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Abstract 

Hydrocarbon production leads to the disturbance of several thermodynamic equilibriums including 

the destabilization of crude oil. Asphaltenes precipitation, aggregation and deposition inside the 

hydrocarbon reservoirs remains challenging issue due to the multiple factors controlling these 

processes. Despite the fact formation damage due to asphaltenes accumulation could be highly 

detrimental to production and/or injection operations, there is no experimental data on asphaltene 

accumulation during gas and oil flow at high pressure in porous media. 

To address this lack of experimental data, we have designed and assembled an experimental 

apparatus that can be used to study the asphaltene accumulation in porous media during oil and 

gas flow. We have used this apparatus to investigate the impact of pressure and flowrate on the 

asphaltene deposition process in a Berea sandstone core plug. Moreover, we also evaluated the 

efficacy of surfactant injection to prevent asphaltene accumulation within the core plug.  

The impacts of pressure were evaluated by injecting simultaneously crude oil and a mixture of 

72% of methane and 28% of ethane at pressures of 4,500 psi (1.07%of MMP), 3,570 psi and 3,150 

psi at a constant flowrate of 0.025 ml/min and temperature of 170°F. This co-injection of crude oil 

and the gas mixture was also conducted at flowrate of 0.25 ml/min to evaluate the impact of 

flowrate. To evaluate the use of surfactant to prevent asphaltenes accumulation, the co-injection 

of oil and gas was conducted by saturating the core sample with brine containing surfactants (1gpt 

and 10 gpt) before the establishment of Swir. After core flooding to establish Swir, co-injections of 

oil and the gas mixture were conducted 300 psi above the MMP at precisely 4,500 psi. 

Our experiments show that the permeability loss due to asphaltenes accumulation is more severe 

as the injection pressure approaches the MMP value. At pressures lower than the MMP, a process 

of accumulation and re-solubilization is observed. We also observed that an increase of flowrate 
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from 0.025 ml/min to 0.25 ml/min prevents the deposition of asphaltenes, indicating that formation 

damage by asphaltenes is a slow process that can be prevented by increasing injection or 

production rates. The injection of surfactants did not prevent asphaltenes accumulation. With the 

10 gpt surfactant solution, we observed an occurrence of formation damage earlier than in the cases 

where the sample was initially saturated with the 1 gpt solution and with brine. 
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CHAPTER 1:  INTRODUCTION 

 

1.1.  Motivation and Problematic statement: 

Hydrocarbon production and gas injection often affect the equilibrium between the different crude 

oil components. Crude oil is essentially constituted by saturate, aromatic, resin and asphaltene 

(SARA). Asphaltenes are the heaviest and most polar compounds of crude oil (Mirzayi et al., 2008; 

Akbarzadeh et al., 2007; Mullins, 2011). They share a special relationship with another polar 

aromatic component which is the resins. In fact, the asphaltenes and resins fractions are chemically 

bonded. This bond promotes the stability of the asphaltene molecules in crude oil. However, the 

asphaltene-resin bonds do not resist the pressure reduction during reservoir depletion or 

temperature changes in the production tubing, thus leading to asphaltenes precipitation and 

deposition in hydrocarbon reservoirs as well as production tubing and pipelines. Asphaltenes are 

insoluble in light n-alkanes such as n-pentane and n-heptane, but they are soluble in aromatic 

solvents such as toluene, benzene, and xylenes (Fakher et al., 2019; Goual, 2012).  

In the near wellbore region, asphaltene molecules can be deposited in quantities large enough to 

reduce the hydraulic radius of the pores and/or plug the pore throats, hence reducing the effective 

permeability of the formation (Figure 1.1).  

Asphaltene precipitation and deposition in petroleum reservoirs, production tubing and 

transportation pipelines lead to significant production losses (Riazi and Zare, 2018; Ali and 

Ghannam, 1981; Angle and Long, 2006; Hirschberg et al., 1984). This added to the workover 

required to resume production cause enormous financial losses to the oil and gas industry.   
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Figure 1.1. Asphaltenes aggregation plugging reservoir pores throat in a micromodel 

(Shahsavar et al., 2020). 

 

1.2. Research objectives: 

Previous studies on asphaltenes behavior in crude oil have focused on: 

-  The determination of asphaltenes precipitation onset (Hirschberg et al., 1984; Buckley, 

1996; Maqbool et al., 2011; Wang and Civan, 2001) 

- Improving the understanding of asphaltene deposition on pipe surfaces (Ashoori et al., 

2016; Hashmi et al., 2015) 

- Evaluating asphaltenes accumulation in porous media (Ali and Islam, 1997; Kord et al., 

2012; 2013) 

- The development of simulation methods for asphaltenes deposition in pipes and porous 

media (Leontaritis and Mansoori, 1987; Burke et al., 1988; Leontaritis et al., 1994). 
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Among the topics addressed by the previous studies, asphaltenes precipitation and accumulation 

in porous media is the subject with the largest knowledge gap. This lack of knowledge is essentially 

due to the lack of experimental data on asphaltene accumulation during oil and gas flow at high 

pressures in porous media. 

To improve the understanding of asphaltene precipitation and deposition in porous media, we have 

conducted a study that can be divided into 3 main parts: 

✓ Investigation of the role of pressure on the asphaltenes accumulation in porous media. 

✓ Study of the impact of flow rate on the asphaltenes accumulation in porous media. 

✓ Evaluation of the efficacy of surfactant injection to prevent asphaltenes accumulation in 

porous media. 

 

1.3. Organization of the thesis 

Chapter 2 of this thesis presents a literature review of the relevant previous studies on asphaltene 

precipitation and accumulation. It will include a description of the molecular structure of 

asphaltenes and the factors leading to their precipitation. We will review the investigations 

conducted in order to understand asphaltenes accumulation in general, and in porous media 

particularly. General strategies used to mitigate the accumulation of asphaltenes will be 

introduced. We will also present an overview of the modeling methods that can be used to model 

asphaltenes deposition in porous media.  

Chapter 3 will present the experimental methods and procedures used in this thesis. 
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Chapter 4 will summarize the results of the experimental investigations on the role of pressure and 

flowrate on asphaltene accumulation in porous media. Moreover, it will also present the results of 

surfactant treatment to prevent asphaltenes accumulation. 

Chapter 5 includes the summary and conclusions of the work performed during this thesis project 

as well as the recommendations for future studies about the asphaltenes accumulation in porous 

media. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1.  Presentation of asphaltenes 

 

 2.1.1. Introduction 

Referred as “cholesterol of petroleum” by Boek et al. (2010), the term asphaltenes was originally 

introduced by Boussingault (1937). He described asphaltenes as the residues remaining after the 

distillation of bitumen. This definition implied that asphaltenes are insoluble in alcohol but soluble 

within a resinous oil from pine trees called turpentine. Asphaltenes have also been characterized 

as molecules with no boiling point (infusible), which tend to decompose when heated (Akbarzadeh 

et al., 2007).  

Crude oil can be separated into asphaltenes and maltenes by introducing n-alkanes such as n-

pentane or n-heptane. Maltenes are soluble in n-alkanes and can be subdivided in different 

fractions including saturates, aromatic, resins (Bearsley et al., 2004). SARA analysis is the 

laboratory protocol used to separate the different components of a dead crude oil into saturates, 

aromatics, resins and asphaltenes. During SARA analysis, asphaltenes are described as the fraction 

of crude oil that is soluble in aromatic solvents such as toluene but insoluble in lightweight n-

alkanes such as n-pentane and n-heptane (Mirzayi et al., 2008; Akbarzadeh et al., 2007). However, 

asphaltenes do not have the same solubility in all n-alkanes. Asphaltenes solubility increases as 

the molecular weight of the n-alkane increases. Figure 2.1 shows that the lower the molecular 

weight of the n-alkane precipitant, the higher the amount of asphaltenes precipitated. Therefore, 

formation damage due to asphaltenes accumulation could be more important during gas injection 

for EOR purposes than during reservoir depletion. 
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Figure 2.1. Amount of asphaltenes precipitated as function of the precipitant molecular 

weight. (Wang, 2000). 

 

It is important to note that asphaltenes are the heaviest and the most polar fractions of crude oil 

(Mullins, 2011; Hashmi et al., 2013). In crude oil, asphaltene molecules are stabilized by the resins 

which are adsorbed onto the asphaltenes micelles, thus dispersing them in the fluid (Figure 2.2). 
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Figure 2.2. Configuration of the different fraction of crude oil.  The adsorption of resins on 

asphaltenes (Ashoori et al., 2016). 

 

 

2.1.2. Chemistry of asphaltenes 

The structure of asphaltenes molecules has been a subject of controversy in the scientific 

community for the past decades (Fakher, 2019; Yarranton, 2005). As of now a unanimous 

description of its structure is still not available. Techniques such as mass spectrometry, electron 

microscopy, nuclear magnetic resonance, small-angle neutron and X-ray scattering, ultrasonic 

spectroscopy, dynamic light scattering, and gel permeation chromatography have been employed 

to characterize asphaltenes molecules (Akbarzadeh et al., 2007; Andrews et al., 2006).  

It is generally accepted that asphaltenes have an elemental composition of carbons and hydrogens 

with a specific ratio of 1 to 1.2. They also contain in their structure a non-negligible percentage of 

heteroatoms groups and organometallic compounds (Speight, 1996; Akbarzadeh et al., 2007). The 
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main heteroatoms which act as polar functional groups of asphaltenes are Sulfur (S), Nitrogen (N) 

and Oxygen (O). While the metallic compounds may be Nickel (Ni), Vanadium (V) or Fer (Fe). 

Speight and Plancher (1991) indicated that in their structure, the Oxygen heteroatom existed in 

acidic (carboxylic, phenolic) and in ketonic locations, and the Nitrogen heteroatom existed for 

most as pyrrolic and pyridinic. While the main heteroatom element which is Sulphur occurred in 

either aliphatic structures (sulfides and disulfides) or oxidized forms (Cimino et al.,1995). They 

also stated that most metals are in porphyrin structures.  Asphaltenes molecules also contain one 

or more polyaromatic units linked by alkyl and alicyclic chains (Speight, 1996; Gray et al., 2011). 

These polyaromatic rings are also found in aromatic solvents unlike in the n-alkanes. This allows 

the dissolution of asphaltenes by aromatic solvents due to the interactions between their rings. 

Their insolubility in n-alkanes is due to the lack of rings in their structure. 

Two different architectures of asphaltene molecules have been proposed in the literature: the 

continental and the archipelago (Headen et al., 2009; Boek et al., 2010). The continental structure 

is known to have a large central aromatic region with small alkyl chains on the periphery (Figure 

2.4). And the archipelago one is associated with smaller condensed aromatic groups that are linked 

by bridges of alkanes (Figure 2.3) (Yarranton, 2005; Headen et al., 2009). 

The molecular weight of asphaltenes molecules has been reported to be in the range of 500 g/mol 

to 12,000 g/mol (Waller et al., 1989; Mullins et al., 2012; Yarranton et al., 2013). 
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Figure 2.3. An archipelago type structure of chemical structure of asphaltene (Headen et 

al., 2009). 

 

 

 

Figure 2.4. A continental type of chemical structure of asphaltene (Headen et al., 2009). 
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2.2.  Asphaltenes precipitation and deposition 

Asphaltenes can be found stable in crude oil either in a dissolved state or as colloidal dispersion. 

When the equilibrium between the different crude oil fractions is disturbed, the colloids start to 

flocculate and aggregates of asphaltenes start to form and interact with each other to generate super 

aggregates with larger sizes from molecular to clusters (Mullins, 2011; Fakher, 2019). When the 

density of the super aggregates is large enough, the aggregates will deposit. The equilibrium 

between the different crude oil fractions can be disturbed by factors such as pressures, 

temperatures, composition. 

 

2.2.1. Impact of pressures changes on the asphaltenes precipitation 

It is well known in the industry that pressure reduction during reservoir depletion is responsible 

for asphaltenes precipitation and deposition. Several laboratory studies have replicated the 

pressure depletion process to study the impact of pressure on asphaltenes precipitation (Chen et 

al., 2012, Burke et al. 1988, Thawer et al.,1990, Akbarzadeh et al. 2007, Ahmadi et al. 2014, 

Hashemi et al., 2008). Figure 2.5 shows a compilation of the data collected in some of these studies.  
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Figure 2.5. Normalized mass of asphaltenes precipitated as function of normalized 

pressure. The mass of asphaltenes precipitated was normalized by the maximum mass of 

asphaltenes precipitated during pressure depletion. The pressures were normalized by the 

bubble point pressure. 

 

These studies have shown the maximum amount of asphaltenes precipitated is observed near the 

bubble point. Asphaltene precipitation increases as the pressure decreases toward bubble point 

because of the expansion of the light n-alkane fraction. Asphaltenes precipitation also reduces as 

the pressure decreases below the bubble point. However, in this case, the reduction in asphaltenes 

precipitation is due to the evaporation of the light n-alkane molecules which makes the remaining 

oil a better solvent for asphaltenes molecules. 

 

2.2.2. Impact of temperature changes on the asphaltenes precipitation 

Early studies on the impact of temperature changes on asphaltene precipitation seemed to be 

contradictory. Burke et al. (1988) found that asphaltenes solubility decreases as temperature 
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increases while Thomas et al. (1992) concluded that asphaltenes solubility increases as temperature 

increases.  

To better understand the effects of temperature on the asphaltenes precipitation process Leontaritis 

et al. (1996) conducted a study where they considered temperature changes relative to the 

temperature of the reservoir from which the crude oil was extracted. At temperatures larger than 

the reservoir temperature, asphaltenes precipitation increases as temperature increases. However, 

at temperatures lower than the reservoir temperature, asphaltenes precipitation reduces as the 

temperature increases. 

While studying the effect of temperature on the kinetics of asphaltene precipitation from crude oil, 

Maqbool et al. (2011) demonstrated that at higher temperatures the asphaltenes precipitation onset 

time is shorter. 

 

2.3.  Asphaltenes deposition 

Asphaltenes may precipitate during production, enhanced oil recovery operations with gas 

injections, due to changes in pressure, temperatures, or crude oil composition. This precipitation 

often leads to flocs of aggregates which will be deposited onto pipe and pore surfaces. Figure 2.6 

illustrates asphaltenes deposits on a production tubing.  
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Figure 2.6. Clogging of asphaltenes on a pipe (Goual, 2012). 

 

2.3.1. Asphaltenes deposition studies using microfluidic, stainless surfaces  

To study the deposition of asphaltenes, microfluidic devices and stainless surfaces are generally 

used to represent the porous media and pipes respectively. 

Ashoori et al. (2006) used a slim stainless tube as porous medium to investigate the precipitation 

and reversibility of asphaltenes. They used a heavy crude oil with API of 20 with n-heptane as its 

precipitant. After precipitation of asphaltenes in the porous media, they flow fresh crude oil and 

allow the soaking for a certain time. The results they provide are, fresh oil flown back to a damaged 

reservoir can redissolve the precipitated asphaltenes.  

Wang et al. (2004) investigated the influences of different factors of asphaltenes deposition on 

metallic surfaces using stainless steel capillary tubes. They found out the rate of deposition is not 
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affected by the length of the capillary tube used or the oil flow rate. But that higher degree of 

supersaturation of the mixtures, same as higher molar volume precipitants entrain a greater rate of 

deposition.  

Hashmi et al. (2015) study the colloidal asphaltene deposition in laminar pipe flow. They did a 

lab-scale experiments injecting a mixture of precipitating petroleum fluid into a small metal pipe 

using various material and flow conditions. They assessed the deposition and clogging by 

measuring the pressure drop across the pipe. Their results suggest that the clogging behavior is 

determined by a combination of the Peclet number, volume fraction of depositing material, and 

the volume of the injection itself.  

Using automated microfluidic devices, Chen et al. (2019) investigated the deposition of 

asphaltenes at different temperatures from 25 to 65 °C. They found out when the deposition 

temperature is increased, a decrease in the dispersity of asphaltene nanoaggregates is observed in 

the porous media.  

 

2.3.2. Core flooding deposition 

Formation damage due to asphaltenes deposition could have severe adverse effects on hydrocarbon 

production. Microfluidic devices have been used by previous authors to represent porous media in 

order to investigate asphaltenes accumulation in reservoir (Chen et al., 2019; Lin et al., 2017). 

However, these microfluidic devices do not capture the complexity of porous media. Core plugs 

were used by the following authors to evaluate asphaltene deposition in reservoirs rocks.  

The results of these studies indicate that formation damage due to accumulation of asphaltenes can 

lead to 90% reduction of the initial rock permeability. Minssieux et al. (1997); Ali and Islam 
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(1997); Zekri and Almehaideb (2001) found that the permeability impairment was function of the 

rock type, original permeability, morphology of the rock sample, the fluid injection rate and 

asphaltenes content. 

Pore plugging and adsorption are the main mechanisms leading to permeability impairment due to 

asphaltenes deposition. Ali and Islam, (1997), Kord et al. (2012; 2013) have shown that the surface 

deposition is the principal source of formation damage and that the increase in pore throat plugging 

reduces linearly the core sample permeability for live/dead crude oil flooding in a carbonate. 

However, Behbahani et al. (2013) found both mechanisms to be more important in carbonate than 

in sandstones reservoir. The experiments of Struchkov et al. (2018) have shown that the small size 

pores are more prone to plugging than the bigger pores. 

Soroush et al. (2014) investigated the deposition of asphaltenes consequent to miscible and 

immiscible CO2 flooding and its effect on porous media. Their results indicated at pressure above 

the MMP asphaltene deposition is the main factor of permeability reduction. 

Using a limestone core plug, Cruz et al. (2009) reported 24% reduction of the original rock 

permeability when the pressure was near Bubble point.  

Pak et al. (2011) studied an Iranian sandstone core under high temperature and pressure. They used 

three processes: recycled gas injection, CO2 injection and natural depletion. They observed that 

most permeability damage is happening with the recycled gas injection while the less permeability 

reduction is found with the natural depletion.  

Kordestany et al. (2019) investigated the formation damage in sand packs caused by solvent 

induced asphaltenes deposition. They saturated with crude oil the sand packs which known 

characteristics. N-heptane is the solvent used to flood the oil saturated sand packs and induced the 
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deposition. They concluded that the deposition mostly happened in areas closed to the solvent 

injection, so was not uniform. The deposition varied between 1 to 20 mg/1g of sand grain. And 

once deposited, the asphaltenes particles do not migrate through the porous media.  

In many experimental studies in the literature, the flowing in the porous media was not done as 

identical to what we can expect from a natural hydrocarbon reservoir. This is due to numerous 

issues that come with the experimentations. To state just one of the main issues encountered is the 

deposition of asphaltenes cake in the inlet face of the core sample. This deposition mays 

consequently influence much of the permeability impairment results obtained through the 

laboratory-scale studies.  

 

2.3.3. Computational deposition model 

Some computational works associated or not with experimental procedures are done to better 

understand asphaltenes deposition process by simulation and modeling. 

Leontaritis and Mansoori (1987) developed a thermodynamic colloidal model that allows the 

determination of the onset of flocculation of asphaltenes due to changes in composition or 

electrical phenomena. Leontaritis et al. (1994) added from their systematic approach that the 

asphaltene deposition envelope (ADE) concept is a useful tool in diagnosing, preventing, and 

mitigating asphaltene flocculation and deposition during oil recovery, processing, and 

transportation (Figure 2.7). 
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Figure 2.7. The asphaltenes deposition envelope in term of Temperature and pressure 

conditions. 

 

Burke et al. (1988) proposed a model that can be used to predict the likelihood of asphaltenes 

precipitation forming as function of the change of composition and properties of the reservoir fluid.  

Ali and Islam (1997) in their experimental study described previously, developed a mathematical 

model. It was based on the two main mechanisms of deposition and plugging. And The model was 

able to fit the experimental data. 

In 1999, Wang and Civan developed a model simulating the paraffin and asphaltenes deposition 

in porous media. The model is validated by accurately reproducing laboratory experimental data. 

Following their case studies, they indicated static surface deposition mays happen even without 

fluid flowing. But the dynamic deposition remains predominant in case of flowing. Moreover, they 

add that plugging mechanism occurs under certain conditions. 
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It must be noted that Wang and Civan are one of the pioneers of computational model about 

asphaltenes deposition. Their original model is the basis for most of the work done afterwards by 

numerous authors including themselves through different modified and improved versions of it. 

Wang and Civan (2001) established a model that simulate the asphaltenes precipitation and 

deposition in petroleum reservoir. To do so, they used a mass balance equation associated with 

precipitation, deposition, porosity and permeability reduction models into a three-dimensional 

black oil simulator. The model was verified with experimental data. 

Minssieux et  al. (1997) assimilate the asphaltenes deposition as fines particles migration damaging 

the reservoir. Doing so they successfully modeled the pore blocking mechanism and applied it to 

their experimental results. 

Cruz et al. (2009) in their experimental study previously described in the last section, effectuate a 

modeling approach. They established and validated a mathematical model based on transport of 

stable particulate suspension. They used their experimental results as well as results from literature. 

They distinguish two mechanisms: adsorption and trapping as a result of asphaltenes deposition. 

Behbahani et  al. (2012; 2013; 2014) in their different study proposed a model based on multilayer 

theory equilibrium mechanism and four material balance equations. They test them with 

experimental results in the literature. They concluded their model is more accurate than those 

obtained from Wang and Civan’s model based on the mechanical plugging mechanism, or the 

Langmuir equation. 
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2.4. Asphaltenes mitigation  

 

2.4.1. Steam treatment 

In their investigation described earlier, Zekri and Almehaideb (2001) did a trial treatment with 

steam. They concluded that steam may be applied as a treatment for the deposition of asphaltene 

in carbonate reservoirs. The steam treatment on average resulted in 94% of improvement in the 

permeability impairment. 

 

2.4.2. chemical treatments 

 

2.4.2.1. Treatment with xylene and bio-oil dispersant 

This is a short description about some mitigations trial of asphaltenes deposition using chemicals 

products. 

Sanada and Miyagawa (2006) worked on a case study of asphaltenes damaging the productivity of 

a field. Based on their laboratory analyses and tests, they designed a complete chemical treatment 

consisting of the injection of xylene in the formation with a three feet treatment radius. Their 

method resulted in a major improvement in the production as they were able to produce as much 

as ten time than before. 

Alrashidi et al. (2018) investigate the mitigation of asphaltenes sludge by using dispersants during 

an acidizing treatment process. The core is a limestone, and they used coconut oil as a bio-oil 

dispersant. The results after their flooding indicate that using dispersant allows the reduction of 

the asphaltene sludge and produce better acid propagation through the core sample. 
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 Using automated microfluidic devices, Chen et al. (2019) also added xylene as treatment to study 

the deposition of asphaltenes. They conclude that xylenes were more prone to dissociate 

asphaltenes deposited at a higher temperature than the ones at lower temperatures. 

 

2.4.2.2. Treatments with non-ionic and acid surfactant  

It is suggested that stabilization of asphaltenes can be affected by adding aromatic solvents such 

as toluene, benzene and xylene, which can aid in stabilizing the asphaltene micelles and inhibit the 

precipitation process. The stability of micelles can be enhanced by the introduction of compounds 

of similar nature to resin. Compounds that have a polar head containing an acidic group which can 

attach to the micellar core. These chemicals can be natural resins extracted from crude oil or oil-

soluble amphiphiles (Al-Sahhaf et al., 2001). 

Surfactant is a chemical used in the industry for generally enhanced oil recovery operations. We 

do know also they have some similitudes with the resins in crude oil. Surfactants are usually 

organic compounds that are amphiphilic, meaning they contain both hydrophobic groups (their 

tails) and hydrophilic groups (their heads). 

Hashmi and Firoozabadi (2013) study the mitigation of asphaltenes deposition using different 

surfactants. They used a lab scale metal pipe, induce precipitation of asphaltenes in it by use of n-

heptane as precipitant. They end up assessing the inhibition or reversal of the deposition by using 

separately different chemicals as treatments. They used 0, 1, 2, 100 GPT of non-ionic surfactant 

and 5 GPT of strong acid surfactant: dodecyl benzene sulfonic acid (DBSA). They found out the 

nonionic surfactant can stabilize the asphaltenes deposition. While the best results are found with 
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the DBSA that was able to effectively remove asphaltene deposits quickly and at lower 

concentrations than required by toluene. 
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CHAPTER 3:  EXPERIMENTAL METHODS   

 

This chapter presents the various experimental methods used to characterize the core plug and 

crude oil used during our investigations as well as a description of the experimental apparatus used 

to evaluate asphaltenes accumulations in the core plug. 

 

3.1. Fourier transform infrared method for quantification of mineralogy 

Transmission FTIR was used to quantify the mineralogy of the core sample used during the present 

study. During FTIR measurements, a pellet constituted of rock sample potassium bromide (KBr) 

is exposed to a polychromatic light source. A detector located after the sample measures the 

amount of energy lost at different frequencies due to the vibration of the molecular bonds present 

in the sample. This energy loss as function of frequency quantified as absorbance is dependent on 

the type of minerals present in the sample, their amounts, and the thickness of the sample.  The 

relationship between the absorbance at a given frequency and the concentration of a given mineral 

is materialized by Beer’s Law: 

𝐴𝜈 = ∑ 𝜀𝑖𝑙𝑐𝑖                 

𝑛

𝑖=1

                                                                                                                                   (1) 

Where Aν is the absorbance at a given frequency, εi is the absorptivity of the mineral, l is the 

optical path length and ci is the concentration of the mineral. FTIR is a true quantitative method, 

unlike X-ray diffraction which is a semi-quantitative.  Computation of mineral concentrations 

using Beer’s Law requires a library of the spectra of the minerals of interest at various 
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concentrations (Sondergeld and Rai 1993; Ballard, 2007).  Examples of such spectra are presented 

in Figure 3.1. 

 

 

Figure 3.1. Examples of FTIR spectrum of quartz, calcite, illite, anhydride, smectite 

kaolinite (Sondergeld and Rai, 1993). 

 

 

3.2. Soxhlet extraction method 

Soxhlet extraction is an experimental procedure that we have during the sample preparation before 

every experiment. A Soxhlet extraction apparatus is constituted of a flask containing a solvent 

connected to an extraction chamber with a condenser on top (Figure 3.2).   
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Figure 3.2. Schematic and picture of the Soxhlet extraction apparatus. 

 

The extraction chamber contains a siphon that allows solvent refluxing during the extraction 

process. Our Soxhlet extractions were conducted with dichloromethane at 122°F. 

Dichloromethane was used during this study because it could dissolve in the sample pores all the 

oil components. 

 

3.3. Mercury intrusion capillary pressure (MICP) measurements 

MICP measurements were used to determine the pore throat size distribution of the core sample. 

MICP measurement consists of quantifying the volume of mercury injected in a sample at different 

pressure steps. To start our MICP measurements the Soxhlet extracted and dried sample is placed 

in a penetrometer which is a glass cylinder connected to a hollow stem. The penetrometer 

containing the sample is subsequently introduced in a Micrometrics Autopore IV™ (Figure 3.3) 

where mercury is injected into the sample via the penetrometer stem. 
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Figure 3.3. Micrometrics Autopore IV™ located in the Integrated Core Characterization 

Center of the University of Oklahoma. 

 

The maximum injection pressure that the Autopore IV™ can achieve is 60,000 psi. Using the 

Washburn equation (equation 2) each mercury intrusion pressure can be converted into a pore 

throat radius.  

𝑟 =
2𝛾 cos(𝜃)

𝑃𝐻𝑔
                                                                                                                                               (2) 

In Equation 2, r is the pore throat radius (cm), PHg is the mercury intrusion pressure in dyne/cm2, 

γ is the interfacial tension (dyne/cm) for the system air-Hg (480 dyne/cm), and ϴ is the contact 

angle (140°). Using the Washburn equation, the smallest throat radius measurable with the MICP 

method is 1.5 nm. 
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3.4. Brine saturation method 

The core sample was saturated with brine before every asphaltenes accumulation experiment. Prior 

to brine saturation, the Soxhlet extracted sample is inserted in a hydrostatic pressure vessel (Figure 

3.4) where it is subjected to vacuum for 30 minutes. After the sample is evacuated, a valve leading 

to a brine container is opened to allow the entry of brine in the pressure vessel. When the pressure 

vessel is filled, 2,000 psi of brine hydrostatic pressure is applied to the sample for 24 hours. 

 

 

Figure 3.4. Picture of (a) the core sample inside the saturation core vessel; (b) the set 

hermetically closed for vacuum then brine saturation. 

 

 

a

 
 

a 

b
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3.5. Permeability measurement 

The absolute permeability of the core plug was determined with the steady state method. The 

Soxhlet extracted and dried sample was inserted in hassler sleeve that was introduced in a 

hydrostatic core holder connected to a syringe pump containing crude oil. To determine 

permeability crude oil was flown through the sample at a constant flowrate of 0.025 ml/min while 

the outlet was maintained at atmospheric pressures. 

 

3.6. Quantification of crude oil asphaltenes content  

A modified version of the ASTM 2007-80 method was used to quantify the asphaltene content of 

the crude oil. 80 ml of n-heptane was added to 2g of crude oil to induce asphaltenes precipitation. 

The mixture of n-heptane- and crude oil is stirred and allowed to rest for 48 hours before filtration. 

The filter paper used is an EMD Millipore 0.22 µm size filter. Before filtration, the filter paper is 

dried at 225 °F for 15 minutes and allowed to cool to room temperature in a desiccator. The 

assembly used for filtration has a funnel with a sintered disk as a base, a clamp and a vacuum flask 

(Figure 3.5). 
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Figure 3.5. Picture of the assembly used for asphaltenes quantification. 

 

The mass percentage of asphaltenes in the crude oil sample is determined by equation 3. 

𝐴𝐶 =
𝐴𝑚

𝑂𝑚
× 100                                                                                                                             (3) 

Where Ac is the mass percent of asphaltenes (%), Am is the asphaltenes mass (g) and om is the 

crude oil mass (g). 

 

3.7. Quantification of crude oil sediment content  

Sediment content was quantified in the crude oil. 10 ml of the crude is mixed with 100 ml of 

toluene. The toluene is used to dissolve any organic content and wax in the crude. The mixture is 

heated and stirred for 15 minutes at 194°F. The mixture is then filtered using the same process and 

apparatus as the asphaltene quantification previously described. 
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3.8. Measurement of crude oil viscosity and density as function of temperature 

Viscosity and density of the crude oil are measured at various temperatures. The viscosity was 

determined by introducing 60 ml of the crude in a rotary capillary/Ostwald Viscometer and 

automatically heated gradually. The density of crude oil was determined with a  glass pycnometer 

which was heated to several temperatures in a water bath.  

 

3.9. Minimum miscibility pressure (MMP) measurements 

MMP is the smallest pressure at which two fluids are miscible. To measure MMP between the 

crude oil and the gas mixture (72% methane and 28% ethane), we have used the vanishing 

interfacial tension (VIT) method (Hawthorn et al., 2016). This method considers that the MMP is 

the pressure at which the interfacial tension between two fluids is equal to zero. To implement the 

VIT method, we have the experimental apparatus developed by Mukherjee (2020) (Figure 3.6). 
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Figure 3.6. Experimental apparatus used for the VIT MMP measurements (Mukherjee, 

2020). The HP-HT cell is equipped with a sapphire window that allows the visualization of 

the crude oil and gas interactions. 

 

To start the measurement, a glass capillary tube with a diameter of 0.6 mm is placed in the high 

pressure-high temperature (HP-HT) cell containing oil such that capillary rise can be observed. 

The following step is to use the gas pump to add the gas mixture in the HP-HT cell at different 

pressures. The pressure at which we cannot observe a capillary rise is the MMP. 

 

3.10. Contact angle measurement  

Contact angle measurements were used to evaluate the wettability of the core before and after 

preparation. To measure the contact angle, we have used the Kruss Easy Drop goniometer. 
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Figure 3. 7. Picture of the contact angle measurement apparatus. 

 

The contact angle measurements were conducted between the core sample and an oil droplet when 

the core sample was immersed in brine. 

 

3.11. Description of the apparatus used for oil and gas injection 

To study the phenomenon of asphaltenes accumulation in porous media during oil and gas flow 

we have designed and assembled a unique experimental apparatus that allows the co-injection of 

oil and gas. Figure 3.8 presents a picture of the apparatus while Figure 3.9 illustrates a schematic 

of the apparatus. All valves and pumps of this apparatus can be controlled by a software 

constructed in Labview. 
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Figure 3.8: Picture of the apparatus used for the co-injection of oil and gas.  

 

 

Figure 3. 9. Schematic of the apparatus used for co-injection of oil and gas. 

 



  

33 
 

The apparatus is constituted of three syringe pumps that are used for oil and gas injection as well 

as to apply the confining pressure independently. The oil and gas pumps are connected to the core 

holder injection ports by high-pressure stainless-steel lines equipped with check-valves that 

prevent flow back into the pumps. A backpressure valve placed on the outlet side of the core holder 

is used to control the pore pressure during the experiments. Two Pressures transducers are placed 

before the gas and oil injection ports and a third one is between the outlet port and the backpressure 

regulator. These pressure transducers are used to record the pressures at the entrance and exit of 

our core sample.  

The core holder is equipped with 2 independent injection ports for oil and gas (Figure 3.10). A 

thin Teflon wafer is inserted between the injection ports and the core sample to prevent oil and gas 

from mixing at the core face (Figure 3.11).  

 

 

Figure 3.10. Oil and Gas inlet ports. The injection ports are extended in order to allow the 

placement of a thin Teflon wafer 

 

Oil inlet 

port 

Gas inlet 

port  
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Figure 3.11. Teflon wafer used to isolate the oil and gas injection ports 

 

To ensure that the oil and gas will not mix on the core face, we evaluated the communication level 

between the two injection ports. This evaluation was conducted with a solid aluminum plug 

inserted in the core holder and an injection of nitrogen at 4,500 psi during 16 hours. The 

backpressure was kept at 4,500 psi during this test. Figur 3.12 presents the pressures recorded at 

the gas inlet, oil inlet and outlet of the sample. During the 16 hours, the pressure at the oil inlet and 

gas inlet remained constant at 7 ± 3 psi. Therefore, the communication between the two injection 

ports is minimal. 

 

Teflon wafer 



  

35 
 

 

Figure 3.12. Pressures recorded at the oil inlet, gas inlet and outlet of the core during the 

evaluation of the communication between the injection ports. 
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CHAPTER 4:  EXPRIMENTAL RESULTS AND DISCUSSION 

 

4.1.  Core characterization 

For the purpose of this project study, we have used a Berea sandstone core plug with length and 

diameter equal to 9.32 cm and 2.51 cm respectively (Figure 4.1). A single core plug was used 

throughout this study in order to limit the variability of experimental results due to heterogeneity 

between different samples.  

 

 

Figure 4.1. Picture of the Berea sandstone core plug used for the experiments. 

 

FTIR mineralogy measurements indicate that the Berea sample had 81% of quartz, 6.7% of clay 

and minor amounts of dolomite. Porosity value of  20.4% was computed from the weight 
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difference before and after saturation with 35 g/l brine while the steady state permeability 

measurements yielded 16 mD at an effective stress of 1,000 psi. 

MICP measurements show that the main pore throat size radius is 39.96 µm while the average 

pore size diameter is 3.66 µm (Figure 4.2). 

 

  

Figure 4.2. MICP pore throat size distribution of the Berea sample.  

 

 

4.2.  Crude oil characterization 

Upon reception, the crude oil used in our investigation has 1.05 wt% of solid content. Such amount 

of solid content was large enough to prevent oil flow within the core sample. Therefore, the crude 

oil was filtrated with a sintered disk with 0.5 µm mesh size. The filtered crude oil had 0.1 wt% of 

solid content and 4.04 wt% of asphaltenes content.  
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The sintered disc size was selected because of the pressure used for the oil filtration (3,000 psi). 

However we used 0.5 µm of filter size which could affect the results because the average pore size 

distribution diameter of the core sample is 3.66 µm. Pores throat diameter smaller than 0.5 µm 

could be plugged by sediments. 

Figure 4.3 and Figure 4.4 present the crude viscosity and density measurements repectively. They 

indicate that the oil viscosity varies from 19.2 to 6.38 cp and the density changes from 0.89 to 0.84 

g/cc when the temperature increases from 86 to 176 °F.  

 

Figure 4.3. Viscosity of the crude oil as function of temperature. 
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Figure 4.4. Density of the crude oil as function of temperature. 

 

MMP measurements with the vanishing interfacial tension method yielded 4,200 psi between the 

crude oil and the gas mixture (72% methane-28% ethane). 

 

4.3. Investigation of impact of pressures and flowrates on asphaltenes accumulation 

 

4.3.1. Sample preparation 

Before each experiment, the Berea sample was saturated with a 35 g/l brine. The brine saturation 

is subsequently reduced to irreducible water saturation (Swir) by the injection of crude oil at a 

flowrate of 0.025 ml/min, constant pressure of 4,500 psi and a temperature of 170° F. 4 to 6 pore 

volumes (PV) of crude oil injection were necessary to reach Swir (Figure 4.5). Figure 4.6  shows 

that Swir ranges between 29.6 and 34.96% prior to the investigations of the impact of pressure and 

flowrate on asphaltenes accumulation.  
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Figure 4.5. Pressures recorded at the oil inlet of the core sample as function of pore volume 

with a backpressure equal to 4,500 psi (1.07% MMP) and flowrate of 0.025 ml/min. 

 

 

Figure 4.6. Swir values obtained prior to the experiments investigating the impact of 

pressure (1,2,3) and flowrate (4,5) on asphaltene accumulation. An average Swir of 32.4% ± 

2.6 was obtained prior to these experiments. 
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After the establishment of Swir, crude oil was maintained in the core sample at 4,500 psi of pore 

pressure (5,800 psi of confining pressure) for 7 days. This aging process was followed to alter the 

wettability of the Berea core plug toward oil wetness. The wettability of the core plug was assessed 

with contact angle measurements. Figure 4.7 shows the pictures of oil droplets in contact with the 

core sample after saturation with brine (35 g/l NaCl) where a contact angle close to 11° was 

measured.  

 

  

Figure 4.7. Contact angle measurement between an oil droplet and the Berea core plug 

saturated with brine. 

 

The contact angle measurement conducted after the aging step is illustrated in Figure 4.8. After 

aging, the contact angle between the oil droplet and the core sample increased to 130° indicating 

that the aging process has successfully altered the wettability of the core sample to oil wet. 
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Figure 4.8. Post aging contact angle measurement between an oil droplet and the core plug 

initially saturated with brine. 

 

4.3.2.  Results of the impact of pressure on asphaltene accumulation  

To evaluate the impact of pressure on asphaltenes accumulation in porous media, we conducted 

three gas and oil co-injection experiments at 4,500, 3,570 and 3,150 psi of backpressures with a 

constant flowrate of 0.025 ml/min and a temperature of 170°F. These pressures that represent 1.07, 

0.85 and 0.75% of the MMP were selected in order to compare asphaltenes accumulations close 

to the MMP and below the MMP.  

As indicated previously, the MMP between the crude oil and the n-alkane gas mixture (72% 

methane+28% ethane) is 4,200 psi.  

The Reynold number for these experiments was 0.011. The core sample diameter was used for the 

computation. 

Instead of mixing of the oil and gas in a pressure vessel we conducted a co-injection of oil and gas 

in the sample in order to prevent the asphaltenes precipitation prior to core flooding.  
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Figure 4.9 presents the recorded pressures at the oil and gas inlets as well as at the core outlet 

during the experiment at 1.07 % of MMP. We observe an initial transient period in which the 

injection pressures are initially relatively constant (4,450 psi ± 50) up to 4.5 pore volumes where 

we observe a sudden increase in the oil and gas inlet pressures.  

 

Figure 4.9. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 4,500 psi (1.07% MMP). 

 

The injection was stopped after the pressures reached 5,400 psi in order to not exceed the pressure 

limitations of the apparatus. This increase in pressure indicates a permeability impairment due to 
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A plot of the pressure drops across the sample (Figure 4.10) also implies a severe obstruction of 
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could be due to the fact that these experiments were conducted at constant injection rates instead 

of constant injection pressures. Therefore, the viscosity and permeability may be different for both 

fluids at that point. This is valable for all experiments where we observe difference in oil and gas 

pressure drops. 

 

Figure 4.10. Pressure drops recorded of oil and gas across the sample as function of pore 

volume with a backpressure equal to 4,500 psi (1.07% MMP). 

 

A major concern of experimental study on formation damage due to asphaltenes accumulations is 

the mixing of oil and gas at the core face, hence the asphaltenes accumulation is concentrated at 

the core face. However, the Teflon wafer we designed and manufactured, prevented oil and gas 

from mixing at the core face. Figure 4.11 shows a color change in the core sample indicating that 

asphaltene deposition started close to 2.5 cm away from the inlet core face. Therefore, the results 

of the present study are representatives of a deposition process taking place within the core sample 

and not on the core face. 
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Figure 4.11. Picture of the Berea sandstone core plug after the co-injection of oil and gas 

(72% C1 and 28% C2). The color change at 2. 5 cm from the inlet indicates that the 

formation damage has occurred within the core plug and not at the core face.  

 

During the experiment conducted at 3,570 psi (0.85% of MMP) the oil and gas inlet pressures were 

constant at 3,600 ± 20 psi until approximately 6.5 pore volumes where we observe a gradual 

increase in the oil and gas inlet pressures (Figure 4.12). These pressures reached a maximum of 

4,000 psi at 7.75 pore volumes before decreasing. The plot of the oil and gas pressure drops 

associated with this experiment confirms the existence of formation damage due to asphaltenes 

accumulation after the injection of 6.5 pore volumes (Figure 4.13). However, the reduction of the 

oil and gas pressure drop across the sample after the injection of 8.5 pore volumes indicates the 

removal of the asphaltene previously accumulated in the core sample. This removal can be due to 

a redissolution of the asphaltenes in the crude oil due to the lower solubility of the gas mixture 

below the MMP value.  
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Figure 4.12. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 3,570 psi (0.85% MMP). 

 

 

 

Figure 4.13. Pressure drops recorded for oil and gas across the sample as function of pore 

volume with a backpressure equal to 3,570 psi (0.85% of MMP). 
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At 3,150 psi (0.75% of MMP) of backpressure, we observe a reduction in the oil inlet, gas inlet 

and outlet after the injection of 1.25 pore volumes until 1.7 pore volumes. This pressure reduction 

could be due to a temporary backpressure failure. However, this possible temporary failure seems 

to be resolved after 1.75 pore volumes. After the co-injection of 6.5 pore volumes, we observe an 

increase in the oil inlet, gas inlet and outlet pressures (Figure 4.14). The plot of oil and gas pressure 

drops across the core sample shows a permeability impairment due to asphaltenes accumulation 

(Figure 4.15). 

 

 

Figure 4.14. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 3,150 psi (0.75% MMP). 

 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

0 5 10 15 20 25 30 35 40 45 50 55

Pore volume (fraction)

P
re

ss
u

re
 (

p
si

)

Time (h)Outlet pressure Oil inlet Gas inlet



  

48 
 

 

 
 

Figure 4.15. Pressure drops recorded for oil and gas across the sample as function of pore 

volume with a backpressure equal to 3,150 psi (0.75% of MMP). 
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Figure 4.16. Comparison of pressure drop recorded for gas across the sample as function of 

pore volume with backpressures equal to 4,500, 3,570, 3,150 psi at a flowrate of 

0.025ml/min. 
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because of asphaltene accumulation. At 3,570 psi (0.85% of MMP) and 0.025 ml/min of flowrate 

the pressure drops of oil and gas experience a relatively small increase (400 psi) before returning 

to their baseline value indicating temporary formation damage.  

At 0.25 ml/min of flowrate, the oil and gas inlet pressures are relatively constants (Figure 4.17 and 

Figure 4.18). Even after the injection of 8.5 to 9 pore volumes the plots of oil and gas pressure 

drops (Figure 4.19 and Figure 4.20) also do not show an increase in the pressure drops. Therefore, 

at 0.25 ml/min asphaltenes do not accumulate in the sample. The results of these experiments 

indicate formation damage due to asphaltenes accumulation can be avoided even near MMP by 

increasing flowrates (Figure 4.21 and Figure 4.22). 

 

 

Figure 4.17. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 3,570 psi (0.85% MMP) at 

flow rate of 0.25 ml/min. 
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Figure 4.18. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 4,500 psi (1.07% MMP) at 

flow rate of 0.25 ml/min. 

 

 

Figure 4.19. Pressure drops recorded for oil and gas across the sample as function of pore 

volume with a backpressure equal to 3,570 psi (0.85% MMP) at flowrate of 0.25 ml/min. 
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Figure 4.20. Pressure drops recorded of oil and gas across the sample as function of pore 

volume with a backpressure equal to 4,500 psi (1.07% MMP) at flow rate of 0.25 ml/min. 

 

 

Figure 4.21. Comparison of pressure drops recorded of gas across the sample as function of 

pore volume with a backpressure equal to 3,570 at flow rates of 0.025 and 0.25 ml/min. 
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Figure 4.22. Comparison of pressure drops recorded of gas across the sample as function of 

pore volume with a backpressure equal to 4,500 psi at flow rates of 0.025 and 0.25 ml/min. 
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between 31.7% and 33.9% before the evaluation of surfactant treatment to prevent formation 

damage due to asphaltenes accumulation.  

 

Figure 4.23. Pressures recorded at the oil inlet of the core sample as function of pore 

volume with a backpressure equal to 4,500 psi (1.07% MMP) and flowrate of 0.025 ml/min. 

 

 

Figure 4.24. Swir values obtained prior to the evaluation of surfactant injection to prevent 

formation damage due to asphaltenes accumulation. An average Swir of 32.84 ± 1.07 was 

obtained for these experiments. 
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Figure 4.25 shows the pictures of oil droplet in contact with the core sample after saturation with 

brine containing 1 GPT of surfactant with a contact angle close to 32° measured.  

 

 

Figure 4.25. Contact angle measurement between an oil droplet and the Berea core plug 

saturated with 1gpt surfactant solution. 

 

The contact angle conducted after the aging step is illustrated on Figure 4.26. After aging, the 

contact angle between the oil droplet and the core sample increased to 137°. This contact angle 

value demonstrates that even when the core is previously saturated with brine containing 

surfactant, the aging process can successfully alter the wettability of the core sample to oil wet. 
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Figure 4.26. Post aging contact angle measurement between an oil droplet and the core 

plug initially saturated with brine containing 1 GPT of surfactant. 

 

 

4.4.2. Results of the impact of surfactants on asphaltene accumulation  

In these experiments, the core samples were initially saturated with brine and surfactant solutions 

at 1 and 10 GPT in order to evaluate their ability to mitigate the asphaltenes accumulation. For 

both experiments, we injected gas and oil at 4,500 psi, at a flowrate of 0.025 ml/min and a constant 

temperature of 170°F. These pressures and flowrates were the conditions at which we observed 

the largest permeability impairment due to asphaltenes accumulation. A Reynold number of 0.011 

was computed for these experiments. 

Figure 4.27 and Figure 4.28 illustrate the recorded oil inlet, gas inlet and outlet pressures for the 

experiments with 1 gpt and 10 gpt respectively.  
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Figure 4.27. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 4,500 psi (1.07% MMP) at a 

flowrate of 0.025 ml/min and 1 gpt surfactant. 

 

 

Figure 4.28. Pressures recorded at the oil inlet, gas inlet and outlet of the core sample as 

function of time and pore volume with a backpressure equal to 4,500 psi (1.07% MMP) at 

flow rate of 0.025 ml/min and 10 gpt surfactant. 
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For both experiments, the pressures are initially constant before a sudden increase in the oil and 

gas inlet pressures that lead to the interruption of the experiments when the pressures reached 

5,400 psi. This increase occurred at 4.6 pore volumes for the experiments with 1 gpt and 4 pore 

volumes for the experiment with 10 gpt. These increases in the inlet pressures while the outlet 

pressures were constant indicate a permeability impairment due to asphaltene accumulation in the 

sample (Figure 4.29 and Figure 4.30).  

 

 

Figure 4.29. Pressure drops recorded of oil and gas across the sample as function of pore 

volume with a backpressure equal to 4,500 psi (1.07% MMP) at flowrate of 0.025 ml/min 

and 1 gpt of surfactant. 
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Figure 4.30. Pressure drops recorded of oil and gas across the sample as function of pore 

volume with a backpressure equal to 4,500 psi (1.07% MMP) at flow rate of 0.025 ml/min 

and 10 gpt of surfactant. 
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damage. We do not have an explanation for these results, but they could constitute a research 

subject in the future. 
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Figure 4.31. Comparison of pressure drops recorded of gas across the sample as function of 

pore volume with a backpressure equal to 4,500 psi at flow rates of 0.025 ml/min and 

different surfactant concentrations. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1.  Conclusion 

During this thesis project, we have investigated by means of experimental methods the impacts of 

reservoir pressures and flowrates on asphaltenes accumulation during oil and gas flow in a Berea 

sandstone core sample. We have also evaluated the efficacy of surfactant injection to prevent the 

deposition of asphaltenes. Our investigations revealed that: 

• Significant asphaltenes precipitation near the MMP leads to severe formation damage 

which can be detrimental to production and injection operations. However, asphaltenes 

accumulation is a slow process that will require at least 4.5 PV to be flown before the 

occurrence of formation damage. 

• Below the MMP, the small amounts of asphaltenes precipitated can reduce reservoir 

permeability. However, this permeability reduction could be temporary because of the 

redissolution of the asphaltenes molecules into the crude oil.  

• As we increased the flowrate from 0.025ml/min (Reynold number 0.011) to 0.25 ml/min 

(Reynold number 0.11)  asphaltenes accumulation could not be observed regardless of the 

pressure. Therefore, production or injection flowrate management can be used to prevent 

formation damage to asphaltenes accumulation. 

• The injection of surfactant did not prevent asphaltenes accumulation. Our results show that 

formation damage occurs faster when the surfactant concentration is increased from 1 gpt 

to 10 gpt.   
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5.2. Recommendations 

For future studies and a better understanding of asphaltenes accumulation in reservoir rocks, we 

recommend the following: 

• The co-injection of crude oil with more asphaltenes content and the same gas mixture at 

pressures similar to the pressures used in this study in order to assess the impact of crude 

oil asphaltene content on the accumulation process. 

• More experiments at multiple flowrates between 0.025 ml/min and 0.25 ml/min in order to 

determine the critical flowrate beyond which formation damage due to asphaltenes 

accumulation does not occur. 

• The development of a sub research program that will investigate the reasons why the 

injection of surfactant did not prevent asphaltenes accumulation in the core sample. 

• Modeling of the experimental data acquired during this thesis in order to understand the 

underlying mechanisms responsible for asphaltenes accumulation. 

• Use adequate mesh size filter vis a vis the core sample pore sizes distribution to reduce the 

crude oil solid content and avoid possible small pore sizes plugging. 

• Quantify the asphaltene content in the core sample after each experiment. 

• Design several experiments where the water phase will also flow. 

• Conduct core flooding with solutions of 1 gpt and 10 gpt surfactant as a control prior to oil 

and gas coinjection experiments. 
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