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Abstract: Polymeric nanoparticles have drawn attention for their ability to enhance the 

efficacy of therapeutic proteins through reduced immunogenicity and extended 

circulation time. Nevertheless, nanoparticle drug delivery systems face hurdles in both 

application and production. The challenge of selective delivery to clinically-relevant 

locations can be addressed by integrating stimulus-responsive moieties into the 

nanoparticle structure. This study examined the effects of crosslinking nanoparticles of 

bovine serum albumin (BSA) encapsulated within poly(L-lysine)-grafted-poly(ethylene 

glycol) (PLL-g-PEG) with redox-responsive 3,3'-dithiobis(sulfosuccinimidyl propionate) 

(DTSSP) to achieve selective destabilization in a tumor environment. A library of 

DTSSP-crosslinked nanoparticles (DTSSP NPs) was formed with varying copolymer to 

protein (C:P) and crosslinker to protein (X:P) ratios, and each formulation was 

characterized by size, polydispersity index, and encapsulation efficiency. DTSSP NPs 

showed stability in the presence of serum and proteases, but rapidly destabilized when 

exposed to dithiothreitol. For therapeutic nanoparticle production, continuous processes 

have been proposed to overcome the challenges of poor scalability and few control 

parameters associated with batch synthesis. A millifluidic process was developed to 

encapsulate (BSA) in PLL-g-PEG through electrostatic self-assembly. The millifluidic 

process produced tunable nanoparticles (13 - 300 nm) that fully encapsulated the protein, 

retained its activity, and protected it from proteases. This thesis presents the utility of 

stimulus-responsive crosslinking for selective nanoparticle stabilization and proposes a 

millifluidic synthesis process for the production of nanoparticle drug delivery systems 

that may be foundational to the clinical translation of polymer-protein nanoparticles. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Proteins are ubiquitous biomolecules that perform specific biological functions; as such, certain 

proteins have been effective in treating diseases ranging from pulmonary embolism to cancer and 

arthritis [1, 2]. Despite this efficacy, systemic administration of proteins in therapeutic 

applications faces multiple challenges, including side effects, protein denaturation, weak 

intracellular delivery, and rapid in vivo clearance [3, 4]. Consequently, much effort has been 

expended developing drug delivery systems capable of shielding therapeutic proteins from 

clearance by the immune system while enhancing site-specific action. 

Therapeutic proteins are broadly defined as proteins that have been developed for pharmaceutical 

use, and they display benefits including high substrate specificity and utilization of existing 

biological processes [5]. Nevertheless, much protein functionality is intrinsically tied to its 

conformation, and thus the aggregation and denaturation that may occur when administered 

medicinally can detrimentally affect therapeutic efficacy [6, 7]. Furthermore, immunogenicity is 

frequently a problem, and most proteins are limited in their ability to transverse the cellular 

membrane which constrains their effective domain to the extracellular space [4, 5]. As 

nanotechnology holds promise to overcome these challenges, investigations into delivery of 

therapeutic proteins using nm-scale carriers have blossomed. A common approach toward 
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overcoming these challenges is to use biocompatible polymers to shield proteins from 

identification and elimination by the immune system [8]. These polymer-protein nanoparticles 

show potential for drug delivery applications due to their versatility from trans-membrane 

delivery to active cell targeting [9-12]. In many cases, a hydrophilic polymer such as 

poly(ethylene glycol) is utilized to reduce non-specific interactions between the nanoparticle and 

the biological environment, which reduces the immune response and increases the time a 

therapeutic may spend in vivo before clearance [13-15]. Accordingly, polymer-protein 

nanoparticles show potential to address the shortcomings of therapeutic protein administration. 

An advantage of utilizing polymers in drug delivery applications is that stimulus-responsive 

moieties can be included within the polymer structure. These moieties respond to local 

environmental conditions to trigger a conformational change or induce particle destabilization 

leading to protein release [16]. This latter development is of considerable interest as it allows for 

effective therapeutic application through reduced immune clearance while maximizing the 

efficacy of the encapsulated protein in the desired location [17]. Polymer-protein delivery 

systems have been sensitized to both endogenous and exogenous triggers ranging from pH to 

ultrasound [18-22]. 

While there are numerous designs for medically-relevant polymer-protein nanoparticles, the 

majority are made in small scale batch processes. Bulk mixing is a straightforward strategy for 

particle development, but it does not allow for fine control over product characteristics [23]. 

Batch processes offer few factors for tuning the synthesis conditions, which can lead to difficulty 

controlling the size and size distribution of the nanoparticles [23]. Additionally, batch processes 

present challenges with scalability, which can limit the clinical relevance of effective but 

difficult-to-manufacture delivery systems [24, 25]. As such, development of a continuous process 

for the synthesis of polymer-protein nanoparticles shows potential to improve both the tunability 

and scalability of current nanoparticle formation processes. 
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Previously, cationic poly(L-lysine) was grafted with poly(ethylene glycol) (PLL-g-PEG) and 

utilized to encapsulate bovine serum albumin through electrostatic self-assembly in a small scale 

batch process [26]. The initial aim of this research was to confer redox-responsive properties on 

the PLL-g-PEG nanoparticles through crosslinking with 3,3'-dithiobis(sulfosuccinimidyl 

propionate) (DTSSP). DTSSP contains a disulfide to enable nanoparticle destabilization and 

protein release in a reductive environment. Bovine serum albumin (BSA), selected for its 

stability, was utilized as a model protein to determine the effect of DTSSP crosslinking on the 

size and encapsulation efficiency of a library of self-assembled nanoparticles. One nanoparticle 

formulation displaying favorable properties was subsequently characterized for retention of 

protein activity, stability in the presence of serum and proteases, and destabilization in a reductive 

environment. 

The second aim of this research was to develop a continuous process for producing nanoparticles 

of BSA encapsulated within PLL-g-PEG. A system was developed using a syringe pump to feed 

solutions containing BSA and PLL-g-PEG through a millifluidic channel. Electrostatic self-

assembly was stimulated using ultrasound to induce controlled mixing in a laminar flow regime. 

The objective of this research was to present a method capable of producing stable, tunable, 

polymer-protein nanoparticles using a continuous millifluidic process. The diameters of the 

nanoparticles were tunable by varying the feed flow rate, tubing material, and ultrasonication 

power. Millifluidic nanoparticles were characterized by morphology, polydispersity index, -

potential, retention of enzymatic activity, particle stability, and encapsulation efficiency. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

Drug-related research has long upheld the goal of developing novel therapeutics, with primary 

aims including the enhancement and discovery of new and existing active pharmacological agents 

[27, 28]. In recent decades, however, researchers have found that drug delivery has as much of an 

effect on therapeutic efficacy as does drug potency [28]. Drug delivery can drastically affect a 

compound’s pharmacokinetics, toxicity, distribution, metabolism, absorption, and cellular uptake, 

all of which impact its therapeutic efficacy [29]. As such, biomaterials capable of delivering 

therapeutics in a safe and effective manner are necessary to maximize the impact of novel and 

existing therapies [29]. Drug delivery systems have been developed to deliver a range of 

therapeutics, including genes [30], proteins [31], and small molecule drugs [32]. The necessity 

and versatility exhibited by these drug delivery systems has led to much interest in their 

development. 

2.1. Drug delivery challenges 

Despite the benefits that drug delivery systems present, the challenges facing such designs are 

myriad. Drug degradation and side effects are primary considerations, and activation of an 

immune response must be avoided [29, 33]. In addition, systemic administration of therapeutics 

presents the challenges of renal and hepatic clearance, gaining access to the desired 

administration site, and removal by the immune system [28, 29, 34]. Local administration of 
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drugs may not be feasible in certain geometries and can display toxicity due to high drug 

concentrations [28, 29]. Finally, oral delivery faces the challenges of delivering a functional 

therapeutic through drastic changes in pH, high concentrations of proteolytic enzymes, and 

absorption barriers between the oral cavity and bloodstream [28, 29]. Figure 1 displays an 

overview of the obstacles facing drug delivery systems. While the type of therapeutic and 

location of delivery will be unique to each application, the aforementioned barriers to drug 

delivery provide an overview of potential snares to implementation of a drug delivery strategy. 

 

 

Figure 1: Challenges to drug delivery. Adapted from [29] 

2.2. Types of therapeutics delivered 

2.2.1. Small molecule drugs 

Small molecule drugs, such as the chemotherapy agents doxorubicin (DOX) and paclitaxel 

(PTX), have frequently been the subject of drug delivery studies [35-39]. Both DOX and PTX are 

hydrophobic anti-cancer drugs that interact with dividing cells to induce apoptosis [40, 41]. The 

hydrophobicity of these molecules requires a solubilizing agent for clinical use, but these 
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solubilizers can cause toxicity and side effects beyond those already associated with the 

chemotherapy agent [42]. Accordingly, current chemotherapy techniques cause well-known side 

effects including nausea/vomiting, fatigue, and hair loss [43]. Drug delivery strategies have 

sought to minimize these adverse effects by solubilizing the active drug in a carrier system 

capable of transporting it to the cancerous cells and releasing it only where activity is desired. 

Some studies have formed drug carriers from proteins [44, 45], while others have used liposomes 

[46], nanoparticles [36, 47], or hydrogels [48-50] to achieve the desired therapeutic effect. 

2.2.2. Genes and gene vectors 

Gene therapy is a rapidly-growing field in which nucleic acids are altered or transferred to a 

patient in order to correct genetic diseases, activate immune cells, or induce antibody production 

[51]. This is accomplished through viral or non-viral gene vectors. Viral vectors seek to take 

advantage of a virus’s natural ability to insert its own nucleic acids into those of the host cell. The 

most commonly utilized viral vectors include adenovirus, adeno-associated virus, herpes simplex 

virus, and retrovirus [52-54]. The advantages of this strategy include high infectivity and 

endosomal escape, prompting numerous groups to develop viral gene vectors for therapeutic use 

[55].  

While the use of viruses for gene delivery presents numerous advantages, viral gene vectors face 

the challenges of immunogenicity and limited capacity for transgenic material [52]. Accordingly, 

other studies have developed non-viral vectors for cellular transfection. Positively-charged 

polymers are common components of non-viral vectors because they enhance cellular uptake 

through electrostatic interactions with cell membranes [56]. Chitosan, polyethylene imine, and 

poly(L-lysine) each display cationic properties and have been utilized as the basis for non-viral 

vectors [57-62].The advantages of non-viral vectors include reduced toxicity and 

immunogenicity, enhanced versatility, and improved cell specificity, though transfection and 
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endosomal escape frequently remain obstacles [63]. In response, some have used cationic 

polymers in conjunction with viruses, which has shown potential to display advantages seen with 

both the viral and non-viral vectors [62, 64]. With such diversity in design and promise in 

potential, gene delivery comprises a sizeable portion of all drug delivery investigations.  

2.2.3. Therapeutic proteins 

Therapeutic proteins make up the remaining category for drug delivery research. Proteins are 

sequences of amino acids folded into precise conformations and are foundational to most cellular 

functions [65]. Certain proteins are attractive as therapeutics because they exhibit substrate 

specificity, catalyze existing biological processes, and are specialized for a single purpose [66, 

67]. As with genes and small molecule drugs, the drawbacks of direct administration of 

therapeutic proteins include both immunogenicity and side effects as well as rapid in vivo 

clearance [67]. This has led numerous groups to investigate drug delivery systems capable of 

shielding a protein from the immune system while maintaining its medicinal effect. Some 

architectures explored include protein encapsulation within liposomes [68, 69], hydrogels [70, 

71], and nanoparticles [31, 72], while other designs have experimented with direct conjugation 

between a protein and a hydrophilic polymer [73, 74] (Figure 2). 

 

Figure 2: Types of therapeutics and common structures utilized in drug delivery [75] 
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2.3. Drug delivery strategies 

2.3.1. Liposomes 

As briefly mentioned, liposomes have been identified as a potential solution to drug delivery 

challenges. Liposomes are double-layered spheres formed by self-assembly of amphiphilic 

molecules (molecules containing both polar and non-polar functional groups) [76]. These unique 

structures shield the liquid entrapped within the inner sphere from the surrounding environment, 

lending the architecture potential for targeted drug delivery with reduced side effects [77]. While 

ideal for use with water-soluble small-molecule drugs, liposomes have also been used in protein 

and gene delivery [69]. Though the exterior of the liposome is already hydrophilic, enhanced 

liposome stability and retention time has been observed with the inclusion of amphiphilic 

molecules containing super-hydrophilic polymer conjugates [68]. Furthermore, the encapsulated 

therapeutic may be selectively released in a targeted environment by variation in pH [78, 79], 

temperature [80, 81], or the application of ultrasound [82], UV irradiation [83], or a magnetic 

field [81, 84]. 

2.3.2. Hydrogels 

Drug delivery using hydrogels has been investigated in conjunction with both small-molecule 

drugs and therapeutic proteins. The solid-phase, hydrated, crosslinked-polymer architecture of 

hydrogels allows for adsorption, transport, and selective release of a therapeutic [71]. 

Therapeutics may be either adsorbed within or conjugated to the hydrogel structure for delivery 

purposes. Several investigations have shown that hydrogels enhance localized delivery of 

chemotherapy agents and therapeutic proteins through use of stimulus-responsive chemical 

moieties [48-50, 70, 71, 85, 86]. These moieties have been used to sensitize hydrogels to both 

endogenous and exogenous stimuli, including pH [48, 87], redox potential [88], and temperature 

[89]. 
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2.3.3. Nanoparticles 

Therapeutic nanoparticles make up the majority of remaining drug delivery strategies. As the 

term nanoparticle describes anything between 1 nm and 1 μm in diameter, a wide range of 

materials and compositions have been used to create therapeutic nanoparticles [31, 90, 91]. 

Broadly speaking, therapeutic nanoparticles can be categorized by their material, with each 

geometry and architecture providing unique benefits for application-specific particle 

development. 

2.3.3.1. Metal nanoparticles 

While metal nanoparticles are utilized in photocatalysis [92], disinfection [93], data storage [94], 

and magnetic resonance imaging (MRI) [95], metallic nanoparticles also have use in drug 

delivery applications [96]. Noble metals have been investigated as non-viral gene vectors for their 

reduced cytotoxicity in comparison to cationic polymers [97]. Another advantage of using 

metallic components within a nanoparticle is that the electron orbital ordering can impart 

properties allowing the structure to respond to an applied electromagnetic field or be viewed 

using MRI or computed tomography (CT) [98-100]. Additionally, metal nanoparticles absorb and 

scatter light, expanding their function into the area of photodynamic therapy [101].  

Metal nanoparticles display unique utility when targeting non-dividing, primary, or stem cells 

through conjugation with cell-penetrating peptides [97], and may be utilized as components of 

stimulus-responsive gene delivery systems [102]. Dutta et al. described a system of polymer 

grafted metal nanoparticles that displayed enhanced release of DOX in acidic conditions [103]. 

Similarly, Chao et al. presented in vivo studies of DOX conjugated metal nanoparticles that 

showed extended lifespans for tumor-laden mice in comparison to those treated with free DOX 

[104]. Furthermore, metal nanoparticles have been modified with polymers that allow DNA 

complexation and confer additional properties to a gene delivery system [105]. With such benefits 
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and utility, metal nanoparticles continue to be investigated for clinical application of drug 

delivery. 

2.3.3.2. Solid lipid nanoparticles 

Solid lipid nanoparticles are nm-scale colloidal dispersions of lipids mixed in water with an 

emulsifier, making them excellent delivery systems for insoluble small-molecule drugs [106]. 

Solid lipid nanoparticles have been investigated for applications from oral drug delivery to 

intradermal delivery using microneedles [107, 108]. Tunable release of loaded drugs has been 

observed, and modified solid lipid nanoparticles have increased bioavailability of therapeutics in 

biologically-relevant locations [109]. These systems have been investigated for their ability to 

encapsulate and release a combination of therapeutics simultaneously while preventing 

undesirable interactions between the loaded therapeutics [106]. This unique feature of the solid 

lipid nanoparticle lends it potential to enhance the efficiency of current oral delivery methods. 

2.3.3.3. Mesoporous silica nanoparticles 

Silica nanoparticles displaying pore diameters between 2 and 50 nm were first recognized as 

potential drug delivery systems in 2001 [110]. In the past two decades, the mesoporous silica 

nanoparticle properties of consistent uniform porosity, remarkable surface area (which can exceed 

1,000 m2/g), tunable geometry, and versatility have been applied to numerous drug delivery 

challenges [111, 112]. The drug release profile can be tuned using chemical gates to cover the 

pore openings of the nanoparticle until a stimulus triggers the release of the entrapped cargo [112, 

113]. Furthermore, silanol functional groups on the surface of silica nanoparticles have been 

shown to stimulate tissue regeneration [114] and can be chemically modified to attach additional 

functional groups to the nanoparticle [111, 115, 116]. Mesoporous silica nanoparticles can be 

utilized in conjunction with other drug delivery strategies as well; silica nanoparticles have 

formed the basis for redox-responsive nanocarriers [116], have been used in magnetically 
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targeted gene delivery [115], and have been used to solubilize and deliver chemotherapy agents 

[117]. Such advantages of mesoporous silica nanoparticles suggest continued development as 

drug delivery systems in upcoming years. 

2.3.3.4. Polymer nanoparticles 

Polymer nanoparticles make up the majority of remaining drug delivery strategies. As expressed 

previously, polymers are frequently utilized as add-ons to other drug delivery architectures. 

Furthermore, polymers have been utilized as the primary components of nanoparticles designed 

to deliver therapeutics to diverse areas including eyes [118, 119], lungs [120], and tumors [121, 

122]. Polymers displaying differing properties are frequently combined into grafted or block 

copolymers exhibiting the properties of the constituent polymers [123-125]. The functionality of 

these copolymers can vary widely, from conferring a nanoparticle with stimulus-responsive 

properties to extending its in vivo circulation time through reduced non-specific protein 

adsorption [68, 126]. This versatility has resulted in polymer and copolymer nanoparticles 

delivering a range of therapeutics to drastically varying environments [31, 36, 47, 57-62, 72]. 

2.4. Surface modifications 

One recurring challenge that all macromolecular drug delivery systems face is recognition and 

elimination by the immune system. In vivo, a corona of serum proteins becomes adsorbed to the 

surface of nanoscale delivery systems [127, 128]. This protein corona directly influences the 

biological fate of a nanoscale drug delivery system, from rapid removal by the immune system to 

extended residence within the circulatory system [129]. Adsorbed opsonins mark a nanoparticle 

for phagocytosis, whereas clusterins actually improve the longevity of nanoparticles in vivo [130, 

131]. Researchers have developed methods to control the composition of the protein corona, and 

in doing so have been able to control the fate of nanotherapeutics [132]. This is frequently 

accomplished with the help of hydrophilic polymers, which have long been known to reduce non-



12 

 

specific protein adsorption, but have more recently been recognized for enhancing adsorption of 

specific “stealth” proteins [2, 132]. 

Poly(ethylene glycol) (PEG) is ubiquitous in drug delivery applications for its ability to reduce 

immunogenicity of therapeutics. PEG and other hydrophilic polymers form a hydration layer by 

arranging the surrounding water molecules into an ordered structure [133, 134]. This long-range 

order creates an energy barrier that must be overcome to contact the polymer [134, 135]. For this 

reason, PEGylation is used to confer biocompatibility to nanoscale drug delivery systems in a 

variety of ways, from direct protein conjugation to modification of non-viral gene vectors [136, 

137]. Additionally, PEG has been shown to selectively adsorb clusterin and apolipoprotein A-I, 

which have been shown to reduce non-specific cellular uptake [132]. This understanding of the 

PEG mechanism allows for more effective nanoparticle design. 

PEG does exhibit several drawbacks. PEGylation may decrease the bioactivity or efficacy of a 

therapeutic [138]. More concerning, however, is that continued administration of PEGylated 

proteins has been shown to induce production of anti-PEG antibodies [139, 140]. With these 

issues confronting PEG, alternative biocompatible coatings have been investigated. Zwitterions, 

neutrally charged compounds that contain at least one positive and one negative charge, have 

displayed an even greater ability to resist non-specific protein adsorption than PEG [134]. Several 

types of zwitterions have been polymerized and are currently being utilized in drug delivery 

systems to overcome the challenges associated with PEG immunogenicity [26, 36, 141-145]. 

Poly(carboxybetaine) and poly(sulfobetaine) have been shown to enhance the circulation time of 

conjugated therapeutics [146-164], whereas poly(phosphorylcholine) displays strong cellular 

uptake properties [133, 165-170]. Consequently, zwitterionic polymers show potential as a PEG 

alternative to reduce non-specific protein adsorption in nanotherapeutics. 
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2.5. Targeting/stimulus-responsive moieties 

2.5.1. Targeted drug delivery 

Targeted drug delivery seeks to increase the relative concentration of a therapeutic in a 

medicinally-relevant environment in comparison to the surrounding tissue in order to enhance 

therapeutic efficacy and reduce side effects [34]. In general, targeting strategies can be divided 

into passive targeting, in which properties of the therapeutic and targeted environment work 

together to enhance the local therapeutic concentration, and active targeting, in which targeting 

moieties are attached to the surface of a drug delivery system [171, 172]. The simplest passive 

targeting strategy relies on the enhanced permeability and retention (EPR) effect. The rapid 

growth of cancerous tissue creates a disorganized network of neovascularization containing 

expanded gap junctions and increased lymphatic drainage [173]. This leaky vasculature promotes 

a passive buildup of nanoparticles larger than 50 kDA within the tumor [173-175]. Several 

delivery vehicles utilize the EPR effect to passively target a tumor before reduced pH or elevated 

redox potential stimulates drug release [36, 37, 58, 142, 176-180]. 

While the EPR effect is a useful passive targeting mechanism, some systems integrate active 

targeting for drug delivery. One system known as antibody targeted, triggered, electrically 

modified prodrug-type strategy (ATTEMPTS) utilized antibody targeting of an inactive drug and 

therapeutic activation through a subsequently dosed protein [181-184]. Other nanoparticles have 

been conjugated with peptide sequences that selectively bind to receptors upregulated in the 

targeted environment, such as the folate receptor in certain cancers [185-187]. These surface 

modifications, along with selective small molecules and aptamers, allow targeting optimization 

through variation in the method and density of conjugation [188]. Consequently, targeting 

moieties can enhance the efficacy and reduce the side effects of drug delivery systems. 
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2.5.2. Exogenous stimuli for drug release 

As briefly discussed, drug delivery systems have been designed to respond to exogenous stimuli. 

Much recent progress has been made in the field of photodynamic therapy, in which inactive 

compounds are made therapeutically relevant upon photoactivation [189]. Chen et al. employed 

this strategy for cancer treatment. Photosensitive compounds were loaded into nanocarriers and 

accumulated in tumor regions through the EPR effect before photoirradiation generated ROS and 

damaged the cancer cells [101, 189]. This cytotoxic effect was localized to the tumor due to the 

short ROS half-life, which prevented damage beyond the irradiated area.[189] 

 

Ultrasound-responsive drug delivery systems work in a similar fashion. Ultrasound can induce 

cavitation-effected drug release from microbubbles, allowing for a therapeutic to remain inactive 

until activated by exogenous ultrasound [190]. This technique has been utilized for delivering 

therapeutics across the blood brain barrier, a particularly challenging drug delivery target [191, 

192]. Application of ultrasound can also enhance nanoparticle transport properties for ocular drug 

delivery [22]. The properties of ultrasound as a drug delivery and release mechanism lend it 

credence for continued therapeutic use. 

 

Application of an external electromagnetic field has been used widely for both drug delivery and 

theranostics, in which diagnosis and treatment are carried out simultaneously [193]. Magnetic 

nanoparticles can be observed with MRI, which allows for therapeutic delivery with high spacial-

temporal resolution [194, 195]. For pure delivery applications, metal nanoparticles exhibiting 

superparamagnetism can be drawn to the desired area of effect using a magnetic field [196]. 

Superparamagnetic properties are displayed in metal nanoparticles below 10 nm in diameter, thus 

conferring exogenous targeting capabilities to any structure of which they are a constituent [96, 

196]. This form of external control is useful for treating hypoxic tumors, which are difficult to 

target using conventional chemotherapy techniques due to reduced circulation [196, 197]. 
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Finally, temperature can be harnessed as an exogenous stimulus for drug delivery. Several 

polymers display changes in conformation or solubility with varying temperature [89, 103, 198-

201]. Thermo-responsive drug delivery architectures capitalize on these properties to release 

loaded therapeutics at elevated temperatures [103, 200, 202]. One fascinating study developed an 

amphiphilic block copolymer in which one block displayed an upper critical solubility 

temperature (UCST) and another showed a lower critical solubility temperature (LCST) to form 

colloidal associations [203]. The UCST and LCST were tuned such that a transition in 

temperature reversed the solubility and thus the orientation of the colloidal subunits to release an 

entrapped therapeutic [203]. Consequently, temperature variations have been shown to be another 

effective alternative for exogenous triggering of drug release. 

2.5.3. Endogenous stimuli for drug release 

Other designs have sought to capitalize on variations in the microenvironment where drug release 

is desired. Common endogenous stimuli include variations in pH, increased redox potential, and 

elevated concentrations of ROS, which are all characteristics exhibited by cancers [204, 205]. 

Nanocarriers have shown enhanced therapeutic efficacy in these conditions through variation in 

structure swelling, surface charge transition, or bond degradation that releases a therapeutic or 

enhances cellular uptake [58, 142, 176-179]. 

pH-sensitivity can be attained in several ways. Hydrozone linkages are pH-responsive and 

constitute one method to selectively release a therapeutic in an acidic environment [206]. For 

example, Chen et al. incorporated hydrozone linkages in polymer-DOX prodrugs. DOX release 

increased in acidic conditions, and cell-culture studies showed that a maximum tolerated DOX 

dose (MTD) was 3 to 5 times greater than the MTD of free DOX [142, 178]. Additionally, 

polymers can exhibit unique pH-dependent properties based on variations in swelling; DOX has 

been loaded into hydrogels that take a condensed configuration at pH 7.4 but expand in acidic 
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conditions [48, 87]. Finally, some polymers display pH-sensitivity based on the pKa of their 

constituent ions, which confers them with unique drug delivery properties [207]. Enhanced 

therapeutic efficacy in a tumor can be achieved utilizing a pH-triggered mechanism to induce a 

change in ζ-potential from negative to positive, which can enhance cellular uptake by improving 

binding efficacy to negatively charged cellular membranes [58, 176]. Ou et al. developed one 

such system with phosphorylcholine-based micelles that demonstrated an increase in cellular 

uptake in an acidic environment prompted by a change in surface charge [176].  

Both redox- and ROS-responsive drug delivery systems seek to take advantage of the enhanced 

oxidative stress common to cancer cells. Continuous cellular replication necessarily increases the 

concentration of ROS and glutathione (GSH), the cellular redox regulator, within the tumor 

region [208-210]. ROS-responsive gene delivery systems have been designed to exhibit a ζ-

potential change in the presence of peroxide. Recently, Li et al. developed a ROS-responsive 

dendrimer that exhibited a ζ -potential shift when exposed to 80 mM H2O2 and resulted in a 

transfection efficiency 4.5 times higher than PEI [179]. ROS sensitivity can also be attained by 

including a thioketal‐containing linker, which degrades in response to elevated ROS and allows 

for highly specific drug release profiles [211]. 

Redox-responsive drug delivery systems rely on the reduction of disulfide bonds incorporated 

into the delivery system structure to release an encapsulated cargo [88, 212, 213]. Disulfide 

linkages have been incorporated into all varieties of drug delivery systems and have been used to 

deliver proteins as well as genes and small molecule drugs [180]. To improve cancer targeting, 

some have created dual-stimuli-responsive nanoparticles that respond to both elevated ROS and 

GSH, allowing for further enhanced drug delivery efficacy [20, 213, 214]. Consequently, redox-

responsive drug delivery systems may show therapeutic encapsulation and retention in circulation 

before disulfide reduction releases the active compound in a reductive environment. Figure 3 
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summarizes some targeting strategies and stimuli utilized to trigger drug release from drug 

delivery systems. 

 

Figure 3: Targeting strategies and stimuli for drug delivery systems 

2.6. Synthesis methods for nanoparticle drug delivery systems 

The size, distribution, and stability that nanoparticles exhibit have been linked to the processes by 

which they are formed [215-217]. Most nanoparticles are formed in batch processes through a 

process such as nanoprecipitation or self-assembly [218]. While batch processes are a simple and 

practical strategy for nanoparticle development, their discontinuous nature offers few factors for 

tuning and presents challenges in controlling nanoparticle size and distribution [23, 219]. Batch 

processes can also suffer from batch-to-batch variation, which can limit consistency and 

reproducibility [217]. 
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Continuous flow systems show potential to overcome these limitations [219]. Microfluidics have 

been proposed as a more efficient alternative for the preparation of monodisperse nanoparticles 

with tunable properties [220]. Microfluidics provide tunable and homogeneous synthesis 

environments that can be monitored at microscale to control the biological properties of the 

nanoparticles [221, 222]. Additional benefits include reproducibility, simplicity, cost-

effectiveness, and enhanced safety; such characteristics have made microfluidics the subject of 

investigation for nanoparticle synthesis with a variety of materials [223, 224]. 

Similarly, millifluidic configurations display the advantages of microfluidics while also boasting 

reduced cost and enhanced process control through simple determination of flow rates and 

residence times [219, 225]. Furthermore, millifluidics are more resistant to fouling than 

microfluidics and can more easily provide an isothermal and homogeneous synthesis environment 

[220, 226]. Until now, millifluidics have been primarily used in the synthesis of inorganic and 

metal nanostructures, whereas millifluidic synthesis of organic nanoparticles has been limited 

[227, 228]. When utilized, millifluidic synthesis has proved successful; Libi et al. synthesized 

poly(lactide co-glycolic) acid (PLGA) nanoparticles using a millifluidic configuration to produce 

nanoparticle diameters ranging from 220 to 250 nm [225]. In the study, a minimum particle size 

of 196.93 ± 14.30 nm was achieved using the millifluidic configuration, which was close to the 

value attained by the batch process (198.43 ± 0.95 nm) [225].  

Millifluidic synthesis processes have also been used to better control sizes of drug 

nanocomplexes. Tran et al. developed a millifluidic synthesis platform capable of tuning 

curcumin/chitosan nanoparticle size by controlling the residence time [23]. Curcumin nanoplexes 

synthesized with millifluidics displayed a ζ-potential of +15 mV, a 72 wt% drug payload, and a 

diameter of 115 nm, a six-fold size decrease over the bulk mixing synthesis method [23]. 

Similarly, Dong and Hadinoto performed a direct comparison between a millifluidic process and 

a bulk mixing process to create perphenazine/dextran sulfate nanoplexes [220]. Both the batch 
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and the continuous processes produced 70-90 nm particles with ζ-potential approaching -50 mV, 

but the millifluidic nanocomplex exhibited a 31% higher drug loading than the nanocomplex 

formed through the batch process [220].  

Both microfluidic and millifluidic processes suffer from a lack of mixing. At such length scales, 

Reynolds numbers do not approach that required for transition flow, resulting in limited mass 

transfer [216]. Consequently, methods have been developed to enhance diffusion in a laminar 

flow regime through passive and active mixers [215]. Passive mixers redesign the flow channel to 

reduce the diffusion length, but these are susceptible to fouling and are challenging to 

manufacture on µm-scales [215, 229]. Alternatively, active mixers enhance diffusion without 

channel modification through the application of electromagnetic or acoustic energy [215, 230]. 

Acoustic energy input has been shown to produce cavitation, and the interactions between vapor 

bubbles and the remaining liquid solvent enhances molecular diffusion [230]. Therefore, each 

continuous micro- or millifluidic nanoparticle synthesis process must address this challenge of 

mixing before nanoparticles can be produced. 

Ultrasonication has been used to enhance diffusion in the synthesis of inorganic nanoparticles in 

millifluidic processes [231-237]. Furthermore, ultrasound has been shown to reduce fouling and 

induce uniform mixing in small-scale flow processes through cavitation [237, 238]. Ultrasound 

with frequencies ranging between 20 kHz and 1 MHz creates cavitation micro-bubbles with 

diameters on the same order of magnitude as millifluidic channels, which can increase the 

cavitation mixing effect through resonance [237, 239, 240]. With such evidence for ultrasound 

enhancing previous millifluidic processes, application of ultrasound to the synthesis of 

therapeutic nanoparticles holds potential for repeatable, controlled mixing in laminar flow 

regimes. 
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2.7. Conclusions 

The challenges of drug delivery are difficult to overcome, but numerous strategies exist to 

surmount the side effects, low circulation time, poor bioavailability, and reduced cellular uptake 

associated with many therapeutics. Each application requires unique properties from a delivery 

device, which has led to the development of diverse drug delivery systems. Drug delivery will 

continue to expand through the discovery of novel biomaterials and the combination of existing 

materials in novel configurations. Furthermore, rapid synthesis of clinical therapeutics will be 

required as an increasing number of drug delivery systems gain FDA approval. The discovery of 

translational medicines is crucial, and the field of therapeutic drug delivery is expected to 

continue its rapid growth in the approaching decades. 
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CHAPTER III 
 

 

EFFECT OF REDOX-RESPONSIVE DTSSP CROSSLINKING ON POLY(L-LYSINE)-

GRAFTED-POLY(ETHYLENE GLYCOL) NANOPARTICLES FOR DELIVERY OF 

PROTEINS 

 

3.1. Introduction 

Therapeutic proteins are widely recognized for their utility in treating a number of diseases, 

including pulmonary embolism, cancer, diabetes, and arthritis [1, 2]. Despite this efficacy, 

systemic administration of therapeutic proteins faces hurdles including side effects and rapid in 

vivo clearance [67]. A common approach toward overcoming these challenges is to use 

biocompatible polymers to shield proteins from identification and elimination by the immune 

system [8]. Much recent interest has been paid to investigating benefits of polymeric 

nanoparticles in protein delivery. 

One advantage of utilizing polymeric materials to encapsulate proteins is that stimulus-responsive 

moieties can be included within the polymer structure. These moieties undergo a conformational 

change or induce particle destabilization leading to protein release in response to localized 

environmental conditions [16]. The development of such materials is of considerable interest, as 

this strategy enhances the efficacy of protein therapy by minimizing side effects and reducing 

immunogenicity while retaining protein function in a desired region. Common endogenous  
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triggers include pH [18-21, 241], redox potential [19, 20, 242], or presence of reactive oxygen 

species [243], whereas exogenous triggers include temperature [244, 245], magnetic field [246], 

irradiation [247-251], ultrasound [22, 191], and subsequently dosed protein triggers [182, 252]. 

Glutathione (GSH) is a tripeptide that plays a central role in the maintenance of cellular reduction 

potential [209, 253]. When a cell is under enhanced oxidative stress, elevated GSH concentrations 

are required to maintain homeostasis [209, 254]. Abnormal GSH levels are characteristic of 

various types of cancer, including brain tumors [255], breast cancers [208, 256-258], prostate 

cancers [259, 260], and lung cancers [256, 261]. Consequently, numerous drug delivery systems 

have been designed to release a drug when exposed to atypical GSH concentrations [262-268]. 

Polymeric nanoparticles have been developed to respond to increased reduction potential with a 

solubility shift [269], topology change [270], or core-shell separation [271], but no studies have 

investigated how redox-responsive crosslinking affects the properties of self-assembled 

copolymer-protein nanoparticles. Previously, poly(L-lysine) was grafted with poly(ethylene 

glycol) (PLL-g-PEG) and used to encapsulate a model protein via an electrostatic self-assembly 

mechanism [26]; the current study sought to understand how redox-responsive crosslinking may 

alter the nanoparticle size, dispersity, and stability. 3,3'-dithiobis(sulfosuccinimidyl propionate) 

(DTSSP) was utilized as an amine-reactive redox-responsive crosslinker, as it contains a disulfide 

to enable selective nanoparticle destabilization and protein release. Bovine serum albumin, 

selected for its stability, was encapsulated within PLL-g-PEG to create a library of crosslinked 

polymer-protein nanoparticles (DTSSP NPs). All DTSSP NPs were characterized by size, 

polydispersity index, and encapsulation efficiency. Subsequently, DTSSP NPs displaying the best 

combination of size and encapsulation efficiency were further characterized by retention of 

encapsulated protein activity, stability in the presence of serum and proteases, and crosslinking 

destabilization in a reductive environment. 
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3.2. Materials and methods 

Lyophilized bovine serum albumin (BSA), fetal bovine serum (FBS), α-chymotrypsin from 

bovine pancreas, sodium dodecyl sulfate (≥98.5%, SDS), and poly(L-lysine)-HBr (PLL-HBr) 

with molecular weight 15-30 kDa were purchased from Sigma Aldrich (St. Louis, MO). 

Poly(ethylene glycol) of 5 kDa molecular weight and functionalized with a carboxymethyl 

succinimidyl ester (mPEG-NHS) was purchased from Creative PEGworks (Durham, NC). 

Dimethyl sulfoxide (DMSO), 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP), 

disuccinimidyl suberate (DSS), dithiothreitol (DTT), heparin sodium salt (13.5 kDa MW), p-

nitrophenyl acetate (NPA), 4-nitrophenol, acrylamide/bisacrylamide (37.5:1) and other 

polyacrylamide gel casting and running materials were purchased from Fisher Scientific 

(Pittsburgh, PA). DQ Green BSA was purchased from Life Technologies (Grand Island, NY). 

Phosphate buffer saline (PBS, pH 7.4, 10 mM) was made in-house. 

 

Figure 4: Assembly and destabilization of polymer-protein nanoparticles crosslinked with 

DTSSP. mPEG-NHS (5 kDa) was grafted onto 11% of the lysine residues on 15-30 kDa PLL-
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HBr to create PLL-g-PEG. Electrostatic self-assembly was accomplished by encapsulating bovine 

serum albumin in varying ratios of PLL-g-PEG and create polymer-protein nanoparticles. The 

nanoparticles were subsequently crosslinked with varying concentrations of DTSSP, which 

contains a disulfide reducible by glutathione, to create a library of DTSSP NPs. Exposure to 

glutathione reduces the disulfide crosslinking, destabilizing the DTSSP NP structure and 

exposing the protein to the environment. 

3.2.1. PLL-g-PEG copolymer synthesis 

PLL-g-PEG was synthesized according to the methods described by Flynn et al. [26], in which 

succinimidyl ester functional groups on mPEG-NHS were reacted with primary amines on PLL-

HBr. A PLL solution containing 15 mg of PLL-HBr in 200 μL PBS was created, and 57 mg of 5 

kDa mPEG-NHS were subsequently added for a desired 10% PEG grafting ratio. These 

molecular weights and grafting ratio were selected such that the PEG would take the brush 

conformation and extend the circulation time of the copolymer nanoparticle without greatly 

increasing its size [26, 272]. The PLL-g-PEG solution was incubated at 25°C for 2 hours before 

being washed three times with 300 μL ultrapure water using a Pierce™ Protein Concentrator with 

a 10 kDa molecular weight cutoff (MWCO) (ThermoFisher Scientific, Waltham, MA). After 

washing, four samples were combined, diluted to 1 mL in ultrapure water, and stored overnight at 

-80°C. After freezing, the copolymer was removed from -80°C storage and freeze-dried for 24 

hours. The lyophilized copolymer was stored at -20°C until use. The achieved grafting ratio of 

PEG to PLL was determined through 1H NMR spectroscopy. 

3.2.2. Synthesis of the nanoparticle library 

DTSSP NPs were formed based on the procedure described by Flynn et al. [26]. BSA solution 

was made by adding 2.0 mg lyophilized BSA to 1.0 mL PBS and allowing the protein to dissolve 

for 30 minutes. The BSA solution was then filtered through a 0.20 μm syringe filter to remove 
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large aggregates, and the absorbance at 280 nm was used to determine the concentration. The 

BSA solution was then diluted to 0.27 mg/mL in PBS. Lyophilized PLL-g-PEG was dissolved in 

PBS to 6, 10, and 15 mg/mL, and 7.5 μL PLL-g-PEG solution were added to 25 μL BSA solution 

under gentle vortexing to create nanoparticles with copolymer to protein mass ratios of 7:1, 11:1, 

and 17:1. The polymer-protein nanoparticles were incubated at 25°C for 30 minutes to allow 

electrostatic self-assembly. Once assembled, the nanoparticles were crosslinked with the amine-

reactive crosslinker 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP), which is made up of 

sulfonated NHS-ester terminal groups with a central reducible disulfide bond along a 12 Å spacer 

arm. DTSSP was dissolved in PBS to 0.25, 2.5, 10, and 25 mg/mL, and 5 μL were added under 

gentle vortexing to the self-assembled nanoparticles to create DTSSP NPs with crosslinker to 

protein mass ratios of 0.2:1, 2:1, 8:1, and 20:1. The DTSSP NPs were incubated at 25°C for 1 

hour and used immediately or stored at 4°C. 

3.2.3. Nanoparticle size and ζ-potential measurement 

DTSSP NP hydrodynamic diameters were measured using a ZetaPALS ζ-potential analyzer 

(Brookhaven Instruments Corporation, Holtsville, NY). DTSSP NP samples were diluted in PBS 

to 50 μL and loaded into a disposable microcuvette. Five measurements, each lasting 30 seconds 

and measured at a 90° angle, were used to determine the hydrodynamic diameter of the DTSSP 

NPs through dynamic light scattering (DLS). DTSSP NP ζ-potential was measured using the 

same instrument through phase analysis light scattering and the Smoluchowski equation. Five 

batches of 10x by volume DTSSP NPs were combined and loaded into a disposable cuvette, and 

30 converged measurements were used to determine the average ζ-potential. 

3.2.4. Gel migration assay for protein encapsulation 

The DTSSP NP protein encapsulation efficiency was measured using a non-reducing gel 

migration assay. DTSSP NP samples were completed to 37.5 μL with PBS and subsequently 
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diluted with 37.5 μL non-reducing SDS-PAGE sample buffer. Samples were not boiled but were 

incubated at 37°C and shaken on a ThermoFisher Max400Q orbital shaker (Thermofisher, 

Waltham, MA) at 80 rpm for 15 minutes before 27 μL of each sample were added to an 8% SDS-

PAGE gel. SDS-PAGE gels were run at 200 V on a Bio-Rad Tetracell mini gel electrophoresis 

apparatus (Bio-Rad Laboratories, Hercules, CA) until the dye front reached the bottom of the gel 

(approximately 45 minutes). The running buffer did not contain SDS. SDS-PAGE gels were 

stained with Coomassie G-250 before imaging. The extent of protein encapsulation within the 

DTSSP NPs was determined relative to the band intensity of free BSA, and ImageJ analysis was 

used to quantify encapsulation by integrating the BSA monomer peak between the local minima. 

After encapsulation studies were completed, one DTSSP NP composition was selected for further 

characterization to reduce the required number of experiments. 

3.2.5. Scanning electron microscopy analysis of nanoparticles 

The DTSSP NP size distribution was observed using an FEI Quanta™ 600 scanning electron 

microscope (ThermoFisher, Waltham, MA). DTSSP NPs were synthesized and transferred from 

PBS to ultrapure water using a Pierce™ Protein Concentrator with a 10 kDa MWCO. Aluminum 

scanning electron microscopy (SEM) stubs were drop cast with 20 μL of DTSSP NPs and were 

dried at room temperature for 20 hours. The dried samples were sputter-coated with gold-

palladium using a Cressington 108 sputter coater (Cressington Scientific Instruments, Watford, 

England). Images were recorded at an accelerating voltage of 20.0 kV, and DTSSP NP size 

distribution was determined from 151 particles using ImageJ analysis. The size distribution was 

used to estimate the concentration and loading of the DTSSP NPs assuming smooth sphere 

geometry, a 7:1 C:P volume ratio, and a BSA geometry of 4 nm by 4 nm by 14 nm [273]. 
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3.2.6. Transmission electron microscopy analysis of nanoparticles 

Nanoparticle size and morphology were analyzed using transmission electron microscopy (TEM). 

DTSSP NPs were synthesized and transferred to ultrapure water using a Pierce™ Protein 

Concentrator with a 10 kDa MWCO. A graphene-oxide TEM grid was deposited with 10 μL of 

DTSSP NPs and dried at room temperature for 30 minutes. The sample was observed using a 

JEOL JEM-2100 electron microscope (JEOL Ltd., Akishima, Tokyo, Japan) with an accelerating 

voltage of 200 kV. 

3.2.7. Retention of esterolytic activity 

To determine the effect of encapsulation on the activity of the encapsulated protein, DTSSP NPs 

were incubated with p-nitrophenyl acetate (NPA). While previously disputed, it has been shown 

that BSA exhibits mild esterolytic activity around active site Tyr411 [274]. Esterolytic 

breakdown of NPA produces 4-nitrophenol, which displays an absorption peak at 410 nm and 

allows the product concentration to be monitored spectrophotometrically [275]. Samples of BSA, 

PLL-g-PEG, PLL-g-PEG crosslinked with DTSSP, Non-X NPs, and DTSSP NPs were diluted to 

100 μL in PBS and 80 μL were loaded onto a 96 well plate (Corning Inc., Corning, NY). Once 

loaded, 30 μL of 8.7 mM NPA in isopropyl alcohol was added to each well for a final 

concentration of 2.4 mM. The plate was incubated at 37°C with absorbance at 410 nm measured 

in 10-minute increments using a Packard Spectracount plate reader (Cole-Palmer, Vernon Hills, 

IL). The concentration of 4-nitrophenol was determined from a standard curve, and the 

concentration of 4-nitrophenol from NPA in PBS was subtracted from the samples to control for 

substrate hydrolysis. 
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3.2.8. Nanoparticle stability  

Nanoparticle stability in the presence of serum, polyanions, and proteases, as well as 

destabilization and protein release in a reductive environment were measured using fluorescence 

assays. Unlike the BSA used in the preceding experiments, DQ Green BSA (DQBSA) was 

utilized as the encapsulated model protein. DQBSA is BSA so heavily haptenated with 4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid fluorophore (BODIPY FL) 

that it experiences self-quenching relievable through protein denaturation [276]. When incubated 

with either SDS or proteases, free DQBSA displays a sharp increase in fluorescence while 

DQBSA that remains encapsulated within the copolymer retains its initial fluorescence, allowing 

for relative encapsulation to be quantified. 

3.2.8.1. Nanoparticle stability in the presence of polyanions 

A fluorescence assay was used to determine the stability of DTSSP NPs in the presence of 

heparin, a naturally-produced sulfated glycosaminoglycan with the highest negative charge 

density of any known biomolecule.[277, 278] DTSSP NPs were synthesized with DQBSA and 

incubated with 0.27 mM heparin in PBS for 1 hour. DTSSP NPs were diluted with 200 μL PBS 

and aliquots of 100 μL were loaded onto a 96 well plate. The fluorescence was measured (485 nm 

excitation, 535 nm emission) using a Beckman Coulter DTX 880 Multimode Detector (Beckman 

Coulter Life Sciences, Brea, CA) before and after addition of 20 µL 10% SDS to each well, 

which denatured any unencapsulated protein. 

3.2.8.2. Nanoparticle stability in serum 

Nanoparticle stability in serum was measured using a fluorescence assay. DTSSP NPs were 

synthesized with DQBSA, diluted to 200 μL in FBS (5, 10, and 25 vol%) and make-up PBS, and 

incubated at 37°C. After 22 hours, 100 μL aliquots of 10% SDS were added to DTSSP NP 
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samples, and the samples were loaded onto a 96 well plate. The plate was read with a DTX 880 

Multimode Detector at 485 nm excitation and 535 nm emission.  

3.2.8.3. Nanoparticle stability in the presence of proteases 

The ability of the DTSSP NPs to protect the encapsulated protein from protease degradation was 

measured using a fluorescence assay. DTSSP NPs were synthesized, diluted in PBS to 340 μL, 

and 100 µL aliquots were loaded onto a 96 well plate. α-Chymotrypsin from bovine pancreas was 

dissolved in PBS (0.6 mg/mL) and 20 µL were added to wells containing free DQBSA, Non-X 

NPs, DTSSP NPs, and nanoparticles crosslinked with a non-reducible DTSSP analog, 

disuccinimidyl suberate (DSS NPs). Plate fluorescence was read immediately and periodically 

afterwards with a DTX 880 Multimode Detector at 485 nm excitation and 535 nm emission. The 

plate was incubated between measurements at 37°C on a Max400Q orbital shaker operating at 50 

rpm. 

3.2.9. Nanoparticle destabilization in a reductive environment 

Destabilization of DTSSP NPs in a reductive environment was measured using a fluorescence 

assay. Free DQBSA, DTSSP NPs, and DSS NPs were synthesized, diluted with 600 μL PBS, and 

100 μL aliquots were loaded onto a 96 well plate. The fluorescence was measured initially at 485 

nm excitation, 535 nm emission using a DTX 880 Multimode Detector before each well was 

diluted with 30 μL 10 wt% SDS. The fluorescence was measured again, and 10 μL of either PBS 

or DTT (final concentrations of 0.20, 1.0, and 5.0 mM) were subsequently added to each well. 

The plate was incubated at 37°C and 30 rpm on a Max400Q orbital shaker with fluorescence 

measured periodically after initial DTT addition. The protein release profile in varying DTT 

concentrations was calculated by normalizing the DTSSP NP fluorescence in the presence of 

DTT with reference to the fluorescence displayed by free DQBSA in DTT and the DTSSP NP in 

the presence of PBS. 
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3.2.10. Statistical analysis 

Statistical analysis was performed in Microsoft Excel using a two-tailed heteroscedastic student’s 

t-test. A minimum of 3 samples were used for each measurement. 

3.3. Results and discussion 

3.3.1. Effect of DTSSP crosslinking on nanoparticle size and encapsulation 

The achieved grafting of PEG to PLL was determined from the 1H NMR spectra and found to be 

11%. Nanoparticle sizes varied based on the copolymer to protein (C:P) and the crosslinker to 

protein (X:P) mass ratios as shown in Table 1. At the 7:1 C:P ratio, DTSSP NP diameter 

increased linearly with increasing X:P ratio from 13.4 nm to 48.2 nm. In contrast, the diameters at 

the 11:1 C:P ratio did not display a trend with varying crosslinker concentration, but instead 

showed a particle diameter of 2.5 μm at a 2:1 X:P ratio. The DTSSP NPs made with the 17:1 C:P 

ratio were larger than the DTSSP NPs synthesized with the 7:1 C:P at all crosslinker 

concentrations and generally displayed decreasing diameter with increasing X:P ratio. 

Furthermore, the diameter of the DTSSP NPs synthesized at the 17:1 C:P and the 0.2:1 X:P ratio 

matched that of the 2.5 μm observed at the 11:1 C:P and 2:1 X:P ratios. These were the largest 

particle sizes observed, and the diameter displayed sharp decreases with variation in either X:P 

ratio or C:P ratio. At the 8:1 and 20:1 X:P ratios, DTSSP NP diameters varied little with C:P ratio 

and were less than 50 nm at all C:P ratios tested.  

The polydispersity index (PDI) of the DTSSP NPs was generally larger at lower X:P ratios and 

decreased with increasing X:P ratio. With the 7:1 C:P ratio, the PDI began at 0.33 with no 

DTSSP, peaked at 0.39 for the 2:1 X:P ratio, and decreased to 0.18 at the 20:1 X:P ratio. The 11:1 

C:P ratio displayed an initial PDI of 0.23 with no DTSSP, but spiked to 0.576 with the 0.2:1 X:P 

ratio before decreasing to 0.19 for the 20:1 X:P ratio. The 17:1 C:P ratio showed an initial PDI of 
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0.28 before decreasing to 0.19 at the 20:1 X:P ratio. These measurements indicate that PDI 

became independent of the C:P ratio as the X:P ratio increased. 

Table 1: Dynamic light scattering (DLS) results for nanoparticles of poly(L-lysine)-grafted-

poly(ethylene glycol) encapsulating bovine serum albumin and crosslinked with DTSSP (DTSSP 

NPs). DTSSP NP hydrodynamic diameters and polydispersity index (PDI) varied with copolymer 

to protein (C:P) and crosslinker to protein (X:P) mass ratios. Free BSA displayed a diameter of 

approximately 8 nm. 

Diameter (nm)  7:1 C:P Ratio  11:1 C:P Ratio  17:1 C:P Ratio 

X:P Ratio  Average SD  Average SD  Average SD 

No DTSSP  13.4 0.40  59.7 18.4  29.9 2.90 

0.2:1  18.2 0.70  33.3 11.6  2,530 1,470 

2:1  23.5 2.96  2,530 1,420  85.6 28.9 

8:1  37.3 4.57  33.0 10.4  49.7 1.80 

20:1  48.2 9.06  41.9 0.90  48.4 0.80 
          

PDI  7:1 C:P Ratio  11:1 C:P Ratio  17:1 C:P Ratio 

X:P Ratio  Average SD  Average SD  Average SD 

No DTSSP  0.331 0.055  0.225 0.036  0.275 0.020 

0.2:1  0.331 0.011  0.576 0.228  0.217 0.047 

2:1  0.390 0.081  0.272 0.050  0.238 0.032 

8:1  0.203 0.040  0.183 0.033  0.211 0.006 

20:1  0.177 0.042  0.187 0.004  0.187 0.021 

 

At the 7:1 C:P ratio, the DTSSP NPs displayed a positive linear relationship between diameter 

and X:P ratio, but this relationship does not hold for either of the other C:P ratios. Both the 11:1 

and the 17:1 C:P ratios produced 2.5 µm diameter aggregates at low crosslinking densities. The 

low PDI and similar diameters suggest, however, that the μm-scale aggregates form in a 

conserved manner. At the 11:1 and 17:1 C:P ratios, there may be more copolymer than necessary 

to fully encapsulate the protein, and thus charge repulsion or steric hindrance may cause loosely 

encapsulating PLL-g-PEG strands to branch away from the DTSSP NP. If one DTSSP NHS 
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group reacts with a branching PLL-g-PEG the length of the effective crosslinker is increased, 

which may lead to interparticle crosslinking and DTSSP NP aggregation. At higher X:P ratios, 

the increased concentration of crosslinker and crosslinker-reactive residues may draw loosely 

associated PLL-g-PEG back to the DTSSP NP surface and reduce DTSSP NP aggregation, which 

was observed at the 17:1 C:P ratio where increasing X:P ratio corresponded to decreasing DTSSP 

NP diameter. Regardless, μm-scale particle aggregates are larger than the sub-50 nm diameters 

desirable for DTSSP NPs to maintain an extended circulation half-life in vivo [279]. 

Protein encapsulation was determined using SDS-PAGE (Figure 5). DTSSP NP samples were 

loaded onto an 8% SDS-PAGE gel by C:P and X:P ratios. Column 1 displays DTSSP NPs with a 

7:1 C:P ratio. As the X:P ratio increased, the band corresponding to free BSA grew fainter before 

disappearing at the 2:1 X:P ratio. At this X:P ratio, thick smearing was evident at the top of the 

gel resulting from the increased DTSSP NP size and thus reduced relative migration. At the 8:1 

and 20:1 X:P ratios, a faint additional band appeared below the BSA monomer once DTSSP had 

saturated the lysine residues of the PLL-g-PEG. Column 2 contains DTSSP NPs with an 11:1 C:P 

ratio. As with the previous gels, increasing X:P showed lightening bands of free BSA until 

complete encapsulation was achieved with the 2:1 X:P ratio. Once again, the 2:1 X:P ratio 

produced a thick streak at the top of the gel, and excess DTSSP appeared at the 8:1 and 20:1 X:P 

ratios. The third column contains DTSSP NPs with a 17:1 C:P ratio, which showed similar trends 

observed with the 7:1 and 11:1 C:P DTSSP NPs. As expected, the bands of excess DTSSP were 

less evident at the 8:1 and 20:1 X:P ratios than they were at lower C:P ratios. There was also non-

uniform smearing in the 17:1 C:P sample lacking DTSSP, which was likely a gel artifact as it was 

not observed on other replicates. 

The results displayed on the gels were consistent with the mechanism by which the DTSSP NPs 

were crosslinked. When introduced to PLL-g-PEG encapsulating BSA, the terminal NHS groups 

of the DTSSP reacted with free amines on the PLL to crosslink the self-assembled polymer 
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network. With no crosslinking, the nanoparticles were held together only through electrostatic 

interactions and were disrupted by SDS. With the encapsulating structure disrupted, BSA was 

separated from PLL-g-PEG and observed at the same relative migration as free BSA. As the X:P 

ratio increased, more DTSSP was available to crosslink free lysine residues, leading to increased 

structural stability and protein encapsulation. Once the 2:1 X:P ratio was reached, the protein was 

fully encapsulated and stabilized within the copolymer (Figure 5B), which produced a smearing 

at the top of the gel due to increased hydrodynamic diameter and size distribution over the free 

protein. 

As the X:P ratio increased to 8:1 and 20:1, the available DTSSP exceeded the available lysine 

residues, which resulted in the appearance of an excess DTSSP band below the BSA monomer. 

Additionally, as the number of free lysine residues increased with increasing C:P, the amount of 

excess DTSSP decreased, as shown by DTSSP band intensity decreasing with increasing C:P for 

a given X:P ratio. As such, the DTSSP NPs with the 8:1 and 20:1 X:P molar ratios reached 

crosslinker saturation at the 7:1 and 11:1 C:P ratios. Saturating the PLL-g-PEG is one strategy to 

ensure complete protein encapsulation and a stable DTSSP NP, but complete crosslinking may 

lead to difficulty releasing the protein in the targeted environment. The DTSSP NPs synthesized 

at the 7:1 C:P ratio and the 2:1 X:P ratio were selected for further testing because they displayed 

complete protein encapsulation, showed a hydrodynamic diameter of 23.5±2.96 nm, and required 

no purification to remove excess DTSSP. While this DTSSP NP configuration displayed a PDI of 

0.39, it could be elevated partly due to its smaller size relative to the other nanoparticles. 

Consequently, the benefits of smaller size and complete encapsulation were the primary 

considerations in nanoparticle selection for further characterization.  
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Figure 5: Encapsulation efficiency of nanoparticles synthesized by encapsulating bovine serum 

albumin (BSA) in poly(L-lysine)-grafted-poly(ethylene glycol) and crosslinked with DTSSP 

(DTSSP NPs). A library of DTSSP NPs was assembled by varying the copolymer to protein 

(C:P) and crosslinker to protein (X:P) mass ratios. A) Encapsulation was measured using SDS-

PAGE, with a dark band corresponding to free BSA (below) designating unencapsulated protein. 

B) ImageJ analysis showed complete encapsulation was achieved for each C:P ratio at 2:1 X:P. 

3.3.2. DTSSP NP structure and morphology 

To determine the effect of DTSSP crosslinking on the surface charge of the nanoparticle, the ζ-

potential was measured as an average of 30 converged calculations using phase angle light 

scattering and found to be 11.9 ± 5.1 mV. As the ζ-potential of BSA alone is -22 mV at pH 6.5 

and -32 mV at pH 9, the positive DTSSP NP ζ-potential shows that the remaining cationic amine 

groups and the hydrophilic PEG on the encapsulating copolymer effectively shielded the charge 

of the loaded protein [280]. This positive surface charge may be advantageous, as positively-

charged nanoparticles display enhanced cellular uptake due to electrostatic interactions with 

negatively-charged glycosaminoglycans on the cell membrane [281]. Cancer cell membranes are 

especially anionic due to translocation of inner-layer phosphatidylserine, anionic phospholipids, 

and proteoglycans, which shows promise for future DTSSP NP cellular uptake studies [281-284]. 
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The structure and size distribution of the DTSSP NPs was confirmed using SEM (Figure 6A). 

The DTSSP NPs displayed consistent elliptical morphology with few variations. ImageJ analysis 

of 151 particles revealed a range of diameters from 11 to 55 nm with a median particle equivalent 

diameter of 16.3 nm (Figure 6B). Based on the size distribution, the concentration of the DTSSP 

NPs was estimated as 1.6 µM with an average loading of 1.7 BSA per DTSSP NP. TEM was used 

to determine the internal structure and morphology of the DTSSP NP (Figure 6C). The dark rings 

correspond to reduced electron transmission whereas the centers display increased electron 

transmission, which is consistent with a core-shell morphology of a low-density center 

surrounded by a high-density coating. DTSSP NP sizes ranged from 14 to 100 nm, and the 

elliptical morphology was consistent with that observed with SEM.  

 

Figure 6: Electron microscopy of nanoparticles crosslinked with DTSSP. The scanning electron 

micrograph (A) was analyzed using ImageJ to determine the size distribution (B) from 151 

nanoparticles, and a median diameter of 16.3 nm was observed. The transmission electron 

micrograph (C) shows core-shell morphology, with a high transmission center encompassed by a 

low transmission halo. 

3.3.3. Retention of esterolytic activity 

Therapeutic protein delivery necessitates that the protein must retain medicinally relevant 

properties throughout the encapsulation and release processes. A prior study with 
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butyrylcholinesterase suggested that PLL-g-PEG/protein complexes crosslinked with 

glutaraldehyde retained the activity of the encapsulated enzyme [285]. DTSSP NP maintenance 

of encapsulated protein function was measured spectrophotometrically using the esterolytic 

breakdown of NPA to 4-nitrophenol. Though previously disputed, BSA displays moderate 

esterolytic activity based around active site Tyr411 [274]. Enzymatic binding and cleaving of the 

substrate was not hindered by encapsulation, which suggests that encapsulation did not 

detrimentally affect protein function. Both the Non-X NPs and the DTSSP NPs displayed higher 

product concentrations than free BSA at all time points (Figure 7). The enzymatic activity was 

enhanced by the addition of the copolymer both with and without crosslinking. The PLL-g-PEG 

showed pseudoesterolytic activity that was reduced when crosslinked with DTSSP, whereas 

DTSSP crosslinking enhanced the esterolytic activity of BSA encapsulated within PLL-g-PEG. 

This observation is corroborated by previous studies and has been attributed to an increased local 

substrate concentration within the nanoparticle leading to an increase in reaction rate [26, 286]. 

 

 

Figure 7: Esterolytic activity of nanoparticles made from bovine serum albumin (BSA) 

encapsulated in poly(L-lysine)-grafted-poly(ethylene glycol) and crosslinked with DTSSP 

(DTSSP NP). Samples were incubated with 2.4 mM 4-nitrophenyl acetate and absorbance at 410 
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nm was used to determine the product concentration. Both the non-crosslinked nanoparticle 

(Non-X NP) and the DTSSP NP showed significantly higher product concentrations than the free 

protein due to an increase in the local substrate concentration within the nanoparticle. The PLL-g-

PEG showed pseudoesterolytic activity that was reduced when crosslinked with DTSSP, whereas 

DTSSP crosslinking enhanced the esterolytic activity of BSA encapsulated within PLL-g-PEG. * 

designates p-value < 0.05. 

3.3.4. DTSSP NP stability 

3.3.4.1. Stability in heparin 

Heparin sulfate and numerous serum proteins display a net negative charge that could interfere 

with the electrostatically self-assembled nanoparticles. As such, the level of DTSSP NP 

susceptibility to polyanions was determined through a fluorescence assay. The results of DTSSP 

NPs co-incubated with 0.27 mM heparin are displayed in Figure 8A. There was no difference 

between the fluorescence of the DTSSP NPs incubated with heparin and those without heparin, 

which suggests that polyanions had a negligible effect on the stability of the crosslinked 

nanoparticles. 

3.3.4.2. Stability in serum 

The DTSSP crosslinked PLL-g-PEG coating is designed to encapsulate a protein delivered 

intravenously. Consequently, protein retention in the presence of serum is essential, as serum 

stability directly impacts the circulation half-life in vivo [287]. The fluorescence assay for serum 

stability showed that the presence of FBS has a minor effect on the protection and encapsulation 

of proteins within DTSSP NPs (Figure 8A). After 22 hours of incubation, 5% and 10% FBS 

displayed a 10% and 11% increase in fluorescence with SDS denaturation respectively, but 25% 

FBS only showed a 3% increase over the fluorescence exhibited by the DTSSP NPs in PBS. 
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Though incubation in serum displayed minor protein release, the DTSSP NPs resisted extensive 

destabilization in the presence of serum proteins.  

3.3.4.3. Protection against proteases 

The ability of the DTSSP NPs to protect an encapsulated protein from degradation by proteases 

was confirmed using fluorescence spectroscopy. When incubated with 0.1 mg/mL chymotrypsin, 

the DTSSP NPs displayed reduced protein degradation in comparison to free DQBSA for up to 

42 hours (Figure 8B). The percentage of degraded free DQBSA increased quickly at the start of 

the reaction, requiring 1.3 hours to reach 50% degradation after introduction of the protease, 

whereas 50% degradation was reached for the DTSSP NPs 10 hours after protease introduction. 

The degradation of DTSSP NPs displayed a more gradual upward trend in comparison to the 

sharp upward curve of DQBSA and the Non-X NPs, suggesting that crosslinking with DTSSP 

reduced the exposure of the encapsulated protein to other proteins in the immediate environment. 

This resulted significant protein protection at 12 hours (p-value < 0.001), 24 hours (p-value < 

0.005), and 36 hours (p-value < 0.05).  

Though DTSSP NPs showed enhanced protective properties over DQBSA and Non-X NPs in the 

presence of chymotrypsin, the degradation trend upward mirroring the aforementioned samples 

suggests that protection was not permanently conveyed to the encapsulated protein. In contrast, 

the non-cleavable DSS-crosslinked nanoparticles displayed only minor degradation before 

reaching a plateau. As such, a small amount of superficial protein experienced degradation 

initially, but most protein was retained and protected within the non-reducible DSS crosslinked 

structure.  

Since the DSS NPs displayed the same molar crosslinking density and spacer arm length as the 

DTSSP NPs, other factors must explain the difference observed in protease protection. As DSS 

lacks water solubility, it was dissolved in DMSO before being used to crosslink the DSS NP. This 
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variation in solvent may have led to a reduction in surface adjacent DQBSA and thus reduced 

fluorescence in the presence of chymotrypsin. While this may account for part of the observed 

difference, further explanation is warranted to better explain the observed difference in protein 

degradation. 

As the primary difference between the DSS NPs and DTSSP NPs is the inclusion of a disulfide, 

this bond likely played a role in the variation of protection against proteases. The χ3 torsional 

angle, which is the rotation of the β-carbon atoms around the disulfide, is critical to disulfide 

stability [288-290]. If these angles are not maintained, the strain within the bond may increase 

drastically [291]. As the disulfide in DTSSP is not maintaining the conformation of a single 

protein but is rather maintaining stability of a self-assembled copolymer encapsulating a protein, 

many disulfides could be under enhanced strain. This enhanced strain may result in a DTSSP NP 

with lower stability than the DSS NP as observed when each was incubated with chymotrypsin. 



40 

 

 

Figure 8: Stability results for nanoparticles of DQ Green BSA encapsulated in poly(L-lysine)-

grafted-poly(ethylene glycol). A) Fluorescence greater than the dotted line designates protein 

released from the DTSSP NP. No protein release was observed from DTSSP NPs incubated with 

0.27 mM heparin, and insignificant protein release was observed when incubated with varying 

concentrations of fetal bovine serum (FBS). B) Protein degradation in the presence of 0.1 mg/mL 

chymotrypsin. The free protein (DQBSA) and non-crosslinked nanoparticle (Non-X NP) showed 

rapid protein degradation, while the non-cleavable crosslinker DSS provided strong protection for 

the encapsulated protein (DSS NP). The DTSSP NP effectively protected the encapsulated 

protein for over 24 hours. * designates a p-value < 0.05, ** designates p-value < 0.005, and *** 

designates p-value < 0.001. 
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3.3.5. Nanoparticle destabilization in a reductive environment 

While strong protective properties are desired in the presence of serum and proteases, 

nanoparticle destabilization in a reductive environment is foundational to the successful delivery 

of tumor-targeted therapeutic proteins using crosslinked PLL-g-PEG. DTSSP NP destabilization 

was measured based on the fluorescence of DQBSA when denatured with SDS (Figure 9). DTT 

was selected as a reducing agent because its unimolecular reduction mechanism was uninhibited 

by SDS [292]. Before the addition of DTT, the fluorescence of the DTSSP NPs was half of that 

observed with DQBSA alone, while DSS NPs displayed 40% of the normalized DQBSA 

fluorescence. From previous SDS-PAGE findings, the protein was fully encapsulated within both 

the DTSSP NPs and the DSS NPs, and the difference in initial fluorescence was likely due to 

enhanced quenching induced by the permanent crosslinker. Based on these observations, the 

fluorescence of free DQBSA in DTT was utilized as the baseline for 100% protein release, while 

the fluorescence of the DTSSP NP in PBS was used as the baseline corresponding to 100% 

encapsulation. DQBSA, DTSSP NPs and DSS NPs were incubated with 0.20 mM, 1.0 mM, and 

5.0 mM DTT at 37°C, and protein release was measured as a function of time.  

When incubated with PBS only, the DTSSP NPs and DSS NPs both displayed fluorescence 

significantly lower than that of DQBSA. With the addition of DTT and twelve hours of 

incubation, however, the relative fluorescence of the DTSSP NPs increased while that of the DSS 

NPs remained low (Figure 9A). Furthermore, the fluorescence of DTSSP NPs increased with 

increasing DTT concentrations, showing that the rate of protein release was affected by the 

concentration of reducing agents in the surrounding environment. When converted to a ratio of 

protein released, twelve hours of incubation in 0.20 mM, 1.0 mM, and 5.0 mM DTT 

corresponded to protein release of 56% ± 7%, 79% ± 9%, and 81% ± 9%, respectively. 
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The protein release profile was plotted as a function of time (Figure 9B). With 5 mM DTT, over 

50% of the total protein was released within the first two hours, and after six hours over 75% of 

the protein had been released. Subsequently, the protein release rate decreased and achieved a 

maximum of 81% after 12 hours incubation. Lower concentrations of DTT displayed reduced 

rates of protein release. At 1.0 mM DTT, 50% protein release was achieved after 5 hours of 

incubation, and over 75% was achieved after 12 hours. This 1.0 mM DTT release profile must be 

considered the upper bound for protein release that could be observed in vivo due to the lower 

reduction potential of GSH in comparison to DTT [293, 294]. The lowest concentration of DTT 

tested, 0.20 mM, showed a further reduction in protein release profile, with only 56% protein 

release achieved after 12 hours. As the reduced DTT concentration corresponded to increased 

DTSSP NP stability, this delivery strategy shows potential to selectively destabilize the 

copolymer coating in an upregulated redox environment while maintaining encapsulation and 

protective properties in non-reducing environments. 

Several factors may play a role in the incomplete protein release. Reduced DTSSP has been 

shown to undergo thiol exchange and subsequent disulfide scrambling, so it could be that reduced 

DTSSP inhibited measurement of protein release through aggregate formation [295, 296]. 

Furthermore, BSA has been shown to form aggregates in a reductive environment, which can 

cause fluorescence quenching and lower the fluorescent signal of free protein [297]. Though 

incubation with SDS should have reduced the aggregation effect, some quenching may have been 

responsible for the fluorescence of the DTSSP NP in DTT being less than that of DQBSA after 

twelve hours of incubation. This should not affect in vitro or in vivo studies however, as disulfide 

scrambling decreases in acidic pH [295, 296, 298]. Thus, disulfide scrambling and aggregate 

formation may explain the minor retention of fluorescence quenching in the presence of DTT. 
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Figure 9: Nanoparticle destabilization in a reductive environment and protein release from 

nanoparticles encapsulating DQ Green BSA (DQBSA) within poly(L-lysine)-grafted-

poly(ethylene glycol) and crosslinked with disulfide-containing DTSSP (DTSSP NPs). A) 

Normalized fluorescence of DQBSA, DTSSP NPs, and DQBSA nanoparticles crosslinked with 

DSS (DSS NP), a non-reducible DTSSP analog, after twelve hours incubation with phosphate 

buffer saline (PBS) and 0.20, 1.0, and 5.0 mM DTT. The dotted line corresponds to complete 

encapsulation within the DTSSP NP. * designates p-value < 0.05, ** designates p-value < 0.005, 

and *** designates p-value < 0.001. B) Protein release profile for DTSSP NPs in the presence of 

DTT. 
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3.4. Conclusions 

DTSSP was an effective crosslinker for incorporating redox-responsive properties into poly(L-

lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) polymer-protein nanoparticles (DTSSP NPs). 

A library of DTSSP NPs was made by varying the copolymer to protein (C:P) and crosslinker to 

protein (X:P) mass ratios. Dynamic light scattering and gel migration assays showed that 

therapeutically-relevant nanoparticles can be synthesized using an 11% PEG grafting ratio, a C:P 

ratio of 7:1, and a X:P ratio of 2:1. The stabilized nanoparticles fully encapsulated the available 

protein, retained the protein’s enzymatic activity, protected the encapsulated protein from 

protease degradation, and displayed stability in solutions containing heparin and serum. 

Furthermore, the DTSSP NPs were effectively destabilized in the presence of dithiothreitol, 

which suggests that PLL-g-PEG crosslinked with DTSSP may be effective for selectively 

delivering anti-cancer proteins to the localized environment of a tumor. This work contributes to 

understanding the medical applications of self-assembled cationic polymer-protein nanoparticles 

through incorporation of environmentally responsive moieties. Further research in this area 

should continue to contribute to our understanding of delivering therapeutic proteins to 

medicinally relevant areas of the body. 
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CHAPTER IV 
 

 

A RAPID MILLIFLUIDIC SYNTHESIS OF TUNABLE POLYMER-PROTEIN 

NANOPARTICLES 

 

4.1. Introduction 

Protein delivery is central to the treatment of numerous maladies, and nanoparticle drug delivery 

shows potential to enhance the well-established efficacy of current therapeutics [31]. 

Nevertheless, hurdles to protein delivery include rapid in vivo clearance, side effects, aggregation, 

denaturation, degradation, weak delivery to intracellular locations, and immunogenicity [3, 4]. 

Nanoparticle formation may overcome these hurdles by encapsulating therapeutic proteins in a 

functional and biocompatible shell [4]. Polymers are among the best materials for drug delivery 

due to their low toxicity [4, 299] and ability to control protein delivery [9, 11, 12]. Furthermore, 

polymer-encapsulated proteins can be used for both intracellular and extracellular therapies, and 

nanoparticle functionality can be tuned with respect to the biological properties of a targeted 

environment [9]. 

The materials utilized in polymer-protein nanoparticles determine the mechanism by which 

encapsulation occurs. Cationic polymers can self-assemble around proteins through electrostatic 

interactions [26, 300]. Poly(L-lysine) has been utilized in this application due to its charge and 

the versatility of the primary amine functional group, which facilitates simple crosslinking and 

chemical modification [136, 301]. Cationic polymer nanoparticles are recognized as foreign  
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bodies in vivo [302], however, so hydrophilic materials such as poly(ethylene glycol) (PEG) are 

commonly utilized to reduce nonspecific protein adsorption and elimination by the innate 

immune system [13-15]. PEG can be conjugated to lysine residues to confer a hydration layer and 

enhance the biocompatible characteristics of the copolymer [303]. As such, a copolymer 

composed of both PLL and PEG can self-assemble around proteins while reducing their 

immunogenicity, aggregation tendency, and clearance rate [136, 304, 305]. 

Most self-assembled polymer-protein nanoparticles are synthesized in batch processes. While 

bulk mixing is a simple and practical strategy for nanoparticle development, its discontinuous 

nature offers few factors for tuning and presents challenges in controlling particle size and 

distribution [23, 219]. Continuous flow systems show potential to overcome these limitations 

[219]. Microfluidics have been proposed as an alternative to bulk mixing for the preparation of 

monodisperse nanoparticles. The µm-scale channels utilized in microfluidic systems reduce 

diffusional lengths, resulting in enhanced mass transfer and a homogeneous environment that 

allows control over the properties of the nanoparticles [220-222]. Furthermore, variations in 

microfluidic system configuration have been shown to affect mass transfer and consequently the 

size and dispersity of synthesized nanoparticles [306]. Additional benefits of microfluidics 

include reproducibility, simplicity, versatility, and enhanced safety [222-224]. 

Similarly, millifluidic configurations share the advantages of microfluidics while simultaneously 

boasting reduced cost and improved process controls [219, 225]. Furthermore, millifluidics are 

more resistant to fouling than microfluidics and more easily maintain an isothermal and 

homogeneous chemical environment [220, 226]. Until now, microfluidics have been primarily 

used in the synthesis of inorganic nanostructures, whereas the millifluidic synthesis of organic 

nanoparticles has been limited [227, 228]. When utilized for therapeutic nanoparticle synthesis, 

millifluidic processes have proven successful at matching the characteristics of nanoparticles 

produced in batch processes [225] and have shown better size control than comparable batch 
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processes [23]. One study directly compared a millifluidic process to a bulk mixing process in 

synthesis of drug-loaded nanoparticles and found that the millifluidic process displayed enhanced 

drug loading over the batch process [220]. As such, millifluidics have been shown useful for 

small molecule drug delivery system applications and show benefits over similar batch processes. 

Ultrasonication has been widely used within millifluidics for its ability to enhance transport 

properties and reduce activation energy [231-237, 307]. Furthermore, ultrasound has been shown 

to reduce fouling and induce uniform mixing in flow processes through incitation of cavitation 

[237, 238]. Acoustic frequencies between 20 kHz and 1 MHz create bubbles matching the scale 

of millifluidic channels, which can magnify the mixing effect through resonance [237, 239, 240]. 

With such prior evidence, application of ultrasound to millifluidic polymer-protein nanoparticle 

synthesis displays potential for controlled mixing in the laminar flow regime. 

In this work, bovine serum albumin (BSA) was encapsulated in poly(L-lysine)-grafted-

poly(ethylene glycol) using a millifluidic synthesis process that incorporated ultrasound to 

introduce controlled mixing in a laminar flow regime. The objective of this research was to 

present a rapid continuous process capable of producing stable, tunable polymer-protein 

nanoparticles. Nanoparticle diameters were measured as a function of feed flow rate and system 

configuration and were characterized by morphology, polydispersity index, encapsulation 

efficiency, -potential, stability, and retention of enzymatic activity. 

4.2. Materials and methods 

Lyophilized bovine serum albumin (BSA), 4-nitrophenyl octanoate, and poly(L-lysine)-HBr 

(PLL-HBr) of 15-30 kDa molecular weight were purchased from Sigma Aldrich (St. Louis, MO). 

Poly(ethylene glycol) of 5 kDa molecular weight functionalized with a carboxymethyl 

succinimidyl ester (mPEG-NHS) was purchased from Creative PEGworks (Durham, NC). 

Glutaraldehyde (GA, 50%), acrylamide/bisacrylamide (37.5:1) and other polyacrylamide gel 
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casting and running materials were purchased from Fisher Scientific (Pittsburgh, PA). DQ Green 

BSA was purchased from Life Technologies (Grand Island, NY). Millifluidic tubing and 

junctions were purchased from McMaster-Carr (Elmhurst, IL). Phosphate buffer saline (PBS, 10 

mM) was made in-house. 

4.2.1. PLL-g-PEG copolymer synthesis 

Poly(ethylene glycol) was grafted to poly(L-lysine) according to the methods described by Flynn 

et al. [26], in which succinimidyl ester functional groups on mPEG-NHS were reacted with 

primary amines on PLL to create a grafted copolymer. A solution containing 15 mg of PLL-HBr 

in 200 μL PBS was made before 57 mg of 5 kDa mPEG-NHS was added to match the desired 

10% PEG grafting ratio. The copolymer (PLL-g-PEG) solution was incubated at 25°C for 2 hours 

before washing with 300 μL ultrapure water three times using a Pierce™ Protein Concentrator 

with a 10 kDa molecular weight cutoff (MWCO, ThermoFisher Scientific, Waltham, MA). After 

washing, four samples were combined, diluted to 1 mL in ultrapure water, and stored at -80°C 

overnight. The following day, the frozen copolymer solution was removed from the freezer and 

freeze dried for 24 hours. The achieved grafting ratio of PEG to PLL was calculated from the 1H 

NMR spectrum. Lyophilized copolymers were stored at -20°C until use. 

4.2.2. Preparation of feed solutions 

Protein and copolymer feed solutions were prepared immediately prior to use. The BSA solution 

was made by adding 20 mg lyophilized BSA to 10 mL PBS and allowing it to dissolve for 30 

minutes. The solution was then filtered through a pre-wetted 0.20 µm syringe filter to remove 

large aggregates before the absorbance at 280 nm was measured and used to determine the 

protein concentration. The BSA solution was subsequently diluted to 0.266 mg/mL in PBS and 

stored at room temperature. The copolymer feed solution was prepared by removing lyophilized 

PLL-g-PEG from the freezer, warming it to 25°C, and dissolving it in PBS to 1.8 mg/mL.  
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4.2.3. Millifluidic nanoparticle synthesis 

The millifluidic system was constructed from 1/16-inch inner diameter (ID) tubing. The tubing 

material used in this work was clear fluorinated ethylene propylene (FEP) for system 

Configurations A, B, and C, and silicone rubber for Configurations D and E (Table 2). In 

Configurations A, B, and C, 100 cm of FEP tubing was cut and connected to two separate 10 cm 

lengths of silicone rubber tubing with a 3-way barbed tee junction. Similarly, in Configurations D 

and E, 100 cm of silicone rubber tubing was cut and connected to two 10-cm lengths of silicone 

rubber tubing.  

Syringe-to-tubing adapters were modified from 200 µL micropipette tips that had each been 

transected one cm from the tip and 0.5 cm from the base. The narrow ends of the transected 

micropipette tips were inserted into the open ends of the silicone rubber tubing extending from 

the tee junction. All connections were externally sealed with super glue that was allowed to cure 

for 4 hours. Before initial use, the sealed tubing was disinfected with 70% ethanol, rinsed with 

ultrapure water, and dried with forced air. The tubing was fastened to an ultrasonic water bath 

with clear adhesive such that there was a 10 cm length of tubing between the tee junction and the 

water surface and a 15 cm length of tubing from the water surface to the tube outlet 

(Configurations A, B, C, and D). The tubing within the ultrasonic bath was coiled (8 cm 

diameter) to ensure the tubing did not contact the base or walls of the bath. A Fusion 200 syringe 

pump (Chemyx Inc., Stafford, TX) was placed adjacent to the sonic bath to run both the PLL-g-

PEG and BSA feed solutions. The 5 mL feed syringes used to inject the solutions into the system 

syringes (Becton Dickinson and Company, Franklin Lakes, NJ) were filled with BSA (0.266 

mg/mL) and PLL-g-PEG (1.8 mg/mL) solutions. The loaded syringes were then placed on the 

rack of the syringe pump.  
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Configuration E was a development on Configuration D. In Configuration E, the silicone tubing 

was extended an additional 100 cm using a secondary tee junction connecting the outlet of the 

first 100 cm of tubing to the inlet of the second 100 cm, which allows for future in-line addition 

of crosslinking reagents. A 5-cm length of silicone rubber tubing was connected to the secondary 

tee junction, and this additional input port was filled to the junction with a PBS-loaded 5 mL 

syringe to prevent reagent diversion. Ninety of the initial 100 cm of tubing were submerged in the 

ultrasonic bath, whereas the final 100 cm was elevated from the ultrasonic bath to form the post-

sonication laminar flow quiescent zone.  

All nanoparticle synthesis operations were performed at room temperature. Preparation was 

completed by setting the syringe pump flow rate, securing a microcentrifuge tube at the terminus 

of the millifluidic tubing, and activating the ultrasonic bath. The syringe pump was operated until 

the entire volume of the feed solutions had been fed to the system to form electrostatically self-

assembled millifluidic nanoparticles (MFNPs) (Figure 10). Upon completion, 500 μL of MFNPs 

were placed in a microcuvette and loaded into a ZetaPALS ζ-potential analyzer (Brookhaven 

Instruments Corporation, Holtsville, NY). The hydrodynamic diameter and polydispersity index 

(PDI) of the nanoparticles were calculated from 5 dynamic light scattering (DLS) measurements 

taken at a 90° angle for 30 seconds each. Following DLS, the samples were transferred to a 2 mL 

microcentrifuge tube and crosslinked under gentle vortexing with 76.8 μL of 0.025 wt% 

glutaraldehyde. The crosslinked MFNPs were incubated at room temperature for 3 hours before 

being stored at 4°C until further use. The millifluidic system was rinsed twice with deionized 

water and dried with forced air between experiments. Table 2 displays the mean velocity, 

residence time, and Reynolds number at study-relevant flow rates. 
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Figure 10: Schematic of the millifluidic synthesis process for encapsulation of bovine serum 

albumin within poly(L-lysine)-grafted-poly(ethylene glycol). mPEG-NHS of 5 kDa molecular 

weight was grafted to 11% of the free amines on 15-30 kDa PLL-HBr to create PLL-g-PEG. 

Nanoparticle formation was accomplished using ultrasonic cavitation to induce electrostatic self-

assembly within a millifluidic laminar flow regime. The nanoparticles were stabilized upon exit 

from the millifluidic system through crosslinking with glutaraldehyde under gentle vortexing. 

 

Table 2: Velocity, residence time, and Reynolds number for flow rates relevant to the millifluidic 

nanoparticle synthesis 

Feed Flow 

Rate 

(μL/min) 

Mean 

velocity 

(mm/s) 

Residence time, 75 

cm sonication length 

(min) 

Reynold’s 

Number 

50 0.84 14.8 1.29 

100 1.68 7.4 2.57 

150 2.53 4.9 3.86 

200 3.37 3.7 5.14 

250 4.21 3.0 6.43 

300 5.05 2.5 7.72 

400 6.74 1.9 10.3 
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4.2.4. Variation of sonication power 

Three ultrasonic baths were used to determine the effect of ultrasound power input on the 

hydrodynamic diameter of the MFNPs. A Branson 2510MT Ultrasonic Bath (St. Louis, MO) 

delivered an input power of 100W, whereas the Fisherbrand™ CPXH Series Heated Ultrasonic 

Cleaning Bath (Fisher Scientific, Pittsburgh, PA) delivered 110W and the VWR B3500A-MT 

(West Chester, PA) provided 135W. Each of the sonic baths operated at 42±3 kHz and possessed 

similar geometries. 

4.2.5. Nanoparticle ζ-potential measurement  

The ζ-potential of glutaraldehyde-crosslinked MFNPs synthesized with Configuration E at 50 and 

300 μL/min was measured using a ZetaPALS ζ-potential analyzer. Nanoparticle samples were 

combined to 1.5 mL in a disposable cuvette, and the ζ-potential was measured using phase 

analysis light scattering and Smoluchowski’s equation. Fifty converged calculations were 

averaged and reported with standard error as the ζ-potential of the MFNPs. 

4.2.6. Scanning electron microscopy analysis 

The MFNP size distribution was analyzed using an FEI Quanta 600 scanning electron microscope 

(ThermoFisher Scientific, Waltham, MA). MFNPs produced with Configuration E at a feed flow 

rate of 50 μL/min were crosslinked with glutaraldehyde. The MFNP solution (20 μL) was 

deposited onto an aluminum SEM stub with a drop-casting method and allowed to dry at room 

temperature for 20 hours. The dried particles were subsequently sputter-coated with gold-

palladium on a Cressington 108 sputter coater (Cressington Scientific Instruments, Watford, 

England). Images were recorded at an accelerating voltage of 20.0 kV, and MFNP size 

distribution was determined from 436 particles using ImageJ analysis. The size distribution was 
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used to estimate the concentration and loading of the DTSSP NPs assuming smooth sphere 

geometry, a 7:1 C:P volume ratio, and a BSA geometry of 4 nm by 4 nm by 14 nm [273]. 

4.2.7. Transmission electron microscopy analysis 

Transmission electron microscopy was used to determine MFNP morphology. MFNPs were 

synthesized with Configuration E at a feed flow rate of 50 μL/min and crosslinked with 

glutaraldehyde. A formvar TEM grid was loaded with 10 μL of MFNPs that had been diluted 

10:1 in DI water, and the MFNP sample was dried at room temperature for 15 minutes before 

excess solvent was wicked away. The sample was not stained with a contrast agent before 

observation using a JEOL JEM-2100 electron microscope (JEOL Ltd., Akishima, Tokyo, Japan) 

with an accelerating voltage of 200 kV. 

4.2.8. Protein encapsulation in millifluidic nanoparticle synthesis 

The extent of protein encapsulation within crosslinked MFNPs was measured using a gel 

migration assay. Samples of crosslinked MFNPs were diluted with non-reducing SDS-PAGE 

sample buffer at a 1:1 volume ratio. Samples were not boiled but were incubated at 37°C and 

shaken on a Thermofisher Max400Q orbital shaker (Thermofisher, Waltham, MA) at 80 rpm for 

15 minutes before 27 μL aliquots were loaded onto an 8% SDS-PAGE gel. SDS-PAGE gels were 

run at 200V on a Bio-Rad Tetracell mini gel electrophoresis apparatus (Bio-Rad Laboratories, 

Hercules, CA) until the dye front reached the bottom of the gel (approximately 45 minutes). The 

running buffer did not contain SDS. SDS-PAGE gels were stained with Coomassie G-250 before 

imaging. Relative band intensity was used to determine the extent of protein encapsulation within 

the MFNPs.  
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4.2.9. Particle stability against proteases 

Stability in the presence of proteases was determined using a fluorescence assay. MFNPs were 

formed with Configuration E at a flow rate of 50 μL/min using DQ Green BSA (DQBSA) as the 

encapsulated protein. DQBSA is BSA haptenated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-

diaza-s-indacene-3-propionic acid fluorophore (BODIPY FL) to such an extent that it experiences 

self-quenching relievable through protein denaturation [276]. When incubated with 

chymotrypsin, free DQBSA displayed a sharp increase in fluorescence, whereas DQBSA 

protected within the MFNP retained its initial fluorescence. MFNPs were diluted 6.1:1 by volume 

in PBS and 100 μL aliquots were loaded onto a 96 well plate. α-Chymotrypsin from bovine 

pancreas was dissolve in PBS to 0.6 mg/mL, and 20 μL of protease solution were added to each 

well for a final concentration of 0.1 mg/mL. The fluorescence was measured (485 nm excitation, 

535 nm emission) using a Beckman Coulter DTX 880 Multimode Detector (Beckman Coulter 

Life Sciences, Brea, CA) initially and periodically afterwards to determine the MFNP 

susceptibility to protease degradation. 

4.2.10. Retention of enzymatic activity 

To determine the effect of encapsulation on protein activity, MFNPs synthesized with 

Configuration E at 50 and 300 μL/min were incubated with 10 mM 4-nitrophenyl octanoate. 

Cleavage of 4-nitrophenyl octanoate by BSA produces 4-nitrophenol, which displays an 

absorption peak at 410 nm and allows the reaction to be monitored spectrophotometrically. 

MFNPs were removed from storage and diluted 5.9:1 by volume in PBS. Three 100 μL aliquots 

were added to a Falcon 96 well plate (Corning Inc., Corning, NY), and 20 μL of 60 mM 4-

nitrophenyl octanoate in isopropanol was added to each well. The plate was incubated at 37°C, 

and absorbance at 410 nm was measured periodically using a Packard Spectracount plate reader 

(Cole-Palmer, Vernon Hills, IL). 
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4.2.11. Statistical analysis 

Statistical analysis was performed in Microsoft excel using a two-tailed heteroscedastic student’s 

t-test. A minimum of 3 samples were used for each measurement. Single measurements 

displaying values greater than 1.5 times the interquartile range away from the nearest quartile (Q1 

or Q3) were classified as outliers and ignored when calculating average nanoparticle diameter. 

4.3. Results and discussion 

4.3.1. Nanoparticle size variation with volumetric flow rate 

The achieved grafting of PEG to PLL was calculated as 11% from 1H NMR spectra Preliminary 

trials without ultrasonication produced µm-scale polymer-protein aggregates. Each of the first 

three system configurations tested with ultrasonication (A, B, and C from Table 2) produced 

MFNPs between 150 and 300 nm in diameter and exhibited a minimum diameter corresponding 

to a feed flow rate between 100 and 300 μL/min (Figure 11A). With Configuration A, DLS 

measurements showed a MFNP diameter of 153 nm at 150 μL/min. The diameter increased to 

256 nm and 239nm at 40 μL/min and 350 μL/min, respectively. This suggests that there was an 

optimal range of acoustic energy input to induce mixing that forms nm-scale complexes of PLL-

g-PEG and BSA. 

To test this hypothesis, the 100W sonication bath from Configuration A was replaced with an 

110W model (Configuration B). With the higher power input, DLS analysis showed a MFNP 

diameter of 164 nm at a flow rate of 200 μL/min. The observed MFNP diameter again increased 

at higher and lower feed flow rates, reaching 194 nm at 100 μL/min and 205 nm at 400 μL/min. 

This trend supported the hypothesis of a favorable range of ultrasonic energy input for MFNP 

formation. Subsequently, Configuration C replaced the ultrasonic bath with a 135W model, and a 

trend similar to that of the two previous system configurations was observed. With Configuration 
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C, the MFNP diameter at 250 μL/min was measured as 149 nm, with MFNP diameters of 192 nm 

and 182 nm measured at flow rates of 50 and 400 μL/min, respectively.  

Variation in power input to the system had minimal effect on the diameter of the MFNP 

produced, but it did affect the flow rate at which the minimum particle diameters were observed. 

The flow rate producing the smallest observed nanoparticle size was lowest with Configuration 

A, which also displayed higher MFNP diameters at the maximum and minimum flow rates than 

either Configuration B or C. In contrast, the flow rate producing the smallest MFNP diameter was 

highest for Configuration C while the diameters at the maximum and minimum flow rates were 

smaller than those of Configuration A or B. These data seem to suggest an upward-opening 

parabolic relationship between feed flow rate and MFNP diameter that widened and shifted right 

with increasing ultrasonic power input.  

Along with hydrodynamic diameter, the polydispersity index (PDI) of the MFNPs was measured 

for each of these system configurations (Figure 11B). PDI generally varied between 0.2 and 0.3 

and increased with increasing flow rate. Configuration A generally displayed the lowest PDI, 

with the lowest flow rates displaying highly uniform particles and PDI approaching 0.1. This 

observation suggests that lower power input corresponded to enhanced mixing consistency and 

more homogenous MFNPs and increased flow rates correspond to decreased mixing consistency. 

Consequently, while a single MFNP diameter could be produced at two different flow rates, the 

PDI was generally lower at the lower flow rate. 

4.3.2. Nanoparticle size variation with tubing material 

The effect that the tubing material had on MFNP diameter was determined by replacing the FEP 

tubing utilized in the previous configurations with silicone rubber tubing (Configurations D and 

E). When the system was operated at 50 μL/min, the particle size decreased dramatically from the 

previous value of 192 nm to 26 nm (Figure 11A, Configuration C compared to D). This result is 
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particularly desirable because it shows that the millifluidic system can produce nanoparticles of 

size similar to and smaller than those made with the batch process [26]. Interestingly, the MFNP 

diameter remained low with increasing flow rate without displaying a trend toward increasing 

size. The remarkable decrease in particle size with the change in tubing material suggests that the 

flexible silicone rubber improved the mixing characteristics within the millifluidic channel in 

comparison to the more rigid FEP tubing. Energy transmission through the millifluidic tubing 

appears to be essential for controlling the mixing that occurs in the millifluidic channel, and that 

improved mixing can rapidly synthesize MFNPs smaller than 30 nm. 

These small MFNP sizes are of particular interest for controlled administration of therapeutics. 

As the hydrodynamic diameter of BSA alone is approximately 8 nm, a MFNP diameter below 15 

nm suggests individual loading of proteins within a PLL-g-PEG shell. This precise control over 

protein loading is especially advantageous when considering extrapolation to encapsulation of 

therapeutic proteins that may differ from BSA in size, morphology, and surface charge. The 

consistency of MFNP sizes with varying flow rates could be due to the flexible silicone rubber 

providing enhanced transmission of sonic waves between the system and the surroundings in 

contrast to the more rigid FEP tubing. Ultrasonic energy transmission is based on losses through 

the medium and at the solid-liquid interfaces, and thus the attenuation of the ultrasonic impulse 

was reduced in the flexible silicone rubber tubing in comparison to the FEP tubing [308]. This 

enhanced transmission resulted in improved mixing and smaller MFNP sizes. 

Despite the favorable results in MFNP diameter, the PDI from the silicone rubber tubing ranged 

between 0.3 and 0.4 (Figure 11B). As effective diameter is taken in to account in PDI 

calculations, this increase in PDI may have been due to a combination of reduced MFNP size and 

decreased particle homogeneity in comparison to those produced with FEP tubing. An extended 

outlet length of laminar flow was hypothesized to reduce the MFNP PDI while also allowing for 

the addition of in-line crosslinking in future studies. When the outlet flow region was extended 
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from 15 cm to 100 cm (Table 2, Configuration E), the MFNP produced at 50 μL/min was 

measured at 13 nm, the smallest observed in the study. Nevertheless, PDI ranged between 0.3 and 

0.4 similar to Configuration D, which suggests that a laminar flow quiescent zone did not reduce 

the PDI of the MFNPs. Figure 11C displays the size and PDI of each nanoparticle synthesized as 

a function of feed flow rate. 

The two distinct ranges of nanoparticle sizes produced in this study each have unique 

applications. For cancer treatment applications, the well-documented enhanced permeability and 

retention (EPR) effect is the tendency of nm-scale particles to selectively accumulate within 

tumors due to leaky vasculature [90, 309]. Nanoparticles with diameters between 10 and 200 nm 

have been reported as optimal to deliver a therapeutic payload homogeneously throughout a 

tumor [90]. Other studies have utilized polymer-protein nanoparticles as bioscavengers and have 

even attached sub-30 nm nanoparticles to erythrocytes to extend circulation time in vivo [279, 

310]. Consequently, the tunability and variety of size ranges of MFNPs synthesized with the 

millifluidic system may lead to advancements in scale-up for polymeric nanoparticles drug 

delivery systems. 

Table 3: System configurations for millifluidic nanoparticle synthesis 

System 

configuration 

Sonication 

power 

Inlet 

length 

Ultrasonication 

length 

Outlet 

length 

Tubing 

material 

A 100 W 10 cm 75 cm 15 cm FEP 

B 110 W 10 cm 75 cm 15 cm FEP 

C 135 W 10 cm 75 cm 15 cm FEP 

D 135 W 10 cm 75 cm 15 cm 
Silicone 

Rubber 

E 135 W 10 cm 90 cm 100 cm 
Silicone 

Rubber 
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Figure 11: Diameter and polydispersity index (PDI) for nanoparticles synthesized using a 

millifluidic synthesis process. A) Nanoparticle diameter measured as a function of feed flow rate 

and ultrasonic power input. B) Nanoparticle PDI for each system configuration as a function of 

feed flow rate. PDI generally increased with increasing flow rate, and lower power inputs 

corresponded with lower PDI. C) Nanoparticle diameter (y-axis) and PDI (circle diameter) as a 

function of feed flow rate. Small nanoparticle diameter and high power input corresponded to 

higher PDI values, whereas lower power and larger sizes corresponded to lower PDI. 

4.3.3. Nanoparticle microscopy and ζ-potential 

The MFNPs selected for imaging were synthesized with Configuration E at a flow rate of 50 

μL/min because these conditions displayed the smallest MFNP diameter. The MFNP size 

distribution was determined with scanning electron microscopy (SEM) (Figure 12). MFNPs 

displayed elliptical morphology and equivalent diameters ranged from 11 to 35 nm. ImageJ 

analysis of 436 particles from the SEM micrograph displayed a right-skewed distribution with a 

median particle equivalent diameter of 16.3 nm. Based on the size distribution, the concentration 

of the MFNPs was estimated as 1.1 µM with an average loading of 1.7 BSA per MFNP.  In 

addition to SEM, transmission electron microscopy (TEM) was used to determine the 

morphology of the MFNPs. The dark rings correspond to reduced electron transmission whereas 

the centers display increased electron transmission, which is consistent with a core-shell 

morphology of a low-density center surrounded by a high-density coating. Furthermore, the 

morphology and size of MFNPs observed with TEM was consistent with that observed with SEM 

and DLS. 
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Figure 12: Electron microscopy of nanoparticles synthesized in a millifluidic process at a feed 

flow rate of 50 μL/min with a millifluidic process utilizing silicone rubber tubing and a 135W 

ultrasonic bath (Configuration E) The scanning electron micrograph (left) was analyzed using 

ImageJ to determine the size distribution (center) from 436 nanoparticles with a median diameter 

of 16.3 nm. The transmission electron micrograph (right) shows characteristic core-shell 

morphology with a high transmission center encompassed by a dark halo. 

The ζ-potential of the MFNPs was measured using a ZetaPALS ζ-potential analyzer to determine 

the effect of encapsulation and crosslinking on MFNP surface charge. The MFNPs selected for ζ-

potential analysis were those produced with Configuration E at feed flow rates of 50 and 300 

µL/min. The MFNPs produced at 50 µL/min showed an average ζ-potential of 3.8±4.1 eV, while 

the MFNPs produced at 300 µL/min displayed a ζ-potential of 1.3±2.9 eV. As the ζ-potential of 

free BSA is -22 mV at pH 6.5 and -32 mV at pH 9.0 [280], this positive ζ-potential showed that 

the cationic amine groups and the hydrophilic PEG on the copolymer effectively shielded the 

charge of the encapsulated protein. This positive surface charge could be advantageous, as 

positively charged MFNPs display enhanced cellular uptake due to electrostatic interactions with 

negatively-charged glycosaminoglycans on cell membranes [281]. The near-neutral ζ-potential of 

the MFNPs may also reduce non-specific interactions with anionic serum proteins and affect the 

protein corona [129]. 
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4.3.4. Nanoparticle protein encapsulation efficiency 

The extent of protein encapsulation within PLL-g-PEG was determined using SDS-PAGE. As 

seen in Figure 13, both the free BSA and the non-crosslinked batch nanoparticle (Non-X NP) 

showed bands corresponding to the BSA monomer. In contrast, each of the MFNPs that had been 

crosslinked with glutaraldehyde displayed a thick dark band at the top of the gel resulting from 

the increased size and reduced relative migration when BSA was encapsulated within PLL-g-

PEG. No MFNP showed a band matching that of free protein. These observations were identical 

to that of the well-characterized batch nanoparticle (BNP), for which it has been shown that free 

BSA band intensity increases with decreasing encapsulation efficiency [26]. Based on this 

evidence, the protein was fully encapsulated for all millifluidic system configurations and flow 

rates tested, which suggests that variations in size and PDI were not the result of variations in 

MFNP encapsulation efficiency. 

 

Figure 13: SDS-PAGE of nanoparticles synthesized through a millifluidic process and 

crosslinked with glutaraldehyde. All nanoparticles showed complete protein encapsulation. 
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4.3.5. Nanoparticle stability in the presence of chymotrypsin 

The ability of the MFNPs to protect an encapsulated protein from degradation by proteases was 

confirmed using fluorescence spectroscopy. When incubated with 0.1 mg/mL chymotrypsin, both 

the MFNPs (Configuration E, 50µL/min) and the crosslinked BNPs protected the encapsulated 

protein significantly better than free DQBSA and non-crosslinked nanoparticles (Non-X NP) 

(Figure 14). The free DQBSA percentage of degraded protein increased quickly when exposed to 

the protease and reached 50% in 1.5 hours, while the Non-X NP showed a reduced degradation 

rate but followed closely behind the DQBSA. In contrast, the degradation of the crosslinked 

BNPs and MFNPs remained below 20% throughout the study.  

The BNP and MFNP did display a small but significant difference in protein degradation after 32 

hours of incubation. The MFNP showed slightly elevated degradation in comparison to the BNP. 

This evidence suggests that there was a difference in encapsulation between the batch and 

continuous processes, with the batch process producing nanoparticles with fewer surface-exposed 

proteins. Nevertheless, both synthesis processes produced polymer-protein nanoparticles that 

offer significant protection to the encapsulated protein in the presence of proteases. 
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Figure 14: Stability of nanoparticles produced through a millifluidic process in the presence of 

chymotrypsin. The encapsulated protein (DQBSA) was labeled with a fluorescent probe such that 

it experienced self-quenching relievable by protease degradation. The non-crosslinked 

nanoparticle (Non-X NP) showed minimal protection for the encapsulated protein, closely 

following the curve of the free DQBSA. The glutaraldehyde-crosslinked nanoparticles produced 

through batch (BNP) and millifluidic (MFNP, Configuration E, 50 µL/min) processes showed 

strong protection for the encapsulated protein, though the BNPs protected the protein 

significantly better than the MFNPs did after 30 hours. * designates p-value < 0.01, ** designates 

p-value < 0.001. 

4.3.6. Retention of esterolytic activity 

Therapeutic protein delivery necessitates that the protein must retain its activity throughout the 

encapsulation and release processes. A prior study with butyrylcholinesterase suggested that PLL-

g-PEG/protein complexing retained the activity of the encapsulated enzyme [285]. MFNP 

maintenance of encapsulated protein function was measured spectrophotometrically using the 

cleavage of 4-nitrophenyl octanoate. Hydrolysis of 4-nitrophenyl octanoate produces 4-

nitrophenol, a product with an absorption peak at 410 nm. MFNPs synthesized with 
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Configuration E at both 50 and 300 μL/min were crosslinked with glutaraldehyde and compared 

to free BSA and BNPs in product concentration at various incubation times. Enzymatic binding 

and cleaving of the substrate was not hindered by encapsulation, which suggests encapsulation 

did not detrimentally affect protein function (Figure 15). Additionally, the MFNPs showed 

esterolytic activity similar to the BNPs. Both the MFNPs and the BNPs displayed higher product 

concentrations than free BSA at each time step, which is evidence that enzymatic activity was 

enhanced by the addition of the crosslinked copolymer. This is corroborated in previous studies 

and has been attributed to an increased localized substrate concentration within the nanoparticle 

leading to an increase in reaction rate [26, 286]. Furthermore, variation of the feed flow rate 

between 50 and 300 μL/min did not vary the amount by which the esterolytic activity was 

enhanced, suggesting that variations in time exposed to ultrasonication did not affect the 

enzymatic activity of the encapsulated protein. 

 

Figure 15: Retention of enzymatic activity for BSA nanoparticles encapsulated through batch 

and millifluidic processes. Free protein and nanoparticles were incubated with 4-nitrophenyl 

octanoate and the concentration of the esterolysis product 4-nitrophenol was measured 

spectrophotometrically. The enzymatic activity of nanoparticles produced with the millifluidic 

process (MFNP) matched that of the nanoparticles produced through a batch process (BNP). The 
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flow rate at which the nanoparticles were produced (50 or 300 μL/min) did not affect the 

esterolytic activity of the encapsulated enzyme. All nanoparticles showed a higher product 

concentration than the free protein at all times due to an enhanced localized substrate 

concentration within the nanoparticle in comparison to that of the bulk fluid. After 58 hours of 

incubation, each of the nanoparticles displayed significantly greater (p < 0.01) product 

concentration that free BSA. 

4.4. Conclusions 

Polymeric nanoparticles were produced through a millifluidic process (MFNPs). Electrostatic 

self-assembly was induced by ultrasonication within five system configurations. The resultant 

nanoparticle diameter was a function of feed flow rate, ultrasonic power input, and tubing 

material. MFNPs synthesized in FEP tubing ranged from 150 nm to 300 nm in diameter, whereas 

MFNPs made with silicone rubber tubing displayed sizes below 30 nm. The MFNPs showed 

complete protein encapsulation at all flow rates for all system configurations, maintained stability 

in the presence of proteases, and retained the enzymatic activity of the encapsulated protein. The 

millifluidic process this work presents is a favorable alternative to batch processes due to its 

ability to rapidly synthesize polymer-protein nanoparticles with tunable properties. This work 

could prove foundational to the development of continuous production processes for therapeutic 

protein delivery systems, which would improve both nanoparticle consistency and throughput for 

clinical applications. 
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CHAPTER V 
 

 

CONCLUSIONS 

 

The efficacy of current protein therapies is limited by delivery within the body. Previously, 

poly(L-lysine) was grafted with poly(ethylene glycol) and used to encapsulate a model protein. 

Herein, the effects of crosslinking poly(L-lysine)-grafted-poly(ethylene glycol) with redox 

responsive DTSSP were explored, with DTSSP crosslinking affecting particle size, polydispersity 

index, encapsulation efficiency, stability, and enzymatic activity. Through creation and 

characterization of a nanoparticle library, DTSSP NPs were observed to fully encapsulate bovine 

serum albumin, protect the encapsulated protein in a variety of conditions, and destabilize in a 

reductive environment.  

Additionally, copolymer-protein nanoparticles were effectively formed through electrostatic self-

assembly through a millifluidic process, which resulted in consistent nanoparticles with enhanced 

tunability and scalability over batch processes. The hydrodynamic diameter of the nanoparticles 

ranged from 13 to 300 nm and was dependent on feed flow rate, tubing material, and ultrasonic 

power input. The rapidly-formed millifluidic nanoparticles showed enzymatic activity 

comparable to nanoparticles produced through batch processes and protection for the 

encapsulated protein against proteolytic enzymes. Consequently, stimulus-responsive 

crosslinking and millifluidic synthesis show potential to improve the clinical relevance and 

medicinal efficacy of protein therapeutics. 
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