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Abstract: Millions of people in the world use Cannabis sativa for its mood-altering 
properties. The main psychoactive component of cannabis, Δ9-tetrahydrocannabinol 
(THC) is commonly detected in forensic toxicology laboratories handling motor vehicle 
and plane crash fatalities. As few studies characterized cannabinoid distribution and 
postmortem redistribution, we developed a study to investigate postmortem cannabinoid 
concentrations in rabbits following controlled cannabis administration via a smoking 
machine. Five rabbits were exposed to cannabis smoke and a broad array of biological 
specimens were collected immediately upon death. High THC concentrations were 
observed in lungs, moderate concentrations were seen in the brain, heart, and kidneys, 
and low concentrations were noted in the liver. A physiologically based pharmacokinetic 
(PBPK) model was constructed to describe blood and tissue THC concentrations in 
rabbits following the administration of smoked cannabis by inhalation. The results 
showed similar THC concentrations in blood and tissues between the predicted and 
experimental data. Building upon the disposition of cannabinoids in various postmortem 
fluids and tissues in the rabbits, we evaluated time- and temperature-dependent changes 
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temperature or refrigerated conditions for various times after death. No significant 
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CHAPTER I 

 

 

INTRODUCTION 

 

Epidemiology 

 Cannabis sativa (marijuana, sinsemilla, hashish)LIN is the most commonly 

abused drug worldwide with an estimated 192 million (3.9%) past-year users (1). Effects 

include euphoria, relaxation, altered perception of time, impairment in memory and 

learning and decrements in psychomotor performance (2). According to the 2019 

National Survey on Drug Use and Health, approximately 48.2 million (17.5%) Americans 

aged 12 and older consumed cannabis in the previous year (3). Cannabis use is popular 

among American teenagers with 1.3%, 4.8% and 6.4% of 8th, 10th and 12th graders, 

respectively, using cannabis daily in 2019. Additionally, the study found that vaping 

cannabis increased significantly in 8th, 10th and 12th graders with 3.9%, 12.6% and 14% 

reporting past month vaping (4).  

 Since the late 1990s, the United States (US) saw a change in state laws allowing 

medical and recreational cannabis. Cannabis remains illegal under federal regulations of 

the Controlled Substances Act, but numerous states decriminalized cannabis in the last  
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two decades. To date, 33 states allow cannabis for medical purposes and 14 approved 

cannabis for recreational purposes (5). In addition, cannabis potency significantly increased 

in the US, raising concerns over the health and behavioral consequences of cannabis use. The 

average content of Δ9-tetrahydrocannabinol (THC), the main psychoactive cannabinoid in 

cannabis, increased from 8.9% to 17.1% in confiscated samples from 2008 to 2017, 

respectively (6).  

 Due to recent changes in legalization and increasing cannabis use prevalence, 

cannabinoids are a common finding in forensic laboratories that handle casework for driving 

under the influence of drugs (DUID) or aviation crashes. The 2013-2014 National Roadside 

Survey showed that 12.6% of drivers in the US were THC-positive, increasing from 8.6% in 

2007 (7). Reports show that cannabis is frequently detected in drivers involved in motor-

vehicle crashes and acute cannabis consumption increases the risk of a fatal collision (8). The 

Federal Aviation Administration’s (FAA) Toxicology Laboratory performs toxicological 

analyses on pilots fatally injured in plane crashes and cannabis is the most common illicit 

drug finding (9). 

Pharmacognosy 

 Cannabis was used for at least 5,000 years for recreational and medicinal purposes 

but it was not until 1964 that the active component, THC, was first identified and isolated 

(10). The cannabis plant contains more than 550 compounds, of which 120 are 

phytocannabinoids that modulate the endogenous cannabinoid system (11). While THC is the 

main psychoactive component in cannabis, effects differ depending on the plant’s chemical 

composition with additional cannabinoids and other chemicals (12). The presence of minor 
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cannabinoids and metabolites in biological specimens, in addition to THC and its 

metabolites, may improve cannabis exposure interpretation for forensic toxicologists by 

identifying patterns of cannabis exposure and consumption.  

 Phytocannabinoids are grouped into two categories, cannabinoid acids and neutral 

cannabinoids, depending on the presence or absence of an acidic carboxyl functional group. 

Within the cannabis plant, cannabinoid acids accumulate and are synthesized to form other 

phytocannabinoids, and upon storage and smoking, neutral cannabinoids are formed 

following decarboxylation (13). Cannabigerolic acid (CBGA) is the direct precursor for 

tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). These three acids, 

CBGA, THCA and CBD then form their neutral cannabinoids, cannabigerol (CBG), THC 

and cannabidiol (CBD), respectively, through decarboxylation(Figure 1) (14, 15). The most 

studied and researched cannabinoids found in the cannabis plant are the neutral THC and 

CBD (6). Other neutral cannabinoids of interest include cannabinol (CBN) and Δ9-

tetrahydrocannabivarin (THCV).  

The most abundant phytocannabinoid in cannabis is THC, although through genetic 

breeding other cannabinoids can predominate.  Over the last 25 years, cannabis potency or 

THC concentration increased significantly causing concern for negative adverse health 

outcomes (6, 16).  High THC concentrations lead to a higher risk of developing psychosis, 

cannabis use disorder and higher rates of hospitalizations and emergency department visits 

(17-19). During storage and over time and with heat and light exposure, THC oxidizes to 

CBN in the cannabis plant (20). CBN and its metabolite 11-hydroxy-CBN have far less 

pharmacological activity than THC (21).  
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Figure 1. Phytocannabinoids biosynthesis pathways. CBGA: cannabigerolic acid; CBG: 
cannabigerol; THCA: Δ9- tetrahydrocannabinolic acid; CBDA: cannabidiolic acid; THC: Δ9- 
tetrahydrocannabinol; CBD: cannabidiol; CBN: cannabinol; THCV: Δ9-
tetrahydrocannabivarin  
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CBD is a non-psychomimetic cannabinoid that may reduce some of THC’s 

psychoactive and physiological effects (22, 23). Therapeutic possibilities for CBD include 

treatment of anxiety, epilepsy, inflammation, vomiting and nausea, and psychosis (24). THC 

and CBD concentrations and their relative ratio are important factors in cannabis 

pharmacodynamics.  Sativex is an oromucosal spray of 1:1 THC and CBD cannabis extracts. 

No significant differences in THC pharmacokinetics or pharmacodynamics were found when 

equivalent doses of oral THC and Sativex were administered to nine subjects (25, 26). 

However, greater cognitive impairment was documented when THC and CBD were present 

in higher THC:CBD ratios (27). From 2008 to 2017, the THC:CBD ratio across confiscated 

cannabis samples in the US increased dramatically from 23 to 104, raising public health 

concerns for the consumption of cannabis products with high THC and low CBD 

concentrations (6).  

CBG was first isolated as a pure chemical substance in 1964 by Gaoni and 

Mechoulam (28). Despite its early identification in cannabinoid research, little exploration 

and characterization occurred with this cannabinoid over the next five decades.  

However, interest in potential therapeutic benefits for cannabinoids other than THC and CBD 

brought CBG to the forefront since it is the common precursor in the cannabis plant. CBG 

has anti-inflammatory and antibacterial activity and may be a promising treatment in certain 

neurologic disorders, such as Parkinson’s disease and multiple sclerosis (29). Furthermore, 

following smoked or vaporized cannabis, CBG and CBN were documented as markers of 

recent cannabis intake in blood of occasional and frequent cannabis users after controlled 

administration (30).  
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Forensic toxicologists often must determine whether cannabinoid positive cases are 

the result of cannabis intake or use of prescribed synthetic THC or Marinol®. Marinol or 

dronabinol is prescribed to treat anorexia-associated weight loss in AIDS patients, as well as 

nausea and vomiting associated with cancer chemotherapy (31). One phytocannabinoid, 

THCV, proved valuable in differentiating ingestion of cannabis (or a related product) and 

Marinol because the THCV carboxylic acid metabolite, THCVCOOH, is detected in human 

urine samples after smoking a cannabis cigarette. When subjects ingested Marinol, however, 

no THCVCOOH was detected in urine specimens (32, 33).  

Endocannabinoid System 

 THC’s effects are mediated primarily by two G-protein-coupled cannabinoid 

receptors (GPCR), cannabinoid 1 (CB1) and cannabinoid 2 (CB2), of the endocannabinoid 

system (34). In addition, other receptors such as transient receptor potential vanilloid 

(TRPV1), GPR55 and GPR18 bind cannabinoids (35). CB1 receptors are located primarily in 

the central nervous system but also in peripheral tissues including skeletal muscle, liver, 

spleen and lung. In the brain, the highest levels of CB1 receptors are found within the cortex, 

hippocampus, basal ganglia and cerebellum (36). Low to moderate CB1 receptor densities are 

found in the hypothalamus and spinal cord with practically no receptors in the respiratory 

centers within the brainstem (37). CB2 receptors are mainly expressed in peripheral cells of 

the immune system but are also expressed in the central nervous system albeit at much lower 

levels compared to CB1 receptors (38).  

The endogenous cannabinoid system plays an important role in memory, 

coordination, emotion, appetite, learning, reproduction, immune response and many other 
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critical functions, including promotion of homeostasis within the body. The most well-known 

and documented endogenous cannabinoid receptor ligands are 2-arachidonoyl glycerol (2-

AG) and arachidonoylethanolamide (anandamide, AEA) (39, 40). Other endogenous 

substances, such as 2-arachidonylglycerol ether or O-arachidonoyl ethanolamine, were 

identified as CB receptor ligands but the biology of these substances is not as well developed. 

Unlike classical neurotransmitters that are synthesized in advance and stored in vesicles, 

precursors for both 2-AG and AEA are constituents of lipid membranes, and upon demand, 

endocannabinoids are released into the extracellular space or synapse (41). There are 

differences in the efficacy of 2-AG and AEA. AEA is a partial agonist at both receptors, 

while 2-AG is a full agonist at both receptors (42). Following uptake, three hydrolytic 

enzymes, monoacylglycerol lipase (MAGL) and alpha/beta domain hydrolases 6 and 12, are 

primarily responsible for 2-AG degradation (43). Anandamide deactivation occurs via the 

enzyme fatty acid amino hydrolase (FAAH) (44).  

Pharmacokinetics 

  THC is rapidly absorbed after smoking, the primary route of cannabis administration. 

Plasma concentration profiles after smoking (19 mg THC) and intravenous (5 mg THC) were 

similar with slightly lower peak concentration for smoking compared to intravenous 

administration (45). One controlled administration study showed that THC appears in blood 

immediately after the first puff of a cannabis cigarette and concentrations peak prior to the 

last puff (46). Bioavailability was reported as 2 – 56% after smoking, thereby showing highly 

variable dose delivery due to a subject’s smoking topography (47). At equivalent doses, oral 

administration shows lower peak THC concentrations and absorption is more delayed than 

the smoking route (30).  
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After THC inhalation by smoking, blood concentrations decrease rapidly as THC is 

distributed into highly perfused tissues, such as the lung, brain, heart, liver and kidney. THC 

is highly lipophilic with 95-99% bound to plasma proteins, primarily lipoproteins (47).  

Despite this high binding to plasma proteins, THC is extensively distributed, with a reported 

steady state volume of distribution (Vd(ss)) of approximately 3.4 L/kg in man (48). In one of 

the only studies of THC tissue distribution, the Large White pig was administered 200 mg/kg 

THC via intravenous injection into the jugular vein. Pigs were sacrificed 30 min after 

injection and had the highest THC concentrations in lung, heart, kidney and liver, with THC 

eliminated slowly over time from the brain and adipose tissue (49). THC remained 

measureable in adipose tissue 24 hours after death. THC accumulates in fat and can passively 

diffuse back into circulating blood over time following chronic administration (50).  

Phase 1 metabolism occurs primarily by the cytochrome P450 enzyme system in the 

liver with more than 100 THC metabolites identified to date (48). THC hydroxylation 

produces the psychoactive metabolite, 11-OH-THC, as well as minor metabolites of the alpha 

and beta pathways, 8α-OH-THC and 8β-OH-THC (Figure 2) (47). Further oxidation of 11-

OH-THC yields the non-psychoactive metabolite, THCCOOH. Phase 2 metabolism involves 

formation of glucuronide conjugates through UDP-glucuronosyltransferase, which facilitates 

urinary excretion by increasing water solubility. THC-glucuronide is an ether-linked 

glucuronide whereas THCCOOH-glucuronide is an ester glucuronide. 11-OH-THC-

glucuronide can be ether or ester linked (Figure 3) (51).  
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Figure 2. Phase I and Phase II metabolic pathways in man for Δ9-tetrahydrocannabinol.  

THC: Δ9-tetrahydrocannabinol; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-
carboxy-THC; 8β -OH-THC: 8β-hydroxy-THC; 8β,11-diOH-THC: 8β, 11-dihydroxy-THC. 

  

 

 

 

 

 

Figure 3. Molecular structure for glucuronide conjugates. THC-g: Δ9-tetrahydrocannabinol 
glucuronide; 11-OH-THC-g: 11-hydroxy-THC glucuronide; THCCOOH-g: 11-nor-9-
carboxy-THC glucuronide.  

Conjugation  
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Tissues other than the liver, including lung, brain and intestine, also metabolize THC 

but to a much smaller extent than liver (52). Metabolism in rabbits is similar to that of man, 

with the two major metabolites identified in rabbit urine being 11-OH-THC and THCCOOH 

in both free and conjugated forms (53). 

THC is excreted mostly as hydroxylated and carboxylated metabolites with about 

65% eliminated in the feces and 20% in the urine (54). The acid-linked THCCOOH-

glucuronide (THCCOOH-g) is the primary urinary metabolite observed in man whereas 11-

OH-THC is the primary metabolite detected in feces (55). In recent years, analytical 

methodology is able to confirm and quantify THCCOOH-g directly in urine instead of 

requiring alkaline hydrolysis to cleave the glucuronide moiety, forming unconjugated 

THCCOOH (56).  

Cannabis Effects 

 Cannabis use causes psychological effects on mood, perception, motor functions, 

cognition and memory (57). These effects are mainly dependent on dose, vehicle and route of 

administration, and user’s experience. Physiologically, cannabis causes a rapid change in 

heart rate, peripheral vasodilation, increased appetite, conjunctival suffusion, and dry mouth 

and throat (12). More experienced cannabis smokers titrate their dose by varying inhalation 

depth and duration to achieve their desired high (58). Study participants obtained a euphoric 

or high feeling within 15 minutes of smoking a cannabis cigarette (59).   

Acute cannabis intoxication produces dose-related neurocognitive and psychomotor 

impairments, as well as risk-taking behavior that can lead to impairment in performing 

complex tasks such as driving or flying (60). Skills that are necessary for driving, such as 
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reaction time, perception, short-term memory, attention, motor functions and tracking skills, 

are altered upon cannabis intake (61). Crash and driver culpability risks for THC positive 

cases increases with higher mean THC blood concentrations (62-64).  

 Driving under the influence of cannabis is a major public health and safety concern 

(65). On-road and simulator driving studies show that acute cannabis smoking affects 

cognitive functions, leading to decrements in driving skills (66). Drivers showed 

performance decrements with standard deviation of lateral position (or weaving), reaction 

time, time driven out of lane and standard deviation of headway after smoking cannabis (67).  

Flying an aircraft is a complex task requiring a high level of cognitive function and 

psychomotor performance. Only a small number of studies examined the role of cannabis on 

pilot performance using simulated flight tests. Short-term memory, attention and 

concentration deficits were the most common adverse effects observed in flying studies.  

Janowsky et al. found that pilots performing a specific flight sequence with an 

instrument flight simulator suffered a significant deterioration in flying performance within 

30 minutes after smoking cannabis (68). An increase in navigational errors, altitude 

deviations and stalling and loss of control events were associated with pilots that consumed 

active cannabis rather than placebo. Acute effects persisted in pilots for up to six hours after 

administration.  

Yesavage et al. evaluated pilots’ skills and performance on a flight simulator for up to 

24 hours after smoking a cannabis cigarette (69). Pilots exhibited difficulty aligning with and 

landing on the runway, an increased size of elevator changes, and an increase in degree of 

vertical and lateral deviation during approach to land. During touchdown, pilots showed a 
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significant increase in distance from center of runway. An interesting find in this study was 

that all pilots were unaware of any impairment with flying performance (69).  

Cannabis Toxicity 

 Compared to other recreational drugs, THC toxicity is incredibly low with a median 

lethal dose of 800 mg/kg in rats, up to 3,000 mg/kg in dogs, and up to 9,000 mg/kg in 

monkeys (70). Sparse density of cannabinoid receptors in brainstem areas controlling vital 

cardiovascular or respiratory functions may explain why high THC doses are not lethal (71). 

However, with high THC concentration products and greater accessibility due to legalization, 

poison center calls and hospitalizations for unintentional cannabis intoxication are on the 

rise, particularly in children (72). In an observational study of 254 individuals acutely 

exposed to cannabis, tachycardia and neuroexcitation were the most common symptoms 

following inhalation exposures (73). Unintentional ingestion of cannabis edibles by children 

and adolescents led to sedation in 52.1% and 40.5% of the cases, respectively.  

 Acute cannabis use may lead to adverse cardiovascular events, including arrhythmias, 

fibrillation, myocardial infarctions and strokes (74-76). While there are several reports 

linking cannabis use to cardiovascular-related medical events, there are relatively few reports 

attributing death to cannabis itself (77). In six sudden and unexpected deaths reported by 

Bachs and Morland, THC was the only drug present in postmortem blood samples (78). The 

probable cause of death was an acute cardiovascular event associated with recent cannabis 

intake. Two young, healthy men died unexpectedly after smoking cannabis (79). Full death 

investigations involving autopsy, toxicology, histology, immunohistochemistry and genetic 

analyses were carried out to determine cause of death. Examinations revealed both decedents 
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suffered from cardiovascular complications and were positive for only THC and metabolites 

in blood and brain, leading the investigators to conclude that the fatal cardiovascular 

complications were evoked by smoking cannabis.  

Cannabinoid Detection and Quantification in Biological Specimens 

 Numerous methodologies are developed for detection and quantification of 

cannabinoids in biological specimens including gas chromatography/mass spectrometry (GC-

MS), two-dimensional GC-MS, gas chromatography tandem mass spectrometry (GC-

MS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) (80-84). Mass 

spectrometry and tandem mass spectrometry improve specificity and sensitivity for 

confirmation of cannabinoids in forensic samples. Quantification is achieved with these 

instruments by utilizing selected ion monitoring and multiple reaction monitoring (MRM).  

Cannabinoid analysis presents challenges due to THC’s lipophilic nature and the low 

concentrations found in biological specimens. Complex biological matrices (e.g. blood, 

vitreous humor and tissues) are comprised of lipids and proteins that may interfere with 

analyses, therefore, sample preparation is an important aspect of cannabinoid quantification. 

Multi-step extraction techniques include liquid-liquid extraction (LLE), supported liquid 

extraction and solid-phase extraction  (49, 56, 85-88). SPE is advantageous over other 

techniques due to its ability to extract analytes of a wide polarity range with high recoveries 

and good reproducibility. Furthermore, this highly selective technique provides sample 

cleanup for drug analysis in postmortem samples (89).  

Many methods in the scientific literature for cannabinoid analysis are developed for 

antemortem whole blood, urine or oral fluid samples.  Few methods test for cannabinoid 
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analysis in postmortem blood and tissue samples (49, 80, 84-86, 90). The combination of 

SPE and LC-MS/MS allows forensic toxicologists to perform direct quantification of THC, 

phase I and II metabolites and minor cannabinoids to provide insight into cannabis 

consumption prior to death.  

Postmortem Cannabinoids 

 Limited research is available that assesses cannabinoid concentrations in postmortem 

specimens. Due to cannabis’ low toxicity and the long-standing belief that cannabis does not 

directly cause death, some postmortem toxicology laboratories do not routinely include 

cannabinoid analysis as part of the screening process. Cannabinoid testing in postmortem 

cases are generally included in death investigations of drivers or pilots who may be 

responsible for a crash (90). Lack of data about postmortem cannabinoids distribution and 

postmortem redistribution poses serious challenges for interpreting the role that cannabinoids 

may play in death investigations.  

 Most postmortem work to date is performed on fluids rather than tissues and typically 

includes quantification of THC and two phase I metabolites, 11-OH-THC and THCCOOH. 

In one study, postmortem cannabinoid concentrations were compared in blood from 

individuals involved and not involved in fatal road traffic collisions (91). They found 

significantly higher blood THC concentrations (median = 4.2 ng/mL) for individuals in fatal 

road traffic collisions than those not involved in fatal traffic collisions (median = 2.6 ng/mL). 

Lemos and Ingle identified 30 postmortem cases positive for cannabinoids and observed 

median blood concentrations of 4.2, 10.5 and 37.5 ng/mL for THC, 11-OH-THC and 

THCCOOH, respectively (90). Twenty-five postmortem cases were evaluated for THC and 
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THCCOOH concentrations in central and peripheral blood in preserved (sodium fluoride, 

potassium oxalate) and unpreserved blood. THC concentrations ranged from 0 to 33 ng/mL 

in preserved central blood samples whereas THCCOOH concentrations ranged from 1.4 to 

706 ng/mL (92). Slightly lower concentrations were observed in corresponding unpreserved 

blood samples with THC and THCCOOH concentrations ranging from 0 to 26 and 1.6 to 775 

ng/mL, respectively.  

Gronewold and Skopp performed the first study to investigate the distribution of 

cannabinoids in man by evaluating THC, 11-OH-THC, THCCOOH, THCCOOH-g, CBD 

and CBN in five postmortem cases (85). THC and its inactive metabolite, THCCOOH, were 

detected in blood of all five cases with higher concentrations noted for THCCOOH. In 

contrast, cannabinoids were hardly detectable in vitreous humor with THCCOOH-

glucuronide detected in only one sample. All cannabinoids, except THC, were detected in 

high concentrations in bile. Muscle exhibited high THC concentrations and low CBD 

concentrations, but no other cannabinoids were detected in muscle. THC was detected in all 

lung samples but was low or not detectable in liver samples. Three of five brain samples 

contained low THC concentrations, whereas THCCOOH was the only metabolite detected in 

brain. Liver and kidney samples contained moderate amounts of THCCOOH-g.  

Researchers at the FAA’s Forensic Toxicology Laboratory performed two 

cannabinoid distribution studies in pilots fatally injured in aviation crashes. Kemp et al. 

evaluated blood, urine, liver, lung, heart, kidney, brain and muscle for the presence of THC 

and THCCOOH in 55 pilots (93). THC and THCCOOH were detected in most lung tissues 

with extremely high THC concentrations observed. Liver exhibited the highest THCCOOH 

concentrations of any tissue tested. Both THC and THCCOOH distributed well into kidney 
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with high concentrations observed. Saenz et al. expanded on the first study by incorporating 

11-OH-THC, along with THC and THCCOOH in the analysis of postmortem fluids and 

tissues from 11 pilots (86).  All three analytes were detected in highly perfused lungs with 

THC present in significant concentrations. Spleen and muscle samples proved to be 

acceptable matrices for detection of THC and THCCOOH. Analysis in brain revealed 

moderate concentrations of both psychoactive compounds, THC and 11-OH-THC, in over 

half of the cases. The highest THCCOOH concentrations were noted in bile. 

In one of the only animal studies evaluating THC tissue distribution, researchers used 

the Large White pig as a model to assess cannabinoid metabolism (49). Eight pigs received 

an intravenous injection in the jugular vein of THC (200µg/kg) and two pigs were sacrificed 

at each time point of 30 min, 2, 6 and 24 h after injection. THC, 11-OH-THC and 

THCCOOH were measured in blood, vitreous humor, bile, fat and tissues. High THC 

concentrations were observed in lung, kidney, liver and heart at 30 min. As liver is the 

primary organ responsible for metabolism, THC was quickly eliminated from liver tissue 

with none detected 6 h after injection. 11-OH-THC was only detected in liver of pigs 

sacrificed at 30 min and 2 h. THCCOOH was not detected in any biological specimens 

except for bile. Different areas of the brain were examined and high THC concentrations 

were found in the cerebellum with low concentrations observed in the medulla oblongata. 

THC analysis confirmed prolonged retention of this highly lipophilic drug in fat tissue. 

THC pharmacokinetics were evaluated in rabbits following single or multiple 

intravenous doses (94). Tissue analysis revealed high THC concentrations in fat, moderate 

heart THC concentrations and lower brain, lung and spleen concentrations. The authors noted 

that the lowest THC concentrations were found in brain, the major site of action for the drug.  



17 
 

Cannabis exerts its effects when THC or 11-OH-THC bind to cannabinoid receptors 

in various areas of the brain; therefore, an important consideration for postmortem analysis is 

detection of psychoactive constituents in the brain (36). Mura et al. reported THC, 11-OH-

THC and THCCOOH results in blood and brain in 10 postmortem cases. THC brain 

concentrations were higher than blood concentrations in all cases and in three cases, THC 

was detected in the brain but was not detected in blood (95). In a recent study measuring 

THC concentrations in blood and brain after daily administration to squirrel monkeys, brain 

THC concentrations were twice as high as blood concentrations 24 hours after the last dose 

(96).  

Postmortem Redistribution 

 In postmortem casework, forensic toxicologists must be aware of postmortem 

redistribution (PMR), a well-documented phenomenon that can make interpretation of results 

difficult (97-99). PMR refers to the diffusion of a drug along its concentration gradient from 

a tissue, such as lungs, liver or heart, with high drug concentrations into the surrounding area, 

such as blood, with lower concentrations. This may cause a falsely elevated drug 

concentration in a sample that is not reflective of the concentration at the time of death.  

 Factors which influence drug PMR include cell death, putrefaction, body position, 

and drug physicochemical characteristics (98). After death, cell membranes are eroded, 

allowing leakage of cellular contents into the extracellular space and allowing other 

molecules to enter cells (100). The putrefaction process is highly variable depending on 

environmental conditions and the state of the body. Bacteria present in the body at the time 

of death enter the blood and travel throughout the body, consuming and digesting tissue and 
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further metabolizing some drugs (97).  Postmortem degradation by bacteria may be slowed 

when the ambient temperature is low (97).  

Prouty and Anderson were the first to report the implications of blood collection site 

and postmortem interval to PMR (101). The study consisted of collecting blood from various 

locations including left and right subclavian vein, left and right heart chambers, and left and 

right femoral vein. Two hours later, pathologists collected another set of blood specimens to 

determine if drug concentration changed over time. Drug concentrations varied across blood 

samples collected from different sites, with the observation that femoral blood samples were 

generally lower in concentration than heart or subclavian blood samples. The authors also 

noted increased drug concentration in heart blood as the postmortem interval increased. For 

forensic toxicologists to render an accurate opinion in drug-related deaths, it is important to 

quantify drug concentrations in both central and peripheral sites.   

 Peripheral (P) blood, generally from the femoral vein, is less subjected to 

redistribution effects than cardiac blood because it is surrounded only by muscle and fat. 

Central (C) blood, generally heart blood or blood pooled from the chest cavity, is subjected 

to drug redistribution from thoracic organs that contain considerable concentrations of 

unabsorbed drugs (102). Since elevated concentrations are present in central blood after 

redistribution occurs, the C:P ratio of drug concentration is used as a tool to indicate if a drug 

undergoes PMR (103). A C:P ratio greater than one indicates that a drug is susceptible to 

concentrations changes after death; however, there are limitations to the C:P ratio as the 

definitive tool to assess a drug’s ability to undergo PMR. For example, carisoprodol and 

salicylate reports show C:P ratios greater than one, but little PMR is noted with these drugs 

(103, 104).  
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Due to such limitations, McIntyre proposed using the liver tissue to peripheral blood 

ratio (L:P) as a marker for PMR (105). They compiled a list of C:P and L:P ratios for 

commonly encountered drugs in postmortem toxicology. For all 13 drugs, C:P ratios were 

between 1.0 and 3.0 while L:P ratios were between 1.6 and 97. Drugs, such as tricyclic 

antidepressants, known to undergo significant PMR exhibited an L:P ratio greater than 20. 

Other drugs that do not demonstrate PMR had an L:P ratio less than 5. Research supports the 

idea that the L:P ratio is advantageous and can be used in conjunction with the C:P ratio for 

interpreting a drug’s redistribution potential.  

For many years, the toxicology community believed that THC undergoes low to 

moderate PMR due to its chemical properties, despite a paucity of scientific data (106). 

Drugs susceptible to PMR include those that are lipophilic, and basic with a large volume of 

distribution (98). Although THC is not a basic compound, it is highly lipophilic with a 

relatively large volume of distribution. However, few studies evaluated cannabinoids PMR in 

humans or animals. One study compared THC results from a rat animal model to those from 

human cases (107). Rats exhibited a C:P ratio of 1.9 for heart blood concentrations to vena 

cava blood concentrations after 30 mg THC was administered orally. The reported central to 

peripheral ratios in two human cases included in the study were 0.4 and 2.5 (107). The most 

extensive study in animals by Brunet examined redistribution of THC in the Large White 

pigs (108). Fifteen pigs were administered THC via intravenous injection and biological 

specimens were collected at intervals up to 48 h after death. An increase in THC 

concentration in central blood with a corresponding decrease in concentration in peripheral 

blood, confirmed that THC is likely to undergo PMR in pigs (108).  
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Human studies evaluating postmortem redistribution in cannabinoid positive 

casework provide varying results. Holland et al. examined cannabinoids in 19 autopsy cases 

to determine the extent of PMR in humans (109). Cardiac (C) and iliac vein (P) blood 

samples were analyzed for the presence of THC and two metabolites, 11-OH-THC and 

THCCOOH. Median C:P ratios for all three analytes were less than two suggesting modest 

redistribution from tissues to central blood after death. All three analytes showed a slight 

increase in C:P ratios with an increase in postmortem interval. In another human study, 

Lemos and Ingle did not observe redistribution for cannabinoids in 30 postmortem cases 

(90). Mean (median) C:P ratios for THC, 11-OH-THC and THCCOOH were 0.62 (0.38), 

0.90 (1.17) and 1.07 (0.89), respectively. They observed no relationship between C:P ratios 

and postmortem interval for THC or 11-OH-THC with a limited relationship noted for C:P 

ratios and postmortem interval for THCCOOH (90). Meneses and Hernandez found C:P ratio 

ranges from 0.12 – 5.70, 0.28 – 3.33 and 0.27 – 3.08 for THC, 11-OH-THC and THCCOOH, 

respectively, in 43 postmortem cases.  

These three human studies assessing cannabinoid concentrations in postmortem 

central and peripheral samples showed considerable variation in identifying the extent, if any, 

that THC redistributes after death. Published cannabinoid concentrations in liver and 

peripheral blood samples would provide auxiliary data to aid interpretation of PMR; 

however, no such data are available.   

Physiologically Based Pharmacokinetic Modeling 

 Physiologically based pharmacokinetic (PBPK) modeling uses a set of mathematical 

equations to describe a drug’s absorption, distribution, metabolism and excretion processes in 
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the body based on relationships among physiological, biochemical, anatomical and 

physiochemical information (110). This type of modeling can be a vital part of drug 

discovery and development because it predicts drug concentrations in any organ or tissue of 

interest across different dosing regimens (111). The estimation of drug exposure at the site of 

action provided by a PBPK model is highly valuable as it may be difficult or impossible to 

measure the concentration in tissues experimentally (112). Benefits of developing a PBPK 

model include the ability to extrapolate across species, exposure routes, doses and duration 

(111).  

 A whole-body PBPK model consists of physiological compartments that are most 

relevant to the drug’s absorption, distribution, metabolism and excretion properties.  Typical 

tissue compartments include liver, kidneys, muscle and lungs, which are all linked to the 

arterial and blood compartments by blood flows, organ mass, tissue-partition coefficient and 

permeability (113). The building blocks of a PBPK model structure are species-specific 

physiological parameters, chemical-specific parameters and drug administration protocol 

(114). Physiological and anatomical parameters, such as body weight, cardiac output, organ 

weight or volume, blood flow rate and volume of blood in tissues, are dependent on the 

species evaluated by the model. The parameters specific to the compound utilized in the 

model include molecular weight, lipophilicity, and dissociation rate constants. Several drug 

properties, such as tissue-plasma partition coefficients, rate constants, permeability 

coefficients, and fraction of unbound drug, are dependent on properties of both the drug and 

species under consideration (112). The drug administration protocol of the PBPK model is 

tailored to the desired exposure route, dosing regimen and duration of administration.   
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 Limited data are available for THC concentrations in tissues, thus a PBPK model that 

can predict THC concentrations in various tissues would aid in predicting THC distribution 

kinetics across species. Methaneethorn et al. developed the first PBPK model for describing 

THC distribution to seven tissue compartments in mice, rats and pigs (115). Predicted THC 

concentrations from the model were compared to data collected previously from three 

pharmacokinetic studies and found that the developed model adequately simulated THC 

tissue concentrations (49, 116, 117).  

Further research yielded a PBPK model of THC in humans that was extrapolated 

from the PBPK model in mice, rats and pigs (118). Five THC pharmacokinetic studies 

following IV bolus, IV infusion, oral, smoking and vaping cannabis administration were used 

to assess model predictions (30, 46, 119-121). Simulated plasma concentration-time profiles 

from the model were comparable to observed concentrations from IV bolus, IV infusion and 

oral administration and from one of the three smoking administration studies (118). 

Observations from one smoking study showed a slower decrease in THC concentrations than 

predicted concentrations. Likewise, simulated concentrations for drug delivery by cannabis 

smoking and vaporization over-predicted THC concentrations compared to observation data  

(118). Differences from predicted and observed concentrations could result from the high 

inter-subject variability usually observed in THC pharmacokinetic studies. The observed 

concentrations for model comparison were average values from each of the studies. 

Furthermore, datasets utilized for model evaluation were obtained from several research 

groups with different study designs, participant demographics and pattern of cannabis use, 

and cigarette composition. All these factors could impact pharmacokinetics, thus causing 

variations between model predictions and observed concentrations.  
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Knowledge Gaps, Aims, and Hypotheses 

 Although cannabis use is prevalent in the US, limited data are available for detection 

and quantification of cannabinoids in postmortem forensic casework (80, 85, 86, 90-93, 122, 

123). Most of these methods only include analysis for THC and its major metabolites, 11-

OH-THC and THCCOOH, in blood and/or urine. Forensic interpretation of postmortem 

cases will improve with analysis of more cannabinoids, including major and minor 

components of the cannabis plant and Phase I and Phase II metabolites, and with analysis of 

more biological specimens, including a broad array of tissues. In Chapter 2, this dissertation 

focuses on an analytical method for determination of cannabinoids in postmortem samples. 

Aim 1:  Develop and validate an analytical method for the 

simultaneous identification and quantification of 12 

cannabinoids in postmortem fluids and tissues. 

Hypothesis 1: A sensitive and specific LC-MS/MS method can 

be validated for determination of cannabinoid concentrations 

in postmortem biological specimens. 

Because few studies focus on cannabinoid determination in postmortem forensic 

casework, data are even more rare for cannabinoid distribution in tissues (85, 86, 93, 122, 

124).  Different cannabinoid analytes were quantified in tissues including THC and 

THCCOOH (93); others added 11-OH-THC (86, 124), and others CBD and CBN in brain 

(122). LC-MS/MS permitted analysis of all of these cannabinoids and THCCOOH-g in 

tissues (85). None of these research studies incorporated THC-g, 8β-diOH-THC, 8β-OH-



24 
 

THC, CBG, THCV or THCVCOOH. In Chapter 3, this dissertation highlights cannabinoid 

distribution in postmortem fluids and tissues from authentic forensic cases.   

Aim 2:  Apply the validated method to forensic cases that are a 

part of the aviation incident investigation process. 

Hypothesis 2: Analysis of pilots fatally injured in plane crashes 

will reveal high cannabinoid concentrations in highly perfused 

tissues after cannabis intake. 

Despite extensive THC pharmacokinetic research, the disposition of THC into the 

body after cannabis administration is not fully detailed in literature. Relatively few controlled 

administration studies focused on THC distribution in tissues and none evaluated THC 

distribution after cannabis administration via the inhalation route (49, 94). In Chapter 4, this 

dissertation utilized an animal protocol approved by Oklahoma State University Institutional 

Animal Care and Use Committee (IACUC) to evaluate cannabinoid distribution (ACUP VM-

18-12). Given the limited data available for THC distribution, a PBPK model can aid 

characterization of THC tissue kinetics. Currently, only one research study describes the 

development of a PBPK model for THC in mice, rats and pigs (115). In Chapter 4, this 

dissertation details the physiological, physiochemical and biochemical information required 

for a PBPK model.  

Aim 3:  Develop a PBPK model for THC in rabbits by the 

inhalation route of administration. Determine cannabinoid 

distribution in rabbits after controlled inhaled cannabis 

administration. 
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Hypothesis 3: The rabbit can appropriately model cannabinoid 

distribution after controlled cannabis administration. 

Cannabinoid concentrations in samples collected from rabbits 

immediately upon death will correlate to simulated 

concentrations from the PBPK model. 

Postmortem redistribution, a well-known phenomenon in forensic toxicology, can 

result in significant changes in drug concentrations after death depending on blood collection 

site and postmortem interval. Despite this common knowledge, scarce and conflicting data 

are available describing PMR of cannabinoids in forensic casework (90, 109, 122). Two 

studies assess PMR for THC in pigs – one after intravenous injection (108) and one after 

pulmonary administration, which incorporated a temperature-dependent variable (125). In 

Chapter 5, this dissertation uses the approved IACUC protocol to evaluate cannabinoid 

concentration changes in rabbits after death.  

Aim 4:  Evaluate cannabinoid postmortem redistribution in 

rabbits following controlled cannabis administration. 

Hypothesis 4: Cannabinoid concentrations in rabbits stored at 

two different temperature conditions and necropsied at 

multiple time intervals will reveal time- and temperature-

dependent changes after death. 
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Summary 

 Accurate forensic interpretation of drug concentrations requires an understanding of a 

drug’s pharmacokinetic properties before and after death. Lack of research characterizing 

cannabinoid distribution and postmortem redistribution after cannabis use limits a 

toxicologist’s ability to provide appropriate interpretation in medicolegal investigations. A 

novel LC-MS/MS method was developed for postmortem analysis that includes more 

phytocannabinoids and THC metabolites than any other previously published method. The 

proof of method evaluated cannabinoid concentrations in a broad array of postmortem fluids 

and tissues, providing forensic toxicologists with extensive information about cannabinoid 

distribution in authentic forensic casework. The determination of cannabinoid concentrations 

in rabbits after controlled cannabis administration provides vital distribution data following 

an acute dose. A PBPK model was developed which furthers our understanding of 

cannabinoid distribution patterns. For the first time, postmortem redistribution was evaluated 

in rabbits after cannabis administration via the inhalation route and after storage of the 

carcasses at two different temperatures. The research described hereafter adds considerably 

to the body of knowledge regarding cannabinoid distribution and postmortem redistribution.  
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CHAPTER II 
 

 

IDENTIFICATION AND QUANTIFICATION OF 12 CANNABINOIDS IN POSTMORTEM 

FLUIDS AND TISSUES BY LC-MS/MS 

 

Abstract 

Cannabis sativa is the most abused illicit drug worldwide and is often detected by 

forensic laboratories working with biological specimens from potentially impaired 

drivers or pilots. To address the problem of limited published data regarding 

cannabinoids quantification in postmortem specimens, a liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) method was developed and validated to quantify Δ9–

tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC 

(THCCOOH), 8β,11-dihydroxy-THC (8β-diOH-THC), 8β-hydroxy-THC (8β-OH-THC), 

THC-glucuronide (THC-g), THCCOOH-glucuronide (THCCOOH-g), cannabidiol 

(CBD), cannabinol (CBN), cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and 

11-nor-9-carboxy-THCV (THCVCOOH) in postmortem matrices. Solid phase extraction 

concentrated analytes prior to analysis on a biphenyl column coupled to a mass 

spectrometer in electrospray positive ionization mode using multiple reaction monitoring. 

Linearity ranged from 0.25-50 ng/mL (THC-g), 0.5-100 ng/mL (CBN), 0.5-250 ng/mL 

(THC, 11-OH-THC, THCCOOH, CBD, and CBG), 1-100 ng/mL (8β-diOH-THC,  
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THCVCOOH, 8β-OH-THC, and THCV) and 1-250 ng/mL (THCCOOH-g). Within-run 

imprecision was <11.2% CV, between-run imprecision <18.1% CV, and bias within 

±15.1% of target concentration in blood for all analytes at three concentrations across the 

linear range. No carryover or interferences from endogenous or exogenous substances 

were observed. All analytes were stable in blood at room temperature for 24 h, 

refrigerated (4ºC) for 96 h, and following three freeze/thaw cycles. Matrix effects greater 

than 25% were observed for most analytes in tissues. The proof of concept for method 

applicability involved measurement of cannabinoids in a pilot fatally injured in an 

aviation crash. This new analytical method is robust and sensitive, enabling collection of 

additional cannabinoid postmortem distribution data to improve interpretation of 

postmortem cannabinoid results. 

1. Introduction 

 Other than alcohol, Cannabis sativa is the most widely abused drug in the world 

(1). According to the 2019 National Survey on Drug Use and Health, approximately 48.2 

million (17.5%) Americans aged 12 and older consumed cannabis in the previous year 

(3). Its prevalence in the United States, along with recent legislative changes allowing use 

for recreational and medical purposes in many states, highlights the need for forensic 

toxicology laboratories to detect cannabinoids and their metabolites. Accurate 

cannabinoids identification and quantification is important for documenting impaired 

driving and/or crash causation. 

 The main psychoactive component of cannabis, Δ9–tetrahydrocannabinol (THC), 

is rapidly metabolized in the liver to the active metabolite, 11-hydroxy-THC (11-OH-

THC). Further oxidation produces the major non-psychoactive metabolite, 11-nor-9-
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carboxy-THC (THCCOOH) (12). A minor metabolic pathway produces two metabolites, 

8β,11-dihydroxy-THC (8β-diOH-THC) and 8β-hydroxy-THC (8β-OH-THC) (126). 

Phase II metabolism produces multiple glucuronide metabolites (12).   

 The cannabis plant contains over 550 chemical compounds, including at least 113 

cannabinoids (127). Minor cannabinoids cannabidiol (CBD), cannabinol (CBN), and 

cannabigerol (CBG) were evaluated as markers of recent cannabis usage (30, 128, 129). 

Another cannabinoid, Δ9-tetrahydrocannabivarin (THCV), and its metabolite 11-nor-9-

carboxy-THCV (THCVCOOH), were identified as potential markers for ingestion of 

cannabis versus synthetic THC, dronabinol or Marinol® (8).   

 Forensic toxicologists are often asked to interpret cannabinoid concentrations in 

biological specimens. It is important that analytical procedures reliably identify and 

quantify cannabinoids and metabolites to provide data to aid the toxicologist in forming 

opinions. For years, gas chromatography-mass spectrometry (GC-MS) was the primary 

technique for the detection and quantification of THC, 11-OH-THC, and THCCOOH in 

forensic toxicology laboratories. Limitations of GC-MS analysis include the need for 

alkaline or enzymatic hydrolysis prior to extraction to liberate glucuronide functional 

group(s) from the cannabinoid and the need for chemical derivatization of hydroxyl and 

acid moieties (130-132). Hydrolysis and derivatization steps are time-consuming and 

expensive. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides a 

sensitive and reliable direct analysis of cannabinoids and cannabinoid glucuronides. 

Schwope et al. developed and validated the first LC-MS/MS method to simultaneously 

quantify THC, 11-OH-THC, THCCOOH, THC-glucuronide (THC-g), THCCOOH-

glucuronide (THCCOOH-g), CBD, and CBN in blood using solid phase extraction (133) 
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(87). Scheidweiler et al. expanded this method to include three more cannabinoids – 

CBG, THCV, and THCVCOOH – in hopes of identifying a marker of recent cannabis use 

(83). While the Schwope and Scheidweiler methods are utilized in living subjects from 

clinical studies, there are few methods for the identification and quantification of 

cannabinoids in postmortem fluids and tissue samples. Saenz et al. employed SPE and 

LC-MS/MS to determine THC, 11-OH-THC, and THCCOOH blood and tissue 

concentrations in eleven pilots involved in aviation crashes (86). Gronewold and Skopp  

developed a liquid-liquid extraction  LC-MS/MS method to investigate the distribution of 

THC, 11-OH-THC, THCCOOH, THCCOOH-glucuronide, CBD, and CBN in five 

postmortem cases (85).   

 The goal of this research is to develop and validate an LC-MS/MS method for the 

simultaneous detection and quantification of free and glucuronidated cannabinoids in 

postmortem fluids and tissues. While the data from one pilot has been included to 

demonstrate method applicability, the application of the method to multiple pilots and 

interpretation of the data will be the subject of a separate publication. To our knowledge, 

this is the first analytical method to include THC-g, CBG, THCV, THCVCOOH, 8β-

diOH-THC, and 8β-OH-THC in postmortem forensic casework.   

2. Materials and Methods 

2.1 Reagents and supplies 

THC, THCCOOH, 11-OH-THC, CBD, CBG, CBN, and THCCOOH-g 

methanolic standards were purchased from Cerilliant (Round Rock, TX). THC-g, 8β-

diOH-THC, 8β-OH-THC, and THCVCOOH were obtained from ElSohly Laboratories, 

Inc. (Oxford, MS). Deuterated internal standards were acquired from Cerilliant and 
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ElSohly Laboratories. Ammonium hydroxide, glacial acetic acid, formic acid, LCMS-

grade acetonitrile, hexanes, and water were from Fisher (Fisher Scientific, Pittsburgh, 

PA). Solid phase extraction (133) utilized Bond Elut Plexa PCX columns (3mL/30mg, 

Agilent, Wilmington, DE) and a positive pressure manifold was employed (United 

Chemical Technologies, Inc., Bristol, PA). Tissue samples required a Bead Mill 

Homogenizer (OMNI International, Inc., Kennesaw, GA) for solid tissue 

homogenization.       

2.2 Calibrators, quality control (QC) and internal standards 

Blank bovine blood was fortified with working stock solutions to prepare 

calibrators and quality control samples. A primary 1µg/mL THC-g stock solution and all 

other calibrator stocks at 2µg/mL were prepared in methanol. Appropriate dilutions were 

made in methanol to create a series of calibrator solutions. Twenty-five µL calibrator 

added to 0.5mL blank blood created blood calibrators at 0.25, 0.5, 1.25, 2.5, 5, 12.5, 25, 

and 50ng/mL for THC-glucuronide and 0.5, 1.0, 2.5, 5.0, 10, 25, 50, 100, and 250ng/mL 

for all others. An internal standard solution containing 200ng/mL THC-d3, THCCOOH-

d3, 11-OH-THC-d3, CBD-d3, CBG-d9, CBN-d3, THCCOOH-glucuronide-d3, and 8β-

diOH-THC-d6 was prepared in methanol; 25µL fortified into each sample provided a 

10ng/mL internal standard concentration.  

QC samples were prepared with different reference standard lot numbers than the 

calibrators, when available. Low, medium, and high QC working solutions were prepared 

in methanol. Target concentrations were: THC-g 1, 10, 37.5ng/mL; 8β-diOH-THC, 

THCVCOOH, 8β-OH-THC, THCV, and CBN 2, 20, 75ng/mL; THCCOOH-g, 11-OH-

THC, THCCOOH, CBD, CBG, and THC 2, 75, 200ng/mL.  
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2.3 Specimen pretreatment 

 Calibrators, controls, and blood and tissue specimens were subjected to protein 

precipitation with acetonitrile and pre-treated with ammonium hydroxide and glacial 

acetic acid prior to SPE. Blood (0.5mL) was pipetted into a disposable glass round 

bottom tube (VWR, 16x100 mm). The sample was fortified with 25µL internal standard. 

Ice-cold ACN (3mL) was added dropwise while vortexing. Tubes were capped and 

rotated for 15min, then centrifuged at 3000rpm for 10min. Supernatants were decanted 

into clean conical tubes and evaporated with nitrogen (40°C) to approximately 750µL. 

For urine, bile, and vitreous humor samples, 0.5mL sample was pipetted into a disposable 

glass round bottom tube. Prior to loading for SPE, 2.25mL 0.2% NH4OH in deionized 

water (v/v) and 100µL glacial acetic acid was added to all samples with brief vortexing 

before the addition of the second reagent.   

2.4 SPE 

 Extraction columns were conditioned with 0.5mL methanol, and samples loaded 

by gravity. Columns were washed with 2mL 79:20:1 de-ionized water:acetonitrile:glacial 

acetic acid (v/v/v) and dried under full vacuum for 10min. Columns were washed with an 

additional 200µL hexane under low vacuum, then dried under full vacuum for 3min. 

Analytes were eluted with two separate aliquots (0.5 and 1 mL) 1% glacial acetic acid in 

ACN (v/v) under gravity. Eluents were collected in 10mL conical tubes and dried under 

nitrogen at 40°C in a water bath. Samples were reconstituted in 100µL 0.1% formic acid 

in water:acetonitrile (60:40, v/v), vortexed and transferred to glass inserts in autosampler 

vials.  
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2.5 LC-MS/MS 

The high performance liquid chromatography (HPLC) system consisted of a 

Shimadzu DGU-20A3 degasser, LC-20ADxr pumps, SIL-20ACxr autosampler, and a 

CTO-20 column oven (Shimadzu Corp, Columbia, MD). Chromatographic separation 

was accomplished with a Raptor Biphenyl column (2.7µm, 50 X 3.0mm) fitted with a 

Raptor Biphenyl guard cartridge (2.7µm, 5 X 3.0mm) (Restek Corp, Malvern PA). The 

autosampler temperature was 4°C, column oven 50°C, and injection volume 10µL. 

Gradient elution was performed at a flow rate 0.5mL/min. Initial gradient conditions were 

60%A (0.1% formic acid in water (v/v)) and 40%B (0.1% formic acid in ACN (v/v)), then 

B increased to 65% at 10 min. From 10 to 10.5 min, 95%B maintained for 5min, 

followed by column re-equilibration at 60%A over 0.5min and hold for 2min. HPLC 

eluent was diverted to waste for the first 2 and final 9 min of analysis.  An internal and 

external needle rinse and wash was performed on the autosampler at the 12min mark.     

 Tandem mass spectrometry analysis was performed on a Shimadzu LCMS-8040 

with electrospray ionization (ESI) in positive ionization mode. MS/MS parameters (Table 

1) were optimized via direct infusion of individual analytes at 100ng/mL in initial mobile 

phase. Optimized source parameters were as follows: nebulizing gas flow – 3L/min; 

drying gas flow – 15L/min; desolvation line temperature – 250°C; heat block temperature 

– 400°C.  Argon collision gas was set at 230kPa. Data acquisition and processing was 

controlled by Lab Solutions software (version 5.65).   
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2.6 Method validation 

Linearity, limit of detection (LOD), limit of quantification (LOQ), carryover, 

accuracy, within-run and between-run imprecision, matrix and drug interferences, 

dilution integrity, stability, and ion suppression/enhancement were evaluated during 

method validation following guidelines from the Scientific Working Group for 

Toxicology (134).  

 Preliminary experiments with eight calibrator concentrations revealed the most 

appropriate calibration model.  Calibration curves with at least 7 concentrations were best 

fit by linear-least squares regression across the linear dynamic range for each analyte.  

Calibrators were required to quantify within ±15% of target and curve correlation 

coefficients required to be greater than or equal to 0.99.  Linearity was determined by 

preparing and analyzing a calibration curve on five separate days.   

 LOD was defined as the lowest concentration with MRM transitions with a 

signal-to-noise of greater than 3, retention time within 2% average calibrator retention 

time and qualifier/quantifier transition peak ratios within ±20% mean calibrator transition 

peak ratios. LOQ was defined as the lowest concentration quantified with adequate 

precision (%CV <20%) and accuracy (±20% of target concentration), a signal-to-noise 

ratio of at least 10, retention time within 2% average calibrator retention time.  LOD and 

LOQ were evaluated in triplicate over three runs using fortified blood samples.   

 Carryover was evaluated for all analytes by injecting extracted blank blood 

samples after the highest calibrator of five calibration curves.  To document carryover 

absence, blank blood samples should not meet LOD criteria.  
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Table 1. LC-MS/MS parameters for identification and quantification of 12 cannabinoids in 
postmortem specimens. 

 
 
 

Analyte Retention 
Time (min) 

Dwell Time 
(ms) 

Precursor 
(m/z) 

Product ion 
(m/z) 

Q1 Pre Bias 
(V) 

Collision 
Energy (V) 

Q3 Pre Bias 
(V) 

8β-diOH-THC 2.1 37 347.0 
311.1 -17 -16 -20 
329.1 -17 -12 -22 

8β-diOH-d6 2.1 37 353.0 
317.2 -17 -16 -20 
335.2 -17 -11 -22 

THCCOOH-g 2.3 37 521.1 
299.3 -26 -34 -20 
327.2 -26 -20 -22 

THCCOOH-g-d3 2.3 37 523.9 
348.2 -26 -16 -23 
330.2 -26 -24 -22 

THCVCOOH 2.7 37 317.2 
299.0 -16 -16 -20 
271.2 -16 -19 -28 

THC-g 3.2 47 491.1 
315.3 -25 -19 -20 
193.0 -25 -36 -19 

8β-OH-THC 3.5 37 331.0 
271.1 -25 -19 -28 
201.1 -17 -24 -21 

11-OH-THC 4.0 37 331.2 
200.9 -17 -26 -20 
193.2 -17 -27 -19 

11-OH-THC-d3 4.0 37 334.1 
316.2 -17 -15 -21 
196.1 -25 -25 -20 

THCCOOH 4.2 37 345.2 
193.0 -18 -30 -20 
299.2 -18 -21 -30 

THCCOOH-d3 4.2 37 348.1 
330.1 -18 -16 -15 
302.3 -18 -21 -20 
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Table 1 continued. LC-MS/MS parameters for identification and quantification of 12 cannabinoids 
in postmortem specimens. 

 

Analyte Retention 
Time (min) 

Dwell Time 
(ms) 

Precursor 
(m/z) 

Product ion 
(m/z) 

Q1 Pre Bias 
(V) 

Collision 
Energy (V) 

Q3 Pre Bias 
(V) 

THCV 5.7 37 287.0 
164.9 -14 -23 -28 
122.9 -21 -32 -21 

CBD 6.4 37 315.1 
259.1 -16 -17 -27 
193.0 -16 -19 -19 

CBD-d3 6.4 37 318.1 
262.1 -24 -19 -27 
196.1 -24 -21 -20 

CBG 6.5 37 317.0 
193.0 -16 -14 -19 
123.0 -30 -35 -20 

CBG-d9 6.4 37 326.0 
202.2 -16 -16 -20 
122.9 -34 -38 -20 

CBN 7.3 47 311.1 
241.1 -16 -20 -25 
223.1 -16 -22 -23 

CBN-d3 7.3 47 314.2 
223.2 -16 -21 -22 
241.3 -16 -23 -23 

THC 7.5 47 315.1 
192.9 -16 -20 -20 
123.0 -16 -35 -20 

THC-d3 7.5 47 318.1 196.0 -24 -25 -19 
123.0 -24 -36 -20 

 
 
8β-diOH: 8-Beta-diHydroxy-THC; THCCOOH-g: 11-nor-9-carboxy-THC-glucuronide; 
THCVCOOH: 11-nor-9-carboxy-THCV; THC-g: THC-glucuronide; 8β-OH: 8-Beta-Hydroxy-
THC; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; THCV: Δ9-
tetrahydrocannabivarin; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; THC: Δ9-
tetrahydrocannabinol 
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 Imprecision and accuracy were determined from three replicates at three different 

concentrations across the linear dynamic range for each cannabinoid over five different 

runs. Blood low, medium, and high quality control target concentrations were: THC-g 1, 

10, 37.5ng/mL; 8β-diOH-THC, THCVCOOH, 8β-OH-THC, THCV, and CBN 2, 20, 

75ng/mL; THCCOOH-g, 11-OH-THC, THCCOOH, CBD, CBG, and THC 2, 75, 

200ng/mL. Accuracy (bias) was calculated by comparing the difference of the overall 

mean result to target concentration for all analytes and was expressed as the percent of 

target concentration. Maximum acceptable bias was ±20% of target. Between- and 

within-run imprecision was calculated across multiple analytes at three different control 

concentrations using a One-Way Analysis of Variation (ANOVA) approach and 

expressed as the percent coefficient of variation (%CV). The %CV could not exceed 20% 

at each concentration.   

 Interferences may come from endogenous compounds in the matrix, presence of 

other drugs, or internal standards. Analyte peak identification criteria for all interference 

studies were retention time within ±2% average calibrator retention times and 

qualifier/quantifier transition peak area ratios within ±20% of mean calibrator transition 

peak ratios. Matrix interferences were evaluated by combining 10 different blank sources 

into 2 matrix pools. Matrices assessed were blood, urine, vitreous humor, liver, lung, 

kidney, spleen, muscle, brain, and heart. The pools were extracted and analyzed to 

demonstrate the absence of matrix interferences.  

To evaluate other commonly encountered drugs, 4 mixes were prepared at 

1µg/mL drug in methanol.  The mixes included: Opiates - hydrocodone, oxycodone, 

morphine, oxymorphone, codeine, hydromorphone; Drugs of Abuse - phencyclidine, 
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methamphetamine, amphetamine, JWH-073, JWH-018, AB-PINACA; Benzodiazepines- 

diazepam, nordiazepam, lorazepam, oxazepam, temazepam, midazolam, alprazolam, α-

hydroxyalprazolam; Over-the-Counter Medications - diphenhydramine, 

chlorpheniramine, acetaminophen, ibuprofen, naproxen, ephedrine, dextromethorphan, 

doxylamine.  

Deuterated internal standards may contain a small amount of the native drug 

analyte as an impurity. To evaluate, blank blood was fortified with 10ng/mL deuterated 

internal standard mix, extracted and analyzed to monitor signal. No interferences were 

noted if the peak did not meet identification criteria at the LOD. Hydrolysis of 

glucuronides and conversion of cannabinoids during sample processing were evaluated 

by fortifying a blank blood sample with each cannabinoid individually at 500ng/mL.   

 Dilution integrity was explored by fortifying a blood sample with 50ng/mL THC-

g and 100ng/mL of other cannabinoids. Two different dilutions, 1:2 and 1:5, were 

evaluated by extracting a smaller sample volume, 0.25mL (n=5) and 0.10mL (n=5), 

respectively. Dilution integrity was upheld if samples quantified within ±20% of 

expected concentration.   

 Short-term analyte stability was evaluated by fortifying blank blood with analytes 

at low and high QC concentrations and analyzed under three different conditions (n=3): 

room temperature, refrigeration (4°C) and freeze/thaw cycles (-20°C). Room temperature 

samples were analyzed after 24h and refrigerated samples were analyzed after 24, 48, 72 

and 96h in storage. All freeze/thaw samples were removed from the freezer each day, 

allowed to thaw, and three aliquots were extracted, while remaining samples were 
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returned to the freezer. Analytes were deemed stable if observed concentrations were 

within 20% of target.   

Processed sample stability was measured by extracting low and high QC samples 

(n=3), combining reconstituted samples, dividing them into different autosampler vials, 

and immediately analyzing them on the instrument. Ratios of peak area of analyte to 

internal standard were calculated and triplicates were averaged for each concentration to 

establish time zero response. Vials were stored on the autosampler (4°C) and re-injected 

at 24, 48 and 72h and the calculated ratios of peak areas of analyte to internal standard 

were compared to time zero. Analytes were considered stable if the response was within 

±20% of time zero response average.   

 Ionization suppression/enhancement was assessed by post-extraction addition. 

Two sample sets were prepared, with set one neat standards prepared at two 

concentrations –low (5ng/mL) and high (75ng/mL). Neat standards were injected six 

times to establish a mean peak area for each concentration. Set two consisted of two 

blank matrix pools used from the matrix interference studies. Matrices evaluated for ion 

suppression/enhancement were: blood, urine, vitreous humor, bile, liver, lung, kidney, 

spleen, muscle, brain, and heart. Two pools were extracted in duplicate and after 

extraction, the sample was reconstituted with low or high neat standard mix. Ion 

suppression or enhancement was calculated by dividing mean analyte peak area in set 2 

by mean analyte peak area in set 1, subtracting 1, and multiplying by 100 to convert to a 

percentage. Any positive value is considered enhancement and any negative value is 

considered suppression.   
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Matrix effects were further evaluated in tissues with three replicates fortified at 

low, mid, and high QC concentrations to establish if a quantitative value could be 

accurately and precisely determined in matrices other than blood. Non-blood matrices 

evaluated were liver, lung, kidney, spleen, muscle, brain, and heart. Each tissue (~5g) 

was mixed with deionized water (~15g) to produce a 1:4 tissue homogenate and 0.5g was 

taken through the extraction process. Accuracy and imprecision were calculated for each 

matrix type at the QC concentrations. Acceptable criteria were ±30% of target and 20% 

CV for accuracy and imprecision, respectively.   

2.7 Application to an authentic case 

As proof of method, postmortem fluids and tissues from a fatally injured pilot 

received by the Federal Aviation Administration’s (FAA) Forensic Sciences Section 

during 2019 was analyzed using the described LC-MS/MS method.  

3. Results 

3.1 Method development and validation 

 The best fit calibration model was a linear least-squares regression with 1/x2 

weighting. All correlation coefficients exceeded 0.99. Table 2 details LOD, LOQ, 

linearity, and calibration results. LOD was administratively set as the lowest non-zero 

calibrator for each analyte (Figure 4). There was no carryover observed with any 

analytes. 

 Accuracy and imprecision were evaluated at three QC concentrations (n=5): 2, 20 

75ng/mL for 8β-diOH-THC, THCVCOOH, 8β-OH-THC, THCV, CBN; 2, 75, 200ng/mL 

for THCCOOH-g, 11-OH-THC, THCCOOH, CBD, CBG, THC; 1, 10, 37.5ng/mL for 
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THC-g. Bias was less than ±20% of target. The ANOVA approach defined by SGWTOX 

guidelines determined overall within- and between-run imprecision. All CV values were 

less than 20% (Table 3). 

 There were no interfering peaks in 10 different biological matrices sources. None 

of 28 drugs evaluated produced peaks that met LOD identification criteria. There was no 

interference noted with deuterated internal standards fortified at 10ng/mL and standards 

did not produce interferences with other standards. There was no evidence of CBD to 

THC conversion during the analysis for a 500ng/mL CBD sample. When glucuronide 

standards were fortified at 500ng/mL in blood, a small amount of THCCOOH was 

detected with the THCCOOH-g standard. The THCCOOH-g standard contained a trace 

amount of THCCOOH. A 20ng/mL THCCOOH-g standard contained an analytically 

insignificant 0.5% THCCOOH. 

 Dilution integrity was assessed by extracting blood samples (100ng/mL) with 

volumes of 0.25mL and 0.10mL, instead of the typical assay volume of 0.5mL. 

Concentrations of replicates (n=5) for both reduced volumes were within ±20% of target 

for all cannabinoids except THCCOOH-g.   

All analytes at low and high QC concentrations in blood extracts were stable at 

room temperature for 24h, 4°C for 96h, and after three freeze/thaw cycles. Extracted 

samples at low and high QC concentrations were re-injected after 24, 48, and 72h in the 

cooled (4°C) autosampler to test for processed sample stability. Three analytes, 8β-OH-

THC, THC-g, and THCCOOH-g, were least stable, showing greater than 20% change in 

both low and high concentrations after only 24h.  CBD, CBG, 11-OH-THC, THCV, and  
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Table 2. Calibration Results (n=5) for 12 Cannabinoids in Blood by LC-MS/MS. 

 

Analyte Internal          
Standard 

LOD/LOQ 
(ng/mL) 

Linear range 
(ng/mL) 

R2 
(mean) 

8β-diOH-THC 8β-diOH-d6 1 1 - 100 0.998 
THCCOOH-g THCCOOH-g-d3 1 1 - 250 0.990 
THCVCOOH THCCOOH-d3 1 1 – 100 0.997 
THC-g THCCOOH-d3 0.25 0.25 – 50 0.993 
8β-OH-THC 11-OH-THC-d3 1 1 – 100 0.995 
11-OH-THC 11-OH-THC-d3 0.5 0.5 – 250 0.994 
THCCOOH THCCOOH-d3 0.5 0.5 – 250 0.994 
THCV CBD-d3 1 1 – 100 0.996 
CBD CBD-d3 0.5 0.5 – 250 0.997 
CBG CBG-d9 0.5 0.5 – 250 0.998 
CBN CBN-d3 0.5 0.5 – 100 0.999 
THC THC-d3 0.5 0.5 – 250 0.996 

 
8β-diOH: 8-Beta-diHydroxy-THC; THCCOOH-g: 11-nor-9-carboxy-THC-glucuronide; 
THCVCOOH: 11-nor-9-carboxy-THCV; THC-g: THC-glucuronide; 8β-OH: 8-Beta-Hydroxy-
THC; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; THCV: Δ9-
tetrahydrocannabivarin; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; THC: Δ9-
tetrahydrocannabinol 
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Figure 4. MRM ion chromatograms of cannabinoid analytes at the limits of quantification. 8β-
diOH: 8-Beta-diHydroxy-THC; THCCOOH-g: 11-nor-9-carboxy-THC-glucuronide; 
THCVCOOH: 11-nor-9-carboxy-THCV; THC-g: THC-glucuronide; 8β-OH: 8-Beta-
Hydroxy-THC; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; THCV: 
Δ9-tetrahydrocannabivarin; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; THC: 
Δ9-tetrahydrocannabinol 
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Table 3. Bias and Imprecision (Within-run and Between-run) of 12 Cannabinoids in Blood (n=15). 

  
Low QC   Mid QC   High QC  

 Bias 
(%) 

Imprecision (%CV)  
Bias 
(%) 

Imprecision (%CV)  
Bias 
(%) 

Imprecision (%CV) 

Analyte 

Within-
run 

Between-
run   Within-

run 
Between-

run   Within-
run 

Between-
run 

8β-diOH-THCa 3.2 8.7 11.7  -1.8 7.9 11.3  -7.3 4.8 9.0 
  

THCCOOH-gb -13.0 4.9 8.5  -12.6 2.9 8.1  -4.5 4.4 5.3 
  

THCVCOOHa 1.6 10.6 10.3  10.0 7.2 7.5  13.8 4.7 4.2 
  

THC-gc 7.8 11.2 11.7  1.7 8.3 9.1  -11.0 8.3 10.2 
  

8β-OH-THCa 2.0 7.7 10.8  -2.1 7.6 11.4  3.4 5.2 9.5 
  

11-OH-THCb 13.0 7.0 9.8  6.5 7.0 10.5  -5.3 3.6 9.1 
  

THCCOOHb 11.5 5.6 5.9  0.7 4.7 8.8  -2.2 5.2 6.7 
  

THCVa 10.5 6.9 9.9  2.2 6.3 9.9  -1.4 5.0 9.7 
  

CBDb 10.4 5.9 9.3  -0.3 5.7 7.7  -15.1 7.9 18.1 
  

CBGb 0.0 4.3 6.7  -8.3 3.6 3.9  1.2 4.8 6.7 
  

CBNa 2.0 3.8 8.8  -7.4 3.7 4.4  -11.5 3.8 4.1 
  

THCb 13.6 4.3 7.0  0.4 4.9 7.4  1.2 5.3 4.6 
    

a Low-, mid-, and high-quality control concentrations for 8β-diOH-THC, THCVCOOH, 8β-OH-THC, THCV, and 
CBN were 2, 20, and 75 ng/mL, respectively 
b Low-, mid-, and high-quality control concentrations for THCCOOH-g, 11-OH-THC, THCCOOH, CBD, CBG, 
and THC were 2, 75, and 200 ng/mL, respectively 
c Low-, mid-, and high-quality control concentrations for THC-g was 1, 10, 37.5 ng/mL, respectively. 
8β-diOH: 8-Beta-diHydroxy-THC; THCCOOH-g: 11-nor-9-carboxy-THC-glucuronide; THCVCOOH: 11-nor-9-
carboxy-THCV; THC-g: THC-glucuronide; 8β-OH: 8-Beta-Hydroxy-THC; 11-OH-THC: 11-hydroxy-THC; 
THCCOOH: 11-nor-9-carboxy-THC; THCV: Δ9-tetrahydrocannabivarin; CBD: cannabidiol; CBG: cannabigerol; 
CBN: cannabinol; THC: Δ9-tetrahydrocannabinol 
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THCVCOOH were stable on the instrument for at least 48h. CBN, THC, THCCOOH, 

and 8β-diOH-THC were stable for at least 72h after extraction. 

Matrix effects were evaluated at low and high concentrations in different matrices 

– blood, vitreous humor, urine, liver, lung, kidney, spleen, muscle, brain, and heart. The 

post-extraction addition method determined ionization suppression (negative value) or 

ionization enhancement (positive value). Deuterated internal standards were included to 

assess the impact of ionization suppression/enhancement on internal standards. Matrix 

effects in blood, urine, and vitreous humor were within ±25% for all analytes except 8β-

diOH-THC and THCVCOOH.   

Due to extensive matrix effects seen in tissues, additional experiments were 

undertaken to prove that effects do not adversely affect the method’s ability to detect or 

quantify analytes in these matrices. Ten negative human tissue samples were pooled and 

homogenized. Tissue homogenates (n=3) were fortified with various concentrations to 

evaluate accuracy and imprecision for each analyte. Criteria for analyte detection in 

tissues is a peak with a signal-to-noise of at least 3, retention time within 2% average 

retention time for calibrators, Gaussian peak shape, and qualifier/quantifier transition 

peak ratios ±20% mean calibrator transition peak ratios. Accuracy criterion was widened 

to ±30% due to the complex nature of tissue analysis and significant matrix effects 

identified with extracting tissue matrices. Imprecision criteria was 20%CV for each 

concentration. When detection, accuracy, and imprecision criteria were met, a 

quantitative range was established for the analyte in the tissue type. For any analytes that 

met detection criteria, but failed to meet accuracy or imprecision criteria, the analyte is 

designated as detected. Table 4 summarizes matrix effects and quantitative ranges for 
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tissues. Two analytes, 8β-diOH-THC and THCVCOOH, are excluded from the table 

because these analytes exhibited significant matrix effects in all tissues and they failed to 

meet detection, accuracy, and imprecision criteria at low and mid quality control 

concentrations.  

3.2 Application to an authentic specimen 

Application of the present method to a pilot fatally injured in an aviation crash 

revealed the presence of all cannabinoids, except 8β-diOH-THC, 8β-OH-THC, THCV, 

and CBN, in postmortem fluids and tissues (see Table 5). THC, 11-OH THC, and 

THCCOOH were all detected in blood and brain samples. THC-g was detected in urine, 

bile, liver, and kidney samples, while THCCOOH-g was present in each specimen type 

that was tested. CBG and CBD were both detected in bile. THCVCOOH was detected in 

urine and bile. Results from the method application to 10 fatally injured pilots, including 

the example in Table 5, will be presented in a future publication.  

4. Discussion 

 Most methods described in the literature for determination of postmortem 

cannabinoids were developed using GC-MS and typically limited to THC, 11-OH-THC, 

and THCCOOH in blood and/or urine (84, 90, 109, 135). This LC-MS/MS method 

simultaneously detects THC and its major and minor metabolites, 11-OH-THC, 

THCCOOH, 8β-diOH-THC, and 8β-OH-THC, and glucuronide metabolites in 

postmortem biological specimens. In addition, other cannabinoids, CBD, CBG, CBN, and 

THCV, are included. While there are several studies in the scientific literature evaluating  
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Table 4. Matrix Effects (%) and Quantitative Range (ng/g homogenate) for Tissues of 10 Cannabinoids. 

 

Cannabinoid Liver   Lung   Kidney   Spleen   Muscle   Brain   Heart 

 ME (%) 
Range 

 ME (%) 
Range 

 ME (%) 
Range 

 ME (%) 
Range 

 ME (%) 
Range 

 ME (%) Range  ME (%) Range 

  Low High   Low High   Low High   Low High   Low High   Low High    Low High  

THC -59 -68 0.5 -250  -4 -15 0.5 -250  -41 -31 0.5 -250  -22 -18 0.5 -250  -30 -8 0.5 -250  -24 -11 0.5 -250  -66 -66 0.5 -250 

11-OH-THC -35 -40 0.5 - 250  42 27 5 - 250  21 22 5 - 250  26 31 5 - 250  17 19 0.5 - 250  15 16 0.5 - 250  -21 -30 5 - 250 

THCCOOH -54 -56 5 - 250  -4 -29 5 - 250  -22 -14 5 - 250  6 -2 5 - 250  -30 -22 0.5 - 250  -1 -23 5 - 250  -62 -58 5 - 250 

8β-OH 2 -9 1 - 100  140 71 1 - 100  38 57 1 - 100  95 48 1 - 100  98 49 1 - 100  45 35 1 - 100  3 -8 1 - 100 

THC-g -29 -29 0.25 - 50  -22 -19 Detected  -21 -14 Detected  -18 -13 Detected  -34 -23 Detected  -29 -23 Detected  -45 -38 Detected 

THCCOOH-g -10 -7 1 -250  -2 2 1 -250  1 0 1 -250  4 3 1 -250  -7 2 1 -250  -17 -9 1 -250  -14 -9 5 -250 

CBD -78 -78 5 - 250  -39 -41 5 - 250  -42 -39 5 - 250  -29 -26 Detected  -54 -41 Detected  -41 -46 5 -250  -77 -74 Detected 

CBG -75 -79 0.5 -250  -54 -43 0.5 -250  -44 -41 5 -250  -32 -27 0.5 -250  -58 -40 0.5 -250  -45 -45 0.5 -250  -77 -75 0.5 -250 

CBN -50 -80 X  -37 -45 0.5 -100  -47 -39 10 - 100  -30 -23 10 - 100  -64 -39 10 - 100  23 -45 10 - 100  -81 -77 10 - 100 

THCV -75 -77 Detected   -43 -42 Detected   -45 -39 Detected   -33 -28 Detected   -59 -43 Detected   -47 -46 Detected   -79 -75 Detected 

 

THC: Δ9-tetrahydrocannabinol; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; 8β-OH: 8-Beta-Hydroxy-THC; THC-
g: THC-glucuronide; THCCOOH-g: 11-nor-9-carboxy-THC-glucuronide; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; THCV: 
Δ9-tetrahydrocannabivarin; X: No quantitative range established 
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Table 5. Cannabinoids and Cannabinoid Glucuronides Quantified in Postmortem Specimens 
Collected from a Pilot Fatally Injured in an Aviation Crash 

Analyte Blood 
(ng/mL) 

Urine 
(ng/mL) 

Bile 
(ng/mL) 

Liver 
(ng/g) 

Lung 
(ng/g) 

Kidney 
(ng/g) 

Spleen 
(ng/g) 

Muscle 
(ng/g) 

Brain 
(ng/g) 

Heart 
(ng/g) 

THC < 0.5 NDa 11.5 4.1 19.9 5.0 24.3 32.2 1.0 7.3 

11-OH-THC 1.2 ND 83.6 10.5 < 5.0 ND < 5.0 2.8 2.4 < 5.0 

THCCOOH 35.1 60.8 340 236 25.2 182 18.6 18.5 5.4 36.0 

THC-g ND 9.9 2.8 0.7 ND POSb ND ND ND ND 

THCCOOH-g 65.1 359 POS 474 34.0 140 22.0 10.6 2.0 20.0 

CBD ND ND 11.5 ND ND ND ND ND ND ND 

CBG ND ND 8.6 ND ND ND ND ND ND ND 

THCVCOOH ND 2.3 2.4 ND ND ND ND ND ND ND 

a ND = Not Detected 
b POS = Positive 
THC: Δ9-tetrahydrocannabinol; 11-OH-THC: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-
THC; 8β-OH: 8-Beta-Hydroxy-THC; THC-g: THC-glucuronide; THCCOOH-g: 11-nor-9-
carboxy-THC-glucuronide; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; 
THCVCOOH: 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin 
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postmortem cannabinoid concentrations in blood specimens, little research exists 

regarding cannabinoids concentrations in tissue samples.  

The method was sensitive, specific, accurate and precise for all cannabinoids in 

blood. Blood is the preferred specimen of choice in forensic toxicological analyses since 

it provides interpretive value from a pharmacological perspective and there are large 

amounts of data referencing blood drug concentrations (136). However, blood may not be 

available in all situations. At the FAA, the forensic toxicology laboratory relies solely on 

tissues in about 30-40% of cases due to the nature of aviation crashes. It is vital that 

analytical methods are available to accurately quantify cannabinoids in postmortem 

tissues to understand distribution and to provide additional information on postmortem 

cannabinoid results. Tissues are heterogenous in nature containing large numbers of cells, 

membranes, electrolytes, and enzymes. They are complex and diverse matrices that 

require sample preparation and pretreatment before LC-MS/MS analysis. When utilizing 

LC-MS/MS for tissue analysis, it is not uncommon to observe ionization enhancement or 

suppression (137). While several LC-MS/MS methods evaluated matrix effects for 

cannabinoids in blood or urine, there are currently no published methods that thoroughly 

evaluated matrix effects in postmortem tissues samples. Although many analytes 

exhibited significant matrix effects in the tissues tested, the method described was able to 

quantify seven cannabinoids accurately and precisely in tissues.  

The main limitation of the method is the substantial matrix effects identified for 

cannabinoids in the tissue matrices. The complex nature of tissues did not allow for many 

changes to the extraction or instrumentation to improve matrix suppression. Including 

deuterated internal standards wherever possible compensated for the variability in sample 
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extraction and LC-MS/MS analysis due to its nearly identical properties to the unlabeled 

standard. In addition, the bias criteria was expanded to 30% for tissue samples, enabling 

cannabinoid quantification in tissues.  

Limited data are available for cannabinoids concentrations in postmortem fluids 

and tissues. In one death investigation case, Kudo et al. examined blood, urine, and tissue 

samples for THC and THCCOOH by GC-MS (80). THC was positive at low 

concentrations in blood and liver with the highest concentration noted in adipose tissue; 

THC was not detected in the urine. The lack of THC in urine is expected since THC is 

primarily excreted as a glucuronide conjugate. LC-MS/MS permits the simultaneous 

determination of more polar cannabinoids, glucuronide conjugates, in postmortem urine. 

The pilot case evaluated with the validated method confirms the presence of THC-g and 

absence of the parent compound in urine. Furthermore, Kudo et al. was not successful in 

identifying THCCOOH in any tissue samples tested due to interfering peaks. SPE and 

LC-MS/MS utilized by the current method improves sample preparation and eliminates 

interfering peaks.  

Gronewold and Skopp were the first to include THCCOOH-g, CBD, and CBN 

with THC, 11-OH-THC, and THCCOOH for a preliminary investigation into distribution 

of cannabinoids in man (85). In five cases, kidney, liver, and bile had high THCCOOH 

and THCCOOH-g concentrations, consistent with observations from the pilot samples 

analyzed with this validated method. CBD and CBN were prevalent in Gronewold and 

Skopp cases. While the pilot case presented is negative for CBN, other cannabinoids 

tested, CBD and CBG, were positive proving that the validated method is capable of 

detecting minor cannabinoids in postmortem forensic casework.  
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When authentic pilot samples were analyzed, it was apparent that the retention 

time of THCCOOH-g (RT=2.46 min) was slightly different from the commercially 

available reference standard (RT=2.34 min) observed in method development and 

validation. Hubbard et al. also noted a retention time shift for THCCOOH-g between 

human blood samples and calibrators (138). A recent research study showed that 

THCCOOH-g undergoes acyl glucuronide migration with eight different isomers 

identified, confirming that commercially prepared reference substances are a different 

isomer than what is present in human biological specimens (139). Enzymatic hydrolysis 

was performed on the authentic sample, resulting in the formation of the expected 

THCCOOH peak, thus corroborating that the peak detected is an isomer of THCCOOH-

g. The quantitative values for THCCOOH-g in pilots was determined with the calibration 

curve prepared from the commercially available standard.  

5. Conclusion 

 A robust and sensitive method for the simultaneous quantification of a broad array 

of cannabinoids, phase I metabolites, and phase II glucuronide metabolites in postmortem 

samples was developed utilizing SPE and LC-MS/MS. This is the first quantitative 

analytical method for THC-g, 8β-diOH-THC, 8β-OH-THC, CBG, THCV, and 

THCVCOOH in postmortem fluids and tissues. This method adds significantly to the 

body of knowledge available and enables collection of additional postmortem 

cannabinoid data to improve interpretation of postmortem cannabinoid results. Further 

application of the method to authentic forensic casework will describe postmortem 

cannabinoid distribution in more detail.  
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CHAPTER III 
 

 

CANNABINOID DISTRIBUTION IN FATALLY-INJURED PILOTS’ POSTMORTEM 

FLUIDS AND TISSUES 

 

Abstract 

The primary psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC) can 

impair cognitive function and psychomotor performance, particularly for complex tasks 

like piloting an aircraft. The Federal Aviation Administration’s (FAA) Forensic Sciences 

Section at the Civil Aerospace Medical Institute (Oklahoma City, OK) performs 

toxicological analyses on pilots fatally injured in general aviation crashes, permitting the 

measurement of cannabinoids in a broad array of postmortem biological specimens. 

Cannabinoid concentrations in postmortem fluids and tissues from 10 pilots involved in 

airplane plane crashes are presented. Mean±SEM THC blood concentration was 4.3±1.5 

ng/mL. Phase I metabolites, 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC 

(THCCOOH) and phase II glucuronide metabolites, THCCOOH-glucuronide 

(THCCOOH-g), had mean±SEM blood concentrations of 1.3±0.2, 17.9±6.5vand 47.3± 

13.3ng/mL, respectively. Urine analyses revealed positive results for THCCOOH, THC-

glucuronide, THCCOOH-g and 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin 

(THCVCOOH). THC was readily distributed to lung, brain, kidney, spleen and heart. 
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The psychoactive metabolite, 11-OH-THC, was identified in liver and brain with 

mean±SEM concentrations 7.1±1.6 and 3.1±0.7 ng/g, respectively. Substantial 

THCCOOH and THCCOOH-g concentrations were observed in liver, lung, brain, kidney, 

spleen and heart. These data improve our understanding of postmortem cannabinoids 

distribution to support toxicology interpretation of cannabinoid postmortem 

concentrations in forensic investigations.  

Introduction 

 The National Survey on Drug Use and Health reported that 31.6 million 

Americans aged 12 and over are current cannabis (Cannabis sativa) users, with 3.5 

million Americans initiating cannabis use in 2019 (3). Cannabis has wide-ranging central 

nervous system and physiological actions, and legalization in the United States has led to 

adverse public health and safety effects, including increased emergency department visits 

and impaired driving cases related to cannabis use (19).  

 Δ9-tetrahydrocannabinol (THC), the primary psychoactive component of 

cannabis, is responsible for the psychological effects noted with cannabis use. Cannabis 

impairs cognitive functions and psychomotor performance which impact both driving or 

flying ability (60). Driving simulators and on-the-road driving tests show that smoking 

cannabis leads to impairment in reaction times, divided-attention tasks and critical-

tracking tests (66). Flying simulator studies demonstrate that cannabis caused gross 

impairment of flying skills and performance (68, 140, 141).  Major flying mishaps, 

including navigational errors, major altitude deviations, stalling and loss of control events 

and minor heading errors increased after cannabis use.  
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 Many postmortem toxicology laboratories do not routinely perform cannabinoid 

testing, with the notable exceptions of laboratories that support causation determination 

in motor vehicle or plane crashes. The most likely explanation for the scarcity of 

postmortem testing for cannabinoids is due to the long-standing belief that cannabis does 

not directly cause death. This led to a lack of data regarding postmortem cannabinoids 

distribution. Most research on postmortem samples is performed on fluids and typically 

limited to THC and the inactive metabolite, 11-nor-9-carboxy-THC (THCCOOH) (90, 

135, 142, 143). A recent report expanded on postmortem analysis to include THC, 11-

hydroxy-THC (11-OH-THC), THCCOOH, cannabidiol (CBD) and cannabinol (CBN) 

blood concentrations from two postmortem groups - fatal road traffic collision (RTC) 

victims and non-traffic related coroners’ cases (91). They found 29 and 21 cases positive 

for cannabinoids in the non-RTC and RTC group, respectively, which was higher than 

positive alcohol (>80 mg/dL) cases for both groups.  

Forensic toxicologists are often called upon to provide opinions regarding 

relationships between cannabinoid concentrations in biological specimens and cannabis 

effects. While blood is the specimen of choice for correlating concentrations to effects, 

this specimen may not be available for analysis in all postmortem cases due to trauma or 

decomposition. Therefore, it is vital that forensic toxicologists understand cannabinoid 

distribution in postmortem tissues to improve interpretation of cannabinoid 

concentrations in alternative matrices. However, limited research is available detailing 

cannabinoid concentrations in postmortem biological specimens. Meneses and Hernandez 

compared brain cannabinoid concentrations to blood cannabinoid concentrations after 

death and observed higher 11-OH-THC concentrations in brain than blood (122). An 
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animal model for THC distribution revealed fast elimination in the liver, while the 

slowest elimination was observed in adipose tissue (49). 

 The Federal Aviation Administration’s (FAA) Forensic Sciences Section at the 

Civil Aerospace Medical Institute (Oklahoma City, OK) performs toxicological analyses 

on pilots fatally-injured in general aviation crashes. This provides a unique opportunity to 

study cannabinoid concentrations in a broad array of postmortem fluids and tissues. 

Kemp et al. characterized THC and THCCOOH distribution in blood, urine and tissues 

from 55 pilots. They found high THC concentrations in lung and considerable 

THCCOOH concentrations in urine, liver and kidney (93). More recently, Saenz et al. 

performed a comprehensive distribution study for THC, 11-OH-THC and THCCOOH in 

11 fatally-injured pilots. They noted that spleen and muscle were viable tissues for THC 

analysis, whereas brain was a great specimen for detection of the psychoactive 

metabolite, 11-OH-THC (86).  

 The research described here aims to characterize cannabinoids, their phase I 

metabolites, and phase II glucuronide conjugates in postmortem samples by quantifying 

THC, 11-OH-THC, THCCOOH, THC-glucuronide (THC-g), THCCOOH-glucuronide 

(THCCOOH-g), 8β-di-hydroxy-THC (8β-diOH-THC), 8β-hydroxy-THC (8β-OH-THC), 

CBD, CBN, cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV) and 11-nor-9-

carboxy-THCV (THCVCOOH) in fluids and tissues from 10 anonymized pilots fatally-

injured in plane crashes. Cannabinoid concentrations were identified and quantified by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS). To our knowledge, this 

is the first comprehensive evaluation of THC-g, 8β-diOH-THC, 8β-OH-THC, CBG, 

THCV and THCVCOOH in postmortem samples.  
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Materials and Methods 

Pilot specimen collection 

 Biological specimens from pilots fatally-injured in plane crashes are submitted to 

the FAA’s Forensic Sciences Section in a specialized collection kit via commercial 

carrier. Blood samples are collected in glass, gray top Vacutainer® tubes (sodium 

fluoride and potassium oxalate) or glass, green top Vacutainer® tubes (sodium heparin). 

Tissues are submitted individually in zip lock bags. All fluids and tissues are stored 

frozen (-20°C) until analysis. The toxicology database was searched for positive 

cannabinoid cases from 2019. Ten positive cannabinoid cases were selected to undergo 

cannabinoid analysis of blood, vitreous humor, urine, bile, liver, lung, kidney, spleen, 

muscle, brain and heart.   

Cannabinoid analysis 

 Cannabinoids in human fluids and tissues were quantified by a validated liquid 

chromatography tandem mass spectrometry (LC-MS/MS) method (144). Briefly, protein 

precipitation was performed by adding ice-cold acetonitrile to 0.5 mL blood or 0.5 g 

tissue homogenate (1:4 w:w). Urine, vitreous humor and bile (0.5 mL) were not subjected 

to protein precipitation. All samples were pre-treated with 0.2% ammonium hydroxide 

and glacial acetic acid prior to solid-phase extraction (Agilent Plexa PCX, 30mg/3mL). 

Eluents were evaporated to dryness with nitrogen, then reconstituted in mobile phase and 

injected onto an LCMS 8040 (Shimadzu Corporation). Linear ranges were 0.25–50 

ng/mL for THC-g; 0.5–100 ng/mL for CBN and THCV; 0.5–250 ng/mL for THC, 11-

OH-THC, THCCOOH, CBD and CBG; 1–100 ng/mL for 8β-diOH-THC, THCVCOOH 
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and 8β-OH-THC; and 1–250 ng/mL for THCCOOH-g. Interassay imprecisions were 

≤18.1% CV and bias was between -15.1% and 13.6% of target concentrations. 

Results 

 Concentrations of 12 cannabinoids were determined in postmortem fluids and 

tissues from 10 pilots received by the FAA’s Forensic Sciences Section (Table 6). All 

cannabinoids, except 8β-diOH-THC, were identified in at least one biological matrix 

from the 10 pilots. Table 7 summarizes cannabinoid concentrations in blood, vitreous 

humor, urine, bile, liver, lung, kidney, spleen, muscle, brain and heart. Substantial 

variability was noted for the different cannabinoids’ concentrations in different biological 

matrices and between the pilots’ specimens. 

 THC, THCCOOH and THCCOOH-g were the most prevalent cannabinoids 

detected in the tested biological matrices. Figures 5-7 display the relationship between 

the pilots’ blood cannabinoid concentrations and their tissue concentrations. In the 

figures, each biological matrix has a different symbol and each pilot has a different color. 

Regression analyses were performed for blood and biological matrix concentrations. The 

correlation observed between THC blood and any tissue concentrations (Figure 5) was 

not statistically significant (p>0.05). Linear regression analysis between THC blood and 

tissues revealed R2 values: lung, 0.07; brain, 0.22; kidney, 0.38; spleen, 0.01; heart, 0.04. 

There was not enough liver and muscle samples positive for THC to perform regression 

analysis. There is a statistically significant relationship between THCCOOH blood 

concentrations and THCCOOH concentrations in liver (p<0.001), brain (p<0.001), 

kidney (p<0.001), spleen (p<0.001) and heart (p=0.008) (Figure 6). The greatest  
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Table 6. Cannabinoid concentrations in fluids (ng/mL) and tissues (ng/g) in 10 pilots fatally-injured in plane crashes.   

  
Specimen THC 11-OH-

THC
THC-
COOH THC-g THC-

COOH-g
8B-OH-

THC THCV THCV-
COOH CBD CBG CBN

Blood 1.0 5.9 21.7
Urine 67.5 1.8 56.9 4.1
Bile 8.4 367 2.3 POS 3.3 7.6 16.1 51.2
Liver 4.4 90.5 140
Lung 55.8 8.5 7.1
Kidney 2.8 111 78.6
Spleen 3.7 9.7 10.7
Muscle 4.2
Brain 2.4 2.0 3.2
Heart
Blood 2.2 22.9
Vitreous Humor
Urine 12.3 0.3 72.1 1.0
Bile 1.0 2.6 93 POS
Liver 22.0 106
Lung 10.9
Kidney 45.1 46.8
Spleen 5.5
Muscle 2.4 2.6
Brain
Heart 9.5

Case 1

Case 2
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Specimen THC 11-OH-
THC

THC-
COOH THC-g THC-

COOH-g
8B-OH-

THC THCV THCV-
COOH CBD CBG CBN

Blood 1.1 6.1 7.1
Vitreous Humor
Urine 3 0.4 9.4
Liver 6.0
Lung 47.8 36.2
Kidney 4 5.0
Spleen 6.0 7.7
Muscle
Brain 6.8 7.5
Heart
Blood 7.7 1.8 72.6 160.0 3.3
Vitreous Humor 1.9 2.9
Bile 118.0 0.9 32.3 POS 1.2 1.9 1.5
Liver 458 1.5 150.0
Lung 21.6 44.7 143
Kidney 11.9 926.0 4.2 600.0
Spleen 65.1 86.8
Muscle
Brain 23.3 6.0 23.7 12.1
Heart 3.2 27.5 59.0 2.9

Case 3

Case 4
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Specimen THC 11-OH-
THC

THC-
COOH THC-g THC-

COOH-g
8B-OH-

THC THCV THCV-
COOH CBD CBG CBN

Blood 2.1 13.6 39.9
Vitreous Humor 0.6
Urine 0.5 208 3.4 178
Bile 4.0 36.7 414 1.5 POS 7.8
Liver 39.8 177
Lung 11.8 16.7 18.4
Kidney 101 139
Spleen 3.3 13.2 14.3
Muscle
Brain 4.1 2.1 7.1 3.1
Heart 10.8 6.7 3.8
Blood 1.0 4.0 15.6 1.1
Vitreous Humor
Urine 1.5 0.3 26.0
Bile 1.0 2.7 133 1.2 POS
Liver 36.9
Lung 2.0 7.7
Kidney 34 37.0
Spleen 2.1 5.0
Muscle
Brain
Heart 10.5 3.8 4.3

Case 5

Case 6
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Specimen THC 11-OH-
THC

THC-
COOH THC-g THC-

COOH-g
8B-OH-

THC THCV THCV-
COOH CBD CBG CBN

Blood 6.5 1.5 18.7 67.3
Vitreous Humor 0.5
Bile 8.5 35.3 154 2.0 POS 15.6 1.1 1.7
Liver 9.8 208 5.2 407
Lung 3.5 15.0 36.8
Kidney 6.2 108 196
Spleen 5.4 11.2 12.4
Muscle 14.8
Brain 2.9 5.5
Heart 76.4 13.8 12.4
Heart Blood 1.1 5.5 37.4
Femoral Blood 1.6 5.1 29.4
Vitreous Humor
Urine 6.4 0.6 138
Bile 108 0.5 POS 1.4
Liver 23 95.3
Lung 3.5 12.9
Kidney 40 92.9
Spleen 2.3 3.5 5.0
Muscle 7.5
Brain
Heart 21.2 2.9 5.2 3.2

Case 7

Case 8
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THC: Δ9-tetrahydrocannabinol; 11-OH: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; THC-g: THC glucuronide; THCCOOH-g: THCCOOH glucuronide; 8β-OH: 
8β-hydroxy-THC; THCV: Δ9-tetrahydrocannabivarin; THCVCOOH: 11-nor-9-carboxy-THCV; CBD: cannabidiol; CBG: cannabigerol; CBN: cannabinol; NA: no specimens 
available; POS: positive 

  

Specimen THC 11-OH-
THC

THC-
COOH THC-g THC-

COOH-g
8B-OH-

THC THCV THCV-
COOH CBD CBG CBN

Blood 1.2 35.1 65.1
Vitreous Humor
Urine 60.8 9.9 359 2.3
Bile 11.5 83.6 340 2.8 POS 2.4 11.5 8.6
Liver 4.1 10.5 236 474
Lung 19.9 2.1 25.2 34.0
Kidney 5.0 182
Spleen 24.3 1.9 18.6 22.0
Muscle 32.2 2.8 18.5 10.6
Brain 1.0 2.4 5.4
Heart 7.3 2.9 36.0 20.0
Blood 13.7 0.5 15.2 35.7
Vitreous Humor 0.6 1.0
Urine 81.7 7.6 443 2.6
Bile 15.4 30.6 198 POS 24.1 2.6 3.1 24.1
Liver 3.5 170 438.0 1.5
Lung 29.8 26.0 36.4 3.2
Kidney 5.1 182 151.0 1.1
Spleen 6.3 1.8 20.7 25.4
Muscle
Brain 4.9 2.9 10.0
Heart 4.5 21.1 27.6

Case 9

Case 10
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Table 7. Statistical summary of cannabinoid concentrations in postmortem fluids (ng/mL) and tissues (ng/g) from 10 fatally-injured pilots in plane crashes. 

  

THC 11-OH THC-
COOH THC-g THC-

COOH-g 8β-OH THCV THCV-
COOH CBD CBG CBN

Total 8 4 10 10 1 1
Mean 4.3 1.3 17.9 47.3
SEM 1.5 0.2 6.5 13.3
Median 1.6 1.4 9.9 36.6
Range 1.0-13.7 0.5-1.8 2.2-72.6 7.1-160 3.3 1.1

Total 3 3
Mean 1 1.5
SEM 0.4 0.6
Median 0.6 1
Range 0.6-1.9 0.5-2.9

Total 1 8 8 8 4
Mean 55.2 3 160 2.5
SEM 23.1 1.2 53 0.6
Median 36.6 1.2 105 2.5
Range 0.5 1.5-208 0.3-9.9 9.4-443 1.0-4.1

Total 8 7 9 6 10 1 1 4 4 7 2
Mean 21 27.5 204 1.7 7.9 5.7 5.7
SEM 13.1 10.3 42.7 0.3 4.7 2.1 1.9
Median 8.5 30.6 154 1.8 2.9 5.1 3.1
Range 1.0-118 0.9-83.6 32.3-414 0.5-2.8 POS 15.6 1.2 1.9-24.1 1.1-11.5 1.4-16.1 24.1-51.2

Urine

Bile

Blood

Vitreous Humor

Specimen
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THC 11-OH THC-
COOH THC-g THC-

COOH-g 8β-OH THCV THCV-
COOH CBD CBG CBN

Total 6 1 9 10 1
Mean 23.7 21 34.3
SEM 6.7 5.2 12.1
Median 20.8 16.7 26.2
Range 3.5-55.8 2.1 2.0-47.8 7.1-143 3.2

Total 2 4 8 2 9
Mean 7.1 156 225
SEM 1.6 49.1 52.4
Median 7.1 130 150
Range 4.1-6.0 3.5-10.5 22.0-458 1.5 - 5.2 36.9-474

Total 7 5 7 2
Mean 6.5 3.1 8.9
SEM 2.7 0.7 2.4
Median 4.1 2.4 7.1
Range 1.0-23.3 2.0-6.0 3.2-23.7  3.1-12.1

Total 5 10 9 1
Mean 6.2 173 150
SEM 1.4 81.4 56.4
Median 5.1 105 92.9
Range 2.8-11.9 4.2-926 5.0-600 1.1

Specimen

Lung

Liver

Brain

Kidney
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THC: Δ9-tetrahydrocannabinol; 11-OH: 11-hydroxy-THC; THCCOOH: 11-nor-9-carboxy-THC; THC-g: THC glucuronide; THCCOOH-g: THCCOOH 
glucuronide; 8β-OH: 8β-hydroxy-THC; THCV: Δ9-tetrahydrocannabivarin; THCVCOOH: 11-nor-9-carboxy-THCV; CBD: cannabidiol; CBG: cannabigerol; 
CBN: cannabinol; POS: positive

THC 11-OH THC-
COOH THC-g THC-

COOH-g 8β-OH THCV THCV-
COOH CBD CBG CBN

Total 6 2 9 10
Mean 7.6 16.7 19.5
SEM 3.1 6 7.4
Median 4.6 11.2 11.6
Range 2.3-24.3 1.8-1.9 2.1-65.1 5.0-86.8

Total 7 1 7 8 2
Mean 19.1 16 17.7
SEM 9.1 4.4 6.2
Median 10.5 13.8 11
Range 3.2-76.4 2.9 2.9-36.0 3.8-59.0 2.9-3.2

Total 3 1 2 2 1
Mean 16.5
SEM 7.1
Median 14.8
Range 2.4-32.2 2.8 4.2-18.5 2.6-10.6 7.5

Specimen

Spleen

Heart

Muscle
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correlation was noted between blood concentrations and spleen (r=0.96), kidney (r=0.95) 

and liver (r=0.95) for THCCOOH. THCCOOH-g also exhibited statistically significant 

relationship between blood and lung (p<0.001), brain (p=0.002), kidney (p<0.001), 

spleen (p<0.001) and heart (p<0.001) concentrations (Figure 7). The greatest correlation 

was observed between blood concentrations and lung (r=0.91), kidney (r=0.91) and 

spleen (r=0.93) for THCCOOH-g.  

Discussion 

The major strength of the current study was that cannabinoid distribution was 

evaluated in a broad array of postmortem biological specimens. Distribution was 

performed in heart, kidney, spleen and muscle, tissues that are not typically included in 

postmortem toxicology analyses. Furthermore, methodology was expanded to include 

THC-g, 8β-diOH-THC, 8β-OH-THC, CBG, THCV and THCVCOOH, providing much 

needed data for postmortem forensic interpretation. Limitations with this study include a 

small sample size, due to the number of cannabinoid positive pilots received in 2019. 

Additionally, the FAA laboratory lacks information about plane crashes including a 

pilot’s prior cannabis use, postmortem interval and blood site collection, which can 

hinder interpretive value in certain situations. Finally, the traumatic nature and post-crash 

fires associated with many plane crashes may impact postmortem drug results.  

 Overall, blood THC concentrations were appreciably higher than blood 11-OH-

THC concentrations but lower than blood THCCOOH and THCCOOH-g concentrations. 

This finding was consistent with studies that showed blood 11-OH-THC concentrations 

are approximately 10% of blood THC concentrations at Cmax after smoking, and blood 
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Figure 5. Δ9-tetrahydrocannabinol (THC) concentrations in blood (ng/mL) and tissues (ng/g) for 10 pilots fatally-injured in plane crashes. No statistically 
significant (p>0.05) relationship exists between THC blood and tissue concentrations.  
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Figure 6. 11-nor-9-carboxy-THC (THCCOOH) concentrations in blood (ng/mL) and tissues (ng/g) for 10 pilots fatally-injured in plane crashes. A statistically 
significant relationship (p<0.05) exists between blood and liver, kidney, spleen and brain THCCOOH concentrations.  
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Figure 7. 11-nor-9-carboxy-Δ9-tetrahydrocannabinol glucuronide (THCCOOH-g) concentrations in blood (ng/mL) and tissues (ng/g) for 10 pilots fatally-injured 
in plane crashes. A statistically significant relationship (p<0.05) exists between blood and lung, kidney, spleen, brain and heart  
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THCCOOH and THCCOOH-g concentrations are near equivalent to blood THC 

concentrations about 30 min after inhalation (18). Unsurprisingly, high THC 

concentrations in blood were associated with high 11-OH-THC, THCCOOH and 

THCCOOH-g concentrations in blood, as well as high THC concentrations in kidney, 

brain and bile.  

Blood is normally the specimen of choice in forensic toxicology, especially for 

crash investigations, to correlate blood concentrations of psychoactive compounds with 

psychomotor effects. After inhalation, THC is rapidly absorbed in the blood from the 

lungs with peak blood concentrations observed in humans prior to the last cigarette puff 

(145). Although controlled cannabis administration studies provide information about the 

drug’s pharmacokinetics and pharmacodynamics, including potential markers of 

exposure, interpretation of postmortem THC blood concentrations may be challenging 

due to blood collection site variability and postmortem redistribution (PMR).  During 

an autopsy, a sample may be collected from the pool of blood within the thoracic cavity 

instead of direct collection from the heart. Blood cavity samples are considered non-

homogenous due to possible contamination from multiple sources, including liver, lungs 

and bladder; therefore, interpretive value of cavity blood is low (136). Even with a blood 

sample collected directly from the intact heart, caution in interpretation is necessary due 

to the well-known phenomenon of PMR, the diffusion of drugs from tissues with higher 

concentrations into the surrounding blood (99). Although the FAA requests collection site 

listed on blood specimen tubes, not all pathologists provide this information. Only one 

pilot blood sample within the study was identified as “heart blood”; all other samples 

were simply noted as “blood” which may explain the variability noted in THC blood 
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concentrations. In the current study, THC blood concentrations ranged from 1.0-13.7 

ng/mL with a median concentration of 1.6 ng/mL. Other postmortem studies showed 

more variability in blood concentrations. Concentrations from 18 fatal road collision 

cases ranged from 0.7 to 69.5 ng/mL with a median concentration of 4.2 ng/mL (91). In 

another, researchers determined THC concentrations in 18 blood samples with 

preservative ranging from 2.0 – 74.0 ng/mL with a median concentration of 11 ng/mL 

and THC concentrations in 21 blood samples without preservative ranging from 3.0 to 

61.0 ng/mL with a median concentration of 13 ng/mL.  

Urine analysis is commonly employed in forensic toxicology to identify past 

cannabis exposure as the sample contains high cannabinoid concentrations and long 

windows of detection for many cannabinoid metabolites (146). Previous methods utilized 

hydrolysis prior to mass spectrometry to quantify total cannabinoids in urine; however, 

with the availability of glucuronide reference standards, analysis can be performed 

without hydrolysis to directly measure phase two glucuronide metabolites (56, 147). The 

current method includes the detection of two glucuronide conjugates, THC-g and 

THCCOOH-g, but does not include the 11-OH-THC-glucuronide, as there is no 

commercially available reference standard for method development and validation. Direct 

determination of glucuronides negates any issues observed with glucuronide stability or 

poor hydrolysis efficiency.   

No parent THC was detected in any pilot’s urine sample and only one urine 

sample was positive for 11-OH-THC. The lack of positive THC and 11-OH-THC in urine 

is expected since THC and 11-OH-THC are primarily excreted as glucuronide conjugates 

in urine. The 11-OH-THC findings are inconsistent with those by Saenz et al. that 
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showed all available postmortem urine samples positive for 11-OH-THC. An explanation 

for this is that the Saenz study employed hydrolysis measuring total 11-OH-THC 

concentration in urine, whereas the current analysis measures only free 11-OH-THC (86). 

All urine samples were positive for THCCOOH and THCCOOH-g with higher 

concentrations observed for the latter confirming reports that THCCOOH-g is the 

predominant cannabinoid in urine after cannabis administration (146, 148).  

One research group assessed urinary THC-g disposition from frequent and 

occasional cannabis users after smoking cannabis. In some frequent smokers, THC-g was 

detected in urine samples at the last time collected (30 h), negating the value of THC-g as 

a marker of recent usage in frequent users. Some occasional smokers had negative THC-g 

interspersed with positive THC-g in urine samples collected over 20 h. The researchers 

concluded that if there is strong indication of occasional cannabis consumption, then 

THC-g can be used as an inclusionary marker of recent use (146). In the current study, 

THC-g was detected in seven of eight pilot urine samples. Due to the lack of information 

about the deceased pilot’s prior cannabis use, it is not possible to estimate time of last use 

based on urinary THC-g disposition. Research in urine samples identified THCVCOOH 

as a marker for ingestion of a cannabis-related product containing THCV (32). Four of 

the eight pilot urine samples tested positive for THCVCOOH suggesting that these pilots 

consumed a cannabis-containing product prior to flying.            

Vitreous humor is an alternative matrix for the determination of drugs in 

medicolegal death investigations. Drugs and metabolites undergo passive diffusion across 

the blood-vitreous barrier to enter the aqueous environment. Vitreous humor is composed 

of 98-99% water and has a much lower protein content than whole blood, thus 
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concentrations for highly protein-bound drugs tend to be much lower in vitreous fluid 

(149). No vitreous humor samples from the deceased pilots in this study were positive for 

THC. THCCOOH and THCCOOH-g were positive at low concentrations in three and 

two cases, respectively. This agrees with several other reports indicating that 

cannabinoids do not readily transfer into aqueous matrices (142, 150, 151). Although 

vitreous humor may be a good alternative matrix for detection of some drugs of abuse, it 

is not ideal for determining cannabis exposure.        

Liver is the primary organ responsible for metabolism, hence cannabinoid 

metabolites are expected to be present in substantial concentrations as compared to that 

of the parent compound. THC was detected in only two cases at low concentrations (4.1 

and 6.0 ng/g) whereas 11-OH-THC was detected in four (3.5 – 10.5 ng/g). Liver had the 

highest 11-OH-THC concentration determined in this study, which is consistent with 

results from a tissue distribution study of THC in the pig (49). The psychoactive 

metabolite, 11-OH-THC, is further oxidized to form the inactive metabolite, THCCOOH. 

High concentrations of THCCOOH in liver were observed in this study. Phase II 

metabolism produces glucuronide conjugates. Nine pilots had considerably high 

THCCOOH-g concentrations in their livers.  One study regarding the distribution of 

cannabinoids in man found a similar trend with liver exhibiting high THCCOOH-g 

concentrations (85).  

To the authors’ knowledge, this study is the first comprehensive assessment of 

THC-g distribution in postmortem samples. Phase II metabolism, which occurs in the 

liver, produces the polar, water-soluble glucuronide conjugate improving renal and 

biliary excretion of THC-g (152). In the deceased pilots, THC-g was detected in urine, 
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bile, liver and kidneys, all specimens involved in the body’s drug elimination processes. 

The presence of THC-g in kidney and liver was associated with the cases with the highest 

blood THC concentrations.   

Cannabinoid concentrations in lungs are typically higher compared to other 

tissues since inhalation is the most common route of administration. Mean THC 

concentrations were 18 times greater than mean THCCOOH concentrations in lungs in a 

distribution study from 55 pilots (93). These findings are contrary to the present study. 

Mean THCCOOH concentrations in both studies were similar, however, THC 

concentrations in the current study were much lower than those found in Kemp et al (93). 

Information regarding cannabis ingestion or time of use for pilots in aviation crashes is 

rarely, if ever available; therefore, it is possible that the Kemp study included more pilots 

with recent cannabis use prior to the crash resulting in higher THC lung concentrations. 

Although lung concentrations were lower in the current study than in other published 

reports, analysis in lung is useful for cannabis exposure as smoking is the most common 

route of administration and THC accumulates in this tissue.  

THC is highly lipophilic and rapidly crosses the blood-brain barrier, distributing 

the drug from the lungs to the brain after inhalation (47). THC and its active metabolite, 

11-OH-THC, produce effects when they bind to cannabinoid receptors within the brain. 

Consequently, brain is an important matrix for cannabinoid analysis. THC and 11-OH-

THC were detected in brain samples of 6 and 5 cases, respectively. Mura et al. analyzed 

12 paired brain and blood samples for THC, 11-OH-THC and THCCOOH and found that 

THC brain concentrations were greater than the corresponding blood concentrations (95). 

This is slightly different from the current study findings in that not all THC brain 
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concentrations were greater than corresponding blood concentrations. One pilot was 

negative for THC in both blood and brain; five pilots exhibited higher brain THC 

concentrations than blood while four pilots revealed lower brain THC concentrations than 

blood. Varying data could be the result of differences with the pilot’s time of last 

cannabis use, route of administration, or time between death and sample collection. A 

pharmacokinetic study for THC concentrations in blood and brain tissue following 

pulmonary, oral and subcutaneous administration in rats revealed brain concentrations 

several times higher than serum concentrations after oral administration (153). 

Pulmonary administration yielded maximum brain concentrations 15 minutes after dosing 

but concentrations were about three times lower than serum concentrations. A study 

considering PMR of THC in the pigs found that brain concentrations increased as the 

postmortem interval increased (108). Without information regarding prior cannabis use 

and the postmortem interval for these pilots, it is hard to identify a clear reasoning for the 

varying THC results observed in brain and blood samples.  

When considering effects of THC on psychomotor performance, it is important to 

evaluate 11-OH-THC, an equipotent metabolite of THC, in the brain. Hlozek et al. found 

higher 11-OH-THC concentrations in brain than serum samples after pulmonary, oral and 

subcutaneous administration to rats and proposed that the high concentrations observed 

after oral administration added to the behavioral effects seen in their study (153). A 

recent study evaluating cannabinoid concentrations in blood and brain samples from 

medical examiner cases found 11-OH-THC concentrations two times higher than THC 

brain concentrations in three cases (122). One deceased pilot in the current study was 

negative for THC in blood and brain samples but was positive for 11-OH-THC in the 
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brain, suggesting that some psychomotor effects could be present despite a negative THC 

result.  

While the Gronewold et al. study detected THC in all muscle samples and the 

Saenz et al. study detected THC in 10 of 11 muscle samples, the current study detected 

THC in only 30% of muscle samples (85, 86). In a study evaluating THC concentrations 

in the pig following a single intravenous dose, muscle concentrations decreased with 

increasing postmortem interval (PMI) and THC was no longer detected in muscle after 48 

h (108). Aviation crashes may occur in remote locations or may have extensive wreckage 

to process leading to a significant amount of time between death and autopsy. PMI is 

unknown in these cases, but the low cannabinoid concentrations in muscle samples could 

be a result of a lengthy PMI.  

Drug elimination is primarily carried out by the kidneys after biotransformation 

occurs in the liver. Kidneys filter polar drugs and metabolites to complete the elimination 

process; therefore, the kidneys can contain high concentrations of cannabinoid 

glucuronide metabolites and could be a valuable specimen for the detection of 

cannabinoid metabolites and glucuronide conjugates. In the 10 deceased pilots, the 

primary urinary metabolites, THCCOOH and THCCOOH-g, were present in all kidney 

samples at high concentrations. Only one other study is available that evaluated 

distribution of THCOOH-g in kidneys; researchers found results comparable to the 

current study with the large THCCOOH-g concentrations observed in kidneys (85). 

Analysis in kidneys proves beneficial for past cannabis exposure with high THCCOOH 

and THCCOOH-g concentrations found in this tissue.  
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Scarce information is available regarding cannabinoid concentrations in spleen 

tissue with only two papers reporting THC or THCCOOH in human spleen (80, 86). The 

spleen is a highly perfused tissue and acts as a filter for blood by recycling aging red 

blood cells, making it a suitable organ for the determination of highly lipophilic 

compounds like THC (154). THC, THCCOOH and THCCOOH-g showed positivity rates 

of 60%, 90% and 100%, respectively, in pilot spleen samples further confirming that 

spleen is a suitable specimen for cannabinoid analysis. For the current study, the two 

cases with the highest THC concentration in spleen were the only two cases in which 11-

OH-THC was detected in spleen.  

Analysis of heart tissue appears to be valuable for the detection of cannabinoids 

as THC, THCCOOH and THCCOOH-g were found in 7, 7 and 8 of 10 cases, 

respectively. In most of the cases that were positive for THC and THCCOOH, THC 

concentrations were higher than THCCOOH in heart. This may be the result of normal 

blood flow through the circulatory system. Deoxygenated blood flows through the heart 

into the lungs where oxygen and inhaled THC can move into the blood. The oxygenated 

and THC-rich blood is then returned to the heart via the pulmonary veins, exposing the 

left-sided heart tissue to high concentrations of THC. Another explanation for high THC 

concentrations in heart tissue could be due to proximity of the heart to the lungs allowing 

simple diffusion of compounds from the lung into the heart tissue.  

Limited data are available regarding cannabinoid concentrations in bile or its 

significance in interpretation. Many drugs and metabolites, particularly those that are 

lipophilic with a large molecular weight, are eliminated through biliary excretion (155). 

All cannabinoids, except 8β-diOH-THC, were positive in at least one bile sample. 
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Analysis of samples from the ten deceased pilots revealed that concentrations of THC, 

11-OH-THC, THCCOOH and THC-g were higher in bile than any of the other specimen 

types that were analyzed. THCCOOH-g was detected in all bile samples; however, matrix 

effects produced poor recovery of the deuterated internal standard, THCCOOH-g-d3. This 

metabolite was therefore reported qualitatively in bile after meeting identification criteria. 

Other studies determining cannabinoid concentrations in bile showed similar results to 

the current study. One analyzed free and glucuronidated cannabinoids in bile samples 

from 10 cases found high concentrations of THCCOOH-g, moderate concentrations of 

THCCOOH and THC-g and lower concentrations of THC, 11-OH-THC, CBD and CBN 

(143).  Gronewold and Skopp observed high concentrations of CBD and CBN in bile, as 

well as the highest 11-OH-THC concentration (85). The present study revealed that bile 

produced the most positive samples for minor cannabinoids - CBD, CBG, CBN, THCV 

and THCVCOOH. Testing bile in postmortem forensic casework would provide insight 

into prior cannabis use as this specimen revealed the presence of multiple cannabinoids 

and metabolites.  

Several investigators attempted to identify compounds of interest, or “markers”, 

to provide forensic toxicologists with patterns of cannabis use and exposure. Markers 

could give crash investigators substantial interpretive information that is generally not 

available in postmortem cases. Since THC was detected in blood for up to 30 days after 

abstinence, minor cannabinoids and metabolites were evaluated as markers of recent 

cannabis intake (156). Newmeyer et al. showed that CBG and CBN in blood are markers 

for recent cannabis use after inhalation (30). Although minor cannabinoids were included 

in the present study to potentially identify recent usage, it is unclear if postmortem 
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samples will yield insight into prior cannabis use. CBN was only detected in one blood 

sample and CBG was found in bile, heart and muscle of seven cases. The presence of 

CBN in a blood sample indicates recent inhaled cannabis by the pilot prior to flying, but 

further investigation regarding the tissue distribution of minor cannabinoids is needed 

before any interpretive value can be made regarding cannabis exposure or intake.  

Many human pharmacokinetic studies were performed over the years to identify 

absorption patterns, metabolic profiles and elimination pathways after controlled 

cannabis administration. In this study, THC, THCCOOH, and THCCOOH-g tissue 

concentrations in each case were compared to blood concentrations to determine if 

distribution patterns could be identified (Figures 5-7). No relationship was observed with 

THC concentrations between blood and tissues, whereas THCCOOH and THCCOOH-g 

both showed significant relationship between blood and tissues. The lack of THC 

correlation is somewhat expected considering postmortem cases often lack information 

regarding route of administration, dose or potency, time of last use, and past user 

experience, all of which impact the absorption, distribution, metabolism and excretion of 

cannabinoids. 

Conclusion 

 Cannabinoids and cannabinoid glucuronides were quantified in postmortem fluid 

and tissues from 10 fatally-injured pilots involved in aviation crashes. This is the first 

comprehensive distribution study for THC-g, CBG, THCV and THCVCOOH. The data 

add to the growing body of knowledge describing postmortem cannabinoids distribution.  
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 Blood samples tested from 10 deceased pilots in this study showed individual 

variability for THC concentrations. THCCOOH and THCCOOH-g were prevalent in all 

postmortem fluids and tissues except for vitreous humor and muscle. Several tissues 

proved useful for detecting cannabis exposure in postmortem cases. Heart tissue revealed 

high THC concentrations in 7 of 10 cases suggesting it could be a viable specimen for 

postmortem cannabinoid analysis. High concentrations of THCCOOH and THCCOOH-g 

were found in liver and kidney, tissues responsible for drug biotransformation and 

elimination. The presence of psychoactive analytes, THC and 11-OH-THC, in brain 

confirmed that these cannabinoids are readily distributed to this lipophilic tissue and that 

brain should be analyzed in cases attempting to determine crash causation. In addition, 

the data presented proves that urine, bile, liver and kidney are good specimens for the 

detection of the THC glucuronide conjugate, THC-g. A metabolite of THCV, 

THCVCOOH, was identified in bile and urine samples indicating that some pilots 

ingested a cannabis product rather than Marinol® prior to flying. Further research is 

necessary before it is known whether postmortem cannabinoid analysis can aid in 

interpretation of recent cannabis use and exposure or concurrent psychomotor 

impairment.  
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CHAPTER IV 
 

 

APPLICATION OF PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING FOR 

Δ9-TETRAHYDROCANNABINOL DISTRIBUTION IN RABBITS FOLLOWING 

CONTROLLED CANNABIS ADMINISTRATION 

 

Abstract 

 Cannabis sativa is widely used for both medical and recreational purposes and 

Δ9-tetrahydrocannabinol (THC) is the most frequently identified illicit drug in 

investigations of driving under the influence of drugs and plane crashes. Despite the 

prevalence of THC, its tissue distribution is incompletely characterized. The objective of 

this study was to construct a physiologically based pharmacokinetic (PBPK) model to 

describe blood and tissue THC concentrations in rabbits following the administration of 

smoked cannabis by inhalation. Predicted values were compared with results from rabbits 

exposed to cannabis smoke under controlled conditions. High THC concentrations were 

observed in lungs, moderate concentrations were seen in the brain, heart, and kidneys, 

and low concentrations were noted in the liver. Theoretical and experimental partition 

coefficients were similar and produced similar results. The results showed similar THC 

concentrations in blood and tissues between the predicted and experimental data. This 

PBPK model can be used to predict THC concentrations in multiple tissues of rabbits 
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after inhalation of cannabis smoke and might also be extended to other species of interest, 

including humans.  

Introduction 

For thousands of years, Cannabis sativa has been used for medical and 

recreational purposes (157). The cannabis plant is complex, containing 565 different 

chemical compounds of which 120 are classified as cannabinoids (158). Numerous 

conditions or diseases, such as anorexia, multiple sclerosis, Parkinson’s disease, epilepsy, 

and pain are treated with cannabinoids (133, 159-161). An increase in therapeutic uses, as 

well as increasing legalization, creates a need to fully understand cannabinoid 

pharmacokinetics for interpreting drug concentrations in forensic casework.  

 Smoking, the primary route of cannabis administration, provides a rapid and 

efficient delivery of the main psychoactive component, Δ9-Tetrahydrocannabinol (THC) 

(162). THC is highly lipophilic with a large volume of distribution (VD = 10 L/kg) and is 

97-99% protein bound in plasma; hence, it readily distributes to highly perfused tissues 

(163). Metabolism of THC occurs by the hepatic cytochrome P450 enzyme system 

producing the equipotent metabolite, 11-hydroxy-THC (11-OH-THC) (54). Further 

oxidation produces the inactive metabolite, 11-nor-9-carboxy-THC (THCCOOH). 

Glucuronide conjugates of THC, 11-OH-THC and THCCOOH are formed with Phase II 

metabolism and facilitate renal excretion. Approximately 20% of cannabis is excreted in 

the urine while more than 65% is eliminated in the feces (164).  

 Several pharmacokinetic studies were conducted in animals following intravenous 

THC administration (94, 116, 165, 166). While these studies provide valuable data 

regarding THC pharmacokinetics, most did not concentrate on describing THC kinetics 
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in tissues. One of the most extensive studies focusing on THC distribution in tissues was 

performed in Large White pigs (49). Thirty minutes after intravenous injection in the 

jugular vein, high THC concentrations were noted in lung, kidney, heart, and liver. 

Elimination kinetic profiles for kidney, heart, spleen, and lung were analogous the blood 

concentration profile. Six hours after administration, THC concentrations were not 

detectable in liver. Over the 24 h period, THC brain concentrations decreased slower than 

blood.   

Given the limited data describing THC distribution, a physiologically-based 

pharmacokinetic (PBPK) model would allow predictions and cross-species comparisons 

of THC tissue toxicokinetics. A whole-body PBPK model consists of physiological 

compartments that are most relevant to a drug’s absorption, distribution, metabolism, and 

excretion properties (113). PBPK modeling is a computational tool that predicts 

concentrations in various tissues based on species-specific physiological information, 

chemical-specific parameters, and drug administration protocol (110). Physiological and 

anatomical parameters, such as body weight, cardiac output, organ weight or volume, 

blood flow rate, and volumes of blood in tissues, are dependent on the species evaluated 

by the model. The parameters specific to the compound utilized in the model include 

molecular weight, lipophilicity, and dissociation rate constants. Several drug properties, 

such as tissue-plasma partition coefficients, rate constants, permeability coefficients, and 

fraction of unbound drug, are dependent on properties of both the drug and species under 

consideration (112). The drug administration protocol of the PBPK model is tailored to 

the desired exposure route, dosing regimen, and duration of administration.  Benefits of 
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developing a PBPK model include the ability to extrapolate across species, exposure 

routes, doses, and duration (114).  

To date, only one PBPK model describing THC distribution in an animal model is 

available (115). Methaneethorn et al. developed a PBPK model in mice, rats, and pigs 

following intravenous THC administration. The researchers compared predicted THC 

concentrations from their model to data collected previously from three pharmacokinetic 

studies and found that the developed model adequately simulated THC tissue 

concentrations.  

 In the current study, we developed a PBPK model in rabbits after inhaled THC 

administration, approximating the most common route of administration by humans. We 

determined cannabinoid concentrations in postmortem fluids and tissues from rabbits 

following controlled cannabis administration in order to assess cannabinoid distribution. 

The experimentally observed THC concentrations were compared to those predicted from 

the model.  

Materials and Methods 

Animals 

 Three female and two male adult New Zealand white rabbits (Charles River 

Laboratories, Canada) weighing approximately 2.5 kg were used in this study. All animal 

work was conducted at Oklahoma State University (OSU) and was approved by the OSU 

Institutional Animal Care and Use Committee (IACUC). Rabbits were housed 

individually in cages with food (LabDiet 5321, St. Louis, MO) and water available ad 

libitum prior to experimental testing.  

Cannabis 
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 Cannabis cigarettes were obtained through the National Institute on Drug Abuse 

Drug Supply Program. Cigarettes contained 6.8% THC, 0.20% cannabidiol (CBD), and 

0.41% cannabinol (CBN) and were stored at -20°C. About 24 h before use, cigarettes 

were removed from the freezer then placed under 75% humidity at room temperature.  

Experimental design 

 Rabbits were sedated with xylazine (2 mg/kg) administered by intramuscular 

injection into the cranial thigh before being placed into an exposure chamber. Sense of 

smell of a rabbit is very good; thus, xylazine was administered to combat any response to 

breathing patterns during drug exposure. Furthermore, two rabbits were housed together 

in the exposure chamber separated by a wire rack. Sedation prevented any interaction 

between rabbits housed in the same chamber. Cannabis smoke was generated using a 

microprocessor-controlled cigarette smoking machine (model TE-10, Teague Enterprises, 

Davis, CA). Mainstream and sidestream smoke were transported to a mixing and diluting 

chamber before being introduced into two exposure chambers. Four rabbits were exposed 

to smoke from 6 cannabis cigarettes over about a 40 min period. Two cigarettes were 

burned simultaneously with the constant puff machine setting for approximately 13 min, 

then removed and 2 more cigarettes loaded in the machine, until all 6 cigarettes were 

burned. Once the cannabis exposure was complete, the rabbits remained in the chamber 

for 5 minutes for venting of smoke. Rabbits were anesthetized with xylazine (5 mg/kg) 

and ketamine (35 mg/kg) administered by intramuscular injection into the cranial thigh 

and then euthanized by cervical dislocation, with the time of death occurring at 

approximately 65 min after beginning the cannabis administration or 10 minutes after 

leaving the smoking chamber.  
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Sample collection 

 At least 0.5 mL of heart blood was collected from the left ventricle. The heart was 

removed and rinsed with water. All lung lobes were excised and rinsed with water. 

Cavity blood was obtained from the pooled blood in the chest cavity after removing the 

heart and lungs. Urine was collected and its total volume in the urinary bladder was 

measured. A peripheral blood sample was obtained by exposing the caudal vena cava at 

its bifurcation into the external iliac veins. Blood from the femoral, iliac and caudal veins 

was milked to the iliac bifurcation where 0.5 mL was collected. Bile was collected before 

removal of the entire left medial lobe of the liver. Spleen, right kidney and approximately 

5 g of skeletal muscle from the psoas major were excised. Vitreous humor was obtained 

from one eye followed by removal of the entire brain. Blood samples were stored in 10 

mL grey top vacutainers (MedEx Supply, Passaic, NJ) containing potassium oxalate and 

sodium fluoride, whereas bile, urine and vitreous humor were stored in 15 mL 

polypropylene conical tubes (Beckton Dickson, Franklin Lakes, NJ) and tissues were 

stored in 30 mL polypropylene tubes (OMNI International, Kennesaw, GA). All collected 

samples were stored at -20°C until analysis.    

Determination of cannabinoids concentration 

 Cannabinoids were quantified via a validated liquid chromatography tandem mass 

spectrometry (LC-MS/MS) method (144). Briefly, protein precipitation was performed 

by adding ice-cold acetonitrile to 0.5 mL of blood or 0.5 g of tissue homogenate (1:4 

w:w). Urine, vitreous humor, and bile (0.5 mL) were not subjected to protein 

precipitation. All samples were pre-treated with 0.2% ammonium hydroxide and glacial 

acetic acid prior to solid-phase extraction (Agilent Plexa PCX, 30mg/3mL). Eluents were 
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evaporated to dryness with nitrogen, then reconstituted in mobile phase and injected onto 

an LCMS 8040 (Shimadzu Corp). Limit of quantification was 0.25 ng/mL for THC-

glucuronide (THC-g); 0.5 ng/mL for THC, THCCOOH, cannabidiol (CBD), cannabinol 

(CBN) and cannabigerol (CBG); 1 ng/mL for THCCOOH-glucuronide (THCCOOH-g). 

Bias determinations were between -15.1% and 13.6% of target concentrations; 

imprecision calculations were ≤18.1% CV for all analytes. 

PBPK model structure 

A nine-compartment PBPK model was structured to include lung, muscle, heart, 

brain, spleen, kidney, liver, fat and the rest of the body. The schematic diagram is shown 

in Figure 8. THC elimination was assumed to occur through hepatic and renal routes. A 

perfusion-limited and well-stirred model was assumed for all compartments. Lungs were 

included as the site of administration. The brain is the target site for the psychoactive 

effects of THC. Liver is the primary metabolizing organ and kidney is the main excretion 

organ, thus both organs are modeled as individual compartments. Heart, spleen, and 

muscle were also included individually to evaluate THC disposition in these organs. Fat 

was included as part of the model since THC accumulates in this tissue over long periods 

of time; however, no THC concentrations were measured in rabbit fat tissues in this 

study.  

PBPK model parameters 

 Physiological parameters, including organ blood flow (Q) and organ volumes (V), 

were determined by published data from Davies and Morris (167). Physiochemical and 

biochemical parameters, such as partition coefficient, metabolic rate constant, and urinary 

elimination rate constant, were acquired from literature (117, 163, 168, 169).  
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Figure 8. Schematic of the physiologically-based pharmacokinetic model of Δ9-
tetrahydrocannabinol in rabbits through the inhalation route of administration. QC: 
Cardiac output; QM: blood flow to muscle; QH: blood flow to heart; QBr: blood flow to 
brain; QS: blood flow to spleen; QF: blood flow to fat; QRest: blood flow to rest of body; 
QK: blood flow to kidney; QL: blood flow to liver; Rurine: urinary excretion of THC; 
Rmet: metabolism of THC.   
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Physiological and biochemical parameters used in the PBPK model development are 

summarized in Table 8. Additionally, tissue:blood partition coefficients were calculated 

by the Rodgers and Rowland method, obtained from the literature, and measured 

experimentally from data obtained in all five rabbits (Table 9). Berkeley Madonna 

software (Version 8.3.18; University of California at Berkeley, CA, USA) was used to 

develop the PBPK model.  Equations utilized to develop the PBPK model are detailed in 

Tables 10-13.  

Total THC dose administered to rabbits was calculated using a mass balance 

approach (Table 14) to determine concentration (ppm) necessary for the PBPK model. 

After determining total dose to rabbits, the concentration inhaled (CI) in this study was 

calculated using the following equations: 

 CI (mg/L)    =    Total THC dose (mg)  [1] 
        QP (L/h) x T (h) 

 

      CONC (ppm) = 24450*CI (mg/L)   [2] 
                    MW 

where QP is respiratory minute volume for rabbits, T is the total time of exposure, and 

MW is THC molecular weight. Equation 2 converts concentration inhaled from mg/L to 

ppm concentration for the model (170). The exposure concentration (CONC) of THC to 

the rabbits was calculated as 0.107 ppm.   
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Table 8. Physiological and biochemical parameters for PBPK model of THC in rabbits. 

Parameter Abbreviation Value References  
Body Weight (kg) BW 2.5 (167) 
Respiratory minute volume (L/h/kg) QPC 24.4 (171) 
Cardiac output (L/h/kg) QCC 12.7 (167) 
Tissue volume (fraction of body weight, 
unitless) 

   

Blood VbloodC 0.059 (167) 
Liver VLC 0.0308 (167) 
Kidney VKC 0.0052 (167) 
Muscle VMC 0.54 (167) 
Brain VBrC 0.0034 Experimentally measured 
Lung VLuC 0.0037 Experimentally measured 
Spleen VSC 0.0007 Experimentally measured 
Heart VHC 0.0024 Experimentally measured 
Fat VFC 0.08 (167) 
Rest of the body VRC 0.338 Calculated 
Blood flow (fraction of cardiac output, unitless)    
Liver QLC 0.334 (167) 
Kidney QKC 0.151 (167) 
Muscle QMC 0.292 (167) 
Brain QBrC 0.014 (172) 
Spleen QSC 0.001 (167) 
Heart QHC 0.006 (167) 
Fat QFC 0.060 (173) 
Rest of the body QRC 0.3338 Calculated  
Hepatic metabolic clearance rate (L/h/kg) KmC 3.0 (168) 
Percentage of plasma protein binding PB 0.97 (174) 
Urinary elimination rate constant (L/h/kg) KurineC 0.48 (169) 
Percentage of THC bound to plasma protein PPB 0.97 (163) 
THC molecular weight (g/mol) MW 314.45 (163) 

 

 

  



91 
 

Table 9. Tissue:blood partition coefficient (unitless) for THC 

Parameter Abbreviation Published  
Value 

Measured  
Value 

Predicted  
Valuea 

Referenceb 

Brain PBr 2.7 9.0 12.8 (117) 

Liver PL 12.1 3.5 14.6 (117) 

Kidney PK 6.5 8.1 6.9 (117) 

Spleen  PS 3.5 5.4 2.7 (117) 

Muscle PM 3.0 5.4 5.1 (117) 

Heart PH 6.7 9.4 13.7 (117) 

Lung PLu 55.2 75.0c 8.7 (117) 
a Predicted value determined by Rowland and Rodgers method (175) 
b Reference for published values 
c Adjusted value used in final model 
 

PBPK model evaluation 

 The developed PBPK model was used to simulate THC concentrations in blood 

and tissues. The model was evaluated based on comparison of predicted versus measured 

THC concentrations in biological specimens from five rabbits euthanized approximately 

65 minutes after the start of THC administration. Residuals were calculated as the 

difference between the measured THC concentrations and the predicted THC 

concentration in blood and tissues.  
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Table 10. Equations for physiological parameters of PBPK model 
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Table 11. Equations for inhalation and dosing used in the PBPK model 

 Equation Units 

Exposure concentration 0.107 ppm 

Conversion of exposure concentration from         
ppm to mg/L 

CIX=CONC*MW/24450 mg/L 

Inhalation dosing CI=CIX*AIRa mg/L 

Amount inhaled AINH=QP*CI mg 

Initial Amount inhaled init AINH=0 mg 

a AIR: modification repeated square wave function for coding if repeated exposure is 
desired 

 

Table 12. Equations for metabolic and urinary elimination used in the PBPK model 

 Equation Units 

Metabolism of THC in liver compartment   

Rate of metabolism Rmet=Km*CL*VL mg/h 

Metabolic elimination rate Km=KmC*BW h-1 

Rate of urinary elimination Rurine=Kurine*CVK mg/h 

Urinary elimination rate Kurine=KurineC*BW h-1 
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Table 13. Equations for compartments used in the PBPK model 

Compartments Equation Units 

Blood compartment   

Rate of change of THC in venous blood RV=QL*CVL+QK*CVK+QM*CVM+
QH*CVH+QS*CVS-QC*CV 

mg/h 

Amount of THC in venous blood AV mg 

Initial amount of THC in venous blood Init AV=0 mg 

Concentration of THC in venous blood CV=AV/Vven mg/L 

Concentration of unbound THC in venous blood CVfree=CV*(1-PPB) mg/L 

Rate of change of THC in arterial blood RA=QC*CVLu-QC*CAfree mg/h 

Amount of THC in arterial blood AA mg 

Initial amount of THC in arterial blood Init AA=0 mg 

Concentration of THC in arterial blood CA=AA/Vart mg/L 

Concentration of unbound THC in arterial blood CAfree=CA*(1-PPB) mg/L 

Lung compartment   

Rate of change of THC in lung RALu=QC*(CV-CVLu)+CI*QP mg/h 

Amount of THC in lung ALu mg 

Initial amount of THC in lung Init ALu=0 mg 

Concentration of THC in lung CLu=ALu/VLu mg/L 

Concentration of THC in vein of lung CVLu=CLu/PLu mg/L 

Liver compartment   

Rate of change of THC in liver RL=QL*(CAfree-CVL)-Rmet mg/h 

Amount of THC in liver AL mg 

Initial amount of THC in liver Init AL=0 mg 

Concentration of THC in liver CL=AL/VL mg/L 

Concentration of THC in vein of liver CVL=CL/PL mg/L 
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Compartments Equation Units 

Kidney compartment   

Rate of change of THC in kidney RK=QK*(CAfree-CVK)-Rurine mg/h 

Amount of THC in kidney AK mg 

Initial amount of THC in kidney Init AK=0 mg 

Concentration of THC in kidney CK=AK/VK mg/L 

Concentration of THC in vein of kidney CVK=CK/PK mg/L 

Muscle compartment   

Rate of change of THC in muscle RM=QM*(CAfree-CVM) mg/h 

Amount of THC in muscle AM mg 

Initial amount of THC in muscle Init AM=0 mg 

Concentration of THC in muscle CM=AM/VM mg/L 

Concentration of THC in vein of muscle CVM=CM/PM mg/L 

Brain compartment   

Rate of change of THC in brain RBr=QBr*(CAfree-CVBr) mg/h 

Amount of THC in brain ABr mg 

Initial amount of THC in brain Init ABr=0 mg 

Concentration of THC in brain CBr=ABr/VBr mg/L 

Concentration of THC in vein of brain CVBr=CBr/PBr mg/L 

Heart compartment   

Rate of change of THC in heart RH=QH*(CAfree-CVH) mg/h 

Amount of THC in heart AH mg 

Initial amount of THC in heart Init AH=0 mg 

Concentration of THC in heart CH=AH/VH mg/L 

Concentration of THC in vein of heart CVH=CH/PH mg/L 
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Compartments Equation Units 

Spleen compartment   

Rate of change of THC in spleen RS=QS*(CAfree-CVS) mg/h 

Amount of THC in spleen AS mg 

Initial amount of THC in spleen Init AS=0 mg 

Concentration of THC in spleen CS=AS/VS mg/L 

Concentration of THC in vein of spleen CVS=CS/PS mg/L 

Fat compartment   

Rate of change of THC in fat RF=QF*(CAfree-CVF) mg/h 

Amount of THC in fat AF mg 

Initial amount of THC in fat Init AF=0 mg 

Concentration of THC in fat CF=AF/VF mg/L 

Concentration of THC in vein of fat CVF=CF/PF mg/L 

Rest of body compartment   

Rate of change of THC in rest of body Rrest=Qrest*(CAfree-CVrest) mg/h 

Amount of THC in rest of body Arest mg 

Initial amount of THC in rest of body Init Arest=0 mg 

Concentration of THC in rest of body Crest=Arest/Vrest mg/L 

Concentration of THC in vein of rest of body CVrest=Crest/Prest mg/L 

 

 

  



97 
 

Table 14. Mean±SD THC dose administered to five rabbits 

 

 THC  THCCOOH  THCCOOH-g  THC-g 

Sample Concentration 
(ng/mL, ng/g) 

Amount 
(ng) 

 Concentration 
(ng/mL, ng/g) 

Amount 
(ng) 

Equivalent  
THC (ng) 

 Concentration 
(ng/mL, ng/g) 

Amount 
(ng) 

Equivalent  
THC (ng) 

 Concentration 
(ng/mL, ng/g) 

Amount 
(ng) 

Equivalent  
THC (ng) 

Peripheral Blood 2.1±0.9 351±146  0.7±0.4 123±71.6 112±65.4  1.6±1.0 263±171 159±103  0.08±0.07 13.8±10.8 8.9±6.9 

Vitreous 0.8±1.0 0.8±1.2  0±0 0±0 0±0  0±0 0±0 0±0  0±0 0±0 0±0 

Bile 1.0±1.4 1.0±1.4  0±0 0.2±0.4 0.2±0.4  0±0 0±0 0±0  19.8±17.8 19.8±17.8 12.7±11.4 

Urine 0±0 0±0  0±0 0±0 0±0  1.7±2.1 31±40.8 18.7±24.6  16.7±11 248±222 159±142 

Liver 6.8±2.9 525±220  6.2±3.6 476±275 435±251  18.4±10.4 1420±803 858±485  2.1±0.9 160±73 102±46.8 

Lung 391±165 3607±1471  1.7±1.4 12.2±12.4 11.2±11.3  0±0 0±0 0±0  0±0 0±0 0±0 

Kidney 17.3±12.2 286±200  1.0±1.0 5.8±11.6 5.3±10.6  26.5±19.1 434±316 262±191  5.0±4.8 82.1±78.6 52.6±50.4 

Spleen 13.9±10.3 21.4±12  0±0 0±0 0±0  0±0 0±0 0±0  0±0 0±0 0±0 

Muscle 12.1±12.6 16300±16952  0±0 0±0 0±0  0±0 0±0 0±0  0±0 0±0 0±0 

Brain 19.0±8.1 160±67.2  0±0 0±0 0±0  0±0 0±0 0±0  0±0 0±0 0±0 

Heart 19.9±12.5 119±80.5  0±0 0.3±0.6 1.6±3.2  0±0 0±0 0±0  0±0 0±0 0±0 

Total THC Amount (ng) 21372±17917    565±322    1298±793    333±173 

Percent Dose Recovered (%) 85.4±9.3  3.3±3.5    9.2±5.9    2.1±0.9 

THC: Δ9-tetrahydrocannabinol; THCCOOH: 11-nor-9-carboxy-THC; THCCOOH-g: THCCOOH glucuronide; THC-g: THC 
glucuronide; ng: nanogram; mL: milliliter; g: gram; mcg: microgram 
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Results   

Cannabinoid Concentrations  

Cannabinoids and Phase I and Phase II metabolites were quantified in blood, 

vitreous humor, urine, and bile samples (Table 15). No 11-OH-THC was detected in any 

samples throughout the study. THC was detected in all heart, cavity, and peripheral blood 

samples. Mean±SD THC concentrations in heart blood were 4.3±1.7 ng/mL while 

mean±SD THC concentrations in peripheral blood were 2.1±0.9 ng/mL. No THC was 

detected in urine samples and only two vitreous humor samples were quantified for THC 

at low concentrations, 0.5 and 2.5 ng/mL. A sufficient volume (≥0.5 mL) of bile was 

available to permit cannabinoid analysis in four of the five rabbits, and THC could be 

quantified in three out of four of these samples. THCCOOH was quantified in heart, 

cavity, and peripheral blood samples in four rabbits with mean (range) concentrations of 

1.1 (0.5-1.5) ng/mL, 1.2 (0.5-1.5) ng/mL and 0.9 (0.5-1.1) ng/mL, respectively. THC-g 

and THCCOOH-g were quantified in blood, urine, and bile with considerable THC-g 

concentrations noted in urine and bile. Due to a lack of internal standard recovery for 

THCCOOH-g in bile, THCCOOH-g was not quantified. The only minor 

phytocannabinoid detected in any blood sample was CBN and when positive, was found 

at a concentration approximately 10% of THC concentration in the corresponding blood 

sample.  

THC was quantified in all lung, liver, brain, heart, kidney, and spleen samples and 

in all but one rabbit muscle sample. As expected from inhalational administration, lung 

tissue exhibited the highest THC concentrations of all the tested tissues, in all five 

rabbits, with a mean (range) concentration of 391 (103-387) ng/g. Figure 9 shows the  
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Table 15. Cannabinoid Concentrations in Blood, Urine, Vitreous Humor, and Bile (ng/mL) 

Rabbit Specimen THC THCCOOH THCg THCCOOHg CBN 

1 

Heart Blood 5.0 0.5 0.3 1.5 0.5 

Cavity Blood 6.4 0.5 0.3 3.0 0.7 

Peripheral Blood 1.6 0.5 - 1.2 - 

Urine - - 8.9 - - 

Vitreous 0.5 - - - - 

Bile - - 48.6 POS - 

2 

Heart Blood 4.1 1.1 - 1.6 - 

Cavity Blood 4.1 1.5 - 3.3 - 

Peripheral Blood 3.0 1.1 - 2.3 - 

Urine - - 4.2 - - 

Vitreous - - - - - 

Bile 1.3 - 14.3 POS 1.8 

3 

Heart Blood 6.5 1.5 0.3 1.4 0.6 

Cavity Blood 16.1 1.5 - 2.5 1.7 

Peripheral Blood 2.9 1.0 0.3 1.0 - 

Urine - - 25.3 1.2 - 

Vitreous 2.5 - - - - 

Bile 3.5 1.1 16.4 POS 3.4 

4 

Heart Blood 1.4 - - - - 

Cavity Blood 0.7 - - - - 

Peripheral Blood 0.7 - - - - 

Urine - - 11.2 - - 

Vitreous - - - - - 

Bile N/A N/A N/A N/A N/A 

5 

Heart Blood 4.5 1.3 - 3.8 0.5 

Cavity Blood 4.1 1.3 - 6.9 0.6 

Peripheral Blood 2.4 1.1 - 3.2 - 

Urine - - 33.6 5.8 - 

Vitreous - - - - - 

Bile 2.7 - 30.9 POS 2.2 
THC: Δ9- tetrahydrocannabinol; THCCOOH: 11-nor-9-carboxy-THC; THC-g:THC 
glucuronide; THCCOOH-g: THCCOOH glucuronide; CBN: Cannabinol; POS: positive 
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mean±SEM THC concentration for tissues, excluding lung. Liver, the primary site of 

THC metabolism, exhibited the lowest mean THC value while heart showed the highest 

mean THC value.  

In addition to high THC concentrations in the lungs, minor phytocannabinoids 

present in cannabis material were quantified in lung samples. CBN was the most 

abundant of these cannabinoids with concentrations approximately 18% of lung THC 

concentration. Lung CBN concentrations ranged from 21.6 to 116 ng/g with mean 

concentration of 69.9 ng/g. Other cannabinoids, CBD and CBG, were found in similar 

concentrations to each other, with CBD concentrations ranging from 5.8 to 26.7 ng/g and 

CBG concentrations ranging from 4.4 to 26.9 ng/g in lung. Mean CBD and CBG 

concentrations were 16.6 and 15.2 ng/g, respectively. Low concentrations for THCV in 

lung was observed with mean (range) concentration of 5.6 (0-9.5) ng/g.  

Metabolites were prevalent in liver and kidney, tissues that are responsible for 

biotransformation and drug elimination. The phase I metabolite, THCCOOH, was 

quantified in four of the five liver samples with concentrations ranging from 4.6 to 9.9 

ng/g and mean concentration of 6.2 ng/g. Phase II metabolites, THC-g and THCCOOH-g, 

were quantified in all five kidney samples with mean (range) concentration of 5.0 (1.5-

14.4) ng/g and 26.5 (2.1-59.6) ng/g, respectively. Liver THC-g and THCCOOH-g 

concentrations were consistently less than those determined in the kidney. Mean 

concentration for THC-g in liver was 2.0 ng/g with concentrations ranging from 0 to 3.1 

ng/g. Mean concentration for THCCOOH-g in liver was 18.4 ng/g with concentrations 

ranging from 4.5 to 36.9 ng/g.   
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Figure 9. Mean±standard error mean Δ9-tetrahydrocannabinol (THC) concentrations in 
rabbit tissues approximately 65 minutes after start of dosing.  
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PBPK Model  

 Tissue:blood partition coefficients (PC) are available in the scientific literature, 

predicted using a biologically-based algorithm, or calculated as the ratio of the 

concentration of an analyte in a tissue to the concentration in blood. Mean THC 

concentrations for liver, kidney, spleen, muscle, brain and heart for the five rabbits were 

divided by the mean THC concentration in peripheral blood to obtain a measured 

tissue:blood PC (Table 9 – measured values).  

Model simulations were performed in liver, brain, kidney, spleen, muscle, and 

heart using measured, predicted, and published PC values listed in Table 9 (Figure 10). 

Small differences between all three simulations were observed for spleen, muscle, kidney 

and heart. Simulated THC concentrations for liver with the predicted and published data 

were very similar, whereas the simulated THC concentrations for liver with the observed 

PC value produced slightly lower THC concentrations. Predicted THC concentrations 

using published PC value for brain produced lower THC concentrations than THC 

concentrations using the measured and predicted PC values for brain. Model simulations 

were performed in lung and blood using measured PC values for all tissues and optimized 

lung PC value of 75 (Figure 11).  

Residuals were calculated between the average THC concentration and its 

predicted concentration at 1.1 h for blood and tissues. Tissue residuals were determined 

as 9.7, 9.0, 7.7, 6.7, 5.8, 2.3 and 0.6 ng/mL for muscle, heart, spleen, kidney, lung, brain 

and liver, respectively. Blood was the only sample type in which the measured value was 

below the predicted value giving a residual of -1.0 ng/mL.  



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (h) 

Figure 10. Simulated THC concentration results in tissues from the PBPK model using 
blood:tissue partition coefficient values from measured data (           ), predicted data (          ), 
and published data (         ). Observed (     ) THC concentrations in tissues from five rabbits 
necropsied immediately upon death.  
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Figure 11. Simulated THC concentrations (        ) in lungs and blood from the PBPK model 
using measured blood:tissue partition coefficient values. Observed THC concentrations (    ) in 
lungs and heart blood from five rabbits necropsied immediately upon death. 
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Discussion   

 Many distribution studies in animals use mice or rats; however, we utilized the 

rabbit with our experimental protocol for several reasons (176). First, the rabbit is larger 

than rats or mice, allowing for collection of blood to exceed the minimum amount 

(0.5mL) necessary for analysis. Furthermore, rabbits have a gallbladder, unlike rats, for 

the collection of a bile sample (177). Bile revealed high cannabinoid concentrations in 

human studies, thus obtaining a bile sample and determining cannabinoid concentrations 

in this sample type was important (85, 143). In addition, THC metabolic pathways in the 

rabbit are similar to humans providing a comparison between rabbits and humans for 

cannabinoid metabolite results obtained in the current study (178). Finally, the 

experimental set-up was an ideal situation that allowed two rabbits in each exposure 

chamber during cannabis administration. The rabbit proved to be a good animal model 

for determining cannabinoid distribution after inhaled cannabis administration.  

Interestingly, THC concentrations were higher in heart blood than in peripheral 

blood, even though samples were collected immediately after death. Therefore, it is likely 

that THC heart blood concentrations exceeded peripheral blood concentrations ante 

mortem as well. Given that THC concentrations were higher in the lung than in any other 

tissues measured, it is likely that heart blood THC concentrations reflected absorption of 

THC, as the pulmonary vein drains into the left side of the heart. A similar observation 

was reported by Brunet et al. after intravenous administration of THC to pigs via the 

jugular vein (108). Higher THC concentrations were noted in cardiac blood than inferior 

vena cava 2 hours after administration. The authors also postulate that higher THC 
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concentration in cardiac blood is due to diffusion of THC from lung tissue into cardiac 

blood from pulmonary blood.  

Cannabinoid excretion into urine is well documented and characterized. While 

most of an inhaled cannabis dose in humans is excreted in the feces, about 20% of the 

dose is excreted in the urine as acidic metabolites (54). Many of the primary acidic 

metabolites are the glucuronide conjugate form, which increases water solubility and 

facilitates excretion (47). For many years, cannabinoid quantification in urine has 

involved alkaline or enzymatic hydrolysis to measure unconjugated THC, 11-OH-THC, 

and THCCOOH concentrations. With the availability of commercial conjugated 

standards for THC and THCCOOH, methods were developed and utilized for direct 

quantification of glucuronide conjugates in biological specimens (56). Direct 

quantification allows for the determination of free and glucuronidated THC and 

THCCOOH in urine. In the current study, only conjugated metabolites, THC-g and 

THCCOOH-g were detected in rabbit urine samples, confirming that primary metabolites 

in urine after acute cannabis administration are glucuronidated metabolites.  

Bile was used as an alternative matrix to urine for drug analysis in postmortem 

cases because many drugs concentrate in bile. Biliary excretion most commonly occurs 

for polar drugs with high molecular weights, like the Phase II glucuronide metabolites. 

Scant research is available regarding cannabinoid concentrations determined in bile or its 

significance in interpretation.  A limited investigation of the distribution of THC, 11-OH-

THC, THCCOOH, THCOOH-g, CBD, and CBN in man revealed substantial 

concentrations in bile for all cannabinoids, except THC (85). Fabritus analyzed THC, 11-

OH-THC, THCCOOH, THC-g, THCCOOH-g, CBD, and CBN in 10 bile human samples 
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that were positive for cannabinoids in blood and urine. Extremely high concentrations of 

the glucuronidated conjugates were found in bile as compared to free THC and 

THCCOOH (143). In the current study, rabbit bile samples exhibited the highest THC-g 

concentrations of any specimen tested. Besides blood and lung, bile was the only 

specimen with quantifiable results for CBN. Furthermore, THC was detected in 3 out of 4 

available bile samples at higher concentrations than heart blood. This study showed that 

bile is an excellent specimen for identifying cannabinoid exposure with its extremely 

high concentrations of THC-g and THC after acute inhaled administration.  

 Tissue analysis is an important aspect of drug distribution, showing which tissue 

is most likely to store THC after administration. Concentrations of THC in rabbit lungs 

were 10 to 100 times higher than all other organs tested. This result is expected as lungs 

are the organ responsible for absorption of THC after inhalation. Following inhalation, 

THC enters the systemic circulation by the pulmonary veins with distribution dependent 

on several chemical properties. Drug distribution is also dependent upon the drug’s 

physiochemical properties including volume of distribution, lipophilicity and protein 

binding. THC is highly lipophilic with a large volume of distribution despite the fact that 

it is 95 to 99% bound to plasma proteins (52). Based on its properties, THC is initially 

taken up by highly perfused tissues, such as the lungs, heart and brain. In addition to high 

THC concentrations observed in the lungs, this study revealed high THC concentrations 

in heart, brain and kidney.  

 Metabolism of THC occurs primarily in the liver catalyzed by the cytochrome 

(CYP) P450 enzyme system with involvement of CYP 2C9, 2C19, and 3A4 (48). 

Hydroxylation of THC leads to the production of the psychoactive metabolite, 11-OH-



108 
 

THC.  Further oxidation of 11-OH-THC produces the inactive metabolite, THCCOOH 

(179). The major end products of THC metabolism in most species is THCCOOH and its 

glucuronide conjugate (47). Primary THC metabolites in rabbits are identified as 11-OH-

THC and THCCOOH (53, 180). In the present study, no 11-OH-THC was detected in 

any samples, most likely due to the low THC concentrations observed and the rapid 

formation of THCCOOH from any 11-OH-THC present in the liver. Liver exhibited the 

lowest THC but the highest THCCOOH concentrations of any rabbit tissue samples 

tested, most likely a result of THC metabolism in this organ. Phase II metabolites, 

THCCOOH-g and THC-g were also found in liver samples with substantial THCCOOH-

g concentrations observed.  

THC was readily distributed into rabbit kidneys as concentrations were about 3.7 

times higher than THC heart blood concentrations. Both glucuronide conjugates, THC-g 

and THCCOOH-g, were detected in all five rabbit kidneys with higher concentrations 

found for THCCOOH-g. To our knowledge, this is the first report of cannabinoid 

glucuronides in liver and kidney after controlled administration. Results indicate that 

analysis in both liver and kidney can detect glucuronidated metabolites following an 

acute dose.  

Heart tissue is a viable specimen for cannabinoid analysis as THC was detected in 

rabbit myocardium at concentrations approximately 4.5 times higher than those found in 

heart blood. High concentrations are probably a result of normal blood circulation within 

the cardiopulmonary system. Other drugs, including tricyclic antidepressants, narcotic 

analgesics, and antihistamines were reported to store in high concentrations within the 

myocardium (181).  
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 There is limited research regarding cannabinoid distribution into the spleen. THC 

concentrations in rabbit spleen were similar to those found in kidney with THC 

concentrations ranging from 4.7 to 33.8 ng/g. However, the main difference in 

cannabinoid distribution between spleen and kidney was the lack of metabolites detected 

in any spleen samples. The exact reason for this phenomenon is unknown but is likely 

due to the chemical nature of THC and metabolites and the role and physical nature of the 

spleen. Spleen has been identified as one of the most perfused organs in the body (154). 

Highly lipophilic drugs like THC are good candidates for distribution into the highly 

perfused tissues whereas more polar compounds like THCCOOH are less likely 

distributed to these tissues.  

 Forensic toxicologists are often asked to make interpretations regarding drug 

concentrations found in biological specimens. To make an appropriate interpretation, 

information regarding drug exposure, time of use, and frequency of use are rarely 

available in postmortem cases. Therefore, researchers have tried to distinguish patterns of 

cannabis exposure in humans by identifying markers of recent cannabis use in biological 

specimens. A whole blood and plasma cannabinoid pharmacokinetics study showed that 

THC-g, CBD, and CBN exhibited short detection times, making them possible markers 

of recent use (129). A more recent study by Newmeyer et al. revealed that CBG and CBN 

were better markers of recent use after inhalation (30). A limitation with the current 

rabbit study was that minor cannabinoids, CBD, CBG, and THCV, were not present 

outside lungs samples and CBN was only detected in three blood samples at low 

concentrations. This prevented any clear conclusion about using minor cannabinoids as 

markers for cannabis ingestion.  
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 In the present study, a PBPK model for THC disposition in rabbits was 

established for inhalation administration and its predictive capacity was tested based on 

data from five rabbits administered cannabis. Due to the lipophilic nature of THC, the 

developed model assumed blood flow-limited transport into tissues. A main strength of 

this research is the ability to compare simulated THC concentrations from the PBPK 

model with observed THC concentrations in various biological specimens. Despite some 

deviations between observed and predicted concentrations, THC distribution into tissues 

was appropriately characterized by the proposed model.  

 An important parameter in perfusion-limited PBPK models is the tissue:blood 

partition coefficient for each tissue, which represents the drug concentration in tissue 

relative to the drug concentration in blood. Despite the importance of tissue specific 

partition coefficients, in vivo experiments to measure tissue and blood concentrations 

over time are expensive and time-consuming (182). Several in silico methods to predict 

partition coefficients using tissue composition and the drug’s physiochemical 

characteristics are available (175, 183, 184). These methods incorporate tissue 

composition and a drug’s physiochemical properties to account for distribution of the 

drug between water, proteins, lipids and phospholipids. The first predictive method for 

partition coefficients was described by Poulin and Theil for neutral compounds with an 

emphasis on tissue binding to neutral lipids and drug lipophilicity (183). Rodgers and 

Rowland extended the Poulin and Thiel method by integrating pH, dissolution of drug 

into water, and binding of ionized base to acidic phospholipids as extra components of 

tissue binding (175).  The Rodgers and Rowland method was utilized in this study for the 

predicted tissue:blood partition coefficients as it is a well-established model for acid and 



111 
 

base drugs (Table 9). From THC concentrations obtained in tissues and peripheral blood 

from the five rabbits in the study, a measured partition coefficient was calculated for 

tissues except for lung. No measured partition coefficient was determined for lung as this 

tissue is the site of administration and would be expected to have an extremely high 

tissue:blood partition coefficient that would not correctly predict concentrations within 

other compartments of the model. By adjusting the lung partition coefficient from the 

published value of 55.2 to 75.0, the simulation better correlated with the measured data. 

All tissue:blood partition coefficients utilized for model development and evaluation are 

listed in Table 9.  

 Results of the model indicate that variations in some partition coefficients have 

little impact on model simulations. For spleen, muscle, kidney, and heart, all three 

published, predicted, and measured tisse:blood partition coefficients provided similar 

concentration time-profiles for simulated data (Figure 10). On the other hand, liver 

concentrations using the measured partition coefficient were slightly lower than both 

predicted and published partition coefficient values. Published partition coefficients were 

determined after intravenous administration to rats (117).  Both route of administration 

and differences in tissue composition between rat and rabbit could result in higher 

partition coefficient values, thus causing higher predicted concentrations from published 

values as compared with measured values. Brain concentrations also exhibited 

differences between published and measured partition coefficient values. The potential 

reason for discrepancies could be because of slight differences in tissue composition or 

blood flow between rabbits and rats.  
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 In the current study, we were able to compare experimentally determined blood 

and tissue concentrations obtained with theoretical concentrations predicted from the 

PBPK model (Figure 10, Figure 11). Although inter-subject variability was seen with 

THC concentrations from the five rabbits, the average observed values were comparable 

to the simulated concentration for blood and tissues. Calculated residuals showed small 

differences between the measured and simulated concentrations at 1.1 h after the start of 

smoking, validating that the PBPK model is appropriate for THC in rabbits.  

Conclusion  

 This study assessed cannabinoid distribution in rabbits following controlled 

cannabis administration via a smoking machine. Using rabbit physiological parameters, 

THC chemical properties, and the cannabis administration protocol, a PBPK model was 

developed to predict THC concentrations in blood and tissues. To our knowledge. this is 

the first PBPK model for THC in an animal with inhalation as the route of administration. 

Furthermore, this is the first research study to compare THC concentrations observed in 

rabbits with predicted THC concentrations from a PBPK model. Within 1 h after 

cannabis administration, THC was readily distributed from the lungs to the brain, heart, 

and kidney. Low THC concentrations were exhibited in liver due to the extensive 

metabolism of THC. Mean THC concentrations in blood and tissues from the five rabbits 

were comparable to concentrations simulated from the PBPK model. Further research 

with the development of a PBPK model for THC in humans would expand our 

understanding of THC pharmacokinetics and provide forensic toxicologists with much 

needed information regarding THC concentrations in tissues.  
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CHAPTER V 
 

 

TIME- AND TEMPERATURE-DEPENDENT POSTMORTEM CONCENTRATION 

CHANGES OF CANNABINOIDS IN RABBITS FOLLOWING CONTROLLED INHALED 

CANNABIS ADMINISTRATION 

 

Abstract 

 Postmortem redistribution (PMR), a well-known phenomenon in forensic 

toxicology, can result in significant changes in drug concentrations after death, depending 

on chemical characteristics of the drug, blood collection site, and postmortem interval 

(PMI). Limited data are available regarding the importance of PMR of Δ9-

tetrahydrocannabinol (THC), the primary psychoactive component in Cannabis sativa. 

New Zealand white rabbits were selected to test whether PMR occurred after controlled 

cannabis inhalation  via a smoking machine and exposure chamber. A necropsy was 

performed on five rabbits immediately after euthanasia while others were stored at room 

temperature (21°C) or refrigerated conditions (4°C) until necropsy at various time points 

after death – 2, 6, 16, 24, or 36 h. Cannabinoid concentrations were quantified in blood, 

vitreous humor, urine, bile and tissue samples by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Heart blood concentrations significantly increased at PMI 2 

h in rabbits stored at the refrigerated temperature, whereas peripheral blood   
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concentrations significantly increased at PMI 16 h in rabbits stored at the refrigerated 

temperature. Central:peripheral and liver:peripheral ratios for THC ranged from 0.13 to 

4.1 and 0.28 to 8.9, respectively. Lung revealed the highest THC concentrations while 

brain and liver exhibited the most stable THC concentrations in tissues over time. Minor 

cannabinoids, cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN) and Δ9-

tetrahydrocannabivarin (THCV), were also detected in rabbit lung samples.  This is the 

first study to consider the potential for cannabinoids to undergo PMR after inhaled 

cannabis administration. The data add substantially to understanding postmortem 

cannabinoids and can aid toxicologists in the interpretation of cannabinoid concentrations 

in medicolegal death investigations.  

Introduction 

 Postmortem redistribution (PMR) is a well-known phenomenon documented in 

forensic toxicology case reports for three decades (99). When PMR occurs, postmortem 

drug concentrations can differ significantly from antemortem concentrations, depending 

on blood collection site and postmortem interval (PMI), rendering interpretation of results 

difficult (99). Drug concentrations in heart (central) blood can increase over the PMI due 

to diffusion of drug from lungs, myocardium, or liver along a concentration gradient into 

the surrounding area (106). The degree of PMR is influenced by drug physiochemical 

properties, including lipophilicity, volume of distribution (Vd), ionization and pKa (98). 

Cell death, putrefaction, body position and body movement after death also affect the 

degree of PMR (97).  
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 Many reports on PMR are available for tricyclic antidepressants, cocaine, opiates 

and amphetamines (106). These research studies indicate that drugs likely to undergo 

PMR are weak bases (pKa > 7), highly lipophilic (Log P > 0.5) with a large apparent Vd 

(Vd > 3) (97-99, 106). Heart blood samples can have drug concentrations more than five 

times greater than blood samples collected from a peripheral site like the femoral vein 

(101). The cannabinoid, Δ9-tetrahydrocannabinol (THC), shares several of these 

characteristics that favor PMR. 

 Cannabis sativa is the most widely used drug in the world and is commonly 

detected in postmortem forensic toxicology specimens from individuals involved in 

motor vehicle or plane crashes (185, 186). The primary psychoactive component of 

cannabis, THC, is highly lipophilic (Log P – 5.648) with a large Vd (4-14 L/kg) and a pKa 

of 10.6 (163, 187). The expectation is that THC is a good candidate for PMR due to these 

chemical properties; however, few experimental reports are available describing 

redistribution of THC in animals or humans. Historically, the scarcity of information was 

attributed to the idea that cannabis use rarely plays a role in cause and manner of death 

determination combined with interpretative difficulties associated with cannabis (90).  

More recently, however, increases in THC potency revealed a greater negative 

impact on human performance, psychological disorders and physiological effects (188-

190). Worryingly, deaths were attributed to cannabis ingestion (77-79). These changes in 

cannabis use and effects spotlight the need for more research into postmortem 

cannabinoid interpretation, including the outcomes of PMR. 
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 A central:peripheral (C:P) ratio is utilized as a tool to determine if a drug exhibits 

PMR, with a ratio greater than one associated with PMR (103). In the last decade, 

researchers proposed a liver:peripheral (L:P) ratio as another indicator of a drug’s 

tendency for PMR, with L:P ratios greater than 20-30 suggesting such a propensity (105). 

Several studies identified C:P ratios for THC and two major metabolites, 11-hydroxy-

THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) (90, 92, 109). No L:P 

ratios for cannabinoids are currently reported in the literature.  

Lemos and Ingle published cannabinoid concentrations in central and peripheral 

blood for 30 human postmortem cases (90). Central:peripheral ratios ranged from 0 – 2.6, 

0.23 – 3.86 and 0 – 1.64 for THC, 11-OH-THC and THCCOOH, respectively. Results 

from 19 medical examiner cases revealed C:P ratios between 1-2 for all three of these 

analytes, suggesting modest PMR, albeit much less than expected based on the chemical 

nature of cannabinoids (109). Within the 19 cases analyzed by Holland et al., a trend of 

increased redistribution with increased PMI was observed. Another study showed 

minimal PMR for THC and THCCOOH in 25 human postmortem cases and showed no 

correlation between PMI and C:P ratios (92). Median C:P ratios determined by Hoffman 

et al. in this study was 1.1 and 1.3 for THC and THCCOOH, respectively.  

 One of the only animal studies of postmortem redistribution of THC was 

performed in the Large White pig (108). An intravenous dose of THC was administered 

via the intrajugular vein to 15 pigs and samples collected at 0, 6, 15, 24 and 48 h after 

death. Time related changes in postmortem blood concentrations occurred by the earliest 

tested PMI of 6 h. Tissue analysis revealed that spleen, muscle and heart concentrations 
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decreased with increasing PMI. Brain was the tissue in which THC concentrations 

exhibited the most stability over the tested PMI. 

 Postmortem redistribution is not only dependent on blood site collection, time 

since death, and physicochemical drug properties, but also on physical changes that occur 

after death. Ambient conditions and the condition of the corpse can affect postmortem 

bacterial degradation and ultimately postmortem drug concentration changes (97). During 

the putrefaction process, some substances may be metabolized by microorganisms; 

however, refrigerated temperatures (4°C) may slow this process (191). One recent study 

evaluated postmortem concentration changes of THC in pigs following administration by 

inhaled nebulization and storage of the carcass under two conditions, room temperature 

or 4°C for 24, 48 and 72 h (125). Bile was the only specimen in which significantly 

different mean concentrations were observed between the two storage temperatures.   

 We previously reported on the disposition of cannabinoids in various postmortem 

fluids and tissues after cannabis was administered to rabbits by inhalation via a smoking 

machine (192). Building upon that work, the current study aims to determine whether 

there are time- and temperature-dependent changes in the concentrations of cannabinoids 

after rabbit carcasses were stored under room temperature or refrigerated conditions for 

various times after the inhalation of cannabis smoke.  

Materials and Methods 

Animals 

 All experiments were performed at Oklahoma State University (OSU) under the 

approval of the University’s Institutional Animal Care and Use Committee. Adult New 
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Zealand white rabbits (Charles River Laboratories, Canada) weighing approximately 2.5 

kg were used. Rabbits were housed individually in cages with food (LabDiet 5321, St. 

Louis, MO) and water available ad libitum prior to experimental testing.  

Drugs 

 Cannabis cigarettes were obtained through the National Institute on Drug Abuse 

Drug Supply Program. Cigarettes contained 6.8% THC, 0.20% CBD and 0.41% CBN 

and were stored at -20°C until testing. Cigarettes were removed from storage about 24 h 

before dosing and placed under 75% humidity at room temperature. Xylazine 

hydrochloride (20 mg/mL) and ketamine hydrochloride (100 mg/mL).  

Experimental design 

 Rabbits were sedated with xylazine (2 mg/kg) by intramuscular injection in order 

to counter breath holding and aversive behavior of the rabbits when exposed to smoke. 

Two rabbits were housed together in each exposure chamber, separated by a wire rack, 

and two exposure chambers were used during each cannabis smoke administration 

session. Cannabis smoke was generated using a microprocessor-controlled cigarette 

smoking machine (model TE-10, Teague Enterprises, Davis, CA). Mainstream and 

sidestream smoke were transported to a mixing and diluting chamber before being 

introduced into two exposure chambers. During each exposure session, four rabbits were 

exposed to smoke from 6 cannabis cigarettes over an approximately 40 min period. Two 

cigarettes were burned simultaneously with the constant puff machine setting for 

approximately 13 min, then removed and 2 more cigarettes loaded in the machine, until 

all 6 cigarettes were burned. Once the cannabis exposure was complete, the rabbits 

remained in the chamber for 5 minutes for venting of smoke. Rabbits were anesthetized 
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with an intramuscular injection of xylazine (5 mg/kg) and ketamine (35 mg/kg) and then 

euthanized by cervical dislocation, with the time of death occurring at approximately 65 

min after beginning the cannabis administration or 10 minutes after leaving the smoking 

chamber.  

Necropsy procedures 

 Sample collection was performed immediately after euthanasia in five rabbits. All 

other rabbits were placed in dorsal recumbency within closed plastic bags at ambient 

temperature (18-22°C) or refrigerated temperature (0-8°C). Sample collections were 

performed from three room temperature stored and three refrigerated rabbit carcasses at 

2, 6, 16, 24 and 36 h after death. No samples were collected from rabbits stored for 36 h 

at the ambient temperature due to the extent of cell autolysis and putrefaction that 

occurred in these rabbits. At least 0.5 mL of heart blood was collected from the left 

ventricle, when available. No blood was present in the ventricle for rabbits stored for 24 

h; therefore, clotted blood from the right auricle was collected. The heart was removed 

and rinsed with water. All lung lobes were excised and rinsed with water. Cavity blood 

was obtained from the pooled blood in the chest cavity after removing the heart and 

lungs. Urine was collected and its total volume in the urinary bladder was measured. A 

peripheral blood sample was obtained by exposing the caudal vena cava at its bifurcation 

into the external iliac veins. Blood from the femoral, iliac and caudal veins was milked to 

the iliac bifurcation where 0.5 mL was collected. Bile was collected before removal of 

the entire left medial lobe of the liver. Spleen, right kidney and approximately 5 g of 

skeletal muscle from the psoas major were excised. Vitreous humor was obtained from 

one eye followed by removal of the entire brain. Blood samples were stored in 10 mL 
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grey top vacutainers (MedEx Supply, Passaic, NJ) containing potassium oxalate and 

sodium fluoride, whereas bile, urine and vitreous humor were stored in 15 mL 

polypropylene conical tubes (Beckton Dickson, Franklin Lakes, NJ) and tissues were 

stored in 30 mL polypropylene tubes (OMNI International, Kennesaw, GA). All collected 

samples were stored at -20°C until analysis.    

Determination of cannabinoids concentration 

 Cannabinoids were quantified via a validated liquid chromatography tandem mass 

spectrometry (LC-MS/MS) method (144). Briefly, protein precipitation was performed 

by adding ice-cold acetonitrile to 0.5 mL of blood or 0.5 g of tissue homogenate (1:4 

w:w). Urine, vitreous humor and bile (0.5 mL) were not subjected to protein 

precipitation. All samples were pre-treated with 0.2% ammonium hydroxide and glacial 

acetic acid prior to solid-phase extraction (Agilent Plexa PCX, 30mg/3mL). Eluents were 

evaporated to dryness with nitrogen, then reconstituted in mobile phase and injected onto 

an LCMS 8040 (Shimadzu Corp). Limit of quantification (LOQ) was 0.25 ng/mL for 

THC-glucuronide; 0.5 ng/mL for THC, 11-OH-THC, THCCOOH, CBD, CBN and CBG; 

1 ng/mL for 8β-diOH-THC, 8β-OH-THC, THCV, THCVCOOH and THCCOOH-

glucuronide. Bias determinations were between -15.1% and 13.6% of target 

concentrations; imprecision calculations were ≤18.1% CV.  

Statistical analyses 

Statistical analyses were performed using SAS Version 9.4 (SAS Institute, Cary 

NC).  Analysis of variance (ANOVA) procedures were performed to assess the 

differences in THC concentrations in various samples.  A two factor ANOVA with 

postmortem interval (PMI) and storage temperature as separate factors was conducted 
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and the simple effects of each factor were assessed (effects of PMI given storage 

temperature and storage temperature given PMI).  Means and standard errors were 

reported and protected pairwise comparisons were made.  For each test, p values less than 

0.05 were considered to be statistically significant.  

For the C:P ratios, L:P ratios and minor cannabinoid statistical analyses, a t-test 

was performed using Minitab® (version 19, Minitab, LLC, State College, PA).  A p value 

less than 0.05 was considered to be statistically significant.  

Results   

 Cannabinoid concentrations were determined in fluids and tissues from 27 rabbits 

stored under refrigerated and room temperature conditions and collection times at 2, 6, 

16, 24 and 36 h after death. Data obtained from rabbit samples collected immediately 

upon death (PMI 0 h) were described previously in a related study (192). The major 

psychoactive cannabinoid, THC, was present in multiple blood, bile and tissue samples 

(Table 16). Statistical analyses revealed no significant differences (p>0.05) in THC 

concentrations for blood, bile and tissues between refrigerated and room temperature 

storage conditions. In contrast, PMI significantly (p<0.05) affected THC concentrations 

in heart blood, peripheral blood, lung, heart, kidney and muscle samples.  

Fluids 

 All heart and cavity blood samples and all but one peripheral blood sample were 

positive for THC above the assay’s LOQ. One peripheral blood sample collected at PMI 

24 h and stored at room temperature had no detectable THC. A separate rabbit stored 

under refrigeration and with samples collected at PMI 24 h exhibited a surprisingly high 

heart blood THC concentration at 94.1 ng/mL. Concentrations in the other corresponding 
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specimens from this rabbit were not elevated as compared to the other rabbit samples, 

and review of cannabis administration, sample collection procedures, and the laboratory 

analysis data did not reveal a cause for this apparent outlier. As the heart blood 

concentration for this rabbit was greater than three standard deviations away from the 

overall mean THC heart blood concentrations in rabbits, and THC concentrations in 

corresponding specimens with this rabbit were not elevated, this heart blood value was 

excluded from table results and statistical analyses.  

Highly variable THC concentrations were observed in cavity blood samples with 

a range of 2.1 to 69.2 ng/mL. Heart blood THC concentrations ranged from 0.5 to 18.9 

ng/mL, excluding the outlier. Rabbits stored under refrigerated conditions with samples 

collected at PMI 2 h showed a significant increase (p<0.05) in heart blood THC 

concentrations compared to heart blood THC concentrations at PMI 0 h (Table 16). 

Peripheral blood THC concentrations ranged from 0 to 11.6 ng/mL with a significant 

increase (p<0.05) observed in THC concentrations from peripheral samples collected in 

refrigerated rabbits at PMI 16 h compared to those samples collected at PMI 0 h (Table 

16).  

Urine was present at the time of sample collection in sufficient volume to permit 

quantification in 25 of the 27 rabbits. Only three rabbit urine samples were positive for 

THC with concentrations ranging from 0.6 to 1.2 ng/mL. Vitreous humor was collected 

in all rabbits; THC was quantified in only nine vitreous humor samples with 

concentrations ranging from 0.6 to 4.1 ng/mL in positive samples. At the time of sample 

collection, bile was present in sufficient volume to allow analyte quantification in 23 of  
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Table 16. Mean ± SEM THC concentrations in blood (ng/mL), bile (ng/mL), and tissues (ng/g). 

   Room Temperature (21°C)  Refrigerated (4°C) 

 PMI 0 h 
(n=5) 

 PMI 2 h 
(n=3) 

PMI 6 h 
(n=3) 

PMI 16 h 
(n=3) 

PMI 24 h 
(n=3) 

 PMI 2 h 
(n=3) 

PMI 6 h 
(n=3) 

PMI 16 h 
(n=3) 

PMI 24 h 
(n=3) 

PMI 36 h 
(n=3) 

HB 4.3±0.8  6.3±3.3 3.9±0.16 3.5±1.2 0.6±0.1  10.7±4.1* 6.2±0.3 3.7±1.6 1.1±0.2a 1.6±0.16 

PB 2.1±0.4 
 

 1.8±0.7 
 

2.8±0.5 
 

6.3±3.1 
 

2.1±0.5 
 

 3.4±0.9 
 

6.4±2.4 8.3±3.1* 2.8±0.5 1.7±0.4 

CB 6.3±2.3 
 

 8.2±2.7 26.8±7.0 11.5±5.7 5.6±0.7 
 

 20.9±5.4 48.6±9.8 10.7±5.4 20.3±7.1 7.3±1.2 

Bile 1.9±0.8  1.0±0.5 1.5±0.0 1.6±0.2 1.2±0.2  1.9±0.5 0.94±0.5 2.3±1.7 1.3±0.2 0±0.4 

Lung 391±82.3 
 

 368±126 
 

253±16.6 
 

260±56.0 
 

220±37.6 
 

 372±155 
 

365±117 
 

290±61.1 
 

165±79.2 
 

143±22.6* 
 

Heart 19.9±6.3 
 

 13.0±5.3 
 

15.0±5.4 
 

9.4±4.7 
 

2.0±2.0* 
 

 9.3±1.9 
 

13.1±7.0 
 

5.9±2.9 
 

16.1±2.6 
 

13.7±3.2 
 

Brain 19.0±4.0 
 

 9.6±2.3 17.1±5.2 
 

13.8±1.9 
 

9.3±2.8 
 

 17.5±3.2 
 

17.6±6.4 
 

10.0±4.6 10.7±0.7 12.3±4.5 
 

Liver 6.8±1.4 
 

 4.0±1.4 
 

8.9±1.5 
 

9.2±1.4 
 

6.6±0.9  9.9±1.8 
 

8.3±2.8 
 

8.3±2.6 
 

6.2±1.2 
 

4.4±0.2 
 

Kidney 17.3±6.1 
 

 2.5±1.3* 
 

10.6±0.6 9.5±5.3 
 

6.1±6.1 
 

 16.0±5.3 
 

11.1±8.1 
 

7.7±3.4 
 

8.1±1.4 
 

6.0±1.1 
 

Muscle 12.1±6.3 
 

 2.0±2.0 
 

8.8±6.9 
 

6.3±3.3 
 

0±0* 
 

 4.8±2.4 
 

2.8±1.5 
 

4.4±2.5 
 

5.6±0.5 2.0±2.0 

Spleen  13.9±5.1 
 

 8.0±5.7a 
 

10.0±2.4 
 

9.5±2.6 
 

3.3±3.3a 

 
 9.0±5.9 16.6±4.6a 

 
8.9±4.7 

 
0±0a 6.9±1.7a 

 
SEM: Standard error of the mean; THC: Δ9-tetrahydrocannabinol; PMI: postmortem interval; HB: Heart Blood; PB: Peripheral blood; CB: 
Cavity blood 
*Significant difference (p<0.05) compared to PMI 0 h concentration 
an=2 for statistical analyses; Heart blood data point excluded due to outlier; Spleen samples excluded due to unsuitable specimen
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the 27 rabbits. Bile contained quantifiable THC in 20 rabbits with concentrations ranging 

from 0.6 to 4.0 ng/mL.   

Tissues 

 Tissue analysis revealed the highest THC concentrations in lungs and the lowest 

THC concentrations in liver (Table 16). Brain, kidney, spleen, muscle and heart exhibited 

moderate THC concentrations at PMI 0 h. A significant decrease (p<0.05) in THC 

concentrations was observed in lung at PMI 36 h in refrigerated rabbits compared to THC 

lung concentrations at PMI 0 h (Table 16). Heart, kidney and muscle THC concentrations 

significantly (p<0.05) decreased in room temperature rabbits at PMI 24 h, PMI 2 h and 

PMI 24 h, respectively (Table 16). In five of the 27 spleen samples, the extracted samples 

showed no recovery for drugs or internal standards. After three unsuccessful attempts to 

quantify cannabinoids, the samples were deemed unsuitable for analysis.  

Ratios  

Figure 12 displays the C:P ratios for all postmortem intervals and storage 

conditions tested. Significant differences from PMI 0 h were observed for C:P ratios at 

PMI 16 h, PMI 24 h and PMI 36 h in refrigerated conditions and at PMI 24 h for room 

temperature conditions. Mean±SEM for C:P ratios in the study was 1.6±0.3. Figure 13 

shows the L:P ratios for the entire study. No significant differences in the L:P ratios were 

observed at any postmortem intervals as compared with the control samples. Mean±SEM 

for L:P ratios in the study was 2.9±0.5. No significant differences were noted between the 

two storage conditions for either C:P and L:P ratios.  
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Figure 12. The mean and standard error for central:peripheral blood ratios for rabbits 
necropsied at various postmortem intervals (PMI) and stored under two different 
temperature conditions, refrigerated (F, 4°C) and room temperature (RT, 21°C). 
Significant difference (p<0.05, *) compared to PMI 0 h.  

 

 

 

 

 

 

 

 

 

 

Figure 13. The mean and standard error for liver:peripheral blood ratios for rabbits 
necropsied at various postmortem intervals and stored under two different temperature 
conditions, refrigerated (F, 4°C) and room temperature (RT, 21°C).  
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THC Metabolites 

 The Phase I and II metabolites, THCCOOH, THC-g and THCCOOH-g, were 

quantified in various biological specimens throughout the study; however, there were not 

enough positive results for any metabolite in a fluid or tissue sample to perform statistical 

analyses. No 11-OH-THC, 8β-diOH-THC, or 8β-OH-THC analytes were detected in any 

rabbit samples collected from the study. Despite the inability to perform statistical 

analyses, some general observations for metabolites were noted. Liver exhibited high 

THCCOOH concentrations, whereas kidney exhibited high concentrations for 

THCCOOH-g. THC-g was prevalent in bile and urine with considerably higher 

concentrations than THCCOOH and THCCOOH-g in urine specimens.  

Minor Cannabinoids  

 Cannabis cigarettes contain small amounts of minor cannabinoids. All four minor 

cannabinoids within the assay, CBD, CBN, CBG and THCV were quantified in rabbit 

lung samples. High concentrations were noted for CBN with the lowest concentrations 

among these four minor cannabinoids observed for THCV. Although the mean lung 

concentrations of minor cannabinoids appeared to linearly decrease in refrigerated and 

room temperature samples as the PMI increased from 2 to 24 h (Figure 14), PMI did not 

significantly affect these values (P>0.05). However, lung concentrations of CBG, CBN 

and THCV under refrigerated conditions at PMI 36 h were significantly lower than those 

at PMI 0 h.   
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Postmortem Interval (h) 

Figure 14. Minor cannabinoid concentrations (mean±SD) in lung (ng/g) at different time points 
and at different storage conditions after rabbits’ death. No differences were observed with each 
cannabinoid between refrigerated and room temperature conditions. Statistical significance 
(p<0.05, *) is noted with three cannabinoids at PMI 36 h compared to PMI 0 h. CBD: 
cannabidiol; CBG: cannabigerol; CBN: cannabinol; THCV: Δ9-tetrahydrocannabivarin. 
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Discussion 

To the authors’ knowledge, this is the first controlled inhaled cannabis 

administration to rabbits to evaluate both time- and temperature-dependent changes in 

post-mortem sample concentrations of cannabinoids. A strength of this study was the use 

of the inhalation route of administration for smoked cannabis, as this is the most common 

route of administration in man and allows for determination of minor cannabinoids from 

the cannabis material. Most other animal studies utilized oral, intravenous injection, or 

nebulized cannabis administration, which incompletely model human exposure by 

smoking (107, 108, 125). Additionally, the current study evaluated drug concentration 

changes while the carcasses were stored at two different temperatures, which is an 

important component of medicolegal death investigations. Limitations of the study 

included the small sample size for each time and storage point and the low cannabinoid 

concentrations observed. Blood THC concentrations did not reach values seen in human 

clinical studies. This is most likely due to the experimental conditions that used the 

smoking machine and exposure chamber to expose the rabbits to continuous smoked air, 

which was not necessarily comparable to an individual smoking a cigarette. Since THC 

concentrations were low and the time between THC administration and death was short, 

metabolites were also low or not detected, hindering the evaluation of the effect of PMR 

on these metabolite sample concentrations.  

Immediately upon death, several physical and chemical changes occur within the 

deceased body. Decomposition of soft tissues is the result of cell membrane degradation 

and the release of cellular contents into the extracellular space (97). After autolysis, 

bacterial proliferation and consumption furthers the decomposition process. The rate of 
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decomposition is notably variable; however, the progress may be slowed by artificial 

means of preservation (193). Refrigeration at 4°C reduced the bacterial metabolism rate 

for nitrobenzodiazepines, suggesting that corpses stored at cooler temperatures may 

exhibit fewer postmortem drug concentration changes (191). The present study evaluated 

this idea by storing rabbit carcasses at a refrigerated temperature (4°C) or room 

temperature (21°C) prior to sample collection. THC concentrations were not affected by 

temperature as concentrations showed no significant difference between the two storage 

conditions, which is not surprising since stability of free and glucuronidated cannabinoids 

after controlled smoked cannabis administration in man showed that THC concentrations 

were stable in pooled blood samples for 1 week at room temperature and for 12 weeks at 

4°C (194).  

Changes in THC heart blood concentrations appeared to be an early phenomenon 

with a significant increase occurring at 2 h in refrigerated rabbits. Similarly, Brunet et al. 

observed that THC concentration changes in postmortem cardiac blood occurred by 6 h 

after death in pigs (108). Results from a recent study evaluating changes in THC 

concentrations over time in deceased people also showed a large increase in THC blood 

concentration within the early postmortem period, followed by a decline (195). Early 

PMR studies with rats and amitriptyline revealed a rise in heart blood concentrations 

within the first two hours after death due to redistribution from the lungs (196). Lungs are 

a major source of PMR as they serve as drug reservoirs storing highly lipophilic drugs 

prior to death. Upon death, diffusion of drugs occur along its concentration gradient from 

the lungs into surrounding areas, especially the heart blood (97). In our study design, with 

the route of administration and lipophilic properties of THC, the rabbit lung tissues 
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provided an ideal situation for THC to redistribute from the lungs into heart blood in the 

early postmortem phase.  

In peripheral blood, a significant increase was observed for THC at 16 h after 

death in the refrigerated rabbit. Peripheral blood, particularly femoral blood, is thought to 

show fewer concentration changes than heart blood in the postmortem interval as it is 

farther away from tissues with high drug concentrations (106). However, PMR can occur 

in femoral blood samples due to proximity with the bladder, skeletal muscle, and body 

fat. Fluoxetine, mirtazapine, sertraline and methadone all showed significant drug 

increases in femoral blood after death (197). One possible explanation for increased THC 

peripheral blood concentrations is that THC is highly lipophilic and rapidly penetrates 

into fat and muscle tissue after administration (12). Under normal conditions in the body, 

THC seems to diffuse from fat back into the bloodstream over time (50). Passive 

diffusion of THC from rabbit fat and muscle into the peripheral blood could explain the 

increased blood concentrations at the 16 h PMI in the peripheral sample.  

Thirty years ago, Prouty and Anderson were the first toxicologists to identify over 

50 drugs with the common characteristic of significantly higher drug concentrations in 

heart blood than blood collected from peripheral sites (101). Since that time, others 

reported lists of drug concentrations from cardiac, or central, blood compared to 

peripheral blood samples, establishing an observed C:P ratio for numerous drugs (103, 

198). This ratio is used as a measure of the potential for postmortem drug redistribution, 

with a higher ratio suggesting a greater potential for PMR (103). In the current study, the 

average C:P ratio for THC at the time of death was 2.1. Although the ratio is greater than 

1, we do not believe this initial C:P ratio is indicative of PMR. Since rabbits inhaled the 
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cannabis dose, and lung THC concentrations were quite high, we instead hypothesize that 

the experimental design did not allow enough time for complete drug absorption from the 

site of administration, causing a higher heart blood THC concentration than its 

corresponding peripheral sample.  

As reports regarding postmortem drug concentrations and  PMR accumulated in 

the literature, some studies showed that the C:P ratio can be misleading (105). Some 

drugs with a reported C:P ratio greater than 1.0 are not susceptible to PMR. For example, 

inaccurate ratios may be obtained in cases where a drug has not fully completed the 

absorption or distribution phases; therefore, toxicologists recently suggested that liver 

drug concentrations compared to peripheral blood drug concentrations may be helpful in 

understanding postmortem drug redistribution (199). McIntyre reported previously 

published C:P ratios, along with L:P ratios for 13 drugs, in order to evaluate the 

usefulness of a L:P ratio in determining a drug’s propensity for PMR (105). Tricyclic 

antidepressants, drugs that are well-documented for their potential to redistribute, 

exhibited an L:P ratio greater than 20. Drugs suspected to have a low to moderate 

propensity for PMR exhibited intermediate L:P ratios ranging from 5 to 19, whereas 

drugs that exhibit little to no PMR reportedly have L:P ratios less than 5. In the current 

study, the mean (±SD) L:P ratio across all time and temperature conditions was 2.9 

(±1.7), which puts THC in the category of exhibiting little to no PMR. To our knowledge, 

this study was the first to evaluate L:P ratios for THC after controlled administration in 

an animal model. More studies are needed to substantiate this finding and to determine if 

an L:P ratio is a suitable marker for identifying postmortem redistribution of THC.  
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Analysis of drug concentrations in tissues is particularly important in traumatic 

injury deaths or severely decomposed bodies in which a blood sample may not be 

available for toxicology testing. Identifying the tissue that exhibits drug stability over 

time would provide valuable information to forensic toxicologists. With this study, we 

were able to determine THC concentrations in multiple tissues for 36 h after death. 

Results showed that THC concentrations in lung, kidney, brain and heart remained the 

most stable over time, whereas muscle and spleen THC concentrations diminished 

substantially as the PMI increased. Postmortem redistribution of THC in the pig revealed 

that brain THC concentrations were the most stable compared to other tissues 48 h after 

death (108). In cases where cannabis is expected and no blood sample is available, 

toxicologists can rely on testing lung, kidney, brain or heart as these tissues reveal high 

and moderate THC concentrations that remain stable hours after death.  

Cannabis is a complex plant containing more than 500 chemical compounds, of 

which more than 100 are identified as cannabinoids (158). Researchers studied several 

phytocannabinoids including CBG, CBN and THCV to identify potential markers of 

cannabis use (30, 129). Minor phytocannabinoids were detected in rabbit lung samples 

with high concentrations for CBN, moderate concentrations for CBD and CBG, and low 

concentrations for THCV. A limitation of this study was that minor cannabinoids were 

not detected in biological specimens other than lungs. While concentrations for all minor 

cannabinoids decreased in lung as PMI increased, the lack of cannabinoids in blood or 

other tissues prevented a complete evaluation of concentration changes after death. More 

research is needed to determine if minor cannabinoids undergo PMR similar to THC.    
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Conclusion 

 In this study, we determined THC, its phase I and glucuronidated phase II 

metabolites, and minor cannabinoids in biological specimens collected from rabbits 

following inhaled controlled cannabis administration to evaluate time- and temperature-

dependent changes after death. No significant difference for THC concentrations was 

observed between rabbits stored at room temperature or refrigerated conditions. 

Comparing THC concentrations from various postmortem intervals to those observed at 

PMI 0 h, significant THC concentration changes in heart blood and peripheral blood were 

noted only in refrigerated samples collected 2 and 16 h after death, respectively. Average 

C:P and L:P ratios for THC were 1.6 and 2.9, respectively. The data presented suggest 

that THC is not prone to substantial postmortem redistribution in the rabbit.  
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CHAPTER VI 
 

 

CONCLUSION 

 

Understanding the complexity of cannabinoid pharmacokinetics in humans 

requires studying their distribution in a broad array of biological specimens. Studies of 

this type are crucial for the analysis and interpretation of cannabinoid concentrations in 

forensic casework. Although cannabis is commonly abused worldwide, few studies exist 

to characterize cannabinoid distribution or redistribution in postmortem fluids and 

tissues. We hypothesize that an analytical method can be validated for the simultaneous 

quantification of 12 cannabinoids in postmortem biological specimens. Using the 

validated method, tissue analysis of pilots fatally injured in aviation crashes will show the 

greatest cannabinoid concentrations in highly perfused tissues. The method was 

employed to determine cannabinoid concentrations in biological specimens from rabbits 

after controlled cannabis administration. We hypothesize that concentrations from the 

rabbits will correlate to predicted concentrations from a physiologically-based 

pharmacokinetic model developed for rabbits and will reveal time- and temperature-

dependent changes after death. 
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The major aims of this research were: 1) Develop and validate an LC-MS/MS 

analytical method for the simultaneous detection and quantification of THC, 11-OH-

THC, THCCOOH, 8β-OH-THC, 8β-diOH-THC, THC-g, THCCOOH-g, CBD, CBG, 

CBN, THCV, and THCVCOOH in postmortem biological specimens, allowing 

investigation of cannabinoid distribution. 2) Apply the validated method to authentic 

forensic casework by determining cannabinoid concentrations in blood and tissue 

samples from 10 pilots fatally injured in aviation crashes. 3) Develop the first PBPK 

model for THC in rabbits using the inhalation route of administration. Determine 

cannabinoid concentrations in postmortem fluids and tissues from rabbits following 

controlled cannabis administration and compare cannabinoid concentrations to the 

developed PBPK model. 4) Evaluate postmortem redistribution of THC in rabbits stored 

at two different temperature conditions.   

Analytical Method  

We developed an LC-MS/MS method utilizing solid phase extraction to quantify 

12 cannabinoids, as well as their free and glucuronidated metabolites in postmortem 

blood, vitreous humor, bile, urine, liver, lung, kidney, spleen, muscle, brain, and heart. 

Analytes were separated by liquid chromatography with quantification performed by 

multiple reaction monitoring in positive ion mode using electrospray ionization. The 

linear range was from 0.25-50 ng/mL (THC-g), 0.5-100 ng/mL (CBN), 0.5-250 ng/mL 

(THC, 11-OH-THC, THCCOOH, CBD, and CBG), 1-100 ng/mL (8β-diOH-THC, 

THCVCOOH, 8β-OH-THC, and THCV), and 1-250 ng/mL (THCCOOH-g). To our 

knowledge, this is the first method reported for the determination of CBG, THCV and 

THCVCOOH in postmortem biological specimens. The method achieved adequate 
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sensitivity, specificity, accuracy, and precision, indicating that the method is applicable to 

postmortem forensic cases.  

Method Application to Authentic Forensic Casework 

We applied the method for quantitation of cannabinoids in biological specimens 

to cases received by the Federal Aviation Administration’s Forensic Sciences Section. 

We determined cannabinoid concentrations in a broad array of biological specimens from 

10 pilots who were fatally-injured in plane crashes. Their mean ± SEM THC blood 

concentration was 4.3±1.5 ng/mL. Phase I metabolites, 11-OH-THC and THCCOOH and 

the Phase II glucuronidated metabolite, THCCOOH-g had mean ± SEM blood 

concentrations of 1.3 ± 0.2, 17.9 ± 6.5, and 47.3 ± 13.3 ng/mL, respectively. Urine 

analyses revealed positive results for THCCOOH, THC-g, THCCOOH-g, and 

THCVCOOH. The major cannabinoid, THC, was readily distributed to lung, brain, 

kidney, spleen, and heart. The psychoactive THC metabolite, 11-OH-THC, was identified 

in liver and brain with mean ± SEM concentrations of 7.1 ± 1.6 and 3.1 ± 0.7 ng/g, 

respectively. Substantial THCCOOH and THCCOOH-g concentrations were observed in 

liver, kidney, spleen, and heart. These data improve our understanding of postmortem 

distribution and analysis by identifying which fluids and tissues are useful for 

determining cannabinoid concentrations after cannabis exposure.  

Cannabinoid Distribution in Rabbits/Physiologically-Based Pharmacokinetic Model 

 We describe a controlled inhaled cannabis protocol that addresses questions 

regarding cannabinoid distribution after inhaled administration. The experimental design 

consisted of cannabis administration to rabbits via a smoking machine and exposure 
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chamber. Cannabinoid concentrations were determined in a broad array of biological 

specimens collected immediately upon death. Mean THC concentration in heart blood 

was 4.3 ng/mL while mean concentration in peripheral blood was 2.1 ng/mL. THCCOOH 

was detected in heart, cavity, and peripheral blood samples in four of the five rabbits with 

mean concentrations of 1.1, 1.2 and 0.9 ng/mL, respectively. Both phase II glucuronide 

metabolites, THC-g and THCCOOH-g, were detected in blood, urine, and bile, with 

considerable THC-g concentrations noted in urine (4.2-33.6 ng/mL) and bile (14.3-48.6 

ng/mL). Tissue analysis revealed high THC concentrations in lungs (103-601 ng/g), 

moderate THC concentrations in the brain (5.1-32.4 ng/g), heart (6.3-42.4 ng/g), and 

kidneys (4.5-40.1 ng/g), and low THC concentrations in the liver (2.3-10.0 ng/g). Minor 

phytocannabinoids, CBN, CBD, CBG and THCV, were detected in lung samples with 

only CBN detected in blood and bile samples. This is the first animal study focusing on 

distribution following controlled inhaled cannabis administration. Tissue characterization 

showed that lungs, brain, heart, and kidneys are the most suitable specimens for THC 

analysis after cannabis exposure. Furthermore, this study shows that urine and bile are 

ideal specimens for detection of THC-g after an acute cannabis dose. The distribution 

data from this study adds substantially to the limited information available for 

cannabinoid distribution.  

 Using rabbit physiological parameters, THC chemical-specific parameters, and 

the cannabis administration protocol, we developed a PBPK model for THC in rabbits via 

the inhalation route. To our knowledge, this is the first PBPK model for THC in any 

animal with inhaled cannabis administration. Chapter 4 explains the equations and coding 

utilized in the Berkeley Madonna software to simulate THC concentrations in various 
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tissues. We compared the predicted concentrations from the nine compartment, flow-

limited model to THC concentrations observed experimentally in rabbit samples collected 

for the distribution study. Observed THC concentrations in blood and tissues from rabbits 

sampled immediately upon death following cannabis administration were similar to the 

simulated THC concentrations from the PBPK model.  

Postmortem Redistribution of THC in Rabbits 

 We describe the experimental design to evaluate time- and temperature-dependent 

THC concentration changes after death in rabbits. After cannabis administration and 

euthanasia, we stored the study rabbits in either refrigerated or room temperature 

conditions and biological samples collected at 2, 6, 16, 24 or 36 h after death. No 

statistically significant difference was observed for THC concentrations between rabbits 

stored at room temperature or refrigerated conditions. When THC concentrations from 

various postmortem intervals were compared to THC concentrations from control 

animals, significant THC concentration changes in heart and peripheral blood 

concentrations were noted only in refrigerated samples collected 2 and 16 h after death, 

respectively. Mean C:P and L:P ratios for THC were 1.6 and 2.9, respectively. The data 

presented suggest that THC is not prone to substantial postmortem redistribution in the 

rabbit. 

Future Directions 

 Extrapolation from the rabbit PBPK model to a human PBPK model would 

provide valuable information regarding tissue concentrations expected after cannabis 

administration. The data can reveal which tissues are expected to have high THC 
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concentrations following inhaled cannabis exposure. This information will guide forensic 

toxicologists testing postmortem samples for the presence of cannabinoids in the 

selection of tissues that are most suitable for determination of THC concentrations and 

may aid in interpretation of THC concentrations in tissue samples.  

 Results from Chapter 5 are the first to report L:P ratios for THC in animals. Mean 

(range) L:P ratios for THC were 2.9 (0.3 – 8.9) for refrigerated and room temperature 

rabbits across all postmortem intervals tested. As the mean is below 5, the findings 

suggest that little to no postmortem redistribution exists for THC; however, more 

research projects reporting L:P ratios, particularly in human subjects, will help 

substantiate this finding.  
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