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Abstract

Known as a pregnancy complication due to high blood pressure and may be accompanied

by damage to another organ system, preeclampsia a�icts between 3 and 6 percent of US

pregnancies each year. Studies have shown the importance of early detection of preeclampsia

to prevent further complications that are detrimental to both mother and infant. In this

work, we develop an algorithmic modi�cation of Deep Neural Networks to identify high-

risk patients in preeclampsia diagnosis using imbalanced datasets in the presence of missing

values. We identify the most in�uential set of clinical features relevant to preeclampsia and

train a classi�er that can be embedded within a clinical decision support system. Our results

provide evidence in favor of increased consideration of patient race/ethnicity in preeclampsia

prediction, and for more personalized medicine in general.
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Chapter 1

Introduction

Preeclampsia spectrum disorders occurs in pregnant women that are generally linked by new

onset hypertension and proteinuria after week 20 of gestation. Preeclampsia a�ects 2�8% of

pregnancies worldwide (Duley, 2009), and is responsible for between 50,000�100,000 deaths

annually. Of those women who survive, preeclampsia is associated with longterm health

e�ects, such as increased risk of heart disease, stroke, and diabetes (Bellamy et al., 2007).

Children of women with preeclampsia also have increased risk of long-term cardiovascular

illness (Sacks et al., 2018). Studies have shown that the administration of low-dose aspirin

early in pregnancy can reduce the occurrence of preeclampsia in pregnant women (Bujold

et al., 2010). Early indication of preeclampsia would then allow clinicians to provide treat-

ment to the most at-risk women.

Because prediction would allow women to be treated more e�ectively, multiple predictive

models have been developed in the past to accomplish this task. Kenny et al. (2014) and

Sandström et al. (2019) applied logistic regression to predict preeclampsia in nulliparous

women. Moreira et al. (2017) and Sufriyana et al. (2020) have succesfully used Random

Forest models to predict preeclampsia, however the Random Forest algorithm tends to show

bias in the presence categorical variables with many levels (Strobl et al., 2007). Mari¢

et al. (2020) applied the Elastic Net model to preeclampsia prediction. However, their
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data included only a single high-risk referral hospital, thus having a higher occurance of

preeclampsia than appears in a more general population.

Furthermore, the mothers' race and ethnicity are among signi�cant risk factors for

preeclampsia (Johnson, Louis, 2020). Maternal morbidity is signi�cantly higher among

women in particular racial and ethnic groups (Admon et al., 2018). For example, African

American women are more likely to experience preeclampsia (Breathett et al., 2014), and

when they do, the rate of mortality is higher among them as an outcome of this disease

(Shahul et al., 2015). In addition, African American and American Indian women are at

increased risk of recurrence of preeclampsia (Boghossian et al., 2014). Moreover, when

preeclampsia reoccurs, they are at higher risk of having a baby with low birth weight and

pre-term birth (Mbah et al., 2011).

There has been little study on the occurrence of preeclampsia and its related risk factors

among Native American women. Hypertensive disorders of pregnancy accounted for signi�-

cantly higher proportion of Native American than Caucasian counterparts, and in particular,

Native American women had a 17% increased risk for preeclampsia compared to white women

according to a recent study (Heck et al., 2020). Existing analysis of preeclampsia using ma-

chine leaning methods have rarely studied race and ethnicity into their predictions. To our

knowledge, there is no study that investigated the risk factors of preeclampsia among African

American and Native American populations using advanced machine learning algorithms.

Analyzing health care datasets presents its own set of challenges. Converting a large

number of categorical variables to numerical values in the data in this study, resuting in

extremely sparse feature matrices. Additionally, several samples contained missing values

that are needed to be dropped or imputed. By far the largest issue however was the highly

imbalanced nature of preeclampsia since only a small set of women (minority class) develops

preeclampsia in a given year. Traditional machine learning algorithms often produce biased

results in favor of the majority class (non-preeclamptic individuals) (Khan et al., 2017).

The contribution of this study are: 1) we propose the use of a cost-sensitive learning-based

2



Deep Neural Network in order to deal with the highly imbalanced nature of this problem. To

the best of our knowledge, this algorithm has not been used in any previous study to predict

the development of preeclampsia; 2) this study aims at the development of prediction models

among minority groups, particularly with seperate analysis performed on Native American

and African American datasets.

The rest of this thesis is organized as follows: In chapter 2, we describe the related

work that has been performed on preeclampsia prediction. In chapter 3, we go into the

methodology used for this thesis. In chapter 4, we describe the datasets our method was

used on. In chapter 5, we describe the results of our methods and analyze the output.

Finally, in chapter 6 we discuss conclusions and future research directions.
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Chapter 2

Related Works

Due to the need for early detection of preeclampsia, a number of machine learning methods

have been applied to the problem in the literature. The most basic machine learning models

are the linear and generalized linear models, in which the relationship between the input

variables and the target variables is assumed to be linear. Among these methods, Logistic

Regression is the most common one, which is well-suited to binary classi�cation problems

(Mari¢ et al., 2020; Sufriyana et al., 2020; Sandström et al., 2019; Kenny et al., 2014). Other

linear methods have been applied to this problem such as Generalized Linear and Elastic

Net models (Mari¢ et al., 2020), and Linear Support Vector Machine (Sufriyana et al., 2020).

Furthermore, methods that do not assume a linear relationship have been utilized for early

detection of preeclampsia. Sufriyana et al. (2020) employed decision trees, which use a

series of learned binary rules in order to classify observations. These methods, while easy

for a clinician to interpret, su�er from over-�tting and high variability which makes them

di�cult to apply to healthcare datasets. An improvement on these are random forests,

which aggregate the results of multiple decision trees in order to reduce the variability. This

method was used successfully by Sufriyana et al. (2020), and Moreira et al. (2017). However,

random forest also su�ers from bias in datasets containing large amounts of categorical data

(Strobl et al., 2007). Clinical datasets often include many categorical features which makes

4



the use of random forest challenging. Since the performance of random forest technique is

deteriorated when there are many levels in categorical features [I will add reference]. The

use of Neural Network method is still limited in preeclampsia prediction. Sufriyana et al.

(2020) employed neural network method for early detection of preeclampsia. The advantage

of this method is that it explores the nonlinear relationship among features. Also, their work

is capable of handling both categorical and numeric features and is also well-suited to large

datasets.

On the other hand, preeclampsia is a rare disease and only occurs in such a small subset of

the population. Thus, it su�ers from a class imbalance issue. A class imbalance occurs when

the majority of samples in a datasets belongs to one class (Leevy et al., 2018a), which makes

traditional machine learning algorithms learn from the minority class. A number of methods

have been developed to deal with this issue in the literature. The most common techniques

are undersampling and oversampling. In undersampling, a subset of the majority class is

used for training while in Oversampling, the minority class is resampled with replacement

in a way that the number of samples in both classes become equal. Synthetic Minority

Oversampling (SMOTE) (Chawla et al., 2002) is the most popular oversampling approach

in which new minority class samples are generated from the existing data by drawing samples

that are close in feature space, then �t a line between them and generate a new synthetic

data point from along that line (Chawla et al., 2002). However, these resampling methods

have the downside of changing the distribution of the dataset. In undersampling, bias is

introduced by removing information from the data while oversampling increases variance

by creating redundant data points and runs the risk of over�tting, and thus, it reduces its

ability to generalize to the new data samples. Finally, SMOTE tends to create ambiguous

samples if there is considerable overlap in features between the majority and minority class

samples (Fernández et al., 2018). Due to these issues reliable methods that do not alter

the distribution of data are required for handling the class imbalanced problems. For this

purpose, cost-sensitive learning algorithms are developed which assigns di�erent weights to

5



the samples of each class based on their importance (Kukar, Kononenko, 1998). We note

that the standard machine learning algorithms assume equal wights for each data samples

and are prone to generate many misclassi�ed samples. This will cause a huge loss in many

real-world applications. In a healthcare setting, there is frequently a much higher cost to

misdiagnosing someone who does have a disease than someone who doesn't. Kukar Kukar,

Kononenko (1998) has proposed cost-sensitive neural networks to circumvent this issue. Cost-

sensitive neural networks have been successfully applied in other imbalanced data problems

both in healthcare (Du et al., 2021) and other domains, such as fraud detection (Dastile

et al., 2020), fault detection (Fuqua, Razzaghi, 2020), and image recognition Khan et al.

(2017). To our knowledge, none of the previous works have studied preeclampsia prediction

using this method. In fact, very few researchers studied the preeclampsia prediction problem

using imbalanced classi�cation methods. Recently, Sufriyana et al. (2020) has employed an

oversampling method to deal with class imbalance problem in early detection of preeclampsia.

In addition to the lack of reliable methods for addressing imbalanced data, there is

no study that has examined the preeclampsia prediction problem within di�erent ethnic

groups. This is despite the fact that race is a known risk-factor for preeclampsia (Boghossian

et al., 2014), with African American women in particular being more at risk for developing

preeclampsia and being more likely to die once it develops (Admon et al., 2018). None

of the previous studies developed a granular prediction model for each race/ethnic groups

individually. We hypothesize this might be because there is limited number of patients in

these ethnic groups (African American/American Indian) in hospitals' datasets, which makes

it di�cult to train machine learning algorithms and generate meaningful results. Sandström

et al. (2019) has developed their model on a dataset which includes 90% white women.

Developing personalized prediction models for each race/ethnicity provides more accurate

models that can be used by policy makers for resource allocation and better healthcare

management.
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Imputation Method Feature Selection Class imbalance Method
Removal EM Mean Imput. No FS FFS BFS No CLM OS DS

Maric et al. (2020)
Sufriyana et al. (2020)
Sandstrom et al. (2019)
Moreira et al. (2017)
Kenny et al. (2014)

Simbolon et al. (2021)
Yu et al. (2005)

Poon et al. (2009/2010)
Odibo et al. (2011)

Caradeux et al (2013)
Parra-Cordero et al. (2013)
Scazzocchio et al. (2013)
Wright et al. (2019)
North et al. (2011)

Table 2.1: Previous Studies and their Imputation, Feature Selection, and Class Imbalance Methods.
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Supervised Learning Model
LR EN GB DT RF SVM ANN NB GM EL

Maric et al. (2020)
Sufriyana et al. (2020)
Sandstrom et al. (2019)
Moreira et al. (2017)
Kenny et al. (2014)

Simbolon et al. (2021)
Yu et al. (2005)

Poon et al. (2009/2010)
Odibo et al. (2011)

Caradeux et al (2013)
Parra-Cordero et al. (2013)
Scazzocchio et al. (2013)
Wright et al. (2019)
North et al. (2011)

Table 2.2: Summary of early-onset PE prediction models. MImp.: Missing imputation technique, R: Removal technique, EM:
Expected maximization, M: Mean Imputation, Feature Selec.: Feature selection method, Forward Feature Selection (FFS),
Backward Feature Selection (BFS), No: No feature selection is used, Imb.: class imbalance method, No: No class imbalance
method is used, OS: oversampling, Supervised Learn.: Supervised learning model, LR: Logistic regression, EN: Elastic Net, DT:
Decision Tree, RF: Random Forest, SVM: Support vector machine, ANN: Arti�cial Neural Network, GB: Gradient Boosting,
EL: Ensemble Learning, NB: Naïve Bayes, GM: Gaussian Model
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Performance Measures
ACC AUC PR SN G-mean SP FM KS

Maric et al. (2020)
Sufriyana et al. (2020)
Sandstrom et al. (2019)
Moreira et al. (2017)
Kenny et al. (2014)

Simbolon et al. (2021)
Yu et al. (2005)

Poon et al. (2009/2010)
Odibo et al. (2011)

Caradeux et al (2013)
Parra-Cordero et al. (2013)
Scazzocchio et al. (2013)
Wright et al. (2019)
North et al. (2011)

Table 2.3: Previous Studies and Performance Metrics Used.
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Chapter 3

Methods

3.1 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) have their origin in the 1940s, with the McCulloch-Pitts

Neuron (McCulloch, Pitts, 1943). The idea of �arti�cial neurons� is inspired by the human

brain, in which a neuron takes �input� in the form of signals from surrounding cells, and will

only activate in the form of an electrical spike if the combined signals passes a threshold

level. An arti�cial neuron mimics this behavior by taking a series of features x, multiplying

each by an individually chosen weight w, and then adds it to a bias term b before summing

them together to calculate if a pre-de�ned threshold is met, which allows for classi�cation.

h =
n∑

i=1

xiwi (3.1)

f(x,w) =


1 if h ≥ θ

0 otherwise

(3.2)

This early ANN su�ers from a few major drawbacks. The trained model is essentially

just a linear model, meaning that it cannot learn more complicated functions than a more

basic model (e.g., linear regression or logistic regression). The second drawback is that the
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weights and bias terms need to be selected by the programmer, leading to a model that

would need to be hand-tuned for every problem.

Later versions of ANN adapted the arti�cial neuron to represent more complicated

functions by linking them together into an multiplayer perceptron (MLP) or feedforward

ANN (Gardner, Dorling, 1998). The MLP is typically composed of multiple layers, each

layer containing a pre-de�ned number of neurons, or nodes. These layers can be subdivided

into three separate types: the input layer, which takes each feature x as input; a number of

hidden layers (the number of layers here denotes the depth of the network), which performs

the previously seen linear computation on each input before passing the output to the next

layer; and �nally, the output layer, which returns the �nal prediction. Each node in a layer

is connected to every node in the next layer, making a fully-connected neural network where

the �nal prediction is made up of a functional composition of each layer. For example, a

network with three layers could be described as:

ŷ = f (3)(f (2)(f (1)(x)) (3.3)

Where ŷ is the predicted output, f (1) is the function of the �rst layer, f (2) is the function

of the second layer, and f(3) is the function of the third layer. These functions each take

the form of:

f(x;w, b) = w ∗ x+ b (3.4)

Where x are the input features, w are the weights of each node in the layer, and b are

accompanying bias term. Furthermore, more modern versions of neural networks add non-

linearity through the use of activation functions (Sharma, 2017) that will be discussed in

section 3.1.2.
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3.1.1 Backpropogation and Gradient Descent

The goal of a neural network is to approximate some function f ∗ that can map a series of

inputs x to appropriate outputs y (Goodfellow et al., 2016). This is done by �nding weights

and biases such that minimize a cost function that represents the error between a predicted

output and the true output. The earliest ANNs required the programmer to set the weights

and biases. Later extensions of ANN, such as the perceptron, could learn better weights

automatically from data (Rosenblatt, 1958, 1961). This process has been expanded upon

by the addition of the back-propagation algorithm (Rumelhart et al., 1986), which allows

for the weights to be updated by taking information from a given cost function and �owing

backwards through the network in order to compute the gradient with respect to each of the

weights and biases. This leads to the following update:

θ = θ − η∇Cost(θ) (3.5)

Where θ denotes the parameters w or b and η is the step size that controls the speed of

learning. In this version of gradient descent, the cost is taken with respect to each sample

in the dataset.

Updating the parameters based on the cost of misclassifying every sample can be com-

putationally expensive however. In practice the model's parameters are usually updated on

a random subset of data called a minibatch, the size of which is a hyperparameter chosen

by the experimenter. If the batch size is less than the size of the dataset then the resulting

method is known as Stochastic Gradient Descent (SGD) (Bottou, 1998).
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Algorithm 1: Stochastic gradient descent (SGD)

Input: Learning rate ϵ
Input: Initial parameter θ
while Stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with
corresponding targets y(i)

Compute gradient: ĝ ← 1
m
∇θ

∑
i C(f(x(i); θ), y(i))

Update: θ ← θ − ηĝ
end

A possible disadvantage of SGD is that the magnitudes of the gradients can be very

di�erent for each parameter, making it di�cult to choose a learning rate that will work for

all of them. Root mean square propogation (RMSprop) (Tieleman, Hinton, 2012) improves

this method by adapting the step size to the individual parameters and changing the gradient

accumulation into an exponentially weighted moving average (Goodfellow et al., 2016).

Algorithm 2: RMSProp algorithm

Input: Global learning rate ϵ, decay rate ρ
Input: Initial parameter θ
Input: Small constant δ, usually 10−6, used to stabilize division by small numbers
Initialize accumulation variables r = 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set x(1), ..., x(m) with
corresponding targets y(i)

Compute gradient: g ← 1
m
∇θ

∑
i C(f(x(i); θ), y(i))

Accumulate squared gradient: r ← ρr + (1− ρ)g ⊙ g
Compute parameter update: ∆θ = − ϵ√

δ+r
⊙ g.

Apply update: θ ← θ +∆θ
end

Adaptive Moment Estimation (ADAM) (Kingma, Ba, 2014) is another extended version

of vanilla gradient descent, which takes momentum directly through estimating the �rst order

moment of the gradient (Goodfellow et al., 2016). The method of the adaptive moments

in calculation of the gradient will result in better classi�cation accuracy as well as higher

computational e�ciency and convergence speed.
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Algorithm 3: Adam algorithm

Input: Step size ϵ
Input: Exponential decay rates for moment estimates, ρ1 and ρ2 in the range [0, 1)
Input: Small constant δ, used to stabilize division by small numbers
Input: Initial parameters θ
Initialize 1st and 2nd moment variables s = 0, r = 0 Initialize time step t = 0 while
Stopping criterion not met do
Sample a minibatch of m examples from the training set x(1), ..., x(m) with
corresponding targets y(i)

Compute gradient: g ← 1
m
∇θ

∑
i C(f(x(i); θ), y(i))

t← t+ 1
Update biased �rst moment estimate: s← ρ1s+ (1− ρ1)g
Update biased second moment estimate: r ← ρ2r + (1− ρ2)g ⊙ g
Correct bias in �rst moment: ŝ← s

1−pt1
Correct bias in second moment: r̂ ← r

1−pt2

Compute update: ∆θ = −ϵ ŝ√
r̂+δ

Update: θ ← θ +∆θ
end

Adam can also be improved with the addition of Nesterov momentum (Dozat, 2016). In

this version, rather than taking the gradient being computed from the current term, it takes

a projected position calculated from changes in the last iteration and uses the derivative of

this projection instead. This in e�ect minimizes the possibility of overshooting minimums

caused by using a simple momentum.

Algorithm 4: NAdam algorithm

Input: Learning Rate: α0, ..., αT ;Decay Factors: µ0, ..., µT ; v; ϵ: Hyperparameters
Input: Initial parameters θ
Initialize 1st and 2nd moment variables s = 0, r = 0 while Stopping criterion not
met do
Compute gradient: gt ← ∇θt−1ft(θt−1)
Update biased �rst moment estimate: s← µtmt−1 + (1− µt)
Update biased second moment estimate: rt ← vrt−1 + (1− v)g2t
Correct bias in �rst moment:
ŝ← (µt+1st/(1−

∏t+1
i=1 µi)) + ((1− µt)gt/(1−

∏t
i=1 µi))

Correct bias in second moment: r̂ ← vnt/(1− vt)
Update: θt ← θt−1 − αt√

n̂t+ϵ
ŝt

end
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After one batch is fed into the network, the parameters are updated, and the next batch

is fed in until all of the data has been seen by the model. One full iteration through the

neural network by all the data is considered as an epoch. The number of epochs used in the

model is another hyperparameter. We note that too few epochs may lead into the fact that

the model does not e�ectively learn the data, and too many epochs may result into the risk

of over�tting and reducing the model's ability to generalize to new unseen data (Goodfellow

et al., 2016). However, this risk is mitigated when the size of data is increased.

3.1.2 Activation Functions

Whereas the �rst arti�cial neuron applied a simple weighted sum to determine if it would �re

or not, a modern neuron applies a non-linear activation function instead. These activation

functions are applied after the inputs are transformed by the weights and biases and before

passing them onto the next layer's nodes. The most commonly-used activation function is

the sigmoid activation given by

a(z) =
1

1 + e−z
(3.6)

Where z represents the linear output of the node. This transformation squashes the

output to a value between 0 and 1 in a continuously di�erentiable smooth curve, with

small outputs moving closer to 0 and large ones moving closer to 1. In this way, sigmoid

activation functions mimic the all-or-nothing approach of earlier neurons. The downside of

this particular activation function is that it can saturate, meaning that if the output is too

large or small the gradient can become close to 0 which negatively a�ects the ability of the

network to update the parameters. To overcome this issue, the sigmoid function has been

improved through using the closely related hyperbolic tangent function given by

a(z) =
2

1 + e−2z
− 1 (3.7)

15



This function outputs values between -1 and 1, and has a signi�cantly steeper gradi-

ent which makes it easier for training than using the sigmoid function. Another common

activation function is the recti�ed linear unit (ReLU) function as follows

a(z) = max(0, z) (3.8)

The ReLU activation function is represented by a threshold value at 0 which sets any

output z ≤ 0 value, while any output greater than 0 is linearly represented. ReLU has

been found to converge faster than sigmoid or tanh (Krizhevsky et al., 2012) which makes

the learning of a neural network more e�cient. Thus, due to the ability to learn complex

non-linear functions, neural networks have been used successfully in a variety of machine

learning problems, such as image recognition (He et al., 2015; LeCun et al., 1998), machine

translation (Cho et al., 2014; Bahdanau et al., 2014), speech recognition (Graves et al., 2013;

Abdel-Hamid et al., 2014), weather forcasting (Maqsood et al., 2004), credit scoring (Blanco

et al., 2013), cancer detection (Joshi et al., 2010; Karabatak, Ince, 2009; Yavuz et al., 2017),

and more.

3.2 Cost-Sensitive Neural Networks

Despite the success of neural networks in a variety of applications, their use might be chal-

lenging due to the distribution of the given dataset. In classi�cation, many machine learning

algorithms, including neural networks, assume that the distribution of classes is roughly the

same. When this assumption is violated, the neural network can best reduce the misclassi-

�cation cost by simply outputting the majority class in every case. This results in a model

with a high accuracy but with no ability to truly distinguish between classes (Leevy et al.,

2018b).

Our proposed method removes this assumption which is based on cost-sensitive learning

approach. In this approach which is originally proposed by Kukar (Kukar, Kononenko, 1998),
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the cost function is modi�ed such that di�erent costs are associated with the true value of

any given sample. In particular, we used two speci�c loss functions including weighted cross

entropy and focal loss functions that we will explain them in the following sections 3.2.1 and

3.2.2

3.2.1 Weighted Cross Entropy Loss

In neural networks, the cross entropy (CE) loss function is usually used for binary classi�-

cation problems which is de�ned by

CE(y, ŷ) = −(y log (ŷ) + (1− y) log (1− ŷ)) (3.9)

Where y ∈ {±1} is the ground-truth class, ŷ is the model's estimation of the class with

label y = 1. This basic loss function can be modi�ed by multiplying the cost of each individual

sample by a class speci�c weight (Lin et al., 2017), which is so-called as the weighted cross

entropy (WCE) de�ned by:

WCE(y, ŷ) =


−C+ log (ŷ) if y = 1

−C− log (1− ŷ) otherwise.

(3.10)

Where C+ = N
2N+ and C− = N

2N− scales each cost by the number of samples within

each class, and N+ and N− is the size of the positive and negative class. In fact, di�erent

�importance� are given by the parameters C+ and C− to the misclassi�cation of samples in

the minority (positive) and majority (negative) class. Accordingly, the error cost function

will be

J(w, b) = − 1

N
(C+

N+∑
{i|yi=1}

yi log (ŷi) + C−
N−∑

{j|yj=−1}

(1− yj) log (1− ŷj)) (3.11)
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3.2.2 Focal Loss

Recently Focal Loss (FL) has been proposed by Lin et al. (2017) which is another cost-

sensitive CE loss function for binary classi�cation. The main idea behind the FL is to focus

training on hard samples while reducing the loss contribution from well-classi�ed and easy

samples through adding a modulating factor to the sigmoid CE loss.

Suppose the predicted output from the model for both classes are ŷ = [ŷ1, ŷ2]
T . The

sigmoid function calculates the probability distribution for minority and majority classes as

pt = sigmoid(ŷt) = 1/(1+ exp(−ŷt)) where pt is de�ned as

pt =


p if y = 1

1− p otherwise.

(3.12)

The focal loss can be formulated as:

FL(pt) = −(1− pt)
γ log(pt) (3.13)

or equivalently,

FL(y, ŷ) = −((1− p)γ log(p) + pγ log(1− p)) (3.14)

where y ∈ {±1} is the ground-truth class and pt ∈ [0, 1] is the model's estimated probability

for the class with label y = 1. The parameter γ ≥ 0 should be tuned. The modulating factor

(1 − pt)
γ is added which reduces the loss contribution from easy examples. We note that

FL is equivalent to CE, when γ = 0. The e�ect of the modulating factor increases as the γ

parameter increases (Lin et al., 2017).

In addition, an α-balanced variant of the original focal loss has been developed to further
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focus on the e�ective number of samples. The parameter αt ∈ [0, 1] is de�ned as

αt =


α if y = 1

1− α otherwise.

(3.15)

The α-balanced CE loss is then written as

FL(pt) = −αt(1− pt)
γ log(pt) (3.16)

Or equivalently

FL(y, ŷ) = −(α(1− p)γ log(p) + (1− α)pγ log(1− p)) (3.17)

In this work, We use weighted cross entropy and focal loss functions.

3.3 Balanced-Batches

For comparison, a �nal method of balancing the batches was applied to each of the loss

functions. As the neural network is fed batches of data the batch is checked to see how

imbalanced it is, and a sampling technique is applied to the batch to ensure that the classes

are equal. In this work we applied random oversampling, which samples from the preeclamp-

tic patients with replacement. Balanced Batches were applied using the imblearn library.

(Lemaître et al., 2017)

3.4 Hyperparameter Optimization Strategies

Neural Networks contain a large number of hyperparameters that are needed to be set prior

training such as learning rate, depth, the number of nodes per layer, activation functions,

weight initialization strategy, and more. Therefore, it is bene�cial to apply an algorithmic
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strategy to �nd the best performing combination of hyperparameters. In this work, three

hyperparameter strategies are tested: Random Search, Bayesian Optimization, and Hyper-

band Optimization. All hyperparameter tuning is performed using the Keras Tuner library

(O'Malley et al., 2019).

3.4.1 Random Search

Random search (Bergstra, Bengio, 2012) is the most common hyperparameter search method

in the literature of deep learning. which consists of �nding a search space, randomly sam-

pling points within the space, and testing out various con�gurations of the neural network

regardless of the results from previous iterations. However, this method is useful for space

explorations and often results into good performance in several real-world problems, but

it does not o�er computationally e�cient solutions. Furthermore, random search does not

take into account the history of previous searches or surrounding search space, thus it does

not avoid the risk of being stuck in local minima points and does not necessarily obtain an

architecture that is close to the global minimum (Bergstra, Bengio, 2012).

Algorithm 5: Random Search

Input: Number of trials to test N
Initialize with random hyperparameter con�guration T
Initialize best cost, Cbest with cost of current T
TBest = T
n = 0
while n < N do

Calculate cost C given T
if C < CBest then

CBest = C
TBest = T

end

Sample new T
Increment n

end
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3.4.2 Bayesian Optimization

Bayesian optimization (Snoek et al., 2012) takes a more e�cient approach in order to �nd

the maximum or minimum of an objective function, unlike random search. The objective

function consists of the hyperparameters that minimizes the neural network loss function.

Since evaluating the objective function can be expensive, Bayesian optimization instead

approximates the objective function using a probabilistic model, called a surrogate function.

Most often, a Gaussian Process is used as the surrogate function, which is used to place a

prior on our objective function f .

p(f) = GP (f ;µ,K) (3.18)

Where µ is the mean function and K is a covariance function or kernel. A few initial

hyperparameters are �rst chosen and evaluated to provide the Gaussian Process with data,

which then provides a posterior probability distribution for potential f(x) given candidate

hyperparameters x.

p(f |Data) = GP (f ;µf |Data, Kf |Data) (3.19)

An acquisition function is used to determine where to evaluate the surrogate function.

The outcomes are used to update the surrogate function. The acquisition function used

in our work is set as the Upper Con�dence Bound. When this function is maximized, the

sampling of hyperparameters is determined.

aUCB(x; β) = µ(x) + βσ(x) (3.20)

Where β > 0 is a hyperparameter that de�nes how aggressively to explore the search space

and σ(x) is the marginal standard deviation of f(x). In this way, Bayesian Optimization

keeps tracks of previous searches and evaluates only the permutation of hyperparameters

which are likely to improve the model.

21



Using notation inspired from Frazier (2018), the Bayesian Optimization that we used in

our work is represented in Algorithm 5.

Algorithm 6: Bayesian Optimization

Input: Budget R, reduction proportion η
Initialize Gaussian process by calculating cost for randomly selected
hyperparameters T
while stopping criterion not met do

Update posterior probability distribution on cost using all available data
Use acquisition function to acquire T most likely to minimize cost
Calculate cost function given T
Increment n

end

3.4.3 Hyperband

Hyperband optimization algorithm has been recently presented by Li et al. (2018) for hy-

perparameter optimization. This method is appropriate for a variety of deep-learning and

kernel-based learning problems due to its accelerated speedup compared to the existing search

algorithms. It utilizes successive halving algorithms to allocate a budget to a set of hyper-

parameter con�guration, then samples an assortment of randomly chosen hyperparameters,

and �nally evaluates the results and discards the worst performing subset before continuing

training. This process is repeated until only one model is left. However, successive halving

su�ers from a resource allocation problem. Given a �nite budget B (for example, amount of

training time), it is unclear whether it should consider many con�gurations (large n) with a

small training time, or a smaller number of con�gurations (small n) with a longer average

training time. Therefore, Hyperband addresses this problem by considering several possible

values of n for a �xed B and performs a grid search over feasible values of n. Since Hyper-

band performs early stopping on worse performing selections of features, it is a much more

e�cient way to explore the large feature space.
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Algorithm 7: Hyperband Algorithm

Input: Budget R, reduction proportion η
Initialize smax =

⌊
logη(R)

⌋
, B = (smax + 1)R

for s{smax, smax − 1, ..., 0} do
n =

⌈
B
R

ηs

s+1

⌉
, r = Rη−s

// Begin successive halving with (n,r) inner loop
T = Randomly selected hyperparameter con�guration
for i{0, ..., s} do

ni = ⌊nη−i⌋
ri = rηi

Run algorithm and return associated costs C
T = Top k performing hyperparameters given (T,C, ⌊ni/η⌋)

end

end

In this study, η is set to 3. The resource budget consists of the maximum number of

iterations through algorithm and the maximum number of epochs. In our solution setting,

this is set to 5 iterations with 100 epochs.

3.5 Performance Measures

The most commonly-used performance measures in binary classi�cation tasks are calculated

from the confusion matrix (Table 3.1).

Table 3.1: Confusion matrix for binary classi�cation problems

Actual

Value

Predicted Value

PE Non-PE

PE True
Positive

False
Negative

Non-PE False
Positive

True
Negative

The numbers of true positives (TP) represents as the number of preeclamptic (PE) pa-
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tients correctly classi�ed while true Negatives (TN) is the number of non-preeclamptic (Non-

PE) patients classi�ed as Non-PE. The numbers of false positives (FP) is de�ned as the

Non-PE patients classi�ed as PE and false negatives (FN) represents PE patients classi�ed

as Non-PE.

The most common metric in classi�cation tasks is accuracy, which measures the total

correctly classi�ed samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.21)

However, this metric is very sensitive to the size of majority class (Non-PE) and is likely

to obtain a misleadingly high accuracy dominated by the majority class pattern while the

minority class samples are most likely misclassi�ed. Since accuracy alone does not take into

account the imbalanced nature of the problem, we relied on several additional metrics such

as precision, recall (sensitivity), speci�city, G-mean, and area under the curve (AUC).

Precision measures the amount of positive values that are actually positive, while recall

(or sensitivity) measures what percentage of the positive cases were captured by the model.

Speci�city refers to the percentage of the negative examples that are truly negative. Ad-

ditionally, we report G-mean, which takes into account both the speci�city and sensitivity,

as well as the area under the curve (AUC), which measures the balance between the cor-

rectly classi�ed positive samples (TP) and incorrectly classi�ed negative samples (FP). The

performance metrics are written as

Precision =
TP

TP + FP
(3.22)

Recall/Sensitivity =
TP

TP + FN
(3.23)

Specificity =
TN

TN + FP
(3.24)

G−mean =
√

Sensitivity ∗ Specificity (3.25)
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Chapter 4

Data

4.1 Texas Data Exploration

In this work, we used the 2013 Texas Inpatient Public Use Data File (PUDF), which includes

a combination of both demographic and clinical information for inpatients in the Texas

hospital system.

In particular, the PUDF contains demographic and clinical information of patients who

were discharged from state-licensed facilities and hence it was required to report their data

to the Texas Health Care Information Collection. Each record in the PUDF consists of a

series of diagnosis codes. These codes come from the International Classi�cation of Diseases,

Ninth revision, Clinical Modi�cation (ICD-9-CM)World Health Organization (1978). The

admitting, principal, and 24 other possible diagnoses were examined for each patient. The

records of women who delivered in-hospital were identi�ed by searching each of the selected

diagnosis �elds for an ICD-9-CM code beginning with V27 (Outcome of Delivery). Table 4.1

provides the statistics of demographic features used in our model. This set of features consists

of each patient's ethnicity (Hispanic and Non-Hispanic), race (White, African American,

Native American, or Other), insurance (Medicaid, Medicare, Self-pay or Charity, or Other),

age (in years), and whether or not the patient lives in a county in the border of Mexico. We
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note that the de�nition of border county comes from the Texas Department of State Health

Services (2021). The frequency (the number of patients) of each feature's values along with

percentage of the population inside the parenthesis are shown in this table.

Table 4.1: Patient Demographic Attributes in the Texas Dataset

Feature Value Frequency

Ethnicity Hispanic 150,031 (41.570%)
Non-Hispanic 207,494 (57.490%)

Race White 195,149 (54.100%)
African American 41,168 (11.400%)
Native American 1,214 (0.340%)

Asian or Paci�c Islander 13,139 (3.640%)
Other 109,395 (30.300%)

Border County Yes 44,989 (12.460%)
No 315,954 (87.540%)

Insurance Medicaid 185,010 (51.250%)
Medicare 2,543 (0.700%)

Self-pay or Charity 31,903 (8.84%)
Other 176,312 (48.840%)

Discharge Date Quarter 1 85,161(0.236%)
Quarter 2 85,768(0.238%)
Quarter 3 95,992(0.266%)
Quarter 4 94,022(0.260%)

Age (years) 10-14 505 (0.140%)
15-17 11,120 (3.08%)
18-19 24,317 (6.740%)
20-24 91,287 (25.290%)
25-29 101,109 (28.010%)
30-34 84,728 (23.470%)
35-39 38,760 (10.740%)
40-44 8,593 (2.380%)
45-49 484 (0.130%)
50-54 40 (0.010%)

Figure 4.1 shows that the majority of the patients are in the age range between 20 and

34. However the prevalence of preeclampsia across age groups shows a u-shaped distribution

with the most at-risk patients in the range 45-49, followed by patients of ages 40-44 and

10-14.
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Figure 4.1: Left: The Distribution of Age Groups in the Texas Dataset; Right: The Preva-
lence of Preeclampsia Among Each of these Age Groups

Table 4.2 shows the breakdown of ethnicity by race. The majority of the Hispanic pop-

ulation was identi�ed as either White or �Other Race.� Asians were the least likely to be

identi�ed as Hispanic, followed by African Americans. The most likely ethnicity to have

missing race information was the Non-Hispanic population. Additionally, if a patient had

missing race value, they were also more likely to have missing values in ethnicity attribute.

Table 4.2: Race and Ethnicity Characteristics in the Texas Dataset [Frequency (Percentage)]

Race Hispanic Non-Hispanic Missing Ethnicity

African American 1,125 (0.027%) 39,743 (0.965%) 300 (0.007%)

Native American 390 (0.321%) 805 (0.663%) 19 (0.016%)

Asian or Paci�c Islander 333 (0.025%) 12,676 (0.965%) 130 (0.010%)

White 59,500 (0.305%) 134,246 (0.688%) 1,403 (0.007%)

Other Race 88,505 (0.809%) 19,384 (0.177%) 1,506 (0.014%)

Missing Race 178 (0.203%) 640 (0.729%) 60 (0.068%)
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Figure 4.2: Breakdown of Ethnicity by Race in the Texas Dataset

The Texas dataset contained 360,943 women in total who delivered at hospital. Of those,

14,375 (3.98%) had preeclampsia. Table 4.3 breaks down the occurrence of preeclampsia by

race. Notably, African American Hispanic patients had a higher incidence of preeclampsia

with a frequency of 9.51% (as a proportion of population).

Table 4.3: Distribution of Preeclamptic Patient among Race/Ethnic Groups in the Texas
Dataset

Race Ethnicity Total Preeclamptic

White Hispanic 2461 (4.14%)
Non-Hispanic 5117 (3.81%)

African American Hispanic 107 (9.51%)
Non-Hispanic 2118 (5.33%)

Native American Hispanic 16 (4.10%)
Non-Hispanic 25 (3.10%)

Asian or Paci�c Islander Hispanic 4(1.20%)
Non-Hispanic 289 (2.28%)

Other Race Hispanic 3464 (3.91%)
Non-Hispanic 665 (3.431%)
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Figure 4.3: The Number of Patients of Each Race and Ethnicity Present in the Texas Dataset

Figure 4.4: The Rate of Preeclampsia per Race in the Texas Dataset

According to this dataset, the preeclamptic women were more likely to have prolonged

lengths of stay. The majority of women without preeclampsia stayed in the hospital only

2.5 days on average, while the women with preeclampsia stayed longer in the hospital, 3 to

4 days on average.
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Figure 4.5: Distribution of Length of Stay - Left: Women without Preeclampsia; Right:
Women with Preeclampsia

When the length of stay is broken down by race, we observed that African American

patients (both Hispanic and non-Hispanic) had longer average stays in the hospital. African

American Hispanic patients with preeclampsia stayed almost a full day longer on average

than African American Non-Hispanic, and more than two days longer than White Hispanic

patients.
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Table 4.4: Length of stay (days) by race/ethnicity for patients without preeclampsia. We report the average (Avg), standard
deviation (SD), minimum (min), �rst quartile (Q1), median, third quartile (Q3), and maximum (max) values.

Race Avg SD Min Q1 Median Q3 Max

African American Hispanic 3.2 3.8 1.0 2.0 3.0 3.0 62.0
African American Non-Hispanic 2.8 3.1 1.0 2.0 2.0 3.0 113.0
Asian/Paci�c Islander Hispanic 2.2 0.9 1.0 2.0 2.0 3.0 7.0
Asian/Paci�c Islander Non-Hispanic 2.7 2.8 1.0 2.0 2.0 3.0 96.0
Native American Hispanic 2.7 1.9 1.0 2.0 2.0 3.0 19.0
Native American Non-Hispanic 2.6 1.6 1.0 2.0 2.0 3.0 26.0
Other Race Hispanic 2.4 2.1 1.0 2.0 2.0 3.0 106.0
Other Race Non-Hispanic 2.5 1.9 1.0 2.0 2.0 3.0 61.0
White Hispanic 2.2 1.9 1.0 2.0 2.0 3.0 95.0
White Non-Hispanic 2.6 2.9 1.0 2.0 2.0 3.0 365.0

Table 4.5: Length of stay (days) by race/ethnicity for patients with preeclampsia. We report the average (Avg), standard
deviation (SD), minimum (min), �rst quartile (Q1), median, third quartile (Q3), and maximum (max) values.

Race Avg SD Min Q1 Median Q3 Max

African American Hispanic 5.8 4.8 2.0 3.0 4.0 6.0 37.0
African American Non-Hispanic 5.0 6.0 1.0 3.0 4.0 5.0 107.0
Asian/Paci�c Islander Hispanic 3.5 1.7 2.0 2.8 3.0 3.8 6.0
Asian/Paci�c Islander Non-Hispanic 5.0 5.7 1.0 3.0 3.0 5.0 58.0
Native American Hispanic 4.3 3.7 1.0 2.0 3.0 4.3 13.0
Native American Non-Hispanic 4.0 3.8 1.0 2.0 3.0 4.0 21.0
Other Race Hispanic 4.1 4.4 1.0 2.0 3.0 4.0 93.0
Other Race Non-Hispanic 4.2 3.9 1.0 3.0 3.0 4.0 37.0
White Hispanic 3.8 3.0 1.0 2.0 3.0 4.0 44.0
White Non-Hispanic 4.6 4.7 1.0 3.0 3.0 5.0 105.0
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4.2 Oklahoma Data Exploration

The next datasets we used are the 2017 and 2018 Oklahoma Inpatient PUDF. Unlike the 2013

Texas dataset, this dataset has employed the updated ICD-10-CM diagnosis codes instead of

the ICD-9-CM codesWorld Health Organization (2004). The women who delivered in hospi-

tal are �ltered based on the presence of codes beginning with Z37 (Delivery outcome). These

datasets contained a total of 84,632 women who delivered at hospital, of which 4721 (4.48%)

had preeclampsia. Table 4.6 shows the demographic attributes of the Oklahoma dataset.

The frequency (the number of patients) of each feature's values along with percentage of

the population inside the parenthesis are shown in this table. Unlike the Texas dataset, no

data on ethnicity was collected for each patient, but there are additional attributes such as

marital status and month of admission. There were no records indicating the delivery date

for each patient in this data. So, we used the month of admission to estimate the month of

delivery for each patient.

Table 4.6: Patient Demographic Attributes in the Oklahoma Dataset

Feature Value Frequency Feature Value Frequency

Race White 55,815 (65.950%) Month of Delivery Jan 7,148 (8.446%)
African American 8,510 (10.055%) Feb 6,418 (7.583%)
Native American 5,443 (6.431%) Mar 6,947 (8.208%)

Other 14,864 (17.563%) Apr 6,537 (7.724%)
Marital Status Married 37,038 (43.764%) May 7,242 (8.557%)

Unmarried 32,579 (38.495%) Jun 7,031 (8.308%)
Age group 10-14 71 (0.0838%) Jul 7299 (8.624%)

15-19 6,192 (7.316%) Aug 7,699 (9.097%)
20-24 21,831 (25.795%) Sep 7,183 (8.487%)
25-29 26,708 (31.559%) Oct 7,371 (8.709%)
30-34 20,115 (23.768%) Nov 6,872 ( 8.120%)
35-39 8,164 (9.646%) Dec 6,885 (8.135%)
40-44 1,458 (1.723%)
45-49 84 (0.099%)
50-54 9 (0.011%)

Insurance Medicaid 42,192 (0.499%)
Medicare 450 (0.005%)
Self-Pay 916 (0.011%)

Other Insurance 41,071 (0.485%)
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Figure 4.6 shows the distribution of patients' age groups and the prevalence of preeclamp-

sia among them. Similar to the Texas dataset, most of the patients were in the age range of

20-34. The prevalence represents a U-shaped curve, with the youngest and oldest patients

being as the most at-risk patients.

Figure 4.6: Left: The distribution of age groups in the Oklahoma dataset; Right: The
prevalence of Preeclampsia among each of these age groups

Table 4.7 shows the frequency of preeclampsia between each racial groups in the Okla-

homa dataset, while �gure 4.8 shows the absolute number of patients in each racial category

and their respective prevalence of preeclampsia. Despite White patients contributing the

overwhelming majority of patients in the dataset, we observed that Native Americans and

African Americans have the highest prevalence. In particular, Native Americans are almost

twice the �Other� race.

Table 4.7: Rate of Preeclampsia by Race in the Oklahoma Dataset

Race Total Preeclamptic

White 3008 (5.39%)
African American 551 (6.57%)
Native American 446 (8.19%)
Other Race 716 (4.82%)
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Figure 4.7: The Number of Patients within Each Race in the Oklahoma Dataset

Figure 4.8: The Number of Preeclamptic Patients Within Each Race in the Oklahoma
Dataset

Similar to the Texas dataset, the average length of stay is longer for patients with

preeclampsia compared to those without preeclampsia. The average length of stay for those

without preeclampsia is 2.4 days while for those with preeclampsia, the average length of

stay is 4.0 days.
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Figure 4.9: Distribution of Length of Stay - Left: Women without Preeclampsia; Right:
Women with Preeclampsia

Th length of stay is also varied greatly among patients depending on their race. We

observed that the African and Native Americans stay longer in the hospital in contrast to

their white and other racial counterparts.

Table 4.8: Length of stay by race for patients without preeclampsia. We report the average
(Avg), standard deviation (SD), minimum (min), �rst quartile (Q1), median, third quartile
(Q3), and maximum (max) values.

Race Avg SD Min Q1 Median Q3 Max

African American 2.6 2.7 1.0 2.0 2.0 3.0 96.0
Native American 2.6 2.8 1.0 2.0 2.f0 3.0 81.0
Other/Unknown 2.4 1.9 1.0 2.0 2.0 3.0 60.0
White 2.4 2.5 1.0 2.0 2.0 3.0 367.0

Table 4.9: Length of stay by race for patients with preeclampsia. We report the average
(Avg), standard deviation (SD), minimum (min), �rst quartile (Q1), median, third quartile
(Q3), and maximum (max) values.

Race Avg SD Min Q1 Median Q3 Max

African American 4.2 3.3 1.0 3.0 3.0 5.0 35.0
Native American 4.5 4.4 1.0 3.0 3.0 5.0 57.0
Other/Unknown 3.8 3.7 1.0 2.0 3.0 4.0 57.0
White 4.0 3.9 1.0 2.0 3.0 4.0 84.0
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4.3 Clinical Features and Feature Selection

The initial set of clinical features is selected based on the literature as well as our clinical

collaborator opinion, Dr. Zuber Mulla. We modelled each clinical feature of each patient as

a binary feature based on the presence of corresponding ICD-9-CM/ICD-10-CM codes in any

of the diagnosis columns. So, we set the value of the feature equal to 1 if the corresponding

ICD-9-CM/ICD-10-CM codes are present in the diagnosis columns otherwise the value would

be set to zero. Table 4.10 shows the total samples and percentage of the population which

contains the selected clinical features. The overwhelming majority of patients do not have

many of the clinical diagnoses which leads to an incredibly sparse dataset.

Table 4.10: Patient Clinical Characteristics in the Texas and Oklahoma Datasets

Feature
Frequency

Texas Oklahoma

Obesity 19,208 (5.322%) 7,136 (8.432%)
PRA∗ 615 (0.170%) 32 (0.038%)
Cocaine dependence 0 (0.000%) 67 (0.079%)
Amphetamine dependence 0 (0.000%) 962 (1.137%)
Gestational diabetes mellitus 21,658 (6.000%) 5,025 (5.938%)
Pre-existing diabetes mellitus 4,065 (1.126%) 1,159 (1.370%)
Anxiety 2,709 (0.751%) 3,148 (3.720%)
Anemia NOS 29,280 (8.112%) 11 (0.013%)
Iron de�ciency anemia 3,937 (1.091%) 1246 (1.472%)
Other anemia 94 (0.03%) 12,784 (15.105%)
Depression 3,157 (0.875%) 2,752 (3.252%)
Primigravida∗ 4,969 (1.377%) 1796 (2.122%)
Hemorrhagic Disorders∗ 6 (0.002%) 0 (0.0%)
Systemic lupus erythematosus 366 (0.101%) 141 (0.167%)
Lupus erythematosus 20 (0.006%) 35 (0.041%)
Autoimmune Disease∗ 18 (0.005%) 9 (0.012%)
Pure hypercholesterolemia 108 (0.030%) 25 (0.030%)
Unspeci�ed vitamin D de�ciency 227 (0.063%) 189 (0.223%)
Proteinuria 21 (0.006%) 166 (0.196%)
Tobacco use disorder 6,140 (1.701%) -
History of tobacco use 3,226 (0.894%) -
Current Smoker - 5,438 (6.426%)
Hypertension 2,424 (0.672%) 10276 (12.142%)
Continued on next page
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Table 4.10 � Continued from previous page
Hypertensive heart disease 16 (0.004%) 5 (0.006%)
Chronic venous hypertension 1 (0.0003%) 1 (0.001%)
Unspeci�ed renal disease∗ 644 (0.178%) 546 (0.645%)
Chronic kidney disease 173 (0.048%) 73 (0.086%)
Hypertensive kidney disease 96 (0.027%) 24 (0.028%)
Hypertensive heart and CKD∗ 6 (0.002%) 2 (0.002%)
Renal failure not elsewhere classi�ed 6 (0.002%) 0 (0.000%)
Infections of GU∗ tract in pregnancy 3299 (0.914%) 618 (0.730%)
UTI∗ 1838 (0.509%) 175 (0.207%)
History of Trophoblastic Disease 0 (0.000%) 390 (0.461%)
Supervision of pregnancy, trophoblastic∗ 28 (0.008%) 11 (0.013%)
Thrombophilia 1,073 (0.297%) 271 (0.320%)
History of premature delivery 180 (0.050%) 149 (0.176%)
Hemorrhage in early pregnancy 216 (0.060%) 22 (0.026%)
Congenital abnormalities of the uterus∗ 1,184 (0.328%) 17,082 (20.184%)
Multiple gestations 5,871 (1.627%) 1,393 (1.646%)
Fetal growth restriction 3 (0.001%) 1 (0.001%)
Asthma 7,124 (1.974%) 3,547 (4.1911%)
Obstructive sleep apnea 106 (0.029%) 58 (0.0685%)
Other cardiovascular diseases∗ 1,372 (0.380%) 46 (0.0544%)
Sickle cell disease 75 (0.021%) 284 (0.3356%)
Thyroid disease 8,880 (2.460%) 2,750 (3.249%)
Inadequate prenatal care 8,959 (2.482%) 767 (0.906%)
Periodontal disease 35 (0.010%) 2 (0.002%)
Preeclampsia/Eclampsia 14,375 (3.983%) 4,721 (5.578%)
*PRA:Pregnancy resulting from assisted reproductive technology, UTI: Urinary Tract Infection, Unspec-
i�ed Renal Disease: Unspeci�ed renal disease in pregnancy without mention of hypertension, Supervision
of pregnancy, trophoblastic: Supervision of high-risk pregnancy with history of trophoblastic disease,
Congenital Abnormalities of the Uterus: Congenital abnormalities of the uterus including those compli-
cating pregnancy, childbirth, or the puerperium, Other Cardiovascular Diseases: Other cardiovascular
disease complicating pregnancy and childbirth, or the puerperium, CKD: Chronic Kidney Disease, GU:
Genitourinary, Primigravida: Primigravida at the extremes of maternal age,Hemorrhagic Disorders: Hem-
orrhagic Disorders due to intrinsic circulating antibodies, Autoimmune Disease: Autoimmune Disease not
elsewhere classi�ed

Table 4.11 shows the total number of patients with preeclampsia/eclampsia in the dataset.

We observed that around 4% of the Texas patients and 5% of the Oklahoma patients devel-

oped preeclampsia/eclampsia, meaning all datasets are highly imbalanced.

37



Table 4.11: Preeclampsia/Eclampsia and their Frequency Among Patients under Study

Texas Oklahoma

Preeclamptic 14,376 (3.98%) 4,721 (5.58%)
Non-Preeclamptic 346,567 (96.02%) 79,911 (94.42%)

The ranking of the top 20 features of the Texas dataset is given by the Chi-squared feature

selection which is shown in Table 4.12. There is overlap in many of the features, especially

Hypertension, which is the highest ranking feature in the Full and African American datasets

and second highest in the Native American. Additionally obesity and pre-existing diabetes

appear as the second and third most important features respectively in the Full and African

American datasets. However, there are several features in the sub-populations that are not

seen as important as in the Full dataset, such as renal disease, thyroid disease, anemia, etc.
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Table 4.12: Feature rankings derived by the Chi-squared scores in the Texas dataset in
general (full dataset) as well as among only African American and only Native American
populations. Each column consists of feature ranking based on their importance with the
associated Chi-squared scores in parenthesis.

Features Full
African

American

Native

American

Hypertension 1 (22,024.9) 1 (3733.5) 2 (24.6)
Obesity 2 (1,292.5) 2 (182.4) -
Pre-existing Diabetes Mellitus 3 (1180.0) 3 (133.6) 6 (5.5)
Multiple Gestations 4 (741.0) 5 (64.2) 5 (8.6)
Gestation Diabetes Mellitus 5 (528.8) 4 (65.5) 12 (1.3)
UTI 6 (237.1) 10 (30.8) -
Obstructive Sleep Apnea 7 (224.7) 11 (23.4) 4 (13.0)
Infections of Genitourinary Tract in Pregnancy 8 (222.0) 9 (37.9) 20 (0.3)
Chronic Kidney Disease 9 (215.2) 6 (57.3) -
Hypertensive Kidney Disease 10 (207.8) - -
Ages 40+ 11 (197.4) 7 (47.9) -
Primigravida∗ 12 (149.4) 18 (11.9) 18 (0.3)
African American Non-Hispanic 13 (144.4) - -
Anemia NOS 14 (122.9) - -
Other cardiovascular diseases∗ 15 (122.6) 8 (47.2) -
Asthma 16 (96.6) 12 (23.0) -
Anxiety 17 (86.3) - 8 (4.1)
African American Hispanic 18 (82.6) - -
Asian/Pacifc Islander Non-Hispanic 19 (81.0) - -
Ages 10-19 20 (66.1) - 10 (1.9)
Hispanic - 13 (22.8) -
Unspeci�ed Renal Disease∗ - 14 (22.8) -
Thyroid Disease - 15 (18.1) 8 (4.1)
Renal Failure∗ - 16 (17.4) -
Hypertensive Heart and Chronic Kidney Disease - 17 (17.4) -
Ages 20-29 - 19 (10.7) 11 (1.6)
Iron De�ciency Anemia - 20 (8.8) 3 (13.5)
Pure Hypercholesterolemia - - 1 (27.9)
On Border - - 9 (2.5)
Inadequate Prenatal Care - - 14 (0.8)
Tobacco Use Disorder - - 15 (0.7)
Ages 30-39 - - 16 (0.7)
Discharge: 2013Q1 - - 17 (0.3)
Self-Pay or Charity - - 19 (0.3)

*Unspeci�ed Renal Disease: Unspeci�ed Renal Disease without mention of hypertension, Primigravida:
Primagravida at the extremes of maternal age, Other Cardiovascular Disease: Other cardiovascular
diseases complicating pregnancy and childbirth or the puerperium, Renal Failure: Renal failure not
elsewhere classi�ed
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Figure 4.10: The Feature Ranking for the Full Texas Dataset

Figure 4.11: The Feature Ranking for the Texas African American Dataset
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Figure 4.12: The Feature Ranking for the Texas Native American Dataset

The ranking of the top 20 features of the Oklahoma dataset is given by the Chi-squared

feature selection which is shown in table 4.13. The Chi-squared scores are given in the

parenthesis. Although there are di�erences in which features are chosen among the various

groups, there is also a considerable amount of overlap. For example, Obesity is the highest,

second highest, and third highest ranked feature in the full, only African American, and only

Native American populations datasets respectively. In the African American dataset, there

are 7 features that are indicated as important that do not appear in the full population's

most important features. These are primagravida, Month of Delivery, Ages 20-29, Ages

30-39, Medicare, Unspeci�ed Vitamin D De�ciency, and History of Premature Delivery. In

the Native American dataset, there are even more speci�c features that do not overlap with

the general population. These features are primagrivada at the extremes of maternal age,

ages 20-29, thyroid disease, ages 30-39, self-pay, medicare, unspeci�ed vitamin D de�ciency,

history of premature delivery, and iron de�ciency anemia.
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Table 4.13: Feature rankings derived by the Chi-squared scores in the Oklahoma dataset in
general (full dataset) as well as among only African American and only Native American
populations. Each column consists of feature ranking based on their importance with the
associated Chi-squared scores in parenthesis.

Features Full
African

American

Native

American

Obesity 1 (426.024) 2 (55.110) 3 (16.946)
Pre-existing Diabetes Mellitus 2 (289.184) 1 (65.243) 5 (7.258)
Multiple Gestations 3 (201.018) 7 (6.913) 1 (20.120)
Proteinuria 4 (153.201) 4 (14.106) 2 (16.234)
Native American 5 (66.940) - -
Gestational Diabetes Mellitus 6 (65.720) 3 (26.303) 16 (1.890)
Unspeci�ed Renal Disease∗ 7 (63.480) 12 (4.611) 9 (5.652)
Infections of Genitourinary Tract in Pregnancy 8 (44.670) 6 (9.790) 14 (2.562)
Anxiety 9 (42.012) - 15 (1.990)
Other Anemia 10 (35.197) - 18 (1.286)
Hypertension 11 (33.132) - -
Ages 10-19 12 (26.343) 11 (4.814)) -
Ages 40+ 13 (22.588) 5 (10.949) -
Depression 14 (19.192) - 7 (5.853)
Amphetamine Dependence 15 (18.947) 18 (1.451) 8 (5.843)
Other/Unknown Race 16 (18.136) - -
Marital Status 17 (11.625) - 4 (7.543)
African American 18 (10.984) - -
Iron De�ciency Anemia 19 (10.763) 19 (1.372) -
Self-Pay 20 (8.614) 14 (2.380) -
Hypertensive Kidney Disease - - 6 (7.155)
Ages 20-29 - 8 (6.751) -
Primigravida∗ - 9 (5.706) 11 (3.393)
Month of Delivery - 10 (4.868) -
Current Smoker - - 17 (1.536)
Cocaine Dependence - - 18 (1.263)
Ages 30-39 - 13 (4.611) -
Medicare - 15 (2.022) -
Unspeci�ed Vitamin D De�ciency - 16 (1.962) -
History of Premature Delivery - 17 (1.855) 20 (1.107)
UTI - - 12 (3.092)
Intrauterine Death - - 13 (2.884)

*Unspeci�ed Renal Disease: Unspeci�ed Renal Disease without mention of hypertension, Primi-
gravida: Primagravida at the extremes of maternal age
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Figure 4.13: The Feature Ranking for the Full Oklahoma Dataset

Figure 4.14: The Feature Ranking for the Oklahoma African American Dataset
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Figure 4.15: The Feature Ranking for the Oklahoma Native American Dataset

4.4 Missing Data

Table 4.14 shows the list of features with missing values with their associated missing rate in

the Texas dataset. The most frequently missing feature is the County information, followed

by the patients' ethnicity and race, followed by what kind of insurance is used by patients.

We note that there are no missing variables in the age category.

Table 4.14: The List of Features with Missing Values in the Texas Dataset

Feature Missing Ratio

Race 878 (0.243%)
Ethnicity 3,418 (0.947%)
County 9,018 (2.498 %)
Insurance 149 (0.041%)

Table 4.15 shows the amount missing features in the Oklahoma dataset. The most

commonly missing feature in this dataset is marital status, with a total of 15,015 missing

values. The next two features are county and insurance type each in the single digits.
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Table 4.15: The List of Features with Missing Values in the Oklahoma Dataset

Feature Missing Ratio

Race 0 (0.000%)
County 3 (0.004%)
Marital Status 15,015 (17.742%)
Month of Delivery 0 (0.000%)
Age 0 (0.000%)
Insurance 3 (0.004%)

In order handle the missing values, we are required to determine if there is a pattern

behind in the missing values. Missing data can be categorized in three groups: missing com-

pletely at random (MCAR), missing at random (MAR), or missing not at random (MNAR)

(Rubin, 1976). If the data is MCAR, there is no pattern or reason behind why a value is

missing; the data does not depend on the observed or missing values. In this case, it is

usually safe to drop the missing values if there are few of them. If the data is MAR, then

the data is missing based on a pattern in the observed values, and dropping them would

remove information from the model. If the data is MNAR, then the data is missing based

on a pattern within the missing data.

In order to determine how to handle the missing values, we �rst performed Little's test

to check whether data is missing completely at random, or MCAR (Little, 1988). This test

checks the likelihood of data being MCAR. Table 4.16 shows the results of Little's test on

both Texas and Oklahoma datasets.

Table 4.16: MCAR results

Dataset Chi-Squared Degrees of Freedom p-value

Texas 16058.77 61 ≪ 0.0000
Oklahoma 11482 17 ≪ 0.0000

Since these results show very small p-values at 5% the signi�cance level. So, the null

hypothesis of MCAR (Missing Completely at Random) is rejected at the 5% signi�cance

level. Since data is not MCAR, we can perform imputation algorithms to estimate missing

values. We selected Multiple Imputation technique (Buuran van, Groothuis-Oudshoorn,
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2010) to estimate missing values. This imputation method is performed in a �round robin

fashion�, which �rst chooses the feature with the least missing values as a target variable

and then builds a predictive model using all the other non-missing features. This process

is repeated on the next least missing feature until all missing values are estimated. In this

work, we used Bayesian Ridge Regression (Tipping, 2001) as the model for imputation.
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Chapter 5

Results

In this section, we present results of DNN and the proposed CSDNN algorithms on Okla-

homa and Texas datasets. The performance of these algorithms are compared based on the

evaluation measures described in Chapter 3. We implement both DNN and CSDNN algo-

rithms in Python version 3.6 with Keras (Chollet, others, 2015) and TensorFlow libraries

(Martín et al., 2015). Statistical testing was performed using SciPy (Virtanen et al., 2020).

All experiments and data processing are performed on an AMD Ryzen 5 3.6 GHz 6-Core

processor and 16GB of Ram in a 64-bit platform. Our source code is available at the online

repository mentioned in Appendix A. We used Multiple Imputation technique (Buuran van,

Groothuis-Oudshoorn, 2010) to estimate missing values. For the Multiple Imputation imple-

mentation, we used Bayesian Ridge Regression (Tipping, 2001) within 5-fold cross-validation.

In all models, the 20% dropout rate was applied in order to reduce over�tting.

5.1 CSDNN architecture

The optimal hyperparameters of DNN and CSDNN models are determined using Random

Search (RS), Hyperband (HB), and Bayesian optimization (BO) model selection approaches

each time before DNN and CSDNN training. The initial range of each hyperparameter is

summarized in Table 5.1 for the model selection algorithms. These hyperparamters are batch
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size, the number of epochs, the number of hidden layers (h), the number of neurons in hidden

layers (k), and the learning rate (LR). In general, model selection algorithm is performed on

each dataset using 10-fold cross validation repeated 5 times in order to increase robustness of

results, however when looking at the smaller sub-populations datasets cross validation was

repeated 35 times to increase the robustness of the results. The best set of hyperparameters

is selected based on the model selection that yields the highest G-mean. Tables 5.2-5.7

show the best architecture of the DNN and CSDNN with WCE and FL functions, plus the

hybrid models that additionally balanced the batches with oversampling with replacement.

We observe that Hyperband model selection both DNN and CSDNN performs well on all

datasets consistently for both DNN and CSDNNs. We note that in the following tables,

Tanh is abbreviated as TH and ReLU is abbreviated as RL.

Table 5.1: Summary of hyperparameter ranges for DNN and CSDNN, where k is the number
of hidden units in a layer, h is the number of hidden layers, and LR is the learning rate.

Batch size Epochs k h LR

Range 64-8096 10-200 32-64 2-8 0.01-0.0001

Hyperband most consistently found the best architecture, with it's �nal selections making

up 22 of the models examined. Most models consisted of only 3-4 layers, with the largest in

terms of layers belonging to the Texas Full dataset using CE loss with 8 layers. Most models

used larger learning rates of 0.001, but a few of the smaller datasets (Texas Native, Oklahoma

African, Oklahoma Native) had smaller learning rates chosen, particularly in the CE loss

function and in the cases where the batches were balanced with random oversampling.
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Table 5.2: DNN (with CE loss) architecture of Texas and Oklahoma PUDF datasets. We note that hi and ai refer to the
number of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8, a8 Opt LR Batch Tuner

TX Full 30, RL 30, TH 60, TH 60, RL 60, TH 45, RL 60, TH 30, RL NAdam 0.001 8192 HB
TX AA 60, TH 30, RL 45, RL - - - - - RMSProp 0.001 8192 HB
TX NA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB
OK Full 60, TH 60, RL 41, TH - - - - - RMSProp 0.001 8192 HB
OK AA 30, TH 60, RL 45, TH 45, RL 41, TH - - - SGD 0.0001 8192 HB
OK NA 45, TH 36, TH 30, TH - - - - - Adam 0.0001 8192 RA

Table 5.3: CSDNN (with WCE loss) architecture of Texas and Oklahoma PUDF datasets. We note that hi and ai refer to the
number of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8, a8 Opt LR Batch Tuner

TX Full 45, TH 30, RL 60, TH 30, TH TH 30, TH 60, TH 30, TH - Adam 0.001 8192 HB
TX AA 36, RL 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB
TX NA 41, RL 30, RL 36, TH 45, TH - - - - RMSprop 0.001 8192 RA
OK Full 30, TH 60, TH 41, TH - - - - - RMSprop 0.001 8192 HB
OK AA 60, RL 60, TH 60, TH 30, TH - - - - NAdam 0.001 8192 RA
OK NA 60, TH 36, TH 36, TH 30, TH - - - - NAdam 0.001 8192 BA

Table 5.4: CSDNN (with FL) architecture of Texas and Oklahoma PUDF datasets. We note that hi and ai refer to the number
of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8, a8 Opt LR Batch Tuner α γ

TX Full 60, TH 30, RL 45, RL - - - - - RMSProp 0.001 8192 HB 0.97 1.25
TX AA 60, TH 30, RL 45, RL - - - - - RMSProp 0.001 8192 HB 0.96 1.75
TX NA 60, TH 30, RL 45, RL - - - - - NAdam 0.001 8192 HB 0.97 1
OK Full 60, TH 30, RL 45, RL - - - - - RMSProp 0.001 8192 HB 0.95 1.0
OK AA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB 0.92 0.25
OK NA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB 0.94 0.25
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Table 5.5: CSDNN (with FL and Balanced Batches) architecture of Texas and Oklahoma PUDF datasets. We note that hi and
ai refer to the number of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8 Opt LR Batch Tuner α γ

TX Full 60, RL 60, TH 41, TH - - - - - Adam 0.001 8192 BA 0.5 1.75
TX AA 60, RL 60, TH 60, TH - - - - - Adam 0.001 8192 HB 0.5 1.25
TX NA 60, TH 36, TH 41, RL 41, RL 36, TH 30, TH - - SGD 0.0001 2048 RA 0.5 1.25
OK Full 60, TH 60, TH - - - - - - Adam 0.001 8192 BA 0.5 1.25
OK AA 60, TH 60, RL 45, RL 30, TH - - - - Adam 0.0001 1024 HB 0.5 1.25
OK NA 30, TH 30, RL 45, RL 36, RL 30, RL 41, TH - - NAdam 0.001 1024 HB 0.5 1.25

Table 5.6: CSDNN (with WCE and Balanced Batches) architecture of Texas and Oklahoma PUDF datasets. We note that hi

and ai refer to the number of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8, a8 Opt LR Batch Tuner

TX Full 41, TH 60, RL 41, RL 30, RL 30, RL - - - Adam 0.001 8192 BA
TX AA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB
TX NA 41, RL 30, RL 36, TH 45, TH - - - - RMSprop 0.00001 2048 RA
OK Full 30, RL 30, TH 60, TH 45, RL 30, RL 60, RL - - RMSprop 0.001 1024 BA
OK AA 30, TH 30, TH 45, RL 60, TH - - - - Adam 0.0001 1024 HB
OK NA 30, TH 60, RL - - - - - - SGD 0.00001 1024 HB

Table 5.7: DNN (with Balanced Batches) architecture of Texas and Oklahoma PUDF datasets. We note that hi and ai refer to
the number of neurons and activation function in the hidden layer i, respectively, where i = 1, 2, 3, ..., 8.

Dataset h1, a1 h2, a2 h3, a3 h4, a4 h5, a5 h6, a6 h7, a7 h8 Opt LR Batch Tuner

TX Full 60, RL 36, RL - - - - - - Adam 0.001 8192 HB
TX AA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 8192 HB
TX NA 60, TH 30, RL 45, RL - - - - - RMSprop 0.001 2048 HB
OK Full 60, TH 60, TH 60, TH 60, TH - - - - Adam 0.001 1024 BA
OK AA 30, RL 41, TH - - - - - - RMSprRLop 0.0001 1024 HB
OK NA 30, TH 41, TH 36, TH 45, TH 41, RL 36, TH 45, TH 41, TH RMSprop 8192 RA
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5.2 Predictive Accuracy of the CSDNN on population-

speci�c features

Most of the previously examined studies have built their models using a general population.

This works well for the populations that make up a large proportion of the dataset, but less

well for smaller groups like racial and ethnic minorities. This di�erence can have clinical

consequences. For example, imagine an African American woman going into a clinic where

one of these models is employed to analyse her risk of getting preeclampsia. Looking at

�gure 5.1, this would correspond to Model 1 � she would be getting a recommendation

that was built for populations she is not a member of. Moreover, the model that is built for

the woman was more than likely made using features that had been previously indicated as

signi�cant in the literature. As mentioned previously however, many studies have not been

trained on race dis-aggregated data, meaning they su�er from the same issue of �tting to the

majority group, which would correspond to the use of Model 2 in �gure 5.1. This di�erence

can be seen in the previous chapter, where anxiety was indicated as signi�cant in the general

population, but not in the African Americans. Again, the same kind of error would occur

- the symptoms she is being tested for may or may not be applicable to her subpopulation.

A potentially better solution then would be to use a model that is trained on her speci�c

subpopulation using features that have been indicated as important to her subpopulation.

This refers to Model 3 �gure 5.1.
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Figure 5.1: The three models tested in this section. Model 1 refers to models that were
trained on the full dataset using the most signi�cant features population in general. Model
2 refers to the models that were trained using only the patients of the subpopulation, but
still using the features of the general population. Model 3 refers to the models that were
trained using only the patients in the subpopulation and using only the features signi�cant
to that speci�c population. AA: African American, NA:Native American, A/PI: Asian or
Paci�c Islander, OTH: Other, WH: White

In order to test these scenarios, we built 3 unique models: One model that was trained

on the full population and used the top 20 features of that population; one trained on the

subpopulation only but used the top 20 features from the general population; and one trained

on the subpopulation only and used the top 20 features from that speci�c subpopulation.

The results are reported in Tables 5.8 and Figures 5.2-5.3. In most cases, the models

built with population speci�c features performs better in terms of G-mean and had a smaller

spread of results than with the models trained on the full dataset with the exception of the

Texas Native population.
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Table 5.8: Results of general vs. speci�c feature selection in Texas NA and AA populations.
The highest sensitivity, speci�city, G-mean, AUC, precision, and accuracy values between
general and speci�c feature selection are denoted in bold.

Dataset Accuracy AUC G-mean Precision Recall Speci�city

Texas AA - General 0.788 0.654 0.610 0.121 0.461 0.807

Texas AA - Speci�c 0.748 0.667 0.624 0.110 0.512 0.762

Texas AA - Full Data 0.619 0.670 0.622 0.086 0.625 0.619

Texas NA - General 0.706 0.559 0.491 0.052 0.423 0.716

Texas NA - Speci�c 0.544 0.571 0.535 0.044 0.582 0.543

Texas NA - Full Data 0.699 0.611 0.575 0.061 0.533 0.706

Oklahoma AA - General 0.509 0.635 0.477 0.119 0.679 0.494

Oklahoma AA - Speci�c 0.643 0.619 0.578 0.124 0.529 0.653

Oklahoma AA - Full Data 0.346 0.599 0.451 0.073 0.757 0.319

Oklahoma NA - General 0.622 0.593 0.552 0.085 0.491 0.631

Oklahoma NA - Speci�c 0.649 0.595 0.553 0.088 0.471 0.661

Oklahoma NA - Full Data 0.364 0.656 0.459 0.098 0.792 0.327

a) African American dataset b) Native American dataset

Figure 5.2: G-means of the models using features selected from the population-speci�c fea-
ture set vs. general vs. full population feature set for Texas data - Left: African American
dataset; Right: Native American dataset

Figures 5.3 shows the G-means of of the African American and Native American datasets
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when general population and population speci�c features are applied. For the Native Ameri-

can population, there is a slight improvement in the mean G-mean, but a larger distribution.

a) African American dataset b) Native American dataset

Figure 5.3: G-means of the models using features selected from the population-speci�c fea-
ture set vs. general population feature set for Oklahoma data - Left: African American
dataset; Right: Native American dataset

5.3 Comparative Analysis of CSDNN with FL versus pa-

rameters γ and α

Since preeclampsia prediction is a highly imbalanced problem, most machine learning model's

loss functions will be overwhelmed by the large number of negative samples - most of which

will likely be easy to predict, since the majority of women in each dataset are healthy and

do not su�er from any of the health conditions examined. Focal loss's advantage then is not

only in weighting the samples according to class, but also by down-weighting the negative

samples that are easy to predict, reducing their impact on the loss function. This can be

demonstrated by the �gures shown below.

Inspired by the original paper by Lin et al. (2017), Figs. 5.4 and 5.5 are created by

training CSDNN model with an α of 0.5. The test data samples are split into the positive

and negative samples, and the loss is calculated for each samples using di�erent values
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of γ. The plots are then created by ordering the normalized loss from lowest to highest

and projecting the cumulative distribution function (CDF) for both positive and negative

classes for various γ (Figs. 5.4 and 5.5). The e�ect of γ on positive samples (cases with

preeclampsia) is not as noticeable, however the e�ect of γ on negative samples (cases without

preeclampsia) is substantially di�erent. Both positive and negative CFDs look relatively

analogous when γ = 0. We observe that increasing the γ has a large e�ect on down-weighting

the easy negative samples, as FL focuses learning on hard negative examples. The results

are consistent with earlier literature on FL Lin et al. (2017).

a) positive (preeclamptic) samples b) negative (non-preeclamptic) samples

Figure 5.4: Cumulative distribution functions of the normalized loss for positive and negative
samples for various γ values for Texas data
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a) Positive (preeclamptic) samples b) Negative (non-preeclamptic) samples

Figure 5.5: Cumulative distribution functions of the normalized loss for positive and negative
samples for various γ values for Oklahoma data

Tables 5.9, and 5.10, which used the best performing α, show that an increase of γ would

highly a�ect the speci�city and recall. The higher γ results in lower speci�city and higher

recall.

Table 5.9: Comparative analysis of CSDNN versus γ using Texas Full dataset with α = 0.97.
The highest sensitivity, speci�city, G-mean, AUC, precision, and accuracy values are denoted
in bold.

γ 0 2 4 6 8

Accuracy 0.775 0.759 0.759 0.759 0.698

G-mean 0.573 0.561 0.560 0.561 0.515

AUC 0.634 0.634 0.633 0.633 0.633

Speci�city 0.789 0.772 0.772 0.772 0.706

Recall 0.438 0.449 0.449 0.450 0.497

Precision 0.084 0.083 0.083 0.083 0.079
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Table 5.10: Comparative analysis of CSDNN versus γ using Oklahoma Full dataset with
α = 0.95. The highest sensitivity, speci�city, G-mean, AUC, precision, and accuracy values
are denoted in bold.

γ 0 2 4 6 8

Accuracy 0.636 0.685 0.674 0.657 0.735

G-mean 0.603 0.613 0.611 0.614 0.593

AUC 0.658 0.658 0.650 0.648 0.647

Speci�city 0.640 0.693 0.681 0.662 0.750

Recall 0.568 0.542 0.549 0.570 0.468

Precision 0.085 0.094 0.092 0.090 0.010

Comparative analysis of CSDNN equipped with FL versus both α and γ parameters using

full Oklahoma and Texas datasets are shown in Tables 5.11-5.12. According to these results,

we observe that α tended to have a greater e�ect on the outcome than γ. Additionally, α was

usually found to be most e�ective the closer it was to the percentage of non-preeclamptic

patients, meaning that the best performing cost function was the one that balanced the

weights of the positive and negative samples before downweighting any of the easily classi�ed

ones.
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Table 5.11: Sensitivity analysis of CSDNN equipped with FL versus both α and
γ parameters using Texas Full dataset based on G-mean. The highest G-mean is
denoted in bold.

γ

0 0.25 0.5 0.75 1 1.25 1.5 01.75 2

0.9 0.432 0.434 0.423 0.414 0.412 0.413 0.415 0.416 0.409

0.91 0.449 0.448 0.446 0.436 0.437 0.427 0.445 0.43 0.428

0.92 0.489 0.492 0.477 0.492 0.485 0.452 0.474 0.44 0.447

0.93 0.502 0.499 0.500 0.502 0.495 0.500 0.502 0.501 0.492

0.94 0.526 0.516 0.526 0.52 0.521 0.536 0.511 0.516 0.505

α

0.95 0.593 0.559 0.584 0.594 0.572 0.562 0.559 0.563 0.557

0.96 0.609 0.608 0.608 0.610 0.609 0.609 0.608 0.610 0.608

0.97 0.626 0.626 0.625 0.626 0.626 0.631 0.625 0.625 0.626

0.98 0.169 0.174 0.170 0.170 0.170 0.168 0.161 0.168 0.169

0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 5.12: Sensitivity analysis of CSDNN equipped with FL versus both α and γ
parameters using Oklahoma Full dataset based on G-mean. The highest G-mean
is denoted in bold.

γ

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.90 0.432 0.442 0.434 0.421 0.437 0.413 0.43 0.44 0.408

0.91 0.483 0.470 0.476 0.473 0.471 0.483 0.468 0.471 0.475

0.92 0.501 0.499 0.500 0.492 0.493 0.501 0.495 0.494 0.489

0.93 0.533 0.524 0.530 0.518 0.53 0.515 0.515 0.519 0.521

0.94 0.577 0.575 0.574 0.575 0.577 0.562 0.564 0.566 0.559

α

0.95 0.605 0.613 0.615 0.613 0.608 0.614 0.616 0.613 0.608

0.96 0.588 0.583 0.586 0.604 0.586 0.588 0.603 0.585 0.588

0.97 0.254 0.252 0.253 0.255 0.253 0.252 0.253 0.265 0.095

0.98 0.000 0.000 0.000 0.000 0.000 0.019 0.034 0.000 0.000

0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5.4 Comparative Analysis of di�erent loss functions

In most cases, the FL function outperformed all other methods in terms of AUC and G-

mean, with the exception of the Oklahoma Full dataset, in which AUC was largest for

the CE function, the Oklahoma African American dataset, in which the best performing

algorithm was WCE. In all cases, the cost-sensitive loss function improved the recall of the

model, meaning that there was a greater number of preeclamptic cases being predicted than

in the more traditional CE models. This did come at a cost to speci�city, meaning that

there were a greater number of false positives in these algorithms.
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Table 5.13: Comparison of CSDNN with FL and WCE versus CE loss function on the full
Texas and Oklahoma datasets as well as AA and NA population datasets.

Dataset Loss Function ACC AUC GM SN SP PR

TX Full

FL 0.619 0.663 0.617 0.616 0.619 0.063
WCE 0.813 0.663 0.590 0.420 0.830 0.093
CE 0.963 0.658 0.344 0.118 0.998 0.689
FL-BB 0.831 0.634 0.572 0.385 0.850 0.096
WCE-BB 0.040 0.633 0.000 1.000 0.000 0.040
CE-BB 0.832 0.634 0.571 0.384 0.851 0.096

TX AA

FL 0.748 0.667 0.623 0.512 0.762 0.110
WCE 0.795 0.667 0.605 0.450 0.815 0.123
CE 0.951 0.665 0.414 0.173 0.996 0.689
FL-BB 0.778 0.666 0.612 0.472 0.795 0.117
WCE-BB 0.054 0.667 0.000 1.000 0.000 0.054
CE-BB 0.789 0.667 0.608 0.458 0.808 0.121

TX NA

FL 0.544 0.571 0.535 0.582 0.542 0.044
WCE 0.658 0.563 0.484 0.413 0.666 0.043
CE 0.965 0.535 0.000 0.000 1.000 0.167
FL-BB 0.502 0.500 0.285 0.498 0.502 0.047
WCE-BB 0.426 0.492 0.282 0.584 0.420 0.045
CE-BB 0.706 0.571 0.466 0.368 0.718 0.046

OK Full

FL 0.622 0.635 0.594 0.566 0.626 0.082
WCE 0.706 0.620 0.575 0.461 0.720 0.089
CE 0.944 0.636 0.000 0.000 1.000 0.000
FL-BB 0.702 0.635 0.583 0.476 0.716 0.090
WCE-BB 0.056 0.619 0.000 1.000 0.000 0.056
CE-BB 0.691 0.621 0.580 0.480 0.704 0.088

OK AA

FL 0.642 0.619 0.578 0.529 0.653 0.124
WCE 0.589 0.623 0.582 0.588 0.589 0.115
CE 0.478 0.501 0.172 0.527 0.475 0.070
FL-BB 0.710 0.594 0.479 0.374 0.740 0.128
WCE-BB 0.082 0.554 0.000 1.000 0.000 0.0819
CE-BB 0.582 0.581 0.551 0.533 0.586 0.105

OK NA

FL 0.649 0.595 0.553 0.471 0.661 0.088
WCE 0.653 0.597 0.551 0.462 0.666 0.088
CE 0.641 0.576 0.540 0.467 0.653 0.087
FL-BB 0.794 0.579 0.485 0.288 0.829 0.105
WCE-BB 0.303 0.503 0.386 0.691 0.276 0.062
CE-BB 0.641 0.576 0.540 0.467 0.653 0.087

Figures 5.6 - 5.8 show the results of the repeated cross-validations of each model on each

dataset. In all cases, there is much smaller variation between each run of the FL model.
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Additionally, the oversampled cases more frequently had greater variation between runs,

showing that it was much more prone to over�tting. The di�erence in variation tended to

shrink with the size of the dataset however, though even in the full Texas and Oklahoma

datasets this trend is observable.

a) Texas dataset b) Oklahoma dataset

Figure 5.6: Comparison of CSDNN with FL and WCE versus CE loss function (in terms of
G-mean) on the full dataset - Left: Texas dataset; Right: Oklahoma dataset

The African American datasets showed more variation than in the larger sets, with the

CE model having the greatest variation. The African American sub-population was the one

with the highest prevalance of preeclampsia, which could have in�uenced the more varied

results.
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a) Texas dataset b) Oklahoma dataset

Figure 5.7: Comparison of CSDNN with FL and WCE versus CE loss function (in terms
of G-mean) on the African American population - Left: Texas dataset; Right: Oklahoma
dataset

The Native American datasets had the largest spread of gmeans among any of the others,

likely due to being the smallest sub-populations. This variation could be limited by the

inclusion of more samples from the Native American population.

a) Texas dataset b) Oklahoma dataset

Figure 5.8: Comparison of CSDNN with FL and WCE versus CE loss function (in terms
of G-mean) on the Native American population - Left: Texas dataset; Right: Oklahoma
dataset
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5.4.1 Comparative Analysis of model behavior while training

Figure 5.9 shows the AUC over the course of 1000 epochs for the Texas Full dataset. You can

see on the �gure on the left that the crossentropy loss function takes the longest to stabilize,

and its validation AUC is subject to more extreme changes over the course of training. The

Focal Loss and Weighted Crossentropy loss functions perform roughly the same, stabilizing

very early on. All three loss functions result in slight over�tting, with the training AUC

averaging between 0.65-0.67 and the validation AUC staying around 0.64.

Figure 5.11 shows the accuracy of all three loss functions over the course of 1000 epochs.

The highest accuracy loss function is crossentropy, which remains consistent in all datasets.

This is likely due to its tendency to predict only the majority classes, resulting in an accuracy

that closely re�ects the distribution of preeclamptic and non-preeclamptic patients. The

validation accuracy shows some variation over the course of the epochs, with focal loss

having a few spikes in accuracy while weighted crossentropy oscillates between 0.7 and 0.8

accuracy. Focal Loss is more stable than weighted crossentropy here, but is not quite as

accurate.

Finally �gure 5.13 shows the losses between each of the loss functions. The loss functions

for this dataset are all fairly stable and do not change much between training and valida-

tion with the exception of crossentropy, which has a sharp drop early on before stabilizing.

The highest loss was from weighted crossentropy, which applied a multiplicative factor de-

pending on the class of the sample, while the lowest loss was from focal loss, which actively

downweighted easily classi�able samples in the dataset. Focal Loss also downweighted the

negative (non-preeclamptic) samples due to the α parameter, meaning that the majority of

the samples did not contribute strongly to the loss. The Oklahoma Full dataset's AUC,

Accuracy, and Loss are shown in �gures 5.10-5.14. The training data shows trends similar

to the Texas data, however there seems to be less over�tting in the case of the AUC, with

crossentropy having a more consistent AUC and loss. The only other di�erence seems to

be that the Accuracy of focal loss and weighted crossentropy seem to be less stable in this
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dataset than in the Texas dataset.

Figures 5.9-5.10 show the AUCs over the course of 1000 epochs for the training and

validation data for each full dataset. In both cases, crossentropy took the longest to stabilize,

although it also was the slowest to over�t to the data. In the Texas dataset crossentropy

was also the most unstable, and all three loss functions over�t more than in the Oklahoma

dataset.

a) Texas Full AUC b) Texas Full Validation AUC

Figure 5.9: The AUC over 1000 Epochs for the Texas Full Datasets

a) Oklahoma Full AUC b) Oklahoma Full Validation AUC

Figure 5.10: The AUC over 1000 Epochs for the Oklahoma Full Datasets

Figures 5.11-5.12 show the accuracy of each of the datasets. Crossentopy consistently had

the highest and most stable accuracy, which can be explained by its tendency to predict only

the most common class; since no learning was needed to improve the accuracy, it's accuracy
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remained consistnet throughout the process. Both Focal Loss and weighted crossentropy

were more unstable, likely caused by more emphasis on the smaller, more di�cult to predict

classes. In both datasets, focal loss had the lowest accuracy.

a) Texas Full Accuracy b) Texas Full Validation Accuracy

Figure 5.11: The Accuracy over 1000 Epochs for the Texas Full Datasets

a) Oklahoma Full Accuracy b) Oklahoma Full Validation Accuracy

Figure 5.12: The Accuracy over 1000 Epochs for the Oklahoma Full Datasets

Figures 5.13-5.14 show the loss for each of the datasets. In the Texas and Oklahoma

datasets, loss remained fairly constant throughout training, although crossentropy tended to

start at a much higher loss before stabilizing.
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a) Texas Full Loss b) Texas Full Validation Loss

Figure 5.13: The Loss over 1000 Epochs for the Texas Full Datasets

a) Oklahoma Full Loss b) Oklahoma Full Validation Loss

Figure 5.14: The Loss over 1000 Epochs for the Oklahoma Full Datasets

Figures 5.15-5.16 show the AUC of the African American subpopulation datasets. It

largely follows the same trend as the larger groups with the exception of the Oklahoma

African American dataset with crossentropy, which seems to get caught in a local minimum

which it oscillates around. This is also the only case where Stochastic Gradient Descent was

used as the optimizing function, which could be causing the model to be stuck in a local

minimum.
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a) Texas African AUC b) Texas African Validation AUC

Figure 5.15: The AUC over 1000 Epochs for the Texas African American Datasets

a) Oklahoma African AUC b) Oklahoma African Validation AUC

Figure 5.16: The AUC over 1000 Epochs for the Oklahoma African Datasets

Figure 5.17-5.18 show the accuracy of each of the African sub-population models. The

trends seem to be the same as in the larger datasets with the exception of the Oklahoma

African population, which has a lower CE accuracy.
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a) Texas African Accuracy b) Texas African Validation Accuracy

Figure 5.17: The Accuracy over 1000 Epochs for the Texas African American Datasets

a) Oklahoma African Accuracy b) Oklahoma African Validation Accuracy

Figure 5.18: The Accuracy over 1000 Epochs for the Oklahoma African Datasets

Figures 5.19-5.20 show the losses of the African sub-population models. These show

similar patterns to the full population losses, however the loss of the CE function in the

Oklahoma dataset is much higher, likely again due to being stuck in a local minimum.
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a) Texas African Loss b) Texas African Validation Loss

Figure 5.19: The Loss over 1000 Epochs for the Texas African American Datasets

a) Oklahoma African Loss b) Oklahoma African Validation Loss

Figure 5.20: The Loss over 1000 Epochs for the Oklahoma African Datasets

The Native American sub-populations had the most variation out of any of the datasets,

which can be attributed to their comparatively smaller sizes. Figures 5.21-5.22 show the

AUC of the Texas and Oklahoma Native sub-populations. The Oklahoma Native CE training

AUC seems to be stuck in a local minimum for over 200 epochs before correcting, and the

validation graph shows a much higher variation than in larger populations. The Texas Native

sub-population does not have this dip, but does seem to over�t more signi�cantly than in

larger populations. The focal loss function in this population seems to outperform the other

two loss functions at least initially before dropping to the worst performing function, showing

again a tendency to over�t.
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a) Texas Native AUC b) Texas Native Validation AUC

Figure 5.21: The AUC over 1000 Epochs for the Texas Native American Datasets

a) Oklahoma Native AUC b) Oklahoma Native Validation AUC

Figure 5.22: The AUC over 1000 Epochs for the Oklahoma Native Datasets

Accuracy among the Native American sub-populations also show a similar trend to the

larger populations, although there seems to be a larger amount of time before the CE loss

function stabilizes.
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a) Texas Native Accuracy b) Texas Native Validation Accuracy

Figure 5.23: The Accuracy over 1000 Epochs for the Texas Native Datasets

a) Oklahoma Native Accuracy b) Oklahoma Native Validation Accuracy

Figure 5.24: The Accuracy over 1000 Epochs for the Oklahoma Native Datasets

The loss of the Texas Native American sub-population has more signi�cant over�tting, at

least in the case of the weighted CE loss. The Oklahoma Native American loss di�ers from

the larger populations in the length of time before stabilizing, taking around 400 epochs to

stabilize.
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a) Texas Native Loss b) Texas Native Validation Loss

Figure 5.25: The Loss over 1000 Epochs for the Texas Native Datasets

a) Oklahoma Native Loss b) Oklahoma Native Validation Loss

Figure 5.26: The Loss over 1000 Epochs for the Oklahoma Native Datasets

5.5 Comparative analysis with traditional ML algorithms

Tables 5.14 and 5.15 show the results of di�erent traditional machine learning algorithms on

the Texas and Oklahoma datasets respectively. The models tested were logistic regression,

support vector machines with a linear kernal and radial basis function, and weighted versions

of each of those models. In all cases the weighted versions outperformed in terms of both

AUC and G-mean, however the best performing model was the cost sensitive neural network

with Focal Loss. Additionally, focal loss once more had the smallest variation in g-means

among the best performing models, showing that it is more robust than other machine

learning algorithms.

72



Figure 5.29 shows the ROC curve for each of these models. These graphs show a slight

improvement over other traditional algorithms, although in all datasets neural networks tend

to perform similarly regardless of the loss function used (in terms of ROC-AUC).
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Table 5.14: Mean g-means AUCs of Texas data using Logistic Regression (LR), Weighted LR, Support Vector Machine (SVM-
Lin), Weighted SVM-Lin, SVM with Radial Basis Function (SVM-RBF), Weighted SVM-RBF, Deep Neural Network (DNN),
Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), and CSDNN with Focal Loss (CSDNN-Focal)

LR WLR SVM-Lin WSVM-Lin SVM-RBF WSVM-RBF DNN CSDNN-WCE CSDNN (Focal)

G-mean 0.013 0.579 0.000 0.523 0.329 0.607 0.344 0.590 0.663

AUC 0.500 0.596 0.500 0.605 0.553 0.621 0.661 0.663 0.663

Table 5.15: Mean g-means and AUCs of Oklahoma data using of Logistic Regression (LR), Weighted LR, Support Vector
Machine (SVM-Lin), Weighted SVM-Lin, SVM with Radial Basis Function (SVM-RBF), Weighted SVM-RBF, Deep Neural
Network (DNN), Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), and CSDNN with Focal Loss (CSDNN-
Focal)

LR WLR SVM-Lin WSVM-Lin SVM-RBF WSVM-RBF DNN CSDNN-WCE CSDNN (Focal)

G-mean 0.012 0.576 0.000 0.515 0.000 0.561 0.001 0.575 0.594

AUC 0.500 0.596 0.500 0.579 0.500 0.582 0.661 0.620 0.635
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Figure 5.27: - Left: distribution of G-means in Texas dataset; Right: distribution of G-means in Oklahoma dataset

75



Figure 5.28: - Left: distribution of AUCs in Texas dataset; Right: distribution of AUCs in Oklahoma dataset
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Figure 5.29: - Left: ROC curve for the Texas dataset; Right: ROC curve for the Oklahoma dataset77



5.6 Statistical Analysis of Results

In order to test whether there was a statistical di�erence between any of the models, a

Kruskal-Wallis test was performed for each dataset. In both cases, a statistical di�erence was

found with an extremely low p-value, meaning we can reject the null at the 5% signi�cance

level.

Table 5.16: Kruskal-Wallis Test Results for Oklahoma Models

Comparison p-value Hypothesis (α = 0.05)

Texas Models ≪ 0.05 Rejected H0

Oklahoma Models ≪ 0.05 Rejected H0

In order to then test if our cost-sensitive models (CSDNN-Focal and CSDNN-WCE)

outperformed the others with statistical signi�cance, we performed the one-tailed Wilcoxon

rank-sum test to compare the g-means collected through our 10-fold cross validation repeated

5 times. Since these tests needed to be performed multiple times, the family-wise error rate

was taken into account by reducing the signi�cance level to 0.0005.

Tables 5.17-5.18 show the results of a one-tailed Wilcoxon rank-sum test on the Texas

and Oklahoma full datasets respectively using each of the previously tested methods. The

results of these tests show that CSDNN-Focal outperforms every other method with sta-

tistical signi�cance in both datasets, while CSDNN-WCE outperforms most methods, with

the exception of WSVM-RBF in the Texas dataset and WLR, FL-BB, and CE-BB in the

Oklahoma dataset.
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Table 5.17: Wilcoxon Test Results for Texas data using Logistic Regression (LR), Weighted
LR, Support Vector Machine (SVM-Lin), Weighted SVM-Lin, SVM with Radial Basis Func-
tion (SVM-RBF), Weighted SVM-RBF, Deep Neural Network (DNN), Cost-Sensitive DNN
with weighed cross-entropy (CSDNN-WCE), and CSDNN with Focal Loss (CSDNN-Focal)

Comparison p-value Hypothesis (α = 0.0005)

CSDNN-Focal > CSDNN-WCE ≪ 0.0005 Rejected H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > LR ≪ 0.0005 Rejected H0

CSDNN-Focal > WLR ≪ 0.0005 Rejected H0

CSDNN-Focal > SVM-Lin ≪ 0.0005 Rejected H0

CSDNN-Focal > WSVM-Lin ≪ 0.0005 Rejected H0

CSDNN-Focal > SVM-RBF ≪ 0.0005 Rejected H0

CSDNN-Focal > WSVM-RBF ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > LR ≪ 0.0005 Rejected H0

CSDNN-WCE > WLR ≪ 0.0005 Rejected H0

CSDNN-WCE > SVM-Lin ≪ 0.0005 Rejected H0

CSDNN-WCE > WSVM-Lin ≪ 0.0005 Rejected H0

CSDNN-WCE > SVM-RBF ≪ 0.0005 Rejected H0

CSDNN-WCE > WSVM-RBF 0.999 Did not reject H0

CSDNN-WCE > FL-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB ≪ 0.0005 Rejected H0
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Table 5.18: Wilcoxon Test Results for Oklahoma data using Logistic Regression (LR),
Weighted LR, Support Vector Machine (SVM-Lin), Weighted SVM-Lin, SVM with Ra-
dial Basis Function (SVM-RBF), Weighted SVM-RBF, Deep Neural Network (DNN), Cost-
Sensitive DNN with weighted cross-entropy (CSDNN-WCE), CSDNN with Focal Loss
(CSDNN-Focal), CSDNN with Focal Loss and balanced batches (FL-BB), CSDNN with
weighted cross-entropy and balanced batches (WCE-BB), and DNN with weighted cross-
entropy and balanced batches (CE-BB)

Comparison p-value α = 0.0005

CSDNN-Focal > CSDNN-WCE ≪ 0.0005 Rejected H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > LR ≪ 0.0005 Rejected H0

CSDNN-Focal > WLR ≪ 0.0005 Rejected H0

CSDNN-Focal > SVM-Lin ≪ 0.0005 Rejected H0

CSDNN-Focal > WSVM-Lin ≪ 0.0005 Rejected H0

CSDNN-Focal > SVM-RBF ≪ 0.0005 Rejected H0

CSDNN-Focal > WSVM-RBF ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > LR ≪ 0.0005 Rejected H0

CSDNN-WCE > WLR 0.630 Did not reject H0

CSDNN-WCE > SVM-Lin ≪ 0.0005 Rejected H0

CSDNN-WCE > WSVM-Lin ≪ 0.0005 Rejected H0

CSDNN-WCE > SVM-RBF ≪ 0.0005 Rejected H0

CSDNN-WCE > WSVM-RBF ≪ 0.0005 Rejected H0

CSDNN-WCE > FL-BB 0.999 Did not reject H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB 0.989 Did not reject H0

Tables 5.19-5.20 show the results of the one-tailed Wilcoxon rank test for the Texas and
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Oklahoma African American datasets respectively. In these groups, CSDNN-Focal outper-

formed every other method tested with statistical signi�cance with the exception of the

Oklahoma African American dataset, in which we could not reject the null that CSDNN-

Focal did not perform better than CSDNN-WCE. As CSDNN-WCE, we were able to show

that it outperformed the other methods tested with the exception of FL-BB and CE-BB in

the Texas African American dataset.

Table 5.19: Wilcoxon Test Results for Texas African American data using Deep Neural Net-
work (DNN), Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), CSDNN with
Focal Loss (CSDNN-Focal), CSDNN with Focal Loss and balanced batches (FL-BB), CS-
DNN with weighted cross-entropy and balanced batches (WCE-BB), and DNN with weighted
cross-entropy and balanced batches (CE-BB)

Comparison p-value α = 0.0005

CSDNN-Focal > CSDNN-WCE ≪ 0.0005 Rejected H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > FL-BB 0.999 Did not reject H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB 0.999 Did not reject H0
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Table 5.20: Wilcoxon Test Results for Oklahoma African American data using Deep Neu-
ral Network (DNN), Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), CS-
DNN with Focal Loss (CSDNN-Focal), CSDNN with Focal Loss and balanced batches (FL-
BB), CSDNN with weighted cross-entropy and balanced batches (WCE-BB), and DNN with
weighted cross-entropy and balanced batches (CE-BB)

Comparison p-value α = 0.0005

CSDNN-Focal > CSDNN-WCE 0.862 Did not reject H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > FL-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB ≪ 0.0005 Rejected H0

The results of the one-tailed Wilcoxon rank-sum tests are presented in tables 5.21-5.22 for

the Texas and Oklahoma Native American datasets respectively. In these cases, the null was

only rejected in two instances. In the Texas Native American population, we were unable

to reject the null that CSDNN-WCE did not perform better than CE-BB. In the Oklahoma

Native American population, we were unable to reject the null that CSDNN-Focal did not

perform better than CSDNN-WCE. In both datasets however, CSDNN-Focal outperformed

all the other methods with statistical signi�cance, holding to the same trend present in every

other dataset.
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Table 5.21: Wilcoxon Test Results for Texas Native American data using Deep Neural Net-
work (DNN), Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), CSDNN with
Focal Loss (CSDNN-Focal), CSDNN with Focal Loss and balanced batches (FL-BB), CS-
DNN with weighted cross-entropy and balanced batches (WCE-BB), and DNN with weighted
cross-entropy and balanced batches (CE-BB)

Comparison p-value α = 0.0005

CSDNN-Focal > CSDNN-WCE ≪ 0.0005 Rejected H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > FL-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB 0.141 Did not reject H0

Table 5.22: Wilcoxon Test Results for Oklahoma Native American data using Deep Neu-
ral Network (DNN), Cost-Sensitive DNN with weighed cross-entropy (CSDNN-WCE), CS-
DNN with Focal Loss (CSDNN-Focal), CSDNN with Focal Loss and balanced batches (FL-
BB), CSDNN with weighted cross-entropy and balanced batches (WCE-BB), and DNN with
weighted cross-entropy and balanced batches (CE-BB)

Comparison p-value α = 0.0005

CSDNN-Focal > CSDNN-WCE 0.007 Did not reject H0

CSDNN-Focal > DNN ≪ 0.0005 Rejected H0

CSDNN-Focal > FL-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-Focal > CE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > DNN ≪ 0.0005 Rejected H0

CSDNN-WCE > FL-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > WCE-BB ≪ 0.0005 Rejected H0

CSDNN-WCE > CE-BB 0.0004 Rejected H0
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The results of the one-tailed Wilcoxon rank-sum tests for the African American popula-

tions are presented in tables 5.23 and 5.24. These show that at the 5% signi�cance level, the

speci�c models outperform the general and full population models in all cases except for the

Oklahoma African American population.

Table 5.23: Wilcoxon Test results for Speci�c Features vs. General Features and Full popu-
lation models in the Texas African Dataset

Comparison p-value Hypothesis (α = 0.0005)

Speci�c > General ≪ 0.0005 Rejected H0

Speci�c > Full Pop 0.044 Did not reject H0

Table 5.24: Wilcoxon Test results for Speci�c Features vs. General Features and Full popu-
lation models in the Oklahoma African Dataset

Comparison p-value Hypothesis (α = 0.0005)

Speci�c > General 0.433 Did not reject H0

Speci�c > Full Pop ≪ 0.0005 Rejected H0

The results for the Native American subpopulations are shown in tables 5.25 and 5.26.

These results are less signi�cant, where the only case we were able to reject the null hypothesis

was in the case of the Oklahoma Native American Speci�c model when compared to the Full

Population model.

Table 5.25: Wilcoxon Test results for Speci�c Features vs. General Features and Full popu-
lation models in the Texas Native Dataset

Comparison p-value Hypothesis (α = 0.0005)

Speci�c > General 0.005 Did not reject H0

Speci�c > Full Pop 0.999 Did not reject H0
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Table 5.26: Wilcoxon Test results for Speci�c Features vs. General Features and Full popu-
lation models in the Oklahoma Native Dataset

Comparison p-value Hypothesis (α = 0.0005)

Speci�c > General 0.149 Did not reject H0

Speci�c > Full Pop ≪ 0.0005 Rejected H0
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Chapter 6

Conclusions

This work explores the use of cost-sensitive neural networks in the case of preeclampsia

prediction, and although the results are not quite accurate enough for use in a clinical setting,

they show that there is an improvement in the results when either focal loss or weighted cross

entropy are used as the loss functions. Focal Loss in particular, which prior to this study

had only been used on image data, was shown to outperform any other method tested in

almost all studied datasets, and there was signi�cantly less variation in its results than in

any other methods, showing that it can be a much more robust model and its performance

is less dependent on how a dataset is split.

Additionally, we have tested the use of models built for speci�c sub-populations and

compared them to more traditional models that are built using the entire dataset but used

on speci�c minority populations. Although we were unable to show a statistically signi�cant

improvement in all of the cases tested, our results show an improvement by employing these

methods, therefore, we conclude that it could be worth exploring the speci�c sub-population

datasets if a larger dataset or a higher quality data were available.

The work in this thesis can be generalized to other highly imbalanced problems. As

stated earlier, a large proportion of real world problems are highly imbalanced, and other

techniques such as over and undersampling run the risk of changing the distribution of the
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dataset. The work here provides researchers with ways of addressing the imbalancedness in

their datasets without changing the distribution, resulting in models that generalize better

to unseen data. Additionally, the research into minority speci�c models can be extended

towards other health problems in which disparity in outcomes is an issue.
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