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Abstract 
 

Eyewall replacement cycles (ERC) are common dynamical processes in mature tropical 

cyclones (TCs) that can result in quick changes to the storm’s intensity and wind field size. As the 

resolution of TC models increases, accurate initializations of concentric eyewall (CE) structure 

through advanced data assimilation (DA) are hypothesized to be important to capture the ERC and 

the associated rapid intensity change by numerical models. In this study, the analysis and 

prediction of Hurricane Matthew’s (2016) ERC is examined using HWRF and a Hybrid 3D 

Ensemble-Variational DA scheme. Four experiments performing hourly DA cycling from 1500 

UTC October 6 to 1500 UTC October 7 are performed, assimilating different sets of inner-core 

doppler radar radial velocity observations, including Tail-Doppler Radar (TDR), coastal Ground-

Based Radar (GBR), and their combination. The primary scientific objective of this study is to 

assess the impacts of assimilating GBR and TDR radial velocity observations individually, and in 

combination, on the analysis and forecast of Matthew during the weakening and reintensification 

phase of its ERC.  

Results show that the earlier availability and continuous coverage of GBR observations is 

needed to make quick corrections to initialize CE structure, even with limited lower-level coverage 

of the storm. The subsequent forecasts from the experiments assimilating GBR observations 

demonstrated the capability to make realistic and consistent forecasts of the structural and intensity 

changes associated with the ERC. The TDR experiment revealed that as a result of the later start 

and shorter duration of inner core doppler radar observation availability, the analyses’ structure 

throughout the cycling period was not as realistic compared to the expected structural changes of 

the ERC, as were the GBR and GBTDR experiments. This is hypothesized to be a result of the 

varying horizontal coverage of TDR observations within the DA time window from analysis time 

to analysis time during high frequency DA cycling. As a result of this, the TDR forecasts did not 

show the ability to consistently capture the correct structural and intensity changes during the ERC. 

With no assimilation of ICDR observations, the Control experiment demonstrated no ability to 

make correct analyses and forecasts of Matthew’s CE structure and ERC. The importance of 

correctly initialized structure was highlighted by showing that the evolution of the primary and 

secondary eyewall structure is consistent with balanced and unbalanced dynamics in an 

axisymmetric framework. Proper initialization of the secondary eyewall governs the evolution of 
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the ERC by restricting high angular momentum air from reaching the primary eyewall, acting to 

contract and intensify the secondary eyewall and spin down the primary eyewall.  
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1. Introduction  
 

Improvements in intensity prediction for tropical cyclones (TC) has notably lagged behind the 

advances made in TC track predictions over the last few decades (Landsea & Cangialosi, 2018). 

However, over the last decade, and in large part due to advancements made in the Hurricane 

Forecast Improvement Program (Gall et al., 2013), the skill of intensity predictions from 

dynamical models has started to increase. As a result of this, they have become competitive with 

statistical-dynamical models which have consistently been the most skillful (Cangialosi et al., 

2020). Dynamical models continue to struggle with the prediction of large intensity fluctuations 

caused by processes such as rapid intensification (RI) and eyewall replacement cycles (ERCs). 

Since large intensity changes are thought to originate from TC inner core dynamics (Gall et al., 

2013), improvements to the horizontal grid spacing, model parameterizations, and analyzed storm 

structure due to superior data assimilation (DA) techniques should provide more accurate forecasts 

for these events. For example, the Hurricane Weather Research and Forecasting (HWRF) model 

has had a positive trend in its probability of detection rate of RI events since its inception in 2007 

(Cangialosi et al., 2020). This is likely due to the gradual decrease in its grid spacing of the 

innermost nest (currently at 1.5 km) allowing for improved resolution of inner core dynamics. In 

addition, superior DA techniques with the assimilation of inner core Tail-Doppler Radar (TDR) 

observations (Lu et al., 2017a,b) help to improve analyzed storm structure. However, a limitation 

to better predictions of these events continues to be the lack of understanding of the dynamics 

underlying rapid intensity changes in TCs.  

The ERC is a common process in mature TCs which acts to modulate their intensity and wind 

field size. TCs that undergo this process are characterized by concentric eyewalls (Houze et al., 

2007; Sitkowski et al., 2011; Willoughby et al., 1982). With a large set of aircraft reconnaissance 

data, Sitkowski et al. (2011) demonstrated that most ERCs could be broken into three distinct 

phases. The first, labeled “intensification”, occurs when a secondary wind maximum develops 

radially outward of the primary wind maxima, contracting inward while it intensifies. This phase 

is completed when the primary wind maximum reaches its peak intensity. The second phase, or 

“weakening” phase, is characterized by the secondary wind maxima continuing to contract and 

intensify, ending when the intensity of the secondary wind maxima reaches that of the primary 

wind maximum. Lastly, the third phase, or “reintensification” phase, is marked by the further 
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intensification of the secondary wind maximum, while the primary wind maximum begins to 

decay. When the primary wind maximum is no longer detected, the ERC is considered complete. 

The TC is left with the former secondary wind maxima as the new primary wind maxima which 

usually resides at greater radius than the original primary eyewall. This new primary wind maxima 

can then begin to contract and intensify. In most cases, ERCs lead to the broadening of the TC 

vortex (Maclay et al., 2008; Sitkowski et al., 2011) which can have forecasting implications 

depending on the TC’s proximity to land (Irish et al., 2008). This was the case for two notable 

hurricanes, Katrina (2005) and Ike (2008).  Both storms weakened before landfall as a result of an 

ERC but saw an expansion of their wind fields which affected the spatial extent of storm surge 

impacts (Creating a New Suite of Statistical Models that Predict the Onset of an Eyewall 

Replacement Cycle, n.d.). 

Currently, the only objective tool available to forecasters for predicting the onset and 

intensity/structural changes associated with ERCs are statistical models (Kossin & Sitkowski, 

2009, 2012). Successful modeling of ERC events is therefore important for the advancement of 

TC intensity prediction. In addition to successful prediction of ERC events with dynamical 

modeling, the development of advanced DA techniques is expected to provide more realistic 

analyzed TC structure to help identify when a TC is likely to undergo intensity changes associated 

with ERCs. Most of the modeling studies of ERC’s focus on the mechanisms responsible for a 

certain phase or phases of the ERC (Didlake et al., 2017), with the most frequent one being 

secondary eyewall formation (SEF) given its importance for the subsequent intensity changes. The 

mechanisms responsible for SEF are not fully agreed upon and are less understood than the other 

phases of the ERC (Fischer et al., 2020). Modeling studies of ERCs have consisted of both 

idealized (Kepert, 2013; Rozoff et al., 2008; Terwey & Montgomery, 2008; Wang, 2008a,b; Zhou 

& Wang, 2009,2011) and real cases (Abarca & Corbosiero, 2011; Houze et al., 2007; Zhang et al., 

2005). Of the modeling studies for real cases, there has been a focus on the ability of the model to 

capture key features of the ERC, but not on the accuracy of ERC predictions in terms the timing 

of phase changes and the overall morphology of the structure in comparison with observations. 

For example, Abarca & Corbosiero (2011) and Houze et al. (2007) demonstrated that key features 

of the ERC conceptual model such as the establishment of a secondary eyewall, contraction of the 

secondary eyewall, and decay of the primary eyewall could be captured in their numerical 

simulations of Hurricanes Katrina and Rita, respectively. This proved that convection allowing 
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models are able to capture key processes associated with the ERC. These early studies, however, 

did not examine how realistic the forecasts were compared to observations during the ERC. One 

of the goals of this study is to investigate the ability of HWRF, with the advanced assimilation of 

inner core doppler radar observations, to predict an ERC event and make realistic analyses of 

concentric eyewall (CE) structure for a real case of Hurricane Matthew (2016).  

In order to obtain the accurate prediction of ERC events, more accurate analyses of TC 

kinematic and thermodynamic structures are expected to be needed to initialize the numerical 

model through the advancement of data assimilation.  Over the last decade, the implementation of 

ensemble-based DA for TC prediction (Aksoy et al., 2012, 2013; Dong & Xue, 2013; Li et al., 

2012; Lu, et al., 2017a,b; Torn, 2010; Weng & Zhang, 2012; Zhang et al., 2009) along with the 

assimilation of high-resolution TC inner core observations has shown promises for TC prediction. 

More skillful intensity predictions as well as more realistic analyzed and predicted storm structure 

are demonstrated by assimilating the aircraft-born TDR observations for both case (Aksoy et al., 

2012; Lu, Wang, Tong & Tallapragada, 2017; Weng & Zhang, 2012) and systematic studies 

(Aksoy et al., 2013; Zhang et al., 2011; Lu et al., 2017). Another source of high spatial and 

temporal resolution inner core observations is from the coastal ground-based radar surveillance 

stations (hereafter GBR for “ground-based radar”) that can sample TCs near and during landfall.  

Numerous studies have shown improvements to the analyzed TC structure and intensity forecasts 

after the assimilation the GBR observations (Dong & Xue, 2013; Li et al., 2012; Wang et al., 2014, 

2015; Zhao & Xue, 2009; Zhang et al., 2009; Zhu et al., 2016). 

Most of the studies assimilating TDR or GBR observations have focused on the general 

improvements of the track and intensity forecasts and how improvements to analyzed structure 

contribute to these. Different from these early studies, this study places an emphasis on exploring 

the impact of assimilating these observations on the prediction specifically associated with the 

ERC process.  During the ERC of Hurricane Matthew, it was sampled by both GRB and TDR with 

differing temporal availabilities. Another goal of the study is to investigate the relative impact of 

assimilating the TDR and GBR observations on the prediction of the ERC process of Matthew. To 

the author’s best knowledge, studies comparing these two sources of data for hurricane prediction 

are limited. HWRF has assimilated TDR observations operationally since 2013 (Sippel, 2019) 

while GBR observations began operational use in 2020 (J. Sippel, personal communication, July 

9, 2021). Each set of observations offers their own benefits and drawbacks which are listed in 
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Table 1.1. The relative impact of assimilating the GBR and TDR observations for TC prediction 

specifically associated with the ERC process is left unanswered.  This study makes the first attempt 

to address this question.  

As mentioned earlier, SEF tends to be the most studied phase of the ERC.  When ICDR 

observations became available for Hurricane Matthew, a secondary eyewall was already clearly 

established as evidenced by its reflectivity structure from the Miami, FL WSR-88D radar and the 

NOAA WP-3D aircraft’s lower fuselage radar.  Therefore, the mechanisms for and prediction of 

SEF is not the focus of the study.  However, the ability of the DA cycling to establish CE structure 

resembling observations, and the impact of such an establishment on the subsequent forecasts are 

still important steps toward the improvement of TC intensity forecasts associated with ERCs. The 

scope of this study is therefore specifically confined to DA cycling throughout the ending of the 

Observation Type Benefits Drawbacks 

TDR 

o Availability over open 
waters and long distances 
away from land 

o More frequently available 
on case-by-case basis, 
especially for strong TCs 

o More uniform 3D spatial 
coverage of TC during 
flight penetration legs 
(Aksoy et al., 2012) 

o Lack of availability as 
TCs approach landfall 

o Limited to Atlantic and 
East Pacific Basins 

o Asymmetric 3D spatial 
coverage of TC during 
flight downwind legs 
(Aksoy et al., 2012) 

GBR 

o Continuous availability 
when TC is in close 
proximity to land 

o GBR networks available 
in other basins such and 
Indian Ocean and West 
Pacific, and in remote 
locations such as Puerto 
Rico 

o Only available for storms 
that track close to land 

o Less uniform 3D spatial 
coverage of TC due to 
fixed nature of radar 
stations 

Table 1.1: Benefits and drawbacks of the two different inner core doppler radar observations used 
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weakening phase and entirety of the reintensification phase up to the completion of the ERC. An 

in-depth description of Matthew’s ERC and phases is given in Section 2. 

In this study, the analysis and prediction of Hurricane Matthew’s ERC are examined using 

HWRF and an hourly, continuously cycled hybrid 3D ensemble-variational (3DEnVar) DA 

scheme with the assimilation of GBR and TDR radial velocity observations as the storm paralleled 

Florida’s east coast on October 6-7, 2016. The primary scientific objectives of this study are to: 

Assess the impacts of assimilating GBR and TDR radial velocity observations individually, as well 

as in combination, on the analysis and forecast of Hurricane Matthew’s concentric eyewall 

structure and evolution throughout the weakening and reintensification phases of the ERC. 

The remainder of this study is outlined as follows. Section 2 discusses Hurricane Matthew 

and its ERC evolution in depth, as well as the experimental setup, DA specifics, and detailed 

information on the GBR and TDR observations. In Section 3, the results of experiments 

performing continuous cycling with different ICDR observations are discussed to address the 

scientific objectives of this study. Section 4 concludes the study with a summary of the results. In 

addition, a discussion of a potential caveat of the simultaneous assimilation of the two different 

ICDR observation types is provided, along with suggestions for their more effective use in the 

future for the analysis and prediction of TCs with intricate kinematic structures.  
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2. Data and Methods 
 

2.1 Hurricane Matthew  
 

Hurricane Matthew was the 14th named storm of the 2016 Atlantic Hurricane season, setting 

 a record for achieving category 5 intensity at the lowest latitude in the Atlantic Basin (Stewart, 

2017). At the time Matthew became the deadliest Atlantic hurricane since 2005, responsible for 

585 deaths, with a large majority of these occurring in Haiti (Stewart, 2017). On October 6-7, 

2016, Matthew paralleled Florida’s East coast while undergoing an ERC that was sampled by 

coastal WSR88D radars in Miami, Melbourne, and Jacksonville. Matthew’s composite reflectivity 

evolution is shown in Figure 2.1, where a transition from a concentric to single eyewall structure 

is evident. Figure 2.1B displays a classic CE structure in composite reflectivity at 1808 UTC 

October 6, with both eyewalls being symmetric and the primary eyewall centered in the middle of 

the second. Through the rest of Matthew’s ERC evolution, the primary eyewall exhibits an 

azimuthal wavenumber 1 pattern with convection occurring in the downshear left quadrant 

(Corbosiero & Molinari, 2003) while slowly decaying and becoming nonexistent by 1500 UTC 

October 7. The secondary eyewall oscillates between an axisymmetric (Figure 2.1B,I) and 

asymmetric (Figure 2.1D,F) structure throughout the ERC evolution. The secondary eyewall 

eventually replaces the former primary eyewall at a wider radius than the original (Figure 2.1I). 

To provide a more quantitative description of Matthew’s structural changes associated with 

the ERC, the methodology of Sitkowski et al. (2011) is used with slight modifications1 to track the 

evolution of the radius and intensity of the primary and secondary eyewalls from flight-level2 

reconnaissance (FL RECON) wind observations. Figure 2.2A and 2.2B show the radius and 

intensity, respectfully, of each eyewall as a function of time with cubic polynomials fit to the data 

using least squares to show trends of each parameter. These cubic fits (CFs) will be used 

throughout the rest of the study as proxies for the location of the primary and secondary eyewalls 

and to identify the correct trends in intensity forecasts. They are also used to identify when the 

ERC changes from the weakening to reintensification phase. This is marked by the time the CF of 

the primary and secondary eyewalls’ intensity intersect, indicating the secondary eyewall has  

 
1 Flight level winds are not pressure-adjusted to a reference level. 
2 Flight level is approximately 700 hPa or 3 km above ground level. The flight-level height varies depending on the 
intensity of the TC. 
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surpassed the primary eyewall in intensity. The time of this phase change is not highly sensitive to 

perturbations in the wind intensity data shown in Figure 2.2B. Given the use of the CFs in this 

study, the variability of the wind intensity and radius data in Figure 2.2 must be acknowledged. 

Variability in the radius data is smaller compared to the wind intensity data and is likely due to 

structural asymmetries in the eyewalls (elliptical vs annular). The variability of the wind intensity 

data arises from the intensity differences from different quadrants of the TC. Errors associated 

with the methodology used to calculate the wind and radii parameters are inherent, however, they 

do not account for the total variability in the penetration legs through Matthew’s inner core.  

 

Figure 2.1: MRMS composite reflectivity of Hurricane Matthew approximately every three hours 
from 1500 UTC October 6 to 1500 UTC October 7. The evolution of the composite reflectivity 
shows a transition from concentric to single eyewall structure. 
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The time period focused on in this study is from 1500 UTC October 6 to 1500 UTC October 

7 (corresponding to the green shaded area representing the GBR availability), however, the 

evolution of the ERC is also discussed leading up to this period for background. Evidence of a 

secondary wind maximum is first seen around 0300 UTC October 6 at a radius of 80-120 km 

Figure 2.2: Evolution of radius (A) and intensity (B) of Hurricane Matthew’s primary and 
secondary wind maxima from FL RECON data calculated using the methodology of Sitkowski et 
al. (2011). The different phases of the ERC as determined by the aforementioned methodology are 
labeled and bounded by black vertically dashed lines. Cubic polynomials are fit to the radius and 
intensity for both wind maxima using least squares to show trends in their evolution. Color 
shadings in the background of both panels represent the temporal availability of ICDR 
observations, with the extent of the GBR availability representing the entire hourly cycling 
duration. 
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(Figure 2.2A). Up to just before the start of GBR availability, around 1300 UTC October 6, 

Matthew is in the intensification phase, with the primary eyewall radius slowly contracting from 

about 30km to 20km while intensifying from about 45 to 55 m/s. The secondary wind maximum 

was apparent only 3 times during this phase, but from the CF, the secondary wind maximum 

appears to be contracting and intensifying. The start of the weakening phases happens immediately 

after the primary eyewall reaches its maximum intensity, around 1300 UTC October 6, and is 

marked by the first black vertically dashed line in Figure 2.2. Matthew’s secondary eyewall 

continues to contract and intensify in this phase while the primary eyewall weakens. The two 

eyewalls equal each other in intensity around 0300 UTC October 7, signifying the end of the 

weakening phase and start of the reintensification phase. Matthew’s secondary eyewall continues 

to contract and strengthen further during the reintensification phase, with the primary eyewall 

eventually being last detected around 1300 UTC October 7, marking the end of the ERC. GBR 

observations are available during both the weakening and reintensification phases of the ERC, 

while the TDR availability is limited to the period from 1900 UTC October 6 to 0100 UTC October 

7. More details about the GBR and TDR observations and their spatial and temporal distributions 

are given in Section 2.3. 

 

2.2 Model/Data Assimilation Description and System Configuration  
 

The 2018 version of the HWRF model (Biswas et al., 2018) is used in this study. A 40-member 

ensemble is used, with each member consisting of a parent domain (D01) with resolution of 0.099˚ 

(13.5 km) and a 2-way moveable nested domain (D02) with resolution of 0.033˚ (4.5 km). One 

control member is used, with similar grid configuration to the ensembles, but with one more 2-

way moveable domain (D03) nested inside D02 with resolution of 0.011˚ (1.5 km). Running the 

ensembles and control with two different grid spacings in this manner is referred to as dual 

resolution. HWRF uses the Non-Hydrostatic Mesoscale Model (NMM) dynamical core on a 

rotated E-grid. A hybrid vertical coordinate is used with 75 model levels and a model top of 10 

hPa (Biswas et al., 2018). Its physical parameterizations are specific for use in tropical cyclone 

applications, with the ones used in this study are as follows: Ferrier microphysical scheme, Rapid 

Radiative Transfer Model for Global Circulation Models radiation scheme, Noah Land-Surface 

Model, NCEP Global Forecast System boundary-layer scheme and Simplified Arakawa-Schubert 
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deep and shallow convection scheme (Biswas et al., 2018). All boundary conditions for both the 

control and ensembles’ D01 are obtained from the GFS. In this study, the ocean coupling 

component is turned off, and the vortex initialization (VI) procedure differs from normal 

operational use. The VI differences in this study are discussed in the next paragraph. For the 

3DEnVar DA system, localizations of 60km and 550 hPa (Li et al., 2012) are used for horizontal 

and vertical localizations respectively. In this study, the full weight is assigned to the flow 

dependent background error covariance (BEC), meaning it is obtained exclusively form the 40-

member ensemble. The Ensemble Kalman Square Root Filter (EnSRF) uses a 500 km and 400 hPa 

(Li et al., 2012) horizontal and vertical localization respectfully, with an adaptive covariance 

inflation factor of 0.9 used for mitigation of filter divergence. 

The experiments in this study are run using the continuously cycled, dual resolution hybrid 

3DEnVar system developed by Lu et al. (2017b). The basic steps for running the 6-hour cycling 

(operationally used) are explained first. Following that, the specific modifications and changes to 

the 6-hour cycling for the experiments in this study are detailed. In addition to this, and before 

continuing, HWRF’s VI procedure is briefly discussed. The VI procedure consists of two 

components that are usually run before DA is performed. The first is vortex relocation (VR) which 

corrects the storm’s location, usually based on a Tropical Cyclone Vitals (TCVital) message valid 

at the analysis time. The second is vortex modification (VM) which corrects the structure and 

intensity of the storm based off of parameters such as minimum sea level pressure, maximum wind, 

and radius of multiple different wind intensities. These parameters are also taken from the TCVital 

message. For a more in-depth description of the VI procedure, the reader is referred to Biswas et 

al. (2018). The 6-hour cycling system is now detailed. 

For the first cycle of the storm in the 6-hour 3DEnVar DA system, the ensembles and control 

are initialized from the operational GFS ensemble and control analyses. A 6-hour cold start 

forecast is then launched for the ensemble members, and a 9-hour forecast for the control member 

using the directed moving next strategy (Lu et al., 2017b). VI is then performed on the 6-hour 

ensemble forecasts (VR only) and on the 3,6, & 9 hour control forecasts (VR & VM). DA is then 

performed simultaneously on the control and ensemble members. For the 40 ensembles, only D02 

is updated by EnSRF. For control domains D02 and D03, the backgrounds are updated by the 

hybrid 3DEnVar technique through the minimization of a 3D cost function with the BEC obtained 

exclusively from the ensembles, as mentioned earlier. For the control, the First Guess at  
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Appropriate Time (FGAT) (Fisher & Anderson, 2001) method is used due to the large time 

window, and is the reason the control backgrounds are also outupt at 3 and 9 hour forecast times. 

Following the DA updates, the ensemble members are recentered around the D02 control analysis, 

meaning the ensemble mean from EnSRF is replaced with the control analysis. Lastly, the parent 

domains (D01) for the ensembles and control are replaced by the GFS analyses at that time due to 

better initialization of the large scale environment by the global model. To start the next cycle, the 

forecasts for the ensmebles and control are launched and the steps above are repeated. In addition, 

free forecasts, usually of 126 hours, are launched from the control analysis, providing a 

deterministic forecast for the cycle.  

The main differencse between the cycling system used in this study and the one detailed above 

is the cycling frequency and the use of VI. Here, the cycling is more frequent, 1 hour instead of 6 

hours, and uses a 1 hour time window (+/- 30 minutes from the analysis time). The FGAT method 

is not used given temporal proximity of observations in the time window to the analysis time, 

making the assumption that all observations are valid at the analysis time. The second main 

difference is the use of VI and when it is used. To help visualize the configuration of cyling for all 

experiments in this study, a flowchart is shown in Figure 2.3. A cold start is initialized by the GFS 

for the ensembles and control on October 6th at 0600 UTC. A 6 hour forecast (9 hours for control) 

is run to October 6th at 1200 UTC, followed by VR and DA updates with a 6 hour time window 

Figure 2.3: Flowchart showing configuration of the DA cycling performed for all experiments. 
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using FGAT with only “conventional observations” (no ICDR observations). Specific 

observations assimilated will be discussed in more detail in Section 2.3. After this, a 3 hour forecast 

for the ensembles and control is run to 1500 UTC October 6th which marks the start of hourly 

cycling and availability of GBR observations. By this time, the covraince strucutre in the 40 

member ensmeble has had enough time to evolve. 

Before the hourly cycling is done, VR is performed at 1500 UTC October 6 with the position 

taken from a linear interpolation of the TCvital messages from 1200 UTC and 1800 UTC October 

6. This is the last time VR is performed. For the next 24 hours up to 1500 UTC on October 7th, 

hourly DA cycles are performed (Figure 2.3), assimilating respective observations for both inner 

core and conventional based on the experiment. After DA is performed each hour, a 48-hour free 

forecast is launched from the analysis time with hourly output. The length of the free forecast is 

noteably shorter than the 126 hour free forecast that is normaly performed in TC modeling studies. 

The focus on short term forecasts of Matthew’s ERC negates the need for longer forecasts in this 

case. Details on the four different cyling experiments along with the ICDR observations are 

discussed next.  

 

2.3 Description of Experiments and ICDR Observations 
 

To address the scientific objectives for this study, four different experiments will be performed 

following the flow chart in Figure 2.3. Each experiment is identical up to the 1500 UTC October 

6 analysis time, after which the experiments perform hourly cycling with different sets of 

observations available to them. Before detailing the observations assimilated in the four 

experiments, we define the phrase “conventional observations” as the combinations of all available 

observations from the following files obtained from the operational datastream: prepbfur, 

satwndbufr, tcvital, and satellite radiances. No observations from dropsondes or FL RECON are 

assimilated by any experiment in this study.  

The first experiment, “Control”, will only assimilate the conventional observation set, 

providing a baseline for comparing experiments with ICDR observations to. The second 

experiment is called “GBR”, for ground-based radar, which assimilates the conventional 

observations along with GBR radial velocity observations. The third experiment is called “TDR” 

for Tail-Doppler radar and assimilates the conventional observations along with TDR radial 
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velocity observations when they are available. No GBR observations are assimilated in the TDR 

experiment. The last experiment is called “GBTDR” which assimilates the conventional 

observations, GBR radial velocity observations, and TDR radial velocity observations. The four 

experiments will allow assessments of the relative impacts of assimilating different ICDR 

observation types together and separately, in addition to not assimilating any ICDR observations 

at all, on the accuracy of the analyses and forecasts for Matthew. 

Differences in temporal availability and 3D coverage of GBR and TDR radial velocity 

observations affect the evolution of storm structure during hourly cycling, with each of the two 

having their own benefits and drawbacks as discussed in Section 1. The differences in availability 

of the GBR and TDR observations are stark, as the GBR observations are available and provide 

coverage of Matthew’s inner core for the entire 24-hour cycling period. The TDR, in comparison, 

only covers about a 7-hour period from 1900 UTC October 6 to 0100 UTC October 7, which is a 

typical duration of any TDR mission into TCs. In addition to this, distinct differences in the 3D 

observation distribution between GBR and TDR exist and are shown in Figure 2.4. Starting with 

GBR, the changes in horizontal and vertical observation distributions are tied to the motion of 

Matthew and its storm track relative to radars along Florida’s east coast. At the early cycling times, 

GBR observations peak in vertical density (vertical observation densities only consider 

observations within 100 km of the storm center) around 7.5 km above ground level (AGL) (Figure 

2.4B) and peak in horizontal density roughly 225 km from the storm center (Figure 2.4A). This is 

due to fixed nature of the GBR stations and Matthew’s distance away from the nearest site at these 

times. As cycling continues, the number of observations within 100 km of the storm center 

increases while the peak vertical density starts to move to lower elevations as more GBR 

observations are available at all vertical levels (Figure 2.4B). The peak in vertical density of 

observations still exists at higher elevations (around 6 km AGL at 1500 UTC October 7) at the end 

of the hourly cycling.  

The peak horizontal distribution of observations, in general, is shifted radially inward as the 

cycling continues, and as Matthew approaches closer to land (Figure 2.4A). The TDR has less 

uniform changes in horizontal and vertical observation distributions from analysis time to analysis 

time. The horizontal distributions of TDR observations for the 7 available cycles show large 

changes from hour to hour in the radius of peak density. The reason for this is the nature of the 

flight’s butterfly pattern (see Fig 2 of Aksoy et al., (2012)). When the flight is in a penetration leg, 
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 the horizontal distribution of TDR observations will peak near the storm center, for example at 

1900 UTC October 6. Alternatively, when the flight is in a downwind leg, the horizontal 

distribution will peak farther out from the storm center, for example at 0000 UTC October 7. The 

vertical distribution of TDR observations does not change in shape during the analysis times, but 

differences in the amount of observation withing 100 km of the storm center are apparent (Figure 

2.4D). The peak in vertical distribution of TDR observations occurs between 0-2 km AGL for each 

analysis time shown, with the number of observations within 100 km of the storm center being 

inversely correlated to the radius at which horizontal distribution peaks. 

In summary, GBR observations have continuous temporal coverage throughout the cycling 

period. Their spatial distribution starts out poor, with max vertical and horizontal observation 

densities in the middle levels and larger radii, respectively. Their 3D spatial distribution slowly 

Figure 2.4: Horizontal (left column) and vertical (right column) distributions of GBR (top row) 
and TDR (bottom row) radial velocity observations for select analysis times (every 3 hours for 
GBR and every hour for TDR). For vertical distributions, only observations withing 100 km of the 
storm center are considered. Note that similar colored lines between the GBR and TDR 
distributions are not an indicator that they are from the same analysis time. 
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improves over the cycling time as Matthew comes closer in proximity to land, leading to more 

observations near the storm center horizontally, and better coverage of the lower levels. The TDR 

observations have less temporal availability but do offer better vertical coverage during flight 

penetration legs. When the aircraft is in a downwind leg during the DA window, the horizontal 

distribution of observations is poor. Overall, these discussed differences aid in the interpretation 

of results from the continuous cycling.  

GBR observations are available from 5 different WSR-88D locations for each hourly cycle. 

For the first 12 hours of cycling (1500 UTC October 6 to 0200 UTC October 7) GBR observations 

are used from Key West, FL (KBYX), Miami, FL (KAMX), Melbourne, FL (KMLB), Tampa Bay, 

FL (KTBW), and Jacksonville, FL (KJAX). For the last 12 hours of cycling (0300 UTC October 

6 to 1500 UTC October 7), Charleston, SC (KCLX) observations are assimilated and KBYX 

observations are dropped. To obtain the GBR observations, Level 2 radar data are postprocessed 

using Py-ART software (Helmus & Collis, 2016) to perform quality control and dealiasing with 

the “regional” method. Following this, an additional manual check is performed to ensure poorly 

dealiased scans are removed. TDR observations are obtained from the NCEP operational 

datastream, which have already been quality controlled and dealiased. Both GBR and TDR 

observations are assigned an observation error of 3 m/s used for DA. 
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3. Results  
 

3.1 Analysis of Matthew’s Concentric Eyewall Structure and Storm Evolution 
 

The focus of this section is to assess how accurately Matthew’s concentric eyewall structure 

and evolution during the weakening and reintensification phases can be analyzed using 

consecutive DA cycling from 1500 UTC October 6 to 1500 UTC October 7 with assimilation of 

GBR and TDR radial velocity observations together and separately. The relative impacts of 

assimilating these two ICDR observations are discussed with relevance to their differences in 

availability and 3D coverage. Hereafter, the acronyms GBR and TDR will be used with the radial 

velocity observation type being implied.  

Hourly DA cycling begins at 1500 UTC October 6 when GBR observations in Matthew’s 

inner core become available. Figure 3.1 shows the initial background horizontal and vertical 

structure for all experiments, along with GBR observations for the 1500 UTC analysis time 

overlayed. As a result of limited inner core observations and no VM up to this point, the initial 

wind field structure is too broad and has only a single wind maximum. Inferring from the 

reflectivity structure (Figure 2.1A) at this time, Matthew is characterized by concentric eyewalls, 

which, from previous studies (Willoughby et al., 1982; Houze et al., 2007; Bell et al., 2012) are 

known to be accompanied by dual wind maxima. In addition to this, its maximum 10 m wind 

intensity (Vmax) and minimum sea level pressure (MSLP) are too weak compared to the National 

Hurricane Center’s Best Track (BT) (Landsea & Franklin, 2011) estimate by about 32 kts and 23 

hPa, respectively. This unrealistic initial storm structure will highlight the cycling system’s ability 

with ICDR observations to make proper corrections to establish CEs. GBR observations cover 

over half of Matthew’s inner core in the horizontal (Figure 3.1A) but have limited lower-level 

coverage (Figure 3.1B). This is consistent with the discussion in Section 2.3 and distributions 

shown in Figure 2.4B at this analysis time, where vertical density of GBR observations peaks 

around 7.5 km AGL in the inner core region.  

To illustrate how the GBR observations begin to correct the initially weak and broad vortex, 

the evolution of the GBR experiment from 1500-1800 UTC October 6 is displayed in Figure 3.2. 

Cross sections of background and analysis tangential wind are shown with GBR observations 

represented by black dots and storm relative tangential wind analysis increments contoured every 
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 10 kts in black. Positive analysis increments for the tangential wind field at 1500 UTC are 

maximized in the middle to upper levels, closest to the vertical locations of the observations 

(Figure 3.2A). These increments initially do not reach the surface due to the vertical covariance 

localization. The physical result of these increments is to contract and strengthen the tangential 

wind field in the middle to upper levels while leaving the lower-level wind structure largely intact 

(Figure 3.2B). Overall, the analyzed wind structure is largely unrealistic after one cycle. However, 

during the one-hour time integration to the next analysis time, the contracted wind field in the 

previous analysis’s upper levels has extended downward to the surface, leaving a more realistic 

structure (Figure 3.2C).  

Figure 3.2 demonstrates the correction process to the initially inconsistent storm structure 

when there is a lack of lower-level coverage of ICDR observations during the early cycles. The 

DA first contracts and/or strengthens the wind field at the middle to upper levels during the DA, 

followed by the extension of the corrected upper-level winds downward during the time 

integration, emphasizing the importance of both components of the cycling when vertical coverage 

from observations is poor. This continues for the next three cycles (Figure 3.2 C-E & E-G) while 

lower-level coverage of GBR observations slowly improves, allowing for analysis increments to  

Figure 3.1: Background structure of Matthew at 1500 UTC October 6 before hourly cycling is 
started. (A) shows horizontal tangential winds at 1km AGL and (B) shows W-E vertical cross 
section of tangential winds. Observations for the 1500 UTC analysis time are plotted as black dots 
(all of them shown in (A), while only those within 10 km of the cross section are shown in (B)). 
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Figure 3.2: Evolution of cross sections from 1500 UTC to 1800 UTC October 6 for GBR 
experiment. All cross sections are taken at a 45˚ angle relative to a parallel. Figures in left column 
show background tangential winds (contour fill), storm relative analysis increments (contoured in 
black every 10 kts), and GBR observations within 10km of cross section plane. Figures in right 
column show the analysis tangential wind field. 
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extend to the surface. At the 1800 UTC analysis time, the first evidence of coherent CE structure 

is seen in both the background and analysis (Figure 3.2G,H). Figure 3.2H shows primary and 

secondary wind maxima located around 20-25 km and 50 km from the storm center respectively.  

Consistent with observational studies (Houze et al., 2007), the primary eyewall is vertically deeper 

and has no outward tilt with height while the secondary eyewall is shallower and tilts outward with 

height. The secondary eyewall is an impressive feature for the DA to establish given how vertically 

shallow it is and the limited vertical observation coverage at the time. With the right side of the 

cross sections passing through the right-front quadrant of the storm relative to the storm motion, 

the more intense eyewalls on the right side of the cross section are consistent with expected TC 

structure. These results demonstrate that continuous, high frequency DA cycling with GBR 

observations has the ability to establish CE structure, even with limited vertical coverage of the 

lower levels of the TC.  

Relative impacts of assimilating the two different ICDR observations are compared at 1900 

UTC October 6. Because this is the first analysis time in which TDR observations are available, it 

provides the best comparison between the GBR, TDR, and GBTDR experiments to highlight 

differences between them. These comparisons are done using Figure 3.3 and Table 3.1, but before 

these are made, some more details about these are given. First, Figure 3.3C-H shows the 

background and analysis horizontal tangential winds at 3 km AGL for the three ICDR experiments, 

with storm relative analysis increments contoured in black in the left-hand panels every 10 kts. 

Figure 3.3A shows the tangential wind calculated from FL RECON zonal and meridional wind 

observations (black curve), as well as the tangential winds of the experiments. The FL RECON 

wind profile is time dependent but will be assumed valid at the center fix time of 1917 UTC, which 

was the closest pass to the 1900 UTC analysis time. The center fix time is the time at which the 

aircraft passes through the storm center between two penetration legs. The tangential wind profiles 

for the experiments are obtained by interpolating the 3D tangential wind field to the flight path 

after the storm has been recentered to the location of the center fix to ensure a fair comparison of 

structure. For the three ICDR experiments, these paths are approximately represented by the black 

lines in Figure 3.3C-H. Figure 3.3B shows the 3 km AGL tangential winds from the Hurricane 

Research Division (HRD) dual doppler wind analysis. It should be noted that the TDR observations 

are used to create this analysis, so the TDR observations used in the corresponding experiment are 

not completely independent from the HRD dual doppler analysis. Lastly, Table 3.1 gives the 
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Figure 3.3: Comparison of background (left column, bottom 3 rows) and analysis (right column, 
bottom 3 rows) 3 km AGL horizontal tangential winds. In background panels, storm relative 
analysis increments of 3 km AGL tangential wind are contoured every 10 kts with the 0-contour 
omitted. (A) shows the tangential winds from FL RECON observations along with the tangential 
wind profiles for the four experiments. (B) shows tangential winds from the HRD dual doppler 
wind analysis at 3km AGL. 
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Spearman’s rank correlation coefficient between the 3km AGL tangential wind field in each 

experiment and the HRD dual doppler analysis tangential wind field in Figure 3.3B. The 

correlation coefficient is calculated for winds in three regions: less than or equal to 40 km in radius, 

greater than 40km in radius, and for all radii, to approximately represent the correlations of the 

primary wind maximum, secondary wind maximum, and complete horizontal tangential wind 

field, respectively.  

Starting with the GBR experiment, the magnitude of the analysis increments to the 3km 

tangential wind (Figure 3.3C) are small compared to the other two experiments (Figure 3.3E,G) 

and the previous analysis times for this experiment (Figure 3.2). This indicates that the GBR 

experiment has stabilized, as the large structural changes associated with correcting the initial 

background have subsided. The small increments to the tangential wind field in the DA update 

result in no significant changes to the structure in the analysis (Figure 3.3D), with features such as 

the location and intensity of the two wind maxima being very similar between the background and 

analysis. Compared to the FL tangential winds, the locations of the primary wind maxima (on both 

sides of the center) and secondary wind maximum on the right side of the center, are located too 

far radially inward (Figure 3.3A). In addition to this, the secondary wind maximum on the right 

side of the center is too strong. Diagnostics suggest that the spuriously small eye is due to the lack 

of GBR observation coverage at the lower levels. The level of peak coverage of GBR observations 

is about 7 km AGL according to Figure 2.4B, indicating that the vertical levels containing the most 

Experiment r <= 40 km r > 40 km All r 

Control 0.7735 0.2467 0.8820 

GBR 0.9356 0.6215 0.9342 

TDR 0.9278 0.8737 0.9315 

GBTDR 0.9377 0.7588 0.9347 

Table 3.1: Spearman Rank correlation coefficients between 3km AGL tangential winds from HRD 
dual doppler wind analysis (Figure 3.3B) and 3km AGL analysis tangential wind for each 
experiment. Correlations are calculated for radii less than or equal to 40 km, greater than 40km, 
and all radii, to represent the primary eyewall, secondary eyewall, and entire horizontal domain. 
The largest value for each column is highlighted. 
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intense winds are not being sampled. Due to this, corrections to the lower-level wind field are 

made through information spreading via the BEC structure and vertical/horizontal localizations.  

TDR experiment has the largest analysis increments to the horizontal 3 km AGL tangential 

wind field at the 1900 UTC analysis time (Figure 3.3E). The TDR experiment background is 

similar to the initial storm structure at 1500 UTC, being too broad and only having one primary 

wind maximum due to the lack of any ICDR observations available up to this point. Figure 3.3E 

show positive increments inside the area of largest wind gradient associated with the eyewall, 

which results in a contraction of the wind field to establish a primary wind maximum about 25 km 

from the center. Negative analysis increments to the tangential wind field are more asymmetric 

than those in the eye region, occurring at the radius of maximum wind in the west and south parts 

of the storm, and just inside the radius of maximum winds in the east and north parts. This 

increment structure diminishes the tangential winds in the west side of the storm and establishes a 

secondary wind maximum in the northeast side of the storm, which is confirmed in by the 

tangential wind profile in Figure 3.3A. Compared to GBR and GBTDR, the primary wind maxima 

are not as intense, and are located more radially outward, however, its position and intensity of the 

secondary wind maxima is similar to GBTDR and compares favorably to the FL RECON 

observations.  

The GBTDR experiment at this analysis time allows for a direct comparison to the GBR 

experiment, as the two have identical backgrounds at the 1900 UTC analysis time. With this being 

the first analysis time in which TDR observations are available, any differences between the GBR 

and GBTDR analyses can be directly attributed to the addition of TDR observations, allowing for 

an assessment of the potential benefits of assimilating the two ICDR observations simultaneously. 

Analysis increments in the GBTDR experiment (Figure 3.3G) are negative inside and at the radius 

of the primary wind maximum, which is an increment structure consistent with shifting this 

maximum radially outward. In addition to this, negative increments are located at and just inside 

the radius of the secondary wind maximum in the northeast part of the storm, which act to weaken 

the secondary wind maximum in the background as well as shifting it radially outward. These 

analysis increments differ from the GBR experiment, which suggest the TDR observations are 

responsible. The differences between the FL profiles in the GBR and GBTDR analyses are seen 

in Figure 3.3A. The aforementioned deficiencies in the GBR experiment are corrected in the 

GBTDR experiment, with the location of the primary wind maximum on either side of the center 
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being shifted radially outward, and the secondary wind maximum on the right side of center being 

weakened and moved radially outward. Both of these changes in the GBTDR analysis update are 

more consistent with the observed FL winds at this time. Correlation coefficients from Table 3.1 

confirm that the GBTDR experiment correlates more closely to the HRD dual doppler wind 

analysis than does the GBR for radii corresponding to the primary wind maximum, secondary 

wind maximum, and entire horizontal domain. It also correlates the closest to the HRD dual 

doppler wind analysis for all radii out of the three ICDR experiments.  Diagnostics reveal that the 

corrections to the lower-level wind field are likely due to the increased lower-level coverage from 

the TDR observations, with peak vertical coverage around 1 km AGL (Figure 2.4D). The 

horizontal peak coverage is 75 km in radius (Figure 2.4C), as the plane was flying a penetration 

leg during the DA time window. The TDR’s superior 3D observation coverage in this analysis 

complements the GBR observations, demonstrating one of the benefits of assimilating both GBR 

and TDR simultaneously for the analysis of Matthew’s CE structure, especially when vertical 

coverage differs drastically between the two types of observations. 

The above analysis puts forth some of the benefits and drawbacks of each ICDR observation 

set. Overall, the TDR experiment demonstrates the ability to correct the initially inconsistent and 

broad wind structure more quickly than GBR due to differences in vertical coverage of the ICDR 

observations. However, the GBR experiment shows the advantage of having ICDR observations 

available earlier and continuously, as it is able to correct Matthew’s structure before the TDR 

observations become available, despite their limited lower-level coverage. At the first analysis 

time when TDR is available, the GBTDR experiment shows the ability of the GBR and TDR 

observations to complement each other in terms of their vertical and horizontal observation 

distributions, as they are directly sampling different parts of the storm.  

To assess overall structural evolution of each experiment for the entirety of the cycling from 

1500 UTC October 6 to 1500 UTC October 7, a Hovmöller diagram of azimuthally averaged 1 km 

AGL tangential winds of the model analyses is shown in Figure 3.4. Dashed black curves represent 

the CFs to the FL RECON wind radius observations in Figure 2.2A. It should be noted that because 

these observations are coming from FL (approximately 3 km AGL), the radius representing the 

primary eyewall will be more representative of its location at 1km AGL than the radius 

representing the secondary eyewall due to its tilt with height. Black dots indicate local maxima in 

the azimuthally averaged wind field at each analysis time. Blue dashed lines indicate the bounds  
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of the TDR availability for the three ICDR experiments. Throughout the 24-hour period of cycling, 

Control shows no ability to establish CE structure, or to accurately represent the structural changes 

associated with the evolution of the ERC. This demonstrates that without any ICDR observations, 

the kinematic structure cannot be corrected through DA cycling. In contrast to the Control, the 

GBR and GBTDR experiments (Figure 3.4C,D) are able to correct the initial background by 

establishing dual wind maxima by 1800 UTC October 6, consistent with the evolution of analyses 

in Figure 3.2, with primary and secondary wind maxima located around 20 and 70 km respectively 

Figure 3.4: Hovmöller diagrams of azimuthally averaged tangential wind at 1km AGL for the 
analyses in the four different experiments. Black dots indicate local maxima in the azimuthally 
averaged tangential wind field. Dashed black line represent the CFs to the FL RECON wind 
observations radius data from Figure 2.2A as additional aid for identifying approximate locations 
of the primary and secondary wind maxima throughout the cycling times. Blue horizontal dashed 
lines represent the bounds of TDR availability, which are displayed on each of the three ICDR 
experiments’ panels. 
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in the azimuthal average. Subtle differences exist between the 1km azimuthally averaged wind 

structure between GBR and GBTDR throughout the rest of the cycling and ERC evolution. The 

GBR experiment has a tendency to pull the primary wind maximum too far radially inward (Figure 

3.4C) for several analysis times in the 1800 UTC to 0200 UTC time period, whereas the GBTDR 

has a tendency to keep the local maximum inside the CF. In addition to these differences, the GBR 

establishes a stronger secondary wind maxima associated with the reintensification phase earlier 

than in GBTDR (e.g. 2300 UTC October 6). This difference takes place in the period of TDR 

cycling, suggesting that the weaker azimuthally averaged winds associated with the secondary 

eyewall in the GBTD experiment are tied to the addition of the TDR observations. The 

strengthening and contraction of the secondary wind maxima in these two experiments are similar 

and consistent with the reintensification phase of the ERC. Both the GBR and GBTDR have similar 

contraction rates and radial locations of the secondary wind maximum. Differences in the decay 

of the primary eyewall between these two experiments are small, with the GBTDR showing the 

primary eyewall having an established local maximum in the azimuthally averaged wind field for 

one hour longer than GBR. Overall, without having knowledge of the entire 3D kinematic structure 

of the observed storm for the entirety of the cycling time, it is difficult to identify which of the two 

experiments is more realistic. However, while benefits of TDR were shown to be complementary 

to the GBR observations in terms of lower-level coverage at 1900 UTC October 6, the addition of 

the TDR to the GBR does not drastically change the azimuthally averaged structural evolution 

throughout the 24-hour cycling time in the GBTDR experiment, at least at the lower levels.  

Examining the TDR experiment, the establishment of dual wind maxima, as discussed 

previously, does not occur until the 1900 UTC October 6 analysis time, where before that, only a 

single wind maximum is analyzed identical to the control (Figure 3.4B). After this time, dual wind 

maxima are established in the azimuthal mean, evidenced by multiple local maxima in the field. 

However, the placement and evolution of both azimuthally averaged wind maxima are more poorly 

represented than in GBR and GBTDR for the rest of the cycling. The evolution of the ERC as 

represented by the TDR experiment does not properly represent the contraction and strengthening 

associated with the reintensification phase, which the GBR and GBTDR successfully capture. 

These deficiencies in the TDR analyses are hypothesized to result for two reasons. The first is that 

the TDR observations become available later and become unavailable earlier compared to GBR 

observations, which allows for less time to make corrections to the initially inconsistent storm 
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 structure. The second is the inconsistent horizontal coverage of TDR observations from analysis 

time to analysis time (Figure 2.4C). When TDR observations in the DA time window are taken 

from a downwind flight leg, the analyses are expected to be less accurate due to incomplete 

sampling, which can then carry over to the following analysis times. The TDR, however, does 

offer improvements over the Control during the time frame when observations exist by displaying 

Figure 3.5: (A) FL RECON tangential winds (1239 UTC October 6) and tangential wind profiles 
(1300 UTC October 6) as in Figure 3.3A. 1km AGL horizontal tangential wind for the three ICDR 
experiments is plotted in panels B-D. Range rings are plotted as dashed black lines every 50km. 
The vertically oriented black line represents the location of the FL RECON observations and 
location of the tangential wind profiles for the experiments. The flight path direction is southward, 
with the black square and black dot on the horizontal plots and tangential wind profile plots helping 
with orientation. 
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ability to establish CE structure. Comparison of the TDR with the GBR or GBTDR experiments 

highlights the importance of continuous DA cycling with GBR observations by the superior 

structural evolution in the GBR and GBTDR experiments. The earlier availability of GBR 

observations results in a faster correction to establish CE structure, and longer duration of coverage 

results in the correct evolution of the storm structure during the reintensification phase.  

To further expand on the effects of the lack of continuous cycling of ICDR observations after 

the cease in TDR observation availability, 1km tangential wind analyses and FL RECON 

tangential winds are shown in Figure 3.5 for the three different ICDR experiments at 1300 UTC 

October 7, near the end of the ERC. Note that the FL RECON fix time was at 1239 UTC, which 

happens to be the closest to the analysis time. Consistent with Figure 3.4, the GBR and GBTDR 

analyses have well established, strong wind maximum that correspond to FL observations closely 

in both strength and intensity (Figure 3.5A). This single eyewall (originally the secondary eyewall) 

is now the prominent feature in the analyses after its contraction and strengthening throughout the 

reintensification period. The TDR experiment is visually weaker in intensity of its eyewall (Figure 

3.5C) which is verified by the FL RECON tangential winds, with its wind maximum about 10 m/s 

weaker than FL RECON on either side of the cross section. Its maximum wind on either side is 

also located too far radially inward. These results again emphasize the importance of having 

continuous access to ICDR observations when the structure of the inner core is rapidly changing. 

The GBR and GBTDR also begin to assimilate GBR observations at lower levels throughout the 

rest of the cycling after TDR observations cease (Figure 2.4B). The consecutive cycling with 

continuous GBR access also will provide benefits for the forecasts of the ERC, which is the focus 

of the next section.  

 

3.2 Forecasted Structure and Intensity Changes throughout Matthew’s ERC 
 

The focus of this section now switches to the structural and intensity forecasts for Matthew’s 

ERC initialized from the analyses discussed in Section 3.1. The forecasted kinematic structure of 

all deterministic free forecasts is explored using Hovmöller diagrams and verification against 

independent GBR observations. Variability in the forecasts between analysis times are also 

discussed. Intensity forecasts of Vmax are shown to determine if forecasted ERCs have consistent 

changes in both single point intensity (Vmax) and structure during the weakening and 
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 reintensification phases as documented systematically by Sitkowski et al. (2011). Lastly, the 

mechansim for the decay (stregnthening) of the primary (secondary) eyewalls are briefly discussed 

in terms of balanced and unbalanced dynamics in an axisymetric framework. 

Due to the large number of forecasts from 24-hours worth of cycling for the four experiments, 

the resulting strucutral forecasts from 1500 UTC October 6 to 1500 UTC October 7 are sumarized 

in Figure 3.6. The y-axis represents the average of a field (in this case 1km AGL azimuthally 

averaged tangential winds) over any free forecast/analysis valid at each date. For example, at 1600 

Figure 3.6: Time average for all deterministic free forecasts for 1km AGL azimuthally averaged 
winds. To obtain the time average at each date, the field from any analysis or forecast valid at that 
date is averaged over. This will mean that each date will have a different number of valid 
forecasts/analyses to average over. Dashed black curves are CFs to the FL RECON wind 
observations radius data from Figure 2.2A. Black dots represent local maxima in the time averaged 
field at each date. 
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UTC October 6, the 1-hour forecast from the 1500 UTC October 6 forecast, and the 1600 UTC 

October 6 analysis would be used to calculate the average. This results in the dates having a 

different amount of “data points” to average over, with the earlier dates in the cycling period 

having less than the later dates. This method was determined to be the best way to highlight overal 

forecasted structre for the large amount of forecasts. These averages will be reffered to as “time 

averages” for each date, which are displayed in Hovmöller format. Similar to Figure 3.4, the black 

dots represent local maxima in the time averaged field at each date. In the time average, the Control 

is unable to capture the correct structural changes associated with the weakening and 

reintensification phases of the ERC (Figure 3.6A). This is a direct result of the Control’s inability 

to accurately analyze Matthew’s CE structure throughout the cycling as discussed in Section 3.1 

and highlights the importance of proper initialized TC structure using inner core doppler radar 

observations for the resulting forecasts.  

The time average from TDR forecasts (Figure 3.6B) show the lack of continuous ability to 

predict the correct structural changes of the primary and secondary eyewalls during the ERC. After 

the 1900 UTC October 6 analysis time when TDR observations become available, the time 

averaged tangential winds begin to contract inward, closer to the CF for the primary eyewall, which 

is a result of four consecutive cycles (not shown) whose forecasts demonstrate the expected 

structural changes for the ERC. Overall, a majority of the TDR forecasts do not show the correct 

structural changes associated with ERC, and as a result of this, clear maxima representing the 

primary eyewall in the time average are not seen. After 0200 UTC October 7, the time average 

registers maxima that would correspond to the secondary eyewall’s contraction and strengthening. 

However, on average, the contraction rate is not fast enough compared to the CF. The unrealistic 

time averaged forecast structure in the TDR experiment is likely a result of the inaccurate structure 

(relative to the GBR and GBTDR) in the analyses as discussed in Section 3a in relation to Figure 

3.4C. The limited temporal availability of TDR and the changes in the horizontal observation 

distribution relative to the storm center are hypothesized to be the cause of the inaccurate forecast 

structure. It is important to note that the time averaged structural forecasts are not representative 

of all forecasts during the cycling, and an example of a more realistic forecast from TDR is shown 

later in the section. Despite the lack of consistent and continuous ability to correctly forecast the 

structural changes associated with the ERC, the TDR experiment does show improvements over 
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the Control experiment. This is due to its ability to capture the realistic evolution of the concentric 

eyewalls during the four aforementioned forecasts during ICDR observation availability. 

In contrast to the Control and TDR experiments, the GBR and GBTDR experiments show 

superior ability in capturing the primary and secondary wind maxima in their forecasts. Primary 

wind maxima are captured as distinct local maxima in the time averages from 1700-0000 UTC 

indicating the forecast of the primary eyewall and its decay are happening consistently during the 

forecasts. The secondary wind maxima in the time average for the GBR and GBTDR experiments 

are very similar, with small differences in radial position occurring at times, but with both 

experiments having very similar contraction rates in the time average. Overall, the forecasted 

secondary eyewall for these two experiments replaces the primary eyewall at a radius greater than 

suggested by observations, however, they are more accurate than in Control and TDR. The superior 

analysis structure of the GBR and GBTDR experiments in Figure 3.4C,D result in consistent 

structural forecasts to be made earlier, starting at 1600 UTC (not shown), and more frequently, 

accounting for the time averaged forecasts capturing both the primary and secondary eyewall 

evolutions consistently throughout the cycling.  

To provide quantitative verification of forecasted structure in the different experiments, root 

mean square differences (RMSD) between GBR radial velocity observations and the forecasts are 

calculated. Note that at the analysis time (forecast lead time 0), GBR radial velocity observations 

and the GBR/GBTDR experiments will not be independent. Before the RMSDs are calculated, the 

forecasted TC is relocated to its observed location at each forecast time, this way the RMSD values 

will be more representative of structural differences with no contributions from track error. The 

RMSD values are averaged for each lead time and are shown in Figure 3.7. Results from the GBR 

and GBTDR confirm the qualitative findings from Figure 3.6, having smaller RMSD values than 

Control and TDR for all forecast lead times shown. As expected, the RMSD values for GBR and 

GBTDR at forecast lead time 0 (analysis time) are much lower than the other two experiments, as 

the GBR and GBTDR experiments assimilate these observations and they are not independent. 

The small averaged RMSD value around 3.2-3.3 m/s is consistent with the observation error for 

GBR observations used during DA, indicating the DA is performing correctly. The RMSD values 

for TDR show that at the analysis time, on average, its analyzed structure is better than the 

Control’s, as discussed in Figure 3.4. However, at many lead times, the Control has a better average 

RMSD value than TDR, which is likely due to consistency of the Control’s forecasted single 
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 eyewall’s location in relation to its observed location. Figure 3.6 shows the time averaged 

forecasted wind maxima for Control lies closer to the observed location than does TDR at the end 

of the ERC, but has no physical significance given the Control’s inability to analyze and forecast 

the structure correctly for any analysis time throughout cycling. On average, the consistent 

structural forecast from select TDR cycles is overwhelmed by the more frequent poor forecasts.  

Figures 3.6 and 3.7 do not account for the variability in the free forecasts from analysis time 

to analysis time. To demonstrate the variability in the forecasted structure, Hovmöller diagrams of 

1km azimuthally averaged tangential wind at the 1900 UTC October 6 and 0000 UTC October 7 

analysis times are shown in Figure 3.8. Several features in the forecasts vary, including the location 

of the eyewalls, the time it takes for the primary eyewall to decay, the contraction rate of the 

secondary eyewall, and the strength of the secondary eyewall after completion of the ERC. At the 

1900 UTC analysis time, the Control, as discussed previously, does not have a correctly initialized 

structure and produces a forecast with only a single eyewall for its entirety. The three ICDR 

experiments, however, all have primary and secondary eyewalls present in their forecasts. The  

Figure 3.7: Root mean square differences (RMSD) between GBR radial velocity observations and 
radial velocity of the experiments using the coastal radars KAMX, KMLB, and KJAX. RMSDs 
are averaged for each lead time. 
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primary eyewalls decay after some time while the secondary eyewall strengthens and contracts, 

however, each of the ICDR experiments have differences in their evolutions. The primary eyewall 

takes the longest time to decay in the GBR experiment, followed by GBTDR and TDR, with the 

GBR also having the strongest initialized primary eyewall in terms of its azimuthal average. Out 

of the three ICDR experiments, the TDR has the strongest and most broad secondary eyewall at 

the end of the ERC, followed by GBR and GBTDR. Interestingly, the GBTDR experiment shows 

signs of another ERC starting around forecast hour 20 but is not observed. The experiment with 

the best contraction rate is GBTDR, with the GBR and TDR having slower contraction rates, and 

secondary eyewalls occurring more radially outward compared to GBTDR. An apparent 

distinction between the TDR and other two ICDR experiments is the less pronounced secondary 

eyewall initially in the azimuthal average (Figure 3.8B, forecast hour 0). Horizontal cross sections 

at this time (not shown) indicate that a secondary eyewall is present but does not cover the same 

azimuthal extent as do GBR and GBTDR, and it is also more asymmetric, which causes a local 

Figure 3.8: Hovmöller diagrams of 1km AGL azimuthally averaged tangential winds for 1900 
UTC October 6 and 0000 UTC October 7. CFs and black dots are same as in Figures 3.4 & 3.6. 
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maximum in the azimuthal average to not be as clear. This is consistent with the discussion about 

more inaccurate analyses of the TDR and their effects on the subsequent forecasts. 

At the 0000 UTC October 7 analysis time, the TDR experiment stands out between the three 

ICDR experiments, as it does not show the correct structural changes associated with the ERC as 

it did at 1900 UTC October 6. A clear contraction of the secondary eyewall is not seen, with periods 

of contraction and expansion both present in the forecast. These changes are in part due to the 

vortex structure oscillating between an elliptical and annular shape which changes the projection 

of the wind field onto the azimuthal mean. However, this does not completely account for the 

inconsistent evolution seen in the Hovmöller diagram. After further inspection of the evolution of 

horizontal winds at 1km (not shown), it is clear that this forecast does not show consistent changes 

with an ERC. The result is a broad, annular TC with radius of maximum winds just inside 100 km 

by the end of the ERC, more than half of the radius of the eyewall in the GBR and GBTDR 

forecasts. This forecast is one example of the aforementioned poor forecasts produced by the TDR 

that degrade the time averaged forecast structure in Figure 3.6. At this analysis time, unlike the 

1900 UTC October 6 analysis time, poor horizontal observation coverage is seen in Figure 2.4C, 

indicating the flight was in a downwind leg during the DA time window. Horizontal tangential 

winds at 1 km AGL for this analysis time (not shown) reveal less robust secondary and primary 

eyewall, which is reflected by the intensity of the azimuthally averaged winds at the analysis time 

compared to GBR and GBTDR (Figure 3.8 F,G,H). The less robust wind maxima initialized in the 

TDR analysis would cause differences in the evolution of the ERC.  

The GBR and GBTDR forecasts at the 0000 UTC October 7 analysis time again have 

initialized primary and secondary eyewalls that are well represented in the azimuthal average and 

show consistent structural changes with the decay of the primary wind maxima and 

contraction/strengthening of the secondary wind maxima. Contraction rates between the two are 

very similar, and the GBR has a better position of the secondary wind maxima (just inside the CF). 

The primary eye in GBR again is initialized stronger than in GBTDR and takes longer to decay. 

The secondary eyewall in GBR also ends up being more intense at the end of the ERC than 

GBTDR. This consistency in the GBR and GBTDR forecasts to make more accurate structural 

forecasts is the reason for the distinct primary and secondary eyewall forecasts that manifest 

themselves in the time average in Figure 3.6. 
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The associated intensity changes of the free forecasts are now discussed to determine whether 

they are consistent with the structural changes presented in Figures 3.6,3.7, & 3.8. Figure 3.9 shows 

line plots representing all Vmax intensity forecasts during the consecutive cycling with the dots 

representing the Vmax value at each analysis time. The dashed Vmax forecasts for each 

experiment are free forecasts from 1500-1800 UTC October 6. For GBR and GBTDR experiments, 

this time frame represents the period of large structural changes during the DA cycling displayed 

in Figure 3.2, while for TDR this time period corresponds to analysis times having no TDR 

observations. For the three ICDR experiments, these analysis times produce the most volatile 

intensity changes and most intense forecast at later lead times. The time average of the Vmax 

forecasts using the same method as in Figure 3.6 are displayed as grey lines which help to identify 

overall trends in the forecasts.  The black line in each represents the BT maximum sustained winds, 

which shows a general weakening trend throughout the rest of Matthew’s lifetime. Vertical dashed 

Figure 3.9: 10m maximum wind speed (Vmax) for all free forecasts from 1500 UTC October 6 to 
1500 UTC October 7. Dotted lines represent free forecasts initialized before 1900 UTC October 
6. Each intensity forecast is marked with a dot at the analysis time to track how the analysis Vmax 
evolves. Grey curve represents time average of all analyses/forecasts valid at each date. Black line 
with dots is the BT for Matthew. Vertically dashed black lines represent the bounds of the different 
ERC phases from FL observations (Figure 2.2) which are labeled at the bottom of panels C & D, 
with the last vertical line representing the end of the ERC. 
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lines indicate the times at which the ERC changes from the weakening to reintensification phases, 

and the end of the ERC, as in Figure 2.2. 

The intensity forecasts from the Control experiment are largely consistent with the mean 

structural changes in Figure 3.6A. The time mean of the intensity guidance shows a general 

strengthening trend up to around 0700 UTC October 7 which matches the increase in mean 

intensity from the 1km wind forecasts in Figure 3.6A. Given the initial discrepancy of Vmax in 

the Control experiment compared to the BT, the slow and steady increase in intensity during 

cycling represents the inability for the DA to correct the initial intensity and structure of Matthew 

quickly, as no ICDR observations are provided to Control.  

In direct comparison to the Vmax forecasts in Control, the GBR and GBTDR forecasts and 

time mean show four different phases with subtle intensity changes. These phases will be discussed 

for the GBR experiment, with a corresponding comparison for GBTDR that follows. In addition, 

the intensity trends will be related to the structural changes in Figure 3.6. From 1500 UTC to 2000 

UTC October 6, the GBR displays a strengthening trend as shown by the time mean and purple 

dots representing the analysis Vmax. At 2100 UTC October 6, the Vmax in GBR is strengthened 

to about 125 kts, about 7 kts stronger than what Best Track suggests at the time. This period of 

intensification in the analyses and forecasts represent the adjustment of the initially weak vortex 

through the continuous DA cycling using GBR observations. This is consistent with the structural 

changes in Figure 3.6C, where the establishment of two wind maxima is taking place as evidenced 

by two local maxima in the time mean. Following this strengthening, a weakening trend from 2000 

UTC October 6 to 0200 UTC October 7, followed by a strengthening trend from 0200 UTC to 

1100 UTC October 7. We will argue in the discussion to come that these two periods of different 

intensity trends are a result of the free forecasts correctly capturing the weakening and 

reintensification phases of the ERC. From 2000 UTC October 6 to 0200 UTC October 7, the time 

mean of GBR forecasts in Figure 3.6C show the weakening of the primary wind maxima and the 

strengthening of the secondary wind maxima associated with the weakening phase of the ERC, in 

which the maximum wind will still be located in the primary eyewall. From 0200 UTC to 1100 

UTC October 7, the secondary eyewall in the time mean of the forecasts (Figure 3.6C) becomes 

stronger than the primary eyewall, and begins to intensify while it contracts. Lastly, after 1100 

UTC October 7, the intensity trend switches to deintensification associated with deteriorating 

environmental conditions after the ERC is complete, which is also consistent with the mean 
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structural forecasts in Figure 3.6C. Overall, the intensity trends shown for GBR in Figure 3.9 are 

consistent with the structural forecasts in Figure 3.6 & 3.7.  

Although similar intensity trends from the forecasts in GBR and GBTDR are seen in Figure 

3.9, there are a few notable differences. First, the intensity of the GBTDR analyses does not reach 

that of GBR, with the addition of the TDR observations at 1900 UTC October 6 keeping the 

GBTDR experiment from further strengthening. Another difference is the timing of the intensity 

trend changes, with the GBTDR switching from the weakening to reintensification phase, as well 

as from the reintensification to final weaking phase (after ERC completion) later than did the GBR. 

The intensity changes in Figure 3.9D match the structural changes in the time mean of the GBTDR 

forecasts in Figure 3.6D, as in the GBR experiment. 

The TDR intensity forecasts in Figure 3.9 do not show these aforementioned subtle intensity 

trends seen in GBR and GBTDR. This is consistent with discussion of the time mean TDR 

forecasts (Figure 3.6B), with only a few forecasts being able to successfully capture the correct 

structural changes with the weakening and reintensification of the ERC. As excepted, the 

corresponding intensity changes are not captured in the time mean of the Vmax forecasts (Figure 

3.9B). The four individual forecasts, however, that do capture the correct structural changes, 

(Figure 3.8B is an example) show the same intensity trends discussed for the GBR and GBTDR 

experiments. Unlike GBR and GBTDR, the adjustment of the initial vortex in the DA cycling is 

not as drastic. Again, the TDR demonstrates its inability to make consistent forecasts of the 

appropriate intensity changes associated with the evolution of the ERC, unlike the GBR and 

GBTDR. 

The claims made arguing that the intensity trends from the GBR and GBTDR free forecasts 

are consistent with structural changes in the weakening and reintensification phase of the ERC are 

examined by considering the 1900 UTC October 6 free forecast from the GBTDR experiment in 

Figure 3.10. The left panel of this figure shows a Hovmöller diagram of the 10 m azimuthally 

averaged tangential wind with black dots corresponding to local maxima in the azimuthal average 

and black horizontal dashed lines representing the observed bounds of the ERC phases. The right 

panel shows a scatter plot of the Vmax intensity forecast for this analysis time. The color of the 

dots corresponds to the radial distance from the storm center that the Vmax value was found. The 

coloring strategy is used to identify if the Vmax value is coming from the primary wind maximum 

(blue, or inside 25 km) or the secondary wind maximum (red, or outside 25 km). Overlayed on the  
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scatter plot are the CFs from Figure 2.2 for the primary and secondary eyewalls. The purpose of 

these curves is to show when the intensity changes occur during the different phases, along with 

the intensity trends associated with them. They are not meant to be a proxy for intensity, since the 

observations used to derive the CFs come from FL (about 3 km AGL) while the Vmax values 

come from 10 m AGL.  

For the first 7 hours of the forecast, the Hovmöller shows the primary eyewall as the dominant 

feature, with the secondary eyewall being noticeably weaker (Figure 3.10A). During this time, the 

Hovmöller shows the azimuthally averaged 10 m wind intensity becoming gradually weaker, with 

a brief uptick in intensity around forecast hour 4-5.  The scatter plot (Figure 3.10B) shows the 

decreasing trend in intensity and verifies that the radii at which the wind maxima are occurring are 

inward of 25 km (blue) which correspond to the primary eyewall. This weakening of the primary 

Figure 3.10: Hovmöller diagram from GBTDR experiment initialized at 1900 UTC October 6 of 
azimuthally averaged 10m tangential winds (A) and corresponding scatter plot of Vmax forecast 
with colors corresponding to radial distance from 25km from storm center (B). The dashed curves 
in (B) represent the CFs to the wind maximum of the primary and secondary eyewalls from Figure 
2.2 to show intensity trends. Black horizontal dashed lines indicate the observed phase changes in 
the ERC as in Figure 2.2. 
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eyewall, while still being the stronger of the two, is typical of the weakening phase of the ERC, 

and is captured in both the point intensity forecast (Vmax) and in structural changes in the 

Hovmöller. The switch from the weakening phase to the reintensification phase happens sometime 

between forecast hours 7 and 8, as denoted by the grey horizontal dashed line (Figure 3.10B) and 

occurs about an hour earlier than indicated by the CFs of the FL wind maxima. Leading up to this 

time, the secondary wind maximum in the Hovmöller diagram can be seen intensifying and 

contracting. At forecast hour 8, the secondary wind maximum has now overtaken the primary wind 

maximum in intensity, as evidenced by the color of the intensity markers in the scatter plot (Figure 

3.10B) turning a darker red. This indicates the Vmax values are now located around 40-45 km in 

radius, consistent with the location of the secondary wind max represented by the azimuthal 

averaged tangential winds at this time (Figure 3.10A). The forecasted Vmax begins to intensify up 

to forecast hour 21, with all Vmax values located in the secondary eyewall (red), consistent with 

the contraction and intensification of the secondary eyewall in the azimuthal mean. The downward 

trend in intensity after forecast hour 21 is associated with the weakening caused by environmental 

conditions, again consistent with the Hovmöller’s evolution as the azimuthally averaged winds in 

the eyewall start to weaken. 

The relationship between the structural changes seen in the Hovmöllers and the point intensity 

forecasts demonstrate the model’s capability to capture both, consistent with systematically 

documented structure/intensity changes during the weakening and reintensification phases of the 

ERC. Given that the Vmax value can be found at any point horizontally in the TC, and ideal 

forecast capturing the intensity changes associated with these phases would show a pattern 

consistent with the maximum value of the two CFs of wind intensity. The example shown in Figure 

3.10 demonstrates that this is the case, and that these intensity changes match what would be 

expected given the structural changes in the Hovmöller. Because these changes are tied to the 

evolution of the decay of the primary eyewall and strengthening/contraction of the secondary 

eyewall, capturing these subtle intensity changes will help signal the oncoming changes to the 

TC’s wind structure, which is impactful for forecasting implications. 

To demonstrate that the intensity/structural changes discussed in Figure 3.10 occur for more 

than just one forecast for the GBTDR experiment, Vmax forecasts for each experiment are 

scattered using the same methodology in Figure 3.10B. These are shown in Figure 3.11. Only 

experiments initialized after 1800 UTC October 6 are considered, as the experiments in the 1500  
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UTC to 1800 UTC October 6 time period largely show incorrect structural and intensity changes 

due to poorly initialized structure in all experiments. The grey line in Figure 3.11 corresponds to 

the time average of the Vmax forecasts, as in Figure 3.9.  The CFs for both eyewalls from FL 

observations are plotted as dashed black curves to show the intensity trends of the two eyewalls 

and when the change in phase from weakening to reintensification occurs. As mentioned for Figure 

3.10B, these CFs are not meant to serve as a proxy for storm intensity due to the difference in 

vertical levels, but to show trends. Focusing on the GBR and GBTDR experiments, the switch 

from downward to upward intensity trend correspond nicely with the clear transition from blue to 

red intensity points. Physically, this represents that as the forecasts switch from weakening to 

intensifying, the location of the maximum wind switches from the primary (blue colored Vmax 

point) to secondary (red color Vmax point), meaning the correct structural changes of the decay 

Figure 3.11: Vmax intensity forecasts initialized after 1800 UTC October 6 with color 
corresponding to the Vmax distance from 25 km radius from the storm center, as in Figure 3.10B. 
The grey curve represents the time average of all analyses/forecasts valid at each date. The CFs 
for FL wind maxima are overlayed on each panel to show approximate trends of the two eyewalls. 
They do not serve as a proxy for the 10m wind intensity.   
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(strengthening/contraction) or the primary (secondary eyewall) in many of the forecasts are 

occurring. Similar to Figure 3.10, the intensity changes can be understood conceptually as the 

forecasts capturing the maximum value of the CFs given the Vmax will be located in whichever 

eyewall is strongest at the time. During the reintensification of the GBR and GBTDR forecasts, 

the color of the Vmax points switches from darker to lighter red, indicating that the secondary 

eyewall is contracting inward. In contrast to GBR and GBTDR, the TDR does not show as clear 

of a switch in the radius of the Vmax forecasts. Some contrast in the colors of the Vmax points 

exist around 0200 UTC October 7, which correspond to the four aforementioned forecasts from 

this experiment that show correct structural and intensity changes. However, after 0200 UTC 

October 7, the Vmax points colors tend to be mixed between blue and red, as many of the forecasts 

are not capturing the ERC. Lastly, the Vmax values for Control show a general contraction during 

the forecasts (red Vmax points becoming lighter red or blue) up until about 0800 UTC October 7, 

which corresponds to the end of the contraction in the time average structural forecasts in Figure 

3.6A. After this time, the colors of the Vmax points are mixed between red and blue, approximately 

averaging to 0. This agrees with Figure 3.7A, where the time average radius of the primary eyewall 

in the forecasts stays about constant until 0300 UTC October 8, after which it begins to expand. 

To emphasize the importance of correctly initialized structure of the wind field in the 

experiments, mechanisms for the decay (strengthening/contraction) of the primary (secondary) 

eyewall during the ERC are discussed using a comparison of free forecasts between the Control 

and GBR experiments at the 1900 UTC October 6 analysis time as an example. The purpose is not 

to provide any new insight on possible mechanisms related to ERC dynamics, but to discuss the 

roles of unbalanced and balanced dynamics in an axisymmetric framework to show general 

consistency of the ERC evolution in experiments with the existing literature. Furthermore, it has 

been shown in this study that the accuracy of the forecasts is related to the analyzed structure of 

CEs, making an examination of the mechanisms for ERC during the weakening and 

reintensification phases necessary to solidify the importance of correctly analyzed storm structure. 

Figure 3.12 shows the evolution of the following azimuthally averaged fields for the Control 

and GBR free forecasts initialized at 1900 UTC October 6: tangential wind (purple contours), 

transverse circulation (quivered), absolute angular momentum (black contours) and absolute 

angular momentum advection (contour filled). Dashed contours are shown for the tangential wind 

and angular momentum fields so that their evolution can be easily tracked. Figure 3.12B shows  
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Figure 3.12: Evolution of azimuthally averaged: tangential winds (purple contours), absolute 
angular momentum (black contours), transverse circulation (quivered), and advection of absolute 
angular momentum (filled) for Control and GBR experiment initialized at 1900 UTC October 6. 
Two contours in both the azimuthally averaged tangential winds and absolute angular momentum 
are dashed so that their changes can be tracked. 
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the one-hour forecast for the GBR experiment where several features are noticeable. First, there 

are two wind maxima present in the azimuthal average, with the primary wind maximum being 

more vertically deep and stacked, whereas the secondary wind maximum is shallower and slopes 

outward in radius with height. In addition, each wind maxima have their own transverse circulation 

associated with it, characterized by the radial inflow in the lower levels, turning vertically upward 

at the eyewall, and finally flowing radially outward at some height (in/up/out).  

The dynamics governing the axisymmetric intensification and contraction of the secondary 

eyewall can be explained using both balanced (Shapiro & Willoughby , 1982; Willoughby et al., 

1982) and unbalanced (Huang et al., 2012; Smith et al., 2009) mechanisms. The balanced 

mechanism describes the evolution of convection in a rotating fluid, which drives a transverse 

circulation through the heating source. This results in radial convergence of absolute angular 

momentum surfaces (M) above the boundary layer (where it is approximately conserved), resulting 

in a radial expansion of the tangential wind field and its contraction as the maximum in its tendency 

lies radially inward of the heat source. Overall, this increases the intensity of the secondary eyewall 

while also contracting it radially inward. Unbalanced dynamics associated with the intensification 

of the secondary eyewall takes place in the boundary layer (BL) where M is not materially 

conserved due to frictional dissipation. If the radial inflow is strong enough to move larger M 

surfaces radially inward with minimal loss of M due to friction, tangential winds in the BL can 

become supergradient, leading to a rapid deceleration of the radial flow at the eyewall, and the 

enhancement of the transverse circulation as the BL inflow tuns up and out of the eyewall (Smith 

et al., 2009). This unbalanced mechanism can then lead to further intensification via the balanced 

mechanism. For the sake of simplicity in the analysis that follows, 500 m AGL and below will be 

considered the BL.  

The balanced mechanism can be seen in Figure 3.12 B,D, F, where radial inflow around 1km 

results in positive M advection above the BL. Unbalanced dynamics are manifested in the strong 

radial advection of M in the BL where the largest positive M advection lies. This results in 

supergradient winds (not shown) in the BL that help to enhance the transverse circulation 

associated with the secondary eyewall, and further intensify it via the balanced mechanism. The 

overall effects of these two mechanisms in the axisymmetric framework are to 1: contract the 

secondary eyewall inward, as the maximum in positive M advection lies just radially inward of the 

tangential wind maximum, 2: intensify the secondary wind maximum as evidenced by the 
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evolution of the dashed contour for the tangential wind field, and 3: expand the wind field 

associated with the secondary eyewall radially outward and vertically.  

The dynamical mechanisms associated with the decay of the primary are less solidified in 

literature than those of the secondary eyewall’s contraction and strengthening, including both 

kinematic and thermodynamic explanations associated with the interaction of the two eyewalls. 

Mechanisms such as the cutoff of high moist entropy air to the inner eyewall (Bell et al., 2012; 

Zhou & Wang, 2011b) and suppression of the primary eyewall convection due to subsidence 

induced by the secondary eyewall (Rozoff et al., 2008; Shapiro & Willoughby, 1982; Willoughby 

et al., 1982) were not found to be consistent or prominent features in the experiments. Instead, the 

decay of the primary eyewall can be at least partially explained in a simple kinematic sense put 

forth by Rozoff et al. (2008). The mechanism involves the cutoff of high M air to the primary 

eyewall due to the enhanced transverse circulation associated with the growing and intensifying 

secondary eyewall. Figure 3.12B shows a robust transverse circulation and tangential wind 

maximum associated with the primary eyewall, where positive M advection exists at the primary 

eyewall. The reason for this positive advection of M at the primary eyewall is the radial inflow 

being able to penetrate the secondary eyewall to reach the primary eyewall. As the forecast evolves 

and the secondary eyewall beings to intensify, the associated transverse circulation grows stronger. 

The inflow above the inflow layer is cut off from reaching the primary eyewall, resulting in the 

spindown of the primary tangential wind maximum as evidenced by the radially outward 

movement of the dashed M contour. By forecast hour 16 (Figure 3.12F), the primary wind 

maximum in the azimuthal average has almost disappeared, as the radial inflow and positive 

advection of M is cutoff by the secondary eyewall.  

In complete contrast to the structure shown in the GBR forecast for this analysis time, the 

Control only shows the evolution of a single eyewall that can be explained with balanced and 

unbalanced dynamics that results in a contracting and strengthening primary wind maximum. 

These diagnostics show that if a concentric eyewall structure exists in the analysis, simple balanced 

and unbalanced dynamics can partially explain the evolution of the ERC in an axisymmetric 

framework. Because these changes are tied specifically to the impacts the secondary eyewall has 

on the existing primary eyewall, without proper initialization of concentric eyewalls, the 

mechanisms for the ERC cannot take place.  
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4. Discussion and Conclusions 
 

In this study, hourly DA cycling was performed for Hurricane Matthew during a 24-hour time 

period from 1500 UTC October 6 to 1500 October 7, 2016, assimilating GBR and TDR 

observations together, as well as separately using HWRF and the Hybrid 3DEnVar DA system for 

the analysis and prediction of Matthew’s ERC. The results of this study show that the temporal 

availability, including duration, of ICDR observations are important for capturing the correct 

evolution of Matthew’s ERC. Comparison of the GBR experiment, which has continuous access 

to GBR observations from 1500 UTC October 6 to 1500 UTC October 7, and the TDR experiment 

which has continuous access to TDR observations from 1900 UTC October 6 to 0100 UTC 

October 7, show stark differences in the establishment of CE structure and evolution of the primary 

and secondary eyewalls throughout the ERC (Figure 3.4). The GBR experiment corrects the 

initially inaccurate background storm structure earlier, resulting in a CE structure that evolves 

consistent with FL RECON observations throughout the rest of the cycling, showing the eventual 

decay of the primary eyewall and the contraction/strengthening of the secondary eyewall 

throughout the weakening and reintensification phases. The TDR experiment, with later and fewer 

hours of availability, shows less consistent CE structure, and the inability to capture the 

strengthening and contraction of the secondary eyewall after observations become unavailable. 

The biggest takeaway from the analyses’ structural evolutions is that without early availability and 

long duration of ICDR observations, Matthew’s structural changes cannot be analyzed consistently 

throughout the ERC. In addition, the lack of ICDR observations altogether in the Control 

experiment shows the complete inability to initialize CE structure during the cycling. These effects 

were shown to carry over to the quality of the forecasts. 

Differences in 3D ICDR observation distributions were also shown to affect the initialization 

of intricate features associated with Matthew’s ERC. The GBR experiment, despite very limited 

lower-level observation coverage, was able to initialize CEs through DA cycling that included both 

corrections to the upper-level wind field, and extension of those winds to the surface during the 

time integration. A comparison with FL RECON observations shows that although CEs were 

established during the DA cycling, the GBR experiment has a tendency to contract the primary 

and secondary eyewalls too far radially inward, in part due to the lack of observation coverage at 

lower levels. The TDR, in comparison, demonstrates the ability to correct the initially inconsistent 
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storm structure to a CE TC in only one cycle due to superior horizontal and vertical observation 

coverage. However, the TDR horizontal observation distribution can vary drastically from cycle 

to cycle depending on whether the flight is in a penetration or downwind leg during the DA time 

window. Limited or incomplete horizontal coverage during downwind legs is hypothesized to 

contribute to the less consistent TDR analyses during their availability, consistent with the findings 

of Aksoy et al. (2012). These results highlight the importance of accounting for the horizontal 

variability of ICDR observations during the DA time window. A proposed method to account for 

the horizontal variability during high-frequency cycling is to use the hourly FGAT method. This 

would require further investigation to determine its ability to more effectively use the TDR 

observations from downwind legs.  

The simultaneous assimilation of TDR and GBR observations shows the ability to 

complement each other when their vertical distributions differ. At 1900 UTC October 6, the 

deficiencies in the GBR experiment relating to the spuriously small primary eyewall and inwardly 

displaced secondary eyewall are corrected when the two observation sets are assimilated together. 

The differences in the structural evolution between the GBR and GBTDR experiments shown 

throughout the entire cycling period in Figure 3.4 are small, with the most noticeable being the 

earlier intensification of the secondary eyewall in the GBR experiment. These small differences in 

the azimuthally averaged tangential wind evolution are not completely representative of the 

differences between the 3D structure of the experiments. However, they do suggest that the 

dominant structural features in the analyses result from the initial establishment of CE structure 

due to the early availability of the GBR observations, with TDR observations making small 

contributions to correcting the storm structure thereafter. 

A notable point relating to the simultaneous assimilation of both GBR and TDR observations 

which was not discussed in Section 3 is the establishment of vertical vortex tilt at select analysis 

times due to the differences in spatial and temporal observation distributions, specifically during 

penetration legs of the TDR flight. This is best described with a brief example at 1900 UTC for 

the GBTDR experiment. Because the flight passed through the center of Matthew at 1917 UTC 

(center fix time), or 17 minutes past the analysis time, the observations suggest the storm center is 

located farther to the northwest, in the direction of the storm motion, compared to its observed 

location at 1900 UTC. The GBR observations on the other hand, are distributed more uniformly 

in time, and suggests the storm center is closer to the observed location at the analysis time. Due 
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to the assumption in the 3DEnVar method that all observations within the hour-long time window 

are valid at the analysis time, the result of the DA is to shift the storm center at the lower levels 

(where TDR coverage is superior) towards the location at which the plane found Matthew’s center, 

and shift the storm center at the middle to upper levels (where GBR coverage is superior) towards 

the observed location at the analysis time. This problem becomes more accentuated when the 

center fix time of the plane is further away from the analysis time. It is not seen, however, in either 

the GBR or GBTDR experiments when these two ICDR observation types are assimilated by 

themselves. Preliminary tests (not shown) show the hourly FGAT method to be a potential remedy 

to this problem by accounting for the temporal distribution of the observations. However, this 

method did not remove all of the vortex tilt, which could result from many possibilities, one of 

which includes the hourly FGAT method’s assumption that the state variables change linearly 

throughout the DA time window. This subject will require more research to determine what the 

best solution may be; however, it is pivotal for the future assimilation of these ICDR observation 

types simultaneously. It should also be noted that the vortex tilt in the select analysis times of the 

GBTDR experiment was determined not to be detrimental to the resulting free forecasts, as the 

vortex tilt vanishes early in the time integration due to the environmental wind shear not being 

supportive of large tilt during the time period of TDR availability. 

The deterministic forecasts launched from experiments with initialized CEs were shown to 

capture both the correct structural and intensity changes associated with the weakening and 

reintensification phases of the ERC which can be explained by unbalanced and balanced dynamics 

associated with interactions of the two eyewalls. The GBR and GBTDR experiments show the 

consistent ability to capture the downward and upward intensity trends associated with these two 

phases that are clearly exhibited in the time mean of Vmax forecasts throughout the cycling. In 

addition, the timing of the phase switch and the ending of the ERC correspond well with FL 

RECON observations, indicating that these experiments are able to make accurate and consistent 

forecasts of the subtle intensity changes that are systematically documented for these two phases 

of the ERC. The consistency between the structural changes seen in the Hovmöller diagrams and 

point intensity forecasts verify that the intensity trends are directly tied to the structural changes 

during the ERC. This is an encouraging result for the future of TC intensity prediction, given the 

reliance on point intensity forecasts such as Vmax for operational use. The TDR experiment does 

not consistently show these intensity changes due to the aforementioned poor analysis structure in 



 

 47 

many of its initializations throughout the cycling. The GBR and GBTDR experiments’ superior 

structure in their analyses throughout the entirety of the ERC was shown to be responsible for the 

more accurate intensity forecasts. 

Given the fixed nature of GBR radar sites, every TC case has the potential to be unique in 

terms of availability and spatial distribution of both GBR and TDR observations. In this study, the 

GBR observations were the first to provide inner core coverage of Matthew, with the TDR 

availability lagging behind, which may not be the case for every storm. Additionally, the over 24 

hours of GBR availability provided a unique way to study an ERC case due to Matthew’s 

paralleling of Florida’s coast with minimal interaction with land. In general, a systematic study is 

needed to assess model performance when assimilating both types of ICDR observations to 

account for a variety of possibilities of temporal availability and spatial coverage. Additionally, 

more cases involving ERC prediction need to be performed to assess if the analysis and prediction 

of these events can demonstrate accuracy for other TCs that may be initialized at different points 

in the ERC and have different CE structure.  
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