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Abstract 

 Research to identify coexisting wireless devices is becoming increasingly important, in 

part due to the yearly increase in internet users and wireless devices. Various machine learning 

algorithms, including neural networks, have been proposed and utilize a wide variety of data and 

feature extraction methods. Most leverage features from frequency domain because, although 

limited, these solutions tend to be less complex.  

 In this thesis, a neural network that utilizes dilated convolutions is proposed to classify 

Wi-Fi standards using raw power measurements. The proposed model is adapted from a previous 

model, namely WaveNet [1], which was used for generating raw audio in text-to-speech (TTS) 

applications. With this method, synthesized audio sounds more natural than other state-of-the-art 

TTS methods. By utilizing dilated convolutions, WaveNet has a larger receptive field with few 

layers that can model long-range temporal dependencies. This serves as an advantage that both 

recurrent neural networks (RNN) and long short-term memory (LSTM) networks do not share. 

Wi-Fi power measurements are collected across 802.11n, 802.11ac, and 802.11ax wireless 

technologies both individually and with multiple technologies coexisting across a range of 

various throughputs. These are used to train the proposed model (WIFINet). 

 Results indicate that 98.10% detection accuracy can be achieved by utilizing the 

proposed network. Investigations showed a convolutional neural network (CNN) with similar 

accuracy of 96.33%, indicating that modeling long-range temporal dependencies is not needed. 

At the very least, WIFINet yields little improvement over CNN for identifying wireless devices 

operating across the span of 802.11 technologies. 
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 Introduction 

 Concerns about the coexistence between wireless devices and technologies have steadily 

grown over the past few years, many of which utilize the Industrial, Scientific, and Medical 

(ISM) band. New Internet of Things (IoT) devices like personal assistants are becoming more 

commonplace in households. Upgrading existing wireless devices with IoT capabilities further 

increases the number of wireless devices. Simultaneously, the number of internet users and the 

total number of connected wireless devices around the world continues to grow. The Annual 

Internet Report from Cisco [2] projects that by 2023, an estimated 5.3 billion internet users and 

29.3 billion networked devices will vie for connectivity. This figure reflects an increase of 3.9 

billion users and 18.4 billion devices since 2018. Most devices are expected to leverage wireless 

technology utilizing either the 2.4 GHz or 5 GHZ ISM bands. 

 Investigating coexistence becomes more critical as the ISM band becomes more 

congested. Because technologies compete for limited spectrum resources, successful coexistence 

and resource sharing with limited interference is optimal. As such, studying ways to identify 

wireless devices that coexist (i.e., no interference) on shared bands and novel methods for 

sharing resources will be beneficial for device development.  

1.1 Thesis Summary 

 While many methods have been proposed to identify coexisting wireless devices utilizing 

a range of wireless technologies, another method is suggested in this thesis for utilizing a neural 

network capable of modeling long-range temporal dependencies. If using an IQ sampling rate of 

10 MS/s, then sampling just 1 ms would generate a sample with 10,000 timesteps. Hence, RNN 

and LSTM models should not be utilized. Instead, a CNN architecture is proposed. Dilated 
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convolutions will result in long-range temporal modeling capabilities. The model was tested for 

its ability to identify wireless technologies for both independent and coexisting operations 

covering 802.11n, 802.11ac, and 802.11ax. Additionally, the model was compared with 

alternative machine learning models. 

1.2 Benefits of Dilated Convolution 

 Dilated convolutions can be used when an increase in the receptive field (i.e., number of 

inputs used to generate each output) is desired while maintaining a minimal number of layers. In 

traditional convolution, receptive fields grow linearly. A new convolution layer must be added 

for each additional output. In dilated convolution, a spacing—most commonly called a dilation 

rate—is introduced between kernels, effectively widening the receptive field without adding 

additional layers. Stacking dilated convolutions with ever increasing dilation rates can achieve an 

exponentially higher receptive field with fewer layers when compared to non-dilated 

convolutions. For example, a dilation depth of three results in a receptive field of eight, while a 

non-dilated convolution with three layers results in a receptive field of only four, as shown in 

Figure 1-1. Given that the dilation rate is increased by a power of two for each additional dilated 

layer, layer depths ranging from [3 4 5 6 7 8 9 and 10] results in receptive field increases of 

[8 16  32  64  128  256  512  and 1,024], respectfully. If non-dilated convolution was used for a 

depth of 10 layers, the receptive field would be 11 inputs wide. To obtain a similar receptive 

field of 1,024, a non-dilated convolution network must be 1,023 layers. With dilated convolution, 

outputs can be generated to model long-range temporal dependencies since a large receptive field 

is possible with few layers. [1], [3], [4], [5], [6], [7]. 
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Figure 1-1. Dilated Convolution (top) versus Non-Dilated Convolution (bottom). 
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 Related Work 

2.1 RNN and LSTM Models for Time Series Datasets 

 RNN or LSTM architectures are commonly used in conjunction with time series data. 

However, both architectures suffer from vanishing gradients when sequence lengths are long 

(e.g., approximately 50 timesteps for RNN and 500 timesteps for LSTM). 

 Authors in [8] provide a statistical means of testing whether RNN and LSTM networks 

have long memory. Their conclusion proved that they do not. They also proposed a new 

definition for long memory networks which required weights to decay at a polynomial rate. 

Testing involved minimally modifying RNN and LSTM models to use a polynomial decay rate 

and training the model on various datasets, including a generated dataset using autoregressive 

fractionally integrated moving average (ARFIMA) of sequence lengths 4,001; the Dow Jones 

Industrial Average with sequence lengths of 5,030; hourly traffic volume for an interstate with 

sequence lengths 1,860; and tree ring measurements with sequence lengths of 4,351. 

Additionally, two sentiment analysis datasets, CMU-MOSI and a paper review set, were used for 

classification. While their modified RNN and LSTM models showed improvement over the un-

modified version, performance was poor for sentiment analysis datasets with accuracies of 

approximately 31% and 40%, respectively. 

 Authors in [9] showed that CNNs could outperform RNNs and LSTMs in many 

situations. Their datasets included the adding problem—a common stress test used for sequence 

problems—with sequence lengths of 600; the MNIST and P-MNIST datasets with sequence 

lengths of 784; a copy memory test—prior works with sequence models used this— with 

sequence lengths of 1,000; the JSB Chorales and Nottingham music dataset with sequence 
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lengths of 382; and several datasets for word and character modeling with vocabulary sizes 

ranging from 10,000 to 268,000. CNN drastically outperformed RNN in all cases and 

outperformed LSTM in all cases except word modeling. Researchers pointed out that in the latter 

case, PTB dataset is smaller; on the much larger Wiki-103 dataset, CNN outperforms LSTM by 

achieving a much lower perplexity. 

 Authors in [10] proposed a modification to an RNN / LSTM network that allows 

modeling longer term dependencies. They proposed “… adding an unsupervised auxiliary loss to 

the original objective …,” which “… forces RNNs to either reconstruct previous events or 

predict next events in a sequence, making truncated backpropagation feasible for long 

sequences” [10, p. 1].  Researchers evaluated this method on datasets with various sequence 

lengths, including MNIST and P-MNIST with lengths of 784; CIFAR10 with lengths of 1,024; 

StanfordDogs with lengths ranging from 1,600 to 16,000; and DBpedia with lengths of 300. The 

proposed method improved the model to better generalize longer sequences. When looking at 

results of datasets with long sequence lengths, the researchers achieved accuracies of 65% to 

72% on CIFAR10 compared to un-modified versions achieving 49% to 59% and accuracies of 

approximately 12% on the StanfordDogs dataset with length of 2,000 which decreased to below 

6% as length increased to 16,000. Authors noted that “… pursuing useful accuracy with non-

convolutional models is not our main goal” [10, p. 5]. Results indicated that without more 

extreme modifications or tuning, even methods proposed to increase the network’s ability to 

model longer term dependencies still demonstrate disappointing results when sequence lengths 

rise above 1,000. 
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2.2 Identification of Wireless Technologies using Neural Nets 

 Authors in [11] used a CNN to identify coexisting wireless devices using features from 

the frequency domain. Their network identified individual and coexisting wireless technologies 

present in an environment and encompassed 802.11n, Bluetooth, and Zigbee. Raw power 

measurements were recorded across the 80 MHz spectrum at various SNRs and used to train 

their model, which achieved an accuracy of 93% with the highest SNR. Accuracy decreased to 

14% for the lowest SNR of 0 dB, even though it performed decently well for SNRs at or above 

10 dB. Provided figures showed that 802.11n, Wi-Fi, Bluetooth, and Zigbee have unique and 

distinguishable spectrograms that prove useful for identification. 

 Authors in [12] used an expanded approach, utilizing a CNN to classify 802.11ac, 

802.11ax, 802.11a, 802.11n, and Long-Term Evolution (LTE) cellular using the spectrograms. In 

addition, researchers demonstrated that by utilizing a denoising autoencoder prior to CNN, high 

accuracy classification in non-ideal channels is achievable by using lower-dimensional and 

denoised representations of the spectrograms. The group tested their proposed model against five 

noise scenarios for 802.11 Wi-Fi—three delay spread scenarios with and without pathloss, one 

doppler scenario, and one AWGN scenario—and against four noise scenarios for LTE cellular—

two LTE moving with and without fading, one LTE fading, and one AWGN—at SNR values of 

20 dB, 15 dB, 10 dB, 5 dB, and 0 dB. Maximum achieved accuracy across the five scenarios was 

100% with an average accuracy of 91% across all tests and 95.44% across tests with SNR level 

between 10 dB and 20 dB. The lowest accuracy achieved was 55% in the LTE AWGN scenario 

with SNR level of 0 dB. 

 Authors in [13] used network traffic flows to classify new and unseen IoT devices. Since 

traffic flows varied in length depending on the device, the researchers segmented the traffic into 
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sub-traffic flows of a fixed five-minute time interval. They extracted features related to number 

of packets (e.g., total, received, transmitted), packet statistics (e.g., max, min, mean), and 

protocol-related features. A cascaded neural network containing LSTM layers followed by CNN 

layers was used. Devices ranged from smart speakers, smart cameras, baby monitors, and 

printers, among others. Researchers classified devices as hubs, electronics, cameras, and 

switches and triggers. Devices were chosen from each category; some were purposely left out to 

test the network’s ability to classify previously unseen devices into one of the specified 

categories. Accuracy was 74.8%, which outperformed other tested models. The LSTM network 

achieved 65.4% accuracy; SVM was 58.5% accurate; and CNN was 56.3% accurate. The work 

presented in this thesis is similar, as segmented sub-traffic flows are very similar to time series 

data. The proposed model [13] outperformed standalone LSTM and CNN networks, indicating 

that cascading networks can improve performance.  However, results indicated that to achieve 

higher accuracies, a different approach might be necessary. 

 Authors in [14], proposed using an LSTM to classify signals using time domain 

amplitude and phase information. Researchers indicated that state-of-the-art “… results on high 

SNRs (0 to 20dB) are achieved without using complex CNN-LSTM models” [14, p. 444]. Their 

proposed model achieved accuracies of 90% for high SNRs. Authors noted that using IQ samples 

instead of amplitude and phase information results in extremely poor performance. Findings 

from this thesis demonstrated similar poor performance (See Section 3.2). However, the 

proposed method in this thesis utilizes only the I-component of the IQ samples, which 

demonstrated high accuracy performance. 
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2.3 WaveNet 

 Authors in [1] introduced the WaveNet architecture for generating raw audio waveforms, 

which served as the basis for the proposed model in this thesis. Researchers used causal dilated 

convolutions, permitting a larger receptive field that grows exponentially, as discussed 

previously in Chapter 1. The receptive field enables the network to model long-range temporal 

dependencies. The model is fully probabilistic with probability distribution outputs for each 

timestep; it also uses newly generated samples at each timestep to predict future samples. Raw 

audio is typically 16-bit, which requires distributions of 65,536 values at each time step (e.g., 16 

kHz would result in 16,000 distributions every second). To reduce the dimensionality of the 

probability distributions, raw audio signals were quantized using 𝜇-law quantization, which 

represents the raw audio signal as 8-bit quantized versions and reduces distributions to 256 

values. In addition, both skip and residual connections were used in the stacked residual blocks, 

which contained dilated convolutions and gated activations. Output was fed into the next block 

to prevent vanishing gradients and to reduce convergence time. Researchers demonstrated that 

the model performed extremely well when applied to music audio modeling and speech 

recognition. The model could also outperform then-current top TTS systems when considering 

output authenticity. Currently, Google uses an updated version of WaveNet to power Google 

Assistant voices for US English and Japanese translations. [3], [4], [5], [6], [7] 

2.4 WaveNet Adapted for Artist Classification from Audio Samples 

 Authors in [15] demonstrated that WaveNet architecture can be adapted to work as a 

classifier, adapting it to classify artists based on audio samples. The architecture proposed herein 

encoded 16 kHz audio samples to a feature space of (16,000, 40) by utilizing casual and dilated 
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convolutions, much like WaveNet. The encoded audio sample was fed into a series convolution 

and pooling layers for down-sampling, and then into a softmax layer for classifying one of 20 

artists. The model [15] achieved an F-score of 0.854, which researchers confirmed is better than 

then-current state-of-the-art methods given the same experimental conditions. 
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 Classifying Wi-Fi from Raw Power Measurements 

 A neural network was used to determine whether devices in a given environment utilized 

one or more Wi-Fi standards by utilizing raw power measurements. The neural network was 

inspired and adapted from WaveNet architecture [1]. It was hypothesized that the architecture 

would excel at this type of classification due to the time-varying nature of power measurements, 

size of samples, and ability of WaveNet to consider many thousand timesteps for modeling the 

long-range temporal dependencies with few layers by utilizing dilated convolution. Data was 

collected across many experiments with independent and coexisting wireless technologies across 

the 802.11n, 802.11ac, and 802.11ax standards. Resulting data was used to train and test the 

proposed model’s ability to classify wireless technologies active in the environment at the time 

power measurements were documented. 

3.1 Data Collection 

 Experiments were conducted in Building 5 Blockhouse at the University of Oklahoma 

campus in Tulsa, OK over a period of months in 2020 summer and fall semesters and 2021 

spring semester. 

3.1.1 Equipment 

 Four MikroTik 953GS-5HnT-RP RouterBOARDs (See Figure 3-1) compliant with 

802.11n and 802.11ac were used as both the access point (Tx) and station (Rx) for 802.11n and 

802.11ac networks. One Asus RT-AX88U, 802.11ax compliant router (See Figure 3-2) served as 

the access point (Tx) for the 802.11ax network. One Dell Precision 5540 laptop running 

Windows 10 equipped with iPerf3 software for measuring network performance was installed 
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and used as the server for the software and to access the ethernet-connected Asus router. One 

Lenovo ThinkPad T470s laptop running Windows 10 acted as the station (Rx) for the 802.11ax 

network. One NI PXIe-5644R Vector Signal Transceiver (VST) (See Figure 3-3) running 

Windows 7 and with proprietary LabVIEW software [16] installed was utilized for acquiring raw 

power measurements. Finally, one Toshiba R835-P56X running Windows 10 was utilized as the 

host computer for the four MikroTik RouterBOARDs and to remotely connect to the VST; it was 

connected to each component using one Netgear Gigabit Switch GS116 via ethernet. 

 

Figure 3-1. MikroTik RouterBOARD. 

 

Figure 3-2. Asus router. 

 

Figure 3-3. NI vector signal transceiver. 

3.1.2 Experimental Setup 

 Three Wi-Fi networks were setup and configured to utilize the 802.11n, 802.11ac, and 

802.11ax wireless-networking standards. Each network consisted of an access point (Tx) and 

station (Rx). The 802.11n and 802.11ac networks utilized the four MikroTik RouterBOARDs as 
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both access points and stations were setup on two tables separated by 6 feet. Notably, the 

networks were separated by 2.5 feet. The 802.11 ax network was composed of an access point, 

the Asus Router, station, and Lenovo ThinkPad and placed on two additional tables separated by 

12 feet. This network was separated 2.5 feet from the nearest MikroTik RouterBOARD. The 

VST and Dell Precision laptop shared a table with the Asus Router, and the Toshiba host laptop 

shared a table with the Lenovo ThinkPad. All table surfaces were approximately 2.5 feet high. 

The experimental setup and devices used in this setup are depicted below in more detail (See 

Figure 3-4, Figure 3-5, and Table 3-1). 

 

Figure 3-4. Experimental setup. 

 



13 

 

 

Figure 3-5. Image of experimental setup in lab. 

Table 3-1. Device Details for Experimental Setup 

ID Device Interface OS iPerf 

1 NI PXIe-5644R Ethernet Windows 7 - 

2 Asus RT-AX88U WLAN Windows 10 3.1.3 

3 MikroTik RouterBOARD 953GS-5HnT-RP WLAN RouterOS - 

4 Toshiba R835-P56X Ethernet Windows 10 - 

5 Dell Precision 5540 Ethernet Windows 10 - 

6 Lenovo ThinkPad T470s WLAN Windows 10 3.1.3 
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 The Asus router and MikroTik boards had channel bonding enabled, which allowed for 

full channel utilization of 160 MHz width for the Asus router and 40 MHz width for the 

MikroTik boards. All were set to operate on channel 36 of the 5GHz ISM Band with a 5,180 

MHz center frequency. Features were extracted from measurements taken by the VST using 

installed LabVIEW software [16]. Features included average duty cycle, average power, raw 

duty cycle, and raw power. Power values were expressed as in-phase and quadrature (IQ) 

components. LabVIEW software configuration is detailed below in Table 3-2. 

Table 3-2. LabVIEW Software Configuration 

Setting Description Value 

IQ Rate Sampling rate of the baseband IQ data. 10 MS/s 

Gain Aggregate gain applied to the RF signal. 0 dBm 

Frame Size IQ data frame size to be analyzed per iteration. 72,600 

Run Period Duration of the scan. 60 s 

Threshold Threshold used to calculate the duty cycle. -59 dBm 

3.1.3 Collection 

 Ambient noise was baselined before data collection began to ensure no interfering signals 

were present in the environment. Daily testing re-affirmed this, and ambient noise remained 

below -73 dBm. Baseline testing was conducted separately for each of the three networks to 

evaluate maximum throughput performance. Each baseline test was repeated five times, and the 

802.11n, 802.11ac, and 802.11ax networks achieved maximum throughput of 250 Mbps, 340 

Mbps, and 956 Mbps, respectively. This maximum data rate was then divided into five limits that 

could be used to artificially limit throughput to simulate various signal qualities (See Table 3-3). 

Lower throughputs were used for simulating low quality signals, and higher throughputs for 

simulating high quality signals. 
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Table 3-3. Throughput Limits for each Wi-Fi Network 

Specification Limits (Mbps) 

802.11ax 190.0 380.0 570.0 760.0 956.0 

802.11ac 68.0 136.0 204.0 272.0 340.0 

802.11n 50.0 100.0 150.0 200.0 250.0 

 

 Collection consisted of a series of tests in which one to three networks operated at a 

specified limit and each test was repeated five times. Tests were composed of individual 

networks with each limit and each possible limit combination for coexistence. One exception 

was made to test all three networks coexisting wherein limits were reduced to the combination of 

individual minimum, median, and maximum limits for all five. The latter test was performed to 

decrease the number of tests required for this particular case, which otherwise would have been 

625—a number that eclipsed all other testing combined. Instead, 135 tests were conducted, 

which was more feasible. 

3.2 Exploratory Data Analysis 

 A total of 585 tests were performed—25 for each of the three individual networks, 125 

for each of the three cases of two coexisting networks, and 135 for a single case of three 

coexisting networks. Each test resulted in four binary (.bin) files for average and raw power, and 

average and raw duty cycle. Of these, raw power was used. Total size of 585 raw power binary 

files was approximately 608 GB. Each contained approximately 1.054 billion interleaved IQ 

components of raw power measurements in dBm, which was stored as signed 8-bit integers. 

Maximum value observed in the data was -3.0 dBm, and minimum value observed was -85.0 

dBm. A total of seven classes was labeled with numbers ranging from zero to six (See Table 
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3-4). Number of classes was determined cases of individually operating networks, as well as 

cases of coexistence. Different limits do not constitute a new class, but rather ensure each class 

contains data with various signal qualities that were simulated with throughput limits. Early 

testing with various model architectures aided in determining that the I component alone would 

be enough for training the neural network. In fact, test results indicated that model accuracy 

would be quite low using only the Q component. Including both components achieved decent 

results, although results were poorer compared to training results using only the I component. A 

decision was made to discard the Q component during data preprocessing. 

Table 3-4. Description of Classes and Assigned Labels 

Label Class Description # Networks 

0 802.11ax 1 

1 802.11ac 1 

2 802.11n 1 

3 802.11ax / 802.11ac 2 

4 802.11ax / 802.11n 2 

5 802.11ac / 802.11n 2 

6 802.11ax / 802.11ac / 802.11n 3 

3.3 Data Preprocessing 

 Each of the 585 binary files were processed in the same way. File data was loaded into 

memory; IQ data was de-interleaved; Q-component was discarded; data beginning and end was 

trimmed; and then data was randomly sampled. 

 Labels were generated based on file name and originating directory. Files were stored in 

a directory that indicated the class to which they belonged. Files were named with a five-digit 

number. The first three digits were a zero-padded number indicating the set of tests the file 



17 

 

belonged to. The last two digits were a zero-padded number indicating test number in the test set 

(See Figure 3-6).  

 After all files had been processed and labels generated, data was stored in two arrays and 

saved to disk using the binary NumPy format (.npy). Data was saved in single-precision floating-

point format (float32) and kept in dBm to allow testing of various normalization methods. 

Normalization was possible after loading and before training. Processed data was approximately 

26.4 GB, and generated label data was approximately 3.60 MB. 

 

Figure 3-6. Directory structure and file naming for storage of raw data. 

3.3.1 Sampling 

 After discarding the Q-component, the data contained approximately 527 million data 

points. The first 100 million data points and all data after 500 million was discarded. This 

resulted in a data array containing exactly 400 million I-components. A specified number of 

random samples were taken from the data with a large amount of space placed between each 

sample. The space could be characterized as both large and randomized to decrease correlation 

between samples. The number of samples taken from each file differed depending on data class. 

⁞ 
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Sample number was determined beforehand to ensure that sampled classes would be balanced 

(See Table 3-5). The intention was to later test multiple sample lengths in increments of 5,000 

for determining ideal length. With this in mind, sample lengths taken during preprocessing were 

maximum size (i.e., 30,000) tested. Smaller sample lengths could be obtained by trimming 

samples. Using this method, only one dataset must be preprocessed and stored. Total samples 

were 118,125—16,875 per class.  

Table 3-5. File Sampling Parameters by Class 

Classes 
Number 

Files 

Number 

Samples 

Max 

Space 

Sample 

Length 

Total 

Samples 

0, 1, 2 25 675 570,000 30,000 16,875 

3, 4, 5 125 135 2,900,000 30,000 16,875 

6 135 125 3,100,000 30,000 16,875 

3.3.2 Normalization 

 As previously mentioned, preprocessed data was stored in dBm so changing the 

normalization method would not require data reprocessing. Instead, preprocessed data could be 

loaded and normalized using any method before model training. Data was normalized in one of 

three ways: 1) offsetting by the threshold for duty cycle calculation in the LabVIEW software 

[16] and scaling to a range of [-1, 1] while preserving the new zero location, equation (3.1); 2) 

scaling to a range of [0, 1] using min-max normalization, equation (3.2); and 3) scaling to a 

range of [-1, 1] using min-max normalization, equation (3.3). All three normalization techniques 

were tested on early models, and normalization using equation (3.1) gave the best results. See 

Figure 3-7 below for examples of the three normalization methods. See Figure A-1in Appendix 

A, which shows random samples for all classes after (3.1) normalization.  
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 𝑥′ =
𝑥 + Γ

max(|max(𝑥)|, |min(𝑥)|)
     𝑤ℎ𝑒𝑟𝑒, Γ 𝑖𝑠 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3.1) 

 𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (3.2) 

 𝑥′ = 2
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
− 1 (3.3) 

 

  

  

Figure 3-7. Samples of normalized data. 

Normalization using eq. (3.1) No Normalization 

Normalization using eq. (3.2) Normalization using eq. (3.3) 
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3.4 WIFINet – WaveNet Adapted Neural Network 

 A neural network was developed that adapted WaveNet’s [1] original architecture, which 

took in text and synthesized raw audio speech from a distribution at each timestep. The adapted 

model, named WIFINet, maintained most of the architecture until after skip connections and 

ReLu activation. The first 1x1 convolution was replaced with a 32x1 convolution, and the second 

1x1 convolution was replaced with additional layers to aid in classification. The Softmax also 

differed, in that, instead of outputting a distribution at each timestep, only one distribution was 

output, indicating to which of the seven classes the input most likely belonged. The input 

consisted of raw power measurement samples from only the in-phase component, since the 

quadrature component was discarded. Input data was preprocessed as described in Section 3.2, 

and no further data processing was done inside the neural network using preprocessing layers. 

Labels consisted of integer values in the range of one to seven for identifying the sample as 

802.11ax, 802.11ac, 802.11n, 802.11ax with 802.11ac, 802.11ax with 802.11n, 802.11ac with 

802.11n, and 802.11ax with 802.11ac with 802.11n, respectively. Labels were one-hot encoded. 

The TensorFlow 2.5 machine learning library for Python was used to build the model. 

3.4.1 Architecture 

 The un-modified part of WIFINet consisted of a 1x1 convolution followed by a series of 

stacked residual blocks, which consists of a causal dilated convolution—the output of which was 

fed separately into both a sigmoid and tanh activation function. The sigmoid acted as a forget 

gate while the tanh acted as an activation. Sigmoid output and tanh were then multiplied together 

and input into another 1x1 convolution, which was added to the residual and transferred out of 

the block through a skip connection and was input to the next residual block. Since each residual 
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block had a skip connection, a series of skips emerged from the blocks. These skip connections 

were added together and they were input into an ReLu activation. At this stage, the WIFINet 

entered the modified portion, wherein the architecture began to differ from WaveNet [1]. 

 In WIFINet’s modified portion, the first 1x1 convolution was replaced with a 32x1 

convolution. Next, the ReLu activation followed by a second 1x1 convolution was replaced with 

a series of layers consisting of a 32x1 average pooling layer; a flatten layer; a dense layer with 

1,024 neurons and ReLu activation; a dropout layer at a rate of 0.5, a dense layer with 128 

neurons and ReLu activation; another dropout layer at a rate of 0.5; and a dense layer with seven 

neurons and Softmax activation. The average pooling layer was used to decrease dimensionality. 

Pool size determines by what factor feature dimensions will be reduced. In this case presented 

herein, input was size (20000, 32), indicating 20,000 timesteps and 32 filters. Output was 

reduced to size (2000, 32) using a stride of 10. The flatten layer diminishes input to one 

dimension, so input size (2000, 32) would be flattened to 64000. The two dense layers use He 

uniform variance scaling as the kernel initializer. Two dropout layers were added for 

regularization which helps with overfitting during training. These layers will randomly set 

neurons to zero at a frequency of the specified rate at each step during training; 0.5 was used in 

WIFINet. See Figure 3-8, which depicts WIFINet. The model values are “optimal” values 

selected after tuning the model—the process described in greater detail in the next section. 
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Figure 3-8. WIFINet architecture. 
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3.4.2 Optimization 

 Adam (i.e., Adaptive Moment Estimation) was used for the optimization algorithm. 

Unlike stochastic gradient descent (SGD), which uses the same learning rate throughout 

training—unless momentum or a learning rate decay scheduler is used—Adam computes 

adaptive learning rates for each parameter. Bias corrected first and second moments— �̂�𝑡 and 

𝑣𝑡,—of the gradients 𝑔𝑡 are calculated using equations (3.4) and (3.5). [17] 

 �̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 =

𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡  (3.4) 

 𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 =

𝛽2𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
2

1 − 𝛽2
𝑡  (3.5) 

 These moments are then used to update parameters using the Adam update formula 

shown in Equation (3.6). Moments �̂�𝑡 and 𝑣𝑡 are used to calculate an adaptive learning rate 𝜂. 

Values 𝛽1 and 𝛽2 are decay rates with suggested default values of 0.9 and 0.999, respectively. 

Value 𝜖 is a small constant added for numerical stability with a suggested default value of 1𝑒−8 

from the original paper and 1𝑒−7 from the Keras API. Suggested default values for decay 

rates 𝛽1 and 𝛽2 and the default value from Keras for 𝜖 were used. [17] 

 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
�̂�𝑡 (3.6) 

3.4.3 Hyperparameter Tuning 

 WIFINet contains of number of network parameters for controlling training results, 

although many are not derived during training (e.g., neuron weights). Neuron weights typically 

proceed through a round of testing to determine optimal value (i.e., hyperparameter tuning). 

Although many approaches are available for hyperparameter tuning, the one utilized for 
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WIFINet involved testing a chosen set of values for each parameter, training the model with 

presets while maintaining others, and analyzing results after training was complete. When 

determining the optimal values, both loss and accuracy were taken into account, as well as 

training time. For instance, a change in accuracy by +1.0% would not necessarily be justified if 

training time was dramatically affected. After tuning each hyperparameter, two to three highest 

values from each were chosen, and one model for every combination was trained and evaluated. 

The best performing model was used to determine optimal hyperparameters for use in the final 

model training and evaluation. Table 3-1 shows each hyperparameter, tested values, and optimal 

value selected for the final model. Decay rates and stability constant parameters for the Adam 

optimizer used the default values and were not tuned. 

Table 3-6. Hyperparameter Optimal and Tested Values 

Parameter Value Description Tested Values 

Depth 10 Number of residual blocks. 2, 4, 6, 8, 10, 12 

Filters 32 Number of convolution filters. 16, 32, 64, 128 

𝐾1 1 Kernel for input convolution. 1, 2 

𝐾2 32 Kernel for last convolution. 1, 3, 5, 7, 16, 32, 50, 64, 128 

Stride 10 Average pooling stride size. 10, 25, 50, 100 

𝐷1 1024 Size of 1st dense layer. 16, 32, 64, 128, 256, 512, 1024, 2048 

𝐷2 128 Size of 2nd dense layer. 16, 32, 64, 128, 256, 512, 1024, 2048 

𝛼 1e-4 Adam learning rate. 1e-3, 1e-4, 1e-5, 1e-6 

𝛽1 0.9 Adam decay rate - 1st moment. - 

𝛽2 0.999 Adam decay rate - 2nd moment. - 

𝜖 1e-7 Adam stability constant. - 

Epochs 10 Passes over data for training. - 

Batch 32 Samples processed before update. - 
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 In addition to hyperparameter tuning, sampled data size (i.e., number of timesteps) was 

also tested. As explained in Section 3.3.1, data was preprocessed with the sample size of 30,000, 

which was the maximum amount for testing. Smaller sizes could be created by simply trimming 

the end of the data to the desired size. This involved preprocessing and saving only one dataset 

rather than one for each desired testing size. Sizes tested ranged from 5,000 to 30,000 in 

increments of 5,000. Figure 3-9 shows testing results; 20,000 was selected, as little improvement 

was demonstrated beyond this size. 

 

Figure 3-9. WIFINet results for various sample sizes. 

3.4.4 Hardware and Source Code 

 Data preprocessing and model training was performed on a desktop computer running 

Windows 10 Pro with an AMD Ryzen 9 5900X 12-core 3.70 GHz processor, 32 GB of DDR4 

Dram, and an NVIDIA GeForce RTX 3070 GPU. Python version 3.8.8 was utilized for all code. 

Source code can be found on GitHub [18]. 
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3.4.5 WIFINet Results 

 Data was split into a training and validation set ratio of 5:1 (i.e., training set was 80% and 

validation set was 20%). Training ran for 10 epochs, and the model was set to monitor validation 

loss and save the optimal weights. For example, if the next epoch resulted in a validation loss 

increase, weights were not saved. This process took approximately 2.88 hours with a training 

sample size of 94,500. A validation sample size of 23,625 required approximately 77.29 seconds 

(i.e., 1.29 minutes) for the model to process. Prediction time for one sample was 0.003 seconds. 

Table 3-7 shows accuracy, precision, recall, and F-score calculations, and Figure 3-10 shows 

training loss vs. validation loss, as well as training accuracy vs. validation accuracy. The graphs 

demonstrate that validation loss reaches a minimum of 0.0699 at epoch 8, which corresponds to 

98.10% validation accuracy. Weights at this epoch were retained for the final model since 

validation loss was monitored as described above. 

Table 3-7. WIFINet Metrics 

Accuracy Precision Recall F-Score 

0.980995 0.981016 0.980995 0.980993 

 

  

Figure 3-10. WIFINet training loss and accuracy. 
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 Figure 3-11 depicts the confusion matrix for the validation set. Each row represents the 

actual sample class, and each column represents model-predicted class for the sample. Model 

accuracy is separated for each class, most of which were correctly predicted 98% of the time. 

802.11ax with 802.11ac and 802.11ax with 802.1 were the exceptions, as they were correctly 

predicted 97% and 96%, respectively. Figure 3-12 shows the receiver operating characteristic 

(ROC) curve and the area under the curve (AUC) calculation for each class, as well as micro and 

macro averaging. 

 

Figure 3-11. WIFINet confusion matrix. 

 

Figure 3-12. WIFINet ROC curve. 
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 Additional Machine Learning Models to Classify Wi-Fi 

 Neural network and traditional machine learning models were trained on the same dataset 

for the sake of comparison. Data preprocessing was unchanged. More importantly normalization 

was unchanged. It should be noted that in some instances various normalization methods could 

have yielded better results for some models. Additionally, while all models had some form of 

tuning, time did not permit in depth tuning to the extent it was for WIFINet. As such, more in 

depth tuning for these models could yield better results as well. 

4.1 Basic Artificial Neural Network (ANN) 

 A basic artificial neural network (See Figure 4-2)—one containing only layers of 

perceptrons or artificial neurons—was trained and tested with multiple sizes of two-to-three 

hidden layers with dropout rate of 0.5 used between layers. Optimization and parameters were 

the same as those used for WIFINet. Test results are shown in Figure 4-1. Only the best-

performing model that used three hidden layers of sizes [2048, 512, 128] was retained. Metrics 

calculations are shown in Table 4-1. The model was trained in approximately 225 seconds (i.e., 

3.75 minutes), and prediction time was approximately 1.25 seconds for all samples and 0.002 

seconds for one sample. The confusion matrix and ROC curve are shown in Figure 4-3 and 

Figure 4-4. The TensorFlow 2.5 machine learning Python library was used to build the model. 

Table 4-1. ANN Metrics 

Accuracy Precision Recall F-Score 

0.721101 0.721944 0.721101 0.713134 
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Figure 4-1. ANN results for various depths and sizes. 

 

Figure 4-2. ANN structure. 

 

 

Figure 4-3. ANN confusion matrix. 

 

Figure 4-4. ANN ROC curve. 
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4.2 Convolutional Neural Network (CNN) 

 A convolutional neural network (See Figure 4-6) was trained and tested for various 

depths. The structure consisted of three groups of convolution layers with an average pooling 

layer after each group down-sampling by a factor of 2. Filter sizes 16, 32, and 64 and kernel 

sizes 3, 5, and 3 were used. Output layers remained the same as for WIFINet and consisted of a 

flatten layer followed by two dense layers with dropout rate of 0.5 after each layer, and then a 

Softmax layer at the output. The same optimization and parameters used for WIFINet were 

employed. Results for each test are shown in Figure 4-5. Depths 1, 3, and 2 outperformed others 

and were retained. Metrics calculations are shown in Table 4-2. The model was trained in 

approximately 1,395 seconds (i.e., 23.25 minutes), and its prediction time was approximately 

8.53 seconds for all samples and 0.003 seconds for one sample. The confusion matrix and ROC 

curve are shown in Figure 4-7 and Figure 4-8. The TensorFlow 2.5 machine learning Python 

library was used to build the model. 

Table 4-2. CNN Metrics 

Accuracy Precision Recall F-Score 

0.963302 0.963356 0.963302 0.963298 
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Figure 4-5. CNN results for various depths. 

 

Figure 4-6. CNN structure. 

 

 

Figure 4-7. CNN confusion matrix. 

 

Figure 4-8. CNN ROC curve. 
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4.3 K-Nearest Neighbors (KNN) Classifier 

 A k-nearest neighbor classifier was trained and tested for various numbers of neighbors.  

Unlike training for other algorithms, this algorithm utilizes multiple cores when predicting and 

was set to use the maximum number. All other parameters were left as default. Results for each 

test are shown in Figure 4-9. The classifier with three neighbors outperformed others and was 

retained. Metrics calculations are shown in Table 4-3. The model took approximately 507.09 

seconds (i.e., 8.45 minutes) to train, and its prediction time was approximately 9254.25 seconds 

(i.e., 2.57 hours) for all samples and 0.194 seconds for one sample. The confusion matrix and 

ROC curve are shown in Figure 4-10 and Figure 4-11. The scikit learn 0.23.2 Python library was 

used to build the classifier. 

Table 4-3. KNN Classifier Metrics 

Accuracy Precision Recall F-Score 

0.523175 0.534303 0.523175 0.513713 

 

 

Figure 4-9. KNN results for various number of neighbors. 
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Figure 4-10. KNN confusion matrix. 

 

Figure 4-11. KNN ROC curve. 

4.4 Support Vector Machine (SVM) Classifier 

 A support vector machine classifier was trained. A linear kernel was utilized, as well as 

probability calibration using 5-fold cross validation. All other parameters were left as default. 

Metrics calculations are shown in Table 4-4. The model took approximately 63723.88 seconds 

(i.e., 17.70 hours) to train, and its prediction time was approximately 6.61 seconds for all 

samples and less than 0.001 seconds for one sample. The confusion matrix and ROC curve are 

shown in Figure 4-12 and Figure 4-13. The scikit learn 0.23.2 Python library was used to build 

the classifier. 

Table 4-4. SVM Classifier Metrics 

Accuracy Precision Recall F-Score 

0.226963 0.219781 0.226963 0.186025 

 

 



34 

 

 

Figure 4-12. SVM confusion matrix. 

 

Figure 4-13. SVM ROC curve. 

4.5 Decision Tree Classifier 

 A decision tree classifier was trained and tested for various numbers of minimum leaves 

required for a leaf node. All other parameters were left as default. Results of each test are shown 

in Figure 4-14. The 25-leave test outperformed others and was retained. Metrics calculations are 

shown in Table 4-5. The model took approximately 1056.72 seconds (i.e., 17.61 minutes) to 

train, and its prediction time was approximately 0.47 seconds for all samples and less than 0.001 

seconds for one sample. The confusion matrix and ROC curve are shown in Figure 4-15 and 

Figure 4-16. The scikit learn 0.23.2 Python library was used to build the classifier. 

Table 4-5. Decision Tree Metrics 

Accuracy Precision Recall F-Score 

0.531259 0.526679 0.531259 0.528002 
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Figure 4-14. Decision tree results for various number of minimum leaves. 

 

 

Figure 4-15. Decision tree confusion matrix. 

 

Figure 4-16. Decision tree ROC curve. 

4.6 Random Forest Classifier 

 A random forest classifier—an ensemble of multiple decision trees—was trained and 

tested for various numbers of trees. The algorithm utilizes multiple cores, and this was set to use 

the maximum number. All other parameters were left as default. The results of each test are 
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shown in Figure 4-17. The test with 100 trees outperformed others and was retained. Metrics 

calculations are shown in Table 4-6. The model took approximately 8632.03 seconds (i.e., 2.40 

hours) to train, and its prediction time was approximately 0.60 seconds for all samples and 0.001 

seconds for one sample. The confusion matrix and ROC curve are shown in Figure 4-18 and 

Figure 4-19. The scikit learn 0.23.2 Python library was used to build the classifier. 

Table 4-6. Random Forest Classifier Metrics 

Accuracy Precision Recall F-Score 

0.746624 0.75821 0.746624 0.739329 

 

 

Figure 4-17. Random forest results for various number of trees. 
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Figure 4-18. Random forest confusion matrix. 

 

Figure 4-19. Random forest ROC curve. 

4.7 Gaussian Naïve Bayes Classifier 

 A gaussian naïve Bayes classifier was trained and tested. All parameters were left as 

default. Metrics calculations are shown in Table 4-7. The model took approximately 12.10 

seconds to train, and its prediction time was approximately 23.85 seconds for all samples and 

less than 0.001 seconds for one sample. The confusion matrix and ROC curve are shown in 

Figure 4-20 and Figure 4-21. The scikit learn 0.23.2 Python library was used to build the 

classifier. 

Table 4-7. Naïve Bayes Classifier Metrics 

Accuracy Precision Recall F-Score 

0.447958 0.433623 0.447958 0.414635 
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Figure 4-20. Naïve bayes confusion matrix. 

 

Figure 4-21. Naïve bayes ROC curve. 

4.8 Logistic Regression Classifier 

 A logistic regression classifier was trained and tested. The algorithm utilizes multiple 

cores and was set to use the maximum number. All parameters were left as default. Its metrics 

calculations are shown in Table 4-8. The model took approximately 3014.04 seconds (i.e., 50.23 

minutes) to train, and its prediction time was approximately 0.4 seconds for all samples and less 

than 0.001 seconds for one sample. The confusion matrix and ROC curve are shown in Figure 

4-22 and Figure 4-23. The scikit learn 0.23.2 Python library was used to build the classifier. 

Table 4-8. Logistic Regression Classifier Metrics 

Accuracy Precision Recall F-Score 

0.232423 0.233407 0.232423 0.232781 
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Figure 4-22. Regression confusion matrix. 

 

Figure 4-23. Regression ROC curve. 

4.9 AdaBoost Classifier 

 An AdaBoost classifier was trained and tested. All parameters were left as default. 

Metrics calculations are shown in Table 4-9. The model took approximately 7722.32 seconds 

(i.e., 2.15 hours) to train, and its prediction time was approximately 30.60 seconds for all 

samples and 0.001 seconds for one sample. The confusion matrix and ROC curve are shown in 

Figure 4-25 and Figure 4-26. The scikit learn 0.23.2 Python library was used to build the 

classifier. 

Table 4-9. AdaBoost Classier Metrics 

Accuracy Precision Recall F-Score 

0.393735 0.366133 0.393735 0.327122 
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Figure 4-24. AdaBoost results for various number of estimators. 

 

 

Figure 4-25. AdaBoost confusion matrix. 

 

Figure 4-26. AdaBoost ROC curve. 
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 Evaluation and Comparison of Models 

5.1 Metric Evaluation 

 Metrics for all models are listed in Table 5-1. WIFINet outperformed others with metrics 

reported at 98.1%. The CNN model had similar performance to WIFINet with metrics at 96.3%. 

ANN and Random Forest models had similar performances with metrics ranging between 72 – 

76%—far behind WIFINet and CNN model performance. Figure 5-1 plots all model accuracies 

for easy comparison. Figure 5-2 shows the ROC curves for all of the models. The top is the 

micro-averaged ROC curves and the bottom is the macro-averaged ROC curves. The right plots 

are zoomed in to the top-left corner in order to better compare differences between the top 

models. Like the metrics, ROC curves show WIFINet outperformed others and was followed 

closely behind by the CNN model. The remainder fell far behind. 

Table 5-1. Model Metrics 

Model Accuracy Precision Recall F-Score 

WIFINet 0.980995 0.981016 0.980995 0.980993 

ANN 0.721101 0.721944 0.721101 0.713134 

CNN 0.963302 0.963356 0.963302 0.963298 

KNN 0.523175 0.534303 0.523175 0.513713 

SVM 0.226963 0.219781 0.226963 0.186025 

Tree 0.531259 0.526679 0.531259 0.528002 

Forest 0.746624 0.758210 0.746624 0.739329 

Naïve Bayes 0.447958 0.433623 0.447958 0.414635 

Log. Regression 0.232423 0.233407 0.232423 0.232781 

AdaBoost 0.393735 0.366133 0.393735 0.327122 
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Figure 5-1. Comparison of accuracies. 

 

Figure 5-2. Comparison of micro (top) and macro (bottom) ROC curves. 

 



43 

 

5.2 Time and Size Evaluation 

 When comparing model time performance and size—two important attributes depending 

on the intended application—models vary drastically. Training and predicting times and model 

sizes are listed in Table 5-2.The Naïve bayes model took around 12.10 seconds to train, while 

other models took minutes—even hours. The SVM model took the longest to train—63,728.88 

seconds (i.e., 17.10 hours). The logistic regression model took only 0.40 seconds to predict all 

23,625 validation samples. KNN processing took the longest—9,254.25 seconds (i.e., 2.57 

hours). Most importantly, the time to predict one sample for all models was comparable. Most 

took ≤ 0.003 seconds, except KNN, which took 0.194 seconds. Figure 5-3 and Figure 5-4 plot 

model times and sizes, respectively, for easy comparison. 

Table 5-2. Model Times and Sizes 

Model 
Time (s) 

Size (kB) 
Training Prediction 

All 

Prediction 

1 
WIFINet 10,371.00 77.29 0.003 770,889 

ANN 225.00 1.25 0.002 493,144 

CNN 1,395.00 8.53 0.003 1,922,018 

KNN 507.09 9,254.25 0.194 23,429,362 

SVM 63,723.88 6.61 < 0.001 5,474 

Tree 1,056.72 0.47 < 0.001 566 

Forest 8,632.03 0.60 0.001 186,005 

Naïve Bayes 12.10 23.85 < 0.001 2,189 

Log. Regression 3,014.04 0.40 < 0.001 548 

AdaBoost 7,722.32 30.60 0.001 66 

 



44 

 

 

Figure 5-3. Comparison of times. 

 

Figure 5-4. Comparison of sizes 
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5.3 Summary of Model Evaluation 

 WIFINet and CNN models exhibited acceptable performance for classifying coexisting 

wireless technologies. The WIFINet model achieved the superior 98.1% accuracy, and CNN 

achieved 96.3% accuracy. The WIFINet model took longer to train—10,371.00 seconds (i.e., 

2.88 hours); the CNN model took only 1,395.00 seconds (i.e., 23.25 minutes). When predicting 

23,625 samples in bulk, the WIFINet model took 77.29 seconds (i.e., 1.29 minutes), while the 

CNN took 8.53 seconds. Both WIFINet and CNN had comparable times when predicting only 

one sample—0.003 and 0.002 seconds, respectively. At two to three milliseconds, both of these 

models are sufficiently fast enough at predicting one sample that they can be implemented in 

real-time applications. 

 Another important characteristic one must consider is overall model size. For instance, if 

the model is be deployed on an embedded system, or any system where memory is limited, then 

model size becomes a deciding factor when choosing a model. WIFINet is 770,889 kB (i.e., 

752.82 MB), while CNN is more than double the size—1,922,018 kB (i.e., 1.56 GB). 

 In most use cases, the time to predict one sample would be one of the most important 

characteristics to consider, along with overall accuracy. If this was the case, or if deploying on a 

memory-limited system, then the WIFINet model would be preferable. However, if fast training 

time or efficient bulk-prediction capabilities are desired, then the CNN model would probably be 

the better choice, given that a small loss in accuracy is permissible. 
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 Conclusion 

6.1 Summary and Conclusions 

 The work presented in this thesis hypothesized that a neural network using dilated 

convolutions similar to WaveNet [1] would excel at coexisting wireless technology 

classification, namely WIFINet. Raw power measurements were collected at an IQ sampling rate 

of 10 MS/s in an environment with coexisting wireless technologies that spanned the 802.11n, 

802.11ac and 802.11ax wireless specifications. The I-component was used to train the WIFINet 

model, using 80% of the data for sampling and 20% for validation. The model implemented 

stacked residual blocks with dilated convolutions and skip connections. WIFINet was 

demonstrated to accurately classify coexisting wireless technologies at an accuracy, precision, 

recall, and F-score above 98% (See Table 3-7, Table 5-1). Additional models, both neural 

networks and traditional machine learning methods, were created to compare WIFINet to models 

without dilated convolutions. Additional models performed poorly, with the exception of the 

CNN neural network, which utilized convolutions that were not dilated. This model’s 

performance was similar to WIFINet with metrics at or approximate to 96% (See Table 4-2, 

Table 5-1). Results indicate that although WIFINet achieved the highest accuracy, exceptional 

performance was not likely directly related to dilated convolutions used in the model. In other 

words, results indicates that the generalization of sampled data could be made by both WIFINet 

and CNN models by generalizing short-range temporal patterns. This outcome is discerning 

because the main purpose for dilated convolution in WIFINet is its ability to model long-range 

temporal patterns; notably, CNN did not contain dilated convolutions and still performed 

similarly to WIFINet. 
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6.2 Future Work 

 This thesis reported a process for classifying coexisting wireless technologies using a 

neural network that utilized dilated convolutions to model long-range temporal patterns. 

Additional 802.11 specifications, as well as other wireless technologies like Bluetooth, Zigbee, 

RFID, or cellular (e.g., 3G, 4G, 5G, LTE) should be included in future work. It is entirely 

possible that although the dilated convolutions had little impact in this study, long-range 

temporal patterns might become more important when examining coexisting wireless 

technologies in more dense and more varied environments. Additional future work could collect 

additional data in less “ideal” environments to test the model’s ability to classify samples with 

various types of noise. Researchers should keep in mind the importance of testing whether a 

model is effectively generalized to the degree at which it could classify noisy real-world samples 

without requiring additional training for each type of environment. 
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 Random Samples for all Classes 

 

Figure A-1. Normalized random samples from all classes and throughputs. 


