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Abstract

Subseasonal-to-seasonal (S2S) extremes occur frequently in the Southern Great

Plains (SGP), more specifically heat waves. Heat waves are expected to increase in

frequency, duration, and intensity in several regions globally, yet a single definition to

identify heat wave events has not been established. This study focuses on proposing

a novel comprehensive heat wave identification methodology and the application of

this method to the SGP. Utilizing 2-meter temperatures from the North American

Regional Reanalysis data set from 1979 through 2019, the heat wave definition was

applied to complete an annual time series, duration, and seasonality analysis within

the study spatial domain. Heat wave events in this study are identified when the

daily maximum and minimum standardized temperature anomalies were greater than

or equal to the 90th percentile for a minimum of three consecutive days. The 90th

percentile was determined to be a more ideal relative threshold in comparison to the

95th percentile through statistical analysis of the probability distribution functions of

daily maximum, mean, and minimum standardized temperature anomalies across the

Southern Great Plains throughout the study time period.

Spatially, a climatology of heat wave events was established on a climate

division scale with the employment of three different spatial coverage percentages

(i.e., 10%, 25%, and 50%) denoting the percentage of grid points within each climate

division where the heat wave methodology was met. Temporal and spatial trends
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were analyzed from the generated heat wave event climatologies within the annual

time series, duration, and seasonality. This study found that the frequency of heat

wave events is increasing over the study time period for all ten states within the

SGP. Further, Louisiana and Mississippi are more susceptible to longer duration (i.e.,

7-day or greater) heat wave events. Lastly, the frequency of heat wave events during

all four seasons (i.e., fall, spring, summer, and winter) was increasing through all

SGP states. Louisiana had the greatest increasing trend of fall, spring, and winter

heat wave events, whereas Texas had the largest increasing trend in summer season

heat waves. All relationships appeared within all three spatial coverage methods.

The climatologies solved the need of a database of heat wave events in the Southern

Great Plains, established on a climate division scale in this study. Furthermore,

trends provided insight on the significance of particular years, locations, and future

implications of heat wave events within the SGP. This work established the beginning

steps in more expansive heat wave research to further analyze precursor, compound,

and cascading events between multiple S2S extremes with heat wave events in order

to mitigate socioeconomic losses.
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1 Introduction

Extreme environmental events are common to the Southern Great Plains (SGP)

of the United States, including extreme heat and heat waves. In recent years, flash

droughts have impacted much of the SGP (Christian et al. 2019; Basara et al. 2019;

Hunt 2020). Dong et al. (2011) as well as Christian et al. (2015) found that drought

and extreme precipitation whiplash events have caused detrimental losses within this

region. Additionally, Mullens and McPherson (2019) stated that an increase in hy-

drologic extremes in the SGP can be expected in the future. Even though past heat

wave events have occurred in the SGP (Namias 1982; Cowan et al. 2017), unfortu-

nately, a unified definition for extreme heat remains elusive (Souch and Grimmond

2004).

Figure 1.1 displays heat wave definitions used in prior studies (Smith et al.

2013) comprised of multiple variables: (1) maximum temperature (Meehl and Tebaldi

2004; Peng et al. 2011), (2) maximum and minimum temperature (Robinson 2001),

(3) mean temperature (Anderson and Bell 2011), and (4) heat index (Steadman 1979,

1984). Further, the thresholds used were either relative or absolute (i.e., percentile

or set value) while duration criteria varied from one to five days. Additionally, the

United States National Weather Service utilizes a heat index to issue heat advisories

to the general public and applies absolute thresholds dependent on the location of

the National Weather Service office and the associated local climate variability. In
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each study and application, given that a single definition for heat waves has not been

defined, the methodologies were determined based on the individual study focus.

The World Meteorological Organization (WMO) defines a heat wave as a period in

which the daily maximum temperatures exceeds the daily normal maximum temper-

ature by more then nine degrees Fahrenheit (five degrees Celsius) for more than five

days consecutively. Yet, within literature this WMO definition is not primarily used.

Therefore, a comprehensive definition for heat waves spanning local to global scales

is needed.

Multiple socioeconomic sectors are impacted by such extreme heat events

including agriculture (Lobell and Field 2007; Schlenker and Roberts 2009; van der

Velde et al. 2012; Otkin et al. 2013; Hunt et al. 2014; Hunt 2020), energy (White

et al. 2003; Marx et al. 2006; Miller et al. 2008), human health (Steadman 1979;

Marx et al. 2006; Kovats and Hajat 2008; Anderson and Bell 2011; Gasparrini and

Armstrong 2011; Barnett et al. 2012), water resources, infrastructure, and ecosystems

(McKechnie and Wolf 2010; Teskey et al. 2015). Zuo et al. (2015) outlined the effects

and connections of heat waves (Figure 1.2) between several socioeconomic sectors

listed above. Additionally, in 2019, the National Weather Service found that heat

was the number two weather-related killer in the United States. Moreover, in the

last decade as well as the past 30 years in the United States, heat has been the

leading weather phenomena of human mortality (Figure 1.3; National Weather Service

2020). Previous studies have researched past heat wave events to discuss potential
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atmospheric drivers of extreme heat events (Meehl and Tebaldi 2004; Parker et al.

2014; Schubert et al. 2014), yet these findings were specific to the temporal periods

studied and the definitions used. The heat wave event dates dependency on the

heat wave definition utilized was further illustrated by Anderson and Bell (2011) who

studied human mortality trends due to heat waves in several regional communities

using multiple definitions. Their results found that the dates of the heat wave event

depended on the classification (Figure 1.4).

Overall, past heat wave events have been studied across the world in Australia

(Pezza et al. 2012; Perkins and Alexander 2013; Australian Bureau Of Meteorology

2013; Lewis and Karoly 2013; Cowan et al. 2014; Parker et al. 2014; Zuo et al. 2015),

Europe (Hajat et al. 2002; Fischer et al. 2007; Della-Marta et al. 2007; Barriopedro

et al. 2011; Schubert et al. 2014), China (Bai et al. 2014; Chen and Li 2017; Wu

et al. 2020), and Russia (Barriopedro et al. 2011; Trenberth and Fasullo 2012). Ad-

ditionally, Russo et al. (2014a) and Perkins (2015) focused their studies on a global

scale. Within the United States, California has been a hot spot for heat wave re-

search (Miller et al. 2008; Tamrazian et al. 2008; Gershunov et al. 2009; Knowlton

et al. 2009; Gershunov et al. 2011; Gershunov and Guirguis 2012a). Further, Kunkel

et al. (1996) and Whitman et al. (1997) focused on atmospheric patterns that were

present during the July 1995 historical heat wave event in Chicago, whereas Karl

and Quayle (1981) studied the 1980 summer heat wave with connection to drought

conditions across the Central United States. Lastly, Bumbaco et al. (2013) captured
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a historical record of heat wave events for the Pacific Northwest region in the United

States. Various other studies employed different heat wave definitions either studying

trends, impacts, future projections, or atmospheric drivers of extreme heat events

across the entire United States (Robinson 2001; Meehl and Tebaldi 2004; Gershunov

et al. 2009; Wu et al. 2012; Oswald and Rood 2014; Allen and Sheridan 2016; Schoof

et al. 2017; Oswald 2018). While many of these previous studies have databases of

heat wave events that have occurred with respect to each individual heat wave defi-

nition utilized, there is no consensus on a general climatology of heat wave events in

specific regions.

A warming climate also raises the concern of an increase in frequency and

intensity of extreme events associated with rising surface temperatures. For example,

heat waves have been increasing in frequency over the past several decades (Peterson

et al. 2013) and, in general, an increase in heat waves is expected over time (Karl et al.

2000; Meehl and Tebaldi 2004; Hao et al. 2013; Mazdiyasni and AghaKouchak 2015).

Smith et al. (2013) found that from 1979-2011, an increase in heat wave frequency

was observed for 14 out of the 15 heat wave definitions shown in Figure 1.1 across

the Great Plains. In addition, Meehl and Tebaldi (2004) simulated a positive trend

in worst-3 day (i.e., 3 consecutive days of the warmest daily minimum temperatures

determined annually) heat waves from 2080 to 2099 in the Southern Great Plains.

However, the seasonality of heat waves has been neglected in a majority of

studies. Numerous studies specifically limited their period of interest to the summer
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and/or warm season (i.e., May through September). A few studies focused on specific

cases (Karl and Quayle 1981; Barriopedro et al. 2011), whereas most of the studies

that were interested in trends or drivers concentrated strictly on the warm season

(Kunkel et al. 1996; Stefanon et al. 2012; Bumbaco et al. 2013; Cowan et al. 2014;

Parker et al. 2014; Mo and Lettenmaier 2015; Perkins-Kirkpatrick and Lewis 2020).

While heat waves are mostly associated with the warm season, these extreme events

can occur all year round (Nissan et al. 2017; Oswald 2018). Therefore, understanding

the seasonality of heat wave events within the SGP would provide insight on differing

impacts dependent on the timing of the heat wave event.

As such, this study will focus on the development of a definition for heat

waves to generate a climatology of heat wave events across the SGP. The objectives

include: (1) define heat waves, (2) generate a climatology of heat waves from 1979-

2019, and (3) understand any spatial and temporal trends. To complete the analysis,

a novel definition for heat waves is outlined in Chapter 2. This definition will be

used to develop a climatology of heat waves in Chapter 3, followed by a discussion

on trends in heat wave events across the SGP.
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1.1 Figures

Figure 1.1: Table displaying the various heat wave definitions that have been used in

previous studies. Table outlines the mode, threshold, duration, and reference of each

definition. Figure courtesy of Smith et al. (2013).
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Figure 1.2: Schematic outlining the impacts of heat waves on several socioeconomic

sectors. Figure from Zuo et al. (2015).
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Figure 1.3: Chart illustrating the survey conducted by the National Weather Service

in 2019 determining the number of fatalities due to multiple weather phenomena for

the year 2019 compared to the 10-year average and 30-year average. Figure from

National Weather Service (2020).
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Figure 1.4: Time series of summer days from 1995 through 1999 that met the following

threshold: two or more consecutive days when daily values of specified variable was

equal to or greater than the 95th percentile in New York, NY. Figure from Anderson

and Bell (2011).
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2 Heat Wave Methodology

2.1 Data & Variables

The heat wave methodology in this study depends on several variables derived

over the entire time and spatial domain. Reanalysis data was used in lieu of observa-

tional to limit the amount of missing data, as well as, not needing to accommodate for

homogeneity in observational temperature data (Oswald and Rood 2014). Further-

more, with the use of a percentile-base threshold, Zhang et al. (2005) found extreme

inhomogeneity of percentile-based indices with the use of observational data. Using

the North American Regional Reanalysis (NARR; Mesinger et al. 2006), daily maxi-

mum and minimum temperatures were calculated from 2-meter temperature values at

3-hour intervals from 1 January, 1979 through 31 December, 2019 across the Southern

Great Plains (SGP). In this study, the SGP spanned from 25◦N to 40.1◦N, 89.5◦W

to 107◦W.

Utilizing the climatological period of 1981 through 2010, daily standardized

maximum and minimum temperature anomalies were generated which subsequently

became the two primary variables employed in the heat wave methodology devel-

oped as part of this work. For the statistical distribution analysis Chapter 2.2, the

standardized anomalies were detrended (i.e., daily maximum, minimum, and mean

standardized anomalies). Whereas, for the climatology analysis Chapter 3, the stan-

dardized anomalies (i.e., daily maximum and minimum standardized anomalies) were
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not detrended.

To capture smaller scale heat wave events, the SGP domain was subdivided

into the pre-established climate divisions with boundaries denoted by the National

Climate for Environmental Information (National Center for Atmospheric Research

2021). Further, several spatial methods were tested to generate a climatology. Each

spatial method represented the percentage of grid points within a climate division

that eclipsed critical thresholds; 10%, 25%, and 50% of the spatial area. As such,

three heat wave climatologies based on spatial coverage were derived for each climate

division listed in Table 2.1.

Once the climatology of heat wave events was generated, further analysis was

completed to understand any temporal and/or spatial relationships. Time series were

created which calculated the number of heat wave events that occurred every year

within the study time period for a single SGP state. This was completed by combining

all climate divisions within each SGP state, meaning that heat wave events between

climate divisions in a single SGP state could have overlapped one another. However,

if a heat wave event in one climate division had the same exact start and end date

as any other event in another climate division, it was logged as one singular event.

Furthermore, time series were derived for each SGP state for all three spatial method

criteria from the corresponding heat wave climatologies. Linear trends were then

determined from the time series.

Another analysis focused on duration of heat wave events. Several duration
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categories were chosen to quantify any signals as to prominent heat wave duration

depending on the spatial method used in the heat wave identification methodology.

The duration categories were as follows: 3-day to 5-day, 5-day to 7-day, 7-day to

10-day, and 10+-day. The number of heat wave events that fell within each duration

category was determined for each state across all three spatial methods, which were

pulled from the entire climatology (i.e., 1979 through 2019). Further, the percentage

of heat wave events that fell into each duration category out of the entire quantity of

heat wave events in the climatology was derived.

Heat waves can occur any time during the year. Even though most heat wave

studies have focused on heat waves during the warm season (Schubert et al. 2014;

Parker et al. 2014; Cowan et al. 2014; Mo and Lettenmaier 2015), understanding po-

tential relationships during the winter season could provide insight on the variability

and the true change in heat wave events within a region. Heat waves that occur

during the winter season are more of a warm thermal shock. These warm thermal

shocks have different, but potentially important, impacts in comparison to heat waves

that occur during the typical heat wave season. For example, a winter thermal shock

within a region could result in warming of the surface further facilitating an early

growing season. Due to the timing of the winter thermal shock, a return to normal

temperatures after the presence of this winter thermal shock would pose potential

detrimental impacts on vegetation due to the early growing season that was induced

by the winter thermal shock. Therefore, seasonality was of interest due to previous
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research focusing on case studies during the warm season, further lacking the concern

on seasonality of heat waves. For each SGP state and spatial method, the frequency

of heat wave events that occurred in each season per year was determined. Fall was

categorized by September, October, and November values. Spring was determined

with the values during the months of March, April, and May. The summer season

distributions were derived from June, July, and August standardized temperature

anomalies. Winter was analyzed for the months of December, January, and February.

Therefore, time series of heat wave events for all four seasons across the study spatial

domain from the climatology was derived and further the trend was calculated.

2.1.1 Statistical Significance Testing

Multiple significance tests were executed to quantify the robustness of the results.

As stated, trends were derived for the time series and seasonality analyses. Each

trend calculated was tested for statistical significance via the Mann-Kendall trend

test (Mann 1945; Kendall 1957). The Mann-Kendall trend test is mostly used to

identify statistically significant monotonic trends. The Mann-Kendall test has been

used to justify statistical significance in flash drought (Hu et al. 2021), drought (Joshi

et al. 2016; Yilmaz 2019; Tosunoglu and Kisi 2017; Bari Abarghouei and Safari Zarch

2011; Mazdiyasni and AghaKouchak 2015), and temperature (Karmeshu Supervisor

Frederick Scatena 2015; Gavrilov et al. 2016; Alhaji et al. 2018) trends. Each trend

was tested against two different alpha values; α = 0.05 and α = 0.10. The null
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hypothesis (H0) of the Mann-Kendall trend test was there was no trend present in

the data set (e.g., time series), whereas the alternative hypothesis (Ha) was that

there was a trend (either positive or negative) present in the data set. As such, if the

trend of each had p <0.05, then the trend present in that data set was statistically

significant to the 95% confidence interval; these trends were noted with two asterisks

next to the trend value (i.e., heat wave events/year **). Yet, if 0.05 <p <0.10,

then the trend calculated within that data was statistically significant to the 90%

confidence interval and denoted by a single asterisk (i.e., heat wave events/year *).

2.2 Statistical Distribution Analysis

As shown by Figure 1.1, several different thresholds have been used in previous

scientific research to study heat waves. Thus, an analysis on the distribution of daily

maximum, minimum, and mean standardized temperature anomalies was completed

for all climate divisions within the SGP spatial domain. These distributions were

categorized by season to minimize any noise due to seasonality of surface tempera-

tures. All of the values of each variable for the period spanning 1979 through 2019

were plotted. Once each histogram was plotted, several statistical distributions were

fitted to the season data set and statistical significance testing was completed to

test goodness-of-fit. Of the Gumbel, Skewed Normal, and Normal distribution pos-

sibilities, the Kolmogorov-Smirnov (ks-test) fitness test determined that the Normal

distribution fitted all three variables the best. For the ks-test, the null hypothesis
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(H0) was that the sample comes from the statistical distribution tested, while the

alternative hypothesis (Ha) was that the sample does not come from the statistical

distribution tested. Each climate division histograms were plotted for the variable

of interest with the mean (black dashed line), 90th percentile threshold (blue solid

line), 95th percentile threshold (red dashed line), and the fitted Normal distribution

outlined (grey solid line).

2.2.1 Fall

Beginning with the fall season values (Figures 2.2, 2.3, and 2.4), fitted distribu-

tions were derived for daily maximum, mean, and minimum standardized tempera-

ture anomalies for each state within the study spatial domain. Figure 2.2a-k illustrate

that with 95% confidence, the combined daily maximum standardized temperature

anomalies came from a Normal distribution (i.e., p ¿ 0.05). The main point from this

analysis was to determine the ideal relative threshold to use within the heat wave

methodology. As such, Figure 2.2l represents the difference between the number of

values that fell above the 90th percentile and 95th percentile thresholds for each state.

Note that states that had fewer climate divisions within the SGP spatial domain

will naturally have smaller magnitudes in the count differences. Similarly, the daily

mean standardized temperature anomalies during the fall season (Figure 2.3) yielded

a Normal distribution. The count of the difference between the number of daily

mean standardized temperature anomalies that were greater than the 90th and 95th
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percentile thresholds (Figure 2.3l) were approximately the same range for each state

compared to the fall daily maximum standardized temperature anomalies (Figure

2.2l). Additionally, the daily minimum standardized temperature anomalies during

the months within the fall season were fitted for each state and displayed in Figure

2.4. Similar to daily maximum and mean standardized temperature anomalies, the

ks-test indicates that the daily minimum standardized temperature anomalies during

the months of September, October, and November from 1979 through 2019 came from

a Normal distribution for all states in the SGP spatial domain. Again, the range in

the number of daily minimum standardized temperature anomalies between the 90th

and 95th percentile thresholds (Figure 2.4l) were approximately the same for each

state compared to daily maximum and mean standardized temperature anomalies.

In general, for a majority of the states the number of values during the fall months

across the entire study time period was greater than 800. Furthermore, with the use

of the 95th percentile as the relative threshold in the heat wave event identification

could be too extreme for the fall season, missing out on some heat wave events that

still had an impact on socioeconomic sectors.

2.2.2 Spring

Utilizing the same analysis as the fall season, Figures 2.5, 2.6, and 2.7 demon-

strated that all three standardized anomalies of air temperature during the spring

season were consistent with a Normal distribution for all of the SGP states. For
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the number of values for each variable that fell between the 90th and 95th percentile

thresholds, Figures 2.5l, 2.6l, and 2.7l, identified similar conditions as the fall season.

Despite the fact that the magnitude of the number of values in between the two per-

centile thresholds for eight out of the eleven states for at least two of the three study

variables was less during the spring months compared to the fall months, a majority

of the SGP states still had overall difference values greater than 800. Therefore, the

95th percentile as the relative threshold could yield several heat wave events to be

missed during the spring season, thus the 90th percentile was chosen.

2.2.3 Summer

The summer months (i.e., June, July, and August) are most associated with

a higher probability of heat waves to occur (Kunkel et al. 1996; Barriopedro et al.

2011; Stefanon et al. 2012; Bumbaco et al. 2013; Parker et al. 2014). Therefore,

understanding the distribution of daily maximum, mean, and minimum standardized

temperature anomalies during the summer season would be most crucial for heat

wave events. Employing the same methodology as the fall and spring seasons, the ks-

test proved that summertime daily standardized temperature anomalies for all three

variables were consistent with a Normal distribution in all SGP states (Figures 2.8a-k,

2.9a-k, and 2.10a-k). Further within the analysis, the quantity of the count difference

between both test relative thresholds for each variable (i.e., daily maximum, mean, or

minimum standardized temperature anomalies) was still relatively large in a general
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sense; most states had count values greater than 700 as displayed in Figures 2.8l, 2.9l,

and 2.10l. In comparison to the spring season months, the count difference magnitude

for many of the SGP states was less during the summer season. Starting with daily

maximum standardized temperature anomalies, illustrated by Figures 2.5l and 2.8l,

Arkansas, Mississippi, Tennessee, and Illinois are the only SGP states that had a

larger magnitude in count difference between the 90th and 95th percentile threshold

during the summer months than the spring season. Figures 2.6l and 2.9l illustrated

the contrary, where Kansas, Oklahoma, and Illinois had a larger count difference

for daily mean standardized temperature anomalies during the summer than the

spring season. Finally, even fewer states had a larger count difference between the

two relative thresholds when the spring and summer seasons were compared for the

daily minimum standardized temperature anomalies; Kansas had a larger quantity

of daily minimum standardized temperature anomalies between the 90th and 95th

percentile thresholds (Figure 2.10l) during the summer months than the spring season

(Figure 2.7l). Additionally, the variability during the spring season in the SGP was

larger for all three variables compared to the summer months. However, within the

summer season, the daily maximum temperatures had more variability than mean

and minimum daily temperatures for states included in the study spatial domain.

Moreover, because the count of the number of daily maximum, mean, or minimum

standardized temperature anomalies that fell between the 90th and 95th percentile

thresholds was greater than 700 for majority of the SGP states, further supports the
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use of the 90th percentile as the relative threshold versus the 95th percentile.

2.2.4 Winter

The last season of focus, winter, followed the same trend set by the previous

seasons discussed. Thus, the ks-test showed that, with 95% confidence, daily max-

imum, mean, and minimum standardized temperature anomalies derived from the

winter months came from a Normal distribution (Figures 2.11a-k, 2.12a-k, 2.13a-k).

Further, the magnitude of the difference count between the 90th and 95th percentile

thresholds were greater than 800 for the SGP states (Figure 2.11l). Texas, Louisiana,

Arkansas, and Mississippi were some of the SGP states that had a largest increase

in count difference quantities for daily minimum standardized temperature anomalies

(Figures 2.13l) compared to the summer season counts (Figure 2.10l), while Texas

and Louisiana had the largest increase in the number of daily mean standardized

temperature anomaly values that fell between the 90th and 95th percentile thresholds

in the winter season (Figure 2.12l) compared to the summer month (Figure 2.9l) anal-

ysis. In short, the winter season analysis for all three variables further showed that

the use of the 95th percentile may be too restrictive in the heat wave methodology

due to the large magnitude of the quantity of each variable that fell within the two

test threshold boundaries.
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2.2.5 General Summary

From the statistical distribution analysis for daily maximum, mean, and mini-

mum standardized temperature anomalies, the use of the 90th percentile as the relative

threshold within this heat wave methodology proposed was strongly supported by the

Normal distribution for all four seasons as well as the count difference quantities which

demonstrated that the 95th percentile may not be representative of the true number

of heat waves that would have occurred. Therefore, for this heat wave methodology

the 90th percentile was selected as the relative threshold to fully capture heat wave

events that may have occurred in each region within the study time period (i.e., 1979

through 2019).

2.3 Heat Wave Identification Definition

A single, comprehensive heat wave definition has not been adopted within the

scientific literature (Souch and Grimmond 2004), so this study proposes a novel defi-

nition. For a heat wave event to begin within a region (i.e., a single climate division),

two criteria needed to be met:

(1) daily maximum standardized temperature anomaly was

greater than or equal to the 90th percentile

(2) daily minimum standardized temperature anomaly was

greater than or equal to the 90th percentile
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This threshold must be met for three consecutive days to initialize the start

of a heat wave event. Once the minimum temporal threshold for any heat wave event

was identified, the end point was determined. If the heat wave threshold was not met

for more than three days, the heat wave event ended on the last date the threshold

was met. This allowed for a three-day buffer to end a heat wave event and takes into

account short-term modification of surface temperatures that could temporally mask

long-term heat wave events. An example of determining the start and end dates of a

heat wave event is outlined in Table 2.2. Via this identification methodology, the start

and end dates of each heat wave event that occurred in each climate division within

the SGP for each spatial method was determined for the study data set. Figure 2.1

outlines all of the steps taken to complete this heat wave methodology.
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2.4 Tables and Figures

State Climate Division (CD)

TX CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD9, CD10

OK CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD9

KS CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD9

NM CD2, CD3, CD5, CD6, CD7, CD8

CO CD1, CD2, CD3, CD4, CD5

LA CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD9

AR CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD9

MO CD1, CD2, CD3, CD4, CD5, CD6

MS CD1, CD2, CD3, CD4, CD5, CD7, CD8

IL CD3, CD4, CD6, CD8

Table 2.1: Climate Divisions included in the Southern Great Plains spatial domain

(25 ◦N to 40.1 ◦N, 89.5 ◦W to 107 ◦W).
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Date Threshold Met Heat Wave Start Date Heat Wave End Date

7/1 7/1 7/8

7/2

7/3

7/4

7/7

7/8

7/12

Table 2.2: Example of determining a heat wave event through the identification

methodology.
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Figure 2.1: Flowchart outlining the procedures and steps in the heat wave identifi-

cation methodology. Important steps in determining the start and end dates of each

heat wave event are highlighted in red colors.
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Figure 2.2: Statistical distributions of daily maximum standardized temperature

anomalies during the fall season (September, October, and November) from 1979

through 2019. (a) Histograms of daily maximum standardized temperature anoma-

lies for each climate division in Kansas in the SGP spatial domain overlaid (various

colors). Fitted Normal distribution outlined in grey; mean (dashed black), 90th (solid

blue), and 95th (dashed red) percentile thresholds distinguished accordingly. P-value

determined by the Kolmogorov-Smirnov goodness-of-fit test at the 95% confidence in-

terval printed. (b-k) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado,

Louisiana, Arkansas, Missouri, Mississippi, Tennessee, and Illinois, respectively. (l)

Number of daily maximum standardized temperature anomalies that fall between the

90th and the 95th percentile thresholds for each SGP state. Total count displayed in

bold black number above each bar.

25



Figure 2.3: Same as Figure 2.2, but analysis on daily mean standardized temperature

anomalies during the fall season from 1979 through 2019.
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Figure 2.4: Same as Figure 2.2, but utilizing daily minimum standardized temperature

anomalies during the fall season from 1979 through 2019.
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Figure 2.5: Statistical distributions of daily maximum standardized temperature

anomalies during the spring season (March, April, and May) from 1979 through 2019.

(a) Histograms of daily maximum standardized temperature anomalies for each cli-

mate division in Kansas in the SGP spatial domain overlaid (various colors). Fitted

Normal distribution outlined in grey; mean (dashed black), 90th (solid blue), and 95th

(dashed red) percentile thresholds distinguished accordingly. P-value determined by

the Kolmogorov-Smirnov goodness-of-fit test at the 95% confidence interval printed.

(b-k) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado, Louisiana,

Arkansas, Missouri, Mississippi, Tennessee, and Illinois, respectively. (l) Number of

daily maximum standardized temperature anomalies that fall between the 90th and

the 95th percentile thresholds for each SGP state. Total count displayed in bold black

number above each bar.
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Figure 2.6: Same as Figure 2.5, but using daily mean standardized temperature

anomalies during the spring season from 1979 through 2019.
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Figure 2.7: Same as Figure 2.7, instead with daily minimum standardized temperature

anomalies during the spring months from 1979 through 2019.
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Figure 2.8: Statistical distributions of daily maximum standardized temperature

anomalies during the summer season (June, July, and August) from 1979 through

2019. (a) Histograms of daily maximum standardized temperature anomalies for

each climate division in Kansas in the SGP spatial domain overlaid (various col-

ors). Fitted Normal distribution outlined in grey; mean (dashed black), 90th (solid

blue), and 95th (dashed red) percentile thresholds distinguished accordingly. P-value

determined by the Kolmogorov-Smirnov goodness-of-fit test at the 95% confidence in-

terval printed. (b-k) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado,

Louisiana, Arkansas, Missouri, Mississippi, Tennessee, and Illinois, respectively. (l)

Number of daily maximum standardized temperature anomalies that fall between the

90th and the 95th percentile thresholds for each SGP state. Total count displayed in

bold black number above each bar.
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Figure 2.9: Same as Figure 2.8, but utilizing daily mean standardized temperature

anomalies during the summer months from 1979 through 2019.
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Figure 2.10: Same as Figure 2.8, but employing daily minimum standardized tem-

perature anomalies during the summer season from 1979 through 2019.
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Figure 2.11: Statistical distributions of daily maximum standardized temperature

anomalies during the winter season (December, January, and February) from 1979

through 2019. (a) Histograms of daily maximum standardized temperature anoma-

lies for each climate division in Kansas in the SGP spatial domain overlaid (various

colors). Fitted Normal distribution outlined in grey; mean (dashed black), 90th (solid

blue), and 95th (dashed red) percentile thresholds distinguished accordingly. P-value

determined by the Kolmogorov-Smirnov goodness-of-fit test at the 95% confidence in-

terval printed. (b-k) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado,

Louisiana, Arkansas, Missouri, Mississippi, Tennessee, and Illinois, respectively. (l)

Number of daily maximum standardized temperature anomalies that fall between the

90th and the 95th percentile thresholds for each SGP state. Total count displayed in

bold black number above each bar.
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Figure 2.12: Same as Figure 2.11, but using daily mean standardized temperature

anomalies during the winter season from 1979 through 2019.
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Figure 2.13: Same as Figure 2.11, instead utilizing daily minimum standardized tem-

perature anomalies during the winter months from 1979 through 2019.
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3 Climatology of Heat Waves

3.1 Time series

Using the heat wave methodology, a climatology of heat wave events from 1979

through 2019 was completed for the SGP. Figures 3.1 and Appendix-A display the

annual time series for each spatial method for each state within and bordering the

SGP; corresponding trends are outlined by the black line. All three spatial methods

(10%, 25%, and 50%) for each state, displayed an increasing trend from 1979 through

2019 demonstrating that the number of heat waves per year has increased with time.

For eight out of the ten states, individual trends were greater than one heat wave

per year with the 10% and 25% spatial method. Further, all of the trends derived

for each time series was statistically significant (p <0.05). Within the three spatial

methods, the frequency of heat waves that meet the 50% spatial method was far less

than the frequency on the 10% spatial method. Yet, the trend at 50% spatial method

was still significant. The average approximate trend across the entire SGP domain

for 10%, 25%, and 50% spatial methods were 2, 1.6, and 1 heat wave events per year

respectively. Additionally, years that included the largest number of heat waves in all

three spatial methods were: 1998, 2004, 2012, 2016, and 2017. These years not only

had a large magnitude of heat wave events in comparison to other years, but were

signaled in the 50% spatial method, meaning these heat waves had a large spatial

footprint.
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From a statewide perspective, Louisiana had the highest magnitude trend for

each spatial method compared to all other SGP states. During the last five years

within the study time period, Louisiana experienced a higher number of heat wave

events in all three spatial methods (Figure 3.1). Moreover, these heat wave events

were not only more frequent but included a larger spatial footprint as well. Again,

the trends were all significant (p <0.05) and the 10% spatial method trend concluded

an annual increase of approximately three heat wave events per year. Colorado and

Illinois held the two smallest magnitude trends across each spatial method (Figures

A.5 and A.9, respectively). Both states had the smallest number of climate divisions

that were included in the study spatial domain. Furthermore, this could have resulted

in a lower magnitude with respect to the trend with the potential of missing key heat

wave events within each state during the study time period.

3.2 Duration

While the annual climatology time series is of great importance to study, under-

standing the duration of each heat wave within the climatology is also crucial to gain

knowledge on the impacts of heat waves. For example, heat waves of longer duration

would have a larger impact on human health (Anderson and Bell 2011; Guirguis et al.

2014), the energy sector (Zamuda et al. 2013), and agriculture (Castillo et al. 2021).

As such, duration categories for all heat wave events from 1979 through 2019, and

for all three spatial methods within each SGP state, are displayed in Figures 3.2, 3.3,
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3.4, 3.5, and Appendix-B. In general, as the duration increased the number of heat

waves within each duration category decreased. Additionally, the magnitude in the

number of heat waves decreased as the spatial method percentage increased within

each duration category. However, while the frequency of heat wave events that are

between 3-day to 5-day duration using the 50% spatial method is less than using the

10% spatial method, the percentage of those duration events within the climatology

was higher with the 50% spatial method (Figures B.1, 3.2, B.2, B.3, B.4, 3.3, 3.4,

B.5, 3.5, and B.6). The percent decrease in the number of heat wave events between

the 10% and 50% spatial methods for the 3-day to 5-day duration category averaged

across the entire SGP spatial domain was 51.75%. While the average increase in the

percentage within the climatology for this duration category between the 10% and

50% spatial method was 8.9%. Thus, the majority of the heat wave events that oc-

curred when utilizing the 50% spatial method (i.e., spatially widespread) were shorter

duration events in comparison to the other duration categories.

Additionally, Texas displayed a pattern whereby the same frequency of heat

waves within the climatology in the 7-day and 10+-day categories were the same

when the 10% spatial method was utilized (Figure 3.2). Similarly, in Louisiana and

Mississippi, the percentage of heat waves within the 7-day through 10+-day categories

across all three spatial methods were approximately the same (Figures 3.3 and 3.5).

In other words, these regions are more susceptible to longer heat waves within this

climatology window, and potentially, larger socioeconomic impacts. Arkansas had
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the largest percentage of heat wave events from the climatology that were 3-day to

5-day duration across all three spatial methods (Figure 3.4), whereas Louisiana had

the smallest percentage of heat wave events in the shortest duration category (Figure

3.3) compared to all the other SGP states.

Overall, over 40% of the heat waves events lasted 5-days or longer for eight

out of all ten states for the 10% and 25% spatial methods (Figures 3.2, B.2, B.3, B.4,

3.3, B.5, 3.5, and B.6).

3.3 Seasonality

The analysis of the time series combined with the duration relationships provides

several insights on heat waves experienced in the SGP. But studying the seasonality

of heat waves within this region also allows for understanding of temporal dynamics

of heat waves within a singular year. This section will be split up into each season dis-

cussing the results from all three spatial methods in all of the SGP states. Additional

seasonality figures outlined by SGP state are listed in Appendix-C.

3.3.1 Fall

In all of the SGP states, there was an increasing trend in the number of heat wave

events per year during the fall season at the 10% spatial coverage of the heat wave

methodology (Figure 3.6). All of the increasing trends were statistically significant

with 95% confidence. Texas held the largest trend of heat wave events per year within
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the fall months, with an increase of 0.97 heat wave events per year between the study

time period, as shown in Figure 3.6b. Additionally, Figures 3.6a, 3.6c, 3.6d, 3.6f, and

3.6g, illustrated an increasing significant trend of greater than 0.5 heat wave events

per year in Kansas, Oklahoma, New Mexico, Louisiana, and Arkansas. Furthermore,

this means that over two years, an increase of one heat wave event during the fall

season would be expected in those states, represented by the trend associated between

1979 and 2019.

When the 25% spatial method was employed in the heat wave identification

methodology, all trends of fall heat wave events per year were increasing (Figure 3.7).

As such, all trends determined within this analysis (i.e., 25% spatial method in the

fall season) were statistically significant (p <0.05). The magnitude of each trend was

less with the use of the 25% spatial method compared to the 10% spatial method.

Louisiana and Texas derived the highest trend with both showing an increase of 0.70

heat wave events per year or greater (Figures 3.7b and 3.7f). Figures 3.6g and 3.7g

displayed that in Arkansas the utilization of 10% and 25% spatial methods yielded

the same trend value for heat wave events that occurred in the fall season during the

climatological time period. The same pattern was seen in Missouri (Figure 3.6h and

3.7h). While all of the trends with the use of the 25% spatial method were increasing,

the largest difference in trend value from the 10% spatial method climatology was in

Oklahoma (Figure 3.6c and 3.7c).

Additionally, utilizing the 50% spatial method, the same increasing trends
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were seen in all SGP states for heat wave events that occurred during the fall season

from 1979 through 2019 (Figure 3.8). As expected, the trend values yielded with this

spatial method were the smallest in magnitude for majority of the states within the

study spatial domain. However, Arkansas (Figures 3.6g, 3.7g, and 3.8g) and Missouri

(Figures 3.6h, 3.7h, and 3.8h) maintained the same trend value throughout all three

spatial methods when applied to the heat wave identification methodology. Thus, heat

waves during the fall season in these two SGP states (i.e., Arkansas and Missouri)

show the same increase in the number of heat waves expected during this season.

Arkansas produced the largest trend value using the 50% spatial method heat wave

climatology; Louisiana was close second with a 0.55 heat wave events per year increase

(Figure 3.8f). Additionally, Texas had the greatest difference in upward trend value

between the 10% (Figure 3.6) and 50% (Figure 3.8) spatial method. Texas exhibited

a 0.6 heat wave event per year difference between the two spatial methods (i.e., 10%

and 50%). Furthermore, this could mean that during the fall season in the future,

increased heat wave events are most likely smaller spatial impacting heat waves within

the Texas region. Meanwhile, Louisiana featured one of the top trends through all

three spatial methods for heat wave events occurring during the fall season.

3.3.2 Spring

Gershunov and Guirguis (2012b) used a similar heat wave definition applied to

California, but the time period of focus was between the months of May through
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September. Therefore, the understanding of potential heat waves during the spring

season needs to be studied. If heat waves combined with normal to above normal

precipitation, could result in a faster green-up of the ecosystem, but could be bad

if whiplash events (i.e., drastic shifts between high-impact weather events) begin to

become more common after the green-up. The results of the 10% spatial method

in the heat wave methodology while only analyzing heat wave events that occurred

during March, April, and May for each year in all the SGP states are outlined in

Figure 3.9. Similar to the fall season trends, all trends in each SGP state were

positive as well as statistically significant at the α = 0.05 level, except Colorado which

was statistically significant with 90% confidence (Figure 3.9e). Louisiana yielded the

highest trend value of all regions within the study spatial domain (0.86 heat waves per

year; Figure 3.9f). Texas and Kansas had the next largest increasing trend in spring

season heat wave events per year (Figure 3.9b and 3.9a, respectively). Additionally,

approximately seven out of ten SGP states resulted in an increase of around one

heat wave event every two years during the spring season. One year that seems to

stand out as having an abundance of heat wave events during the spring months (i.e.,

March, April, and May) was 2012 across majority of the SGP states in comparison

to the other climatological time period years. In 2012, an early green-up occurred

due to the abundance of warm temperatures allowing for natural growth, but by the

summer of 2012 the onset of a flash drought quickly escalated (Basara et al. 2019) and

resulted in crop desiccation and impact to the agriculture sector (Wolf et al. 2016).
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Via the 25% spatial method, all trends for each SGP state, excluding Mis-

sissippi, were reduced compared to the use of the 10% spatial method. Even so,

the trends of spring season heat wave events over time with the 25% spatial method

were positive (Figure 3.10). Again, the trend for each state within the study spatial

domain was statistically significant at the α = 0.05 level, with the exception of Col-

orado (Figure 3.10e). Similar to the 10% spatial method spring analysis, Louisiana

yielded the largest trend value (0.74 heat wave events per year). This trend value

(i.e., 0.74) was almost double the trend value of five out of the ten SGP states. In

Louisiana, Figure 3.10f, five years within the last fifteen years had the highest fre-

quency of heat wave events during the spring season out of the entire climatological

time period. Meanwhile, Texas had the largest difference in trend value between 10%

(Figure 3.9b) and 25% (Figure 3.10b) spatial method, which this relationship was

similarly present during the fall season. Furthermore, Arkansas and Missouri had the

same trend value in both the 10% and 25% spatial methods.

Figure 3.11 displays the time series of spring season heat waves when the

50% spatial method was utilized. As shown in the fall and previous spring analysis,

all trends remained positive resulting in an increase in the number of heat waves

during the spring months over time. Furthermore, a positive trend with the 50%

spatial method yields an increase in larger heat waves, spatially. Louisiana continued

to have the greatest magnitude in trend value in comparison to other SGP states

(Figure 3.11f). Additionally, with the exception of Colorado, the 50% spatial method
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resulted in statistically significant trend values with 95% confidence. Even though

Louisiana had the highest trend in spring season heat wave events for all three spatial

methods, Louisiana along with Texas had the largest change in trend (∼ 0.4) when

the 10% and 50% spatial methods were compared. Once again, the year 2012 stood

out as the year with the most number of heat wave events during the spring months

(i.e., March, April, and May), further supporting the impact of these heat waves

during the spring season could have on the socioeconomic sector.

3.3.3 Summer

Meehl and Tebaldi (2004) as well as Smith et al. (2013) have found that an

increase in the frequency of heat waves that occur during the summer season would

be expected over time; Figure 3.12 supports those findings. All trends for heat waves

that occurred during the summer months between 1979 and 2019 were statistically

significant to the 95% confidence level for all the SGP states within the study domain.

Texas had the highest trend, with an increase of 1.03 heat wave events per year

(Figure 3.12b) for the 10% spatial method. In addition, Texas, Oklahoma, New

Mexico, Colorado, and Mississippi, all yielded a higher trend value in summer heat

waves (Figure 3.12) than the spring (Figure 3.9). However, Kansas and Arkansas were

the only two SGP states that had a large difference in the value of the derived trend

when the fall season and summer season were compared; otherwise, the trends in

both seasons were approximately the same (Figures 3.6 and 3.12). Heat wave events
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that only occurred during the summer months between 1979 and 2019 in Arkansas,

yielded a trend that was 0.16 heat wave events per year less in comparison to the fall

season (Figure 3.6g). In Kansas (Figure 3.12a) and Oklahoma (Figure 3.12c), 2011

had the highest frequency of heat wave events during the summer months (i.e., June,

July, and August) out of the entire time series within those two states.

The 25% spatial method in the heat wave identification methodology is illus-

trated in Figure 3.13. Trend values across the SGP decreased when compared to the

trend values from the 10% spatial method application, but still all remained positive.

Kansas had the least difference in trends between the 10% (Figures 3.12a) and 25%

(Figure 3.13a) spatial methods, whereas the other trends for the SGP states within

the study spatial domain decreased in the range of 0.06 and 0.24 heat wave events per

year. Similar to the fall and spring season, the summer heat wave trends for Arkansas

and Missouri yield no change between the use of the 10% and 25% spatial method.

Additionally, Texas remained the state with the largest trend in summer season heat

wave events over time with 25% spatial method applied to the heat wave identifi-

cation methodology (Figure 3.13b). Furthermore, all trends derived for each SGP

state during the summer season with 25% spatial method applied, were statistically

significant (p <0.05), excluding Colorado (Figure 3.13e).

Lastly, when the 50% spatial method was applied in the heat wave method-

ology, it yielded time series climatologies for each SGP state displayed in Figure 3.14.

As expected, the trend values continued to decrease as the spatial method increased
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for all states, excluding Arkansas (Figure 3.14g) and Missouri (Figure 3.14h). Most

of the trends were statistically significant (p <0.05) when the 10% and 25% spatial

methods were used; whereas, the trends from the summer season climatology when

the 50% spatial method was utilized resulted in more trends that were only sta-

tistically significant with 90% confidence or less (e.g., Kansas, Colorado, Arkansas,

Missouri, and Illinois). Continued through all three spatial methods, Texas remained

having the largest trend value out of all of the SGP states (Figure 3.14b), which was

also the state that had the highest difference in trend values from 10% (Figure 3.12b)

to 50% (Figure 3.14b) spatial method. Furthermore, this means that majority of the

heat waves in the summer season in Texas were mostly on shorter spatial scales (i.e.,

10% and 25%). Additionally, the year 2011 in Oklahoma, Figure 3.14c, had almost 3

times the number of heat wave events in that singular year during the summer season

in comparison to majority of the other climatological study years (i.e., 1979 through

2019).

3.3.4 Winter

Beginning with the 10% spatial method for thermal shock events that occurred

during the winter months (i.e., December, January, and February), the results are

displayed in Figure 3.15. The first thing to note is the comparison of the scale in

the number of heat wave events (i.e., y-axis) between the summer and winter season.

Kansas, Texas, Oklahoma, Louisiana, and Arkansas had at least one year within
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the climatological time study that had the frequency of winter season thermal shock

events greater than the frequency of summer season heat wave events. Figure 3.15f,

shows that the trend for Louisiana winter season thermal shock events was the largest

compared to the other SGP states. Furthermore, the winter thermal shock trend for

Louisiana was the highest in this season compared to the other seasons and six out

of the ten SGP states yielded winter month thermal shock trends above 0.5 thermal

shock events per year (Figure 3.15). Two years that stood out as the having the most

warm thermal shock events during the winter season within each SGP state were 2012

and 2017 when the 10% spatial method was used in the heat wave methodology.

Figure 3.16 outlines each state’s winter climatology of warm thermal shocks

using the 25% spatial method in the heat wave identification. All of the trends, ex-

cept for Colorado, were statistically significant with 95% confidence using the Mann-

Kendall statistical test. Out of all ten states studied, Louisiana had the largest trend

in the winter season (Figure 3.16f) yet again. Similar to the other seasons, as the spa-

tial method increased the trend values decreased across majority of the SGP states.

One state that didn’t have much of a change in the winter season thermal shock

trend was in Oklahoma. Figures 3.15c and 3.16c show that there was a decrease of

only 0.03 thermal shock events per year between the 10% and 25% spatial methods.

Furthermore, this means that winter season thermal shock events in Oklahoma in the

future could impact more spatially in comparison to the other seasonal increases in

heat wave events over time.
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Lastly, the 50% spatial method was applied to the heat wave identification

methodology and results are displayed in Figure 3.17. Similar relationships that were

seen in the other seasons were also seen in the winter season; majority of the trends

derived for each state using the 50% spatial method to generate the thermal shock

time series were statistically significant at the 95% confidence. Throughout all three

spatial methods, Louisiana yielded the highest trend of thermal shock events per

year on the 50% spatial method (Figure 3.17f). The impressive trend of 0.67 heat

wave events per year for Louisiana further shows that winter season thermal shocks

are of importance for future study. Figures 3.15g, 3.16g, and 3.17g show that the

winter season thermal shocks in Arkansas were mostly large-scale given the frequency

of events only slightly decreased as the spatial methods increased. Additionally, the

year that was dominant in most of the SGP states for yielding the largest number of

events during the winter months was 2017 when the 50% spatial method was utilized

in the heat wave methodology.
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3.4 Figures

Figure 3.1: Time Series from the climatology of heat wave events for Louisiana. (a)

Time Series of the climatology heat wave events established using the 10% spatial

method. Trend marked with ** indicates statistical significance at p <0.05, while

* indicates significance at p <0.10. (b) Same as (a), but utilizing the 25% spatial

method to produce the heat wave climatology. (c) Same as (a), but employing the

50% spatial method in the heat wave identification methodology.
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Figure 3.2: Number of heat wave events from the study time period in each duration

category for the state of Texas for all three spatial methods (10%, 25%, and 50%).

Percentage of heat wave events within the overall climatology that fall in each duration

category displayed on top of each bar.
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Figure 3.3: Same as Figure 3.2, but for heat wave events in Louisiana.

52



Figure 3.4: Same as Figure 3.2, but for heat wave events in Arkansas.
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Figure 3.5: Same as Figure 3.2, instead for heat wave events in Mississippi.
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Figure 3.6: Annual frequency of heat wave events that occurred during the fall sea-

son (September, October, and November) between the years of 1979 through 2019

with 10% spatial method in heat wave identification methodology. (a) Analysis

for Kansas. (b-j) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado,

Louisiana, Arkansas, Missouri, Mississippi, and Illinois, respectively. Trends indi-

cated with single asterisk (*) are significant at the p <0.10 level, while those marked

with a double asterisk (**) are significant at the p <0.05 level.
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Figure 3.7: Same as Figure 3.6, but utilizing the 25% spatial method.
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Figure 3.8: Same as Figure 3.6, instead using the 50% spatial method.
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Figure 3.9: Annual frequency of heat wave events that occurred during the spring

season (March, April, and May) between the years of 1979 through 2019 with 10%

spatial method in heat wave identification methodology. (a) Analysis for Kansas. (b-

j) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado, Louisiana, Arkansas,

Missouri, Mississippi, and Illinois, respectively.Trends indicated with single asterisk

(*) are significant at the p <0.10 level, while those marked with a double asterisk

(**) are significant at the p <0.05 level.
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Figure 3.10: Same as Figure 3.9, instead employing the 25% spatial coverage method.
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Figure 3.11: Same as Figure 3.9, but using the 50% spatial method.
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Figure 3.12: Annual frequency of heat wave events that occurred during the summer

season (June, July, and August) between the years of 1979 through 2019 with 10%

spatial method in heat wave identification methodology. (a) Analysis for Kansas. (b-

j) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado, Louisiana, Arkansas,

Missouri, Mississippi, and Illinois, respectively.Trends indicated with single asterisk

(*) are significant at the p <0.10 level, while those marked with a double asterisk

(**) are significant at the p <0.05 level.
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Figure 3.13: Same as Figure 3.12, but utilizing the 25% spatial method.
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Figure 3.14: Same as Figure 3.12, instead using the 50% spatial coverage method.
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Figure 3.15: Annual frequency of heat wave events that occurred during the win-

ter season (December, January, and February) between the years of 1979 through

2019 with 10% spatial method in heat wave identification methodology. (a) Analysis

for Kansas. (b-j) Same as (a), but for Texas, Oklahoma, New Mexico, Colorado,

Louisiana, Arkansas, Missouri, Mississippi, and Illinois, respectively. Trends indi-

cated with single asterisk (*) are significant at the p <0.10 level, while those marked

with a double asterisk (**) are significant at the p <0.05 level.
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Figure 3.16: Same as Figure 3.15, instead using 25% spatial coverage method.
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Figure 3.17: Same as Figure 3.15, but employing the 50% spatial method.
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4 Discussion

The first purpose of this study was to generate a novel but comprehensive identifi-

cation methodology for heat wave events across the SGP that compliments definitions

used in previous heat wave studies (Figure 1.1). The use of a relative threshold within

the heat wave methodology accounts for climate variability in a region, rather than an

absolute threshold. For example, the 90th percentile of daily maximum temperatures

in Texas is different than the 90th percentile of daily maximum temperature in Mis-

souri. Even within a state, the average temperature can vary (Figure 4.1). Utilizing

a relative threshold allows for this heat identification methodology to be applicable

to other regions outside of the SGP. Furthermore, Figures 2.2 through 2.13 suggest

that the use of the 95th percentile as that relative threshold would be too restrictive

which disagrees with several previous studies (Karl and Quayle 1981; Gershunov and

Guirguis 2012b; Stefanon et al. 2012; Nissan et al. 2017).

For all three daily standardized temperature anomaly variables (i.e., maxi-

mum, mean, and minimum), the ks-test showed that all values in all four seasons and

for each climate division within each SGP state came from a Normal distribution.

Examining the distribution of these daily variables within the study spatial region

has not been done before to justify the heat wave definitions established prior to this

study. The analysis of the distributions dictates the proper relative threshold that

would be ideal within a heat wave identification methodology. With greater than 800
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daily values in one state (Figures 2.2, 2.3, 2.4, 2.7, 2.12, and 2.13) that fall between

the relative thresholds in question (i.e., 90th and 95th) the results demonstrate that

heat wave events could be masked due to the relative threshold being too extreme.

Although, the heat wave identification methodology was applied to gridded

reanalysis data set in this study, the methodology could be applied to observational

data to determine the start of a heat wave event in close to real-time (i.e., three days

after the actual start date). Furthermore, databases of heat wave events that have

occurred across the entire Contiguous United States exist (Robinson 2001; Meehl

and Tebaldi 2004; Gershunov et al. 2009; Wu et al. 2012; Oswald and Rood 2014;

Allen and Sheridan 2016; Oswald 2018), a database using this proposed definition

with multiple datasets (i.e., various reanalysis and observational) is a task planned

for future work. Further, the generation of a database opens many opportunities

for future research. One example would be to research relationships of precursor,

compound, and cascading events with other subseasonal-to-seasonal (S2S) extremes

(e.g., heat waves and flash droughts). Precursor events is when one S2S extreme

event occurs prior to another, possibly resulting in the development of the second S2S

extreme (i.e., focus in more on the first S2S event). A compound event is when two

S2S events occur simultaneously. Lastly, a cascading event is the same as a precursor

event, but the focus is on the second S2S extreme event. The connection between

heat waves and drought in past events have been studied (Karl and Quayle 1981;

Namias 1982; Cowan et al. 2014), but further analysis of these compound events
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could provide insight on predictability of detrimental S2S events to minimize the

impacts experienced on the socioeconomic scale.

With the application of this heat wave identification methodology, a clima-

tology of heat wave events across the SGP was created. Further analysis of annual

time series, duration, and seasonality provided knowledge of relationship and trends

for each SGP state within the study spatial domain. Within each analysis, three

different spatial coverage methods were applied in the heat wave methodology (i.e.,

10%, 25%, and 50%). Each spatial method denoted the percentage of grid points

within a single climate division that had to meet the threshold and further follow the

heat wave identification methodology outlined in Figure 2.1. All trends from all three

spatial coverage percentages were statistically significant at the 95% confidence level

as indicated by the Mann-Kendall test. Furthermore, all trends were positive, signi-

fying that the number of heat waves will likely be more prominent over time, even

heat waves that span across spatially large regions. Various studies have found an ex-

pected increase in the number of heat wave events in the future (Meehl and Tebaldi

2004; Fischer and Schär 2010; Hao et al. 2013; Peterson et al. 2013; Smith et al.

2013; Russo et al. 2014b; Mazdiyasni and AghaKouchak 2015; Perkins-Kirkpatrick

and Lewis 2020). All of these studies had a different way of distinguishing heat wave

events, and thus, the magnitude of the anticipated increase varied between these

studies.

The use of a single heat wave definition would allow for the advancement of
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predictability of these extreme events, which further gives more knowledge to stake

holders and socioeconomic sectors to help mitigate losses from heat waves. This def-

inition could be employed within models to signal when forecasted daily maximum

and minimum standardized temperature anomalies would meet the heat wave iden-

tification methodology proposed in this study. Further providing advanced warning

for socioeconomic sectors that are impacted by heat waves. One state within the

SGP that may have high interest in future modeling of heat wave events would be

Louisiana, supported by Figure 3.1. The last five years in the study time period (i.e.,

1979 through 2019), displayed a higher frequency of heat waves to have occurred in

Louisiana, further causing the trend to be highest compared to all of the other SGP

states. If this trend outlined in Figure 3.1 continues to increase, this would result

in large impacts seen on agriculture (Lobell and Field 2007; Wreford and Neil Adger

2010; Bindi and Olesen 2011; Pathak et al. 2018), water resources, and generation

efficiencies in fossil and nuclear power plants (Añel et al. 2017).

As future trends are important to understand, past years that have been

impacted by heat waves provide ways to learn how to adapt in the future. This

analysis showed that 1998, 2004, 2012, 2016, and 2017 consistently had the largest

number of heat wave events in all three spatial coverage methods. Two years that

have been previously studied as being incorporated with other S2S extreme events

are 2012 and 2017. In 2012, a flash drought evolved across the Central United States

as early as May. Basara et al. (2019) showed that this flash drought did not develop
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uniformly, but propagated throughout the growing season in 2012. The occurrence

of heat waves in certain regions across the similar spatial domain may have helped

inhibit the onset and intensification of the flash drought that impacted the Central

United States in 2012. Land-atmosphere coupling during heat wave and drought

compound events provide a positive feedback loop which enables the continuation

of intensification and duration of both events as argued by Miralles et al. (2019).

This same positive feedback may have occurred in the 2012 Central United States

drought case, which is a topic of future work. Additionally, between 2016 and 2017

the SGP experienced multiple significant wildfires. The Starbuck wildfire started on 6

March 2017 in the panhandle of Oklahoma, further impacting Oklahoma and Kansas.

Whereas, Perryton fire began on 6 March 2017 as well, but in the panhandle of Texas

spreading through parts of Texas and Oklahoma. Steiner et al. (2020) studied how

these wildfires affected the surrounding ecology and the recovery of the environment.

The generation of a database of past heat wave events would allow this work to

expand into how heat waves could have played a role in the ignition of these wildfires

as well as the length of the wildfire.

While Section 3.1 provided insight on past years that had an abundance of

heat wave events, the duration of these S2S extreme events is also important. Longer

duration heat wave events cause substantial depletion to agriculture yields (Castillo

et al. 2021), human health (Anderson and Bell 2011; Guirguis et al. 2014), and energy

efficiency (Zamuda et al. 2013). Louisiana not only showed one of the largest trends in
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heat wave events across all three spatial coverage methods, but also was a region that

had the smallest percentage of short duration heat wave events (Figure 3.3). Louisiana

(Figure 3.3) and Mississippi (Figure 3.5) had the same percentage of heat wave events

in the 7-day through 10+-day categories in all three spatial methods, meaning these

regions are more susceptible to longer heat waves within this climatology time period.

Longer and more frequent heat wave events in Louisiana could yield drastic impacts

in the state in the future. Between the two lowest spatial coverage methods (i.e.,

10% and 25%), eight out of all ten SGP states had over 40% of heat wave events

last 5-days or longer. Moreover, most past studies have only noted the duration of

the heat wave event(s) within case studies (Tan et al. 2007; Anderson and Bell 2011;

Khan et al. 2019; Perkins-Kirkpatrick and Lewis 2020) and further stated that longer

duration heat wave events have a large impact on socioeconomic sectors (Rocklov

et al. 2012). Spatial analysis on duration of heat wave events can highlight specific

states that may be more sensitive to longer duration heat waves (e.g., Louisiana

and Mississippi). Further analysis on the duration during the ”prime” years (i.e.,

1998, 2004, 2012, 2016, and 2017) within the annual time series is of interest to

complete in future work. Anderson and Bell (2011) determined intensity of heat

waves by the mean temperature throughout the heat wave event. Therefore, longer

duration heat wave events may cause the intensity to be skewed, thus, determining

an intensity scale that is independent of length of heat wave event is ideal for future

research. While longer duration events increase the stress placed on an environment,
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a shorter duration heat wave with extremely above normal temperatures could result

in different detrimental impacts.

Primarily, heat wave studies have focused on events occurring during the

warm season (i.e., May through September) (Della-Marta et al. 2007; Gershunov and

Guirguis 2012b; Bumbaco et al. 2013; Cowan et al. 2014; Parker et al. 2014; Perkins-

Kirkpatrick and Lewis 2020). Meanwhile, heat waves can occur any time during the

year, especially during the winter months (i.e., December, January, and February).

Thermal shock events (i.e., winter season heat wave events) could have significant

impacts by disturbing the typical environmental cycle. For example, a thermal shock

present in February may cause the ground to warm up enough to modify the growing

season (earlier than typical) within a region. Yet, since cooler temperatures are still

possible during those months, this may result in farmers losing crops if a cold snap

follows the thermal shock event. Such events are known as whiplash events, which

will be a topic of future research with respect to heat waves. Furthermore, knowing

trends temporally and spatially with respect to the seasonality of heat waves within

a region would provide knowledge for mitigation strategies. Two examples of heat

waves occurring in the ”off-season” are further discussed below.

Recalling the 2017 wildfire cases in Texas and Oklahoma (Steiner et al. 2020),

the months leading up to the wildfires created a dry environment for the wildfires to

thrive and propagate. Figures 3.6b and 3.7b display that the frequency of heat wave

events during the fall season in Texas were high during the years of 2016 and 2017.
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These two years within the analysis of fall heat wave events were more dominant than

other years through the entire study time period. A similar relationship was seen for

Oklahoma, but more strictly for 2016 (Figures 3.6c and 3.7c). Through the winter

season analysis, 2017 had the largest number of heat wave events in Texas (Figures

3.15b and 3.16b) and Oklahoma (Figures 3.15c and 3.16c) compared to the rest of

the study climatological time period (i.e., 1979 through 2019). The combination of

several heat wave events that occurred in the fall season of 2016 into the winter season

of 2017 could have created an ideal environment for the 6 March 2017 wildfires in

Texas and Oklahoma. If heat waves were only studied during the warm season, then

the contribution of heat waves on the 2017 wildfire events may be missed. As such,

understanding the contributing factors of heat waves as precursor or compound events

could have given these regions impacted by the 2017 wildfires advanced warning.

In 2012 heat waves were a precursor event but also a compound event with

a summer drought that developed across the Central United States. During the

spring season in 2012, there were higher frequencies of heat wave events that occurred

in Kansas (Figure 3.9a), Oklahoma (Figure 3.9c), Texas (Figure 3.9b), Louisiana

(Figures 3.9f), and Arkansas (Figure 3.9g). These spring season heat wave events

allowed vegetation to grow earlier and flourish, further resulting in an increase in

carbon uptake during March through early May (Wolf et al. 2016). Following this

large uptake in carbon, a severe drought occurred during the summer which decreased

the excess amount of carbon that was produced during the spring season (Wolf et al.
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2016). Basara et al. (2019) found that the onset of several flash drought events

began in May and further expanded spatially as time progressed. Furthermore, land-

atmosphere feedbacks through the boundary layer contributed to anomalously dry air

mass over the regions impacted by drought conditions during the summer months of

2012 (Basara et al. 2019). Figures 3.12 and 3.13 displayed that the summer of 2012

had a large number of heat wave events in Kansas and Oklahoma. This relates back

to the findings from Basara et al. (2019) of a continued dry air mass over the Central

United States. Furthermore, due to the positive feedback between drought and heat

waves (Miralles et al. 2019), these S2S extreme events intensified during the summer,

resulting in the worst drought since the Dust Bowl. This is a prime example of heat

waves acting as precursor and compound event with drought, which forced severe and

exceptional drought conditions across much of the Central United States through the

beginning of October (Basara et al. 2019).

Through this study, multiple knowledge gaps have been addressed associated

with heat wave research. First, with the application of this innovative comprehensive

heat wave identification methodology, could be applied to most regions (i.e., local

to global scale) to provide a full database of heat wave events. Furthermore, while

case studies have been researched in several countries (i.e., Australia, Europe, China,

Russia, and United States), this heat wave identification methodology would help

identify additional case studies that have occurred in the past wherever applied across

the globe.
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Via case studies, general conclusions concerning potential atmospheric drivers

of heat wave events have been made (Meehl and Tebaldi 2004; Schubert et al. 2004;

Parker et al. 2014). With this methodology, more robust conclusions could be drawn

on atmospheric drivers during heat wave events which may improve predictability

of these S2S extreme events. Additionally, with a warming climate many recent

studies have focused on modeling trends in heat wave events for the future (Karl

et al. 2000; Meehl and Tebaldi 2004; Hao et al. 2013; Peterson et al. 2013; Mazdiyasni

and AghaKouchak 2015). All studies found an increasing trend in future heat wave

events in various regions (e.g., Europe, Australia, Russia, China, Western United

States, and Southern United States). The annual time series and seasonality analyses

of this study further agrees with the findings in past studies that the occurrence of

heat wave events in the future may increase compared to the past few decades given

the trends identified. Peterson et al. (2013) specifically found an increasing trend over

the past several decades across the United States; this study supported an increase

over the past several decades throughout the SGP region (Section 3.1).

Finally, a gap in the scientific literature with respect to heat wave research is

the seasonality of heat waves within a region. In particular, heat waves outside of the

warm season have not been studied heavily, yet still pose impacts on socioeconomic

sectors and could improve the understanding of potential precursor, compound, and

cascading events. Section 3.3 demonstrated the importance of analyzing these winter

time thermal shocks, especially given the large magnitudes of trends shown in Figures
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3.15, 3.16, and 3.17.

4.1 Figures

Figure 4.1: 30-year (1981-2010) normals for daily mean temperatures across the Con-

tiguous United States. Figure from National Center for Atmospheric Research (2014).
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5 Conclusion

This study developed a novel heat wave identification methodology to create a

climatology of heat wave events in the SGP from 1979 through 2019. Daily maximum,

mean, and minimum standardized temperature anomalies during all four seasons

within the study time period came from a fitted Normal distribution as determined

from the Kolmogorov-Smirnov significance test. From the distribution analysis, this

study found the use of the 95th percentile as the relative threshold to be too restrictive

and resulted in heat wave events to be missed within the climatology. Therefore, the

90th percentile was used. Within the literature, heat wave definitions have used many

atmospheric variables to determine the start and end dates of heat wave events. This

heat wave definition utilized daily maximum and minimum standardized temperature

anomalies within a region over three consecutive days. Furthermore, thresholds had

to not be met for more than three days after the last met date to account for surface

air modification during a heat wave event.

Once the database of heat wave events from 1979 through 2019 was created,

a more in-depth analysis was completed for each state within the SGP. Trends were

derived for annual time series and time series for all four seasons. This study found

increasing trends in all ten SGP states from the annual time series. Louisiana had

the largest trend through all three spatial coverage methods (i.e., 10%, 25%, and

50%), which would be an area of future study. Additionally, Louisiana had the same
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percentage of heat wave events within the climatology (i.e., 1979 through 2019) that

lasted in either the 7-day to 10-day category or the 10+-day duration. Thus, these

two analyses showed that Louisiana will not only experience an increase in the number

of heat wave events, but is also susceptible to longer duration heat waves meaning

detrimental impacts could be seen within this state in the future.

The seasonality of heat wave events has not been a large focus in previous

studies. However, this study found several interesting results from researching the

frequency of heat wave events that occur in each season (i.e., fall, spring, summer,

and winter) in the SGP. Even though heat wave studies have focused during the

warm season, winter season heat waves in all SGP states featured increasing trends.

Further, 2017 was an example of how heat waves occurring outside of the warm season

could act as precursor events to other extreme events. Further analysis of heat wave

events outside of the warm season will be a topic in future work. Louisiana held

the highest increasing trend in frequency of heat wave events in the fall, spring, and

winter through the entire study time period. Whereas, Texas had the largest upward

trend in frequency of heat wave events during the summer season. Similar to the

trends in the annual time series, all trends for each SGP state in every season had

positive trends in the number of heat wave events per year. Future analysis of heat

wave event duration sub-sectioned for all four seasons will be completed. Lastly, an

intensity scale is another heat wave event characteristic that remains elusive, which

will be tackled in future work. The first step of establishing a single comprehensive
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heat wave identification definition and successfully applied has been completed in this

study.
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Appendices

Appendix-A

Figure A.1: Time Series from the climatology of heat wave events for Kansas. (a)

Time Series of the climatology heat wave events established using the 10% spatial

method. (b) Same as (a), but utilizing the 25% spatial method to produce the heat

wave climatology. (c) Same as (a), but employing the 50% spatial method in the

heat wave identification methodology. Trends indicated with single asterisk (*) are

significant at the p <0.1 level, while those marked with a double asterisk (**) are

significant at the p <0.05 level.
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Figure A.2: Same as Figure A.1, but for Texas.

Figure A.3: Same as Figure A.1, instead for Oklahoma.
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Figure A.4: Same as Figure A.1, but for New Mexico.

Figure A.5: Same as Figure A.1, but for Colorado.
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Figure A.6: Same as Figure A.1, instead for Arkansas.

Figure A.7: Same as Figure A.1, instead for Missouri.
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Figure A.8: Same as Figure A.1, instead for Mississippi.

Figure A.9: Same as Figure A.1, but for Illinois.

101



Appendix-B

Figure B.1: Number of heat wave events from the study time period in each duration

category for the state of Kansas for all three spatial methods (10%, 25%, and 50%).

Percentage of heat wave events within the overall climatology that fall in each duration

category displayed on top of each bar.
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Figure B.2: Same as Figure B.1, but for Oklahoma.

103



Figure B.3: Same as Figure B.1, but for New Mexico.
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Figure B.4: Same as Figure B.1, but for Colorado.
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Figure B.5: Same as Figure B.1, instead for Missouri.
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Figure B.6: Same as Figure B.1, instead for Illinois.
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Appendix-C

Figure C.1: Annual frequency of heat wave events during each season (i.e., fall, spring,

summer, and winter) for all three spatial methods in Kansas. (a-d) all four seasons

utilizing the 10% spatial coverage method, (e-h) all four seasons using the 25% spatial

method, and (i-l) all four seasons employing the 50% spatial coverage method.Trends

indicated with single asterisk (*) are significant at the p<0.1 level, while those marked

with a double asterisk (**) are significant at the p <0.005 level.
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Figure C.2: Same as Figure C.1, but for Texas.

Figure C.3: Same as Figure C.1, but for Oklahoma.
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Figure C.4: Same as Figure C.1, but for New Mexico.

Figure C.5: Same as Figure C.1, instead for Colorado.
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Figure C.6: Same as Figure C.1, but for Louisiana.

Figure C.7: Same as Figure C.1, but for Arkansas.
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Figure C.8: Same as Figure C.1, instead for Missouri.

Figure C.9: Same as Figure C.1, instead for Mississippi.
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Figure C.10: Same as Figure C.1, instead for Illinois.
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