONSTANT VALUE OF RECYCLE FLOW 

s. 
1 

RATIO, a = 0.25 (17-day run) 

st se xe X XR Xw 

Time mg/1 mg/1 mg/1 mg/1 mg/1 mg/l mg/day 

12M-12N 504 · 30.0 

12N-12M 1569 29.0 

9.0 19.0 2421 10,082 

9.0 24.0 2165 10,180 
3260 

....... 
~ 
~ 
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hydraulic cycling to which the system was subjected is entered in 

Table XIV. Two hydraulic retention times were employed, t =· 8 and 4 

hrs. In the laboratory pilot plant these corresponded to flow rates, F, 

of 4 and 8 ml/min, and they were held on the system for equal durations 

of twelve hours. At the same time the feed concentration, Si, was 

increased from 500 mg/1 to 1500 mg/1 at twelve noon and was kept on the 

system for a duration of twelve hours, after which it decreased at twelve 

midnight to 500 mg/1 and was kept on the system for the remaining twelve 

hours (also see Figure 23). The recycle flow rate was changed during the 

hydraulic shock period in order to keep the ratio between the recycle 

flow rate and the inflow rate, a, constant at 0.25. On the basis of 

daily mass loading, the system was subjected to a six-fold increase dur

ing the period of twelve hours. In other words, the system was exposed 

to two different mass loading rates, 3000 and 18,000 mg/day (glucose) 

during each 12-hour period. Before subjecting the system to the hydraulic

quantitative cyclic shock load, the system was tested for steadiness with 

recycle solids concentration, XR' of 10,000 mg/1. In Table VI (line 30) 

the average performance characteristics of the pilot plant are given. 

The feed concentration, Si, ranged from 512 to 541 mg/1 of COD, with an 

average of 526 mg/COD. The steadiness of the system in this' pre-shock 

state is shown by the effluent characteristics, as well as by the biolog

ical solids concentration X (see Figure 24). The effluent COD, Se, 

varied from 4 to 20 mg/1, with an average of 9 mg/1, while the 5-day BOD 

in the supernatant ranged from 5 to 10 mg/1, with an average of 8 mg/1. 

The biological solids concentration, X, ranged from 2154 to 2344 mg/1, 

with an average of 2247 mg/1. The range in which recycle sludge, XR' 

varied was from 9889 to 10,204 mg/1, and the filtrate, SR, in reactor #2 



TABLE XIV 

RELATION BETWEEN FEED SUBSTRATE CONCENTRATION, Si, HYDRAULIC 
RETENTION TIME, t, DILUTION RATE, D, REACTOR DILUTION 

RATE, D1, AND RECYCLE FLOW RATIO, a (18-day run) 

-s. 
1 

t D Dl a 

-1 hr-1 
FR 

Time mg/1 hours hr T 

12M-12N 500 8 0.125 0.15625 0.25 

12N-12M 1500 4 0.250 0.3125 0.25 

.. 

__, 
~ 
0'\ 



Figure 23. Mode of Operation During Cyclic Hydraulic ... 
Quantitative Shock Load 
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Figure 24. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an S; 
of 500 mg/1 Subjected to Cyclic Hydraulic and 
Quantitative Shock Loading by Changes in D and Sj 
From 0.125 to 0.25 hr-1 and From 500 to 1500 mg/1, 
Respectively, Every 24-hour Period (from 5-28-75 
to 6-4-75) 
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ranged from zero to 14 mg/1. Excess sludge production, Xw, was 1288 
mg/day on the average, and was relatively steady throughout the run. 
Protein and carbohydrate contents of the cells were 51 and 20 on aver
age. The volatile suspended solids ranged from 69 to 78 percent. 

The hydraulic-quantitative cyclic shock load was administered for 
15 days (Figures 24 and 25). The top graph of Figures 24 and 25 shows 
the influent substrate concentration, Si. The dotted lines show the 
course of mass loading in mg glucose/hr. This curve is plotted to pro
vide a picture of the changes in loading conditions. The system bio
logical solids concentration fluctuated in a cyclic manner each day. 
The biological solids increased in response to the increase in sub
strate and hydraulic flow rate, and decreased when the flow rate and 
substrate concentrations were decreased. During the first four days 
there was a cyclic but generally rising trend in solids concentration. 
The net result at the end of the fourth day of shock was an increase in 
concentration of biological solids in aerator #1 to a value of 3200 

mg/1. During the first six days of shock, effluent COD, St' did not 
rise above 70 mg/1. The highest filtrate effluent COD, Se, was 26 mg/1. 
The biological solids concentration continued to fluctuate for another 
seven days, with an amplitude of 500 mg/1. On the twelfth day of the 
cyclic shock, the biomass in aerator #1 began to fluctuate in a narrower 
range of 300 mg/1 until the end of the experiment. In general, the 
biomass behaved like a sine curve from the 12th to 17th days with high 
and low peaks of 2960 and 2550 mg/1, respectively. During the last nine 
days of the run, the total effluent COD, St, was excellent and, in gen
eral, did not rise above 40 mg/1. The biological solids, Xe' was 32 
mg/1 on average. Daily excess sludge production, Xw, was on average 



Figure 25. Operational Characteristics for an Activated Sludge 
Process With Constant XR of 10,000 mg/1 at an S; 
of 500 mg/1 Subjected to Cyclic Hydraulic and 
Quantitative Shock Loaying by Changes in D and Sj 
From 0.125 to 0.25 hr- and From 500 to 1500 mg/1, 
Respectively, Every 24-hour Period (from 6-5-75 
to 6-14-75) 
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3300 mg/day, and was steady during the entire experiment. 

In Table XV, the average biomass in aerator #1, the effluent char

acteristics, recycle sludge and excess sludge production are tabulated 

for each applied period in the 24-hour day for the entire experiment. 

The average biomass concentration in the period from 12M-12N was 200 

mg/1 more than in the period 12N-12M. The effluent characteristics as 

monitored by St, Se, and Xe remained almost the same, regardless of the 

changes in hydraulic flow and the feed concentration. 

D. Steady State Results 

A summary of all steady state continuous flow data collected 

between shock load experiments has been given in Table VI. The values 

given for various parameters in this table are averages obtained from 

individual determinations in steady state operation plotted in Figures 

4 through 24. The total number of steady states examined was thirty

eight, and the period for each run is indicated by the date of beginning 

and ending in two separate columns. In each period, samples were taken 

at least daily, and often more frequently; the runs are arranged chrono

logically. Although most of the runs were made at the same dilution 

rate, the variations of XR and Si provided a rather wide range of values 

of ~n (and its reciprocal, ec)' and it can be seen that at any ~n 

employed, the system operated at better than 92 percent efficiency· 

throughout this investigation based on filtrate COD and was, for the 

most part, above 90 percent removal based on supernatant COD. It is . 

also seen that very little carbohydrate was left in the filtrate efflu

ent. Anthrone test results showed a maximum of 28 mg/1 in the filtrate 

effluent, which represents about 99 percent removal of the original 



TABLE XV 

AVERAGE CYCLIC HYDRAULIC-QUANTITATIVE SHOCK LOAD DATA AT S; 
OF 500 to 1500 mg/1 GLUCOSE, Xe = 10,000 mg/1, AND 

WITH CONSTANT VALUE OF RECYGLE FLOW RATIO, 

Time 

12M-12N 

12N ... 12M 

S; 

mg/1 

522 

1530 

a = 0.25 (17-day run) 

st 

mg/1 

35 

38 

se 

mg/1 

10.0 

11.0 

xe 

mg/1 

26 

27 

X XR 

mg/1 mg/1 

2888 10,146 

2704 10,083 

xw 

mg/1 

3317 

__, 
0'1 
0'1 
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carbohydrate (Table VI, line 32). The quality of the clarifier super-

natant is expressed in terms of total COD, BOD, and biological solids 

concentration. The purification efficiency based on Si was as high as 

98 percent, and as low as 83 percent. The low removal efficiency was 

due to the effect of poor settling of the biomass as a result of pre

vious severe hydraulic shock loading (lines 22 and 37). BOD values were, 

in general, very low; the highest recorded values were for steady 

states following rather severe shock loads (see lines 32, 34, and 38). 

The average values of X were dependent on the concentration of recycle 

sludge, XR; e.g., steady states at lines 18, 9, 21, 1, and 15 were 

obtained with recycle sludge concentrations of 15,000, 12,000, 10,000, 

8000, and 6000 mg/1, respectively, and the corresponding biological 

solids concentrations in aerator #1 were 3115, 2513, 2200, 1766, and 

1421 mg/1. The feed concentration, s., also affected the biological 
1 

solids concentration, X, in aerator #1. For example, comparison of 

biological solids concentrations for runs #3, 4, and 7, which were made 

with approximately 8000 mg/1 XR and Si loadings of 500, 1500, and 3000 

mg/1, reveals values of X of 1776, 2237, and 3095 mg/1, respectively. 

Dilution rate, D, exerted only a slight effect on the biological solids 

concentration, X. For example, comparison of lines 12, 14, and 13, 

which represent operation with approximately 8000 mg/1 XR and Si load

ing of 500 mg/1 with values of D ranging from 0.125 hr-1 (lines 12 and 

14) to 0.25 hr-1 (line 13), reveals values of 1775, 1760, and 1794, 

respectively. During all steady state runs, the filtrate COD of the 

recycle sludge, SR' was negligible compared to feed COD. The protein 

content of the sludge ranged from 40 to 53 percent, while carbohydrate 

content varied between 16 and 26 percent. The excess sludge production, 



157 

Xw, mg/day was affected by three parameters. First, when the feed con

centration, Si, was constant (500 mg/1) and the recycle sludge concen

trations were varied at 15,000, 12,000, 10~000, 8000, and 6000 mg/1, 

respectively (lines 18, 9, 21, 3, and 15), the amounts of excess sludge 

production, Xw {mg/ day) were 1120, 1140, 1280, 1416, and 1430 mg/ day. 

Thus, XW decreased with increasing XR. Second, when the recycle sludge 

concentration, XR, was held constant at 8000 mg/1 and the feed concen

tration, Si, was varied at 500, 1500, and 3000 mg/1 (lines 3, 4, and 7), 

excess sludge production, Xw, was 1416, 4850, and 10,272 mg/day. Third, 

when Si and XR were both constant at 500 and 8000 mg/1, respectively, 

and diluti.on rate, D, was varied between 0.125 and 0.25 hr-l (lines 3 

and 13), Xw was 1416 and 2502 mg/day, respectively. Thus, Xw is 

decreased by increasing XR' and increased by increasing Si and D. 

The results of batch growth studies conducted using cells obtained 

during different steady state operations were given in Table VII. This 

table gives the biological constants, ~m , K , and Yt , at each steady ax s 8 
state growth rate, ~n· Bracketed results, e.g., experiments 3, 4, and 

5, indicate results using cells taken from initial, new, and return to 

initial steady state during step change experiments. It is seen thus, 

in general, the pre- and post-shock steady state net growth rates were 

the same; that is to say, the operational conditions did essentially 

determine the net growth rate. This, in turn, indicates the relative 

constancy of the biological constants and/or the overriding effect of 

the selectable operational parameters. Analyses of these related data 

indicate there were no drastic differences in the biological constants 

in the initial and post-shock steady states. It can also be seen that 

experimental runs carried out under the same operational conditionsrutat 
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widely different times gave rather close values of ~n· 

Examination of the relationship (if any) between ~n and the bio

logical constants obtained in batch culture is best facilitated by 

making plots of ~n vs. 

Figures 26, 27, and 28. 

~max' Ks' and Yt8. Such plots are shown in 

It is seen in Figure 26 that there was a slight 

increase in ~max as ~n increased; however, no trend was observed for Ks 

(Figure 28). It is seen in Figure 27 that the true cell yield, Yt , 
8 

decreased with decreasing net growth rate, ~n· 

It was of interest to study the effect of temperature on the bio-

logical constants, ~max' Ks' and Yt. Batch growth studies were conduct

ed on cells taken from aerator #1 during the period 4-20-75 to 5-1-75 

(see Table VI, line 29). Experiments were controlled at 30°, 25°, and 

20°C. Figures 29, 30, and 31 are the plots of the batch growth pattern 

and relationship between ~ and S0 determined from the controlled temper

ature growth experiments. The ~max values were 0.5, 0.46, and 0.42 hr-l 

at temperatures of 30°, 25°, and 20°, respectively. The batch yield 

values were .52, 0.49, and 0.46, respectively. The saturation constant 

values, Ks' were 278, 270, and 300 mg/1. The values of Ks were higher 

than those usually observed, though they were not abnormally high. 



Figure 26. Relation Between Maximum Specific Growth Rate, 
~max and Net Specific Growth Rate, ~n 
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Figure 27. Relation Between Saturation Constant, K5 , and Net 
Specific Growth Rate, ~n 
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Figure 28. Relation Between Cell Yield, Yt , and Net Specific 
Growth Rate, Pn B 
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Figure 29. Batch Growth Curves at Various Initial Substrate 
Concentrations at 30°C and Relationship Between 
1.1 and S0 for Cells Harvested From the Activated 
Sludge Pilot Plant Operating at an S; of 500 
mg/1 and XR of 10,000 mg/1 

The ~max and Ks Values Obfained From Plot of 
1/~o vs. l/S0 are 0.5 hr- and 278 mg/1, 
Respectively 
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Figure 30. Batch Growth Curves at Various Initial Substrate 
Concentrations at 25°C and .Relationship Between 
" and s0 for Cells Harvested From the Activated 
Sludge ~tlot Plant Operating at an s1 of 500 
mg/1 and XR of 10,000 mg/1 

The ~max and K5 Values Obfained From Plot of 
lNo vs. 1/S0 are 0.46 hr- and 270 mg/1, 
Respectively 
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Figure 31. Batch Growth Curves at Va~ious Initial Substrate 
Concentrations at 20°C and Relationship Between 
~ and S0 for Cells Harvested Prom the Activated 
Sludge Pflot Plant Operattng at an St of 500 
mg/1 and XR of 10,000 mg/1 

The ~max and Ks Values Obtained From Plot of 
1/~0 vs. l/S0 are 0.42 hr-1 and 300 mg/1, 
Respectively 
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CHAPTER VI 

DISCUSSION 

The aim of this investigation was to study the behavior of the 

activated sludge process model with constant XR under shock loading 

conditions as well as to gain more information on the performance of 

the model under various modes of steady operation. Three types of 

shocks were applied to test the system response. 

The first type was hydraulic shock loads under conditions of con

stant influent organic concentration. Upon increasing the dilution 

rate, the amount of organic matter entering the system in a given time 

increased as the dilution rate increased, and decreased for loads 

involving a decrease in dilution rate. This type of shock was applied 

in order to determine the magnitude of changes which could be admin

istered without causing a long-lived or serious deleterious response 

with respect to substrate leakage or solids loss. 

The second type of shock applied was the quantitative shock load. 

This involved a step change in Si. It was of interest to compare this 

type of step change with the hydraulic shock and to compare both 

responses for this recycle system with results for once-through sys

tems obtained previously in these laboratories. 

The tmrd type of shock was administered as a change i.n flow rate 

or feed concentration, or a combination of both, during each 24-hour 

period. 

171 
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The fourth aspect of the results discussed in this chapter is the 

steady state behavior of the model at various steady operational modes 

before and after step changes in loading conditions, as well as aver .. 

age response during cyclic loading. 

A. Hydraulic Shock Loads 

Results of the hydraulic shock loading studies were shown in 

Figures 4 through 9. Figures 4 and 5 show the results of similar 

shock loadings consisting of a four .. fold fncrease in hydraulic flow·· 

rates. This 300 .. percent increase in dilution rate was seen to disturb 

effluent quality approximately to the same extent in both experiments, 

although they were accomplished ten months apart. Thus, the response 

appears to be, in general, a reproducible one regardless of the chang .. 

ing ecological character of the biomass which one expects for hetero .. 

geneous populations. The system did appear to attain the new steady 

state more rapidly in the run shown in Figure 4 than in that shown in 

Figure 5, but the effluent COD was approximately the same in each case. 

It is interesting to compare the filtrate COD in aerator #1 with that 

in the clarifier effluent. It is obvious that the clarifier served in 

some small capacity as a reactor for removal of soluble substrate. 

The amount of soluble substrate leaked from aerator #1 during the 

transient phase {area under the filtrate COD curve) was 8550 mg COD, 

and the amount of soluble substrate tn the clarifier effluent was 4000 

mg COD. Thus, more than 50 percent of the soluble substrate coming 

from aerator #1 was biologically removed in the clarifier. 

The fact that the biological solids concentration was increased 

only slightly in the final steady state after the step increase in 
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dilution rate shows that XR exerts the major control over X. The small 
increase in X was due to the increase in ~n caused by the increase in 
D (see equation 11). If X had remained the same before and after the 
four-fold step increase in flow rate, then ~n would have increased four
fold. However, ~n is also dependent upon the biomass concentration, X. 
The value.of X is expected to be higher at the new steady state because 
the increase in ~n due to increased D lessens the effect of the auto
digestive constant, kd. Thus, the increases in ~n for experiments 
shown in Figures 4 and 5 were in the range of five- to six-fold rather 
than four-fold (see Table VI, lines 22 and 37 for ~n values}. These 
results are consistent with the maintenance concept, i.e., as specific 
growth rate increases, the observed yield, Y0 , increases. 

Analysis and, indeed, determination of the rate at which the 

specific growth rate, ~, or net specific growth rate, ~n' makes the 
transition from former to new steady state is rather complicated and . 
more data than those obtained during this investigation would be neces-
sary. One of the complicating aspects would appear to be that specific 
growth rate must have gone down before it went up. This seems apparent 
from analysis of the changes in biomass concentration and composition 
in the transient state. In both Figures 4 and 5, it is seen that X 
attained a low transient value approximately equal to that contributed 
solely by XR (10,000 x l~a = 2000 mg/1). Also, drastic changes in pro
tein and carbohydrate took place. Protein content decreased from aver
age values of 47 and 51 percent (Figures 4 and 5) to low values of 39 
and 36 percent during the transient phases. Carbohydrate content 
increased from pre-shock average values of 22 and 17 percent to maximum 
values of 25 and 35 percent. 
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It would appear from the decrease in protein content as well as 

the low biomass concentration that the shock seriously curtailed 

growth. However, it is obvious that the biomass removed the substrate 

and that it was channelled largely into carbohydrate. 

The experiments shown in Figures 6 through 9 were accomplished to 

assess the effect of XR on response to hydraulic shock. The first 

experiment was that shown in Figure 8 with XR of 12,000 mg/1. The step 

change was an increase in D from.O.l25 to 0.25 hr-1. There was a slight 

disruption in effluent quality, a decrease in protein, and an increase 

in carbohydrate content. It was estimated that a decrease in XR would 

increase the transient disturbance, thus the experiment shown in Figure 

7 was run at XR = 8000 mg/1. Approximately the same concentrations of 

St, Se, and Xe were obtained; however, the transient phase lasted for a 

longer period of time. An experiment was then carried out at XR = 6000 

mg/1 (Figure 6), and again the maximum transient leakage in the effluent 

was approximately the same as for the previous two experiments. How

ever, when the system was adjudged to have attained a steady state at 

the new flow rate, the effluent quality had not returned to that of the 

pre-shock condition, whereas for the previous shock, such was the case. 

Thus, halving the XR concentration did not have a great effect on the 

magnitude of the transient leakage, but did exert some effect on the 

length of the transient phase and the behavior of the system at the 

new steady state. It was thought that an increase in XR above. the 

12,000 level would exert a steadying influence on the magnitude of 

transient disturbance, and as seen in Figure 9, it did. 

It is interesting to note that the same general trends in protein 

and carbohydrate content during the shocks from D = 0.125 hr-1 to 0.5 
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-1 . -1 
hr were evidenced for the shocks from D = 0.125 to 0.25 hr . Fur-

thermore, comparison of these results with those of George and Gaudy 

(83) for once-through systems indicates similar trends in cell composi

tion. Both results indicate that the cells do not immediately respond 

to a change in 1l imposed by the hydraulic shock. The fact that the 

biomass concentration decreased in both types of systems is evidence 

that the immediate response to the hydraulically imposed increase in 1l 

was actually a decrease in Jl, However, it is evident that the oxi-

dative assimilation capacity of the cells increased in response to the 

change in feed flux and the carbon source which was removed was chan-

nelled largely into carbohydrate. For the experiments in which D was 

doubled (i.e., D = 0.125 + 0.25 hr-1}, both the cell recycle and once-

through systems experienced only rather slight leakage of soluble sub

strate. Cell recycle did result in a lower concentration in the 

effluent, i.e., 130 mg/1 COD for the once-through vs. approximately 40 

mg/1 COD for the recycle systems. The similarity in biochemical 

response as well as substrate leakage is interesting in view of the fact 

that there was such a large difference in specific growth rate in the 

once-through and cell recycle systems. In the once-through systems, the 
. -1 

1l was hydraulically changed from 0.125 to 0.25 hr , whereas in the cell 

recycle systems of the current research, 1l changed from 0.0128 to .0322 

hr-l. Although both types of systems gave biochemical responses of simi

lar magnitude to doubling of dilution rate, the power of XR to steady 

the system is really evidenced by comparing results at the more severe 

changes in D. Figures 4 and 5 indicate that a quadrupling of D was 

rather readily handled by the system. However, for the once-through sys

tem, a somewhat less severe change (from. 0.125 to 0.44 hr-1) resulted in 
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permanent leakage of a high concentration of soluble COD. It should be 

pointed out that there was a large difference in ~ for these systems. 

In the once-through reactors,~ was changed from~= D = 0.125 to 0.44 

hr-1. The higher~ was rather clos~ to ~max (~max -.5 hr-1). However, 

in the cell recycle system, a similar change in D caused a change in ~ 

from the range 0.0131-0.0096 hr-1 to 0.0629-0.0575 hr-1. Thus, the 

recycle system was growing at a rate approximately ten times slower 

before and after the shock. 

B. Quantitative Shock Loads 

Quantitative shock load studies were presented in Figures 10 through 

13. Figures 10 and 13 showed the response to similar shock loadings con-

sisting of a three-fold increase in substrate concentration. Response 

to this 200-percent increase in substrate concentraton was essentially 

the same in both experiments, although they were run thirteen months 

apart. Thus, the response to this level of shock would appear to be 

generally expected regardless of difference in species. The system did 

appear to attain the new steady state at the same time in both figures, 

but the effluent COD shown in Figure 10 was slightly less than that in 

Figure 13. It is interesting to compare the filtrate COD in aerator #1 

with that in the clarifier effluent (Figure 13). There was no signifi

cant difference between filtrate COD in aerator #1 and the clarifier 

filtrate. 

The amount of soluble substrate leaked from aerator #1 during the 

transient phase (area under the filtrate COD curve) was 1080 mg COD, and 

the amount of soluble substrate in the clarifier effluent was 900 mg 

COD. Thus, during the transient phase, sixteen percent of the soluble 
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substrate coming from aerator #1 was biologically removed in the clar

ifier. The fact that the biological solids concentration was increased 

in the final steady state after the step increase in substrate concen-

tration shows that Si exerts a considerable effect on X. An average 

increase in biomass concentration of 500 : 50 mg/1 in the final steady 

state was recorded in both Figures 10 and 13. This increase in biomass 

was in response to an increase of feed concentration by 1000 mg/1. 

During the transition stage, the growth response to the step shock 

load is controlled primarily by the rate of increase of substrate con

centration in aerator #1 (in accordance with the Monad relationship}. 

If the rate of increase of substrate concentration cannot be balanced 

by an increased rate of solids accumulation, either by recirculation 

or production, substrate will continue to be lost in the effluent 

until the biological solids concentration does eventually attain a 

level at which the substrate removal rate comes into balance with the 

rate of feeding the substrate. It can be seen that in equation (5} 

the biomass concentration in aerator #1 is proportional to the feed 

concentration, and will have a large effect on the value of X in the 

new steady state. However~ an increase in dilution rate (i.e., 

hydraulic shock} has a lesser effect on X. A comparison of biomass 

concentration in aerator #1 (Table VI, lines 3, 4, 33, and 34, and 

Figures 10 and 13} reveals that an increase of 25 to 30 percent bio-

mass concentration occurred in response to the three-fold increase in 

Si. In the transient state, biomass concentration increased by 
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approximately 66 percent. However, this increase did not proceed at a 

rate sufficiently rapid to prevent the small leakage of substrate. 

In Figure 13, where protein and carbohydrate analyses were made, 

there was seen to be a drastic change in biomass composition. Protein 

decreased from an average of 47 to 34 percent. Carbohydrate content . 

increased from pre-shock average value of 17 to a maximum value of 30 

percent during the transient. The decrease in protein indicates that 

synthesis of new cells slowed down while the increase in carbohydrate 

indicates that the substrate removed by the biomass was channelled 

largely into non-nitrogenous oxidative assimilation products. 

The responses to a six-fold increase in feed concentration were 

shown in Figures 11 and 12 and, as for the three-fold increase, the 

results were similar even though the experiments were conducted thir

teen months apart. However, there were differences in effluent char

acteristics with respect to Se and Xe. In Figure 11, Xe increased 

faster than Se, while an opposite effect was evidence in Figure 12. It 

is interesting to compare the filtrate COD in aerator #1 with that in 

the clarifier effluent. It is obvious that some biological action took 

place in the clarifier {Figure 12). The amount of soluble substrate 

from aerator #1 during the transient phase (area under the filtrate COD 

curve) was 4440 mg COD, and the amount of soluble substrate in the 

clarifier effluent was 3550 mg COD. Thus, 20 percent of the filtrate 
COD coming from aerator #1 was biologically removed in the clarifier. 

In contrast to the response to the 200 percent increase in feed concen

tration (Figure 13), the use of an X of 8000 mg/1 did not provide a R 
high degree of protection against the 500 percent shock load. It is 

interesting to note that the same general trends in protein and 
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carbohydrate content during shocks for Si = 500 mg/1 to Si = 1500 mg/1 

were evidenced for the shocks at Si = 500 mg/1 to Si = 3000 mg/1. Fur

thermore, comparison of these results with those of Krishnan and Gaudy 

(80) for once-through and cell recycle systems indicates some similar

ity, but there appear also to be significant differences. They 

reported, for both once-through and recycle systems, that there was a 

fairly rapid increase in both protein and carbohydrate after shock was 

applied. The concurrent increase in both protein and carbohydrate con

tent indicated that the response was one of balanced growth; that is to 

say, there was no disproportionate synthesis of nonproteinaceous 

material, e.g., carbohydrate, during the early portion of a successful 

response. This was not the case in the present study, since there 

is evidence (the rapid increase in carbohydrate) that oxidative 

assimilation accounted for most of the increased biomass in response to 

the change in feed concentration. It is known that oxidative assimi

lation of substrate into non-nitrogenous synthesis products can occur 

readily and that it is most clearly manifested at high biological sol

ids concentrations (87). In the current study, the ratio of s1 to X 

was much lower than in the study previously cited. Thus, it would be 

expected that oxidative addimilation would play a more evident role in 

shock 1 oad response in the current study. 

In the current studies, the response to quantitative shock was less 

severe with respect to substrate leakage than in the study made by 

Krishnan and Gaudy. It is believed that the reason is related to the 

higher concentration of X caused by the higher XR. The higher XR led 

to lower values of specific growth rate, ~· Whether the better 

response was due to higher biomass concentration or due to some 



beneficial effect of slower specific growth rate cannot be decided 

based upon the experimental results. Regardless of the specific 
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reason, it must be concluded that there is a practical relation between 

ability to take shock and th~ value of XR employed in the system. The 

studies were not exactly comparable because different S; values were 

employed. However, comparing results for an increase in Si of 200 per

cent, the COD in the filtrate attained a transient value of 150 mg/1 in 

the study of Krishnan and Gaudy, but reached only 40-80 mg/1 in the 

current study. The values of specific growth rate prior to the shock 

were 0.046 and 0.0165 hr-l, respectively, and the recycle solids con

centration was approximately one-fifth of that in the current study. 

The most severe shock in the study of Krishnan and Gaudy was a five

fold increase (1000 to 5000 mg/l Si), and the maximum leakage of COD 

was nearly 700 mg/1. In the current study, a six-fold shock led to a 

maximum COD leakage of 300 mg/1 in one experiment, and only 100 mg/1 in 

the other. Comparable growth rates in the study of Krishnan and Gaudy 

and the current study were 0.04 and 0.016 hr-1, respectively. 

C. Cyclic Shock Loads 

The primary aim of the four studies on cyclic shocks was not so 

much to develop information to describe the transient phase response, 

but to evaluate the degree of steadiness imparted by operation at con

stant XR under cyclic hydraulic, quantitative, and combined loading 

conditions. Forced changes in inputs for F, a, and Si were applied as 

well as combined changes in F and a and F and Si. To compare the effect 

of cyclic variations in loading on the various effluent and biomass 

characteristics, the data for steady state operation were compared with 
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the average values of the parameters during the cyclic loading periods; 

that is to say, the means and the central tendency around the means 

were compared for both types of operation. In addition to making sta

tistical comparisons of pre- and post-cyclic shock operations for the 

four individual runs, statistical analyses for all steady state data 

obtained with the same base line operational conditions were made and 

compared with the data for cyclic operation. 

The results of the statistical analyses are shown in Table XVI. 

In all cases, the pre-shock steady state operational conditions were as 

follows: Si = 500 mg/1 glucose, XR = 10,000 mg/1, a= 0.25, and D = 

0.125 hr-1. The first four sets of data {identified by figure numbers) 

show the pre-shock values for the individual runs, whereas the fifth 

set of data shows the results for the four runs and an additional five 

steady states {see Table VI, lines 21, 23, 24, 36, and 38). It is noted 

that by including all steady state values, the number of samples from 

both the steady and cyclic operations are approximately equal. 

It is apparent from comparison of the results under steady and 

cyclic loading that the effluent quality {St, Se' Xe) was essentially 

the same with respect to mean, coefficient of variation, and range. 

Thus, it seems reasonab 1 e to conclude that the capacity of the mode of . 

operation with constant XR to accommodate cyclic perturbance was not 

exceeded in this study. The system could safely accommodate a two-fold 

cyclic hydraulic shock with constant a. Also, the system could accom

modate this magnitudeof cyclic shock with changes in recycle flow 

rate, i.e., with variable a. Also, it withstood successfully a three

fold cyclic change in Si and quite significantly, a six-fold increase 

in mass loading rate under conditions of concurrent quantitative and 

hydraulic cyclic shock. 
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VARIATION AND RANGE OF VALUES FOR MEAN EFFLUENT CHARACTERISTICS, BIOMASS CONCENTRATION rN AERATOR #1, RECYCLE SOLIDS CONCENTRATION, 
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D. Steady State Evaluation 

Examination of the performance characteristics at various organic 

loadings, Si, hydraulic loadings, D, and recycle solids concentrations, 

XR, of the activated sludge pilot plant employing constant XR, indi

cates that the system delivered excellent effluent with respect to COD 

(both filtrate and total) and biological solids concentration, Xe. 

Also, the few determinations of 5-day BOD indicated high purification 

efficiency (see Table VI). The biochemical removal efficiency based 

on effluent filtrate COD in all of the runs made, on average, was 95 

percent or better, and based on total or supernatant COD, the bio

chemical removal efficiency was 90 perc~nt or better, except for three 

steady state runs where the solids in the effluent were slightly 

higher. The supernatant COD in the latter three cases was in the 

range of 83 to 87 percent purification (lines 37, 16, and 22), while 

the supernatant BOD for lines 16 and 37 was only 14 mg/1. Thus, the 

effluent was, on the average, very good and efficiency of substrate 

removal was high. Especially interesting was the capability of the 

system to attain a high degree of effluent quality in the new steady 

state after a significant increase in Si. 

Another important parameter in evaluating the steadiness of a 

model is the biological solids concentration, X, in the aeration tank. 

From the standpoint of testing the steadiness of the model, X is a 

more sensitive parameter than is S. A close examination of the plots 

of steady state aerator biological solids concentration, X, reveals 

that it did not fluctuate over a wide range during any loading, but 

remained steady within a very narrow range. Table XVII shows 
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statistical analyses for the 38 steady state runs. It can be seen that 

all of the coefficients of variation were rather low for X as well as 

for the other parameters. In addition, runs made under similar oper

ational and loading conditions were summed for statistical analyses. 

It is apparent from the results that concentration of solids in 

the reactor is dependent mainly on the concentration of recycle sludge 

XR. The second factor that controlled the value of X but to a lesser 

extent, was Si. The third factor which exerted some (but only a slight) 

control on X was the dilution rate, D. It should be noted that recycle 

flow ratio, a, was constant at 0.25. This parameter can also exert 

an effect on X. Analyses of the steady state plots of X at any loading 

before or after shock show beyond doubt that XR is the main variable 

which controls and helps to maintain the system in a new steady state 

with minimum fluctuations. 

In addition to analyzing the steadiness of the model in terms of 

S and X, it is also appropriate to analyze the parameters that lead to 

this steadiness, that is, the recycle solids concentration, XR. The 

nominal XR concentrations used were 6000, 8000, 10,000, 12,000, and 

15,000 mg/1, and it is seen that XR was held very close to these con

centrations. It can be seen also that it was possible to control the 

recycle sludge concentration at a value approximately equal to the 

desired concentration for rather long operational periods. In most 

cases, th~ range observed was ~ 500 mg/1 at higher XR, and~ 200 mg/1 

at lower XR values. 

Since XR is held constant, i.e., is relatively independent of 

responses in the system, aerator #2 served during hydraulic and quanti

tative shock load experiments as a ready store or supply of biological 
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solids to aerator #1, thus aiding the system in approaching the new 

steady state. The steadying effect of using aerator #2 as a biochem

ical dosing tank for aerator #1 was also evident during the cyclic 

shock experiments. 

The filtrate .COD in aerator #2 was extremely low, and this agreed 

with assumptions made in the derivation of steady state equations for 

~ and S that the substrate concentration in the recycle sludge, XR' is 

negligible (1). This assumption was valid during all steady states 

before and after shock loading (see Table VI). In addition, values for 

SR during transients in response to all shock loadings indicated SR 

values approximately the same as the average values shown in Table VI 

for the pre- and post-shock steady states. 

Excess sludge production, xW.' is one of the most important para

meters in designing waste treatment facilities, and it is seen in Table 

XVII that sludge production remained very steady during each run. 

Furthermore, there was also considerable steadiness in daily sludge pro

duction during the cyclic shock load studies. The amount of excess 

sludge production is related to the net specific growth rate, ~n' in 

accordance with equation (9). It is important, therefore, to examine 

the parameters which affect the net specific growth rate. In accord

ance with equation (11), these are D, a, XR' and X. The first three 

are selectable operational parameters, and X is a consequence of these 

parameters and the biomass constants, as well as Si. In the current 

study, a was maintained at 0.25, and the biological constants remained 
' 

fairly constant. Thus, one can select random data from the 38 steady 

state runs (see Table VI) to determine if the experimental results 

bear out the model equations. For example, comparing lines 18, 9, 25, 
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5, and 17, the effects of recycle sludge concentration on ~n can be 

seen. All of these runs were made at the same loading conditions (Si' 

concentration, XR: 15,000, 12,000, 10,000, 8000, and 6000 mg/1. The 

corresponding growth rates were 0.0063, 0.0066, 0.0129, 0.0153, and 

-1 ( -1) 0.0214 hr 0.15, 0.159, 0.310, 0.369, and 0.514 day . Thus, a 

decrease in XR from 15,000 to 6000 mg/1 caused more than a three-fold 

increase in ~n· The factor exerting the second most significant effect 

on ~n was Si. In lines 5, 34, and 7 (Table VI), the recycle cell con

centrations were approximately 8000 mg/1, and Si values were 500, 1500, 

and 3000 mg/1 glucose, respectively. The corresponding ~n values were 

-1 ( -1) 0.0153, 0.0492, and 0.0742 hr 0.367, 1.18, and 1.78 day . Thus, 

an increase in s1 from 500 to 3000 caused a five-fold increase in ~n· 

The third most significant factor which affected the value of ~n was 

the dilution rate, D. Comparison of any of the three steady state 

values during each complete hydraulic shock experiment gave the effect 

of D. For example, lines 16 and 17 (Table VI) represent two steady 

states at D of 0.25 and 0.125 (Figure 6). The ~n was 0.0554 and 

0.0214 hr-l (1.33 and 0.514 day-1) at ~of 6000 mg/1. Thus a doub

ling in dulution rate, D, caused a two- to three-fold increase in ~n· 

Thus, it can be seen that an ,increase in XR decreases Xw, and an 

increase in D or Si increases Xw- These trends are borne out by both 

the model equation and the results. 

The relation between specific growth rate, ~n' and the observed 

cell yield, Y0 , for steady state runs can be seen in Figures 32 and 33. 

It is seen that cell yield decreases with decreasing ~n or increas-

ing ec. Observed cell yield is related directly to cell age, ec' i.e., 



Figure 32. Relation Between Observed Cell Yield and Net 
Speciffc Growth Rate fn Continuous Systems 
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Figure 33. Relation Between Observed Cell Yield and Cell Age 
tn Contfnuous Systems 
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the higher the cell age, the lower the observed yield, and vice versa. 

Tbis attributed to the maintenance energy requirements, i.e., the utili

zation of exogenous substrate to maintain the cells. It was found that 

Y0 is related to ~n· A decrease in growth rate was accompanied by a 

decrease in observed yield (Table XVIII). 

According to the maintenance energy theory, the fraction of 

exogenous substrate required for maintenance is minimal at high growth 

rates. Therefore, cell yield should be maximum at or near ~max· This 

yield value is defined as 11 true yield ... Thus, batch experiments where 

cells are grown at high substrate concentrations and close to ~max 

should give 11 true yield, .. (Yt }. 
B 

A comparison of Y0 at low and high ~n shows that it is in accord-

ance with the theory of mainten~nce requirements (Figures 32 and 33}. 

When cells were taken out of continuous flow pilot plants growing at a 

low ~n and tested under batch conditions, at substrate concentrations 

yielding high ~ values, they did not have a higher yield than in the 

continuous system. By comparing the last two columns in Table XVIII, 

it is apparent that Y0 was almost the same as Yt . Actually, Yt and 
B B 

~max varied with ~n' as did Y0 (Figures 26 and 27}. During thirty-

four of the steady state runs, batch growth studies were made for 

measurement of ~max' Ks' and Yt . The differences between ~n in con
B 

tinuous flow and ~max in batch ranged between a seven- and 80-fold 

increase. However, there was little or no change between Y0 and Yt 
B 

These observations are not consistent with the theory of maintenance 

energy. Gaudy and Srinivasaraghavan (2} observed the same phenomena. 

However, the results in continuous operation indicate that during 

steady state, there is a dependency of observed cell yield on the net 

j 



Line 
# 

18 
9 

11 

20 
25 
28 
3 

31 

17 
34 
7 

TABLE XVIII 

RELATIONSHIP BETWEEN SPECIFIC GROWTH RATE AND CELL YIELD UNDER 
DIFFERENT CONDITIONS OF CONTINUOUS AND BATCH GROWTH 

Specific Growth Cell Yield 
Si Rate, 1/hr mg/mg 

Glucose 
yo mg/1 lln llB 

500 0.0063 0.35 0.33 
500 0.0066 0.54 0.35 
500 0.0086 0.43 0.36 
500 0.0079 0.37 0.39 
500 0.0129 0.45 0.46 
500 0.0138 0.44 0.49 
500 0.0166 0.50 0.49 
500 0.0171 0.45 0.49 
500 0.0214 0.53 0.51 

1500 0.0492 0.52 0.60 
3000 0.0742 0.58 0.61 

yt 
B 

0.38 
0.38 
0.38 
0.40 
0.42 
0.45 

0.46 

0.50 
0.54 
0.55 
0.56 

_. 
1.0 
..j::o 
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specific growth rate or cell.age. Thus, the analytical equations 

developed for determination of Yt and kd can be used for design pur

poses. Linearization of observed yield was accomplished by employing 

two different methods. Two equations employed to determine the value 

of the "true yield," Yt' and maintenance energy coefficient, kd, are as 

follows: 

( 12) 

(13) 

Equation 12 was used by Marr, et al. (93), and equation (13) was 

used by Schulze, et al. (94). Y0 and Yt are observed and true values; 

U is the specific substrate utilization rate, day-1. The data used to 

obtain these maintenance plots are shown in Table XIX. This table 

shows values of ~n determined by different formulas: 

"n = D ( l+a-a :R) 1/day ( 11) 

where XR' X, and Xw are the average values for each parameter during 

steady state. Also, the observed yield was calculated by three 

equations: 

(9) 



TABLE XIX 

DATA EMPLOYED FOR MAINTENANCE PLOTS 

51 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Line Glucose 
~n ~n e c 

1 
U Yo Y0 Yo Y0 V.. # mg/1 

3 

4 

5 

6 

8 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 
34 

35 

36 

37 

38 

500 

500 

500 

1500 

500 

500 

0.347 0.365 2~74 0.84 

0.357 0.36 2:75 0.84 

0.42 0.43 0.42 2.33 
0.43 0.44 0.43 2.27 

0.399 0.399 2.51 0.81 0.49 0.49 0.49 0.44 2.04 
1.069 1.084 0.92 1.98 0.54 0.54 0.55 0.54 1.82 
0.369 0.367 2.73 0.84 .44 0.45 0.44 0.43 2.27 
0.356 0.370 2.68 0.89 .43 0.40 0.42 0.43 2.38 

3000 1.780 1.660 0.60 2.94 0.57 0.61 0.57 0.57 1.75 
500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

1500 

3000 

500 

500 

500 

500 

3000 

500 

1500 

500 

500 

500 

500 

0.396 0.393 2.54 
0.159 0.220 4.55 
0.510 0.530 1.89 

0.207 0.220 4.49 
0.340 0.390 2.5 
0.717 0.697 1.43 

0.350 0.400 2.48 
0.575 0.500 1.99 
1.330 1.230 0.82 

0.514 0.530 1.87 
0.150 0.179 5.56 

0.529 0.490 2.04 
0.190 0.170 5.83 

0.315 0.291 3.44 
1.510 1.490 0.66 
0.350 0.280 3.57 

0.84 0.47 0.47 0.47 0.44 2.13 
0.58 0.28 0.35 0.35 0.31 2.86 
1.21 0.43 0.42 0.44 0.47 2.27 
0.58 0.36 0.36 0.38 0.35 2.63 
0.87 0.40 0.39 0.41 0.42 2.44 
1.61 0.46 0.45 0.43 0.51 2.33 
0.85 0.42 0.41 0,47 0.43 2.13 
1.03 0.55 0.56 0.49 0.49 2.04 
1.94 0.62 0.64 0.59 0.55 1.69 
1.03 0.50 0.51 0.52 0.48 1.92 
0.46 0.33 0.33 0.33 0.33 3.03 
0.93 0.57 0.57 0.53 0.53 1.89 
0.49 0.38 0.39 0.35 0.34 2.86 
0.66 0.47 0.48 0.44 0.41 2.27 
2.59 0.59 0.59 0.58 0.56 1.72 
0.67 0.52 0.53 0.49 0.43 2.04 

0.332 0.300 3.40 0.70 0.47 0.48 0.42 0.42 2.38 
0.310 D.270 3.66 0.68 0.45 0.46 0.42 0.41 2.38 
1.000 1.000 1.00 2.11 0.49 0.47 0.47 0.53 2.13 
1.620 1.620 0.62 3.27 0.53 0.50 0.50 0.56 2.0 
0.330 0.280 3.6 0.67 0.48 0.49 0.41 0.42 2.44 
0.344 0.290 3.35 0.70 0.48 0.49 0.43 0.42 2.33 
0.390 0.320 3.13 0.69 0.49 0.42 0.46 2.38 
0.410 0;390 2.57 0.85 0.48 0.48 0.49 0.45 2.04 
1.750 1.760 0.57 2.96 0.58 0.59 0.60 0.57 1.67 
0.390 0.396 2.53 0.79 0.49 0.50 0.50 0.44 2.0 
1.18 0.990 1.01 1.90 0.59 0.63 0.53 0.55 1.89 
0.37 0.370 2.70 0.84 0.44 0.45 0.45 0.43 2.22 
0.23 0.280 3.57 0.78 . 0.32 0.32 0.39 0.37 2.56 
1.38 1.390 .72 2.66 0.52 0.52 0.52 0.56 1.92 
0.35 0.300 3.5 0.69 0.52 0.52 0.43 0.43 2.33 

( j(R ) 1 (1) ~ = D l+a-<>- -d n X ay mg/mg 

Xw 1 (2) ~ =- -
n VX day 

(3) e = .l day 
c ~n 

0(5.-S) 
(4) u =-1-

x 
(9) 1 

Y!!Y 
mg/mg 

X, XR' Xw• 51, and S are mean steady state values 
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11n X 
( 14) y = 

0 D ( S i - ( l+a) S) 

y = Xw 
(15) 

0 
F ( s; - se) 

y = Yt.lln 
(16) 

0 llt 

In general, there was essentially no difference for the lln and Y0 

values calculated by the various equations. 

Figure 34 shows maintenance plots as per equations (12) and (13). 

It is seen from this figure that the data fit the equations very well. 

The 11 true yield 11 value from these plots are found to be 0.62, and kd to 

be 0.16 day-1. The maintenance coefficient, kd, is somewhat higher 

than most of those reported in the pollution control literature, but 

much higher values than this have been reported (95)(96). 

It was of interest to determine the closeness with which the model 

equations (see Table XX) could predict the experimentally observed val

ues of S, X, and Xw· In making these predictions, both average and 

individual values for biological constants, llmax' Ks' and Yt8 were used. 

The value of kd was the same for all runs, i.e., 0.16 day-1. Values 

were also calculated for the model equations, neglecting kd. 

From Table XX, it is seen that each set of equations predicts lower 

S than the observed S in the effluent. The use of COD as a measure of 

microbial substrate in the effluent leads to a conservative estimate. 

The predicted values are closer to the values of glucose measured in 

the effluent; nevertheless, it is evident that there is little 



Figure 34. Plots of Maintenance Energy Equations to Determine 
11True Yield, 11 Yt' and Maintenance Coefficient, 
Kd 
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TABLE XX 

EFFECT OF MAINTENANCE COEFFICIENT~ kd~ USING INDIVIDUAL AND AVERAGE 
VALUES OF BIOLOGICAL CONSTANTS~_~max~ Ks~ AND YtB' on 

PREDICTION VALUES OF S, X, AND XW 

Effluent. Substrate, S, rtg/1 Biological Solids, X, lll!lfl Excess Sludge, Xw• 1119/day 
Predicted Predlcted Predicted 

Yt•0.62 vt8(ind.) Yt8 (av.)•0.5 
v.-o.62 Yt•0.62 Yt8 (1nd.) Yt8 (av.)•0.5 Yt•0.62 Yt•0.62 YiJ (Ind.) Yt8 (av.)•0.5 

K5 (1nd.) K5 (ind.) K5 (av.)•145 K5 (1nd.) K5 (ind.) K5 (1nd.) K5 (av.)•l45 K5 (ind. \(Ind.) K5 (1nd.) K5 (av.)•145 
Yt•0.62 

K5 (ind.) S; "max(lnd.) ~max(ind.·) v.max(av.)=0.5 J.lmax(ind.} · J.lmax{ind.) J.lmax(ind.} llmax(av.}""O.S llmax(ind, ..... (Ind.) "a.ax(ind.) '\oax(av.)•0.5 "••x(ind.) Line Glucose 
I 1119/1 Obs. Kd•0.16 Kd~~- 116 Kd•O. i! I Kd=O Obs. Kd•0.16 Kd'"~o~s Kd"'~~.6 Kd•O Obs. Kd•0.16 Kd~~!-~6 Kd~~16 Kd•O 

1 500 22 - - 5.4 - 1766 - - 1725 - 1290 - - 1259 -2 500 28 - - 5.4 - 1788 - - 1741 - 1302 - - 1253 -3 500 24 5.4 4.10 5.4 5 1776 1766 1689 1723 1842 1416 1409 1348 1375 1912 
4 1500 19 18.2 14.4 14.0 18 2237 2239 2091 2104 2335 4850 4854 4533 4561 5516 5 500 15 9.4 6.5 8.0 9 1774 1762 1699 1720 1838 1302 1293 1247 1262 1791 6 500 14 6.3 4.6 5.2 6 1782 1765 1733 1754 1840 1330 1306 1282 1298 1704 7 3000 20 16.2 14.6 23.4 16 3095 2939 2849 2708 3064 10272 9757 9459 8991 10910 
8 500 14 5.3 3.6 5.4 5.1 1777 1765 1685 1719 1841 1398 1387 1324 1351 1889 
9 500 12 3.0 2.0 4.0 2.1 2513 2539 2450 2499 2647 1140 1117 1078 1100 1803 

10 500 6 1.0 1.0 7.0 2.6 2554 2579 2484 2529 2634 2697 2733 2633 2681 3820 
11 500 9 12.4 8.0 3.8 12,0 2553 2548 2451 2508 2657 1137 1121 1078 1104 1835 
12 soil 22 10.2 8.7 5.1 9.8 1775 1792 1721 1753 1869 1422 1398 1342 1367 1905 
13 500 15 6.7 6.3 12.0 6.5 1794 1821 1740 1758 1860 2502 2538 2426 2451 3558 
14 500 13 5.3 4.8 5.3 5.1 1760· 1766 1707 1725 1842 1420 1413 1366 1380 1842 
15 500 18 7.0 6.3 6.1 6.8 1421 1383 1378 1345 1442 1430 1383 1378 1345 1794 
16 500 33 24.9 24.1 15.0 24.6 1450 1406 1421 1357 1433 3558 3459 3496 33Ja 3588 
17 500 22 24.4 21.3 6.3 ' 25.2 1399 1382 1356 1348 1442 1495 1465 1437 1429 1761 
18 500 16 6.5 4.0 3.0 6.4 3115 3096 3009 3059 3228 1120 11118 1077 1095 1768 
19 500 20 11.0 10.6 6.1 10.8 J3224 3173 3165 3133 3241 3167 3110 3102 3070 3671 20 500 10 6.7 4.3 2.9 6.4 3170 3121 3042 3085 3261 1087 1063 1034 1049 1922 21 500 15 5.6 5.2 4.0 5.4 ~200 2163 2149 2125 2261 1280 1259 1251 1237 1847 
22 500 25 23.5 22.4 20.0 23.5 2249 2237 2227 2194 2261 6724 6666 6637 6538 7143 23 500 13 4.7 4.2 3.9 4.5 2220 2164 2139 2124 2257 1237 1212 1198 1189 1823 24 500 10 14.8 11,9 3.6 14.3 210 2176 2130 2133 2269 1291 1306 1278 1280 1910 25 500 17 5.3 3.7 3.4 5.1 2205 2178 2102 2140 2271 1205 1176 1135 1156 1851 
26 1500 13 32.4 27.1 12.0 31.3 2187 2245 2151 2128 2342 4368 4490 4302 4256 5540 27 3000 15 47.0 43.2 23.4 45.8 2818 2996 2877 27118 3124 9129 9707 9321 8774 11420 
28 500 12 4.8 3.5 3.9 4.6 2210 2167 2103 2126 2260 1222 1214 1178 1191 1835 
29 1500 10 4.5 3.6 3.6 4.3 2204 2163 2113 2120 2256 1316 1255 1226 1230 1908 
30 500 9 - - 3.7 - 2247 - - 2126 - 1288 - - 1361 -31 500 11 7.2 5.8 5.2 6.8 1820 1804 1752 1755 1839 1419 1407 1367 1369 1632 
32 500 45 12.6 12.0 23.5 12.2 3018 2946 2887 2693 3072 10630 10370 10162 9479 10970 
33 500 42 6.4 5.1 5.3 6 .• 1 1799 1765 1721 1742 1840 1428 1398 1363 1380 1718 
34 1500 31 12.0 10.6 13.4 11.5 2359 2233 2178 2189 2328 4683 4421 4312 4334 5325 
35 500 24 4.7 4.7 5.5 4.5 1804 1770 1737 1781 1845 1342 1310 1285 1318 1625 
36 500 20 5.0 4.0 3.2 4.9 2132 2151 2110 2122 2242 1209 1205 1182 1188 1815 
37 500 16 11.6 9.9 18.0 11.4 2240 2215 2220 2046 2239 6221 6158 6172 5688 6138 
38 500 20 ·5.4 4.0 3.4 5.2 2210 2218 2101 2123 2241 1260 1331 1261 1274 1610 

- N 
0 
0 



201 

difference in the predicted values of S whether the original or modified 

equations are used. Comparison of predicted and observed values of X 

leads to the conclusion that if one does not really require a very clo~e 

prediction of X, there is little difference in using either the original 

equation neglecting kd' or the latter ones employing it. However, the 

modi"fied equations predict X closer to the observed value. This is more 

true at lower growth rates, when the effect of kd will be more manifest 

than at higher growth rates. Regarding prediction of excess sludge, Xw, 

it is seen that at high growth rates, the new model provides rather good 

prediction, but the original model without kd does not predict Xw 

closely. At low lJn' the model including kd provides a very good esti

mate of Xw, whereas the one without kd predicts about 70 percent more 

excess sludge than was observed experimentally. 

Comparison of predicted values of X, S, and Xw' using either the 

average or the individual values of the biological constants, Yt , Ks' 
B 

and lJmax (i.e., compare columns 5, 6, 10, 11, 15, 16) reveals that there 

is little numerical difference. This may be useful for design purposes 

wherein average values for biological constants, Ks' llmax' and Yt for a 
B 

particular waste could be substituted in the model equations to predict 

the values of S, X, and Xw· However, such a shortened design approach 

cannot be reco.rnnended on the basis of one set of experimenta 1 results. 

It would be interesting to see if one could show this same trend for a 

waste of a different nature (see suggestions for future work). 



CHAPTER VII 

CONCLUSIONS 

The results of this investigation support the following 

conclusions: 

1. Steady state systems operating at a dilution rate of 0.125 

hr-1 ( ) f 8-hour detention time with recycle sludge concentrations o 

6000, 8000, 10,000, 12,000 and 15,000 mg/1 and a = 0.25, can accom

modate a 100 percent increase in flow rate without harmful effect on 

effluent quality. 

2. For a 100 percent increase in hydraulic loading, a decrease 

of the recycle sludge concentration from 12,000 mg/1 to 8000 mg/1 

yielded the same transient effluent characteristics, St, Se, and Xe. 

However, the transient phase lasted for a longer period of time in the 

case of XR = 8000 mg/1 than was the case for XR = 12,000 mg/1. 

3. For a 100 percent increase in hydraulic loading, a decrease in 

the recycle solids concentration from 12,000 mg/1 to 6000 mg/1 yielded 

the same values forSt in the transient stage, i.e., an increase in XR 

did not improve the transient response. 

4. For a 100 percent increase in hydraulic loading, an increase 

in XR concentration from 12,000 to 15,000 mg/1 led to an improvement, 

i.e., less substrate leakage in the transient. 

5. Quadrupling of D (0.125-0.5 hr-1) for a system with XR = 

10,000 mg/1, led to a short-lived transient disturbance and rapid 
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recovery. 

6. For quantitative shock, a successful response was obtained for 

a 200 percent increase in feed concentration (500 mg/1 to 1500 mg/1) at 

XR = 8000 mg/1. 

7. The use of 8000 mg/1 for XR did not provide a high degree of 

protection during the transient phase for a 500 percent increase of 

feed concentration (500 + 3000 mg/1). 

8. In the current studies, there was evidence that oxidative 

assimilation of carbonaceous into non-nitrogenous material played a 

significant mechanistic role. 

9. In all cases wherein shock experiments were rerun under simi

lar conditions but employing cells from different inocula of sewage, 

the response to the shock exhibited a high degree of reproducibility. 

10. In regard to cyclic rather than step shocks, the system could 

safely accommodate a two-fold hydraulic shock with constant a.. Also, 

the system could accommodate this magnitude of shock without change in 

recycle flow rate, i.e., with variable a.. Also, it successfully with

stood a three-fold cyclic change in Si and, quite significantly, a 

six-fold increase in mass loading rate under conditions of concurrent 

quantitative and hydraulic cyclic shock. 

11. Statistical analyses of the experimental results for "steady 

states'' prior to and after shocks provide evidence that this mode of 

operation, i.e., constant XR, does much to ensure that the steady 

state in S and X assumed in the derivation of the model, is actually 

observable. 

12. Steady state runs conducted under similar operational con

ditions indicated a high degree of reproducibility with respect to X, 
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S, and Xw· The biological constants, kd' ~ , and Yt , were essen-
max B 

tially the same under similar operational conditions, but there was 

some variation in Ks. 

13. Values of the maximum specific growth rate and yield obtain

ed during the batch growth experiments show a general trend with the 

observed specific growth rate, ~n' in the continuous system. There 

was a tendency for Yt and ~max to increase with an increase in ~n· 
B 

14. There was essentially no difference in observed and pre-

dicted values of S, X, and Xw using either individual or average values 

for Yt , ~max' and Ks when the model employing kd was applied. On the 
B 

other hand, using the original equations without kd' there was little 

difference in predicted and observed S and X, while there was a sig

nificant difference in prediction of Xw· 



CHAPTER VIII 

SUGGESTIONS FOR FUTURE STUDY 

Based on the findings of this study, the following suggestions 

are presented for future investigation involving the new activated 

sludge process with constant recycle sludge concentration. 

1. The response to various combinations of hydraulic and quanti

tative shock loads may be extended to study a wider set of conditions. 

2. A study of the response to various combinations of quantita

tive and qualitative shock loads should prove valuable . 
• 

3. The effect of changing recycle sludge concentration during 

the transient, in order to overcome substrate leakage, should be 

studied. 

4. The response of the system to temperature shock loads should 

be studied. 

5. The complete aerobic treatment flow sheet suggested by Gaudy 

and Gaudy (87) for carbon removal and sludge disposal should be inves

tigated using the present results to guide design of the experimental 

program. 

6. Steady state operation at lower growth rate, ~n (i.e., higher 

ec) may lead to demonstration of the zero sludge production indicated 

by the model equations (97). 

7. A larger scale pilot plant may now be tried to study the 

operational ease and performance of the model. 
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8. A complete engineering design detail with a cost analysis is 

required for the future use of the model in the field. These may pro

ceed in a preliminary manner immediately and can be refined after 

larger scale pilot plant studies. 

9. The model equations should be tested for ability to predict 

under different operational conditions the values of S, X, and Xw for 

a waste using average values for biological constants, Ks' ~max' and 

yt . 
B 
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