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ABSTRACT 

The fluid mechanics and heat transfer associated with capillary-driven flows are 

of great interest for modeling transport phenomena in micro/miniature devices. 

Currently, a deeper understanding of this area is necessary for the design of more 

effective products. The primary objective of this dissertation is to develop a novel 

computational fluid dynamics model to study the dynamics of meniscus formation, 

capillary flow, heat transfer, and phase change between vertical parallel plates. To do 

so, an arbitrary Lagrangian-Eulerian (ALE) approach is employed to predict and 

reconstruct the shape of the meniscus with no need to employ implicit interface tracking 

schemes. The developed model is validated by comparing the equilibrium capillary 

height and meniscus shape with those predicted by available theoretical models. The 

model was used to predict the capillary flow of water in hydrophilic (silver) and 

hydrophobic (Teflon) vertical channels with wall spacings ranging from 0.5 mm to 3 

mm. It is shown that the computational model accurately predicts the capillary flow 

regardless of the channel width, whereas the theoretical models fail at relatively large 

wall spacings. The model captures several important hydrodynamic phenomena that 

cannot be accounted for in the theoretical models, including the presence of developing 

flow in the entrance region, time-dependent formation of the meniscus, and the inertial 

effects of the liquid in the reservoir.  

In the next step, the previously developed ALE model was extended to directly 

track the formation and evolution of the evaporating meniscus during spontaneous 

liquid penetration within a capillary channel. The two-dimensional time-dependent 

conservation equations for mass, momentum, and energy were solved in a finite-volume 



 

xx 

framework implemented on a moving and deforming grid. The sharp interface tracking 

method developed here enables direct access to the flow variables and transport fluxes 

at the meniscus with no need for averaging techniques. The model was validated by 

comparing the predicted dynamic response of the capillary height subject to interfacial 

evaporation against theoretical results. The effects of wall spacing and liquid superheat 

on the capillary flow, and the evaporation rate were studied. It was found that thermal 

diffusion adjacent to the meniscus has a critical effect on the evaporation rate, and 

neglecting it leads to significant overprediction of the evaporation rate. Results show 

that, in general, the inclusion of evaporation causes a reduction of the liquid column 

height compared to the non-evaporating case. It was also observed that the equilibrium 

capillary height is inversely proportional to the liquid superheat. Analyses of the 

transient regime show that evaporation tends to dampen the oscillatory flow regime 

compared to the non-evaporating meniscus case. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Capillary-driven flows play a significant role in many natural and engineering systems. 

Examples include water transport and transpiration in plants, capillary transport of 

groundwater in the field of hydrology, two-phase heat-transfer devices such as heat 

pipes, electronics cooling, and propellant management devices, as shown in Fig. 1.1. 

Although a large amount of research has been carried out to study capillary transport, 

there is still a lack of fundamental understanding of the complex physical phenomena 

involved. The broad range of applications and the various physical phenomena involved 

has led researchers from various disciplines such as mathematics, physics, mechanical 

engineering, chemical engineering, material science, and biology to study the capillary 

flow and heat transfer processes. In the following, the fundamental phenomena involved 

in the capillary flow process are reviewed. 

 

1.2 Fundamentals of Wetting and Capillarity  

Capillary penetration/depression refers to the spontaneous liquid rise/fall in a porous 

medium due to capillary action. The forces that lead to the liquid flow result from the 

free energies of the interfaces. It is noted that the interfaces are deformable and are free 

to change their shape or surface area in order to minimize the total surface energy. 
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(a) (b) 

 

(c) 

 
 

(d) (e) 

Fig. 1.1 Examples of capillary action in natural and engineering systems: (a) water 

transport in plants, (b) a static strider resting on the water free-surface and the curvature 

force due to surface distortion which bears the strider’s weight [1], (c) liquid flow in 

heat pipes, (d) membrane distillation [2], and (e) ink-jet printing [3]. 

 



 

3 

1.2.1 Liquid-Gas Interface and Surface Tension 

The interfacial region is a surface between two homogeneous phases of matter in a 

distinct physical state of solid, liquid, or gaseous. The interface is a thin layer that 

exhibits different thermophysical properties from those of the bulk material in the 

gaseous, liquid or solid states. Thus, if interfaces are considered explicitly, new 

properties such as interfacial surface tension appear in the classical thermodynamic 

description of equilibrium state. It should be noted that even though the amount of 

matter in interfacial regions is negligible, the interfacial phenomena can influence the 

dynamic behavior of flow systems significantly. An interface is mathematically treated 

as a geometric surface in tension for flows with free boundaries such as capillary flows. 

Based on the equilibrium surface tension considerations, the normal component of fluid 

stress (pressure) is not continuous along a curved interface; however, the shear stress is 

continuous [4].  

Cohesion between molecules in liquids, as intermolecular force which attracts the 

molecules of a liquid towards one another, originates from various forces. Unlike solid 

molecules that are limited to move about a fixed point, liquid molecules can move in 

such a way as to minimize the liquid surface. As illustrated in Fig. 1.2, the molecules 

inside the liquid, far away from the liquid surface, are subject to equal attractions in all 

directions by cohesive forces. However, the liquid molecules adjacent to the liquid-gas 

interface have less neighboring liquid molecules and are exposed to a net attraction 

force into the liquid phase. It is noted that the liquid molecules at the surface are 

attracted by the neighboring gas molecules; however, this attractive force is 

significantly smaller than the force exerted by other liquid molecules. Surface tension is 
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often described as energy per unit area, but it is also expressed in units of force per 

length [4,5]. 

 

Fig. 1.2 Cohesive forces between molecules within a liquid drop and at the surface [6]. 

 

1.2.2 Contact Angle 

If we consider a liquid drop placed on a smooth flat horizontal solid surface as shown in 

Fig. 1.3, a three-phase boundary line is formed where liquid, solid, and gas phases meet. 

 

 

Fig. 1.3 Contact angles shown by a liquid drop on a smooth solid surface [6]. 

 

The liquid might remain as a single drop at equilibrium, forming a finite angle, �, 

between the solid-liquid and liquid-gas interfaces. The contact angle is a quantitative 

measure of wetting of a solid by a liquid. It is determined as the angle between the 

tangent to the liquid-gas interface and the tangent to the solid-liquid interface and 

measured through the liquid. For the first time in 1805, the basic equation for the 

contact angle on an ideal (smooth, homogeneous, and insoluble) solid substrate was 
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proposed by Thomas Young [7]. Young’s equation establishes a balance between the 

horizontal components of the interfacial force:  

���� =
��� − ���

���
     (1.1) 

where the thermodynamic parameter � is the surface tension and the subscripts ��, ��, 

and �� refer to the solid-gas, solid-liquid, and liquid-gas interfaces, respectively, and � 

is the contact angle.  

Regarding the contact angle value, liquids can be classified as completely (or perfectly) 

wetting (� = 0°), partially wetting (0° < � < 90°), or nonwetting (90° < � < 180°) [8]. 

Moreover, contact angles are not only limited to the liquid-vapor interface on a solid 

surface. They are also applicable to the liquid-liquid interface on a solid. 

 

1.2.3 Rate of Liquid Rise in a Capillary Tube 

When a narrow tube is brought in contact with a completely wetting liquid, some of the 

liquid rises within the tube until an equilibrium state is reached, as shown in Fig 1.4. 

 

 

Fig. 1.4 Liquid rise in capillaries. 
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The fundamental expression for pressure difference across the curved liquid-gas 

interface due to capillary forces known as the Young-Laplace equation [9] is: 

���� = �� − �� = � �
1

��
+

1

��
� =  �(Κ� + Κ�)   (1.2) 

where, ���� is the capillary pressure across the liquid-gas interface, � is the surface 

tension of the liquid, �� and �� are the principal radii of curvature of the meniscus, and 

Κ� and Κ� are curvatures of the meniscus. A specific type of interface condition where 

the interface is curved is called meniscus. In other words, the Young-Laplace equation 

provides a relation between the curvature of a meniscus and the associated pressure 

jump across it. If the liquid wets the capillary tube inner surface, a concave liquid-gas 

interface will form. In the case of circular cross-section capillary with a very small 

radius, when the liquid completely wets the solid surface, and the two curvature radii 

are equal, a hemispherical interface is formed, and Eq. (1.2) is reduced to: 

���� =
2�

�
= 2�Κ   (1.3) 

where r is the radius of the capillary. 

In liquid-solid systems where the liquid is not completely wetting, Eq. (1.3) is expressed 

as: 

���� =
2�����

�
   (1.4) 

where � is the equilibrium (Young) contact angle. 

In a vertical capillary, if h is the net height of the meniscus with respect to the liquid 

surface in the reservoir, the net pressure difference (Δ�) that drives penetration is the 

capillary pressure minus the hydrostatic pressure of the liquid column in the capillary. 
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Δ� = ���� − Δ��ℎ   (1.5) 

where Δ�, �, and ℎ are the difference between the density of the liquid and that of gas, 

gravitational acceleration, and meniscus height, respectively. 

Combining Eqs 1.4 and 1.5, and neglecting the density of gas due to the large density 

differences between the gas and liquid, the equilibrium height of liquid in the capillary 

is achieved when the net driving pressure difference is zero: 

ℎ� =
2�����

���
   (1.6) 

where � is the liquid density and he is the equilibrium capillary height. 

Capillary penetration phenomena occur when the liquid wets the capillary channel wall 

(� < 90°). If the liquid is nonwetting (90° > �), capillary depression occurs, which 

indicates that the capillary rise ℎ� obtained from Eq. (1.6) is negative, as illustrated in 

Fig. 1.5. 

 

Fig. 1.5 (a) Capillary penetration in a hydrophilic capillary, (b) capillary depression in a 

hydrophobic capillary. 



 

8 

Generally, solid materials exhibit two different behaviors in interaction with water and 

are classified as hydrophilic or hydrophobic [10]. Hydrophilic materials are often 

characterized by their affinity for water; water completely spreads over the surface and 

a maximum contact area is achieved. On the other hand, hydrophobic materials repel 

water, causing droplets to form. The shape of the water droplet on a flat solid surface, 

specifically the contact angle between the edge of the water droplet and the surface 

beneath it, can be considered as a criterion for hydrophilic or hydrophobic properties of 

a material. 

A hydrophilic surface is one on which a water droplet forms a contact angle smaller 

than 90° (������������ < 90°), while on a hydrophobic surface, a droplet of water forms a 

contact angle greater than 90° (������������ > 90°). Furthermore, if the contact 

angle is less than 5°, the surface is called super-hydrophilic (����������������� < 5°), 

whereas surfaces made of materials such as polymer where the contact angles are 

between 150° and 180° are called super-hydrophobic (150° < ����������������� < 180°) 

[11]. 

In order to determine the hydrodynamic behavior and the corresponding flow rate in a 

capillary tube, Hagen-Poiseuille’s law for viscous laminar flow through a pipe can be 

employed as a simplified approach. The resistance to air displacement can also be 

neglected due to the large difference between the viscosity of liquid and that of air. The 

volumetric flow rate of liquid in the tube can be expressed as: 

��

��
=

Δ����

8��
   (1.7) 
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where 
��

��
 denote the volume flow rate, Δ� is the pressure drop across the liquid column, 

� is the tube radius, � is the dynamic viscosity of the liquid, and � is the length of tube. 

For vertical capillaries, combining Eqs. 1.5 and 1.7 an ordinary differential equation is 

derived as follows: 

�ℎ

��
=

��

8�
�

Δ�

ℎ
− ���   (1.8) 

Solving the above differential equation gives an expression for the height of liquid rise 

into a capillary tube: 

ℎ

ℎ�
− �� �1 −

ℎ

ℎ�
�

��

= −
����

8�ℎ�
�   (1.9) 

where � is the time and h is the instantaneous capillary height at time �. 

In a particular case, at the early stage of the liquid rise within the capillary tube, when ℎ 

is much smaller than ℎ�, the height of the meniscus vs. time can be described by a linear 

relationship known as the Washburn equation [12]:  

ℎ = �
������

2�
�   (1.10) 

Equation (1.10) indicates that at short times, the meniscus height is a function of the 

square root of time. 

In capillaries of very small diameter, the viscous, gravity, and surface tension terms 

may have the same order of magnitude after the early stages of capillary penetration. 

However, for capillaries of larger diameters, inertia plays an important role, and the 

assumption of Poiseuille’s flow is not valid anymore [13]. 
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1.2.4 Dimensionless Numbers 

There are some well-known dimensionless numbers that are frequently used in the 

analysis of capillary flow, as listed in Table 1.1. In the following equations, � is the 

liquid velocity. 

 

Table 1.1 Dimensionless numbers for analysis of capillary flow. 

Dimensionless number Relation Definition 

Bond number (Bo) 
����

�
 

�������

������� �������
 

Capillary Number (Ca) 
��

�
 

�������

������� �������
 

Froude number (Fr) 
�

���
 

�������

�������
 

Galileo number (Ga) 
�����

��
 

�������

�������
 

Ohnesorge number (Oh) 
�

����
 

�������

��������. ������� �������
 

Reynolds number (Re) 
���

�
 

�������

�������
 

 

1.2.5 Evaporating Meniscus 

High heat transfer coefficients, typically associated with the evaporation (or 

condensation) process in multiphase heat transfer devices are strongly dependent on 

interfacial resistance. Evaporation is the phase change from the liquid phase to the 

gaseous phase at a free liquid-gas interface in contrast to boiling, in which the vapor 

phase is completely surrounded by the liquid phase. During evaporation process, the 
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flux of liquid molecules escaping to the vapor phase exceeds that of vapor molecules 

into the liquid phase. 

Using the classical kinetic gas theory, the net mass flux at the liquid-gas interface, �, is 

modelled from the following equation, referred to as the Kucherov-Rikenglaz equation 

[4]: 

� = �
2�

2 − �
� �

��

2���
�

��

���

−
��

���

�   (1.11) 

where � is the accommodation coefficient, �� is the molecular mass, and �� is the 

universal gas constant, and �� and �� are the saturation pressures corresponding to �� 

and ��, respectively.  

The meniscus temperature is not necessarily equal to the temperature of saturated vapor. 

The interfacial mass flux j at an evaporating meniscus can be related to the temperature 

jump across the interface using the concept of thermal resistance as follows:  

� =
���� − ��

�
   (1.12) 

where � is the interfacial thermal resistance and ���� − �� is the interfacial temperature 

jump. Using the Clausius-Clapeyron relation, Eq. (1.11) can be rewritten without 

pressure terms and the interfacial thermal resistance associated with evaporation can be 

expressed as: 

� =
��

�.�

���ℎ��
�

2���

��
�

�.�

   (1.13) 

where �� is the vapor density and ℎ�� is the latent heat of evaporation. 
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1.3 Interface Tracking Approaches 

As noted before, a wide range of natural and engineering systems involve interfacial 

phenomena and capillary flow. Understanding the evolution of capillary flow is critical 

for the analysis of the transport phenomena in such a system. Numerical simulation of 

fluid flow problems, including fluid-fluid and/or fluid-solid interfaces, involves several 

challenges and complexities. One of the major difficulties originates from the fact that 

the position and shape of the interfaces are time-dependent and may involve heat and/or 

mass transfer in the case of evaporating menisci. Also, the interfaces evolve and may 

experience severe deformations that influence the nearby flow and thermal fields. 

Another challenge is modeling discontinuities in thermophysical properties across the 

interface, particularly large jumps in density. These moving boundaries play a 

significant role in the system, so their accurate representation has a great effect on the 

solution of the problem. In the computational treatment of a moving and/or deforming 

interface, several substantial points should be addressed, such as the representation of 

the interface on a finite grid, the time evolution of the interface, and the specification of 

boundary conditions at the interface. In general, numerical solutions of interfaces can be 

accomplished by Eulerian (fixed) or Lagrangian (moving) grids. Each method has its 

own advantages and disadvantages. In the following, different interface 

capturing/tracking techniques are briefly described, and the selected method for the 

present work is identified. 
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1.3.1 Lagrangian Method 

In this method, the fluid particles and, consequently, the interface is tracked directly 

[14]. Lagrangian methods can accurately predict the evolution of the interface; 

however, they typically have a poor performance when the particle deformations are 

large. On the other hand, Eulerian methods are suited for modeling large deformations 

of materials; thus, most computational fluid dynamics codes employ Eulerian 

techniques.  

 

1.3.2 Volume of Fluid Method (VOF) 

The VOF method is one of the most widely used Eulerian techniques to predict multi-

phase fluid flow problems. In this method, the Navier-Stokes equations are solved over 

a fixed grid together with a transient advection equation governing the evolution of the 

interface function that marks the position of the interface [15,16]. It is assumed that two 

or more fluids are not interpenetrating. For each phase, a phase indicator function is 

introduced as the volume fraction (�) of the phase in the computational cell: 

�(�, �) = �
1              �� � �� �� �ℎ� ������� �ℎ���  

   0          �� � �� �� �ℎ� ��������� �ℎ���     
 (1.14) 

In each computational cell, the volume fractions of all phases sum to unity. When the 

volume fraction of a particular phase has a value between 0 and 1 in a computational 

cell, that cell can be regarded as an interfacial cell. Several special interpolation 

schemes have been developed to eliminate the numerical diffusion at an interface that 

results in loss of resolution and inaccurate or diverging solutions. Figure 1.6 shows two 

of the most widely used interpolation schemes: the donor-acceptor scheme [15], in 

which the interface in each cell is decomposed into either horizontal or vertical 
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segments, and the piecewise linear reconstruction scheme [17] which is a more refined 

interface interpolation technique and predicts the slope of the interface in each 

computational cell based on the gradient of the volume fraction function in neighboring 

cells. 

 

Fig. 1.6 Schematic of the computational treatment of the phase interface using various 

interpolation schemes in the VOF method (a) an actual interface, (b) using the donor-

acceptor technique, and (c) using a piecewise linear reconstruction technique [4]. 

 

1.3.3 Level-Set Method 

Among the interface modeling methods, the VOF method and the level-set method 

[18,19] are the most popular ones. While the VOF method benefits from the 

conservation of mass, the level-set technique has many advantages, such as accurate 

computation of surface normals and curvature. In this method, which belongs to the 

family of fixed grid methods, a level-set function is a signed-distance function �(�, �), 

that represents the shortest distance to the interface, �: 

|�(�, �)| = |� − ��|    →    �

� > 0  �� ������       
� = 0  �� ���������
� < 0  �� ���            

 (1.15) 

 where �� is the location on the interface that has the shortest distance to �, and � has 

positive values on one side of the interface and negative values on the other side. So, the 
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interface is represented as an iso-surface of the signed-distance function, �, of value 

zero. As such, � > 0 denotes liquid and � < 0 is gas. Fig. 1.7 depicts a comparison 

between two main interface modeling methods in the Eulerian framework, namely, the 

VOF method and the level set method. 

 

 

Fig. 1.7 Schematic representation of three interface modeling approaches (a) volume-of-

fluid method (the numbers in cells denote the liquid volume fraction), (b) level set 

method [20].  

 

1.3.4 Arbitrary Lagrangian-Eulerian (ALE) Method 

Due to the drawbacks of using only the Lagrangian method or purely Eulerian method, 

generalized kinematical descriptions of the fluid domain known as arbitrary 

Lagrangian-Eulerian methods that integrate both Lagrangian and Eulerian advantages 

were developed [21,22]. Among the available moving-mesh methods, the ALE method 

is the most popular one and has been widely employed in flows with moving boundaries 

and interface computations. In this technique, as the shape of the fluid domain changes 

due to the movement and/or deformation of the interface, the grid moves to track the 

interface, provide the fine grid resolution adjacent to the interface, and adapt itself to the 
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change of shape. This occurs through a process known as the mesh update method. The 

mesh update process consists of moving the grid for as long as possible and remeshing 

as required for maintaining the quality of the computational element and minimizing the 

frequency of remeshing. One of the main advantages of the ALE methods is that the 

boundary condition can be accurately imposed since the moving boundary is exactly 

aligned with a control surface of the computational mesh.  

In this work, because of the desirable capabilities and attractive features that are not 

available easily or at all in the fixed-grid methods, the ALE method is employed to 

track the dynamic behavior of the liquid-vapor interface. Interestingly, moving the fluid 

domain grid to track a fluid-vapor interface gives the ability to have better control on 

the grid resolution adjacent to the interface, high-resolution representation of the 

boundary layers, and achieve reliable predictions in the critical flow regions where high 

gradients emerge. 

In ANSYS Fluent, application of the ALE method is possible through the “Dynamic 

Mesh Model” capability to simulate problems with moving boundaries in which the 

shape of the computational domain changes with time due to the motion of the domain 

boundaries [23,24]. The dynamic mesh model in ANSYS Fluent uses three main 

schemes, namely, smoothing, layering, and remeshing. A combination of these schemes 

can be implemented to overcome the most complicated moving mesh problems, 

including both rigid and deforming motions of the boundaries. In both cases, using the 

mesh update methods, the computational nodes are updated at each time step based on 

the new positions of the boundaries. As such, the dynamic mesh solutions are inherently 
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transient. In this work, several user-defined functions (UDFs) are developed to describe 

the motion of the moving zones.  

 

1.4 Fundamentals of the Arbitrary Lagrangian-Eulerian approach 

1.4.1 Overview of Lagrangian and Eulerian Approaches 

Most of the multiscale problems in computational fluid dynamics are associated with 

large distortions of the continuum. Generally, there are two classical descriptions of 

motion, namely, the Lagrangian description and the Eulerian description.  

In the Lagrangian approach, which is widely used in solid mechanics, each 

computational cell follows the associated material particle during motion, as 

schematically shown in Fig. 1.8.  Thus, tracking free surfaces and interfaces between 

different materials is relatively easy. However, it is not possible to follow large 

distortions of the computational domain without a frequent remeshing process. 

On the other hand, in the Eulerian approach, which is mainly preferred in fluid 

simulations, a control volume is defined. Flow variables such as pressure, velocity, 

acceleration, etc., are treated as continuum fields within the control volume. As 

illustrated in Fig. 1.8, the computational grid is fixed, and the fluid moves with respect 

to the mesh. Hence, the Eulerian description offers a better capability of handling larger 

distortions than the Lagrangian description, while precise interface definition and the 

detailed representation of flow are needed. 

The arbitrary Lagrangian-Eulerian approach, as its name indicates, is an attempt to 

achieve the advantages and combining the best features of both the purely Lagrangian 

and the purely Eulerian descriptions while minimizing the drawbacks of the mentioned 
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classical kinematical descriptions. In this approach, the computational nodes can be 

moved flexibly as the material deforms like the Lagrangian mesh or can be held fixed in 

space similar to the Eulerian grid or, as shown in Fig. 1.8, can move in some arbitrary 

manner and provide a continuous rezoning capability. Therefore, this flexibility of mesh 

offered by the ALE approach allows it to handle severe degradation of the 

computational mesh while maintaining quite a regular mesh topology of the interface 

that cannot accommodate via a Lagrangian method [25].  

 

 

Fig. 1.8 Schematic of Lagrangian, Eulerian, and ALE mesh and particle motion [21]. 

 

In continuum mechanics, two domains are widely used, namely the material domain and 

spatial domain. The former consists of material points, while the latter is made up of 

spatial points. In the Lagrangian approach, the fluid particles (material points) are 
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followed as they move through the continuum. The material coordinates � are related to 

the spatial coordinates � as the material points move. It is defined using a one-to-one 

mapping � as: 

(�, �) → �(�, �) = (�, �) (1.16) 

or 

(�, �) = ���(�, �) (1.17) 

Since the material points coincide with the same grid points during the motion, it is 

important to keep in mind that the advective effects disappear in the Lagrangian 

description. Thus, the material derivative reduces to a simple time derivative. In 

problems involving large material deformations, like the formation of vortices in fluids, 

the Lagrangian formulation suffers from accuracy losses and a reduction of the explicit 

critical time step because of excessive distortions of the computational grid. This 

problem can be tackled with the Eulerian formulation. 

The material velocity � at a given computational node is defined as the velocity of the 

material point coincident at the time � with the considered computational node. 

� = �(�, �) (1.18) 

It is noted that in the Eulerian approach, the computational nodes and the material 

particles are dissociated from each other. Therefore, the Eulerian description includes 

the advective effect due to the relative motion between the deforming material and the 

computational mesh. 
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1.4.2 Kinematical Description of ALE Approach 

The arbitrary Lagrangian-Eulerian method is based on three domains, namely, the 

material configuration (��), the spatial configuration (��), and the referential or ALE 

configuration (��). The ALE description introduces a mesh motion independent of the 

material motion. In the ALE formulation, none of the material configuration or the 

spatial configuration is considered as the reference. In the referential configuration, the 

reference coordinates, �, represent the grid points. The arbitrary movement of the 

referential domain is computed by a moving mesh formulation or specified in such a 

way to treat the moving boundaries. 

As shown in Fig. 1.9, the referential domain is transferred into the material and spatial 

domains under the mappings of � and �, respectively. The particle motion � can be 

written as: 

� =  � ∗ Ψ�� (1.19) 

It is clear that the mappings �, �, and Ψ are dependent. 

The motion of the grid points in the spatial domain can be expressed as the mapping of 

� from the referential domain to the spatial domain as follows: 

(�, �) → �(�, �) = (�, �) (1.20) 

So, the mesh velocity is: 

�����(�, �) =
��

��
�

�
 (1.21) 

It is noted that both the material or the mesh moves with respect to the spatial domain. 

Also, we have: 

(�, �) → Ψ��(�, �) = (�, �) (1.22) 



 

21 

 

Fig. 1.9 Representation of the material configuration (RX), the spatial configuration (Rx), 

and the referential or ALE configuration (R�) [21]. 

 

The particle velocity, �, in the referential domain is then expressed as: 

� =
��

��
�
�

 (1.23) 

Finally, after some mathematical manipulation, the relation between velocities �, �����, 

and � can be achieved as: 

� = � − ����� =
��

��
∙ � (1.24) 

where c is the relative velocity between the material and the mesh which is called as 

advective velocity. 

 

1.4.3 Fundamental Equation in ALE Framework 

The relation between material and referential time derivatives is called the fundamental 

ALE equation. It is necessary to derive the conservation laws for mass, momentum, and 

energy in an ALE format.  
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If a scalar physical quantity is expressed by  �(�, �), �∗(�, �) and �∗∗(�, �) in the 

spatial, referential, and material configurations, respectively, the relation between the 

spatial and material descriptions of the physical quantity can be written as: 

�∗∗(�, �) = �(�(�, �), �) (1.25) 

After computation of the gradient of the relation above and block multiplication, a 

famous equation that relates the material and the spatial time derivatives is achieved: 

��∗∗

��
=  

��

��
+

��

��
∙ � (1.26) 

or 

��

��
�
�

=
��

��
�

�
+ � ∙ ∇� (1.27) 

If the material and spatial time derivatives are denoted as 
�.

��
�
�

≡  
�.

��
  and  

�.

��
�

�
≡  

�.

��
 , 

Eq. (1.27) can be written as: 

��

��
=

��

��
+ � ∙ ∇� (1.28) 

Considering the mapping Ψ in Fig. 1.9,  

�∗∗ = �∗ ∗ Ψ�� (1.29) 

After computation of the gradient of the relation above and block multiplication, the 

relation between the material and referential time derivatives is achieved: 

��∗∗

��
=  

��∗

��
+

��∗

��
∙ � (1.30) 

Using the definition of �, the preceding equation can be written into: 

��∗∗

��
=  

��∗

��
+

��∗

��
∙ � (1.31) 
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Finally, the fundamental ALE relation between material and referential time derivatives 

and the spatial gradient is as follows: 

��

��
�
�

=
��

��
�

�
+

��

��
�

�
∙ � =

��

��
�

�
+ � ∙ ∇� (1.32) 

In which the advective term � is the relative velocity between the material and reference 

domains. In the following sections, both the differential and integral ALE forms of the 

conservation equations for mass, momentum, and energy are derived. 

 

1.4.4 Differential Form of Conservation Equations in ALE Framework 

The Eulerian forms of the conservation equations for mass, momentum, and energy are: 

Mass: 
��

��
=

��

��
�

�
+ � ∙ ∇� = −�∇ ∙ � (1.33) 

Momentum: �
��

��
= � �

��

��
�

�
+ (� ∙ ∇)�� = ∇ ∙ � + �� 

(1.34) 

Energy: �
��

��
= � �

��

��
�

�
+ � ∙ ∇�� = ∇ ∙ (� ∙ �) + �. �� 

(1.35) 

where �, �, �, �, and � are the density, the material velocity vector, the Cauchy stress 

tensor, the specific body force vector, and the specific total energy, respectively. By 

replacing the material velocity � with the advective velocity �, the ALE differential 

forms of the conservation equations are obtained: 

Mass:  
��

��
�

�
+ � ∙ ∇� = −�∇ ∙ � (1.36) 

Momentum: � �
��

��
�

�
+ (� ∙ ∇)�� = ∇ ∙ � + �� (1.37) 
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Energy: � �
��

��
�

�
+ � ∙ ∇�� = ∇ ∙ (� ∙ �) + �. �� (1.38) 

It is noted that the arbitrary motion of the computational mesh is only reflected in the 

LHS of the above equations. 

For time-dependent two-dimensional laminar incompressible flow of a Newtonian fluid 

with constant thermophysical properties and negligible viscous dissipation and natural 

convection effects, the conservation equations for mass, momentum, and energy in the 

ALE framework are: 

Mass: ∇ ∙ � = 0 (1.39) 

Momentum: � �
��

��
�

�
+ ((� − �����) ∙ ∇)�� = −∇� + � ∇�� + �� (1.40) 

Energy: ��� �
��

��
�

�
+ (� − �����) ∙ ∇�� = � ∇�� (1.41) 

where �, ��, and � are thermal conductivity, specific heat at constant pressure, and 

dynamic viscosity, � and � are the pressure and temperature, and � and ����� are the 

fluid velocity and mesh velocity vectors, respectively, and � is the gravity vector. 

 

1.4.5 Integral Form of Conservation Equations in ALE Framework 

In order to obtain the integral form of the conservation laws for mass, momentum, and 

energy, the rate of change of integrals of scalar and vector functions over a moving 

control volume is needed. To this end, Reynold’s transport theorem (also known as the 

Leibniz-Reynolds transport theorem) is used to formulate the basic conservation laws of 

continuum mechanics, particularly fluid dynamics and large-deformation solid 

mechanics, as follows: 
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�

��
�

�
� �(�, �)��

�(�)

= �
��(�, �)

��
�

�

�� +
�(�)

� �(�, �) ����� ∙ � ��
��(�)

 (1.42) 

In which � is a scalar function (defined in the spatial domain), Σ(�) is an arbitrary time-

dependent control volume which has a closed boundary of �Σ(�). The boundary points 

at time � move with mesh velocity of �����, � is the outward unit normal vector to the 

surface �Σ(�), �� and �� are volume and surface elements at �. If the scalar �(�, �) is 

replaced by the fluid density �, momentum ��, and specific total energy ��, one can 

obtain the integral form of the conservation laws for mass, momentum, and energy in 

the ALE framework as follows: 

Mass: 
�

��
�

�
� ���

�(�)

+ � � �. � �� = 0
��(�)

 (1.43) 

Momentum: 
�

��
�

�
� ����

�(�)

+ � �� �. � �� = � (∇ ∙ � + ��)��
�(�)��(�)

 
(1.44) 

Energy: 

�

��
�

�
� ����

�(�)

+ � �� �. � ��
��(�)

 

= � (� ∙ �� + ∇ ∙ (� ∙ �)��
�(�)

 

(1.45) 

 

It is noted that if  ����� = � (� = 0), the Lagrangian description is obtained. Also, 

����� = 0 (� = �) corresponds to the Eulerian description. 

 

1.5 Motivation for Dissertation and Research Objectives 

Despite the advances in the theoretical and experimental study of meniscus dynamics, 

there remains a serious lack of computational simulations capable of capturing the 
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transient evolution of the meniscus shape and directly tracking the sharp liquid-gas 

interfaces. A literature review reveals that among available computational techniques, 

the full continuum mechanical solution of liquid flow in a capillary channel has 

received little attention. The primary objectives of the current study are to develop a 

robust computational model to investigate the dynamic response of a meniscus during 

the capillary flow subject to heat transfer and evaporation between vertical parallel 

plates using as few simplifying assumptions as possible. The existing simplified 

analyses assume the interface as a surface with fixed and prescribed curvature. 

However, in realistic applications, the interface forms in the shape of various curves. 

Instead of specifying the meniscus shape, the goal of this study is, for the first time, to 

compute them as part of the solution of the problem. Thus, special attention is paid in 

this work to the use of the arbitrary Lagrangian-Eulerian technique to directly track the 

formation and evolution of the meniscus shape in both cases of hydrophilic and 

hydrophobic capillary flows. In the next part of the dissertation, the developed model is 

devised further to account for the effects of interfacial phase change heat transfer 

(evaporation) on the meniscus dynamics. Finally, the developed model is employed to 

conduct parametric studies on the effect of important design and operating variables on 

flow and thermal fields emerging in evaporating capillary flows. 

 

1.6 Dissertation Outline 

The rest of the dissertation is organized as follows. Following the Introduction chapter, 

Chapter 2 presents the theoretical solution to the dynamic response of a meniscus 

between vertical parallel plates in the Lucas-Washburn framework. The first part of 
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Chapter 2 is devoted to the hydrodynamic characteristics of the transient behavior of a 

meniscus, and the second part addresses a meniscus subject to heat transfer and 

evaporation. Chapter 2 is concluded by detailed calculation of the recoil pressure 

exerted on an evaporating meniscus and the determination of steady-state meniscus 

shape. Chapter 3 describes the computational model developed in this work to simulate 

the hydrodynamics of non-evaporating capillary penetration or depression of liquid 

between hydrophilic and hydrophobic vertical parallel plates, including a review of the 

related literature, the problem statement, details of numerical procedure, validations, 

and the computational predictions. Chapter 4 explains the extended computational 

model to investigate the dynamic response of a meniscus subject to heat transfer and 

evaporation during the capillary flow between vertical parallel plates. The chapter 

includes a literature survey related to the transient behavior of evaporating meniscus, 

description of the physical system, computational methodology, validation process, 

numerical results, and parametric study. Finally, Chapter 5 summarizes the results and 

findings of the dissertation and presents recommendations for future work with respect 

to the research gaps.  
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CHAPTER 2: THEORETICAL MODELING OF MENISCUS 

DYNAMICS 

 

As described in the previous chapter, if a liquid is brought in contact with conduits 

formed by solid surfaces, liquid transport occurs under the action of adhesion and 

cohesion forces. Based on the thermal conditions of the system, the meniscus can be 

subject to phase change. This chapter presents the derivation and solution of the 

mathematical equations for the transient behavior of liquid meniscus with and without 

evaporation in a parallel plate configuration. Also, the calculation of the recoil pressure 

exerted on an evaporating meniscus and the determination of equilibrium meniscus 

shape are discussed. 

 

2.1 Theoretical Modeling of Capillary Penetration and Depression 

The theoretical model is based on the Lucas-Washburn Equation (LWE) [26,27] and 

uses the following momentum balance applied to a control volume containing the liquid 

in the capillary channel: 

�

��
� ��⃗

�

�� + � ��⃗�
�

(�⃗� ∙ ��)�� = � �⃗      (2.1) 

where the first and second terms on the left-hand side represent the rate of change of 

momentum of the liquid column and the net momentum crossing the boundaries of the 

control volume, respectively. The right-hand side represents the sum of the forces acting 

on the control volume. In the surface integral, �⃗� is the fluid velocity at the boundary of 

the control volume relative to the boundary. Several assumptions must be made to solve 
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Eq. (2.1) analytically, including the assumptions of a constant contact angle �, constant 

and uniform curvature along the meniscus, and fully developed two-dimensional 

laminar flow between the parallel channel walls [28,29]. 

Denoting the average height of the liquid column relative to the free surface in the 

reservoir at time � by ℎ(�) and noting that momentum only crosses the boundary of the 

control volume at the column entrance, Eq. (2.1) can be rewritten as: 

��
�

��
�(ℎ(�) + ℎ�)

�ℎ(�)

��
� − ����

�

= 2����� − ���ℎ(�) −
12�

�
(ℎ(�) + ℎ�)

�ℎ(�)

��
    

  (2.2) 

where � is the surface tension at the liquid-air interface, and � is the contact angle. The 

terms on the RHS of the above equation represent the effects of surface tension, 

gravitational, and viscous forces per unit length, respectively. Equation (2.2) is subject 

to the following initial conditions: 

ℎ(0) = 0   (2.3) 

�ℎ

��
�

���
= 0   (2.4) 

The equilibrium height of the liquid column, ℎ�, can be obtained by solving Eq. (2.2) at 

steady state: 

ℎ� =
2�����

���
     (2.5) 

It should be noted that the equilibrium height of Eq. (2.5) is valid only for narrow 

capillary channels in which the liquid volume in the interface region (above the lowest 

point of the meniscus) is negligible [30]. 
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Determination of the fluid velocity crossing the control volume boundary at the 

entrance of the capillary channel, ��, requires further attention. As noted by Levine et 

al. [28], there are two possible limiting-case scenarios to consider. In the first scenario, 

it is supposed that the liquid in the reservoir is stagnant and achieves a fully developed 

velocity profile immediately after entering the capillary channel. Thus, the advective 

term (the third term) on the LHS of the Eq. (2.2) vanishes and the momentum balance 

reduces to: 

��
�

��
�(ℎ(�) + ℎ�)

�ℎ(�)

��
�

= 2����� − ���ℎ(�) −
12�

�
(ℎ(�) + ℎ�)

�ℎ(�)

��
 

  (2.6) 

The second scenario again assumes that the liquid in the reservoir has zero velocity, but 

the liquid enters the capillary at time � with an average velocity of �� = �ℎ/��. In this 

case, Eq. (2.2) simplifies to:  

��(ℎ(�) + ℎ�)
��ℎ(�)

���
= 2����� − ���ℎ(�) −

12�

�
(ℎ(�) + ℎ�)

�ℎ(�)

��
   (2.7) 

The preceding treatments of the inertial terms lead to two analytical solutions that are 

identical except for the inertial terms. Both expressions have been used by previous 

investigators [29,31]. In this work, theoretical solutions referred to as "Analytical 1" and 

"Analytical 2" correspond to Eqs. (2.6) and (2.7), respectively. The above discussion 

about the specification of the fluid velocity at the entrance of the capillary channel is 

independent of the velocity direction and applies to both capillary penetration and 

depression cases. In other words, regardless of the velocity direction in the capillary 

channel, Eq. (2.6) is based on the assumption that the fluid at the channel entrance is at 

the reservoir velocity (�� = 0), whereas Eq. (2.7) assumes that the fluid at the entrance 
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has the same velocity as the liquid in the channel (�� = �ℎ/��). It is noted that because 

these scenarios represent limiting cases, the actual momentum entering the capillary 

channel is expected to lie in between these two bounds. 

 

2.2 Theoretical Modeling of the Transient Response of the Evaporating Meniscus 

The following mathematical model describes the fluid mechanics, heat transfer, and 

interfacial phenomena associated with the spontaneous flow of a superheated liquid 

between parallel plates that is subjected to saturated vapor above the meniscus. 

Applying a force balance to a control volume containing the liquid in the capillary 

channel and assuming fully developed laminar flow induced by the interplay of gravity, 

friction, and the surface tension forces yields the classical LWE [28]. The LWE does 

not account for the complex flow field at the entrance region of the capillary channel 

and in the vicinity of the moving meniscus. As discussed in the body of the paper, for a 

meniscus subject to phase change (evaporation/condensation), the LWE has been 

extended to account for the recoil force that arises due to the interfacial momentum 

jump [32]. Considering the submerged height (ℎ�) of the capillary channel below the 

free surface of the liquid in the reservoir, the equation of motion for a meniscus subject 

to evaporation/condensation between the parallel plates can be written as follows: 
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(2.8) 

 

where ℎ(�) denotes the average height of the liquid column relative to the free surface 

in the reservoir at time �. �, �, and � are the surface tension at the liquid-vapor interface, 

contact angle, and interfacial mass flux due to phase change, respectively. The 

following initial conditions are applied: 

ℎ(� = 0) = 0 (2.9) 

and 

�ℎ

��
�

���
= 0 (2.10) 

The terms on the RHS of Eq. (2.8) represent the effects of surface tension, gravitational, 

viscous, and momentum jump forces per unit depth of the channel, respectively. It is 

noted that for the non-evaporating case, the interfacial mass flow rate is zero. However, 

when the phase change occurs (evaporation: � > 0 and condensation: � < 0), the 

momentum jump term emerges that exerts a downward force on the meniscus. The 

typical approach for the determination of the mass transfer rate at the liquid-vapor 

interface is the use of kinetic theory that relates the interfacial mass flux j to the 

interface temperature �� [33]: 
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� =
���ℎ��

��
�.�

�
��

2���
�

�.�

(���� − ��) (2.11) 

In the preceding equation, � is the accommodation coefficient (0 < � ≤ 1), �� is the 

molecular mass, and �� is the universal gas constant. There are several major 

simplifying assumptions and rather arbitrarily chosen variables in Eq. (2.11) that limit 

the accuracy of the model predictions. Some of the simplifying assumptions are: 

 The coupling between the liquid and vapor phases during evaporation is 

neglected [34]. 

 It is challenging to determine the accurate value for the empirical parameter of 

mass accommodation coefficient.  

 The temperature jump across the meniscus, �� – �� in Eq. (2.11), is assumed to 

be equal to the temperature difference between the superheated liquid and 

saturated vapor. As such, application of kinetic theory neglects the thermal 

diffusion adjacent to the meniscus inside the liquid. 

 Transient thermal effects cannot be captured by Eq. (2.11) since it provides a 

constant evaporation rate. 

It should be noted that several researchers have employed the kinetic theory of gasses to 

simulate the evaporation and/or condensation processes across the meniscus [35,36]. 

The results of models based on kinetic theory are strongly dependent on the choice of 

the evaporation and condensation coefficients. 

Figure 2.1 shows the sensitivity of the analytical solution with respect to the superheat, 

ΔT for two wall spacings of w = 0.5 mm and w = 0.7 mm. The results highlight the 

dependence of the water column on the superheat degree. 
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(a) (b) 

Fig. 2.1 Theoretically predicted water column height between parallel copper plates and 

various values for ΔT (a) w = 0.5 mm and (b) w = 0.7 mm.  

 

2.3 Theoretical Determination of the Vapor Recoil Pressure 

To account for phase change at the liquid-vapor interface, several coupled mechanisms 

should be considered. Generally, a moving liquid particle with a low velocity at the 

meniscus undergoes high acceleration upon evaporation due to the significant density 

change. The accelerating evaporated mass exerts a pressure on the meniscus in the 

opposite direction that is known as vapor recoil in the literature [33]. In other words, 

vapor recoil emerges due to the velocity jump at the liquid-vapor interface. The 

interfacial mass flux due to evaporation can be expressed as: 

� = ��(�� − ��) ∙ � = ��(�� − ��) ∙ � (2.12) 

where � is the interfacial mass flux, � is the outward normal unit vector, and  ��, ��, and 

�� refer to liquid velocity, vapor velocity, and interface velocity, respectively. The 

recoil pressure applied on the liquid-vapor interface is then given by: 

������� = −
�� − ��

����
�� (2.13) 
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And due to the large discrepancy between the densities of liquid and vapor (�� ≫ ��) 

the recoil pressure can be reduced to: 

������� = −
��

��
 (2.14) 

 

2.4 Theoretical Modeling of the Meniscus Shape at Steady-State 

The performance of capillary-assisted passively pumped thermal management devices 

is strongly dependent on the shape of the curved liquid-vapor meniscus. The static 

steady-state meniscus shape between either hydrophilic or hydrophobic parallel plates 

can be obtained from the following equation below: 

��ℎ(�) =
���

��ℎ(�)
���

�1 + �
�ℎ(�)

��
�

�

�

�.� = −���Κ   (2.15) 

in which � is the coordinate component measured along the capillary channel width that 

varies from zero at the left wall to � at the right wall, and Κ is the local mean curvature 

of the meniscus. The above ordinary differential equation can be considered as a 

boundary value problem with the following boundary conditions: 

�ℎ

��
�

���
= −�����   (2.16) 

and 

�ℎ

��
�

���
= �����   (2.17) 

It is noted that for walls with similar surface properties, the contact angle �� at the left 

wall is the same as the contact angle �� at the right wall. Obviously, for dissimilar 
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plates, the contact angles �� and �� are different, and consequently, meniscus evolves to 

have a shape which is asymmetric about the midpoint. 

Eq. (2.15), along with boundary conditions (2.16) and (2.17), was solved in MATLAB 

to determine meniscus shape between parallel plates at the steady state. 
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CHAPTER 3: COMPUTATIONAL SIMULATION OF 

SPONTANEOUS LIQUID PENETRATION AND DEPRESSION 

BETWEEN VERTICAL PARALLEL PLATES 

 

In the following chapter, a computational fluid dynamics model using dynamic mesh is 

developed to simulate the capillary penetration or depression of liquid between 

hydrophilic and hydrophobic vertical parallel plates.  

 

3.1 Background 

Capillary driven flows appear in a wide range of natural and engineering systems, 

including but not limited to water transport in plants, drainage of continuously produced 

tear fluid from the eye, liquid flow in heat pipes, liquid transport in the micro-gravity 

environment of satellites and space vehicles, oil recovery, and ink-jet printing [5]. 

Capillary action is the spontaneous movement of liquid within the voids or conduits 

formed by solid surfaces due to the interaction of adhesion, cohesion, and surface 

tension forces. The adhesion between the liquid and the solid walls of the capillary 

channel along with the surface tension force induced by the cohesion between the liquid 

molecules at the liquid-gas interface, creates the driving force for penetration of the 

liquid column inside the capillary channel. This force is countered by viscous forces as 

the liquid flows through the capillary channel and can be either countered or augmented 

by gravity forces acting on the liquid. The surface tension force, acting along the 

meniscus surface, induces a pressure jump across the liquid-vapor interface that can be 

determined using the Young-Laplace equation [37]. 
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The earliest investigations of the transient rise of liquids in a vertical capillary channel 

were performed by Lucas [38] and Washburn [27]. In their analyses, a theoretical 

expression known as the Lucas-Washburn equation (LWE) was developed by balancing 

surface tension, viscous and gravity forces acting on the fluid control volume. Fisher 

and Lark [39] validated the LWE for small glass capillary channels using water and 

cyclohexane. The LWE, often considered as the classical model for describing the 

capillary phenomena, does not include the inertial effects in the momentum balance. As 

such, it fails to predict the early stages of liquid penetration when the gravitational and 

viscous forces are relatively small and inertial effects are the primary factor that 

balances the capillary force. In an effort to improve the LWE, Rideal [31] and 

Bosanquet [40] included the effects of inertia on the liquid rise in capillary channels and 

thereby eliminated the non-physical initial velocity observed in the early theoretical 

models. As the height of the liquid column increases, the gravity and viscous forces 

play a more important role and the effect of inertia weakens [41]. The capillary flow can 

be affected by the geometry of the capillary channel, the physical properties of the 

liquid, the solid surface type, and the influence of the liquid flow in a reservoir that 

might exist near the entrance of the capillary channel. Levine et al. [28] noted that the 

assumption of fully-developed Poiseuille flow in the fluid is not strictly valid and, 

hence, the classic LWE is not valid at the two ends of the fluid column, namely near the 

entry region and near the advancing meniscus. They accounted for the pressure field in 

the reservoir near the entry region of a circular capillary channel and developed one of 

the most comprehensive analytical models available in the literature.  
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Non-circular capillary channel geometries such as triangular and rectangular channels 

and parallel plates are also of importance [42,43]. For instance, rectangular channels 

with a high surface-to-volume ratio have been extensively used in microfluidic systems 

due to the potential for high rates of heat and mass transfer between the fluid and solid 

walls [44]. Several analyses similar to those associated with the LWE have been 

performed for non-circular capillary channels and parallel plates of finite length [45–

51]. A unified formulation for the capillary flow in rectangular and circular capillary 

channels was derived by Xiao et al. [52]. They considered the influences of the entrance 

pressure difference, and the dynamic contact angle between the moving liquid front and 

the solid wall as a function of time. Bullard and Garboczi [30] implemented free energy 

minimization principles to obtain the equilibrium height and the meniscus shape for the 

capillary rise between vertical parallel plates.  

Although considerable research has been devoted to understanding the penetration of a 

liquid into a capillary channel, the majority of past works have focused on the 

development of analytical models that employ major simplifying assumptions. Detailed 

CFD modeling can account for several important features that are often ignored in 

analytical models, such as the developing flow in the entrance region of the capillary 

channel, the slip flow condition at the advancing meniscus, and the inertial forces acting 

on the fluid in the reservoir.  Among available CFD techniques, the volume of fluid 

(VOF) methodology has been one of the most popular [15]. In this method, the liquid-

gas interface is confined to cells that have a liquid volume fraction between 0 and 1 and 

is reconstructed using various techniques including the donor-acceptor method [15] or 

piecewise linear interpolation method [53], among others. The main drawbacks of the 
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VOF techniques are that the exact interface location is uncertain because of the discrete 

volume fraction information, and the flow variables and fluxes at the interface are 

averaged over the computational cell. Gaulke and Dreyer [54] numerically simulated 

the capillary liquid rising between parallel perforated plates under microgravity 

conditions using the commercial CFD package Flow3D. They employed the VOF 

model and validated their predictions experimentally. An accuracy within the range of 

10-15% was reported. A series of static and dynamic contact angle numerical 

simulations of the capillary rise between parallel plates was carried out by Schonfeld et 

al. [55] employing the commercial flow solver CFX4 and the VOF technique. In order 

to achieve mesh independent numerical results, they proposed a macroscopic slip range 

in the vicinity of the contact line along with an appropriate body force. Saha and Mitra 

[56] also used the VOF approach to study dynamic contact angle models for the 

capillary flow in a microchannel with integrated pillars. In a companion study, they 

employed the VOF method to investigate the capillary flow in a patterned microchannel 

with alternating layers of hydrophilic and hydrophobic walls [57]. More recently, 

Grunding et al. [58,59] conducted a computational analysis of a liquid rising between 

parallel plates using various numerical approaches including VOF and arbitrary 

Lagrangian-Eulerian (ALE) method. Following the assumption of the classic analytical 

model, they assumed that the meniscus was a circular arc and remained unchanged 

during the penetration of liquid into the capillary channel. In the ALE method, the 

computational grid is neither fixed in space nor follows the motion of the material 

elements. Instead, the mesh moves in an arbitrarily described manner to accommodate 

the motion or deformation of a boundary [60,61]. The effect of the mesh motion is 
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accounted for by modifications to the material derivative in the Navier-Stokes equations 

[62]. In this technique, frequent remeshing is required to avoid large mesh distortions 

and to maintain the mesh quality. 

The review of the literature reveals that, despite the extensive volume of research 

conducted on capillary flow, there remains a lack of CFD modeling that can predict the 

transient evolution of the meniscus shape and directly track the sharp liquid-gas 

interface. Interestingly, among various computational methods, the full continuum 

mechanical solution to the penetration of a liquid in a capillary channel has received 

little attention. Therefore, the main objective of this study is to develop a CFD model 

capable of accurately simulating meniscus formation dynamics and capillary flow 

behavior of a liquid column between two vertical parallel plates. Unlike previous CFD 

studies, the meniscus profile will not be prescribed but allowed to dynamically evolve 

based on the interaction among the surface tension, adhesion, gravity and viscous 

forces. The two-dimensional transient conservation equations for mass and momentum 

will be solved with the ALE method in a finite volume formulation using the 

commercial CFD package ANSYS Fluent. The capillary pressure differential resulting 

from the curvature of the meniscus is applied as a boundary condition to the interface 

using user-defined functions (UDFs). A dynamic mesh method will be implemented to 

directly track the interface with no need to employ implicit interface tracking schemes. 

The developed sharp interface tracking method allows for more accurate prediction of 

meniscus and capillary channel height dynamics compared to previous VOF models. It 

is noted that complex physical phenomena related to the dynamic contact angle and 
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triple point hysteresis affect the dynamics of capillary flow, however, incorporation of 

these effects is out of the scope of the present study. 

 

3.2 Problem Description 

The capillary flow of water between vertical parallel plates is considered using the 

computational domain shown in Fig. 3.1. The physical domain consists of two main 

parts, namely the capillary channel and the reservoir. The capillary channel is formed 

by partially submerging two vertical parallel plates with a wall spacing of � into the 

large liquid reservoir. The reservoir has a width of 11 mm on each side of the capillary 

and is 10 mm (22 mm) tall for the hydrophilic silver (hydrophobic Teflon) plates. The 

initial height of the liquid in the reservoir is 2 mm less than the reservoir height for both 

silver and Teflon plates. The space above the liquid surface in the reservoir is filled with 

air. The contact angle � between the liquid and the solid walls, measured relative to the 

vertical plane, is constant at 63° and 110° for silver (Ag) and Teflon (PTFE) walls, 

respectively [63,64]. The submerged section of the plates is 3 mm and 15 mm deep into 

the water for the silver and Teflon, respectively. The plates are 1 mm thick, and their 

spacing will be varied from 0.5 mm to 3 mm.  

The initial height of the liquid between the vertical plates is assumed to be equal to the 

height of the water in the reservoir. The upward penetration (or downward depression) 

of water into (or out of) the capillary channel begins by changing the contact angle � 

between the liquid and the walls from 90° at t = 0 to 63° (or 110°). As the liquid in the 

capillary channel rises (falls) the liquid in the reservoir recedes (advances). The time-

varying interface location between the air and water in the reservoir is captured using a 
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VOF technique. It is noted that the changes of the liquid height in the reservoir are 

relatively small due to the significantly greater free surface area in the reservoir 

compared to that in the capillary channel. Both air and water were assumed to be 

incompressible and Newtonian fluids with constant properties shown in Table 3.1. A 

gravitational acceleration of 9.81 m/s2 is applied in the negative y-direction. 

 

Table 3.1 Physical properties of water and air. 

Fluid Water Air 

Density, � (kg/m3) 998.2 1.225 

Dynamic viscosity, � (kg/m·s) 1.003×10-3 1.7894×10-5 

Surface tension, � (N/m) 0.0728  

 

 

Fig. 3.1 Liquid in a vertical capillary channel with (a) penetration due to hydrophilic 

walls, and (b) depression due to hydrophobic walls. 

 

3.3 Computational Model 

Transient conservation equations for the mass and momentum for two-dimensional 

laminar flow with constant properties are: 
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� ∙ � = 0 
(3.1) 

� �
��

��
�

���
+ ((� − �����) ∙ �)�� = −�� + � ��� + �� 

(3.2) 

where �, �, �, �, �����, �, and � are time, density, dynamic viscosity, velocity vector, 

mesh velocity vector, pressure, gravitaty vector, respectively. It should be noted that the 

first term in the left-hand side of the momentum equation represents the time derivate in 

the referential domain (i.e., the coordinate system following the moving mesh). The 

VOF approach was employed to capture the liquid-air interface in the reservoir. The 

evolution of the liquid volume fraction in the reservoir is described by: 

���

��
+ � ∙ ��� = 0 (3.3) 

where �� is the liquid volume fraction. The air volume fraction is �� = 1 − ��. 

 No-slip conditions were applied at the walls, except at the moving contact line 

between the meniscus and the walls where the no-slip boundary condition is not valid 

due to the singularity in the viscous stress [65,66]. In the current study, after the 

enforcement of the contact angle the grid nodes on the contact line are moved with the 

same velocity as their immediate grid node neighbors to preserve the contact angle. 

Pressure boundary conditions were prescribed above the meniscus and at the top 

boundary of the reservoir.  

An ALE scheme [60–62] with a dynamic mesh was employed in the fluid within the 

capillary channel to directly track the meniscus without using implicit interface tracking 

schemes. This technique is useful in the simulation of fluid flow problems with moving 

boundaries. The effect of the mesh motion in the governing equations (3.1) to (3.3) is 
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accounted for by calculating the advective terms at the surfaces of the control volumes 

using the velocity difference between the flow and the control surface.  

The preceding equations and the related boundary conditions were solved using a finite 

volume scheme implemented in the commercial CFD package ANSYS Fluent. The 

SIMPLE algorithm [67] was used for the velocity-pressure coupling. The pressure, 

velocity, and volume fraction at the cell interfaces were interpolated using the 

PRESTO!, QUICK, and piecewise-linear interpolation schemes, respectively [53,67]. 

At each time step, the local capillary pressure difference across the meniscus, ∆�, 

resulting from the local curvature of the water-air interface, �, was determined using 

Laplace’s equation, ∆� = ��, where � is the surface tension [68]. The pressure profile 

was then applied to the interfacial faces in the capillary channel and the governing 

equations were solved. The calculated velocities at the interfacial cells in the y-direction 

were used to update the position of the meniscus nodes. A new pressure profile was 

determined based on the updated meniscus shape and was applied as the boundary 

condition at the meniscus in the new time step.  

Due to the large density and viscosity differences between the air and water, the air flow 

was neglected. Under-relaxation factors were adjusted when needed to enhance the 

convergence. The solution in each time step was considered to be converged when the 

scaled residuals for all the equations decreased to less than 10-4. Due to the transient 

nature of the problem and the dependence of the mesh motion on the flow field, the 

implicit update feature of the dynamic mesh method in Fluent was enabled to update the 

mesh multiple times during a time step. This practice improved the stability and 
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convergence by enforcing a stronger coupling between the mesh motion and the 

evolving flow field in the liquid.  

 

3.3.1 Calculation of the Meniscus Curvature 

As noted previously, the water-air interface is assumed to be initially flat. At the initial 

time step, the first and last control surfaces on the meniscus (adjacent to the walls) are 

inclined at an angle equal to the contact angle between the liquid and the solid walls. 

The contact angle remains unchanged throughout the simulation. The initial local 

curvature imposed by the contact angle creates a pressure difference across the interface 

at the control surfaces adjacent to the wall. This pressure difference induces liquid 

motion near the walls. The liquid motion, initiated at the corners of the meniscus, 

propagates towards the middle interfacial control volumes due to the surface tension 

and diffusion effects. At each time step, the capillary pressure difference across each 

interfacial control surface is determined based on the local curvature of the liquid-gas 

interface through use of the Laplace equation. Figure 3.2 shows the curve fitting method 

employed to determine of the local meniscus curvature. To determine the curvature at 

each control surface, a third-degree polynomial curve fitting was applied using the 

coordinates of the endpoints of the control surface and the endpoints of the two 

neighboring surfaces. For example, the curvature at the control surface connecting 

nodes 3 and 4 in Fig. 3.2 was determined by using a cubic polynomial passing through 

nodes 2 to 5 (the dash-dot green curve). Using the equation of the curve, � = �(�), the 

curvature at the midpoint of the control surface was approximated from � =

�"(�)/[1 + �′(�)�]�/�, where � is the �-coordinate of the midpoint of the control 
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surface. The green square symbol between the nodes 3 and 4 in Fig. 3.2 shows where 

the curvature associated with the control surface 3-4 was calculated. 

The preceding procedure was applied to all the control surfaces on the meniscus except 

the two control surfaces adjacent to the walls. For these corner control surfaces, a 

quadratic polynomial curve fitting was employed (the red dashed curve in Fig. 3.2). The 

quadratic curve fitting for the left-corner control surface used the coordinates of nodes 1 

and 3 and the contact angle at the wall (see Fig. 3.2). The slope at the wall was used 

instead of the coordinates of node 2 to preserve the exact contact angle between the 

liquid and the wall. After the curve fitting, the curvature at the midpoint of the control 

surface 1-2 was approximated by using the coordinates shown by the red triangle 

between nodes 1 and 2, where � is the average �-coordinate of nodes 1 and 2, and � is 

the value of the quadratic function at �. Determination of the pressure profile at the 

meniscus and the associated mesh motion were implemented by using user-defined 

functions (UDFs) developed in C++ and hooked to ANSYS Fluent version 19.1. The 

non-uniform pressure profile along the meniscus obtained using the above procedure 

changed at each time step.  
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Fig. 3.2 Calculation of the local curvature of the meniscus. The red dashed curve is 

the quadratic polynomial used to obtain the curvature of the corner control surface 

(connecting nodes 1 and 2), and the green dash-dot curve is the cubic polynomial 

used to calculate the curvature at a representative middle control surface (connecting 

nodes 3 and 4). The triangular and square symbols show the point where the 

curvature is calculated. 

 

3.4 Results and Discussion 

This section is organized as follows. First, the independence of the results from the grid 

and time step size were verified. Next, the model was validated by comparing the 

predicted equilibrium capillary height and equilibrium meniscus shape to those 

predicted using existing theoretical models. The dynamics of the meniscus formation 

are presented next, followed by a description of the flow field at the advancing 

meniscus and in the vicinity of the channel entrance. Finally, the validated model is 

employed to study the effect of the wall spacing on the transient capillary flow in both 

hydrophilic and hydrophobic channels. 
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3.4.1 Grid and Time Step Size Independence 

The grid was split into several blocks in order to achieve better control over the mesh in 

critical portions of the domain, especially in the capillary channel and in the reservoir in 

the vicinity of the capillary channel inflow region. The independence of the 

computational results from the grid and time step size was verified by systematically 

varying the mesh resolution and the time step size. Figure 3.3 depicts the height of the 

water column vs. time for the case of � = 0.7 mm and � = 63° with five different grid 

densities in the capillary channel corresponding to � = 20 to 60 cells along the channel 

width. For each grid, the cell height in the y-direction was also changed to maintain a 

cell aspect ratio of about one.  Here, the water column height is defined as the distance 

between the average y-location of the meniscus and the y-location of the liquid in the 

reservoir, as shown in Fig. 3.1. It can be seen in this figure that increasing the number 

of cells across the channel beyond 50 did not have a noticeable effect on the results. 

Additional discussion of the details of the transient response is presented in Sec. 3.4.4. 

It is noted that a similar study was carried out for the wall spacing of w = 2 mm and it 

was found that a grid containing 140 cells in the x-direction provided grid independent 

results. 



 

50 

 
Fig. 3.3 Grid independence study for the rise of the liquid column vs. time for wall 

spacing of � = 0.7 mm, � = 63° and �� = 10-5 s. 

 

Figure. 3.4 shows the influence of the time step size, from 5×10-6 s to 2×10-5 s, on the 

predicted water column height for � = 0.7 mm and � = 63°. As evident, decreasing the 

time step size to less than 10-5 s did not improve the accuracy of the results noticeably. 

Considering the results shown in Figs. 3.3 and 3.4, a computational grid consisting of 

50 cells along the capillary channel width (~33,800 total cells) and a time step size of 

10-5 s were used for the predictions of this study. 
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Fig. 3.4 Time step independence study for the rise of the liquid column vs. time for 

wall spacing of � = 0.7 mm, � = 63° and � = 50. 

 

3.4.2 Model Validation by Comparison to Theoretical Predictions 

In the absence of experimental work on capillary flow between infinitely long parallel 

plates, the model was further validated by comparing the predicted equilibrium liquid 

height and meniscus shape to those obtained from available analytical models.  

 

3.4.2.1 Equilibrium Capillary Liquid Height 

The equilibrium capillary liquid height can be obtained by applying a balance between 

the surface tension and gravitational forces, resulting in ℎ� = 2�����/(���). The 

computationally determined equilibrium capillary heights for hydrophilic and 

hydrophobic parallel plates were compared with the analytically predicted values. For 

each case, two wall spacing values of 0.5 mm and 0.7 mm were examined. Silver and 

Teflon were considered to represent hydrophilic and hydrophobic walls with contact 
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angles of � = 63° and � = 110°, respectively. The comparison results are shown in 

Table 3.2. As indicated in the table, the equilibrium heights predicted by the CFD 

model are in good agreement with the theoretical values, with differences less than 

0.5%. 

 

Table 3.2 Comparison of the computationally determined equilibrium heights with the 

theoretical equilibrium heights for hydrophilic (Ag) and hydrophobic (PTFE) walls with 

spacings of � = 0.5 mm and � = 0.7 mm. 

 ℎ� (mm) 

 � = 0.5 mm � = 0.7 mm 

 Ag PTFE Ag PTFE 

Analytical 13.501 -10.171 9.643 -7.265 

CFD 13.562 -10.214 9.683 -7.284 

Deviation (%) 0.45 0.42 0.41 0.26 

 

3.4.2.2 Equilibrium Meniscus Shape 

The accuracy of the present computational model in terms of the predicted steady-state 

meniscus shape was verified by comparing the shapes to those of the theoretical model 

presented by Bullard and Garboczi [30]. The model developed in [30] was programmed 

by the authors and used to simulate silver and Teflon capillary channels with a wall 

spacing of 0.7 mm. Figure 3.5 shows the comparison results. Note that the origin of the 

coordinate system in Fig. 3.5 is set at the left contact line. As evident, the CFD 

predictions are in excellent agreement with those of the theoretical model, 
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demonstrating the ability of the computational model to accurately predict the meniscus 

shape for either hydrophilic or hydrophobic capillary walls.  

 

  

Fig. 3.5 Comparison of the predicted steady-state meniscus shape with those 

determined from the analytical model of [30] for water confined between parallel (a) 

silver and (b) Teflon plates with � = 0.7 mm. 

 

3.4.3 Dynamics of the Meniscus Formation 

Figure 3.6 shows the evolution of the meniscus shape (between parallel hydrophilic 

silver plates with a spacing of � = 0.7 mm. As evident in Fig. 3.6a, the initially flat 

interface evolves to a developed state in a relatively short time compared to the 

equilibrium time. The time required for the parabolic shape of the meniscus to form is 

about 0.5 × 10-3 s, whereas the equilibrium time of the capillary rise is about 0.5 s. For 

� ≳ 5 × 10�� s, the meniscus shape continues to change slightly until it reaches a 

steady-state shape at equilibrium. It is noted that the initially flat interface is not 

physically viable, however, since the interface evolves to a parabolic shape within about 

0.1% of the equilibrium time, the influence of the initial interface shape on the overall 

dynamic response is negligible. The meniscus pressure distribution across the capillary 
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channel is shown in Fig. 3.6b at the times corresponding to the meniscus profiles shown 

in Fig. 3.6a. As evident, the pressure profile varies significantly during the initial 

formation phase of the meniscus (� ≲ 5 × 10�� s) and reaches an almost uniform 

distribution for � ≳ 5 × 10�� s. 

 

 

Fig. 3.6 (a) Evolution of meniscus profile between parallel silver plates with a wall 

spacing of � = 0.7 mm, and (b) meniscus pressure distribution across the capillary 

channel at different times. 

 

Figure 3.7 shows the equilibrium meniscus shape and the computational mesh near the 

interface for the hydrophilic silver and hydrophobic Teflon walls. As evident, the mesh 

remains approximately uniform throughout the simulation, which improves 

convergence and minimizes numerical errors. 
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Fig. 3.7 Snapshot of the mesh at the steady state (t ≈ 0.5 s) for (a) silver and (b) 

Teflon plates with � = 0.7 mm. 

 

3.4.4 Flow Field at the Advancing Meniscus and Within the Entry Region 

Figure 3.8 shows the velocity field for hydrophilic silver plates with a spacing of � = 

0.7 mm at � = 0.07 s (equilibrium time ≈ 0.5 s). The results, which are drawn to scale, 

demonstrate three important features predicted by the present computational model that 

cannot be accurately captured in theoretical models, namely the slip condition at the 

contact line of the advancing meniscus and the walls, the developing flow in the 

entrance region of the channel, and the inertial effects within the reservoir. As evident 

in Fig. 3.8a, the velocity distribution within the entrance region of the channel is far 

from fully developed with growing boundary layer thicknesses along the walls and an 

increasing centerline velocity. The hydrodynamic entrance length is roughly equal to 

the capillary channel width. Also evident in Fig. 3.8a is the influence of the capillary 

flow on the velocity distribution in the reservoir. As evident in Fig. 3.8b, the velocity 

vectors near the advancing meniscus are nearly uniform along the meniscus. Far from 

the meniscus, however, the velocity vectors exhibit nearly fully developed parabolic 

behavior with the maximum velocity at the center of the capillary channel.  
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Fig. 3.8 (a) Velocity contours in the entry region and near the advancing meniscus, 

and (b) velocity vectors adjacent to the advancing meniscus, for silver plates with  

� = 0.7 mm at � ≈ 0.07 s. 

 

3.4.5 Parametric Study on the Effect of Wall Spacing 

In this section, the transient capillary penetration responses for various wall spacings, 

obtained from the computational model, are compared with the responses predicted by 

theoretical modeling. The theoretical models were described in the Section 2.1 and are 

based on the LWE for which a momentum balance is applied to a control volume 

containing the entire liquid column inside the capillary channel. In the momentum 

balance, the surface forces (adhesion-cohesion and frictional forces) and the body force 

(weight of the liquid) are balanced by the time rate of change in momentum of the 

liquid column and the rate of momentum crossing the control volume at the entrance of 

the channel. As noted by Levine et al. [28], there are two possible approaches to 

quantify the rate of momentum flowing into or out of the capillary channel. In the first 

approximation, it is assumed that the liquid in the reservoir is stagnant but achieves a 
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fully developed velocity profile immediately after entering the capillary channel. In the 

second approximation it is assumed that the liquid in the reservoir again has zero 

velocity, except the liquid element which crosses the inlet boundary of the capillary 

channel is at a velocity equal to the rising velocity of the liquid column (�ℎ/��). 

Regardless of whether the velocity at the capillary channel inlet is zero (first 

approximation) or equal to liquid column velocity (second approximation) the resulting 

momentum balance equations are identical, except for the advective terms. Of course, 

these equations do not account for the details of the flow field in the reservoir and 

additional assumptions are made including an assumed constant and uniformly-

distributed pressure distribution along the meniscus, fully-developed flow throughout 

the capillary channel, and no-slip conditions at the wall including at the advancing 

meniscus. The two forms of momentum balance were described in detail in the Section 

2.1.  

Figure 3.9 shows the capillary penetration versus time for hydrophilic silver channel 

walls and wall spacings from � = 0.5 mm to 3 mm. Alternatively, Fig. 3.10 shows the 

capillary depression for hydrophobic Teflon walls for � = 0.5 mm to 3 mm. From these 

figures it is evident that, as the wall spacing is increased, the liquid column exhibits an 

increasingly oscillatory behavior that eventually stabilizes at an equilibrium height. The 

oscillations are mainly driven by the interplay between the inertial and gravitational 

effects, both of which are volumetric phenomena [69–71]. Viscous forces serve to 

dampen the response and are proportional to the contact area between the liquid and 

solid walls. Increasing the wall spacing increases the volume-to-surface ratio that, in 

turn, leads to a slower decay of the oscillatory response. This phenomenon explains the 



 

58 

presence of the so called "critical capillary radius" [29,72] below which no oscillations 

occur. 

As evident in Figs. 3.9 and 3.10, the damping effect of the viscous forces is severely 

underpredicted by the theoretical models at the large wall spacings. As � increases, the 

height-to-width ratio of the liquid column decreases, and a larger fraction of the column 

will reside within the entrance region. Therefore, the theoretical models, which neglect 

the relatively large viscous forces associated with the entrance region will, increasingly 

underestimate the actual viscous forces as the wall spacing increases. Hence, the results 

shown in Figs. 3.9 and 3.10 highlight an important advantage of the present 

computational model, specifically, the accurate prediction of the dynamic nature of the 

capillary rise and depression at larger wall spacings.  
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Fig. 3.9 Computationally and theoretically predicted water column height for silver 

plates for (a) � = 0.5 mm, (b) � = 1 mm, (c) � = 2 mm, and (d) � = 3 mm. 
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Fig. 3.10 Computationally and theoretically predicted water column height for 

Teflon plates for (a) � = 0.5 mm, (b) � = 1 mm, (c) � = 2 mm, and (d) � = 3 mm. 

 

In order to obtain insight on the effect of wall spacing on the capillary penetration and 

depression, the computationally determined capillary height histories for silver and 

Teflon plates with various wall spacings are presented in Fig. 3.11. As evident, as the 

wall spacing is increased the equilibrium height is decreased, and a longer time is 

needed to reach equilibrium. This trend is consistent with previously reported results 

[29].  
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Fig. 3.11 Computational predictions of the capillary penetration of water between 

vertical parallel plates with various wall spacings, (a) silver and (b) Teflon plates. 

 

To further examine the time needed to reach an equilibrium state, the equilibrium 

time, ��, for various wall spacings for both hydrophilic and hyperbolic channels is 

shown in Fig. 3.12. To quantify the equilibrium time, a normalized oscillation 

amplitude was defined as the height difference between consecutive peaks and 

valleys of the ℎ(�) responses divided by the average height between that peak and 

valley, ��� = 2 (ℎ���,� − ℎ���,�)/�ℎ���,� + ℎ���,��, where ℎ���,� and ℎ���,� are the 

capillary heights at peak and valley in the �th half-cycle, respectively. As the time 

evolved, the first half-cycle in which ��� dropped below 1% was identified. During 

that half-cycle, the time at which the height reached the average height of the half-

cycle was identified as the equilibrium time. Curve fitting was applied to the 

equilibrium data extracted from Fig. 3.11 to correlate the calculated equilibrium time 

with the wall spacing. As shown in the figure, the equilibrium time as a function of 

the wall spacing can be represented by quadratic and linear curves for the hydrophilic 

and hydrophobic capillary channels, respectively.  
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Fig. 3.12 The equilibrium time versus the wall spacings for (a) silver, and (b) 

Teflon plates. 

 

Figure 3.13 shows the influence of the wall spacing on the dimensionless capillary 

pressure (�∗ = Δ�����/(2�����)) distribution along the dimensionless channel 

width, �∗ = �/�, for both hydrophilic and hydrophobic wall cases. Note that a 

constant �∗ along the channel width would correspond to a meniscus of constant 

curvature. As evident in Fig. 3.13a, the nondimensional pressure profile for w = 0.5 

mm exhibits the least variation across the channel (the meniscus is closest to a 

circular arc). As the wall spacing increases, the pressure profile deviates more from a 

horizontal line, reflecting the stronger deviation of the meniscus shape from a circular 

arc. It is noted that as the wall spacing increased, the curvature at the center of the 

meniscus decreased, approaching a flat surface (�∗ → 0) in the limiting case of 

extremely large wall spacing.  
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Fig. 3.13 Comparisons of normalized capillary pressure vs. normalized channel 

width for various wall spacings from � = 0.5 mm to � = 3 mm, (a) silver, and 

(b) Teflon plates. 

 

3.5 Conclusions 

A computational model has been developed to simulate the capillary penetration or 

depression of liquid between hydrophilic and hydrophobic vertical parallel plates with 

various wall spacings. A dynamic mesh method was employed to directly track the 

interface with no need for implicit interface tracking schemes. Excellent agreement 

was observed between the numerical predictions and the theoretical solutions for the 

steady-state capillary height and meniscus shape. The effect of the wall spacing on 

the dynamics of capillary flow was investigated. It was found that, as the wall spacing 

increased, the equilibrium height decreased and the time to reach equilibrium 

increased. The computational model was able to accurately predict the capillary 

penetration or depression regardless of the wall spacing, whereas the theoretical 

models fail to predict the dynamic response accurately for wider capillary channels. It 

was also shown that the meniscus shape deviated from circular arc as the wall spacing 

increased. An important feature of the present CFD model is the sharp interface 
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tracking and reconstruction. This feature might be particularly advantageous in 

problems involving interfacial heat and mass transfer where accurate specification of 

the interfacial fluxes is critical. 
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CHAPTER 4: A NOVEL COMPUTATIONAL MODEL OF THE 

DYNAMIC RESPONSE OF THE EVAPORATING LIQUID-VAPOR 

INTERFACE IN A CAPILLARY CHANNEL 

 

In this chapter, the arbitrary-Lagrangian-Eulerian computational model discussed in the 

previous chapter is further extended to predict the dynamic response of an evaporating 

meniscus in the capillary flow of superheated liquids between vertical parallel plates. 

 

4.1 Background 

Interfacial liquid-vapor phase change phenomena play a significant role in a wide 

variety of natural and engineering systems, including transpiration in plants [73], 

membrane distillation [74], electronics cooling, and cooling devices such as heat pipes, 

capillary pumped loops, microfluidic devices, as well as in advanced energy systems 

and fuel cells [4,75–77]. There are several complex aspects involved in the fluid flow 

and heat transfer processes associated with the interfacial liquid-vapor phase change in 

capillary conduits including nonlinearity, transient behavior, interface displacement, 

dynamic interactions between the phases, and pressure as well as momentum jumps 

across the liquid-vapor interface. A substantial amount of research has been conducted 

on the hydrodynamic behavior of the meniscus in capillary structures. Lucas [26] and 

Washburn [27] established the first theoretical solutions to the problem of liquid rise in 

a capillary tube, neglecting the inertia effect. Thereafter, other researchers included the 

inertia effects in the Lucas-Washburn Equation (LWE) and extended the formulation, 

accounting for more effective factors and using various geometries for the capillary 
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channel [30,31,78,79]. Using the extended models, several detailed hydrodynamic 

aspects such as monotonic and oscillatory flow regimes and the transition between them 

were also investigated [59,71,80]. A relatively small number of studies have been 

conducted on the interfacial heat transfer and phase change at the meniscus. In the 

following discussion, some of the most relevant studies concerning the characteristics of 

liquid-vapor meniscus subject to phase change are reviewed. 

Inspired by the transpiration phenomenon in plants, Rand [81] theoretically analyzed 

the dynamics of an evaporating pinned liquid-air meniscus in a vertical capillary glass 

tube. A nonlinear differential-integral equation was derived to describe the meniscus 

motion due to a step-change in the evaporation. The obtained governing equation was 

then linearized, yielding a nondimensional parameter which can be used as a criterion 

for the transition from monotonic to oscillatory behavior of the meniscus.  

Ramon and Oron [32] pioneered the extension of the LWE [26,27] by including the 

effect of interfacial mass transfer due to phase change on the dynamic evolution of a 

completely wetting meniscus in a capillary tube. The evaporation was assumed to be 

driven by a constant temperature difference between the meniscus and the liquid in the 

capillary tube. The evaporation rate was calculated using an equation based on the 

kinetic theory [82]. It was argued that in the presence of either evaporation or 

condensation two mechanisms, mass transport and vapor recoil, determine the 

characteristics of the capillary flow such as equilibrium height, the transition threshold 

from monotonic to oscillatory regimes, and the frequency of the oscillations. It was also 

noted that if the phase change rate is high enough, instability could appear in the liquid 

oscillations.  
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In a related study, Sanches et al. [83] presented an analytical solution for the LWE 

coupled with a one-dimensional energy equation to investigate the penetration of a 

condensing meniscus in a capillary tube. The meniscus was assumed to be flat and at a 

constant saturation temperature. The authors analyzed the results of the moving 

interface subject to the condensation as a function of the non-dimensionalized 

parameters.  

Polansky and Kaya [84] performed experiments associated with a modified LWE-type 

analytical model to study the dynamics of capillary rise under evaporation conditions 

using various liquids, capillary tube diameters, and thermal loads. Unlike the model 

developed by Roman and Oron [32], the mass flux at a flat liquid-vapor interface was 

assumed to vary with time by adding an asymptotic transient mass function. The results 

showed that predictions of the analytical model agreed with experimental results in the 

case of a 1 mm diameter capillary tube, while for capillary diameters of 0.5 mm and 2 

mm a noticeable difference in the amplitude and phase of oscillations was observed 

between the analytical and experimental results. It was also found that modifications to 

the model did not reduce the discrepancy between the analytical and experimental 

results.  

More recently, Benselama et al. [85] developed a theoretical model in the same 

framework as [21-23] to show the effect of an electric field on an evaporating dielectric 

liquid between metallic parallel plates (electrodes). Compared to the previous work of 

Ramon and Oron [32] that considered the recoil pressure term in the LWE, Benselama 

et al. [85] introduced an additional term for the electrostatic pressure due to the 

dielectrophoretic force. They also modified the momentum equation to include the 
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thermo-electrohydrodynamic effects. The electrodes used as the capillary channel walls 

were subjected to heat loads, and cryofreezing fluids (hfe-7100™ and hfe-7300™) were 

used as the working fluid. The contact angle was assumed to be constant. The findings 

revealed that the equilibrium height of the meniscus depends on both the applied 

electric field and the input heating power. 

Rao et al. [86] experimentally studied the dynamics of thermally driven oscillatory 

flows in a vertical capillary tube including both evaporator and condenser sections, with 

the application of interest being pulsating heat pipes. Using a high-speed camera, the 

meniscus contact angles during downward and upward motions were measured. Antao 

et al. [87] examined the shape of evaporating liquid-vapor interfaces in silicon 

micropillar arrays using the transient laser interferometry technique. Deionized water 

was the working fluid. The evolution of the meniscus shape from flat to having a 

maximum curvature, and location of the meniscus were determined for various 

micropillar geometries and heating powers. Additionally, a computer code, Surface 

Evolver [88], was employed to solve the Young-Laplace equation to obtain the shape of 

the liquid-vapor interface by minimizing the surface energy. 

Soma and Kunugi [89] experimentally evaluated the impact of macroscopic curvature 

and contact-line length on the evaporating meniscus of water located between vertical 

parallel glass plates with wall spacing from 0.3 mm to 1.5 mm. The plates were of 26 

mm width, 76 mm height, and 1.0 mm thickness and the findings revealed that by 

increasing the curvature, the evaporation rate and the evaporation flux increased. In an 

experimental and theoretical study by the same researchers [90], evaporation in two 

capillary geometries, namely in a glass tube and between parallel plates, was studied. 
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The inner diameter of the capillary tube and the wall spacing of the parallel plates were 

identical. The variations of evaporation rate and flux with the meniscus shape were 

discussed, and an analytical scaling law was obtained to relate the rates and fluxes to the 

shapes. 

Although there are several investigations of the steady-state evaporation from menisci 

having a prescribed fixed shape, only a few studies have focused on the transient 

response of evaporating menisci. Among them, none considers the evolution of the 

meniscus profile under evaporation. Moreover, to the authors' knowledge, no 

computational modeling of the transient response of an evaporating meniscus in 

capillary channels has been reported.  Therefore, the objective of this study is to 

develop a computational model to directly simulate the dynamic response of the 

evaporating meniscus between parallel plates. The model removes the limitations of the 

theoretical treatments, such as the assumption of a fixed meniscus shape, specification 

of a pre-determined evaporation rate, and utilization of a simplified hydrodynamic 

model, by using a direct interface tracking method implemented on a deforming 

computational grid. Unlike the previous investigations, the meniscus shape and 

interfacial mass flow rate are not specified, but will be obtained as part of the solution 

of the problem. Once validated, the model is employed to conduct a detailed parametric 

study of the effects of wall spacing and liquid superheat on the dynamic response of the 

evaporating water meniscus.  

The manuscript is organized as follows. In Section 4.2, the problem description is 

presented. The governing equations and associated boundary conditions, along with the 

numerical procedure are presented in Section 4.3. Specifically, an arbitrary Lagrangian-
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Eulerian (ALE) approach, implemented in the commercial CFD package Ansys 

FLUENT 19.1, is employed to solve the governing equations. Section 4.4 presents the 

model validation, the simulation results, and related discussion. Concluding remarks are 

provided in Section 4.5. 

 

4.2 Description of the Physical System 

The two-dimensional computational domain of Fig. 4.1 consists of two infinitely wide 

vertical parallel plates with a spacing of w, partially dipped into a large reservoir 

containing liquid water. The infinitely thin parallel plates are assumed to have the 

wetting characteristics of copper and are 23 mm high in the y-direction, the bottom 3 

mm of which is initially submerged in the liquid. The reservoir is 10 mm tall in the y-

direction and has a length of 10 mm on each side of the capillary channel in the x-

direction. Initially, the liquid height in the reservoir is 8 mm. Inside the reservoir, 

superheated liquid water is assumed to be in equilibrium with superheated water vapor 

that fills the top of the reservoir. Within the capillary channel, the meniscus is exposed 

to saturated water vapor filling the space above the meniscus. The initial shape of the 

liquid-vapor interface in the capillary channel is assumed to be flat (�=90°) and is at the 

same height as the free surface of the liquid in the reservoir. The vapor in the reservoir 

and all the liquid in the computational domain are initially superheated, whereas the 

meniscus and the vapor above it in the capillary channel are at saturation temperature. 

To start the simulations, the contact angle between the interfacial control surfaces 

immediately adjacent to the wall is switched to the prescribed value, � = 72° (relative to 

the vertical plane) which is for water in contact with the copper walls [91]. As the 
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simulation proceeds, the temperature difference between the superheated liquid in the 

capillary channel and the saturated vapor adjacent to the liquid-vapor interface drives 

the heat transfer and the related evaporation process. Both liquid and vapor are assumed 

to be incompressible Newtonian fluids with constant thermophysical properties, as 

listed in Table 4.1. A gravitational acceleration of 9.81 m/s2 in the negative y-direction 

is specified. 

 

Fig. 4.1 Schematic of the partially wetting, evaporating liquid-vapor meniscus in a 

capillary channel. 
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Table 4.1 Thermophysical properties of liquid water and water vapor at 25°C [4]. 

 Water 

 Liquid Vapor 

Density, � (kg/m3) 997.5 2.57×10-3 

Dynamic viscosity, � (kg/m·s) 9.14×10-4 9.88×10-3 

Latent heat of evaporation, ℎ�� (kJ/kg) 2442 - 

Molecular weight, �� (kg/kmol) 18 18 

Specific heat, �� (J/kg⸳K) 4183 1912 

Surface tension, � (N/m) 0.072 - 

Thermal conductivity, � (W/m⸳K) 0.61 1.86×10-2 

 

4.3 Governing Equations and Numerical Methodology 

The governing equations, boundary and initial conditions, and details of the 

computational model and specific treatment of evaporation at the liquid-vapor interface 

are now presented. 

 

4.3.1 Governing Equations 

The following assumptions are made in the development of the computational model. 

Both the liquid and vapor are considered to be Newtonian fluids with constant 

thermophysical properties, the flow is laminar and incompressible, and viscous 

dissipation as well as natural convection are negligible. Furthermore, since the widths of 

capillary channels studied range from 0.3 to 0.7 mm, the influence of intermolecular 
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forces on the evaporation heat transfer rate from the meniscus is assumed to be 

negligible [92]. 

Considering the preceding assumptions, the two-dimensional, time-dependent 

conservation equations for mass, momentum, and energy in the ALE framework are 

[21]: 

�∇ ∙ � + ����� = 0 (4.1) 

� �
��

��
�

���
+ �(� − ��) ∙ ∇��� = −∇� + � ∇�� + �� (4.2) 

��� �
��

��
�

���
+ (� − ��) ∙ ∇�� = � ∇�� (4.3) 

where �, �, �, ��, and � are time, density, thermal conductivity, specific heat at constant 

pressure, and dynamic viscosity, � and � are the pressure and temperature, and � and 

�� are the fluid velocity and mesh velocity vectors in the spatial domain, respectively, 

����� is the volumetric mass source term, and � is the gravity vector. Equations (4.1) -

(4.3) are applied to both the liquid and the vapor throughout the entire computational 

domain. Boundary and initial conditions are presented in Section 4.3. It is noted that 

Smass in Eq. (4.1) is zero everywhere except in the vapor domain adjacent to the 

meniscus.  

The first terms in the LHS of Eqs. (4.2) and (4.3) represent the time derivative in the 

referential domain (i.e., the coordinate system that coincides with the moving mesh). 

Moreover, � − �� represents the advective velocity, that is, the relative velocity 

between the fluid and the mesh. Thus, the arbitrary motion of the computational mesh is 

only reflected in the LHS of the momentum and energy equations [21]. 
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Unlike the liquid-vapor interface in the capillary channel that is tracked directly using 

the dynamic mesh, the liquid-vapor interface in the reservoir is captured using the VOF 

method with a fixed grid [15]. The liquid volume fraction, �� , distribution in the 

reservoir is determined by solving the following scalar transport equation: 

���

��
+ � ∙ ∇�� = 0 (4.4) 

where �� is the ratio of the computational cell's volume occupied by liquid to its total 

volume. Obviously, the volume fraction of vapor satisfies �� = 1 − ��. No evaporation 

occurs in the reservoir since the liquid and vapor are in thermal equilibrium. 

 

4.3.2 Computational Domain 

In this study, the computational domain is divided into two subdomains: Ω� which 

includes the saturated vapor above the liquid in the capillary channel, and Ω� which 

contains the rest of the system, i.e., all the liquid and the superheated vapor in the 

reservoir. In the following, the term liquid subdomain refers to Ω�. As noted previously, 

the flow and energy equations are solved for both Ω� and Ω�. The two subdomains share 

the liquid-vapor interface (����) in the capillary channel as their common boundary 

(���� = Ω� ∩ Ω�). Figure 4.2 shows the schematic view of the overlapped interfaces of 

Ω� and Ω�. The two subdomains are coupled through boundary conditions applied at the 

meniscus whose time-varying shape and position is determined by solving for the flow 

field in Ω� under a spatially varying and time-dependent pressure boundary condition 

applied along the meniscus. Once the updated positions of all the interfacial nodes are 

determined at any time, t, the grid is deformed in both subdomains to move the 

meniscus to the new position at time t+Δt.  
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Fig. 4.2 Representation of computational subdomains in the vicinity of the liquid-vapor 

interface. 

 

4.3.3 Boundary, Initial, and Interfacial Conditions 

An initial velocity of zero is applied throughout the entire domain. No-slip and adiabatic 

conditions are applied at the interior vertical wall surfaces of the capillary channel and 

the reservoir walls. However, the moving contact line between the meniscus and the 

capillary channel walls is treated differently since the no-slip boundary condition is not 

valid due to the singularity in the viscous stress [65,66]. Specifically, the prescribed 

contact angle at the two interfacial control surfaces adjacent to the walls is imposed by 

incorporating a User-Defined-Function (UDF) developed in C++. The computational 

nodes representing the contact line are moved along the wall at the same velocity as the 

liquid flow in the control volume adjacent to the wall. This approach is more accurate 

than the traditional CFD models of the capillary flow, such as VOF-based models, since 

it removes the unrealistic no-slip condition at the contact line. It is noted that the present 

model does not incorporate the assumption of a constant pressure difference across the 
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meniscus along its length. Instead, the local pressure differences across each interfacial 

control surface are calculated based on the local curvature of the meniscus and the local 

pressure exerted by the vapor. Furthermore, unlike previous studies where a fixed 

meniscus shape was prescribed throughout the entire simulation [59,83], the evolution 

of the meniscus shape in the current simulation is obtained as a part of the solution. 

Finally, a gauge pressure of zero is applied at the top boundaries of the vapor 

subdomain and reservoir. Detailed discussion of the hydrodynamic component of the 

modeling is presented elsewhere by the authors [93,94]. At the top boundaries of the 

vapor subdomain and the reservoir, constant temperatures equal to saturation 

temperature and superheated temperature are imposed, respectively.  

 

4.3.3.1 Heat Transfer, Mass Flux, and Boundary Conditions at the Liquid-Vapor 

Meniscus 

Meniscus boundary conditions in the vapor subdomain: 

As noted in Section 4.3.2, the liquid-vapor interface in the capillary channel links the 

two computational subdomains and represents two overlapping boundaries for the liquid 

and vapor subdomains to which different boundary conditions are applied. In Ω�, the 

meniscus is treated as a no-slip wall boundary condition that is impermeable to flow. 

The vapor generation due to evaporation is simulated using a vapor mass source term 

applied to the first layer of vapor cells adjacent to the meniscus. The temperature of the 

meniscus in Ω� is calculated as the saturation temperature corresponding to the local 

vapor pressure. It is noted that the vapor pressure changes along the vapor subdomain 

are found to be negligibly small compared to the operating vapor pressure. 
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Meniscus boundary conditions in the liquid subdomain:  

The meniscus in Ω� is treated with a pressure boundary condition. The value of the 

pressure is obtained from the application of the Young-Laplace equation at each 

interfacial control surface, superimposed with the vapor pressure exerted on the 

meniscus. In each time-step, the capillary pressure difference across each interfacial 

control surface is calculated using the local curvature of the liquid interface by applying 

the Laplace equation [93]. The pressure exerted on the meniscus by the vapor is 

obtained from the solution of the vapor flow field. This pressure stems from the forces 

attributed to the momentum of the vapor ejected from the evaporating meniscus, and the 

vapor pressure buildup adjacent to the meniscus to overcome the shear force at the 

interface of the vapor and the channel wall. The meniscus temperature in the liquid 

subdomain is the same as in the vapor subdomain, that is, it is the saturation 

temperature at the corresponding vapor pressure. The saturation temperature boundary 

condition in the liquid subdomain is implemented by creating a very thin layer of cells 

(3 μm thick) adjacent to the meniscus, as illustrated in Fig. 4.3. The saturation 

temperature throughout this layer is enforced using an energy source term applied via a 

UDF. Further, the effects of hydrostatic vapor pressure on the meniscus are neglected. 
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Fig. 4.3 Thermal boundary condition imposed at the liquid-vapor meniscus in the liquid 

subdomain. 

 

Evaporation rate at the meniscus: 

The evaporation is driven by applying initial liquid superheats ranging from 1 K to 5 K 

throughout the entire domain, except at the meniscus boundary that is maintained at the 

saturation temperature. The amount of liquid in the reservoir is relatively large, 

therefore its temperature is maintained at the superheated value throughout the entire 

evaporation process. 

For the calculation of the interfacial heat transfer rate, the shortest distance between the 

cell-centroids of the second layer of cells adjacent to the meniscus and the common 

faces between the first and second layers is calculated (see Fig. 4.3). The local heat 

transfer rate reaching each of the interfacial control surfaces is obtained from: 

����� = ���
Δ�

Δ�
 (4.5) 

where, ����, �, and Δ� refer to the liquid thermal conductivity, the surface area per unit 

depth of the control surface between the first and second layers of cells adjacent to the 
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meniscus, and the shortest distance between the cell-centroids of the second layer and 

the common faces of the first and second layers, respectively. 

Once the heat transfer rate per unit depth is known, the local evaporation rate per unit 

depth from each interfacial control surfaces is obtained from: 

�̇��� =
�����

ℎ��
 (4.6) 

where ℎ�� is the latent heat of vaporization. The corresponding local vapor mass source 

applied to the first layer of vapor cells adjacent to the meniscus is: 

����� = �̇���/����� (4.7) 

where ����� and ����� denote the local mass source term and volume of the related 

control volume in the vapor subdomain, respectively. No mass source was employed in 

the liquid subdomain to mimic the mass loss due to evaporation. Instead, the local 

evaporating velocity based on the local evaporation rate is calculated and assigned to 

the meniscus to account for the receding meniscus velocity due to evaporation:  

���� = −�̇���/���� (4.8) 

where �� is the y-component of the interfacial control surfaces. 

 

Net velocity of the evaporating meniscus 

The mass removal velocity, which represents the rate of recession of the meniscus 

height due to mass removal by evaporation, is applied to the interfacial nodes and is 

always downward regardless of whether the meniscus is rising or falling. The net 

velocity of each node on the evaporative meniscus is determined as: 

����� = ���� + ��� (4.9) 
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where ���� is the capillary-induced meniscus velocity with no heat transfer effects, and 

��� is the receding component of the meniscus velocity due to evaporation. It is noted 

that the evaporated liquid leaves the computational model from the top of the capillary 

channel, and vapor enters the domain from the top of the reservoir to replace the 

evaporated liquid. Overall, the total mass contained in the computational domain 

decreases over time as liquid is replaced by vapor in the reservoir. 

 

4.4 Numerical Model Validation, Results, and Discussion 

The governing equations are solved using a pressure-based finite volume scheme 

implemented in the commercial CFD package Ansys FLUENT 19.1. The pressure and 

velocity were coupled through the SIMPLE algorithm [67]. The advective terms in the 

governing equations were discretized using the Quick differencing scheme while a 

PRESTO! method was chosen for evaluation of the pressure gradient term. Also, the 

compressive scheme was used to discretize the volume fraction equation. An implicit 

scheme was adopted for discretization in time. Several UDFs were created and hooked 

to the solver for (i) specification of the time-dependent pressure boundary condition at 

the meniscus, (ii) movement of the meniscus in each time step, (iii) specification of the 

evaporation rate from the meniscus and the corresponding vapor generation, and (iv) the 

enforcement of the saturation temperature at the meniscus. Under-relaxation factors of 

0.2, 0.4, and 0.6 were employed for the solution of the pressure, momentum, and energy 

equations, respectively. The solution was considered to be converged in each time step 

when the scaled residual decreased to 10-5 for the continuity, momentum, and energy 

equations. 



 

81 

4.4.1 Grid and Time Step Size Independence 

A multi-block structured mesh with tetrahedral elements was created. The mesh 

resolution was increased within the capillary channel, specifically in the vicinity of the 

channel entrance region within the reservoir and adjacent to the liquid-vapor interface 

where the largest gradients of velocity and temperature occur. A boundary layer mesh 

was created on both sides of the meniscus. In order to achieve grid-independent 

numerical results, the effect of grid size on the transient capillary height, h, was 

examined for a liquid superheat of ΔT = 2 K, and the results are shown in Fig. 4.4. Note 

that the capillary height is defined as the average meniscus height above the liquid free 

surface in the reservoir.  As can be observed from close inspection of this figure, the 

refinement of the grid from N = 40 cells to N = 50 cells along the width of the capillary 

channel and simultaneously in the y-direction does not significantly affect the results. 

Thus, a grid consisting of 40 cells across the channel is considered to yield grid-

independent results. A time-step size independence study was also performed, and Δt = 

10-5 s was determined to be the optimal time-step size for the simulations.  

It is noted that a channel width of 0.5 mm was used as the benchmark in Fig. 4.4, and 

the cell size that was found to yield grid-independent results guided the mesh creation 

for both smaller and larger wall spacings. To this end, the grid for the wall spacing 

values of w = 0.3 mm and w = 0.7 mm contained 24 and 56 cells along the width of the 

capillary channel, respectively. 
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Fig. 4.4 Grid independence test for the capillary height vs. time for wall spacing of       

w = 0.5 mm, Δt = 10-5 s, and ΔT = 2 K.  

 

4.4.2 Model Validation 

In the absence of experimental data on the evaporating capillary flow between infinitely 

long parallel plates, the present numerical model was validated by comparing the 

predicted equilibrium liquid height to those obtained from theoretical models developed 

for an evaporating meniscus involving superheated liquids. These models usually use 

LWE-type equations to describe the capillary flow and use a kinetic theory-based 

equation (Eq. 2.11 of Section 2.2) for calculation of the evaporation rate. One of the 

caveats of the widely used kinetic theory-based equation for the calculation of the 

evaporation rate is the presence of an empirically determined accommodation 

coefficient, �. This accommodation coefficient is a measure of deviation from the 

maximum evaporation rate predicted by the kinetic theory, caused by the reflection of 

vapor molecules at the interface. Various studies have utilized different definitions and 

a wide range of accommodation coefficients have been used that span three orders of 

magnitude [34,95–97]. Moreover, the accommodation coefficient varies as different 
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fluids and solid-liquid interactions are considered. A similar theoretical model was 

developed by the authors and was employed for validation of the present CFD model. A 

detailed description of the theoretical model used here was presented in Section 2.2.  

Since the present CFD model accounts for the thermal diffusion phenomenon adjacent 

to the meniscus, the temperature gradient at the interface is significantly smaller than 

the jump condition considered in the theoretical models. Thus, to be consistent with the 

theoretical solution presented in Section 2.2, a specific CFD case, hereafter referred to 

as the modified CFD model, was simulated in which a fixed temperature jump equal to 

the degree of superheat of the liquid was enforced across the interface, thereby 

eliminating the effect of thermal diffusion in the vicinity of the meniscus. To do so, an 

energy source term was applied in the first layer of control volumes adjacent to the 

meniscus in the liquid subdomain to create a temperature difference equal to the 

superheat degree between the meniscus and the underlying liquid. Furthermore, since 

the effect of vapor viscous drag on the moving meniscus is not considered in the 

mathematical solution, the capillary channel walls in the vapor subdomain were 

prescribed with zero-shear stress boundary conditions for consistency of the 

comparison. 

Figure 4.5 compares predictions of the transient response of the capillary height 

obtained using the modified CFD model (with no thermal diffusion) and the theoretical 

model of Section 2.2. Three liquid superheat conditions of ΔT = 0 K (non-evaporating), 

2 K, and 3 K, and two wall spacings of w = 0.5 mm and w = 0.7 mm are considered.  
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(a) (b) 

(c) (d) 

Fig. 4.5 Comparison of computationally determined capillary heights for ΔT = 2 K and 

ΔT = 3 K without thermal diffusion to theoretically determined capillary heights with 

various �, (a) and (c) w = 0.5 mm, (b) and (d) w = 0.7 mm. 

 

As evident, the theoretical results underpredict the maximum capillary height for the 

non-evaporating case (ΔT = 0 K) compared to the CFD results, and this discrepancy 

increases with increasing wall spacing. This trend is consistent with previous results 

[93]. However, the computational and theoretical results are in excellent agreement at 

steady state.  

Table 4.2 lists the equilibrium height of the evaporating water column as obtained from 

the modified CFD model (hss,CFD), the corresponding theoretical values obtained using 
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various accommodation coefficients, � (hss,theor), and the normalized difference between 

the theoretical and computational values (Δhss = (hss,theor - hss,CFD)/ hss,theor). The results 

are related to superheat degrees of ΔT = 2 K and ΔT = 3 K with wall spacings of w = 0.5 

mm and w = 0.7 mm. 

It can be observed from Fig. 4.5 that, for all cases, hss,CFD lies between theoretical 

solutions with accommodation coefficients of � = 0.5 and � = 0.75. For superheat 

degrees of ΔT = 2 K and ΔT = 3 K with wall spacings of w = 0.5 mm and w = 0.7 mm, 

the values of � for which the theoretical results hss are within 1% of those predicted by 

the modified CFD model are presented in Table 4.3. Overall, the results presented in 

Tables 4.2 and 4.3 show that the CFD predictions are in general agreement with those 

of theoretical model when similar assumptions are adopted. 
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Table 4.2 Comparison of hss for the evaporating cases (ΔT = 2 K and ΔT = 3 K) 

obtained from the modified CFD model to theoretical results with w = 0.5 mm and w = 

0.7 mm. 

 

� � 

ℎ�� 

ΔT = 2 K 

ℎ��,����� − ℎ��,���

ℎ��,�����
 

ΔT = 3 K 

ℎ�� 

ΔT = 3 K 

ℎ��,����� − ℎ��,���

ℎ��,�����
 

ΔT = 3 K 

CFD - 

0.5 

8.718 - 8.239 - 

Theor. 

0.25 9.041 3.57% 8.974 8.19% 

0.50 8.882 1.85% 8.621 4.26% 

0.75 8.621 -1.13% 8.040 -2.48% 

1.00 8.259 -5.56% 7.231 -13.94% 

CFD - 

0.7 

6.122 - 5.633 - 

Theor. 

0.25 6.441 4.95% 6.376 11.65% 

0.50 6.286 2.61% 6.028 6.55% 

0.75 6.028 -1.56% 5.452 -3.32% 

1.00 5.669 -7.99% 4.650 -21.14% 

 

Table 4.3 Estimated values of � obtained from the modified CFD model for ΔT = 2 K 

and ΔT = 3 K and w = 0.5 mm and w = 0.7 mm. 

 
Estimated  

� using CFD model 

 w = 0.5 mm w = 0.7 mm 

ΔT = 2 K 0.657 0.659 

ΔT = 3 K 0.664 0.671 
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4.4.3 Transient Meniscus Shape and Capillary Penetration 

Figure 4.6 reveals the detailed meniscus shape and the computational mesh near the 

meniscus for both liquid and vapor domains for the case of ΔT = 2 K at various times. It 

is evident that the initially flat meniscus evolves to a developed state rapidly (� ≈ 0.5 

ms) compared to the equilibrium time (� ≈ 0.5 s) making the overall system response 

relatively insensitive to the initial specified shape. 

 

 

Fig. 4.6 Time evolution of dynamic mesh in the vicinity of the liquid-vapor interface for 

both liquid and vapor subdomains with w = 0.5 mm and ΔT = 2 K. 

 

The wall spacing and liquid superheat were varied to determine their influence on 

evaporation from the liquid-vapor meniscus. Figure 4.7 shows the computationally 

determined transient capillary penetration height of an evaporating meniscus for various 

degrees of superheat, including a superheat of zero (non-evaporating case). The 

predicted responses indicate that, in all cases, increasing evaporation rates reduce the 

capillary rise, as expected. The influence of evaporation is more significant at early 

times and the capillary height depression is more profound for smaller wall spacing. At 

steady state, the capillary height difference between the evaporating and non-
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evaporating cases is relatively small. This behavior is in contradiction with the results of 

Fig. 4.5 for the modified CFD model (no thermal diffusion), as well as with the 

theoretical modeling results for which a noticeable difference existed between the 

steady-state capillary heights of evaporating and non-evaporating menisci [32]. The 

difference between the steady-state results of Figs. 4.5 and 4.7 highlights the important 

role of thermal diffusion in the vicinity of the meniscus on the overall hydrodynamic 

response of the evaporating meniscus.  

Computationally determined transient capillary penetration heights for the non-

evaporating case and for the evaporating meniscus at ΔT = 5 K for wall spacings of w = 

0.3 mm, 0.5 mm, and 0.7 mm are shown in Fig. 4.8. As evident in all cases, as the 

capillary penetration progresses the deviation between the capillary height of non-

evaporating and evaporating cases approaches zero. This is due to the fact that as the 

interfacial temperature gradient decreases with time due to thermal diffusion, the 

evaporation rate diminishes, and all cases approach the non-evaporating condition. It is 

evident that for w = 0.5 mm, unlike the non-evaporating case where a peak in the 

capillary heigh is observed at t ≈ 0.12 s, the height of the evaporating meniscus exhibits 

a monotonic rise until it reaches steady-state. Also, for w = 0.7 mm, evaporation 

decreases the amplitude of oscillations compared to the non-evaporating case. As such, 

it can be inferred that when the flow regime is oscillatory, evaporation tends to dampen 

the oscillations. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.7 Computational predictions of the capillary penetration of non-evaporating and 

evaporating water menisci for various degrees of superheat and (a) w = 0.3 mm, (b) w = 

0.5 mm, and (c) w = 0.7 mm. 
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Fig. 4.8 Computational predictions of the capillary penetration of non-evaporating and 

evaporating water menisci with ΔT = 5 K between vertical parallel copper plates with 

various wall spacings.  

 

4.4.4 Transient Thermal Response at the Meniscus 

As discussed previously, the thermal energy reaching the meniscus from the liquid side 

drives evaporation. The average heat fluxes along the meniscus are shown in Fig. 4.9 

for various degrees of superheat. As evident, heat transfer rates are proportional to the 

liquid superheat and decrease with time. This is attributed to the thermal diffusion 

adjacent to the meniscus being driven by the temperature difference between the 

superheated liquid and the interface which is at the saturation temperature. In general, 

there are two competing effects controlling the heat transfer rate to the meniscus, 

namely the thermal diffusion adjacent to the meniscus, and the liquid delivery to the 

meniscus to sustain the evaporation. The former tends to lower the temperature of the 

liquid near the meniscus, whereas the latter increases the temperature near the meniscus 
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by delivery of superheated liquid. The liquid flow to the meniscus is driven by 

evaporation and depends on the interfacial temperature gradient that is inversely 

proportional to the intensity of the thermal diffusion effects. As such, the thermal 

diffusion adjacent to the meniscus and the liquid delivery to the meniscus are coupled. 

Results shown in Fig. 4.9 suggest that as the capillary penetration progresses, the 

diffusion effect prevails and the heat transfer rate to the meniscus decreases gradually.  
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(a) 

 
(b) 

 
(c) 

Fig. 4.9 Computationally predicted average interfacial heat flux for various degrees of 

superheat with (a) w = 0.3 mm, (b) w = 0.5 mm, and (c) w = 0.7 mm. 
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4.4.5 Transient Liquid Velocity and Thermal Response 

Figure 4.10 shows the y-velocity contours in the upper part of the liquid column at 

various times for various wall spacings and ΔT = 2 K. Note that the channel widths for 

various wall spacings are normalized to be identical. Inspection of the velocity contours 

at the two ends of the meniscus shows that the model successfully captures the slip 

condition at the contact line of the advancing (or receding) evaporating meniscus and 

the walls. The monotonic (Fig. 4.7a, w = 0.3 mm) and oscillatory (Fig. 4.7b, w = 0.5 

mm and Fig. 4.7c, w = 0.7 mm) flow regimes are also reflected in the velocity contours. 

The occurrence and strength of the oscillations, which are asymmetric in nature, are 

generally a function of the liquid properties, the solid-liquid interaction, and the 

capillary channel spacing. For each wall spacing the contours at t = 0.7 s show near 

steady state conditions with vanishing velocities. Also, at t = 0.001 s, the boundary layer 

thicknesses along the walls are growing in time for all the cases, and over time the 

velocity field which is not in the immediate vicinity of the meniscus exhibits nearly 

fully developed parabolic axial velocity distribution behavior with the maximum 

velocity at the center of the channel. 

Figure 4.11 shows the evolution of the temperature field near the meniscus for various 

wall spacings and ΔT = 2 K. As discussed earlier, the temperature of the liquid-vapor 

interface is equal to the saturation temperature at the corresponding vapor pressure, 

which results in large thermal diffusion rates near the interface. As observed in Fig. 

4.11, the relatively low temperature of the meniscus propagates downward with time. 
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(a) w = 0.3 mm 

 

(b) w = 0.5 mm 

 

(c) w = 0.7 mm 

Fig. 4.10 Evolution of the y-velocity field near the evaporating meniscus for various 

wall spacings and ΔT = 2 K. 

 

Inspection of temperatures in the upper part of the liquid column in Fig. 4.11 also 

reveals that, during the upward motion of the flow the fluid temperature in the central 

zone of the channel exceeds that of the fluid near the walls. As the meniscus rises, 
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relatively hot liquid from the lower part of the channel and reservoir is pulled upward. 

In the region near the channel walls and close to the meniscus, the velocity of the liquid 

is relatively small, and the liquid initially at temperatures close to that of the meniscus 

will take longer to be replaced with relatively hot liquid from the lower part of the 

channel and the reservoir. For w = 0.7 mm at t = 0.2 s, unlike other times shown the top 

middle region of the channel has a low temperature relative to that of the liquid next to 

the channel walls. To explain this temperature distribution, attention should be paid to 

the velocity contours in the top part of the capillary channel shown in Fig. 4.10. Near 

the meniscus, the velocity is relatively uniformly distributed across the channel. 

However, farther from the meniscus, the velocity profile approaches a parabolic shape. 

Thus, during the downward motion of the meniscus, flow is funneled from the near-wall 

region in the vicinity of the meniscus to the channel center. Since the temperature close 

to the meniscus is relatively small, the flow funneled to the channel center advects the 

relatively cold temperature down the channel center. It is noted, that at the same time (t 

= 0.2 s) for w = 0.5 the liquid is also moving downward, however, the temperature 

contours are not showing the same pattern as for w = 0.7. This can be explained by 

comparing the velocities shown in Fig. 4.10 for w = 0.5 mm and w = 0.7 mm at t = 0.2 

s. As can be seen, the downward velocity for w = 0.7 mm at t = 0.2 s is an order of 

magnitude greater than that for w = 0.5 mm. Thus, the advection of the relatively cold 

liquid down the channel center is significantly stronger for w = 0.7 s. For w = 0.7 mm at 

t = 0.3 s, as the flow direction changed, the relatively warm liquid that moves upward 

from inside the reservoir acts against thermal diffusion and leads to increase in the 

temperature in the middle zone of the capillary channel. For w = 0.5 mm and w = 0.7 
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mm at t = 0.7 s, since the flow reaches steady state, the temperature distribution is more 

uniformly distributed across the channel width.   

 

 

Fig. 4.11 Evolution of the temperature field near the evaporating meniscus for various 

wall spacings and ΔT = 2 K. Arrows show the direction of the mean y-velocity in the 

capillary channel. 

 

Figure 4.12 shows local heat flux variations along the evaporating meniscus at various 

times and wall spacings for ΔT = 2 K. The content of Fig. 4.12a implies that the 

maximum local heat flux (i.e., evaporation rate) occurs at the center of the meniscus 

which corresponds to the higher temperature of the liquid at this location (Fig. 4.10). As 

the thermal diffusion in the vicinity of the meniscus weakens over time, the rate of 
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change of local heat flux along the meniscus decreases, and the heat flux becomes more 

uniformly distributed. A similar trend is observed for wall spacings of 0.5 mm and 0.7 

mm; however, the meniscus experiences smaller local heat fluxes at larger wall 

spacings. The smaller heat fluxes associated with larger wall spacings are attributed to 

the opposing effects of thermal diffusion and upward velocity that tend to decrease and 

increase the temperature near the meniscus, respectively. Whereas the former is 

independent of the channel width, the latter decreases with increasing the channel 

width. As such, at larger wall spacings, the cooling effect of thermal diffusion is more 

dominant than the heating effect associated with the upward velocity, leading to 

comparatively smaller heat fluxes. As evident in Fig. 4.12c, the local heat flux profile 

along the evaporating meniscus for w = 0.7 mm at t = 0.2 s is markedly different from 

the others. Specifically, unlike the other cases the center of the meniscus is 

characterized by the minimum local heat flux. This anomaly is attributed to the overall 

downward motion of the flow at this time and the corresponding downward advection at 

cool liquid beneath the center of the meniscus (Fig. 4.10c), resulting in smaller 

temperature gradients near the middle of the meniscus zone. A similar phenomenon 

occurs for w = 0.5 mm at t = 0.2 s. However, since the liquid velocity is relatively small, 

thermal advection is not sufficiently strong to alter the shape of the heat flux 

distribution significantly. 

 

 

 

 



 

98 

 
(a) w = 0.3 mm 

 
(b) w = 0.5 mm 

 
(c) w = 0.7 mm 

Fig. 4.12 Computationally predicted local heat flux variations along the evaporating 

meniscus (�* = �/�) for various wall spacings and ΔT = 2 K. 
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4.4.6 Transient Vapor Velocity 

The y-velocity field near the evaporating meniscus in Ω� for various wall spacings and 

ΔT = 2 K at t = 0.1s is reported in Fig. 4.13. As noted previously, the evaporated liquid 

creates an upward laminar flow in the vapor subdomain independent of the flow 

direction of the liquid column. For all cases, it is evident that the velocity profile 

evolves to the fully-developed conditions relatively quickly and as the wall spacing 

increases, the maximum velocity at the core of the capillary channel decreases. The 

average vapor velocity is larger for smaller wall spacings. 

 

 

Fig. 4.13 The y-velocity field near the evaporating meniscus in Ωv for various wall 

spacings and ΔT = 2 K at t = 0.1 s.  

 

4.4.7 Transient Pressure Response 

It was noted in Section 4.3.3.1 that the pressure exerted on the meniscus by the vapor 

flow affects the capillary flow dynamics. The liquid column is pushed downward by the 

recoil pressure induced by the vapor that is ejected from the meniscus (Additional 

details regarding calculation of the recoil pressure were given in Section 2.3). In the 
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CFD model, in addition to the recoil force, the meniscus is subjected to a pressure that 

is built up at the bottom of the vapor domain to overcome viscous forces at the wall-

vapor interface. Figure 3.14 shows the computationally predicted total pressure exerted 

by the vapor on the meniscus for various wall spacings and degrees of superheat. It can 

be seen that the increased superheat degree increases the vapor pressure on the 

meniscus due to the larger evaporation mass flow rates. Similar behavior was found for 

the other wall spacings. Besides, as the wall spacing increases, the total pressure exerted 

by the vapor decreases. It is worth noting that for the largest wall spacing of w = 0.7 

mm, in which the flow exhibits oscillatory behavior, the pressure exerted by the vapor 

follows a similar oscillatory trend. In all cases, the pressure exerted by the vapor 

decreases over time due to decreasing evaporation rates. A comparison of Figs. 4.9 and 

4.13 demonstrates a proportionality between the average heat flux reaching the 

meniscus and the pressure exerted by the vapor, which suggests that the contribution of 

the recoil force is small relative to that of the vapor drag force. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 4.14 Computationally predicted pressure exerted on the meniscus induced by the 

coupling of vapor recoil and vapor drag forces at various degrees of superheat for (a) w 

= 0.3 mm, (b) w = 0.5 mm, and w = 0.7 mm. 
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4.5 Conclusions 

An arbitrary-Lagrangian-Eulerian computational model was developed to predict the 

dynamic response of an evaporating meniscus in the capillary flow of superheated 

liquids between vertical parallel plates. A dynamic mesh method was employed to 

directly predict the meniscus shape and to track its movement with no need for implicit 

interface tracking schemes. Several important physical phenomena, including thermal 

diffusion adjacent to the meniscus, depression of the capillary height due to the 

evaporation, and development of pressure exerted on the meniscus by the vapor ejected 

from the meniscus, are accounted for. Computational predictions were validated by 

comparison with those of the available theoretical model. It was shown that thermal 

diffusion in the vicinity of the evaporating meniscus plays an important role in the heat 

transfer process, and ignoring it leads to significant overprediction of the evaporation 

rate. A detailed parametric study was carried out to elucidate the effects of the wall 

spacing and superheat degrees on the dynamics of the evaporating meniscus. It was 

found that depression in the capillary height and the pressure exerted on the meniscus 

by the vapor both increase by increasing the superheat degree of the liquid. Further, as 

the wall spacing increases, the total pressure exerted by the vapor on the meniscus 

decreases. The findings of this study [98,99] provide fundamental insight into the 

dynamics of the evaporating liquid-vapor interfaces in capillary structures and might be 

used as a benchmark in further computational investigations.  
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CHAPTER 5: CONCLUDING REMARKS AND FUTURE WORK 

 

5.1 Conclusions 

The goal of this research was to develop a robust computational model to accurately 

simulate the dynamics of the transient process of meniscus formation and capillary flow 

between vertical parallel plates with and without phase change heat transfer.  

In the first part of the study, a two-dimensional simulation model was developed in the 

arbitrary Lagrangian-Eulerian (ALE) framework. The model was capable of predicting 

the formation and evolution of the meniscus during spontaneous liquid penetration and 

depression within capillary channels of various widths.  

In the second phase of the investigation, the previously developed ALE model was 

extended to directly track the formation and evolution of the evaporating meniscus 

during spontaneous liquid penetration in a capillary channel.  

The commercial CFD Package ANSYS Fluent ver. 19.1 with the power of User Defined 

Functions was used to apply the numerical procedure such as (i) specification of the 

transient pressure boundary condition at the meniscus, (ii) meniscus movement in each 

time step, (iii) specification of the evaporation rate from the meniscus and the 

corresponding vapor generation, and (iv) keeping the meniscus temperature fixed and 

equal to the saturation temperature. 

Also, the numerical procedure was validated against the available transient theoretical 

results for proposed model of capillary flow. It was followed by a thorough discussion 

of parametric studies carried out to illustrate the influence of effective parameters such 

as wall spacing, contact angle, and liquid superheat degree on the meniscus dynamics. 
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The devised numerical method was shown to perform well over the wide range of 

parameters of interest. 

In the first part of this work, it was found that, as the wall spacing increased, the 

equilibrium height decreased and the time to reach equilibrium increased. The 

computational model was able to accurately predict the capillary penetration or 

depression regardless of the wall spacing, whereas the theoretical models fail to predict 

the dynamic response accurately for wider capillary channels. It was also shown that the 

meniscus shape deviated from circular arc as the wall spacing increased. 

Moreover, in the second part of the study, it was shown that thermal diffusion in the 

vicinity of the evaporating meniscus plays an important role in the heat transfer process, 

and ignoring it leads to significant overprediction of the evaporation rate. It was also 

revealed that that depression in the capillary height and the pressure exerted on the 

meniscus by the vapor both increase by increasing the superheat degree of the liquid. 

Further, as the wall spacing increases, the total pressure exerted by the vapor on the 

meniscus decreases. 

 

5.2 Recommendations for Future Work 

The work presented in this dissertation can be expanded in the following areas. 

 

5.2.1 Simulation of Dynamic Contact Angle 

The current study does not include the effects of contact angle hysteresis. It is assumed 

that the contact angle between the liquid and solid surface is constant and equal to 

equilibrium contact angle. However, the dynamic contact angle is always larger/smaller 



 

105 

than its expected equilibrium value and depends extremely on the meniscus 

rising/falling velocity. In fact, the contact angle hysteresis at the three-phase meniscus 

contact line is influenced by both the meniscus velocity and the flow direction and plays 

a major role in meniscus dynamics, specifically when the meniscus is subject to phase 

change [100–102]. Since the dynamic behavior of meniscus is strongly sensitive to 

details of the dynamic contact angle, thus correlating continuous contact angle changes 

with the advancing/receding meniscus velocity during upward/downward motion of 

meniscus can capture more aspects of physics and improve the numerical accuracy in 

prediction of hydrodynamic and thermal characteristics near moving contact lines. 

This remains as an active future research area in the investigation of meniscus 

dynamics. 

 

5.2.2 Simulation of Heated Capillary Walls 

In the present model, adiabatic conditions are applied at the interior vertical wall 

surfaces of the capillary channel and the evaporation is driven by applying initial liquid 

superheats throughout the entire liquid subdomain, except at the meniscus boundary that 

is fixed at the saturation temperature. So, the surface tension along the meniscus was 

assumed to be constant. In general, surface tension depends on temperature, the surface 

tension will not be uniform if the temperature, along the liquid-vapor interface, is 

nonuniform. Therefore, considering capillary channel walls exposed to heat fluxes and 

consequently incorporation of the complex physical mechanism related to the 

temperature gradient from the capillary channel walls to the meniscus center (�� ��⁄ ) 
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that results in thermocapillary Marangoni convection affect the dynamics of evaporating 

meniscus [103–105]. Due to Marangoni convection, the liquid in the lower 

surface tension region in the vicinity of the liquid-vapor interface will be pulled toward 

the region with higher surface tension. This would be an interesting open problem that 

can be investigated by taking the advantage of the sharp interface tracking method 

proposed by the current computational model having direct access to the flow variables 

and transport fluxes at the meniscus with no need for averaging techniques. 

 

5.2.3 Prediction of the Equilibrium Time in Capillary Flow 

Equilibrium time is an important operational parameter in the analysis of dynamic 

response of meniscus in capillary systems. One of the parameters that strongly affects 

the equilibrium time in a parallel plate configuration is the distance between the walls 

and as disused before, for larger spacings the theoretical models fail to predict the 

dynamic response accurately. To the best knowledge of the author, none of the studies 

comprehensively analyzed and reported the equilibrium time in a wide range of wall 

spacings that cover both monotonic and oscillatory regimes. Thus, further studies to 

achieve the optimal equilibrium time also remain to be explored. 
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