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Abstract 

People who misunderstand risk are more likely to experience costly decision biases. In addition 

to serious personal and economic implications, risk misunderstanding can further undermine 

high-stakes risk mitigation efforts. What makes someone vulnerable to misunderstanding risk? 

Recent research suggests individual differences in statistical numeracy (i.e., ones’ practical 

probabilistic reasoning) tend to be the strongest predictor of general decision making skills and 

risk literacy—i.e., the ability to evaluate and understand risk (Cokely et al., 2012, 2018). The 

current study aims to develop some relatively straightforward and practical tools that provide 

insights and make meaningful inferences about who, when, how much, and why people may 

misunderstand risks (i.e., Decision Vulnerability Analyses). First, the development of a 

unidimensional measure of Risk Literacy lends itself to the development of numeracy norms 

and comparative risk literacy levels. Cumulative percentile rank norms are provided for the 

general public, as well as stratified by education, age, gender, and race. Next, a major potential 

threat is addressed: differential item functioning and measurement invariance. Results suggest 

that the Berlin Numeracy Test-Schwartz and the Risk Literacy Test pass strict measurement 

invariance, with good model fit (RMSEA < .06). Finally, a template for decision vulnerability 

analysis is developed and validated using five example artifacts (e.g., risk communications). 

Initial results suggest that over 90% of predicted risk literacy difficulty levels are within ten 

percentile points of the observed value. An additional out-of-sample application with hurricane 

risk communications is explored, and discussion focuses on theoretical implications, future 

research for methodological improvements, and further implications for high-stakes decision 

making. 

Keywords: Numeracy, risk literacy, decision vulnerability, norms, invariance
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Chapter 1  

Introduction: Difficult Decisions & Decision Vulnerability 

“If you cannot measure it, you cannot improve it.” – Lord Kelvin 

Linda and Douglas deSilvey, their daughter Donna, and Linda’s parents Nadine and Ted 

Gifford were all aware of the warnings. Their family had sheltered-in-place through severe 

weather before at the Gifford’s home, which had been designed to meet the updated NIST 

standards developed after Hurricane Camille (1969). Together, they decided not to evacuate. It 

was not an easy decision, but they gathered at the family home in Gulf Hills and prepared to 

ride out the storm. On Monday, August 29th, 2005, shortly after breakfast the family realized 

that Hurricane Katrina was different. In a matter of hours, storm surge was flooding the streets, 

and last-minute evacuation was probably no longer an option. By the end of the day, their roof 

collapsed under the growing force of Hurricane Katrina, leaving Douglas deSilvey the sole 

survivor. One day earlier, about 100 miles west of Gulf Hills, Daniel Aldrich decided to take 

his family and evacuate New Orleans. He, his wife, and their two young children had recently 

moved, and Daniel was scheduled to start his new job on Monday. However, thanks in part to 

a discussion with his neighbor, the family left for Houston that Sunday. The next day, August 

29th, 2005, Daniel and his family learned their home had been destroyed and all their 

belongings were “nothing more than a big, black smear on the ground.”  

Hurricane Katrina was one of the worst natural disasters in the History of U.S., leading 

to at least 1,833 fatalities, destroying 352,930 homes, and displacing roughly half a million 

people. Over the last 15 years, many investigations have considered and documented the 

various factors that contributed to the evacuation decisions people made during Hurricane 

Katrina (Boin et al., 2019). These reports overwhelmingly suggested that there is no single 
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factor that explains people’s decisions. While some factors stand out as more influential, for 

better or worse, there appear to be complex and often justifiable reasons for the difficult choices 

people made. For example, many people who decided to shelter-in-place were older adults who 

had retired, like the Giffords.  Many retirees also had medical conditions that would make travel 

difficult even under normal circumstances. Other people reported staying primarily because of 

personal, moral, or professional responsibilities, including people in medical and emergency 

response positions.  And there were those who otherwise preferred to leave, but who stayed to 

be with family and friends who would not or could not evacuate (e.g., perhaps as the deSilveys 

did). Far too many people also decided to stay because they felt it was truly their only option, 

since they lacked crucial resources to do otherwise (e.g., no savings, no car, no social support).   

Taken together, considering the many complications and unique circumstances people 

were faced with, it is possible that most choices genuinely reflected people’s best effort to make 

“the right” decision in an extremely difficult and risky situation. Despite the complexity and 

rapidly evolving nature of the risks, it is noteworthy that the weight of the evidence suggests 

that the vast majority of people had access to remarkably accurate forecasts, warnings, and risk 

communications well-before the storm made landfall. While some of the risk communications 

may have caused confusion for some people, the forecasts of the National Weather Service and 

the National Hurricane Center were generally quite timely, precise, and accurate. To illustrate, 

consider these examples reported in subsequent media coverage: “Storm-track projections 

released to the public more than two days (56 hours) before Katrina came ashore were off by 

only about 15 miles... [and] Two days before the storm hit, the hurricane center predicted 

Katrina’s strength at landfall; the agency was off the mark by only about 10 mph.” 

(NBCUniversal News Group, 2005).  Given the speed and accuracy of these forecasts, there 
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should be little doubt that these risk communications protected the lives of many people, 

including Daniel Aldrich, his family, and his neighbors.  Nevertheless, even the most accurate 

and useful information does not necessarily make risks easy to interpret, nor does this kind of 

information guarantee that decisions will be easier or less biased.  

Decision Vulnerability. It seems reasonable to expect higher-quality decisions are 

likely to result when people have both access to, and awareness of, more accurate risk 

communications, which was generally the case with Hurricane Katrina.  Nevertheless, research 

shows that there are many examples of accurate yet difficult, technical risk communications, 

that cause risk misunderstanding and biased decisions among members of the public and highly 

trained professionals alike (Garcia-Retamero & Cokely, 2017; Ghazal et al., 2014; Petrova et 

al., 2018). Research suggests two major sources of decision vulnerability often result from (a) 

differences in cognitive skills (e.g., risk literacy skills) and (b) the difficulty vs. transparency of 

data depicted in risk communications (e.g., displaying part-to-whole data relations). Here, I will 

roughly define the notion of decision vulnerability as the relative probability of biases or errors 

during judgment and decision making, by drawing comparisons to a specific reference class 

(e.g., norm referenced test score distributions). This is roughly consistent with notions of social 

vulnerability as indexed for use in the assessment of behavioral risks, developed by the Centers 

for Disease Control (CDC; Tate, 2013).  

Theoretically, a high level of decision vulnerability does not imply that a bad outcome 

will definitely result, just as a low degree of vulnerability does not necessarily mean that a 

decision maker will avoid bias.  Instead, as it is used here, it is useful to assume that decision 

vulnerability generally functions the same way a good decision making process does (e.g., a 

good decision is a good bet such that it pays off on average, though sometimes a good decision 
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does not work out). Accordingly, decision vulnerability may be associated with (i) differences 

in the relative difficulty of a risk communication (e.g., item-level difficulty or what is hard) as 

well as (ii) skill-related individual differences (e.g., person-level difficulty or for whom it is 

hard).  To the extent these decision vulnerability factors are at play, an interesting theoretical 

question is why? 

Cognitive Abilities & Decision Biases. It is well-established that decision biases are 

robustly predicted by individual differences in general cognitive abilities, including intelligence 

and statistical numeracy tests (Allan, 2018; Cokely et al., 2012, 2018; Del Missier et al., 2012; 

Peters, 2012; Stanovich & West, 2000). In some sense this is not surprising: people who are 

more intellectually prepared to engage in sophisticated reasoning should also be better prepared 

to avoid misunderstandings and other cognitive errors and biases. As such, people with higher 

levels of general cognitive abilities are likely to be less vulnerable to downstream decision 

biases and costly decision outcomes—a finding that has been demonstrated many times over 

the past 20 years in decision psychology and across a vast array of judgment and decision tasks 

and domains (e.g., health, wealth, relationships, and happiness). While it is notable that general 

cognitive skills and abilities are robust predictors of decision biases, these relations in and of 

themselves do not necessarily answer the question of why? While such individual differences 

are almost certainly determined by multiple factors, what follows are brief descriptions of two 

well-integrated theoretical accounts of the cognitive processes and causal mechanisms that 

primarily give rise to, and explain, differences in generally superior decision making (i.e., biases 

and error avoidance):  

(a) Dual Process / Dual Systems Theory (Evans & Stanovich, 2013; Kahneman, 

2003, 2011). This theory emphasizes the central role of logical, cold calculation in 
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unbiased decision making (e.g., System 2 overrides emotions and biased intuitions 

generated by System 1, so that System 2 can then logically compute or analyze 

decisions).  Theoretically, a primary mechanism that gives rise to differences in the 

cognitive process associated with cold, logical calculation is a fundamental 

difference in the heritable and abiding inhibitory and storage capacity of System 2 

(e.g., larger short-term working memory capacity, greater inhibitory and attentional 

control). Theoretically, because more intelligent people have larger System 2 

capacities, they can more easily and reliably (a) inhibit biased and emotional 

System 1 intuitions, and (b) hold more abstract and complex logical equations in 

their (short-term) working memory (e.g., computing a formal decision analysis or 

solving a difficult math equation).   

(b) Skilled Decision Theory (Cokely et al., 2018). This theory emphasizes the role of 

vivid, representative understanding in skilled and adaptive decision making (e.g., 

System 1 and System 2 collaborate and iteratively evaluate and encode risks into a 

personally meaningful understanding in long-term memory).  Theoretically, the 

primary mechanisms that enable the cognitive process differences associated with 

vivid, representative understanding are differences in acquired skills, knowledge, 

and the organization of information in long-term memory. As such, because people 

are more skilled at probabilistic reasoning they may (a) use System 2 to more 

accurately evaluate and interpret risks so they can then (b) use elaborative encoding 

to develop a personally meaningful understanding in long-term working-memory, 

thereby circumventing the capacity constraints of (short-term) working memory 

(System 2), by creating a well-informed and emotionally-calibrated intuitive 
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understanding in long-term memory (e.g., developing a realistic, vivid narrative 

story detailing the probabilities and imagining possible decision outcomes and how 

they might feel). 

According to the popular theoretical account provided by Dual Systems Theory, the 

differences in decision making biases result from differences in (largely) stable and abiding 

cognitive capacities (Frederick, 2005; Kahneman, 2003).  As such, only a small proportion of 

individuals might ever be able to engage in superior and unbiased decision making. That is, 

highly intelligent people avoid biases because they are endowed with a larger mental capacity 

and greater attentional control (i.e., inhibit, shift, update) allowing them to disregard intuitive 

feelings and override automatic cognitive processes (e.g., heuristics), while also more 

effectively holding logical (cold calculating) reasoning processes in their (short-term) working 

memory (e.g., the calculation of some subjective expected utilities, as described in The 

Foundations of Statistics; Savage, 1954). In contrast, Skilled Decision Theory suggests that 

individual differences in decision making quality are not (primarily) constrained by differences 

in intelligence or other working memory and attentional control, but rather are primarily 

constrained by the kinds of skills and knowledge one has acquired and can bring to bear on the 

task.  

Clearly, both theories posit that general cognitive abilities of some type play a defining 

role in supporting specific decision making processes (e.g., cold rational optimization vs. 

meaningful, representative understanding). However, because the Dual Systems perspective 

emphasizes the importance of heritable cognitive capacities, this theory suggests that in general, 

the quality of decision making should not be directly or substantially improved by training or 

skill acquisition (e.g., heritable intellectual capacities largely define functional capacity limits).  
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In contrast, Skilled Decision Theory suggests the opposite: trainable, acquired skills and 

knowledge may causally give rise to differences in general decision quality. Specifically, 

Skilled Decision Theory suggests that training, decision support, and other interventions can 

and should be beneficial, in many ways. Ultimately, Skilled Decision Theory explains 

differences in general superior decision making via the same mechanisms that promote the 

profoundly superior judgment and decision making processes of verifiable experts (i.e., specific 

differences in knowledge and skills that are acquired through extended deliberate practice). To 

further contextualize theoretical, technical, and historical foundations with respect to cognitive 

ability testing, I next provide a brief review of (i) measurement in psychology (ii) measurement 

of intelligence, and (iii) the assessment of numeracy, its components and its relation to risk 

literacy, and superior decision making.    

Psychology, Measurement, & Science 

In a specific sense, scientific measurement is not possible in Psychology or related 

Behavioral and Social Sciences. This was the conclusion and official determination of the 

Ferguson Committee (1940), which was formed in 1932 by the British Association for the 

Advancement of Science. Composed of 19 scientists, including well-respected Physicists and 

Psychologists, their charge was to investigate the scientific validity of psychological 

measurement practices. Although all members did not agree on the formal conclusion, based 

on common standards and assumptions in philosophy of science and in Newtonian Physics, 

they determined that psychological variables were not measurable or scientific in the same way 

as other scientific variables because even the most rigorously measured psychological variables 

did not measure actual physical “quantities.”  
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Broadly, the argument of the Ferguson Committee was that science generally requires 

objective “direct” measurement of physical quantities that are a function of some invariant (e.g., 

constant, universal) physical substance, such as length, weight, or time, and so naturally affords 

precise quantification and direct discovery. That is, if all such substances can be precisely and 

reliably measured with respect to their real (invariant) properties, natural scientists can simply 

use direct measurement to reveal, discover, and catalog invariants. For example, with the right 

tools, any competent and qualified observer could measure the “true” quantity of 8 seconds, 

which would necessarily be exactly four times longer than 2 seconds, regardless of who 

measured the quantity. By contrast, because psychological variables are primarily theoretical, 

psychologists would not likely aim to actually measure some real “mental quantity.” For 

example, in measuring the contents of working memory psychologists do not purport to be 

measuring something like an actual physical “space” that is filled up with 7+/- 2 “cognitions,” 

which take up 7 times more space than any 1 “cognition” or idea. 

While much has changed, in some ways the ideals of realism in scientific measurement 

reflected by the Ferguson Committee continues to be represented in many modern standards of 

measurement in science and engineering. For example, the International System of Units (SI) 

defines seven fundamental measurement units (i.e., ampere, candela, kelvin, kilogram, meter, 

mole, and second), all of which are precisely defined in physical terms with reference to a 

specific, directly measurable, invariant (universal) physical constant (e.g., temperature is 

measured in Kelvin units based on the Boltzmann Constant; weight is measured in kilograms 

based on Planck’s Constant). Although there are clearly some relatively direct physical 

relationships psychologists might reasonably aim to measure (e.g., the extent to which changes 

in pain are directly linked to changes in the firing rate of nociceptors neurons), most variables 
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of psychological interest should, by definition, be considered conceptual variables or theoretical 

constructs (e.g., attention, memory, anger, intelligence).  Thus, in psychology, the measurement 

of any psychological variable is by its very nature a theoretical enterprise. 

Representational Theory of Measurement. In some way, the Ferguson Committee’s 

finding (1940) that psychologists do not measure anything universally invariant or otherwise 

“real,” was probably poorly timed and certainly largely ignored.  By that time, measurement 

and quantitative methods were already fairly well-established and were also quite well-funded, 

thanks in part to the need for testing and assessment in educational, clinical, occupational, and 

military contexts. For example, nearly 20 years before the Ferguson report was released, many 

U.S. psychologists who were members of the American Psychological Association were 

actively involved with some aspect of measurement and test development in applied psychology 

(Terman, 1921). Gustav Fechner’s (1860) work on psychophysics from nearly a century before 

the report was released had served (with other works) to set a foundation for the professional 

sub-field of quantitative psychology. Moreover, “measurement” and quantitative practices in 

psychology had produced fundamental and practical advances in statistics that were of interest 

well-beyond the field.  For example, Francis Galton’s work is recognized for making essential 

contributions to the conceptualization of the standard deviation and correlation (e.g., regression 

to the mean). Charles Spearman’s work led to the establishment of the rank-order correlation 

and is often more generally credited as developing factor analysis.   

Given the many quantitative achievements, and the vast amount of research taking place 

in applied psychology and testing in the 1940s, perhaps it is not surprising that soon after 

publication of the report a formal response was published by Stevens (1946).  That paper 

advanced and rather firmly established what remains today to be the modern, standard approach 
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to measurement in psychology—i.e., the operationalization of psychology and quantitative 

measurement. Roughly, this view holds that measurement of psychological and other 

theoretical constructs may be accurately described using the assignment of some operationally 

defined variable, in accord with a specified measurement scale (i.e., nominal, ordinal, interval, 

ratio). As such, although the construct may only be theoretical in nature, and thus does not 

necessarily have a truly invariant form, it nevertheless may be usefully, reliably, and accurately 

characterized by its functional measurement properties, provided an adequate theoretical 

conceptualization and operationalization of the measured variable (e.g., cognitive abilities as 

measured by X according to Y scale).  While many have presented concerns about the logic 

and rigor of this initial formulation, more recent axiomatic treatments of related representational 

theories of measurement have been successful, including Luce and Tukey’s (1964) conjoint 

theory of measurement, further refined in Luce and Suppes (2002), which today stands as one 

of the leading theories of scientific measurement in any scientific field of study. As such, 

considerable care is merited when making claims about how to interpret some measurement 

scale (e.g., ordinal vs. interval), including the need for careful investigation of aspects and 

assumptions of test properties. These notions and requirements are today commonly embodied 

in the standards for development of tests, norms, and other methodological elements, as 

described by various frameworks for construct validity (Messick, 1995), and codified in 

professional standards such as the Standards for Educational and Psychological Testing 

(AERA, APA, & NCME, 1999). 

Measuring Intelligence. At the turn of the twentieth century, French psychologist 

Alfred Binet was hired by the French Ministry of Education to determine which students were 

not learning effectively in standard classrooms, so they could be given additional remedial work 
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(i.e., a type of special education). Binet (1903) devised a written test and in the next decade this 

work spread to the U.S. In 1916, Lewis Terman standardized the Stanford-Binet Intelligence 

Scale, and then worked on a committee to create the Army Alpha, another test used to determine 

a soldier’s capability to serve (1917). While Binet did not believe that a single, permanent, 

inborn level of intelligence could be determined using these psychometric instruments, Terman 

believed there was a hereditary component to intelligence and was particularly interested in 

studying individuals who demonstrated extreme talent (i.e., geniuses and gifted children).  

Over the next few decades, research on intelligence and individual differences of 

abilities took many turns. In 1921, Terman started his ‘Study of the Gifted,’ and enrolled 1,444 

“gifted” students in one of the longest running longitudinal studies to date (Terman & Oden, 

1947). As notions of the heritability of intelligence (and feeblemindedness) grew, Francis 

Galton promoted the Eugenics movement (also supported by Edward Thorndike and Terman), 

which led to critical cases in American history, including the case of the Kallikak family 

(studied by Goddard in 1912), and the 1927 U.S. Supreme Court Case of Buck vs. Bell, which 

ultimately upheld the sterilization of Carrie Buck (who supposedly was part of a long line of 

“feebleminded” women). Additionally, Edward Thorndike, one of the early proponents of the 

eugenics movement, was particularly interested in individual differences in intelligence, and 

believed that these variations in intelligence were (primarily) due to innate, hereditary 

capacities, and not due to environmental influences. As such, he believed that genetic 

endowment was one of the most critical variables for social and economic progress. As his 

research progressed, his son, Robert Thorndike became recognized as one of the “fathers of 

personnel psychology,” having created tests to weed out unfit employees and locate those who 

would perform well on the job (Thorndike, 1949). He worked to determine the lowest IQ 
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necessary to carry out any particular job, and advocated for educational practices that prepared 

students for careers that matched their innate abilities.  

Despite these early traditions that continue to exert influence in many ways (e.g., 

Murray, 2021) there are also many other modern trends in intelligence research that 

acknowledge a more nuanced and sophisticated view of the knowns and unknowns in 

intelligence research. For example, as the individual differences movement in intelligence 

research continued in the early part of the century, Spearman (1927) developed Factor Analysis 

(i.e., a method of separating a construct into a number of hypothetical factors or abilities) and 

posited that there was likely one primary factor in determining intelligence (i.e., g; or the 

general factor). However, in 1941 Raymond Cattell proposed two primary factors of 

intelligence – including fluid (i.e., the capacity to reason and solve novel problems, independent 

of any knowledge from the past), and crystallized (i.e., the ability to use acquired skills, 

knowledge, and experience, which relies on accessing information from long-term memory; 

Cattell, 1963; Cattell et al., 1941).  

Modern Intelligence Research & Theory. Today, research on intelligence has grown 

from these initial roots. Hiring organizations continue to use tests of intelligence for selection 

purposes (Schmidt & Hunter, 1998), schools use clinical measures to assess student aptitude 

for learning, and people affected by the eugenics movement remain alive. However, while there 

have been many new models and assessments of intelligence (e.g., Hunt, 2010; Raven, 1938; 

Sternberg, 1977; 2003; Thurstone, 1938; Weschler, 1955), the work of Spearman (1927) and 

Cattell remain pervasive in psychometric models of cognitive abilities (Carroll, 1993; Cattell, 

1971, 1987; McGrew, 2009) 
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Notably, in his seminal work, Carroll (1993) proposed a now widely endorsed Three 

Strata Theory of human intelligence by analyzing over 460 data sets from 1927 and 1987. This 

model suggested the cognitive abilities of humans are typically well-characterized by three 

levels. Stratum 1 represents the rote tasks that can be used as indicators. Stratum 2 provides 

eight broad factors of cognitive abilities, namely: Fluid Intelligence (Gf), Crystallized 

Intelligence (Gc), Broad Visual Perception (Gv), Broad Auditory Perception (Ga), General 

Memory and Learning (Gy), Broad Retrieval Ability (Gr), Broad Cognitive Speediness (Gs), 

and Reaction Time & Decision Speed (Gt). Finally, Stratum 3 follows from Spearman’s factor 

analysis hypothesis: there is one overarching general ability factor, g. Carroll (1993) further 

suggested that three essential reasoning factors best explained fluid intelligence, namely (i) 

sequential reasoning, (ii) inductive factors, and (iii) quantitative reasoning. 

Around the same time, The Bell Curve: Intelligence and Class Structure in American 

Life (Herrnstein & Murray, 1994) was published, making a number of controversial claims, 

including: (i) intelligence (fixed innate capacities) is the primary predictor of life outcomes, (ii) 

the reason for this connection is that intelligence is a strong determinant of decision making 

quality, (iii) only a small number of people have the aptitude required to make consistently 

good decisions, and (iv) there are a few appropriate policy prescriptions, which would place the 

cognitive elite in ruling positions (Herrnstein & Murray, 1994; but see also Cokely et al., 2018; 

Heckman, 1995). 

Following its publication, the mainstream media as well as many acclaimed researchers 

responded with several criticisms and defenses. First, in 1994 Linda Gottfredson published a 

statement in the Wall Street Journal that included 25 statements (largely in support of The Bell 

Curve), which was signed by 52 psychologists (Gottfredson, 1997). Then, the American 
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Psychological Association (APA) compiled a task force to publish a report on the current state 

of intelligence research (Neisser et al., 1996). Stephen Jay Gould also issued a reprint of his 

book, The Mismeasure of Man (1981; 1996) with a new forward explicitly critical of Herrnstein 

and Murray’s (1994) claims. Additionally, Heckman (1995) presented a reanalysis of the data 

presented in The Bell Curve and demonstrated (amongst other things) that a brief test of 

mathematical operations was excluded from the original analyses, but that this short test 

predicted wages (i.e., life outcomes) as well as the Armed Forces Qualifications Test which 

Herrnstein and Murray (1994) reported.  

Of note for the current project, this last finding suggests that “numerical abilities must 

explain important life outcomes that are otherwise missed by more standard general intelligence 

metrics” (Cokely et al., 2018, p. 485). Though in recent years there has been increasing research 

on the relationship between cognitive abilities and decision making (Bruine de Bruin et al., 

2007; Frederick, 2005; Stanovich & West, 2000), relatively less research has considered the 

relationship between (i) standard cognitive abilities, (ii) decision making skill, and (iii) 

numeracy. Said differently, though Carroll (1993) analyzed over 460 datasets, measures of 

decision making skill and statistical numeracy were relatively underrepresented (Cokely et al., 

2018). As such, while previous analyses of cognitive abilities have determined that fluid and 

crystallized intelligence are the two primary factors of intelligence (and primarily predict all 

following life outcomes; Carroll, 1993; Cattell, 1971; McGrew, 2009), recent research suggests 

that when properly represented, another factor, General Decision Making Skill is also likely an 

important and potentially defining factor in a more comprehensive model of human cognitive 

abilities (Allan, 2018; Cokely et al., 2018). 
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The reason for this shortcoming in the analysis of intelligence tests is likely two-fold. 

First, while psychometric research on cognitive abilities has been ongoing for over a century, 

the research on decision making competence has only emerged within the last 50 years (Dhami, 

et al., 2012). Second, while logic can be divided into two major categories (deductive and 

inductive), fluid intelligence tests are primarily about careful and thorough deductive reasoning 

under conditions of certainty – ultimately neglecting the importance of inductive logic in 

accounting for decision making ability (i.e., under conditions of uncertainty). More specifically, 

the standard tasks used to measure fluid intelligence tend to rely on working memory and 

attentional control capacities (Kane et al., 2004; McCabe et al., 2010).  Given the importance 

of long-term representations in memory (i.e., representative understanding), these fluid 

intelligence tasks are not likely representative of typical human decision making.  

This finding on the neglected and under-represented role of statistical numeracy in 

intelligence assessments suggests a few important implications. First, previous models 

overemphasized the role of fluid intelligence and working memory in models of cognitive 

abilities (i.e., relatively innate capacities). Despite recent attempts, the effectiveness of working 

memory and fluid intelligence training remains unknown (Jaeggi et al., 2011). In contrast, 

recent attempts to train and improve decision making skill and statistical numeracy are abound 

(Jenny et al., 2018; Nisbett, 2009; Peters, 2017; Peters et al., 2010; Ybarra et al., 2017). Taken 

together with the other previously reviewed work on numeracy, this research suggests that 

perhaps the most influential variables that link cognitive abilities, decision making, and life 

outcomes are not inherent, but are rather acquired skills (e.g., crystalized intelligence, statistical 

numeracy, risk literacy).   
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Measuring Numeracy & Decision Making  

Measuring Numeracy. The conceptual origins of the construct of numeracy can be 

traced in large part to an interest in mathematics for use in everyday life, beyond the classroom 

(e.g., “practical numerical literacy,” “quantitative literacy,” or “mathematical literacy”). One of 

the earliest documented uses of the term numeracy was in England, where it was presented as 

part of the Crowther Report on education in 1959 (but see also Huff, 1954; Paulos, 1988). 

Crowther used “numeracy” to specifically distinguish applied and practical mathematics, from 

the abstract mathematics performed in classrooms and in many technical professions.  While 

mathematical skills and achievement have been of keen interest throughout the history of formal 

education, the specific scholarly interest of theoretical and practical numeracy is only 60 years 

old.  Nonetheless, it has been a busy 60 years. 

Modern definitions of numeracy are largely consistent with early conceptual 

foundations.  For example, the Organization for Cooperation and Economic Development has 

defined numeracy as the “ability to access, use, interpret and communicate mathematical 

information and ideas in order to engage in and manage the mathematical demands of a range 

of situations in adult life,” (OECD, 2013; see also Ginsburg et al., 2006; Krenzke et al., 2020).  

Programs such as the National Assessment of Adult Literacy and the Programme for 

International Student Assessment have also focused on related assessments to evaluate literacy 

levels more comprehensively (i.e., reading and numerical) across time and groups (e.g., ability 

levels in different countries; see Breakspear, 2012; Kutner et al., 2006). Results from studies 

such as these suggest that although numeracy may be a fundamental and relatively essential 

skill, more than 62 million adults (e.g., nearly 30% of U.S. adults) have such low levels of 
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numeracy skills that they struggle with even very basic and common calculations (NCES, 

2020). 

To illustrate common limits of statistical numeracy (i.e., practical probabilistic 

reasoning), consider a probabilistic national sample comparing statistical numeracy scores 

collected in U.S. and Germany.  The study found that only about 30% of adults could correctly 

identify the “larger probability” of getting sick (e.g., 1 out of 100 vs. 1 out of 10; Galesic & 

Garcia-Retamero, 2010).  These low numeracy levels have real-world implications, because 

low numeracy is often tied to low health literacy and worse health outcomes (e.g., CDC; 2021).  

Extensive evidence also demonstrates that quantitative skills more generally are among the 

most influential educational variables associated with economic prosperity in industrialized 

countries (Hanushek & Woessmann, 2010; Hunt & Wittmann, 2008). However, in the last 25 

years empirical research on the relationship between numeracy and decision making 

proliferated, in part thanks to the publication of a simple three-item numeracy test (Schwartz, 

et al., 1997) that focused specifically on probabilistic reasoning or what has become known as 

statistical numeracy. This test was created to assess the relationship between numeracy and 

one’s understanding of information about risks associated with breast cancer screening. 

However, it has since developed a much wider interest in the relationship between statistical 

numeracy, risk, and decision making in many risk communication domains (Nelson et al., 2008; 

Schapira et al., 2009). 

Broadly speaking, numeracy research can be conceptually divided into four number-

related competences including: 

(i) Objective numeracy and numeracy subcomponents: the ability to solve 

practical math problems accurately, including various subdivisions of component 
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numeracy skills such as (Allan, 2018; Cokely et al., 2012, 2018; Ghazal, 2014, see 

also Peters, 2012; Reyna et al., 2009): 

a. Statistical numeracy (e.g., operations and probabilities) 

b. Conventional numeracy (e.g., geometry and algebra) 

c. General numeracy (e.g., geometry, algebra, operations, probabilities) 

(ii) Subjective numeracy: one’s subjective self-assessment of one’s own numeracy 

competencies, as compared to others, or with reference to different tasks. 

(iii)  Symbolic-number mapping abilities: fundamental spatial mappings of 

magnitude, space, ratio, etc., defined as “internal representations of numeric 

magnitude” (Peters & Bjalkebring, 2015, p. 1).  

(iv)  Domain-specific numeracy: numeracy for use in specific contexts such as 

medical or health numeracy or numeracy for financial literacy (see for example 

the NUMi; Schapira et al., 2014),  

Of note, when considering these divisions, research has started to identify 

interdependencies as well as dissociations (and distortions) that can emerge when comparing 

across different measurements.  For example, while some research suggests that subjective 

numeracy can serve as a valuable and easier proxy for objective numeracy, evidence has also 

revealed limits. For example, though 70% of people in one sample self-report they are 

(subjectively) numerate, only 2% answered all objective numeracy items correctly (Miron-

Shatz et al., 2014). Related, in educational and developmental psychology, some evidence 

suggests that symbolic number mapping may emerge earlier than numeracy, acting as a 

“precursor” to further development of objective numeracy. Theoretically, this connection could 

potentially provide another indirect path toward the acquisition of more robust objective 
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numeracy skills (e.g., developing skills across individuals with low objective numeracy in more 

basic symbolic number mapping tasks; Peters & Bjalkebring, 2015). 

Statistical Numeracy & Risk Literacy. Many studies of numeracy and decision 

making have shown that the various measures of numerical competencies can and often do 

predict differences in decision making and decision vulnerability.  Nevertheless, a large body 

of research suggests that generally superior decision making may be most tightly linked to 

individual differences in statistical numeracy, as measured by tests such as the Berlin Numeracy 

Test (i.e., probabilistic reasoning and problem solving).  Since 2012, more than 100,000 diverse 

adults from 150+ countries have participated in research on the relations between statistical 

numeracy, skilled decision making and cognitive biases, including the investigation of 

thousands of different judgments and decisions sampled from naturalistic and field-based 

studies (e.g., delay in seeking medical care during a heart attack, misunderstanding the risk of 

Ebola and other diseases, mitigating financial credit risk, reducing risk of disease transmission), 

and paradigmatic laboratory-based investigations (e.g., risky prospect evaluation, risk 

perceptions and interpretations, intertemporal choices, self-regulation and self-assessment, 

theory-of-mind; see Skilled Decision Theory for a review, Cokely et al., 2018; see also Cokely 

& Kelley, 2009, Garcia-Retamero & Cokely, 2017; Ghazal et al., 2014; Gigerenzer, 2015; 

Peters, 2020; Petrova et al., 2016; Reyna et al., 2009). Moreover, statistical numeracy has 

recently been identified as one of the strongest predictors of COVID-19 misunderstanding in 

samples from diverse countries on three continents (Pennycook et al., 2020; Roozenbeek et al., 

2020). Statistical numeracy skills have also been found to reduce the influence of motivated 

cognition in several controversial, high-stakes domains (e.g., climate change beliefs, risk 

perceptions; Cho, 2020; Johnson, 2008; Ramasubramanian, 2020).  Statistical numeracy has 
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also been linked to a growing number of other demonstrations concerning high-stakes natural 

hazards and weather-related decisions (e.g., interpreting forecasts, avoiding weather myths, 

recognizing flood risks; food and water quality standards; see Allan et al., 2017, 2020; Cokely 

et al., 2012; Feltz & Feltz, 2019; Mahmoud-Elhaj et al., 2020; Ramasubramanian et al., 2019).   

Although early judgment and decision making research emphasized the role of abstract, 

emotionless decision analysis (e.g., explicitly calculating expected utilities), over the last 10 

years a collection of findings from various process tracing, decision support, and training 

studies are inconsistent with this view. Instead, the weight of the evidence suggests that the 

primary difference may be better explained as a function of Risk Literacy (i.e., the ability to 

evaluate and meaningfully understand risk information) as measured by statistical numeracy, 

in accord with Skilled Decision Theory. Moreover, statistical numeracy tests tend to be robust 

predictors of decision quality because they predict differences in risk comprehension, which 

then influence attitudes, intentions, decisions, and behaviors. To be clear, a naïve theoretical 

view is that increased numeracy skills tend to be important for decision making because 

numeracy helps people calculate and solve complex expected value/utility equations, perhaps 

as described by Dual Systems Theory (e.g., numeracy predicts better decisions because 

numerate people just do the math). Yet, in 2006, Peters and colleagues showed that higher 

scores on a numeracy test tend to be systematically associated with decision making biases, at 

least as measured by specific kinds of risky prospect evaluations involving extremely low 

amounts (e.g., hypothetical gambles involving less than $1; Peters et al., 2006).  This finding 

revealed that more numerate individuals were (i) sometimes biased as compared to less 

numerate people and so (ii) could not be (primarily) relying on expected value calculations 
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(e.g., ultimately suggesting that affect sometimes provided a cue in decision making for highly 

numerate people).   

In 2009, more direct evidence on the relationship between risk literacy and statistical 

numeracy came from a process tracing study (Cokely & Kelley, 2009).  The study directly 

traced cognitive processes to test assumptions about the role of calculation versus understanding 

using a set of relatively simple but wide-ranging risky prospect evaluations (e.g., lotteries) in a 

college undergraduate sample.  The study ultimately modeled the relations among (a) decision 

latency (b) retrospectively reported decision strategies (i.e., protocol analysis) (c) choice 

patterns (d) quality of risky prospect decisions and (e) individual differences in general 

cognitive abilities, including numeracy, working memory, and cognitive impulsivity as 

measured by the Cognitive Reflection Test.   

Findings revealed that cognitive abilities and superior decision making were not 

associated with objective calculations of expected values (e.g., “75% of $200 is $150, which is 

more than $100 for sure”). Less than 5% of the total sample expressed any processes that were 

consistent with expected value calculations. Even more ironically, the vast majority of 

participants who consistently made normatively superior decisions under risk later failed a math 

test requiring participants to explicitly solve the same level of math problem in accord with 

expected value calculations (e.g., which is greater: 3% of $7000 or $350).  Instead, integrated 

choice and process modeling revealed that the interaction between cognitive abilities and 

superior decision making was almost entirely explained by differences in the amount of 

affective-charged, personally-relevant heuristic (narrative) deliberation expressed during risky 

prospect evaluation (e.g., “well, I sometimes make $200 bucks in one night but, $1,000 is 

getting close to my tuition, and like on a coin toss, totally not worth it”). More numerate 
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decision makers also took more time to decide during the first phase of the study, despite being 

better at math and otherwise scoring higher on tests of other abilities.  Results suggested that 

even the most numerate people often rely on heuristics and elaborative (i.e., meaningful and 

affectively charged) memory encoding processes, rather than solving even very basic expected 

value equations (Cokely & Kelley, 2009).   

More recent work at the University of Oklahoma (Allan, 2018; Cokely et al., 2018) 

conducted one of the most comprehensive analyses of the relations between cognitive abilities 

tests (intelligence, numeracy) and superior decision making, including data from over 300 

participants who completed a five-hour assessment battery. Participants completed multiple 

standardized measures of fluid and crystallized intelligence, including Ravens’ Advanced 

Progressive Matrices, the Cattell Culture Fair Test, the Wonderlic Personnel Test, and the 

Employee Aptitude Survey (Cattell, 1973; Raven et al., 1988; Wonderlic, 1983, 2018). Using 

confirmatory factor analysis and structural equation modeling, a new model of general decision 

making skill was presented, where full-scale numeracy (i.e., objective numeracy measures for 

statistical and conventional numeracy) fully mediated the relationship between intelligence and 

decision making skill. Furthermore, a higher-order factor analytic model demonstrated that 

when numeracy and decision making skill are represented in a model of cognitive abilities, a 

new factor structure emerges, whereby (i) numeracy and decision making skill, (ii) crystallized 

intelligence, and (iii) fluid intelligence are three distinct factors. Moreover, when explaining 

general intelligence, g, no factor had more influence than that of numeracy and decision making 

skill (Allan, 2018; Huck, 2020). Research further suggest that statistical numeracy tests may 

generally double the predictive power of other standardized tests of general cognitive abilities, 

including tests of fluid intelligence (Ghazal, 2014).   
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Some of the strongest evidence of the causal relations between meaningful 

understanding and decision making come from randomized control experiments with visual 

aids such as research where the experimental condition group gets a visual aid (e.g., graph) to 

support their decision making.  More direct evidence includes a large body of research on causal 

interventions using decision aids (e.g., transparent visual aids). This research shows that low 

ability decision makers can and often do match the decision making performance of higher 

ability participants, when they have help interpreting the risks (Garcia-Retamero & Galesic, 

2010). A recent systematic review of visual aid studies involving more than 25,000 participants 

from several countries supports this finding (Garcia-Retamero & Cokely, 2017).  Perhaps even 

more compelling, there is a growing body of work showing that training essential decision 

making skills, including specific risk literacy skills (i.e., graph literacy), can causally improve 

conceptually diverse decision making skills (e.g., ratio bias, sunk costs, framing effects).  In 

turn, this training generalized further to improve metacognitive self-assessments and social 

comparisons, substantially reducing overconfidence vulnerability, independent of numeracy or 

other cognitive ability variables (Ybarra, 2021).   

Current Study 

Taken together, the studies reviewed in this chapter suggest that the relationship 

between cognitive abilities and superior decision making may generally be explained by 

differences in acquired skills that promote risk literacy (i.e., the ability to evaluate and 

meaningfully understand risk), such as statistical numeracy and graph literacy skills. Presently, 

however, there is no IRT based stand-alone Risk Literacy assessment (e.g., a latent trait model-

based, norm-referenced direct test of Risk Literacy), nor is there a norm-referenced assessment 

of the original Berlin Numeracy Test linking it directly to other general risk literacy criteria, in 
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a representative sample. Provided the opportunity to test and refine these measures in a 

representative sample, there is also an opportunity to address a major potential threat that has 

yet to be investigated with respect to numeracy and risk literacy, namely the potential influence 

of differential item functioning and measurement invariance on specific subgroups of 

participants (i.e., men and women). While this bias has been documented in other tests of 

intelligence, to date, limited research has examined the robustness of numeracy assessments 

using measurement equivalence methods. Lastly, the present study will also focus on 

developing three quantitatively precise metrics to predict, quantify, and communicate about 

what risk communication is likely to be difficult, how much, and for whom it will likely be 

difficult (e.g., how many people are likely to misunderstand, how do two different risk 

communications compare, and what is the minimum level of numeracy skill people will need 

to understand a risk communication).  These questions about what (item-specific difficulty), for 

whom (person-specific difficulty), and how difficult (norm-reference cumulative distributions) 

a task is can then provide a basis for the development of specific metrics including: risk literacy 

difficulty levels, decision vulnerability benchmarks, and minimum numeracy skill thresholds.  

General aims of the current project are: 

(1) Develop, evaluate, and compare Norm-referenced tests of numeracy and risk literacy 

using IRT latent trait modeling and data from a probabilistically representative study of 

U.S. adults, in accord with modern psychometric standards, including:  

a. An investigation of subgroup differences in overall test achievement 

b. An analysis of the source of subgroup differences in test achievement (e.g., 

measurement invariance and differential item functioning analyses of test score 

differences between men and women).  
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(2) Develop and test some potentially useful metrics that can be derived from the numeracy 

and risk literacy norms, focusing on the estimation of decision vulnerability, difficulty 

levels, and skill thresholds, which may be particularly useful in the context of 

benchmarking or comparing various high-stakes risk communications (e.g., how much 

numeracy is required to understand one extreme weather risk communication vs. 

another).    
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Chapter 2  

Risk Literacy Norms and Decision Vulnerability Metrics 

Based on a probabilistically representative national sample, the current study was 

designed to develop test norms, evaluate measurement assumptions (i.e., differential item 

functioning), and to investigate a protocol for estimating three decision vulnerability metrics 

(i.e., difficulty, skill threshold, and probability of misunderstanding by group). The report of 

findings begins with the presentation of norm-referenced test scores and response patterns, 

including IRT parameters for the Berlin Numeracy Test and the newly developed Risk Literacy 

Test. I then report an analysis of measurement equivalence on these measures, focusing on a 

key demographic variable, gender, which is a theoretically noteworthy target for analysis (e.g., 

potential score bias could result from gender differences in math anxiety, stereo-type threat, 

etc.).  

Next, I present an example framework and protocol for a decision vulnerability analysis 

method, developed as an initial proof of concept.  The protocol was designed to accommodate 

the translation of out-of-sample response patterns into norm-referenced indices for 

benchmarking. As such, I developed methods for estimating three norm-referenced indices, 

namely (i) Risk Literacy Difficulty Level (estimated via the cumulative distribution of 

achievement), (ii) Decision Vulnerability Benchmarks (a general and subsample estimate of the 

probability of risk misunderstanding or bias), and (iii) Numeracy Skill Threshold (the  minimum 

numeracy skill level required to have >50% likelihood of accurately interpreting risks relevant 

to the decision criterion, presented as a raw test score on the Berlin Numeracy Tests).  

Finally, as an initial investigation into the robustness and validity of the protocol and 

indices, I present model recovery and hold-out type tests, examining the precision, reliability, 
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and validity of the regression-based transformation methods. These methods were selected in 

part to be user-friendly for a wide range of risk communication and decision making 

researchers.  Because most researchers are at least somewhat familiar with regression analyses, 

the logic of the framework should be transparent, which may also make the protocol less 

challenging, less likely to cause confusion or error, and easier to interpret and explain as 

required for peer review. For example, the reporting of results from a new study, could include 

comparative analyses based on norm-referenced benchmarks (e.g., the general risk literacy 

difficulty level of a new risk communication compared to a previously published risk 

communication). I then close with an out-of-sample practical application, providing an example 

of how the protocol could be used. This should help illustrate several limitations and highlight 

specific relevant concerns that should not be neglected (e.g., limitations as a function of 

criterion discriminability and need for skill stratification or performance validity assessments). 

Participants 

The sample was collected in Spring 2016 using a probability-based sampling procedure 

(KnowledgePanel® from GfK). GfK recruits panel members by using address-based sampling 

methods. Once on the panel, panelists are then contacted via email to participate in online 

surveys. Panelists without access to the appropriate technology were provided with access to 

the Internet and hardware as needed. Though the typical GfK survey is 10 to 15 minutes per 

survey, the current survey was unique in that it took roughly 1 hour to complete. 

Of the 305 participants, 142 (46.5%) were female and 163 (53.4%) were male. 

Participants were between 18 and 86 years of age. Information on the representativeness of this 

sample is provided by comparing the sample to U.S. Census estimates of the resident population 

(See Table 2.1). 
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Table 2.1  

Demographic Representativeness of U.S. Sample (2016) 

 Current Sample Respondents 
n (%) 

U.S. Adult Population* 
(%) 

Gender    
Female  142 (46.6%) 51.3% 
Male  163 (53.4%) 48.7% 
Age   
18 to 34 84 (27.5%) 30.2% 
35 to 54 123 (40.3%) 33.2% 
55 and up 98 (32.1%) 36.4% 
Ethnicity   
Hispanic 26 (8.5%) 15.8% 
Non-Hispanic 279 (91.5%) 84.2% 
Race   
White 245 (80.3%) 78.5% 
African American 11 (3.6%) 12.8% 
Other Race 49 (16.1%) 8.7% 
Education   
Less than High School 36 (11.8%) 12.6% 
High School 95 (31.1%) 27.7% 
Some College 81 (26.6%) 31% 
Bachelor and beyond 93 (30.5%) 28.7% 
TOTAL 305 - 

Note. Population estimates were obtained from the U.S. Census Annual Estimates of the 

Resident Population by Sex, Age, Race, and Hispanic Origin for the United States and States: 

April 1, 2010 to July 1, 2016 (PEPASR6H). 

 
Measures and Methods 

The data collected in this study included many measures for various other research 

purposes. In the present analysis, I focused on statistical numeracy and risk literacy 

assessments, with special attention to the psychometric validity and the development of 

standardized norms for the Berlin Numeracy Test and the Risk Literacy Test.  

Berlin Numeracy Test & Schwartz Scale 

The Berlin Numeracy Test (BNT) is one of the most efficient predictors of risk literacy 

and general decision making skills, especially for educated individuals from industrialized 
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countries (Cokely et al., 2012, 2018). When studying a diverse population, the Berlin Numeracy 

Test is often paired with the three-item Schwartz et al. (1997) numeracy scale. The Schwartz 

test was one of the first published tests of statistical numeracy and it assesses individuals’ 

understanding of proportions and probabilities. It is especially efficient for individuals with 

lower statistical numeracy ability. Taken together these two tests often provide a robust and 

efficient assessment for a wide range of skill. See Figure 2.1 and Table 2.2 for item and test 

statistics.  

Risk Literacy Test 

This set of items included both realistic risky decisions as well as paradigmatic risky 

prospect evaluations. Items assessed expected values, intertemporal choice, denominator 

neglect, and ecological risk literacy (e.g., medical and financial decisions that tend to be 

representative of the natural ecology; see Frederick, 2005; Okan et al., 2012; Pachur & Galesic, 

2013). To develop an optimized set of risk literacy items, I used factor analysis and Item 

Response Theory to identify a unidimensional item set, with good psychometric properties (e.g., 

high discrimination and difficulty across the range of ability). Then, to assess measurement 

equivalence, I iteratively removed items that demonstrated differential item functioning. In the 

end, the optimized battery included seven items. Item text is presented in Appendix A. See 

Figure 2.1 and Table 2.2 for item and test statistics.  

Risk Literacy and Numeracy Validation Items 

An additional set of risk literacy and statistical numeracy items were included in the 

current study as a type of hold-out validation method for the decision vulnerability analysis 

(i.e., Analysis 3). Item text is presented in Appendix A. 
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Figure 2.1  

Sample Distribution for (a) BNT-S (b) Risk Literacy Test 

 
Table 2.2  

Descriptive Statistics  

 % Correct SD Skew Factor Loadings Difficulty Discrimination 
Berlin Numeracy Test-Schwartz (𝜶 = 0.77) 
S_cointoss 73.44 0.44 -1.06 0.41 -0.92 1.61 
S_bigbucks 58.03 0.49 -0.33 0.45 -0.35 1.21 
BNT_fivesided 41.31 0.49 0.35 0.73 0.21 3.44 
S_acme 33.77 0.47 0.69 0.72 0.47 2.74 
BNT_choir 27.54 0.45 1.01 0.62 0.78 1.96 
BNT_sixsided 21.97 0.41 1.35 0.57 1.04 1.89 
BNT_mushroom 13.77 0.35 2.10 0.47 1.61 1.60 
Proportion of Variance 0.34   
    
Risk Literacy Test (𝜶 = 0.66) 
rlp_min 57.70 0.49 -0.31 0.55 -0.28 1.71 
rlp_lose400 51.80 0.50 -0.07 0.52 -0.08 1.33 
rlp_3400or3800 50.82 0.50 -0.03 0.40 -0.05 0.91 
rlp_strokex1 49.18 0.50 0.03 0.62 0.02 2.02 
rlp_beno 42.95 0.50 0.28 0.33 0.42 0.77 
rlp_percentage 26.56 0.44 1.06 0.49 0.95 1.49 
rlp_gain100 25.57 0.44 1.12 0.37 1.32 0.96 
Proportion of Variance 0.23   

Note: FA using Oblimin rotation. Difficulty and Discrimination from a 2PL IRT model. 
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Analysis 1: Numeracy & Risk Literacy Norms  

Norms are presented first for the general population, across each of the Berlin Numeracy 

Test and Risk Literacy Test forms (Table 2.3). Here, the cumulative percentile rank norms 

indicate the proportion of participants in the norming group who scored less than or equal to 

the given score. These tables can be used to interpret future scores, by providing a ranking 

relative to the current norming group.  For example, a future score of 1 on the BNT-S would 

indicate that roughly 44% of the general U.S. population scores less than or equal to the test-

taker. This alternatively would suggest that the test-taker scored worse than over 55% of the 

general sample – indicating that they may have a relatively lower level of statistical numeracy 

skills and may need extra assistance when interpreting complex probability information.  

Table 2.3  

U.S. Adult Population Norms (2016) Across Test Forms, in Cumulative Percentile Rank 

Score Schwartz Full BNT Adaptive BNT Full BNT-S Adaptive BNT-S General Risk Literacy 
0 15.41 45.90 - 11.48 15.41 8.85 
1 44.26 70.49 52.13 34.10 44.26 24.92 
2 75.08 85.57 72.46 56.07 60.66 42.95 
3 100 93.44 84.92 69.18 70.16 61.64 
4  100 100 77.70 81.31 75.41 
5    87.54 85.57 85.90 
6    94.10 90.49 95.74 
7       100 100 100 

Note. The Adaptive BNT is scored 1-4. 

General Population and Demographic Group Norms 

For the full scale BNT-S and Risk Literacy Test, norms are again presented for the 

general population, as well as for the four subgroups of interest, based on demographic 

characteristics. Using cumulative percentile ranks, the norms were stratified by gender (male 
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and female), education (college educated and non-college educated), age (under 55 and 55+), 

and race (white and other race1).  

For both the BNT-S and the Risk Literacy Test, the largest demographic difference 

existed between non-college and college educated samples (Figure 2.2). For the non-college 

educated sample, a BNT-S score of 4 ranked at the 93rd percentile. Conversely, amongst the 

college educated sample, a score of 6 ranked only in the 90th percentile. At lower BNT-S scores 

(e.g., BNT-S score of 1, 2 or 3) this translated to a 30-percentile point difference between non-

college and college educated samples (See Figure 2.3 and Table 2.4). The same patterns held 

for the Risk Literacy Test (See Figure 2.4 and Table 2.5). Norms for the other test versions 

(Schwartz, BNT, Adaptive BNT, and Adaptive BNT-S) are also presented, stratified by gender, 

education, age, and race, and presented in cumulative percentile ranks (Tables 2.6 to 2.9).  

Figure 2.2  

Cumulative Distributions of Raw Scores on the (a) BNT-S and (b) Risk Literacy Test 

 
 
 

  

 
1 Other race includes Black/Non-Hispanic, Other/Non-Hispanic, 2+ Races/Non-Hispanic, Hispanic, as defined 
by the GfK KnowledgePanel®. 
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Figure 2.3  

BNT-S Norms Stratified by Gender, Education, Age, and Race 

 
 
Table 2.4  

BNT-S Norms for U.S. Adults (2016) Stratified by Gender, Education, Age, and Race 

Full BNT-S Score General Female Male 
Non 

College College 
Under  

55 
Over 
 55 White 

Other  
Race 

0 11.48 11.97 11.04 17.56 6.90 10.63 13.27 7.76 20.93 
1 34.10 35.92 32.52 50.38 21.84 36.71 28.57 27.40 51.16 
2 56.07 63.38 49.69 76.34 40.80 55.07 58.16 50.23 70.93 
3 69.18 78.17 61.35 85.50 56.90 68.60 70.41 64.84 80.23 
4 77.70 84.51 71.78 93.13 66.09 76.81 79.59 73.06 89.53 
5 87.54 92.96 82.82 98.47 79.31 86.47 89.80 84.47 95.35 
6 94.10 97.18 91.41 > 98.47* 90.80 92.75 96.94 93.15 96.51 
7 100 100 100 100 100 100 100 100 100 

Note. *No participant in the norming group’s non-college subsample scored BNT-S = 6. 
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Figure 2.4  

Risk Literacy Norms, Stratified by Gender, Education, Age, and Race 

 

Table 2.5  

Risk Literacy Norms for U.S. Adults (2016) Stratified by Gender, Education, Age, and Race 

Risk Literacy Test Score General Female Male 
Non 

College College 
Under  

55 
Over  
55 White 

Other 
Race 

0 8.85 10.56 7.36 9.92 8.05 9.18 8.16 7.76 11.63 
1 24.92 27.46 22.70 34.35 17.82 27.05 20.41 18.72 40.70 
2 42.95 47.18 39.26 55.73 33.33 44.93 38.78 36.07 60.47 
3 61.64 68.31 55.83 80.92 47.13 63.29 58.16 55.71 76.74 
4 75.41 80.99 70.55 90.08 64.37 75.85 74.49 71.23 86.05 
5 85.90 90.14 82.21 96.18 78.16 85.99 85.71 84.02 90.70 
6 95.74 97.18 94.48 100 92.53 96.14 94.90 94.98 97.67 
7 100 100 100 100 100 100 100 100 100 

Note. No participant in the norming group’s non-college subsample scored Risk Literacy = 7. 

Table 2.6  

Schwartz Test Norms for U.S. adults (2016) Stratified by Gender, Education, Age, and Race 

Schwartz Score General Female Male 
Non 

College College 
Under  

55 
Over  
55 White 

Other  
Race 

0 15.41 14.79 15.95 25.19 8.05 14.49 17.35 11.42 25.58 
1 44.26 47.89 41.10 62.60 30.46 47.83 36.73 38.36 59.30 
2 75.08 83.10 68.10 92.37 62.07 73.43 78.57 69.86 88.37 
3 100 100 100 100 100 100 100 100 100 
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Table 2.7  

Full BNT Norms for U.S. adults (2016) Stratified by Gender, Education, Age, and Race 

Full BNT Score General Female Male 
Non  

College College 
Under  

55 
Over  
55 White 

Other  
Race 

0 45.90 51.41 41.10 60.31 35.06 43.96 50.00 38.81 63.95 
1 70.49 78.17 63.80 84.73 59.77 70.53 70.41 67.12 79.07 
2 85.57 91.55 80.37 96.95 77.01 84.54 87.76 82.65 93.02 
3 93.44 97.18 90.18 97.71 90.23 92.27 95.92 92.69 95.35 
4 100 100 100 100 100 100 100 100 100 

 
Table 2.8  

Adaptive BNT Norms for U.S. adults (2016) Stratified by Gender, Education, Age, and Race 

Adaptive BNT 
 Score General Female Male 

Non  
College College 

Under  
55 

Over  
55 White 

Other  
Race 

1 52.13 59.86 45.40 68.70 39.66 50.24 56.12 46.12 67.44 
2 72.46 76.06 69.33 87.02 61.49 71.01 75.51 68.95 81.40 
3 84.92 91.55 79.14 95.42 77.01 83.57 87.76 81.74 93.02 
4 100 100 100 100 100 100 100 100 100 

 
Table 2.9  

Adaptive BNT-S Norms for U.S. adults (2016) Stratified by Gender, Education, Age, and Race 

Adaptive BNT-S  
Score General Female Male 

Non 
College College 

Under  
55 

Over  
55 White 

Other  
Race 

0 15.41 14.79 15.95 25.19 8.05 14.49 17.35 11.42 25.58 
1 44.26 47.89 41.10 62.60 30.46 47.83 36.73 38.36 59.30 
2 60.66 68.31 53.99 80.15 45.98 59.90 62.24 54.34 76.74 
3 70.16 77.46 63.80 90.08 55.17 67.63 75.51 65.30 82.56 
4 81.31 88.03 75.46 95.42 70.69 80.19 83.67 77.17 91.86 
5 85.57 91.55 80.37 96.18 77.59 84.54 87.76 82.19 94.19 
6 90.49 94.37 87.12 98.47 84.48 88.41 94.90 88.13 96.51 
7 100 100 100 100 100 100 100 100 100 
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Numeracy & Risk Literacy Norms by Quartiles 

Following tradition from the Berlin Numeracy Test (Cokely et al., 2012), general 

numeracy and risk literacy quartile levels are presented. These quartiles provide less precise 

information, but support robust interpretability given that the quartiles between the two tests 

(BNT-S and Risk Literacy Test) are roughly equal (Table 2.10). For example, while a user of 

these norms should not venture to meaningfully interpret differences between an estimate of 

the 24th percentile versus the 26th percentile, it would be appropriate (i.e., reasonable, robust) 

to interpret differences between the first quartile and second quartile. Finally, given that the 

largest demographic difference was between college and non-college educated samples, distinct 

quartile levels for these two groups are provided. 

Table 2.10  

BNT-S and Risk Literacy Quartiles  

Full 
BNT-S 
Score 

General 
BNT-S 
Levels 

Non-
College 
BNT-S 
Levels 

College 
BNT-S 
Levels 

Risk 
Literacy 

Score 

General 
Risk 

Literacy 
Levels 

Non-College 
Risk 

Literacy 
Levels 

College 
Risk 

Literacy 
Levels 

0 25% 
25% 

25% 0 25% 
25% 

25% 
1 50% 1 50% 

2 50% 75% 
50% 2 50% 75% 

50% 
3 75% 

< 99.9% 

3 75% 

< 99.9% 
4 75% 4 75% 
5 

< 99.9% 
5 

< 99.9% 6 < 99.9% 6 < 99.9% 
7 7 
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Analysis 2: Subgroup Measurement Equivalence Testing  

One challenge that often arises when developing norms for cognitive abilities and 

psychological measurement (e.g., intelligence tests), is the interpretation of these norms without 

measurement equivalence. Said differently, mean differences between groups in cognitive 

abilities may demonstrate differences in achievement, or may suggest that there is measurement 

nonequivalence (i.e., that the test functions differently for one group than for another). Most 

measures of intelligence do not pass the strictest forms of measurement equivalence (Bowden 

et al., 2008; Daseking et al., 2017; Pezzuti et al., 2020; Wicherts, 2006), which has necessitated 

a need for different norms for different subsamples (e.g., men vs. women). This is because when 

there is measurement nonequivalence, the two groups cannot be rated on the same scale. It 

remains an open question whether measures of statistical numeracy and risk literacy will meet 

the measurement equivalence standards achieved by intelligence (i.e., strong measurement 

invariance).  

In the current study I focus on gender differences in measurement equivalence, in part 

because gender differences are often reported in numeracy and mathematical abilities (e.g., 

Galesic & Garcia-Retamero, 2010; Liu & Wilson, 2009; Pachur & Galesic, 2013). While this 

may be due to differences in achievement, reported differences in math anxiety and stereotype 

threat can exacerbate the effect (Betz, 1978; Brown & Josephs, 1999). Moreover, because the 

sample was relatively small (to account for the relatively long assessment participants engaged 

in), I expected to have sufficiently large groups and relatively equal subsamples for gender, but 

did not anticipate large enough samples for other subsamples (e.g., race, age).  

First, to replicate previous findings, I tested mean differences for both the BNT-S and 

the Risk Literacy Test. As seen in Figure 2.5, men (M = 2.99, SD = 2.18) outperformed women 
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(M = 2.36, SD = 1.78) on the BNT-S, t(304) = -2.8, p < .05. Men (M = 3.28, SD = 2.0) also 

scored slightly higher than women (M = 2.78, SD = 1.84) on the Risk Literacy Test, t(304) = -

2.25, p < .05. Given this gender difference, differential item functioning and measurement 

invariance in the BNT-S and the Risk Literacy Test are next examined. These procedures 

provide information on the extent to which the test measures the same construct for different 

groups (e.g., men vs. women), allowing for better interpretation of mean differences – e.g., are 

the mean differences due to a main effect, or are they artificial or substantively misleading?  

Figure 2.5  

Distribution by Gender (a) BNT-S (b) Risk Literacy 

 

Berlin Numeracy Test – Schwartz  

Differential Item Functioning. To test differential item functioning, I first confirmed 

that each measure fits a unidimensional structure (See Table 2.2 for item factor loadings). Then, 

I assessed the psychometric difficulty and discriminability using the ltm package in R 

(Rizopoulos, 2015), by fitting three two-parameter logistic models on (i) the full sample, (ii) 

males, and (iii) females (See Figure 2.6). I then used the difR package in R (Magis et al., 2020), 
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which supplies a generic function (dichoDif) with nine different DIF detection methods. Here, 

I focused on the IRT-based methods, namely (i) Lord's chi-square test (Lord, 1980), (ii) Raju's 

area method (estimated based on a 2PL model with the z-statistic based on the unsigned area; 

see Raju, 1990; Raju et al., 1995), and the (iii) logistic regression technique, which tested for 

both uniform and nonuniform DIF (Swaminathan & Rogers, 1990). 

Results suggested there was no gender-based DIF present in the BNT-S (See Table 

2.11). First, Lord’s chi-square method demonstrated that there was no significant difference 

between the item parameters in the two-parameter logistic (2PL) model. Second, the area 

between item response functions were not significantly different from zero, which implied there 

was no DIF present, according to the Raju area method. Third, the logistic regression method 

tested both uniform and nonuniform DIF, and following Nagelkerke's R2 effect size guidelines 

from Zumbo & Thomas (1997) and Jodoin & Gierl (2001), all effect sizes were below the 

threshold for “negligible” effects – which suggested no DIF.  
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Figure 2.6  

BNT-S 2PL Item Response Theory, by Gender 

 

Table 2.11  

BNT-S Differential Item Functioning  

 Lord Raju Logistic 
S_cointoss 0.08 0.21 0.53 
S_acme 0.19 0.41 0.28 
S_bigbucks 0.08 0.23 1.10 
BNT_fivesided 2.36 1.54 5.90 
BNT_choir 1.70 -1.05 3.38 
BNT_sixsided 0.89 0.95 0.31 
BNT_mushroom 0.32 -0.38 1.45 

Note. There are no significant parameters, which suggests no DIF.  
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Measurement Invariance. Next, to assess Measurement Invariance, a series of 

Confirmatory Factor Analysis models were run where parameters were sequentially restricted. 

The first model tested, configural invariance, simply imposed the same factor structure on both 

groups (i.e., on both men and women; Horn & McArdle, 1992). This is a necessary but not 

sufficient condition for MI (Bauer, 2017). Then, in Model 2 weak invariance is tested, which 

constrained the factor loadings to be equal across groups. In Model 3, strong invariance 

constrained both the factor loadings and the intercepts to be equal across groups (Meredith, 

1993). Though group differences are often reported when only strong measurement invariance 

is met (see Vandenberg & Lance, 2000), recent research suggests that it is necessary to also 

hold residual variances equal (DeShon, 2004; Lubke & Dolan, 2003; Wicherts & Dolan, 2010). 

As such, in Model 4 strict invariance is tested. This model constrained factor loadings, 

intercepts, and residual variances (See Table 2.12). Analyses were completed using the lavaan 

package in R (Rosseel et al., 2017).   

Following conventions for confirmatory factor analysis, the model fit can be assessed 

using several different indices. Common fit indices include the Root Mean Square Error of 

Approximation (RMSEA), the Comparative Fit Index (CFI) and the Tucker Lewis Index (TLI). 

Standard convention suggests that a CFI and TLI greater than 0.95 and a RMSEA less than 0.05 

suggest good fit, whereas a RMSEA less than 0.08 suggests moderate fit (Hu & Bentler, 1999; 

Kline, 2015). 

CFAs were conducted separately for group 1, males (χ2=33.22; p<.05, CFI=.935; TLI= 

0.90; RMSEA=.092), and group 2, females (χ2=21.67; p>.05, CFI=.943; TLI= 0.92; 

RMSEA=.062). Next, measurement invariance is tested (see Table 2.12 for the fit indices). As 

models were sequentially restricted, model fit did not get worse, as indicated by the 
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nonsignificant Δχ2. The fourth model (Strict Invariance) had the lowest AIC value and therefore 

suggested the best trade-off between model fit and model complexity. The other fit indices of 

the strict model also indicated good fit (χ2=72.2; p<.05, CFI=.94; TLI= 0.95; RMSEA=.06). 

This suggests that for the BNT-S, measurement invariance held, and it is reasonable to compare 

means between groups (gender).  

Table 2.12  

BNT-S Gender Measurement Invariance 

Model Restrictions χ2 df Δ χ2 RMSEA AIC CFI 
Baseline Models        
 Full Sample 

 
- 30.11** 14 - .061 2159.9 .963 

 Male 
 

- 33.22** 14 - .092 1182.68 .935 

 Female 
 

- 21.67 14 - .062 972.02 .943 

Invariance Models        
 Configural  - 54.896** 28 - .079 2182.69 .938 
 Weak loadings 59.296** 34 4.40 .070 2175.09 .941 
 Strong loadings, intercepts 65.84** 40 6.55 .065 2169.64 .940 
 Strict loadings, intercepts, 

residual variances 
72.2* 47 6.36 .059 2161.99 .941 

 
Risk Literacy 

Differential Item Functioning. With the same procedure that was used for the BNT-S, 

differential item functioning between genders in the Risk Literacy scale was tested. First, the 

measure was confirmed to fit a unidimensional structure (See Table 2.2 for item factor 

loadings). Then, the psychometric difficulty and discriminability were assessed, by fitting three 

two-parameter logistic models on (i) the full sample, (ii) males, and (iii) females (See Figure 

2.7). Finally, three DIF detection methods were implemented: Lord’s chi-square method, Raju’s 

area method, and the logistic regression method (Table 2.13). When comparing men and women 

on the Risk Literacy Test, no DIF was detected. 
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Figure 2.7  

Risk Literacy 2PL Item Response Theory, by Gender 

 

Table 2.13  

Risk Literacy Differential Item Functioning  

 Lord Raju Logistic 
rlp_min 1.57 1.13 1.89 
rlp_percentage 1.63 1.23 0.06 
rlp_beno 0.54 0.44 0.38 
rlp_strokex1 1.15 -1.07 4.01 
rlp_3400or3800 1.45 1.24 1.51 
rlp_lose400 1.31 1.21 1.48 
rlp_gain100 0.32 -0.38 1.33 

Note. There are no significant parameters, which suggests no DIF  
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Measurement Invariance. CFAs were first conducted separately for group 1, males 

(χ2=18.85; p>.05, CFI=.96; TLI= .94; RMSEA=.046), and group 2, females (χ2=24.39; p<.05, 

CFI=.875; TLI= .81; RMSEA=.072). As models were sequentially restricted, model fit did not 

get worse, as indicated by the nonsignificant Δχ2 (see Table 2.14 for fit indices).  The fourth 

model (Strict) had the lowest AIC value and therefore suggests the best trade-off between model 

fit and model complexity. The other fit indices of the strict model also indicated good fit 

(χ2=53.2; p>.05, CFI=.97; TLI= 0.97; RMSEA=.03). This suggested that for the Risk Literacy 

Test, measurement invariance held, and it is reasonable to compare means between groups.  

Table 2.14  

Risk Literacy Gender Measurement Invariance 

Model Restrictions χ2 df Δ χ2 RMSEA AIC CFI 
Baseline Models        
 Full Sample 

 
- 33.98** 14 - .068 2741.20 .912 

 Male 
 

- 18.85 14 - .046 1477.49 .963 

 Female 
 

- 24.39* 14 - .072 1275.75 .875 

Invariance Models        
 Configural  - 43.24* 28 - .06 2781.25 .93 
 Weak loadings 46.41 34 3.17 .049 2772.42 .942 
 Strong loadings, intercepts 51.56 40 5.15 .044 2765.57 .946 
 Strict loadings, intercepts, 

residual variances 
53.19 47 1.63 .029 2753.20 .971 

 
Overall, results suggest that the BNT-S and Risk Literacy Test not only meet but exceed 

typical standards of measurement equivalence (i.e., strict invariance). This supports the 

interpretation of the norms presented in Analysis 1, because it suggests that differences are 

likely due to differences in achievement, as opposed to unequal features of the assessment 

battery (i.e., measurement nonequivalence). Had measurement invariance failed, there would 

be important implications regarding the fairness and interpretation of these tests.  
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Analysis 3: Decision Vulnerability Metrics  

Here, Decision Vulnerability was defined as the estimated proportion of people (adults) 

in a well-defined (sub)population who are likely to misinterpret, misunderstand, or otherwise 

experience cognitive errors and biases on a specified task (e.g., making a decision, interpreting 

a risk communication). Based on numeracy and risk literacy norms, I sought to develop a 

method to predict risk literacy difficulty levels, or the estimated difficulty associated with 

the evaluation and understanding of a risk or task. To do so, I estimated a numeracy skill 

threshold, a minimum raw score on the standardized BNT-S, associated with achievement of at 

least 50% accuracy on the specified task. This numeracy skill threshold indicates the numeracy 

level at which a typical individual is more likely than not to accurately interpret a risk 

communication independently. 

The first step to developing a methodology for decision vulnerability analysis, was to 

predict risk literacy cumulative percentile rank from numeracy score, while controlling for 

major demographic groups (i.e., dichotomized age, race, education, and gender). Risk Literacy 

prediction equations were then developed using multiple linear regression. Five separate 

regression equations, one for each of the five different numeracy test versions were developed 

(i.e., Full BNT-S, Schwartz, Full BNT, Adaptive BNT and Adaptive BNT-S; See Table 2.15 

for Eq. 3.1-3.5). In each regression equation, the numeracy score and the four demographic 

groups were treated as independent variables. The dependent variable was the cumulative 

percentile rank on the raw score of the risk literacy test. Though I demonstrated measurement 

equivalence for gender and had reason to believe the same would follow for the other 

demographics (i.e., education, race, age), these factors are included in the model to account for 

main effects (i.e., achievement differences in numeracy between men and women).  
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Table 2.15  

Risk Literacy Difficulty Level Prediction Equations 

Test Form Equation  

Full  
BNT-S 𝑦!" = .041𝑥#$% + .044𝑥!#&% + .035𝑥%'(&#)*+, + .017𝑥$%,'%! + .083𝑥-./01 + 0.274 (3.1) 

Schwartz 𝑦!" = .033𝑥#$% + .053𝑥!#&% + .053𝑥%'(&#)*+, + .039𝑥$%,'%! + .138𝑥1&23#!)4 + 0.244 (3.2) 

Full  
BNT 𝑦!" = .047𝑥#$% + .063𝑥!#&% + .07𝑥%'(&#)*+, + .018𝑥$%,'%! + .12𝑥-./ + 0.336 (3.3) 

Adaptive 
BNT 𝑦!" = .052𝑥#$% + .064𝑥!#&% + .068𝑥%'(&#)*+, + .026𝑥$%,'%! + .129𝑥-./#'#5 + 0.21 (3.4) 

Adaptive 
BNT-S 𝑦!" = .044𝑥#$% + .048𝑥!#&% + .035𝑥%'(&#)*+, + .023𝑥$%,'%! + .073𝑥-./1#'#5 + 0.305 (3.5) 

 

The risk literacy prediction equations estimated the risk literacy cumulative percentile 

rank among the general U.S. population. The next step was to select a method to estimate risk 

literacy percentile ranks for specific subsamples (e.g., women, highly educated people, etc.). In 

an effort to develop a simple, yet robust method that would provide a starting point (e.g., proof 

of concept) and would be easy to communicate to and understood by a wide range of 

researchers, I again developed linear regression models. In this case, the independent variable 

was the risk literacy cumulative percentile rank (as estimated in Eq. 3.1-3.5). Based on the 

demographic group of interest, Equations 3.6 to 3.13 were developed to estimate the risk 

literacy cumulative percentile rank specific to a subgroup (i.e., the decision vulnerability 

benchmarks; the dependent variable).  
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Table 2.16  

Decision Vulnerability Translation Equations for Subsamples 

Demographic  
Subgroup Equations 

 

Female 𝑦678%9#"% = 1.019𝑥67$%,%!#" + 0.03 (3.6) 

Male 𝑦679#"% = .999𝑥67$%,%!#" − 0.033 (3.7) 

Non-College 𝑦67,+,&+""%$% = 1.12𝑥67$%,%!#" + 0.64 (3.8) 

College 𝑦67&+""%$% = 1.012𝑥67$%,%!#" − 0.085 (3.9) 

Less 55 Years 𝑦67(,'%!:: = .983𝑥67$%,%!#" + 0.021 (3.10) 

55+ Years 𝑦67+;%!:: = 1.037𝑥67$%,%!#" − 0.045 (3.11) 

Other Race 𝑦67+)2%!!#&% = .936𝑥67$%,%!#" + 0.15 (3.12) 

White 𝑦6732*)% = 1.044𝑥67$%,%!#" − 0.067 (3.13) 

 

Decision Vulnerability Analysis Protocol 

A researcher interested in using the decision vulnerability analysis method can follow 

the protocol provided in Table 2.17 to estimate three metrics (i) a numeracy skill threshold (Step 

3), (ii) the risk literacy difficulty level in the general population (Step 4), and (iii) decision 

vulnerability benchmarks for specific subgroups (Step 5). To investigate the decision 

vulnerability associated with a new risk communication (or artifact), a researcher could use data 

they have collected and simple linear regressions to generate these metrics. First, using their 

data and a simple linear regression, where accuracy on the new risk communication serves as 

the dependent variable, and numeracy as the independent variable, a numeracy skill threshold 

is generated (i.e., the estimated minimum raw score associated with achievement of at least 

50% accuracy). Then, using the appropriate risk literacy prediction equation provided (Eq. 3.1 
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to 3.5), they can next estimate the risk literacy difficulty level (i.e., the percentile rank in the 

general population; Step 4). Finally, to the extent a particular demographic subgroup is of 

interest (e.g., women, highly educated individuals), they can use Eq. 3.6 to 3.13 to estimate the 

decision vulnerability benchmark for specific subgroups (Step 5). 

Table 2.17  

General Protocol for a Decision Vulnerability Analysis 

Step  
1 Collect data assessing the new risk communication (e.g., comprehension). Include a 

measure of statistical numeracy (e.g., BNT-S, Adaptive BNT, etc.), as well as any 

relevant demographics. 

2 Using data, predict (y) accuracy on the given artifact (i.e., risk communication), 

with (x) the selected numeracy test, as well as necessary demographic covariates 

(e.g., gender, age, race, education).  

3 Solve for the numeracy score (x) at the point where a participant has a 50% chance 

of answering the artifact correctly (i.e., y = 0.5). * 

4 Select the relevant equation from Eq. 3.1-3.5. This will depend on the type of 

statistical numeracy test used during data collection (Step 1).  

Using the selected equation, solve for the general risk literacy level (y) at the 

numeracy threshold score found in Step 2 (i.e., x = numeracy score at 50% accuracy 

on the artifact).  

5 Use Eq. 3.6-3.13 to translate the general risk literacy level to the decision 

vulnerability benchmark for the desired subsample (e.g., men, college educated) 

Note. *When the artifact includes more than one item, the 50% accuracy mark will be k/2, 

where k = the number of items. 
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Demonstration and Validation of Decision Vulnerability Analysis  

Utilizing additional statistical numeracy and risk literacy items in the survey, I selected 

five items to serve as example artifacts (i.e., probabilistic problems), as a test of the decision 

vulnerability analysis methodology. These items all exhibited relatively high discriminability 

(i.e., > 1) and spanned the range of difficulty (e.g., roughly -1, 0 and +1 theta, θ; Table 2.18).  

Taking the item prob_burn as the first artifact of interest, I next followed each step, as 

described in the general protocol (See Table 2.17). First, I identified the data set for analysis 

and selected the anchor numeracy test (i.e., full BNT-S). Second, I regressed accuracy on the 

artifact (i.e., prob_burn) on the numeracy scale (i.e., BNT-S).2 Third, I solved for x (BNT-S 

score) at a 50% accuracy level (i.e., y = 0.5). This provides the numeracy skill threshold, which 

for prob_burn is 3.45. Fourth, because the data included the full-scale BNT-S, I selected Eq. 

3.1, and solved for the risk literacy difficulty level at the BNT-S numeracy skill threshold 

(BNT-S = 3.45). The estimated risk literacy difficulty level for prob_burn was 0.628. This result 

suggests that an estimated 62.8% of the general population is likely to misinterpret or 

inaccurately answer this artifact. Finally, to translate the general risk literacy difficulty level 

(62.8%) to decision vulnerability benchmarks for different subgroups, I used Eq. 3.6 to 3.13. 

Results are provided for prob_burn in Table 2.19. 

  

 
2 The current analysis used linear multiple regression; however logistic analysis may also be appropriate to 
consider in future analyses. 
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Table 2.18  

Single Item Examples 

Item 
Item 

Difficulty 
Item 

Dscrmn 

BNT-S 
Score at 

50% 
Accuracy* 

General Risk 
Literacy 

Difficulty Level 
oper_fieldtrip. A school is having a field trip 
and many parents are going on the field trip 
with the children. What is the child to parent 
ratio if there are 20 children and 5 parents? 

-1.20 2.20 -2.77 0.114 

prob_dice5. People often roll dice when 
playing games.  Most dice have 6 sides and 
each side has a different number on it ranging 
from 1-6. If you rolled one of the dice, on 
average what is the probability that it would 
land on 5?  

-0.79 2.29 0.38 0.373 

prob_burn. Imagine that the probability of a 
child getting sunburned at the beach is 65% 
while the probability of an adult getting 
sunburned at the beach is 15%. If there were 
300 people who spent a day at the beach, and 
60% of the people were children, how many 
people are likely to get a sunburn? 

0.11 1.87 3.45 0.628 

oper_goods. Imagine that goods imported 
into a country increased by 40% and exports 
decreased by 30% during a certain year. What 
was the ratio of imports to exports at the end 
of the year compared to the beginning of the 
year? 

0.96 1.41 5.25 0.777 

prob_diceeven. Imagine that you are 
throwing 2 regular 6-sided dice up in the air.  
If each side has a different number on it 
ranging from 1-6, on average what is the 
probability that both of them land on even 
numbers? 

1.10 1.11 4.98 0.754 

Note. *For single item artifacts, the 50% accuracy midpoint is y = 0.5. Full multiple choice 
item text is presented in Appendix A. 
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Table 2.19  

Decision Vulnerability Results for prob_burn 

Group 

Predicted  
Decision 

Vulnerability 
Benchmark 

Proportion  
Correct, 

Weighted 
Sample 

Predicted  
Levels 

True  
Score 
Levels 

Deviation = 
Predicted 
Value -  

Weighted 
Proportion 

> 10%  
Deviation 

General 0.63 0.57 III II 0.06 F 
Female 0.67 0.64 III III 0.03 F 
Male 0.59 0.50 II II 0.09 F 
Non-College 0.77 0.71 III III 0.06 F 
College 0.55 0.47 II II 0.08 F 
Under 55 0.64 0.58 III II 0.06 F 
Over 55 0.61 0.56 II II 0.04 F 
Other Race 0.74 0.75 III III 0.01 F 
White 0.59 0.48 II II 0.11 T 

Note. Proportion correct refers to the proportion of the sample that answered prob_burn 

correctly. This proportion was estimated while accounting for sample weights to estimate the 

U.S. Census (2016).   

 

To assess the robustness and accuracy of model predictions as part of a validity 

assessment for the estimated decision vulnerability predictions, I then calculated the actual 

proportion of participants in the sample who correctly answered each artifact (e.g., prob_burn, 

etc.). I then used two methods to compare the predicted value to the true value. First, I identified 

the risk literacy quartile levels provided with the norms in Study 1A (i.e., Table 2.10), in order 

to assign broad “levels” to the true and predicted decision vulnerability benchmarks. Following 

analyses from the Cokely et al. (2012) paper, I identified the four levels around the quartile 

mark, Level I was set at ranks between 0% and 37.5%, Level II at 37.5-62.5%, Level III at 62.5-

87.5% and Level IV set at risk literacy levels above 87.5%. As a test of the validity and 

robustness of model predictive accuracy, I next compared the true score levels to the predicted 

levels. As can be seen in Table 2.19, only two predictions were miscategorized, namely the 
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general risk literacy difficulty level, and the decision vulnerability benchmark for the under 55 

group. Further comparison of all five of the single-item artifacts, revealed that 38 of the 45 

predicted levels matched the true value levels (84.4%; See Appendix B).   

A second validity test next compared predicted and actual results by calculating the 

difference between the predicted value and the true weighted proportion. The total number of 

decision vulnerability estimates that deviated from the true value by more than 10% were 

counted. For prob_burn, only one predicted value deviated by more than 10%, namely that for 

the white race group. Across the five artifacts, results revealed relatively high accuracy with 

only 4 of the 45 predicted values deviating by more than 10% (i.e., 9% of tested observations).  

Following this analysis which focused on only single item artifacts, I next conducted a 

similar decision vulnerability analysis, but this time applied to multi-item/multi-criteria 

artifacts. Specifically, I considered the sum of the five single-item artifacts (Table 2.20). The 

analysis method and results for multi-item artifacts followed the same form as that used for 

single item artifacts (Table 2.17) The primary difference was that for multiple item artifacts, 

the 50% accuracy point is the number of items, k, divided by 2. See Appendix B for complete 

decision vulnerability subgroup metrics. 

Table 2.20  

Multi-Item Artifact Example 

Artifact Set 
BNT-S Score at 
50% Accuracy* 

General Risk  
Literacy Difficulty 

Level 
Proportion Correct in 

Weighted Sample 
prob_burn + prob_dice5 + 
oper_goods 3.16 0.60 0.54 

prob_burn + prob_dice5 + 
oper_goods + oper_fieldtrip + 
prob_diceeven 

2.88 0.58 0.52 
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To further validate, I next examined the final set of all seven artifacts (i.e., five single 

items as well as two combined multi-item artifacts). Fifty-five of the 63 predicted risk literacy 

levels matched the true weighted proportion (87.3%). For the second validation method, only 4 

of the 63 predicted values were off by more than 10% (i.e., 93.7% accuracy). With a more 

stringent cutoff point that considered any deviations greater than 5%, the categorization error 

rate increased to 42 out of 63, indicating that 66.7% of the predicted values were off by more 

than 5%. Regardless of the margin of error, nearly all of the predicted estimates were found to 

be conservative, such that predictions were somewhat likely to (slightly) overestimate the 

proportion of people expected to misunderstand.  While bias in prediction is a limitation, to the 

extent this pattern generally holds, it appears both modest in magnitude and better than the 

alternative (e.g., it seems generally riskier to underestimate how many people will understand 

than to overestimate). Said differently, given potential stakes, it is likely better to false alarm 

(e.g., it might be too hard) than to miss (e.g., everyone will understand).   

While generally promising, some initial evidence suggests that the discriminability of 

the artifact (as estimated by Item Response Theory) is likely a factor that will constrain the 

quality of estimates for risk literacy difficulty level, particularly when there is only one criterion 

(e.g., as compared to averaging over several criteria). For example, this limitation is tested using 

two risky gamble items (rlp_400or100 and rlp_1000or2400; see Table 2.21). When the 

decision vulnerability method is tested using an item with low discriminability (rlp_400or100 

has difficulty = 0.62 and discriminability = 0.56), the risk literacy prediction equation suggested 

that the BNT-S 50% accuracy level (i.e., the numeracy skill threshold) was 14.13 – more than 

double the standard BNT-S scale. This further translated to a risk literacy difficulty level of 

1.51. The interpretation of this value seems nearly meaningless, as it suggested over 150% of 
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people are likely to inaccurately answer this artifact (gamble).  However, if this result is 

compared to another risk literacy gamble with higher discriminability (rlp_1000or2400 has 

difficulty = 0.86 and discriminability = 1.02), the estimated numeracy skill threshold was only 

5.36 (well within the bounds of the scale range), and the risk literacy difficulty level was 0.786. 

To the extent this pattern holds, future researchers should note that the discriminability or 

reliability of an item could (and likely often does) influence the accuracy of the numeracy skill 

threshold and decision vulnerability benchmark estimates (e.g., perhaps especially when the 

item discriminability < 1). 

Table 2.21  

Examples with Varied Discrimination Values 

Item 
Item 

Difficulty 
Item 

Discrimination 
BNT-S Score at  
50% Accuracy 

General Risk 
Literacy 

Difficulty Level 
rlp_400or100. Imagine you were 
offered the following choices. Which 
option would you select? 
- $400 now 
- $100 every year for 10 years* 

0.62 0.56 14.13 1.51 

rlp_1000or2400. Imagine you were 
offered the following choices. Which 
option would you select? 
- $1000 in six months 
- $2400 in two years* 

0.86 1.02 5.36 0.786 
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Analysis 4: Practical Out-of-Sample Application for Decision Vulnerability  

The decision vulnerability approach could support research on extreme weather risk 

communication, especially those developed and distributed by NOAA and the NHC. Given that 

understanding risk is an important step in informed decision making and taking protective 

action, by providing mechanisms to predict the risk literacy difficulty level, as well as 

estimating the proportion of people likely to misunderstand, the decision vulnerability approach 

could provide useful metrics to support the weather service’s mission to protect lives and 

property.  

Using a survey of members of the public from across the U.S. (N = 1,000), with an 

oversample from coastal regions that are more likely to experience hurricanes (N = 2,000), I 

conducted an out-of-sample application of the decision vulnerability approach. Participants 

were presented with probabilistic forecast products issued by the National Weather Service 

(National Hurricane Center) and were then asked a series of questions regarding their 

familiarity, use, and comprehension of the products. For each of the products (i.e., windspeed 

probabilities and storm surge inundation graphic; Figure 2.8), participants were asked to 

interpret the meaning of the product, using a multiple-choice format, where options varied in 

terms of both the spatial and temporal probabilities (e.g., There is a 10% chance that Location 

A will get more than 9 ft of storm surge above ground level).  

Following the decision vulnerability approach, I provided a first pass out-of-sample 

validation test, using both risk communication artifacts (i.e., the windspeed probabilities and 

storm surge inundation graphic). This data (N = 2,747) included the Adaptive BNT-S, so the 

decision vulnerability analyses utilized Eq. 3.5. The numeracy skill threshold and general risk 

literacy difficulty level were estimated (See Table 2.22).  The estimated numeracy skill 
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threshold for the windspeed probabilities graphic was 3.9, and the predicted risk literacy 

difficulty level was 0.667. This suggests that roughly 66.7% of the general population are likely 

to misunderstand this risk communication or are otherwise likely to exhibit bias. Similarly, the 

numeracy skill threshold for the storm surge inundation graphic was 2.2, and the predicted risk 

literacy difficulty level was 0.54, suggesting 54% of adults in the general public are likely to 

misinterpret the storm surge graphic.  

Figure 2.8  

(a) Hurricane Windspeed Probabilities and (b) Storm Surge Inundation  

  

 
  



57 

Table 2.22  

Hurricane Decision Vulnerability Analysis 

 Full Data Set (N= 2,747) Reduced Sample with Performance 
Validity (N=319) 

Item 
Numeracy Skill 
Threshold 

General Risk Literacy 
Difficulty Level  

Numeracy Skill 
Threshold  

General Risk Literacy 
Difficulty Level 

Windspeed 
comprehension 

3.90 0.67 1.94 0.52 

Storm Surge 
comprehension 

2.22 0.54 0.50 0.42 

Windspeed 
comprehension  
+ Storm Surge 
comprehension 

2.97 0.60 1.10 0.46 

  

While these analyses provided a first proof of concept in an out-of-sample and applied 

context, they also raise a few open questions for future research. For example, as is seen in 

Table 2.22, the validity of the results may depend on the reliability of the sample. The hurricane 

dataset included a performance validity item, intended to screen participants for careless 

responding. When the decision vulnerability approach is conducted using this reduced sample 

(i.e., only including participants who passed the performance validity item), there are marked 

differences in the numeracy skill threshold and the risk literacy difficulty level. For both the 

windspeed probabilities and the storm surge inundation graphic, the estimated risk literacy 

difficulty level decreased when participants who may not be paying attention were removed. 

This raised an important question to consider: are there mechanisms to control for or correct for 

careless responding, within the decision vulnerability framework? Future research will need to 

further investigate what other factors may influence the reliability and validity of the decision 

vulnerability metrics. 
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Chapter 3  

General Discussion 

Latent Trait Measurement Modeling and Norms. There is a great deal of research 

on numeracy and its measurement, including different components and numeric competencies. 

But what really is numeracy and how would we know?  Outside of experimental and cognitive 

process tracing studies, a growing number of analyses suggest that numeracy may be very well 

characterized as unidimensional (i.e., fits a one-factor solution; see Allan, 2018 for an example). 

Leveraging modern quantitative techniques developed over nearly two centuries of research on 

psychological testing and measurement (e.g., Embretson & Reise, 2013; Holzinger & 

Swineford, 1939; Tukey, 1969), the findings presented in this report are novel in many ways. 

This report is the first to develop and distill precise measurement models of statistical numeracy 

and risk literacy, by linking the quantitatively estimated latent traits that are empirically 

grounded in cognitive theory (i.e., Skilled Decision Theory). Based on probabilistically 

representative testing of all published Berlin Numeracy Tests (e.g., BNT-S, BNT-Adaptive), 

and the new Risk Literacy Test, the current study is the first to establish norm-referenced test 

scores for the general adult population of the United States, as well as for key subgroups (e.g., 

gender, age, race, and education). Consistent with previous findings, results confirmed that 

among the general U.S. population a large proportion of adults have relatively low overall levels 

of numeracy and risk literacy skills.  These scores appeared so low that it seems likely that they 

could qualify as functionally innumerate or risk illiterate, had they been associated with specific 

criterion-referenced indices (e.g., skill Level 1 as defined by NCES PIAAC, 2020), To further 

illustrate, the current study estimates that roughly 67% of all U.S. adults are likely to find it 

difficult to translate “1 in 1,000” into a percent (0.1%).  In comparing demographic groups, the 
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largest differences existed between college educated and non-college educated samples. 

Furthermore, the measurement models for the college educated sample demonstrated sensitivity 

across the range of scores, whereas for the non-college educated sample, there was a reduction 

in sensitivity among lower skill levels, such that roughly 75% of non-college educated adults 

are expected to answer less than or equal to 2 items correct on both the full Berlin Numeracy 

Test-Schwartz (7 items) and the Risk Literacy Test (7 items). 

More specifically, measurement models were developed to link theory, tests, and norm-

references for both numeracy and risk literacy via IRT latent trait modeling. To do this I (i) 

validated the Berlin Numeracy Test and (ii) developed an optimized Risk Literacy Test using 

IRT latent trait modeling. To do so, I confirmed the unidimensional structure of the Berlin 

Numeracy Test (e.g., all factor loadings > 0.3, and the proportion of variance explained by the 

unidimensional factor was 34%). The reliability and validity of the test was further evidenced 

by the high Cronbach’s alpha (𝛼 = 0.77), and by high discriminability parameters across the 

range of difficulty, which is presented in the 2PL IRT latent trait measurement model (see 

Figure 2.6).  Next, I followed a similar approach for the development and validation of a norm-

referenced test of Risk Literacy. The measure of risk literacy included both paradigmatic risky 

choice tasks as well as ecological decisions (e.g., medical and financial choices). In validating 

this measure, analyses suggested the risk literacy skill was indeed reasonably well-characterized 

by a unidimensional latent trait (i.e., all factor loadings > 0.3, and the proportion of variance 

explained by the unidimensional factor was 23%) and appeared at least moderately reliable (𝛼 

= 0.66). It is worth noting that this alpha is likely to provide a particularly conservative estimate, 

given that the test was designed to be both short and address multiple components of risk 

literacy (i.e., 7 items, including both ecological and paradigmatic choices). Nevertheless, Item 
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Response Theory analyses indicated that the items rather symmetrically spanned the difficulty 

range, while still exhibiting relatively high discriminability. Analyses also revealed a relatively 

high-test information function, which suggests the instrument is likely to be sensitive for both 

high-ability and low-ability test-takers (see Figure 2.7). 

Measurement Equivalence and Norm Subgroups. The current study is also the first 

and only to test measurement equivalence on the popular Berlin Numeracy Test, and the new 

Risk Literacy Test, with its unique emphasis on practical, general decision making skills and 

biases (e.g., evaluating loans, risky prospects, selecting medical treatments). Analyses indicated 

that the BNT-S and the Risk Literacy Test passed some of the most rigorous standards of 

measurement equivalence (e.g., Lubke & Dolan, 2003; Mellenbergh, 1989; Wicherts & Dolan, 

2010). This suggests that mean differences in test scores of men and women are not plausibly 

explained by differences in test bias (e.g., differences in math anxiety or stereotype threat that 

could differentially affect men and women). Even in the context of several other novel findings 

and analyses presented in this study, finding strict measurement equivalence is remarkable and 

potentially quite valuable, considering that even the most extensively validated and trusted tests 

of adult intelligence—such as the WAIS-IV (as commonly used for clinical, 

neuropsychological, industrial, and educational and other diagnostic purposes)—often fail to 

achieve strict invariance (Bowden et al., 2008; Daseking et al., 2017; Pezzuti et al., 2020; 

Wicherts, 2006). That is, although intelligence tests can and sometimes do achieve this 

standard, they often only meet lower standards of invariance (e.g., weak, strong), ultimately 

indicating the presence of bias (e.g., to some extent, men and women at the same latent trait of 

ability have different propensities to answer an item correctly, due to their group membership).  

In contrast, in our representative and demographically diverse sample of adult men and women 
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from the United States, gender differences on the Berlin Numeracy Test and the new Risk 

Literacy Test are best explained as differences in overall skill achievement, independent of bias.   

Decision Vulnerability Analyses and Metrics. Beyond the development of integrated 

measurement models, the creation of a new Risk Literacy test, estimation of nationally 

representative and subgroup test score norms, and tests of strict measurement invariance in 

response patterns for men and women, the current study also developed and presented a novel 

framework for estimating decision vulnerability.  This framework includes a practical protocol 

that aims to keep complexity for researcher or end-users to a minimum, without making large 

simplicity/accuracy trade-offs.  In other words, the norms enable meaningful interpretations 

and translations of test scores. As such, high-quality norms based on rigorous, integrated latent 

trait measurement models naturally lend themselves to many potentially valuable quantitative 

predictions, including diagnostic uses, the standardization of comparisons from independent 

studies, and a potential basis for the development of common benchmarks. Just as invariant 

measurement in physics facilitates discovery and scientific integration via standardization and 

unification of measures, so too can norms provide relatively invariant, robust, and common 

currencies for the systematization of theory and research. Regardless of whether these norms 

can more generally empower scientific research (e.g., via standardizing measurements and their 

interpretations), as part of the decision vulnerability framework, a simple protocol enables 

quantitatively robust predictions of decision making and risk metrics. More specifically, in 

Analysis 3 and 4, a method for decision vulnerability analysis is developed and tested. This 

provided a proof-of-concept process for: 

(i) Risk Literacy Difficulty Levels, predicting the risk literacy difficulty level for 

a specified task (i.e., the estimated difficulty associated with understanding a 



62 

risk communication represented as a cumulative distribution score, yet generally 

interpretable as akin to the overall ability (e.g., theta) level associated with some 

criterion.  

(ii) Decision Vulnerability Benchmarks, estimating the proportion of people who 

are likely to misinterpret a risk or experience cognitive errors and biases during 

decision making, for the general adult population of the United States and for 

demographic subgroups (e.g., men, women). 

(iii) Numeracy Skill Thresholds, estimating the minimum score on the BNT-S that 

is associated with at least 50% accuracy. This threshold indicates the numeracy 

level at which a typical individual is likely to accurately interpret a risk 

communication independently, or otherwise avoid cognitive errors and biases. 

Although there is more work to be done, given the noted and seemingly impressive 

psychometric performance of the norms, latent trait models, and other results reviewed in 

chapter two, perhaps it is not surprising that over 90% of the decision vulnerability predictions 

fell within 10 percentile points of the true values in the model recovery and hold-out item 

analyses.   

Decision Making Theories. Dual Systems Theory suggests the differences in decision 

making biases result from differences in largely stable and abiding cognitive capacities (i.e., 

intelligence; Frederick, 2005; Kahneman, 2003).  As such, only a small proportion of 

individuals might ever be able to engage in superior and unbiased decision making. In contrast, 

Skilled Decision Theory suggests that individual differences in decision making quality are not 

(primarily) constrained by differences in intelligence or other working memory and attentional 

control capacities, but rather are primarily constrained by the kinds of skills and knowledge one 
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has acquired and can bring to bear on the task. In turn, statistical numeracy tests tend to be 

efficient and robust predictors of decision quality because they predict differences in risk 

comprehension, which then influence attitudes, intentions, decisions, and behaviors (Cokely et 

al., 2018). With evidence from recent training studies which suggest that risk literacy and 

related skills can be trained (e.g., Neth et al., 2018; Ybarra, 2021), the current research suggests 

that statistical numeracy may also be an efficient, useful, and unbiased estimator of decision 

vulnerability. Similarly, while Dual Systems Theory suggests decision making is constrained 

by heritable capacities, and as such cannot be meaningfully trained or improved, the present 

study advances the science of informed decision making (i.e., Skilled Decision Theory) by 

developing standardized norm-referenced metrics of statistical numeracy and risk literacy. In 

contrast, the Dual Systems approach does not currently have a systematic way to conduct 

analyses like the current study, due to the lack of systematized individual difference 

measurement tools to compare abilities (or capacities) across people, tasks, or time (e.g., “If 

you cannot measure it, you cannot improve it.”).  

Future Research 

The current study provides many new opportunities for future research. While the 

current study was designed to examine measurement equivalence between genders, the 

promising evidence that numeracy demonstrated strict measurement invariance encourages 

future development with respect to assessing equivalence more holistically, across demographic 

groups (e.g., race, age). For example, a larger-sample study could support studying more 

complex demographic subgroups (e.g., white males vs. Hispanic women, or the role of 

education on gender differences). Moreover, many previous studies on norms and measurement 

equivalence have focused on cultural or country differences (e.g., PISA; see Breakspear, 2012; 
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Kutner et al., 2006). Given that numeracy and risk literacy skills depend in part on reading 

fluency, future research can and should consider translating the BNT-S and Risk Literacy Test 

into other languages. These translated assessments could also be validated using measurement 

equivalence to support the development of standardized norms, across countries. 

Another way to think about invariance is with respect to causality. In Simon’s (1990) 

view “the fundamental goal of science is to find invariants” (p. 1). Simon (1990) suggested that 

human behavior is a function of the person and the environment (i.e., two blades of scissors). 

However, a major problem with identifying invariants in psychological research is that “people 

are adaptive systems, whose behavior is highly flexible” (p. 16). Recent research has started to 

demonstrate that tests of statistical numeracy are invariant (i.e., a statistical property of a 

measurement indicating that the same construct is being measured across groups). Future 

research in this area holds promise for determining other indicators of invariance, and thus 

causality.  

Many researchers and practitioners utilize norms for clinical and diagnostic purposes. 

In contrast, the Decision Vulnerability framework aims to consider what implications might 

exist at the group or population level. Said differently, unlike neuropsychology, the decision 

vulnerability approach is not trying to diagnose individuals (i.e., give one person a score), but 

rather is more interested in advancing the interpretation of group differences.  

To support this goal, future research will be aimed at developing a web-based platform, 

accessible to researchers, practitioners, and laypeople. This platform will provide a way for 

researchers to use the decision vulnerability analysis approach (e.g., input data and receive 

estimates for numeracy thresholds and risk literacy difficulty levels). By developing this open-

science framework, the decision vulnerability research project will also have an opportunity to 
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gain valuable information on the bounds/limits of the decision vulnerability approach (e.g., 

when, under what circumstances, or for whom, is numeracy particularly useful for 

understanding risk communications?). Furthermore, as norms continue to be developed and 

updated (e.g., every 5-10 years), a related web-based platform could be created to provide 

individuals performance feedback (e.g., see RiskLiteracy.org).  

Conclusion 

The world is getting more complex, and with intensified polarization and cognitive 

demands, science has a responsibility to empower diverse individuals to reckon with complex 

risks. Numeracy norms seem to provide meaningful decision vulnerability metrics in applied 

contexts. By assessing the extent to which measures of numeracy are less likely to give biased 

estimates across some levels of diversity (e.g., gender), as well as examining the different 

distributions of subgroups, the current study provides initial steps for psychometrically robust 

metrics of decision vulnerability. Taken together, robust norms (i) could allow for the prediction 

of the comprehensibility of different risk communications (e.g., treatment risks, financial 

products), (ii) may help speak to the generalizability of basic laboratory findings and (iii) may 

inform the design of decision support technologies (e.g., risk communications, intelligent 

tutors).   

The metrics, models, and norms developed here are far from perfect, but perhaps they 

begin to provide methods that allow us to answer meaningful scientific questions, by more 

precisely measuring how much, when, why, and to what extent we can predict and explain 

fundamental and practical questions. Perhaps in turn, this will provide mechanisms to more 

precisely track changes in decision making skill across time and space, and to demonstrate that 
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(i) incremental improvements have occurred (due to interventions) and that (ii) these 

improvements have caused some economic benefits (e.g., reduced loss of life and property).  

Imagine a world in which individuals are better able to make autonomous, informed 

decisions that are consistent with their goals, preferences, and values. Perhaps advances in the 

decision vulnerability approach could have supported Doug deSilvey and his family. In the 

future, how many lives could be saved by improved metrics and assessments of decision 

vulnerability? 
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Appendix A: Measurements 

Schwartz Numeracy Test 

You will now be asked to solve a few problems. Please note that you are allowed to enter 
numbers that include up to 2 decimal points (for example, 1.11). You are also welcome to use 
a calculator to help solve these problems. 
 
Imagine that we flip a fair coin 1,000 times. What is your best guess about how many times 
the coin would come up heads in 1,000 flips? 
_____________________ 
 
In the BIG BUCKS LOTTERY, the chance of winning a $10 prize is 1%. What is your best 
guess about how many people would win a $10 prize if 1,000 people each buy a single ticket 
to BIG BUCKS?  
_____________________ 
 
In ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000. What 
percent of tickets to ACME PUBLISHING SWEEPSTAKES win a car?  
_____________________ percent 
 
 

Berlin Numeracy Test  

Out of 1,000 people in a small town 500 are members of a choir. Out of these 500 members in 
a choir 100 are men. Out of the 500 inhabitants that are not in a choir 300 are men. What is 
the probability that a randomly drawn man is a member of the choir? Please indicate the 
probability as a percent.   
_____________________ percent 
 
Imagine we are throwing a five-sided die 50 times. On average, out of these 50 throws how 
many times would this five-sided die show an odd number (1, 3 or 5)? 
_____________________ 
 
Imagine we are throwing a loaded die (6 sides). The probability that the die shows a 6 is twice 
as high as the probability of each of the other numbers. On average, out of these 70 throws 
how many times would the die show the number 6? 
_____________________ 
 
In a forest, 20% of the mushrooms are red, 50% are brown, and 30% are white. A red 
mushroom is poisonous with a probability of 20%. A mushroom that is not red is poisonous 
with a probability of 5%. What is the probability that a poisonous mushroom in the forest is 
red? Please indicate the probability as a percent.   
 
_____________________ percent 
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Risk Literacy Test 

 
Imagine that you take out a $50,000 federal student loan to help pay for college. You 
are offered four possible repayment plans. The table below provides examples of the 
monthly repayments for each plan. Note: For the Graduated (10 years) plan, you would start 
by paying the minimum amount; the payment amount then increases every two years up to the 
maximum amount.    
Look at the table carefully and answer the following questions.   

   
 
 
rlp_min. Which option has the minimum interest payment (least expensive overall)? [See 
Table; Fill in the blank] 
 
rlp_percentage. What is the total interest paid in percentage if you have borrowed $50,000 
and returned $69,048? [See Table; Fill in the blank] 
 
rlp_beno. With the new drug BENOFRENO, the risk of death from a heart attack may be 
reduced for people with high cholesterol. A study of 900 people with high cholesterol showed 
that 80 of the 800 people who have not taken the drug died after a heart attack, compared with 
16 of the 100 people who did take the drug. How beneficial was the Benofreno? [1-7 Scale] 
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rlp_strokex1. Mrs. Jones is told she has a 28 in 1,000 chance of dying from cancer and a 59 
in 1,000 chance of dying from a stroke. Mrs. Jones’s doctor now tells her that a new pill, 
STROKEX, will lower her chance of dying from stroke by 50%. Another pill, CANCERX 
will lower her chance of dying from cancer by 50%. 
Assume she can only take 1 pill. Assuming the 2 pills are equally safe and cost the same, 
which should she take to minimize her risks of death? 

a) STROKEX pill 
b) CANCERX pill 
c) Both are equally effective 
d) Neither pill is effective 

 
rlp_3400or3800. Imagine you were offered the following choices. Which option would you 
select: 

a) $3400 this month 
b) $3800 next month* 

 
rlp_lose400. Imagine you were offered the following choices. Which option would you 
select: 

a) 50% chance to lose $400 
b) Lose $50 for sure* 

 
rlp_gain400. Imagine you were offered the following choices. Which option would you 
select: 

a) Gain $100 for sure 
b) 75% chance to win $200* 
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Risk Literacy and Numeracy Validation Items 

oper_fieldtrip. A school is having a field trip and many parents are going on the field trip 
with the children. What is the child to parent ratio if there are 20 children and 5 parents? 

a) 2 children for every one parent 
b) 20 children for every 1 parent 
c) 1 child to every 5 parents 
d) 5 children to every 1 parent 
e) 4 children to every 1 parent* 

 
prob_dice5. People often roll dice when playing games.  Most dice have 6 sides and each 
side has a different number on it ranging from 1-6. If you rolled one of the dice, on average 
what is the probability that it would land on 5? 

a) 1 time out of 6 rolls of the dice* 
b) 5 times out of 6 rolls of the dice 
c) 1 time out of 2 rolls of the dice 
d) 1 out of 5 rolls of the dice 
e) 6 out of 1 roll of the dice 

 
prob_burn. Imagine that the probability of a child getting sunburned at the beach is 65% 
while the probability of an adult getting sunburned at the beach is 15%. If there were 300 
people who spent a day at the beach, and 60% of the people were children, how many people 
are likely to get a sunburn? 

a) About 195 
b) About 150 
c) About 135* 
d) About 80 
e) About 64 

 
oper_goods. Imagine that goods imported into a country increased by 40% and exports 
decreased by 30% during a certain year. What was the ratio of imports to exports at the end of 
the year compared to the beginning of the year? 

a) 1/2 
b) 3/2 
c) 4/3 
d) 2/1* 
e) 1 

 
prob_diceeven. Imagine that you are throwing 2 regular 6-sided dice up in the air.  If each 
side has a different number on it ranging from 1-6, on average what is the probability that 
both of them land on even numbers? 

a) 1 out of 36 rolls of the dice 
b) 3 out of 6 rolls of the dice 
c) 1 out of 4 rolls of the dice* 
d) 2 out of 6 rolls of the dice 
e) 2 out of 36 rolls of the dice 
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rlp_400or100. Imagine you were offered the following choices. Which option would you 
select? 

a) $400 now 
b) $100 every year for 10 years* 

 
rlp_1000or2400. Imagine you were offered the following choices. Which option would you 
select? 

a) $1000 in six months 
b) $2400 in two years* 

 
 
windspeed comprehension. Which of the following statements best describes the probability 
of hurricane-force winds in Location A? 

a) There is an 80-90% chance of hurricane-force winds in Location A during the next 5 
days. 

b) There is an 80-90% chance of hurricane-force winds in Location A in each of the next 
5 days.  

c) There is an 80-90% chance of hurricane-force winds occurring somewhere along the 
southern Gulf coast of Florida during the next 5 days. 

d) Not sure  
 
storm surge comprehension. Which of the following statements best describes the storm 
surge forecast for Location A? 

a) There is a 10% chance that Location A will get more than 9 ft of storm surge above 
ground level. 

b) There is a 10% chance that Location A will get less than 9 ft of storm surge above 
ground level. 

c) There is a 10% chance that Location A will get approximately 9 ft of storm surge 
above ground level. 

d) Not sure 
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Appendix B: Validation Results 

Table B1.  

Validation Results 

Artifact Group 

Predicted  
Risk  

Literacy 
Percentile 

Proportion  
Correct, 

Weighted 
Sample 

True  
Score 
Levels 

Predicted  
Value 
Levels 

Deviation = 
Predicted  
Value -  

Weighted 
Proportion 

> 10%  
Deviation? 

prob_dice5 General 0.374 0.295 I I 0.079 F 

prob_dice5 Female 0.411 0.357 I II 0.055 F 

prob_dice5 Male 0.341 0.228 I I 0.113 T 

prob_dice5 NonCollege 0.483 0.439 II II 0.044 F 

prob_dice5 College 0.294 0.191 I I 0.103 T 

prob_dice5 Under55 0.389 0.312 I II 0.076 F 

prob_dice5 Over55 0.343 0.262 I I 0.081 F 

prob_dice5 OtherRace 0.502 0.426 II II 0.075 F 

prob_dice5 White 0.322 0.223 I I 0.099 F 

prob_burn General 0.628 0.572 II III 0.056 F 

prob_burn Female 0.670 0.639 III III 0.031 F 

prob_burn Male 0.595 0.499 II II 0.095 F 

prob_burn NonCollege 0.768 0.713 III III 0.055 F 

prob_burn College 0.551 0.470 II II 0.081 F 

prob_burn Under55 0.638 0.577 II III 0.062 F 

prob_burn Over55 0.606 0.562 II II 0.044 F 

prob_burn OtherRace 0.740 0.749 III III 0.009 F 

prob_burn White 0.588 0.476 II II 0.112 T 

oper_goods General 0.777 0.757 III III 0.020 F 

oper_goods Female 0.822 0.792 III III 0.030 F 

oper_goods Male 0.744 0.718 III III 0.025 F 

oper_goods NonCollege 0.935 0.848 III IV 0.087 F 

oper_goods College 0.702 0.691 III III 0.011 F 

oper_goods Under55 0.785 0.766 III III 0.020 F 

oper_goods Over55 0.761 0.740 III III 0.020 F 

oper_goods OtherRace 0.879 0.858 III IV 0.021 F 

oper_goods White 0.743 0.702 III III 0.041 F 

oper_fieldtrip General 0.114 0.202 I I 0.089 F 

oper_fieldtrip Female 0.146 0.239 I I 0.092 F 

oper_fieldtrip Male 0.081 0.163 I I 0.082 F 

oper_fieldtrip NonCollege 0.192 0.315 I I 0.123 T 

oper_fieldtrip College 0.030 0.121 I I 0.091 F 
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oper_fieldtrip Under55 0.133 0.229 I I 0.096 F 

oper_fieldtrip Over55 0.073 0.153 I I 0.080 F 

oper_fieldtrip OtherRace 0.258 0.335 I I 0.076 F 

oper_fieldtrip White 0.051 0.131 I I 0.080 F 

prob_diceeven General 0.754 0.748 III III 0.006 F 

prob_diceeven Female 0.799 0.787 III III 0.012 F 

prob_diceeven Male 0.721 0.706 III III 0.015 F 

prob_diceeven NonCollege 0.909 0.811 III IV 0.098 F 

prob_diceeven College 0.679 0.703 III III 0.024 F 

prob_diceeven Under55 0.763 0.750 III III 0.013 F 

prob_diceeven Over55 0.737 0.745 III III 0.008 F 

prob_diceeven OtherRace 0.858 0.805 III III 0.053 F 

prob_diceeven White 0.720 0.718 III III 0.002 F 

BNTC_3item General 0.604 0.541 II II 0.063 F 

BNTC_3item Female 0.646 0.596 II III 0.050 F 

BNTC_3item Male 0.571 0.482 II II 0.089 F 

BNTC_3item NonCollege 0.741 0.666 III III 0.074 F 

BNTC_3item College 0.526 0.451 II II 0.076 F 

BNTC_3item Under55 0.615 0.552 II II 0.063 F 

BNTC_3item Over55 0.581 0.521 II II 0.060 F 

BNTC_3item OtherRace 0.717 0.678 III III 0.039 F 

BNTC_3item White 0.563 0.467 II II 0.096 F 

BNTC_5item General 0.581 0.515 II II 0.066 F 

BNTC_5item Female 0.622 0.563 II II 0.060 F 

BNTC_5item Male 0.548 0.463 II II 0.085 F 

BNTC_5item NonCollege 0.715 0.625 III III 0.090 F 

BNTC_5item College 0.503 0.435 II II 0.068 F 

BNTC_5item Under55 0.592 0.527 II II 0.066 F 

BNTC_5item Over55 0.557 0.493 II II 0.065 F 

BNTC_5item OtherRace 0.696 0.635 III III 0.061 F 

BNTC_5item White 0.539 0.450 II II 0.089 F 

Note. BNTC_3item is the sum of prob_dice5 + prob_burn + oper_goods.  
BNTC_5item adds an easier item (oper_fieldtrip) and a harder item (prob_diceeven), to sum: 
prob_dice5 + prob_burn + oper_goods + oper_fieldtrip + prob_diceeven  
 
 


