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Abstract 

The expressed movements of animals are realizations of complex spatiotemporal processes. The 

varied environmental contexts (such as varying topography or landcover) in which animals move 

are central to these processes, fundamentally modulating the movements of individuals through 

space. As an emerging perspective in the time-geographic study of movement, direct 

examination of the influence that varying context may have on observed movements yields 

actionable information to wildlife management, planning and conservation. In support of these 

pursuits, this research develops a practical extension of a new cost-distance-based, probabilistic 

voxel space-time prism (CDBPSTP) in efforts to more realistically characterize the unobserved 

habitat occupancies of animals occurring between the instantaneous positions provided by 

location-aware technologies. The first chapter of this work frames the scope of my research with 

a literature review of time geography, particularly in the context of animal movement, habitat 

selection methods, and recent developments in computational time-geographic methods. The 

second chapter presents the research completed, “Identifying Habitat Use of Red Deer in Banff 

National Park, Alberta Canada using a Cost-Distance Time-Geographic Approach,” wherein the 

CDBPSTP is evaluated on trajectory data collected for a group of Red Deer (Cervus elaphus) 

tracked near Banff National Park, Alberta, Canada. As a demonstration of the added value 

offered in examining the influence of context on movement, CDBPSTP habitat occupancy 

results are compared to the earlier PSTP method in context with empirical and theoretical 

understandings of Red Deer habitat preference and space-use behaviors. We found that 

CDBPSTP as-demonstrated offers an alternative construction of the space-time prism that 

advances time geographic research; CDBPSTP provides a pathway towards a reasonable 
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incorporation of context in probabilistic space-time prism modeling. The third chapter presents 

an extended discussion that situates the place of CDBPSTP within time-geographic literature, 

addresses limitations to this study, and proposes avenues of related future research. 

Keywords: Time-Geography, animal movement, red deer, habitat use
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Chapter 1: Background on Time-Geography Theory, Animal 

Movement, and Geocomputation 

1.1 Time Geography 

Fundamentally, Time Geography can be defined as the study of movement through space and 

time (Hägerstrand 1970; Miller 1991). Time Geography as a discipline is founded on 

Hägerstrand's (1970) conceptualization of the Space-Time Prism, representing a methodology 

focused on capturing the set of possible movement opportunities available to a moving object or 

agent (Miller 1991). Hägerstrand's (1970) work sought to understand qualitatively how space and 

time constrain the extent of human activities, in the context of an individual’s personal 

constraints such as access to travel and flexibility of schedule. This landmark work constitutes 

the theoretical foundation for a range of mobility, accessibility, and equity studies in human 

movement, animal movement studies notwithstanding. 

More broadly, an agent’s movement through space is a combination of local choices 

informed by influences such as global objectives, varied movement context, and physical 

constraints (Hägerstrand 1970); these local choices may be made given the agent’s extent of 

knowledge of the space in which the agent moves. In quantitative terms, considering 

instantaneous location captures A and B for a moving object, the fundamental or classical Time-

Geographic perspective views movement opportunities as constrained by the time available to 

complete the A to B movement (a time budget) and by the known maximum speed (velocity) the 

object can travel (Ahearn et al. 2017). Time geography thus uses three basic components in its 

bounding of the Space-Time Prism’s volume: fixed points which are of a known location and 
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time, space-time paths, and space-time prisms (Downs, Horner, and Tucker 2011). Time 

geography offers a way to understand movement through time, which is applicable to a variety of 

fields and especially relevant to understanding animal movement, which is extremely important 

to improve conservation efforts and better understand the behavior of animal populations (Zeller, 

McGarigal, and Whiteley 2012). 

1.1.1 Historical context  

Historical time-geographic studies frequently used conceptual frameworks and informal 

definitions rather than rigorous analyses or computations to measure movements (Miller 2005). 

While time geography allowed for the understanding and exploration of constraints upon human 

movement, which is limited by space and time, it lacked standard definitions making it 

unsuitable for supporting computational tools (Miller 2005). Through the 1990s, time geography 

underwent developments that improved computational approaches to understand movement, 

further boosted by the development of technology for both location data collection and for 

geographic information availability (Miller 2005). In order to create a complete standard for time 

geographic elements, such as the space-time path and space-time prism, Miller (2005) defined 

key features and formulated mathematical functions that express the forms in two- and three-

dimensional scenarios. Miller's (2005) work represents the first development of rigorous 

definitions that moved time geography from limited formulas and conceptual descriptions to a 

more widely comparable theory of analytical statements.  
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1.2 Animal Movement and Habitat Occupancy 

The present research focuses on time-geographic applications to wildlife movement, which has 

many benefits. For instance, modeling animal movement using time-geographic methods that 

can analyze datasets with long intervals of time or distance between recorded geolocations can 

reduce the need to frequently capture and handle animals to replace tracking device batteries or 

encumber an animal with a large tracking device with more battery power, improving animal 

welfare (Technitis et al. 2015). Using time-geography to quantify animal-roadway interactions 

and identify the time(s) of day that animals are likely to interact with roads can improve wildlife 

conservation and transportation safety (Loraamm, Downs, and Lamb 2019). Recent methods 

have also improved time-geographic applications by incorporating observed behaviors to move 

towards a more nuanced modeling of animal trajectories (Loraamm 2020). Continued growth in 

understanding animal movement can bolster conservation efforts and promote the success of 

animal populations in foraging, migrating, and other biological processes as they interact with 

varied environments (Zeller, McGarigal, and Whiteley 2012). 

1.2.1 Home Range Approaches 

One classic way of delineating animal habitat occupancy and movement is the use of a home 

range. A home range is the area used by an animal during normal movement activity, such as 

searching for food or caring for young, and the bounds of the home range can change due to 

movements such as migratory travel to different seasonal ranges (Burt 1943); essentially, home 

range is the area that an animal used during a specified interval of time (Börger et al. 2006). The 

concept of a home range is distinct from the idea of an animal’s territory, which represents the 
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area of the home range which is defended by the animal (Burt 1943). There have been numerous 

methods of delineating home range published over the last few decades (Laver and Kelly 2008).  

The minimum convex polygon (MCP) is a computationally simple process that has been 

widely used to estimate the range of animals based on observed locations and has been 

considered a standard home range estimation method (Burgman and Fox 2003; Börger et al. 

2006). An MCP is a polygon that encloses all locations within the smallest area possible, with no 

internal angle exceeding 180 degrees (Mohr 1947). However, the MCP method has been 

demonstrated to introduce biases resulting in inaccurate estimations of the home range (Burgman 

and Fox 2003; Downs and Horner 2009); in fact, Börger et al. (2006) and Laver and Kelly 

(2008) recommend that MCP not be used in any studies, since in addition to criticism of the 

methodology, its sensitivity to varying properties of the data, such as data outliers, spatial 

resolution, and sample size, means that it cannot be comparable among different studies.  

Kernel density estimation (KDE), initially defined by Silverman (1986), has also been 

widely used to calculate home range from spatial point data, and multiple adaptations have been 

developed to improve selection for sensitive parameters such as bandwidth, which is the radius 

of a circular area placed over each point to calculate density defined by a kernel function (Laver 

and Kelly 2008; Thakali, Kwon, and Fu 2015). For KDE, bandwidth selection significantly 

influences the resulting home range, but methods of bandwidth selection are often not reported 

and the method of setting a volume contour (the criterion for volume or density that specifies the 

bounds of the home range) is similarly impactful yet still requires development (Laver and Kelly 

2008). Although the traditional KDE method has been adapted by Fleming et al. (2015) to 
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analyze autocorrelated animal tracking data, the implementation still poses the challenges 

associated with bandwidth selection and setting a volume contour (Laver and Kelly 2008).   

Characteristic hull polygons (CHPs) can be made up of disconnected regions, exclude 

unused areas within the greater polygon, and exhibit concave sides, properties which make CHPs 

suitable for estimating complex home ranges (Downs and Horner 2009). CHPs have been 

demonstrated to reduce overestimation of home ranges when compared to MCP or KDE methods 

(Downs and Horner 2009). As Downs and Horner (2009) describe, CHPs are derived from the 

Delaunay triangulation which is constructed for a spatial point dataset. Specific triangles, 

generally a set percentage of the largest triangles, are removed from the Delaunay triangulation, 

resulting in the CHP (Downs and Horner 2009). While the size of triangles may be calculated 

using area, Downs & Horner (2009) recommend assessing triangles by their perimeters to target 

narrow, usually outlying, triangles for removal. The percentage of triangles removed is flexible, 

with removal of 5% suggested as a starting point (Downs and Horner 2009). The CHP method is 

recommended for use on home ranges that appear to be disjointed, linear, or perforated (Downs 

and Horner 2009).  

All three measures of home range, MCP, KDE, and CHP, are static or deterministic 

measurements that estimate the animal’s home range within a specific time interval (Burt 1943). 

None of the measures evaluates the area that is available to the animal at different times within 

the time interval on which the home range is based. As a result, MCP, KDE, and CHP are not 

capable of considering spatiotemporal variation of animal movements at the same scale that 

space-time prisms can be constructed.  
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1.2.2 Habitat Selection 

Animal movement is linked to numerous ecological processes, including habitat selection, home 

range and territory occupancy, spread of diseases, and interactions between predators and prey, 

all of which affect the distribution of animals and the corresponding habitats that the animals 

occupy (Bestley et al. 2013). Animal populations which exhibit a group dynamic are also 

influenced in their movements by interactions among individuals within the group itself, 

introducing an element of social impact where individuals may change their group interaction 

behavior in response to changes in risk (such as exposure to predators) or competition for 

resources (Langrock et al. 2014). At an individual level, an animal’s movement is affected by the 

energy cost of moving across a heterogeneous landscape, which can cause animals to modify 

movement patterns to save energy (Shepard et al. 2013). The cost of movement is affected by 

multiple properties of the landscape, including slope, vegetation, and substrate (Shepard et al. 

2013), and one way to explore animal movement is to assess the landscape’s properties using 

habitat selection methods.  

Habitat selection often considers a single characteristic of an area, such as type of 

vegetation, but more recently, using geocomputational technologies offers the ability for 

multivariate analysis, including additional variables such as elevation, slope, or proximity to 

features (Calenge 2007). Studies of habitat or resource selection generally seek to answer two 

questions: first, is habitat selection statistically significant, and second, which habitat(s) or 

resource(s) is preferentially selected by the studied animal (Calenge and Dufour 2006). 

Compositional analysis is a habitat selection approach that determines whether habitat use is 

random, and if use is non-random, then various habitat types may be ranked according to how 
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much each type is used (Aebischer, Robertson, and Kenward 1993). Similarly, resource selection 

functions (RSFs) can use location data to calculate the types of habitat used by an animal and 

compare that usage to the habitat that is available, theoretically, to the animal (Calenge and 

Dufour 2006; Shafer et al. 2012). Although a population’s true preferences under ideal 

conditions may differ from the observed habitat selections which may be impacted by predation 

risk, lack of ideal resources, and other factors, because habitat selection methods often use the 

study population’s observed use of the environment as a metric (Aebischer, Robertson, and 

Kenward 1993; Calenge and Dufour 2006; Shafer et al. 2012), the results are still representative 

of the population’s observed habitat selection and avoidance preferences. RSFs are widely used 

in determining habitats which are preferentially selected and are considered to be strong 

indicators both theoretically and empirically (Shafer et al. 2012). 

When studying a population of animals, there are three types of study design which 

calculate usage and availability of habitat across different levels (Thomas and Taylor 1990). 

Population-level data where individuals are not distinguished may be analyzed in a Type I study, 

where the usage and availability of habitat (or resources) are both measured for the population 

(Thomas and Taylor 1990). The usage in a Type I study often comes from assessing the number 

of animals (or indications of the animal such as tracks) in different habitat types (Thomas and 

Taylor 1990). In a Type II study, usage of habitat is based on individuals and compared to 

availability of the entire population (Thomas and Taylor 1990). The Type III design calculates 

usage and availability on an individual level (Thomas and Taylor 1990). All three study designs 

can be implemented with habitat selection analysis (Calenge and Dufour 2006). 
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Most habitat selection methods use the availability of habitat and the usage of habitat as 

inputs for analysis in determining patterns in habitat selection (Calenge and Dufour 2006). 

Manly’s selection ratio uses the proportion of available habitat types and the proportion of used 

habitat types to calculate resource selection and identify which (if any) habitat types are strongly 

selected (Manly et al. 2002; Calenge and Dufour 2006). Here, “strongly selected” corresponds to 

observed selections which exceed those expected under theoretically random conditions. The 

ratio, when calculated for individual animals and habitat types, provides a good estimate of 

which habitat types are selected or avoided, given the observed locations of the studied animal 

population (Calenge and Dufour 2006; Shafer et al. 2012). Using the ratio with averaged 

selection ratios for each habitat type assumes that all individuals in the studied animal population 

make the same selections (Calenge and Dufour 2006). Calenge and Dufour (2006) also warn the 

spatial configuration of the study area can affect habitat selection calculations, particularly when 

the study area includes patches of different habitat types. Manly’s use/availability ratio can be 

implemented using the wi function in the adehabitatHS package from (Manly et al. 2002; 

Calenge 2006). The wi function for design I analysis requires data that describes the used habitat 

and the available habitat as named elements that represent a count of the used units (such as 

observed locations in each habitat type) and the available units (a count of the total available 

units in that habitat type) (Calenge 2006).  

1.2.3 Habitat Selection Analysis and Cost Surfaces 

Previous habitat studies have used habitat selection and avoidance analysis to analyze 

foraging behavior (Hebblewhite, Merrill, and McDermid 2008) and create cost surfaces for a 

study population (O’Brien et al. 2006). A cost surface can be defined as a raster whose values 
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represent a cost (or resistance) to movement, or a measure of suitability (conductance of 

movement) associated with a variable (Ortiz‐Rodríguez et al. 2019; Murekatete and Shirabe 

2020). The challenge faced when creating a cost surface is setting the cost values (i.e., 

quantifying the resistance for each cell) (Zeller, McGarigal, and Whiteley 2012); while an ideal 

process would use empirical data, expert opinion is often used as a substitute due to lack of data 

(Rayfield, Fortin, and Fall 2010; Spear et al. 2010; Stevenson-Holt et al. 2014). Furthermore, the 

reasons for assigning specific weights to the values on the cost surface are unclear, and even 

arbitrary, in many studies (Spear et al. 2010).  

To avoid assigning arbitrary resistance values in studies involving habitat selection, RSFs 

can be used to process the environmental data and resulting selectivity measures can be 

translated through an inverse function to create resistance values (Shafer et al. 2012). Although 

multiple ways to create resistance values exist, there is no standard accepted technique when 

transforming data into resistance surfaces (Spear et al. 2010). Zeller et al. (2012) provide a more 

extensive review of common methods used to generate cost surfaces to estimate wildlife 

movements. Combining habitat selection analysis with a cost surface that can represent selected 

and avoided habitat types is an important step in summarizing environmental context for an area, 

but such a cost surface is a static representation of where different habitats are located. To 

incorporate dynamic influences found in the environmental context for movement analysis, 

geocomputational methods can be applied to understand an animal’s interaction with 

spatiotemporally varying factors, as demonstrated in Loraamm, Anderson, and Burch (2021). To 

incorporate cost surfaces as a summarizing metric of environmental context, further development 

in movement analysis can add to an understanding of an animal’s movement behavior. 
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1.3 Geocomputation and Movement Analysis 

1.3.1 Recent developments in time geography 

Analyzing movement can impact numerous fields, including transportation, environmental 

research, and movement ecology (Dodge et al. 2016). Movement trajectory data have become 

more accessible with higher quality observations due to technological advancements in global 

positioning systems (GPS), satellite tracking, spatial and temporal resolution and accuracy, and 

tools to record an animal’s behavior and physiology, outpacing the development of new methods 

to explore them (Dodge et al. 2016). Continued developments of computational time geography 

have led to research in a wide variety of topics, such as long-distance movement (Kuijpers and 

Technitis 2020), transportation (Kuijpers et al. 2010; Chen et al. 2013; Kuijpers, Miller, and 

Othman 2017), human social interaction (Farber et al. 2013), and pedestrian movement 

(McArdle et al. 2014). Methods for exploring animal movement and home range have also 

grown in recent years (Cagnacci et al. 2010; Downs, Horner, et al. 2014; Long and Nelson 2015; 

Technitis et al. 2015; Loraamm 2020). Methodologically, time-geographic methods, especially 

regarding construction of space-time prisms, have been modified to consider space-time anchor 

uncertainty (Kuijpers et al. 2010), kinematic constraints of acceleration and deceleration (Long, 

Nelson, and Nathoo 2014), and 3-dimensional space use (Demšar and Long 2019). In particular, 

developments have been made to incorporate environmental knowledge with time-geographic 

methods  (Long 2018; R. W. Loraamm et al. 2020). Recently, Miller et al. (2019) proposed the 

convergence of time-geographic approaches to both human and animal movement to merge 

common methods for a more complete understanding of movement. Analysis of movement by 

animals and movement by humans have generally remained separate, as movement researchers 
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generally study animal behavior, including assessing migration, habitat selection, and response to 

change, and human mobility researchers also study a wide range of movements, such as 

transportation, accessibility, and movement through built environments (Miller et al. 2019).  

Miller et al. (2019) aim to combine applicable methods, and although they also present 

challenges that may arise, creating an integrated approach between animal movement and human 

mobility may lead to further growth in developing research.  

1.3.2 Space-time Prism 

The canonical space-time path plots straight line connections along consecutive known points of 

tracking data, forming a sequential trajectory based on recorded time (Downs, Horner, et al. 

2014; McArdle et al. 2014). This straightforward linear interpolation produces an approximate 

trajectory of an agent’s probable movement, essentially relating the shortest possible path 

through all tracked point locations (Long 2016).  Based on the space-time path, the space-time 

prism (STP) is a volume bounding all the locations in space and time where the agent could have 

possibly been within the specified time and distance interval reflected by the location captures 

(Miller 2005). The volume is constructed in consideration of the agent’s maximum velocity and 

the location of fixed control points (Miller 1991; Winter and Yin 2010; Downs, Horner, and 

Tucker 2011; Technitis et al. 2015; Yin et al. 2018). Thus, the classical STP’s shape is 

constrained by the location of the fixed points, the time interval elapsed between them, and the 

maximum velocity of the agent per an evaluation of these values as inputs to a relatively simple 

set of time-distance budget inequalities over homogeneous space (Downs, Horner, and Tucker 

2011). The sequential fixed points, forming a “beginning” and “ending” point, introduce a 

general overall direction that the path may be expected to follow (Winter and Yin 2010). While 
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the classical STP bounds all possible locations the agent may have visited, it does not show 

whether the agent is more likely to traverse certain portions of the prism than others (Pred 1977; 

Miller 2005). 

A more recent derivation of the STP is the PSTP, or the probabilistic space-time prism 

(Winter and Yin 2010). A key attribute of the probabilistic STP (PSTP) is the method assumes 

the likelihood of an agent being present at a particular location is not equally distributed or 

homogeneous across space and time, but rather that the likelihood of presence changes in 

response to the behavior and goals (Winter and Yin 2011). Unlike STPs, which do not show 

where an agent is more likely to travel, the PSTP method weights probable locations based on 

each cell’s distance from the space-time path (Downs, Horner, et al. 2014; Loraamm, Downs, 

and Lamb 2019).  The method assumes that an agent will move along the straight-line space-time 

path (shortest distance) to conserve energy, an assumption consistent with classical ecological 

and economic notions about actor behaviors (Zipf 1949; Loraamm, Downs, and Lamb 2019).  

While PSTP is a useful method for looking at the movement of objects in space, a 

methodological assumption inherent to PSTP assumes the agent’s environment is homogeneous 

with respect to the difficulty of traversal in deviating from the space-time path (Downs, Horner, 

et al. 2014). In PSTP, movement with increasing deviation from the space time path is 

considered increasingly difficult for the mover, and this relationship is linear in nature. 

Additionally under this method, the space-time path between known space-time anchors xi and xj 

will always be a straight line (Downs, Horner, et al. 2014). PSTP has been applied in studies 

examining animal-road interactions, animal-animal interactions, and animal habitat usage 

(Downs, Horner, et al. 2014; Downs, Lamb, et al. 2014; Loraamm and Downs 2016; R. 
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Loraamm et al. 2020; R. W. Loraamm et al. 2020); in cases where these assumptions are 

acceptable weighed versus the benefits PSTP offers in terms of ease of computation and 

interpretability, the PSTP method remains a useful modeling approach. However, because PSTP 

treats distance across a theoretically homogenous environment from the space-time path as the 

only factor in measuring difficulty of movement, complex and continuous variation present in 

real environments is essentially overlooked (Long 2018). Factors such as terrain, land-use 

change, or behavioral responses vary over space and time and may influence an agent’s 

movement (Spear et al. 2010). For movement analysis scenarios, PSTP will not be able to 

incorporate environmental context and may even misrepresent an agent’s probable movements 

particularly where the agent’s mobility is influenced by its environment. 

1.3.3 Incorporating Environmental Data and Movement Analysis 

Long (2018) presented the first venture in considering environmental context with time-

geographic movement analysis of animal movement with the field-based time geography 

method, which analyzes movement based on the agent’s possible interaction with a cost or 

resistance surface representing conductance and time cost; the method defines costs in units of 

time, not distance, and assumes that the agent will move along the shortest-time path between 

anchor points. To demonstrate the method in a case study focused on a caribou’s movements, 

Long (2018) created a conductance surface derived from slope and landcover rasters. The slope 

was modified to represent the caribou’s possible speed of movement across varying slopes, and 

the landcover categories in the study area were designated as barriers or as areas of easier 

movement with a scale factor ranging from 0 to 1, respectively (Long 2018). The final 

conductance surface represents the velocity a caribou can achieve when crossing each cell based 
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on slope, scaled based on the severity or ease of movement afforded by the landcover (Long 

2018).  

While Long (2018) incorporated some degree of environmental context into the field-

based time geography probabilistic space-time prism, only slope and landcover were considered 

in the construction of the conductance surface. When selecting environmental variables to create 

resistance surfaces, the analysis should only include factors that influence the agent’s movement 

behavior (Zeller, McGarigal, and Whiteley 2012). The use of slope and landcover only in Long 

(2018) may not be sufficient to build context that influences movement; inclusion of commonly 

used variables such as roads, elevation, and human development, activity, and population may 

further inform the cost surface for a more realistic movement analysis (Zeller, McGarigal, and 

Whiteley 2012). 

Long's (2018) measurement of probabilities as deviations in time from the shortest-time 

path mean that the conductance surface represents achievable velocity of movement across 

varied environments. However, basing an animal’s probable movement on the areas of highest 

possible speed may not be the best estimate of movement because an animal’s actual speed of 

movement may change in response to different environments; for example, Vásquez, 

Ebensperger, and Bozinovic (2002) found that a diurnal rodent moved with higher speeds in 

open areas of higher predation risk and moved with comparatively lower speeds in safer, shrub-

vegetated areas. Moving at faster speeds may also be associated with a higher cost of energy, and 

the rodent’s selection of open ground and shrub areas was dependent on the presence of 

predators (Vásquez, Ebensperger, and Bozinovic 2002). Because it bases the animal’s likely 

choices on speed only, a conductance surface based only on the animal’s achievable velocity 
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across varied slopes and landcover types (as constructed in Long (2018)), not based on the 

animal’s observed velocity and habitat selection, may not be representative of the animal’s 

probable movements. 

 Additionally, while less commonly observed, it is possible for an animal population to 

select lower-quality habitats (known as an ecological trap) even if higher-quality habitats are 

available to the population (Battin 2004). Using a habitat selection analysis approach with 

location data can identify preferred and avoided habitat types for a specific population (Manly et 

al. 2002; Calenge and Dufour 2006; Shafer et al. 2012). A surface based on habitat selection 

analysis would avoid the assumption that areas of highest achievable traversal speeds are the 

most likely areas for an animal to be located, while incorporating environmental context (e.g. 

elevation, slope, and landcover); a habitat-selection-based surface would not be compatible with 

an analysis based on time cost because usage and avoidance of certain environments are not 

necessarily related to higher and lower speeds of movement, respectively (Vásquez, 

Ebensperger, and Bozinovic 2002). Long's (2018) field-based time geography may be suitable 

for some applications, but a resistance surface that incorporates environmental context beyond 

slope and landcover and represents cost as a measure of habitat usage or avoidance may better 

represent animal populations that demonstrate preferences for certain types of environments.  

1.4 Summary and structure of thesis 

The intention of this research is to further understand how a cost-distance prism can be used 

towards understanding animal movement patterns, by incorporating environmental factors into 

the formulation of PSTPs based on the cost of moving through varied environmental context. In 

Chapter Two, I apply this new approach, known as the “Cost Distance-Based Probabilistic 
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Space-Time Prism” or CDBPSTP, with the intention of publishing Chapter Two in a peer-review 

journal as a paper co-authored by R. Loraamm. Chapter Three of this document includes an 

extended discussion that identifies future research avenues that can utilize this research to 

improve understanding of animal movement. Overall, the goal of this research is to add to the 

growing body of literature in time-geography and animal movement, specifically by evaluating 

animal movements in consideration of environmental context derived from habitat selection 

analysis that bases probable movements on cost distance rather than time cost.  
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Chapter 2: Identifying Habitat Use of Red Deer in Banff National 

Park, Alberta, Canada using a Cost-Distance Time-Geographic 

Approach 

2.1 Abstract 

The expressed movements of animals are realizations of complex spatiotemporal processes. 

Central to the action of these processes are the varied environmental contexts in which animals 

move, which fundamentally modulate the trajectories of individuals moving through space at 

fine spatial and temporal scales. As an emerging perspective in the time-geographic study of 

movement, direct examination of the influence that varying context may have on observed 

movements presents an approach yielding actionable information to wildlife management, 

planning and conservation. In support of these pursuits, this research develops the first known 

practical application of a new cost-distance-based, probabilistic voxel space-time prism 

(CDBPSTP) in efforts to more realistically characterize the unobserved habitat occupancies of 

animals occurring between the instantaneous positions provided by location-aware technologies. 

The CDBPSTP is evaluated on trajectory data collected for a group of Red Deer (Cervus 

elaphus) tracked near Banff National Park, Alberta, Canada. As a demonstration of the added 

value offered in examining the influence of context on movement, CDBPSTP habitat occupancy 

results are compared to the earlier PSTP method in context with empirical and theoretical 

understandings of Red Deer habitat preference and space-use behaviors. This comparison reveals 

that with CDBPSTP, variation present in the mover’s environment is explicitly considered as an 

influence on the mover’s probable path and occupancies between observations of its location. 
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With increasing availability of high-resolution geolocational data and associated environmental 

data, this study highlights the potential for CDBPSTP to be leveraged as a broadly applicable 

tool in animal movement analysis. 

Keywords: animal movement, habitat utilization, cost-distance 

2.2 Introduction 

The degree of realism by which we may characterize animal space use is foundationally 

important to the work of conservationists, biologists, and spatial ecologists interested in 

understanding pattern and causality in animal movement (Loraamm 2020; R. W. Loraamm et al. 

2020; Loraamm, Anderson, and Burch 2021). From early work delineating the space of an 

animal’s daily activity in a deterministic manner based on known animal locations (Burt 1943; 

Worton 1987, 1995), the general practice of estimating animal habitat utilization distributions 

from geolocation data has developed significantly and remains a topic of growth and debate in 

the literature. With the relatively recent onset of widely available, performant location-aware 

technologies, the availability and volume of tracking datasets, that is, ordered sets of 

instantaneous geolocations also termed trajectories, have objectively exploded (Cagnacci et al. 

2010; Long and Nelson 2015; Dodge et al. 2016).  

With this increased availability of movement trajectory data, a wave of new 

methodologies aimed at extracting meaning for a range of scientific disciplines including spatial 

ecology and those adjacent have arrived. A great deal of these methods are rooted in the early 

ideas of Time Geography, a theoretical framework first introduced by Hägerstrand (1970). From 

the time-geographic perspective, known parameters about the movement of an actor (position, 
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timing, velocity) can be used to constrain the possible unobserved set of locations the actor may 

have occupied between known geolocations (Miller 2005, 2017). As a constraints-based 

perspective on movement, the theoretical tools of time geography include: instantaneous 

geolocations labeled with a timestamp, termed space-time anchors, straight-line distances 

between anchors termed the space-time path, and the bounding set of locations accessible to the 

moving actor or object, termed the space-time prism (Winter and Yin 2011; Miller 2017; 

Loraamm, Downs, and Lamb 2019). These objects fundamental to the time geography 

framework are shown in Figure 1, showing here space-time anchors labeled ti and tj. The 

classical space-time prism is constructed by evaluating a binary accessibility condition (with 

results such that locations are either accessible, or not accessible to the mover) for all locations in 

the space and time elapsed between ti and tj, as a function of the mover’s maximum estimated 

velocity and the distance each evaluated location deviates from the space-time path.  

 

Figure 1. The Space-Time prism (R. Loraamm et al. 2020) 
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The space-time prism itself has undergone continuing, active development in the literature, with 

improvements and derivative methods focused on elevating the classical space-time prism from a 

simple, binary bounding volume for movement possibility towards probabilistic realizations 

(Winter and Yin 2011; Kranstauber et al. 2012; Downs, Horner, et al. 2014; Song and Miller 

2014), formulations examining the interactivity among prism volumes (Downs, Lamb, et al. 

2014), prisms which account for uncertainty in anchor locations (Kuijpers et al. 2010; Kuijpers 

and Othman 2017), consideration of kinematics and the physical limits of acceleration and 

deceleration on the mover (Long, Nelson, and Nathoo 2014; Long 2016), the introduction of the 

notion of a space-time prism in 4 dimensions (Demšar and Long 2019) and examinations in the 

influence of static spatial context on prism volumes (Miller and Bridwell 2009; Long 2018). 

Further still, prism research extends into examination of the influence that dynamic or temporally 

modulated factors in the spatial context have on movement (Loraamm, Anderson, and Burch 

2021) and the bounding of prism volumes based on the simulated action of behaviorally-

informed agent-based models (Loraamm 2020). Advancements in these methods, for example, 

are demonstrated in application to issues of conservation and wildlife management enabling 

better spatiotemporal understandings of animal home range (Long and Nelson 2015), long-

distance animal movements (Kuijpers and Technitis 2020), animal-to-animal interactions 

(Downs, Lamb, et al. 2014), animal-to-roadway interactions (Loraamm and Downs 2016; 

Loraamm, Downs, and Lamb 2019; Loraamm, Anderson, and Burch 2021), and population-level 

examination of animal habitat use (R. W. Loraamm et al. 2020). Clearly, incorporating 

spatiotemporal dynamics into the study of animal movement has proven productive for the 

disciplines engaged with these methods.  
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Following this pattern of elevating the degree of realism by which the interior volumes of 

space-time prisms are modeled, the present research seeks to: (1) introduce the method and 

provide the first known practical application of a new cost-distance-based, probabilistic voxel 

space-time prism (CDBPSTP) in efforts to more realistically characterize the unobserved habitat 

occupancies of animals occurring between the instantaneous positions provided by location-

aware technologies, (2) compare the results from the demonstration of the CDBPSTP, itself an 

extension to the Probabilistic Voxel-Based Space-Time Prism, or PSTP (Downs, Horner, et al. 

2014), against equivalent results generated by PSTP as a means to illustrate the CDBPSTP 

method and separate it from similar approaches including PSTP and the field-based method 

presented in Long (2018), and (3) discuss the probable impacts and known limitations the 

method may have as a data analysis tool, following its release in forthcoming literature. The 

present research addresses these objectives by analysing trajectory data collected for Red Deer 

(Cervus elaphus) (Hebblewhite and Merrill 2016) and modelling the resistance presented to Red 

Deer movers in context as a cost surface (in this study, termed a preference surface) derived 

from a classical habitat selection measure (Manly et al. 2002; Calenge 2006) and a priori 

knowledge on Red Deer habitat preferences. This preference surface is evaluated from variables 

capturing environmental factors such as terrain and landcover type, along with known animal 

geolocations as a measure of observed selection preference.   

2.3 Background 

2.3.1 Voxels and Space-Time Prisms 

The canonical space-time prism is a well-tested conceptual foundation for a range of studies 

interested in analyzing movement uncertainty between space-time anchors. In its original 
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formulation, the space-time prism returns only a binary bounding of this uncertainty in terms of 

space and time (Miller 2017; R. W. Loraamm et al. 2020). For early formulations of the space-

time prism, locations between space-time anchors are evaluated to establish whether they were 

accessible or inaccessible to the mover during the time and space elapsed between the observed 

space-time anchor locations. For each evaluated location, this determination of accessibility can 

be constructed as a piecewise function with inputs including the expected maximum velocity of 

the mover, the Euclidean distance the evaluated location deviates from the space-time path, and 

time-budgeting parameters derived from the spatiotemporal locations of the space-time anchor 

pair under analysis (Equation 1). While formulations for evaluating the space-time prism in 

continuous space and time exist (Winter and Yin 2011), in practice a discretization of time and 

space is necessary for simplification and for meeting practical computational concerns (Downs, 

Horner, et al. 2014; R. W. Loraamm et al. 2020). One widely employed, atomic-level 

discretization for this purpose is the voxel, a regularly shaped volume of space (X/Y) and time 

(Z-axis) for which calculations are evaluated from the perspective of its 3D centroid, and then 

generalized for the entire volume (Huisman and Forer 1998; Downs, Horner, et al. 2014; R. 

Loraamm et al. 2020). Often, voxel data are modeled in GIScience as regular multidimensional 

arrays, otherwise known as tensors, stored in a raster data structure or equivalent (R. Loraamm et 

al. 2020). 
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𝑆𝑇𝑃𝑥𝑎
= {

1,
0,

 𝒊𝒇 ‖𝑥𝑎 − 𝑥𝑖‖ ≤ (𝑡𝑎 − 𝑡𝑖)𝑠𝑖𝑗 ∧ ‖𝑥𝑗 − 𝑥𝑎‖ ≤ (𝑡𝑗 − 𝑡𝑎)𝑠𝑖𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (1) 

 

Where: 
‖𝑥𝑥 − 𝑥𝑥‖ is the Euclidean distance from current voxel centroid location 𝑥𝑎 to either space-time 

anchor location 𝑥𝑖 or 𝑥𝑗, 𝑡𝑎 is the voxel Z-axis midpoint associated with 𝑥𝑎, and (𝑡𝑎 − 𝑡𝑖)𝑠𝑖𝑗, 

(𝑡𝑎 − 𝑡𝑗)𝑠𝑖𝑗 give the maximum distances the object could have successfully traversed between 

the anchors, given the time elapsed and remaining between 𝑥𝑖 and 𝑥𝑗, respectively, considering 

the object’s expected maximum speed, 𝑠𝑖𝑗. 

While early space-time prisms have served in a range of applied studies, the prevailing 

understanding holds that interior volumes of space-time prisms are not homogeneous, as 

movement opportunity is not equally distributed over space and time for the mover (Winter and 

Yin 2011; Downs, Horner, et al. 2014; Dodge et al. 2016; Loraamm, Anderson, and Burch 

2021). As an early improvement on the binary bounding action of the classical space-time prism, 

Downs et al. (2014a) introduced the Voxel-Based Probabilistic Space-Time Prism, where a 

mover’s chance of having occupied any given voxel location over the time and space elapsed 

between space-time anchors is assigned as a function of that voxel’s deviation from the space-

time path (Equation 2). This relationship of distance-decay in the probability that a mover will 

deviate from the shortest path between anchors is reminiscent of theoretical findings on the 

principle of least effort, applicable in both animal and human mover contexts (Zipf 1949). 

Applying the PSTP method, the action of Equation 1 first isolates the set of accessible voxels. 

Next, Equation 2 assigns occupancy probabilities for voxels, leveraging an inverse-distance 

weighting function for all voxels present in a particular space-time disk, that is, the set of 

accessible voxels sharing a common z-axis midpoint location, or representing the same unit of 

duration. Voxel duration (alternatively, voxel Z-axis height) is a user-specified parameter in 

PSTP; the resulting prism volume will include the number of space-time disks necessary to cover 
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the time elapsed between the space-time anchors analyzed. The sum of probabilities in any given 

PSTP space-time disk will equal 1.0. 

𝑃(𝑆𝑇𝑃𝑥𝑎
) =

1

‖𝑥𝑠−𝑥𝑎‖

∑
1

‖𝑥𝑠−𝑥𝑎‖𝑥𝑎∈𝑘

         (2) 

Where: 
‖𝑥𝑥 − 𝑥𝑥‖ is the Euclidean distance between the current voxel centroid location 𝑥𝑎 and the 

intersection location 𝑥𝑠 of its host space-time disk 𝑘, and the space-time path. 

 

Often, a need presents for the aggregation of probabilities among disks from a given 

voxel space-time prism or among disks representing equivalent durations in time between two or 

more space-time prisms. For this purpose, prior studies have applied the probabilistic OR 

operation, in this context referred to as the Comprehensive Probability Surface method, dealing 

with events assumed to be realized from independent spatial processes (Downs, Horner, et al. 

2014; Loraamm and Downs 2016). When aggregating, CPS demands that input space-time disks 

have the same temporal resolution. For inputs differing in temporal resolution, aggregation to the 

lowest common multiple among the inputs is necessary. Equation 3 provides the CPS operation 

on two space-time disks, A and B. 

 

𝑃(𝐴) ∪ 𝑃(𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴)𝑃(𝐵)       (3) 

 

2.3.2 A Cost-Distance Based, Probabilistic Voxel Space-Time Prism 

While prior work has yielded probabilistic realizations of prism interior volumes 

following the theoretical principle of least effort, we note in the present research that while a 

least effort path may reflect the behavioral or biological preferences of the mover, this least 

effort path is most likely not linear, nor does it traverse a homogeneous context in terms of 
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resistance or conductivity to movement posed by the environment (Long 2018; Loraamm 2020). 

As an exploration in extending the ideas of probabilistic voxel-based space-time prisms towards 

more realistic constructions of the interior volume of space-time prisms, we introduce here the 

concept of a Cost-Distance-Based, Probabilistic Voxel Space-Time Prism (CDBPSTP), along 

with the ideas of cost distance in traversal of the environment and a requisite extension to the 

Time Geography theory, notably a least-cost space-time path. 

First, a least-cost, space-time path is determined by optimizing for the path of least 

cumulative cost along a cost surface, where resistance values held in the cost surface may 

indicate the cost of traversing or willingness of the mover to traverse various types of 

environments (Zeller, McGarigal, and Whiteley 2012). For relevant calculations in constructing 

PSTPs that involve deviation from the space-time path, construction of the CDBPSTP performs 

these measures in terms of deviation from a least-cost space-time path (Equation 5). Further, the 

step bounding accessible voxels in a CDBPSTP also relies on measures based on cost distances 

(Equation 5). Together, these extensions yield a prism volume informed in both shape and 

interior structure by the dynamics of cost-distance.  

A Cost Surface in the context of CDBPSTP methodology is a type of map capturing a 

realistic measure of the resistance or conductance the environment poses to movement for a 

particular type or species of mover. Cost surfaces may be derived by a range of applicable 

methods; essentially, the cost surface must capture and represent the relative difficulty or 

assistance any number of modeled characteristics about the environment may pose to the mover 

of interest. For the present research, we employ the first-known application of habitat selection 

methodology in space-time prism construction by using habitat selection analysis to inform the 



26 

 

multivariate cost surface (as a preference surface) for our demonstration species of interest, the 

Red Deer (Cervus elaphus). This approach is discussed in detail in the methods sections of this 

document. 

 𝐶𝐷𝐵𝑆𝑇𝑃𝑥𝑎
= {

1,
0,

 𝒊𝒇 〈𝑥𝑎 − 𝑥𝑖〉 ≤ (𝑡𝑎 − 𝑡𝑖)𝑠𝑖𝑗 ∧ 〈𝑥𝑗 − 𝑥𝑎〉 ≤ (𝑡𝑗 − 𝑡𝑎)𝑠𝑖𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 

 

Where: 
〈𝑥𝑥 − 𝑥𝑥〉 is the Cost distance from current voxel centroid location 𝑥𝑎 to either space-time 

anchor location 𝑥𝑖 or 𝑥𝑗, 𝑡𝑎 is the voxel Z-axis midpoint associated with 𝑥𝑎, and (𝑡𝑎 − 𝑡𝑖)𝑠𝑖𝑗, 

(𝑡𝑎 − 𝑡𝑗)𝑠𝑖𝑗 give the maximum distances the object could have successfully traversed between 

the anchors, given the time elapsed and remaining between 𝑥𝑖 and 𝑥𝑗, respectively, considering 

the object’s expected maximum speed, 𝑠𝑖𝑗. 

𝑃(𝐶𝐷𝐵𝑆𝑇𝑃𝑥𝑎
) =

1

〈𝑥𝑠−𝑥𝑎〉

∑
1

〈𝑥𝑠−𝑥𝑎〉𝑥𝑎∈𝑘

         (5) 

Where: 
〈𝑥𝑥 − 𝑥𝑥〉 is the Cost distance of traversal between the current voxel centroid location 𝑥𝑎 and the 

intersection location 𝑥𝑠 of its host space-time disk 𝑘, and the least cost space-time path. 

 

2.3.2 The Red Deer and the Ya Ha Tinda Deer Population 

Red deer (Cervus elaphus), shown here in Figure 2, are foraging ungulates exhibiting residential 

and migratory populations in the wild (Hebblewhite, Merrill, and McDermid 2008). The Red 

Deer (alternatively known by the common name “Elk” ) population examined for the present 

study has been examined extensively in the literature (Sachro, Strong, and Gates 2005; 

Hebblewhite et al. 2006; Hebblewhite, Merrill, and McDermid 2008). While red deer have been 

researched in multiple montane ecosystems (Hebblewhite and Merrill 2009; Ciuti et al. 2012; 

Meisingset et al. 2013; Middleton et al. 2013; Prokopenko, Boyce, and Avgar 2017), this 

research focuses on the herd located in and around Banff National Park (BNP) and the nearby Ya 

Ha Tinda (YHT) Ranch in Alberta, Canada, found along the eastern faces of the front and main 
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ranges of the Canadian Rocky Mountains (Hebblewhite et al. 2006). During the time that the 

deer in this study were observed, recent wolf protection measures in BNP had resulted in greater 

wolf survival in BNP; the YHT herd engages in trade-offs between forage quality and level of 

exposure to risk of wolf predation, and the YHT Ranch experiences human activity in summer 

that may induce the wolf population to avoid the area, lowering risk for deer located on the ranch 

(Hebblewhite et al. 2006; Hebblewhite and Merrill 2009). The YHT population in particular is 

partially migratory and partially residential in terms of its seasonal movement behaviors. During 

the spring migration (May or June), migratory individuals move west from the YHT Ranch area, 

located east of BNP, into BNP and spend the summer season there. This migratory herd returns 

to the YHT grasslands during the autumn migration (late September to December) (Hebblewhite 

et al. 2006). Resident deer remain on the YHT Ranch year-round, and up to 90% of the herd are 

found on the YHT Ranch in winter as migratory members of the herd tend to move toward the 

YHT area during the autumn migration (Hebblewhite et al. 2006). 

 Hebblewhite et al. (2006) produced migration data for radiocollared deer from the YHT 

herd from 1977 to 1980 and from 2002 to 2004 by calculating the midpoint date between two 

consecutive location points that are each located in a different migratory range. The midpoint 

date for spring migration (when migratory individuals move from the YHT Ranch to BNP for the 

summer season) is shown to be June 9 and June 1 with standard deviations of 14.4 and 13.2 for 

2002 and 2003, respectively. The midpoint date for autumn migration (when migratory 

individuals move from BNP to the YHT winter range) is October 30 (with a standard deviation 

of 27.2) and October 2 (with a standard deviation of 27.1) for 2002 and 2003, respectively. 

Compared to the earlier years of the study, fewer deer individuals migrate into BNP; roughly 
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25% of the proportion of the herd that historically migrated in the 1970s continued to do so in 

2002 and 2003, and those deer completed the autumn migration nearly one month earlier than 

was typical in the 1970s. Correspondingly, the number of individuals remaining on the YHT 

range through the summer increased over 10 times from 1977 to 2002-2004, an unexpectedly 

large increase even when factoring in the simultaneous population growth (Hebblewhite et al. 

2006).  

 

Figure 2. A Red Deer (Cervus elaphus) hind. Photo credit Charles J. Sharp (2016). 

 

2.4 Methods 

2.4.1 Red Deer Trajectories and Study Area Context   

Collar-based tracking data for Red Deer used in this research were captured and later released in 

the public domain by Hebblewhite, Merrill, and McDermid (2008). This large set of trajectory 

data generated by their work was obtained through Movebank.org, an online platform 

cataloguing animal tracking data (Hebblewhite and Merrill 2016). Hebblewhite et al. collected 

these trajectories using GPS and VHF telemetry during 2002, 2003, and 2004 in support of 
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research examining the relationship between deer foraging preferences, environmental factors, 

and migratory behaviours among Red Deer in the Canadian Rocky Mountains. In total, the 

Hebblewhite study involved 119 deer individuals, all of which were female, with 59% of the 

studied group behaving in a migratory pattern and the remaining 41% being generally residential 

in their movements. These deer were monitored and located on a weekly basis, and 

corresponding GPS data was logged on a 2-hour schedule (Hebblewhite, Merrill, and McDermid 

2008). 

Defining the bounds of the study area for this research confines interest to areas where 

the collection interval for data is found to be most consistent, resulting in a consequent filtration 

of data to winter-only movement patterns centered on the extent of the YHT Ranch (Figure 3). 

Study area delineation represents an important methodological step in the approach employed for 

this research, as the extent of environmental context underlying selected trajectories establishes 

the distribution of environmental characteristics and landcover types available to studied deer. 

For cost surface construction, hereafter referred to in this study as a preference surface, 

simultaneous analysis of both migratory and residential segments of the tracked population 

would unfairly represent the distribution of environmental conditions and habitat available to 

migratory individuals who typically spend a large amount of time (up to approximately 7 

months) within the winter range versus shorter time intervals (approximately 2 to 6 days) 

traversing longer distances during migration periods. Therefore, the present research has filtered 

the available trajectories for only those which occur within the YHT grassland boundary; 

additionally, six deer were shown to be logged relatively consistently for this winter-only period 

from November to May during 2002 to 2004 with an extent of traversal largely intersecting the 
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YHT Ranch boundary. Deer in this subset represent members of the migratory population 

performing their routine winter visitation of the YHT Ranch area (Hebblewhite, Merrill, and 

McDermid 2008). Here, limitations related to the degree to which the deer’s usage and 

availability of environmental characteristics are represented are relaxed, by selecting migratory 

deer found in a common environmental context (the YHT Ranch area) and timeframe (the winter 

season, during which movements are observed to be more localized compared to longer-distance 

migratory movement). Descriptive statistics for the six deer trajectories selected and associated 

winter timeframes are shown in Table 1. 

Table 1. Summary of movement trajectory data for six deer. Two date ranges are necessary 

due to the split in winter months from the beginning to the end of the year.  

Deer 

ID 

Number of 

points 

Average time 

interval (s) 

Average 

distance 

(m) 

Average 

velocity 

(m/s) 

Date range 1 

(mm/dd/yyyy) 

Date range 2 

(mm/dd/yyyy) 

GR193 358 18422.514 872.322 0.046 04/05/2002-

05/22/2002 

11/01/2002-

11/23/2002 

YL25 3635 5594.509 250.569 0.050 03/03/2003-

05/31/2003 

11/01/2003-

03/26/2004 

YL29 2522 5522.593 263.901 0.057 03/03/2003-

05/29/2003 

11/01/2003-

01/14/2004 

YL5 1595 7249.618 307.282 0.060 2/14/2003-

05/29/2003 

11/09/2003-

12/11/2003 

YL73 2310 2816.078 220.852 0.082 2/20/2004-

5/03/2004 

10/23/2004-

11/2/2004 

YL78 1024 7354.746 465.680 0.063 2/19/2004-

5/16/2004 

n/a 

 

Practical study area delineation follows from the selection of trajectories with the application of 

the Characteristic Hull Polygon (CHP) approach (Downs and Horner 2009) to the complete set 

of selected geolocations. The CHP represents a deterministic home range delineation method 

shown to reduce or avoid areal overestimation issues inherent to the often employed minimum 
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convex polygon (MCP) (Mohr 1947) and kernel-density based methods. Once the CHP boundary 

was obtained for the trajectories of interest, a buffer having a width of 3178.046473 meters was 

added to accommodate unobserved deer movements beyond the tracked points. This distance is 

the longest distance between two points where the time elapsed between the two points is equal 

to or less than the mean time elapsed for the entire dataset of six individuals’ trajectories. 

Selecting the longest distance between two points based on the mean time elapsed reduces 

variation caused by varying timespans between location fixes. The buffered CHP boundary 

represents the final footprint enclosing the available environmental context used for this study. 

 

Figure 3. Study area with overlaid Red Deer geolocations analyzed.  

   

2.4.2 Preference Surface Development Process 

Having obtained a boundary which is thought to be reasonably inclusive of unobserved 

movements, we proceed to evaluate the relative abundances of particular types or factors of 

environmental context which underlie deer locations as a proxy for animals’ habitat selections. 
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While environmental context may refer to numerous factors such as predators, competitors, or 

disease, this study focuses on landcover, elevation, slope, and roadways as representations of the 

environment in the study area for the preference surface. The ultimate result of this examination 

is a raster surface reflecting a single variable that represents the degree to which environmental 

factors are selected or avoided by the YHT population of deer; in other words, lower values (or 

higher values) on the preference surface mean that more environmental factors in that location 

were preferentially selected (or avoided), respectively. Because the surface represents a degree of 

selectivity, this study refers to it as a preference surface and will refer to the values held in the 

surface as resistance values, since the values function in a least-cost path analysis the same way 

that a typical cost surface’s values would, as discussed later. 

Raster datasets depicting landcover type (Latifovic 2017; Latifovic, Pouliot, and Olthof 

2017) and elevation and slope (Natural Resources Canada 2016) for the study area were 

collected and masked to the study area extent as indicators for environmental characteristics. The 

landcover dataset was assessed to have 76.60% accuracy (Latifovic, Pouliot, and Olthof 2017), 

and this study used the Level I classification scheme (see Table 3 for list of landcover types). A 

relatively simple measure of habitat preference in terms of use versus availability, Manly’s 

selection ratio was applied to obtain a measure of habitat selection or avoidance observed in the 

YHT population during the winter season, given the GPS relocations among the six deer selected 

as an indication of used habitat types and the proportions of environmental characteristics 

available within the study area (Manly et al. 2002) at a p value of 0.05. Operationalized as the 

function wi in the adehabitatHS R package (Manly et al. 2002; Calenge 2006), the wi function 
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for Type I design analysis is capable of assessing both habitat availability and usage for a 

population (Thomas and Taylor 1990). 

  Manly’s selection ratio returns higher values for positively selected habitat and lower 

values for avoided habitat types. Due to this convention, results cannot be directly used to 

construct a preference surface which represents increasing avoidance of habitat types with 

increasing magnitude of resistance values. To translate the resulting Manly selectivity measures 

to this more conventional format, rasters for slope, landcover, and elevation were reclassified to 

their respective Manly selectivity measures, rounded to the nearest integer. In situations where 

the Manly selectivity measure was near one, corresponding to either very weak selectivity or 

very weak avoidance, values were defaulted to 1.0 to avoid divide by zero errors in later 

analysis. Following the methodology presented in Shafer et al. (2012), all three Manly selectivity 

measure rasters were transformed to binary rasters depicting habitat use (a value of 0) or 

avoidance (a value of 1). One additional binary variable capturing the effect of a 250-meter 

buffer around roadways occurring in the study area was prepared separately from a dataset 

depicting roads (Statistics Canada 2009), with areas inside the 250-meter buffer set as areas of 

avoidance, consistent with observed Red Deer preferences in regard to roads (Gagnon et al. 

2007; Meisingset et al. 2013). Finally, all binary use/avoidance rasters were added together plus 

a value of 1, to prevent values of 0 influencing later cost distance calculations to yield a single 

preference surface (landcover binary raster [BR] + slope BR + elevation BR + roadway BR + 1) 

(Figure 4). 
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Figure 4. Preference Surface developed for the Study Area. 

 

2.4.3 Applying CDBPSTP and PSTP to Red Deer Trajectories 

The CDBPSTP approach as described in this research has been operationalized in an extension to 

the PySTPrism toolbox which is unreleased at the time of this writing (R. Loraamm et al. 2020). 

This CDBPSTP implementation was used to generate prism results for the present study. 

PySTPrism provides a set of voxel-based space-time approaches as an ArcGIS Pro toolbox, 

compatible with the ArcGIS Pro desktop application from Esri Inc. For each voxel-based prism 

function found in the toolbox, the interface for the function expects users to supply: (1) an input 

trajectory dataset as point vector data, (2) the desired X/Y spatial resolution for voxels in the 

map units of the input data’s coordinate system, (3) the desired Z-axis resolution for voxels in 

seconds, (4) an optional “Expand Edges” multiple which intentionally expands the processing 

extent ensuring no results are “cut off” from visualization and (5) a value for the velocity 

multiplier parameter. The velocity multiplier is a value used to scale the observed velocity of the 
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mover between two consecutive space-time anchors; this parameter is meant to account for the 

assumed straight-line movements captured in trajectories. Since straight-line, top-speed 

movements are rare for terrestrial animals’ routine traversal in a varied environmental context, 

the velocity multiplier offers a means to adjust the reachable distances expressed as terms in 

Equations 4 and 5, such that prism results do not simply converge to the least-cost space-time 

path, resulting in a prism having zero volume (Downs, Horner, et al. 2014; R. Loraamm et al. 

2020; R. W. Loraamm et al. 2020; Loraamm, Anderson, and Burch 2021). 

Selection of an appropriate velocity multiplier value is important, as prism bounds and 

associated assignment of probabilities are all sensitive to the movement capabilities of the object 

under study. To realistically estimate a velocity multiplier relating the actual top speed of Red 

Deer tracked for this study, the observed maximum velocity of the trajectory was divided by all 

observed straight-line velocities for each of the six selected deer trajectories, respectively, 

producing velocity multipliers specific to sequential pairs of space-time anchors. For each deer, 

the average of all anchor-pair velocity multipliers yielded a single velocity multiplier tailored 

towards the individual capabilities of each deer trajectory supplied for CDBPSTP analysis. 

The six deer trajectories selected for this analysis contain 11,444 geolocations or fixes in 

total, reflecting an exhaustive traversal of the YHT ranch area (Figure 3). For the demonstrative 

goals of this research, representative space-time anchor pairs were extracted from this set where 

each selected pair captured a particular movement scenario through the varied context of the 

study area. To make these selections, 18 anchor pairs representing three distance categories, long 

(approximately 1100-2000 meters), medium (300-800 meters), and short (less than 200 meters) 

were isolated (Table 2). The selected anchor pairs were assigned a label associating them with 
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high (predominantly values of 4 and 5), medium (predominantly values of 2, 3, and 4), or low 

resistance (predominantly values of 1 and 2). Resistance here refers to the values of cells in the 

preference surface which lie between the two anchors. Once isolated, each of the 18 anchor pairs 

was supplied as an input to the CDBPSTP function, with parameters including an output cell size 

of 30 meters, an Expand Edges factor of 1.0, and the velocity multiplier corresponding to the 

pertinent ElkID in Table 2. Once CDBPSTP prism disks were generated, the CPS technique was 

applied to the results of each anchor pair to generate occupancy probability surfaces for each 

pair. As a means to facilitate discussion of the occupancy surface results, zonal descriptive 

statistics were generated from occupancy surfaces, summarizing the incidence and total 

probability of occupancy over landcover types. This operation demonstrates an overall view of 

CDBPSTP’s suggestion of Red Deer habitat occupancy given the inputs. 

To provide a comparison between the CDBPSTP method and the PSTP method, this 

study also generated a PSTP for each point-pair in Table 2, representing a medium distance and 

overall low, but varied, resistance values. The parameters were identical to those used for the 

CDBPSTP generated for the same trajectory sample, and CPS was employed to these PSTP 

results in an identical manner.  
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Table 2. Selected space-time anchor pairs illustrating various traversal scenarios in the 

study area. 

Distance Resistance Code ElkID 
Point 

Features 
Distance (m) 

Elapsed 
Time (s) 

Velocity (m/s) 
Resistance 

Values 

Long High LH_GR193 GR193 694, 695 1864.41739 14400 0.12947343 1, 2, 3, 4, 5 

Long High LH_YL78 YL78 5, 6 1620.253693 7260 0.223175 2, 3, 4, 5 

Long Medium LM_YL25 YL25 5711, 5712 1955.097556 14400 0.135771 1, 2, 3, 4 

Long Medium LM_YL29 YL29 303, 304 1327.663144 7200 0.184398 1, 2, 3, 4 

Long Low LL_YL29 YL29 308, 309 1186.757324 7260 0.1634652 1, 2 

Long Low LL_YL5 YL5 518, 519 1395.244368 7200 0.193784 1, 2 

Medium High MH_YL78 YL78 6, 7 589.971924 7260 0.081263 2, 3, 4, 5 

Medium High MH_YL5 YL5 1, 2 426.724348 7260 0.058777 1, 2, 3, 4, 5 

Medium Medium MM_YL25 YL25 4984, 4985 362.959741 900 0.403289 3, 4 

Medium Medium MM_YL78 YL78 231, 232 417.577379 7200 0.057997 1, 2, 3, 4 

Medium Low ML_YL29 YL29 812, 813 416.513625 7200 0.057849 1, 2 

Medium Low ML_YL5 YL5 513, 514 757.321744 7200 0.105184 1, 2 

Short High SH_YL73 YL73 9597, 9598 79.025246 3660 0.021592 3, 4, 5 

Short High SH_YL5 YL5 307, 308 170.104176 7200 0.023626 3, 4, 5 

Short Medium SM_YL73 YL73 22, 23 140.307356 3540 0.039635 2, 3 

Short Medium SM_YL78 YL78 675, 676 178.103747 7200 0.024737 2, 3 

Short Low SL_YL73 YL73 377, 378 179.104847 900 0.199005 1, 2 

Short Low SL_YL29 YL29 888, 889 141.297352 7200 0.019625 1, 2 

 

2.5 Results  

Results pertinent to the expressed targets of this study include the results of Manly’s selection 

ratio, which represents the analysis product on which the preference surface is based, along with 

mapping and summary statistics for occupancies returned by CDBPSTP and PSTP prism 

approaches.  
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2.5.1 Results of the wi function 

Based on the complete deer trajectories of the six individuals selected for this study, relative 

proportions of observed occupancies and availabilities were collected for variables of landcover 

type, slope, and elevation. Manly’s selection ratio, operationalized as wi, expects habitat 

occupancies and availabilities as inputs and compares the count of occupied locations for each 

contextual variable versus the corresponding count of available locations for each variable. 

Occupied locations consist of the locations where deer space-time anchors were found, or stated 

alternatively, the locations of deer GPS location fixes, and available locations are represented as 

cells in each raster that belong to particular variables. Interpretation of the resulting Manly 

selectivity measure value follows where higher values indicate higher selection of the particular 

context type than expected. Pseudo-significance for this measure is expressed in terms of a p-

value, interpretable as the magnitude of the chance that returned Manly selectivity values are the 

result of random chance in habitat selections. For this research, selectivity measures were 

considered significant if p-values were shown below the Bonferroni level corresponding to an 

alpha = 0.05, translating roughly to a 95% confidence the results are significant (in other words, 

there is a 5% chance that the null hypothesis was incorrectly rejected if it was true). Manly 

selectivity measures close to zero indicate avoidance beyond what would be expected at random, 

given availability of habitat types and animal selection, while values greater than 1 indicate 

preference with increasing intensity. 

For landcover types occupied, particular results of interest include Needleleaf forests and 

grasslands. Needleleaf forests were highly available in the study area but were weakly selected 

by deer. Conversely, Grasslands were much less abundant but were found to be much more 
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strongly selected by individuals. Considered from the perspective of available animal 

relocations, roughly 75% of the deer’s locations occurred on grassland, which made up just 

under 20% of the available study area’s land cover distribution. The Manly selectivity measure 

represents this interaction as an easily interpreted single value statistic, found to be significant 

(by randomization). Manly selectivity results for landcover classes are shown in Table 3. 

Table 3. Results of the wi function for Red Deer usage of various landcover classes. 

Landcover class Proportion 

used 

Proportion 

available 

Manly selectivity 

measure 

p-value (Bonferroni level = 

0.005) 

Needleleaf forest 0.075 0.597 0.125 <0.005 

Broadleaf forest 0.002 0.002 0.838 0.363 

Mixed forest 0.003 0.005 0.586 <0.005 

Shrubland 0.155 0.054 2.882 <0.005 

Grassland 0.746 0.195 3.836 <0.005 

Lichen/moss 0.000 0.000 0.000 <0.005 

Wetland 0.004 0.010 0.379 <0.005 

Barren land 0.000 0.124 0.000 <0.005 

Urban and built-up 0.011 0.002 4.423 <0.005 

Water 0.004 0.011 0.390 <0.005 

 

Additionally, it is useful to visualize these results in a ranked order, with decreasing selectivity 

shown to the right of the graph in Figure 5. Here, we note an outlying although significant 

propensity for deer to utilize Urban and built-up areas. This is consistent with known Red Deer 

behaviors where roadways present a “soft barrier” to traversal, possibly resulting in this strong 

selection of built-up areas (Ciuti et al. 2012; Jacobson et al. 2016; Loraamm and Downs 2016; 

Prokopenko, Boyce, and Avgar 2017; Loraamm, Anderson, and Burch 2021). The behavioral 

mechanisms underlying this selection may be complex, but where considered at a basic level, 
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deer hesitancy to cross a busy road until traffic has cleared could amount to one factor inflating 

their use of urban and built-up areas. Additionally, built-up areas make up 0.2% of the study 

area; the low availability used as a denominator in the RSF may be further inflating the 

preference value for this landcover category. 

 

Figure 5. Results of the wi function graphed in descending order, for Red Deer usage of 

landcover. 

Similar treatment of occupied versus available context for slope (measured in degrees) was also 

completed. Table 4 and Figure 6 summarize the corresponding Manly selectivity measures for 

this variable. Findings of note include the general avoidance of areas with slope exceeding 7 

degrees in the study area, for the individuals observed. It is unknown whether this result is 

influenced by any particular characteristics common to the tracked individuals or their context; 

for example, all deer were female, and all geolocations were captured during the winter 

migration period. Still, this result is consistent with notions of the principle of least effort, where 

less strenuous routes across the landscape would be preferred. 
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Table 4. Results of the wi function for Red Deer usage of various classifications of slope. 

Bin # Slope 

(degrees)  

Proportion 

used 

Proportion 

available 

Manly selectivity 

measure 

p-value (Bonferroni level = 

0.00625) 

Bin 1 -1 to 7 0.803 0.355 2.261 <0.00625 

Bin 2 7 to 15 0.134 0.295 0.453 <0.00625 

Bin 3 15 to 23 0.061 0.161 0.376 <0.00625 

Bin 4 23 to 31 0.003 0.118 0.025 <0.00625 

Bin 5 31 to 39 0.000 0.050 0.000 <0.00625 

Bin 6 39 to 47 0.000 0.013 0.000 <0.00625 

Bin 7 47 to 55 0.000 0.006 0.000 <0.00625 

Bin 8 55 to 63 0.000 0.002 0.000 <0.00625 

 

 

Figure 6. Results of the wi function graphed in descending order, for Red Deer usage of 

varying classes of slope (degrees). 

Manly selectivity measures for occupied versus available elevation were also calculated. Table 5 

and Figure 7 summarize the corresponding Manly selectivity measures for this variable. For 

elevation, usages are most pronounced between roughly 1500 and 1600 meters. This result may 
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be consistent with the occurrence of particular forage or grasses eaten by Red Deer, or coincident 

with the elevation of the Ya Ha Tinda ranch and surrounding areas as this location represents 

high-value habitat overall in the study area. Further, the pattern in occupied elevations is 

generally collinear with the pattern in occupied slope classes. This dynamic could be seen as an 

illustration of the landscape present in the Banff National Park area itself, an alpine landscape 

with high local relief in elevation. The complexity inherent to Red Deer movement behavior 

along varied terrain and the configuration of their environment may be reflected in this result. 

Table 5. Results of the wi function for Red Deer usage of various classifications of 

elevation. 

Bin # Elevation 

(meters) 

Proportion 

used 

Proportion 

available 

Manly selectivity 

measure 

p-value (Bonferroni level = 

0.00625) 

Bin 1 1516 to 1676 0.885 0.256 3.454 <0.00625 

Bin 2 1676 to 1836 0.112 0.302 0.370 <0.00625 

Bin 3 1836 to 1996 0.003 0.184 0.018 <0.00625 

Bin 4 1996 to 2156 0.000 0.148 0.000 <0.00625 

Bin 5 2156 to 2316 0.000 0.071 0.000 <0.00625 

Bin 6 2316 to 2476 0.000 0.027 0.000 <0.00625 

Bin 7 2476 to 2636 0.000 0.011 0.000 <0.00625 

Bin 8 2636 to 2796 0.000 0.002 0.000 <0.00625 
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Figure 7. Results of the wi function graphed in descending order, for Red Deer usage of 

varying classes of elevation (meters). 

2.5.2 Results of the CDBPSTP Approach 

Towards facilitating a comparison in methodology between CDBPSTP and PSTP, a 

representative result for a single point pair, ML_YL29 (see Table 2) was chosen for presentation. 

The space-time anchor pair visualized in these results comes from Deer YL29’s trajectory, 

during the animal’s traversal of part of the central-northeast portion of the study area 

(51.7467323°N, 115.5366602°W). The traversal shown navigates across an area peripheral to a 

stand of Needleleaf forest, with adjacent shrubland and grassland areas available (Figure 8). 

Corresponding resistance values for this environmental context are visualized for the anchor pair 

as well (Figure 8, inset map). 
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Figure 8. The landcover underlying point-pair ML_YL29 is shown in the main map, while 

the resistance values are displayed in the inset map. 

Results of the CDBPSTP generated for this anchor pair in context are shown in Figure 9. Per the 

animal’s path of traversal reconstructed by CDBPSTP, available shrubland and grassland areas 

were preferred to passage through Needleleaf forest. This pattern is consistent with CDBPSTP’s 

methodological notion of a least-cost, space-time path, which itself is an optimal path of traversal 

minimizing travel cost as a function of environmental context. This is an alternative mechanism 

to the straight-line, Euclidean space-time paths considered in PSTP. Additionally, the 

distribution of occupancy probabilities found diverging from the least-cost space-time path 

appears imprinted with the underlying variation in the preference surface, an indication of the 

consideration of cost-distance in the assignment of occupancy probabilities step of CDBPSTP. 
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The animal’s path as suggested by CDBPSTP in Figure 9 denotes an avoidance of areas 

consistent with a priori knowledge about Red Deer habitat preferences, ranked using a Manly 

selectivity approach encoded as preference surface values. 

 

Figure 9. An occupancy probability surface shown at slight transparency for point-pair 

ML_YL29, generated by the CDBPSTP model based on the preference surface displayed, 

where darker colors signify higher probabilities that the deer was located at that site as it 

traveled from point 812 to point 813. 

2.5.3 Results of the PSTP approach for comparison 

A PSTP was also constructed for point-pair ML_YL29 (Figure 10). The visualization of this 

approach demonstrates PSTP’s reliance on a Euclidean realization of the space-time path, with 

assigned occupancy probabilities having magnitudes that are a function of distance-decay from 
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that space-time path. In the absence of consideration for environmental context, the Euclidean-

based space-time path is treated as the best-available path when reconstructing a mover’s path 

between two instantaneous location captures. However, with a visual comparison between the 

CDBPSTP (Figure 9) and the PSTP (Figure 10) results, the influence of reasonably modeled 

context on the path of a mover can be significant. 

 

Figure 10. An occupancy probability surface shown at slight transparency for point-pair 

ML_YL29, generated by the PSTP model, where darker colors signify higher probabilities 

that the deer was located at that site as it traveled from point 812 to point 813.  

In terms of the summarized occupancy probabilities from each of the CDBPSTP and PSTP 

results shown, the dynamic in the influence environmental context can be expressed 

quantitatively (Table 6, Figure 11). Higher sums of occupancy probability suggest higher 
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chances the deer would have occupied the corresponding landcover type during its journey 

between space-time anchors. For the CDBPSTP results, the highest probability is associated with 

shrubland (6.688), followed by grassland (2.243), and Needleleaf forest (1.050). In contrast, the 

PSTP results suggest Needleleaf forest carries the highest probability of occupancy (7.971), 

followed by shrubland (1.336), and lastly by grassland (0.661). Considered in concert with the 

knowledge that Red Deer in the YHT Ranch area appear to select for shrubland and grassland 

over Needleleaf forest, the value of CDBPSTP as an alternative to PSTP is demonstrated. 

CDBPSTP captures the influence of varied environmental context on movement, provided the 

characterization of this environmental context is rational and fair to the characteristics and 

observed behaviors of the mover. 

Table 6. The sum of occupancy probabilities for the probability surfaces for point-pair 

ML_YL29, summed according to the underlying land cover type. 

Land cover type Sum of occupancy probabilities, CDBPSTP Sum of occupancy probabilities, PSTP 

Needleleaf forest 1.050 7.971 

Shrubland 6.688 1.336 

Grassland 2.243 0.661 

Wetland 0.002 0.003 

Water 0.005 0.009 
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Figure 11. The bar chart visualizes the differences between the sums of occupancy 

probabilities calculated for point-pair ML_YL29 for the CDBPSTP (left side, blue) and the 

PSTP (right side, orange). 

2.6 Discussion  

The CDBPSTP approach demonstrated in this study offers an alternative construction of the 

space-time prism, where the resistances presented by the mover’s environment are explicitly 

considered as an influence on both the probable path and occupancies the mover may have 

shown between observations of its location. This approach advances time geographic research on 

space-time prisms by providing a pathway towards a reasonable incorporation of context in 

probabilistic space-time prism modeling. This contribution represents an approach applicable 

towards better understandings of animal movement and space use, of interest to conservationists, 

biologists, and planners. CDBPSTP is methodologically separated from its predecessor PSTP by 

its explicit incorporation of context as a behaviorally-informed preference surface (more broadly, 

a form of a cost surface). Furthermore, CDBPSTP is methodologically separated from similar 
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context-aware time-geographic methodologies such as the method employing heterogeneous 

spatial fields (Long 2018) by CDBPSTP’s focus on leveraging cost distance as a derivative of 

habitat selectivity, and therefore observed animal behavior. The cost distance derived from a 

habitat-selection-based preference surface is in contrast to the method used in J. A. Long (2018), 

where a conductance surface is instead defined in terms of a theoretical maximum achievable 

speed for the mover. 

Limitations associated with the approach in its current demonstration center on issues of 

scale and generalization, along with concerns surrounding model validation and sensitivity to 

parameter choices. First, the present study conducted an involved analysis on the habitat 

selectivity of a particular Red Deer population in a highly selected study area as a means to 

inform the preference surface. This preference surface is tightly coupled to both the study area 

and population; for example, applying the resistance valuation scheme generated for this 

research to similar studies on Red Deer in other areas could amount to Ecological Fallacy. 

Collecting behavioral preferences and conducting a more general selectivity analysis, perhaps 

employing the same measures over larger input data representing Red Deer regionally, may relax 

this limitation. 

Additionally, this study focused on four factors (landcover, slope, elevation, and 

proximity to roadways) pulled from a wide range of influences that make up an animal’s entire 

environmental context. Other variables that affect where animals move and spend time, such as 

territorial dynamics, social interaction in an animal population, and predation risk may shed 

more light on understanding animal movement (Bestley et al. 2013; Langrock et al. 2014). More 

detailed incorporation of human activity including population, traffic volume, or specific built 
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features (Zeller, McGarigal, and Whiteley 2012) may also help wildlife managers in promoting 

safer human-wildlife interactions.  

With respect to validation, the present study has not sought to establish any measure of 

internal stability in the results. Ensuring the CDBPSTP approach behaves predictably if provided 

relatively consistent inputs is a step supporting its adoption for future studies. Future research 

could apply the preference surface and CDBPSTP methodology to data collected during other 

timeframes for the same population and compare the results via Bhattacharyya distance, a two-

dimensional measure that can determine the separation of distributions of the compared results. 

Both these “prior” and “future” data sets should be collected under similar conditions. 

Further, CDBPSTP is shown to be highly sensitive to the selection and application of the 

velocity multiplier parameter, as this value corresponds to an estimate of the mover’s top speed, 

and therefore the extent and interior structure of the resulting prism volume. Advancing the 

practice of setting this parameter presents as a growth area not just for CDBPSTP research, but 

for probabilistic space-time prism applications in general. For the present study, an averaged 

maximum observed velocity to individual anchor-pair velocity ratio was calculated for each 

individual animal. For a mover traversing real-world context, actual top speed is both unknown 

at any given time and may be serially influenced by both the last location traversed and the next 

location ahead of the mover. This translates to infinitely many possible realizations of top speed 

between any two space-time anchors in context. Also, the behavioral dynamics governing 

whether or not the mover intended to reach a top speed between anchors cannot be known. 

CDBPSTP, like other space-time prism methods, always sets outer bounds based on a maximum 

velocity we assume the mover can actually achieve. It is possible future research could include 
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video or secondary observation of the mover contemporaneous with the collection of space-time 

anchors/GPS fixes such that some of this dynamic might be described and incorporated into 

velocity multiplier calculations. 

The results of this study have shown that CDBPSTP explicitly considers variation present 

in a moving agent’s environment and shows the influence that environmental context may have 

on the probable movements between known locations. This work also shows CDBPSTP is 

compatible with habitat selection analysis, and the methodology is applicable to species other 

than red deer because it bases the estimated probability of movement on the population’s specific 

observed preferences. As a result, different species’ habitat preferences can be represented and 

considered in the estimation of movements. CDBPSTP’s incorporation of environmental context 

is an important move toward a more informed understanding of animal movements, beneficial 

both for conservation efforts now and for future responses to changes in the environment.  
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Chapter 3: Conclusion 

3.1 Extended Discussion 

Since its conceptualization by Hägerstrand (1970), time geography has evolved into a discipline 

with, among other applications, immense potential for understanding animal movement. Gaining 

a better understanding of animal movement is important to improve conservation and planning 

efforts, manage wildlife interactions with the built environment, and study populations which are 

difficult to access. While numerous studies have adapted and developed time-geographic 

analysis of animal movement, present methods do not consider environmental context based on 

an animal’s habitat selection preferences directly in the computational stage. The cost-distance 

based probabilistic space-time prism (CDBPSTP) is a new approach that expands existing 

methods (notably the voxel-based PSTP (Downs, Horner, et al. 2014)) to more realistically 

represent movement. This research is the first known demonstration of the CDBPSTP method 

applied with habitat selection analysis to animal movement trajectory data; inclusion of 

environmental context to this degree has not been demonstrated in similar work (Long 2018) in 

time geography literature.  

 In the second chapter, this study implements a habitat selection analysis for a population 

of deer in the Banff National Park, Alberta, Canada area, uses the results to integrate 

environmental context with the CDBPSTP via a preference surface, and compares the results of 

the CDBPSTP to the performance of the PSTP. The analysis found that the occupancy 

probability surfaces produced by the CDBPSTP method shows clear responses to the preference 

surface and in many cases exhibits high probabilities of animal movement in areas that deviate 
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from the space-time path. In comparison to the probability surface produced by the PSTP, the 

estimated probabilities of occupancy over various types of landcover are very different for the 

PSTP and the CDBPSTP; the CDBPSTP shows probability values in accordance with selected 

and avoided landcover types, while the PSTP estimates high probability values in an avoided 

landcover type.  

Overall, this research found that the CDBPSTP responds successfully to the trajectory 

data and the preference surface used in this study, with occupancy probability clearly varying 

throughout the prism bounds according to the preference surface values. Because the prism 

formation is based on the preference surface which in turn is based on the habitat selection 

analysis, further detail is provided here regarding the data subsetting process, which directly 

impacts the habitat selection results. The study area used in this research attempts to reduce error 

stemming from uneven availability of habitat by exploring only elk movements within the 

known winter range (Ya Ha Tinda Ranch) (Hebblewhite et al. 2006). The winter season is 

defined as November to May, but the average midpoint dates and associated standard deviations 

for migration in Hebblewhite et al. (2006) suggest that the migration period can shift up to two 

weeks before and after both the end of October and the beginning of June. Subsetting the 

trajectory datasets based on the variation in migration dates published in Hebblewhite et al. 

(2006) and on the known location of the winter range is important to prevent large variation in 

observed movement behavior which could arise if residential and migratory movements were 

treated equally. Trajectory points from all six deer that were logged from November to May 

during 2002 to 2004 and intersect the YHT Ranch boundary were isolated. The longest distance 

between two consecutive points of this isolated dataset where the elapsed time between points is 
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equal to or less than the data’s average elapsed time between two points is 2689.919833 meters. 

The YHT Ranch boundary was then buffered by this distance. The buffer zone allows for the fact 

that the elk are not necessarily confined by human-designated boundaries and reduces errors that 

may arise from georeferencing and digitizing the YHT Ranch boundary. Only the winter-month 

points within the YHT Ranch Boundary were used to generate the buffer distance because those 

data are likely to represent typical movements during the elk’s winter season (Hebblewhite et al. 

2006). The geolocations falling within the buffered YHT Ranch boundary were then considered 

the dataset for this study and were used to generate the bounds of the study area using the CHP 

method, as described in Chapter 2. The resulting boundary centering around the winter range 

encloses the environmental features that are considered available to the studied individuals 

during the winter season. 

 Contributing to time-geographic literature that seeks to understand animal movement 

through space and time, this work is situated at the forefront of continued development of the 

space-time prism, practically applying the CDBPSTP as an extension of the voxel-based PSTP 

(Downs, Horner, et al. 2014). The findings of this research show that the CDBPSTP method can 

be applied in conjunction with habitat selection analysis, which allows the estimated probability 

of movement to be based on the animal’s observed preferences with greater incorporation of 

environmental context than seen in similar approaches (Long 2018). This consideration of the 

environmental setting when modeling movements is a major step toward more completely 

representing an animal’s movement. 

 While CDBPSTP is an important contribution to animal movements, the method cannot 

be as easily applied to human movement. The requirement for a cost surface (whether as a 
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typical resistance surface, a conductance surface, or a preference surface) presents a significant 

hurdle. Assuming a cost surface can be compiled based on an individual’s capabilities or 

preferences, from an archaeological perspective, the least-cost path method does not incorporate 

the individual choices and variation inherent to human movement and problematically offers 

only a single optimized path (Howey 2011); in reality, humans may prefer paths outside of the 

least-cost path or change paths in response to numerous influences or decisions (Howey 2011), 

but despite this hurdle, least-cost path methods are still used in archaeological research (Gowen 

and de Smet 2020). Interestingly, recent work has shown that least-cost path methods can be 

incorporated with topography to calculate travel time and energy cost (as kilocalories expended) 

for humans, but this assumes that the individual follows the constructed least-cost path (Gowen 

and de Smet 2020). The original challenge of whether a human will consistently follow the least-

cost path remains; for CDBPSTP to be used successfully in terms of human movement, the least-

cost path needs to be able to accurately plot a single path out of a wide variety of human 

preferences and reactions to external events. 

3.2 Study Limitations 

3.2.1 Representing Environmental Influence  

While the habitat selection analysis demonstrated in this work does support the CDBPSTP’s 

consideration of the traversed environment, the variables used (landcover, elevation, slope, and 

proximity to roads) may not fully represent all environmental factors that influence the deer. 

Because barriers can impact animal movement (Shafer et al. 2012), the identification of hard and 

soft barriers to movement beyond the use of a soft barrier along roadways in this study can add 

important information to the preference surface. The roadway barrier was assigned a binary 
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avoidance value, which means the preference surface holds a higher value (+1) within the 

roadway barrier zone than without, but the resistance value does not increase by more than any 

of the other binary selection/avoidance metrics. In comparison, the use of a conductance surface 

in field-based time geography means certain features such as lakes are designated as hard 

barriers with no possible movement in the case study on caribou movement (Long 2018). 

Incorporating hard barriers in CDBPSTP may achieve a similar effect, for features such as large 

bodies of water or impassable terrain like cliffs, depending on the study species.  

Additionally, the environmental factors used in this study were chosen in a combination 

of the observed terrain and literature on red deer behavior. However, cost surfaces in general 

should ideally only contain variables that have an influence on the study animal (Zeller, 

McGarigal, and Whiteley 2012). In the case of the deer in this research, landcover exhibits the 

most variability across the preference surface, and slope and elevation show low variation in the 

majority of the study area. Proximity to roads has a localized effect on the raster that does not 

impact the majority of trajectory points. It is possible that different environmental factors, or 

different weighting of the chosen environmental factors, may produce a surface that better 

represents the habitat preferences of the deer. In addition to exploring other variables and 

barriers that were not included in this research, a weighted-variable preference surface may 

improve results by allowing for the fact that environmental factors can influence an animal’s 

behavior and movement to varying degrees (Zeller, McGarigal, and Whiteley 2012). However, 

weighting various factors in a multivariate preference or resistance surface is challenging and 

would likely need to be determined for each study population, as there is no set ratio in how each 
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factor should be weighted (Spear et al. 2010). The difficulty in assigning weights to each factor 

of the surface must be measured against the benefit of a more realistic least-cost path. 

3.2.2 Investigating Movement Behavior 

In Chapter 2, the occupancy probability values of a CDBPSTP-generated probability surface 

were summed according to landcover type for comparison to a PSTP-generated probability 

surface. While these results are used to illustrate the different outcomes of both methods, the 

investigation of what the probability surface means for the deer’s potential behavior could be 

extended to visualize the deer’s interaction with each landcover type at a finer timescale using a 

summarization approach provided by R. W. Loraamm et al. (2020); this approach would 

generate the probability of the deer occupying various landcovers at different times of day, 

further exploring the CDBPSTP’s capabilities and assessing how the method in R. W. Loraamm 

et al. (2020) performs with CDBPSTP-generated occupancy probability values. Another 

direction to further investigate the CDBPSTP’s probability surface would be to apply the method 

developed by R. W. Loraamm, Downs, and Lamb (2019) to quantify and visualize the deer’s 

potential interaction with roads, which can improve understanding of wildlife interactions with 

fixed features on the landscape. Both of the methods outlined in this section can use the 

CDBPSTP application in this study and extend the results into actionable information about a 

studied animal population.   

3.2.3 Estimating Velocity 

It is also important to note the effect of the velocity multiplier (VM) on prism 

construction. An agent’s movement when traveling from one point to another is constrained by 
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the location of the points, the time elapsed between points, and the agent’s maximum velocity; in 

previous research using the PSTP method, studies have used a maximum velocity based on 

observed movement (Downs, Horner, et al. 2014). Other PSTP approaches have employed an 

adaptive velocity by setting the VM, which acts like a scaling factor, to counteract the possibility 

that the observed straight-line velocity generated by GPS points is lower than the true velocity 

because it does not consider terrain or obstructions to movement (Loraamm, Downs, and Lamb 

2019). In both the PSTP and the CDBPSTP methods, the VM can affect the prism construction 

because it modifies maximum velocity, a central constraint to the bounds of space-time prisms.  

It is important to acknowledge that the use of a VM that treats the highest observed 

velocity in the dataset as a maximum cap assumes that the velocity based on the straight-line 

distance between points is a realistic measure of an animal’s capabilities. The maximum VM 

used in this study is based on the observed behavior of deer rather than on a maximum velocity 

associated with red deer as a species in general. Even though the observed straight-line velocity 

is also the minimum velocity required for the deer’s movement between points, it is important to 

use a maximum velocity cap based on the study’s particular population because the subsequent 

movement analysis depends on velocity as a central constraint. Additionally, the VMs used in 

this study are specific to each individual deer, to allow for differences in movement capabilities 

due to age and health. Even with these efforts to derive a representative measure of the deer’s 

movement capabilities, the VM is ultimately still based on an “ice-rink” or purely Euclidean 

scenario between anchor points that does not account for any variation in the environment or for 

responses to events that occur during the time interval. The derivation of an averaged VM that 

does not exceed the animal’s highest observed velocity can help avoid overestimation of STP 
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bounds in some cases, but it cannot absolutely guarantee that the potential path area will not be 

underestimated or overestimated in every scenario; further work that improves the estimation of 

velocity can also improve STP construction and movement representation. 

3.3 Future Work 

In this section, two areas of future work are presented. Through the course of this research, it has 

become clear that many of the assumptions underlying time-geographic methods pose a 

challenge, both in interpretation of results and in adaptation of methods. In particular, maximum 

velocity derived from anchor points often ignores environmental context (Loraamm, Downs, and 

Lamb 2019), and the use of a VM scaling factor is in itself another assumptive measure. The first 

goal for future work details a potential method for addressing part of the assumptions 

surrounding the velocity constraint by estimating velocity based on environmental factors, which 

may be of particular use to animal movement studies. The second area of future research focuses 

on the role of the CDBPSTP in time geography and suggests several studies that may be carried 

out in order to better understand the scope of CDBPSTP’s efficacy. 

3.3.1 Creating an Environment-Based Estimated Velocity for a Moving Animal 

Future research in animal movement can seek to more accurately estimate an agent’s velocity as 

it travels between two points, potentially by combining time-cost methods with cost-distance 

methods. This computational analysis could produce an environment-based estimated velocity 

for an agent moving from an origin (point A) to a destination (point B) using both a time cost 

surface as presented in J. A. Long (2018) and a habitat preference surface as generated in 

Chapter 2 of this research. Two rasters could be created for a study area: (1) a “habitat preference 
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surface” that represents selected and avoided habitats based on habitat selection analysis, and (2) 

a “time cost surface” that represents the velocity at which the animal can move based on the 

animal’s mobility capabilities across varied terrains. The first step would be to chart a least-cost 

path from point A to point B across the habitat preference surface. Second, the time cost surface 

can be used to estimate the time required to move along the least-cost path from point A to point 

B. Third, the animal’s estimated velocity could be calculated by dividing the length of the least-

cost path by the time required to cross the time cost surface along the same path; this velocity 

can be checked against the straight-line velocity and literature to ensure it exceeds that minimum 

required velocity and is below the maximum expected capabilities for the animal. The method 

can also be tested on movement datasets that include the animal’s observed velocity between 

anchor points.  

Importantly, by basing the least-cost path on the habitat preference surface, the initial 

assumption is that the agent chooses a path closest to its most preferred habitats rather than 

choosing the fastest path; essentially, the agent may move to preferred habitats on a cell-by-cell 

basis, but it may not be able to choose the fastest path due to incomplete knowledge of distant 

environments. Then the time cost surface, whose values are also based on the terrain, provides a 

more nuanced estimate of the agent’s potential velocity. Current estimations of velocity in time-

geographic literature rely on observed maximum velocity or scaling factors, which act as 

estimates of maximum velocity as a central constraint of STPs; a maximum velocity in STP 

construction returns the total bounds accessible by a moving agent. This avenue of future 

research proposes that an STP that uses not the maximum possible velocity of an animal, but an 

environment-based expected velocity, may be useful as a more specific, “velocity-constrained” 
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measure of an animal’s potential movements. Future work in this area can evaluate whether 

STPs (and subsequently constructed CDBPSTPs) based on an estimated velocity which is 

derived from both time cost and cost distance in this manner may be more realistic in modeling 

an agent’s potential movements. In particular, this study’s findings could be incorporated into 

future research that combines the methods in this research with approaches that consider animal 

behavior (Loraamm 2020) or Markov models (Patterson et al. 2009; Pohle et al. 2017) when 

modeling the animal’s path. 

3.3.2 Exploring the Impact of the CDBPSTP Method on Time Geography 

The application of the CDBPSTP demonstrated in this work has uncovered potential in using 

environmental data to inform movement analysis, and future research areas proposed are a 

starting point to further development. First, application of the CDBPSTP method in conjunction 

with habitat selection analysis for a larger portion of an animal’s or a population’s movement 

trajectories may reveal movement patterns that are applicable to the population as a whole. This 

study focused on 18 point-pairs out of a much larger dataset. While the computational time 

required to generate CDBPSTP made this smaller subset necessary to fit in the scope of this 

research, further work can use a larger portion of the red deer trajectory data, especially since the 

preference surface has been completed for this study area. In particular, applying the method to 

multiple sequential anchor points or to multiple animals that were tracked in the same space at 

the same time can generate utilization distributions that inform habitat usage patterns for the 

studied population (R. W. Loraamm et al. 2020). Such a study would contribute to animal 

movement analysis for wildlife management and conservation efforts, by using a static measure 

of the population’s habitat selectivity with time geography to identify dynamic patterns of 
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movement and inform the population’s potential preferences over time. Gaining a better 

perspective of wildlife movement patterns can help managers know when a population spends its 

time in various environments, and how long it spends there, which can be extremely useful in 

habitat conservation efforts, as well as in preparing for potential changes in land use, future 

impacts of climate change, or possible spread of diseases (Zeller, McGarigal, and Whiteley 2012; 

Langrock et al. 2014).  

Further research can also apply the CDBPSTP to different animal populations to explore 

various types of movement trajectories. This study focused on a land-bound, foraging mammal; 

the selected movements analyzed had anchor points ranging from approximately 200 meters to 

1200 meters apart, logged approximately every two hours. Other types of movement data may 

respond differently to the CDBPSTP method, such as data with a much longer or shorter time 

interval between known locations or data for animals with different movement behaviors entirely 

(e.g. avian or predatory wildlife). With knowledge of the types of movement (if any) that are 

most suited to the method, CDBPSTP can be situated in time geography as a viable option for a 

wide variety of animal movement analysis. 

Finally, further research can evaluate the efficacy of the CDBPSTP method by 

implementing validation techniques to assess its performance. One option may be to carry out a 

full comparison of the CDBPSTP method vs. the PSTP method. Comparing both methods across 

varying types of data (such as different distances between points, varying temporal intervals, and 

environments exhibiting varying degrees of homogeneity or heterogeneity) can be useful to 

assess whether either method is more suitable for certain types of data. In particular, both 

methods can be tested by applying them to identical datasets but reserving points from the prism 
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generation. For example, CDBPSTP and PSTP can be applied to the first and fifth points of a 

movement trajectory. Once the corresponding occupancy probability surfaces are generated, the 

movement probabilities may be compared to the second through fourth points, where the location 

and overall direction of movement is known. The results of CDBPSTP and PSTP can be 

compared to determine which method, if either, better reconstructed the agent’s movements. 

The results of such a comparison could be useful for researchers: first, the PSTP method 

is more straightforward and faster to implement because it does not require the construction of a 

resistance surface of any kind and may be particularly useful for studies which seek to analyze an 

animal’s movement pattern but are hindered by a lack of environmental data. However, because 

the CDBPSTP method incorporates environmental context, it can be incredibly useful for studies 

where the animal analyzed is heavily influenced by the environment. A formal evaluation the 

CDBPSTP method’s performance on varied datasets can help define the extent of CDBPSTP’s 

ability in understanding animal movement, highlight key areas of the method that would benefit 

from further development, and provide a foundation on which to build environment-

incorporating time-geographic approaches. 

3.4 Concluding remarks 

Overall, this study is a contribution to the development of time-geographic analysis 

techniques that demonstrates the Cost Distance-Based Probabilistic Space-Time Prism with 

habitat selection analysis. The results of the CDBPSTP method clearly demonstrate how the 

occupancy probability is distributed in response to the environmental context represented in the 

preference surface. The recommendations for future research, expanding the factors used in the 

preference surface, improving the estimated velocity parameter by combining cost distance and 
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time cost, and evaluating the CDBPSTP method’s performance on datasets for animals with 

various movement behaviors, can benefit time-geographic movement analysis by developing 

previous methods and defining the CDBPSTP method’s efficacy. As movement trajectory data 

continue to increase in quality and in accessibility, ongoing work in improving and creating 

methods to understand those data and apply the findings remains an important contribution.  
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