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Abstract 

Thermal conductivity(k) is an important property of a material which is critical for applications in 

thermal management applications as well as thermoelectric energy conversion devices. In this 

work, we study the thermal transport in various materials such as polymers, polymer 

nanocomposites and semiconductors with different applications. Thermal conductivity (k) of 

polymers is significantly lower than metals. As an example, k of bulk polyethylene is ~ 0.5 Wm-

1K-1 while k of aluminum is 200 Wm-1K-1. This limits their applications in thermal management 

systems. Polymers, however, offer many potential advantages such as low cost, low weight, 

corrosion resistance and ease of processability which makes them attractive for heat transfer 

applications. Enhancement in thermal conductivity of polymers would enable materials to replace 

metals in heat transfer applications, allowing these unique advantages to be realized in commercial 

thermal management technologies. Similarly, accurate understanding of thermal conduction in 

semiconductor materials is of vital importance for designing thermal management solutions for 

electronics systems. The goals of this work are to enhance k of polymers through– a) alignment of 

polymer lamellae and embedded graphene nanoplatelets. It has been reported that, an almost 30-

fold increase in thermal conductivity of aligned polyethylene was achieved demonstrating the large 

potential of alignment effects. Our group also achieved a 12-fold increase in thermal conductivity 

of simultaneously aligned polymer lamellae and graphene nanoplatelets (GnPs), and b) 

enhancement of interface thermal conductance between polymer and graphene through the novel 

effect of edge-bonding. Recently edge-bonding was shown to nearly 2-fold enable superior 

interface thermal conductance relative to basal-plane bonding. These effects will be studied using 

molecular dynamics (MD) simulations. C) thermal conductivity modulation (both increase and 

decrease) of semiconductors through biaxial strain for applications in thermal management and 
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thermoelectric energy conversion d) semiconductor materials with ultra-high thermal conductivity 

e) 2D semiconductors. We employed density functional perturbation theory (DFPT) coupled with 

exact solution of phonon Boltzmann transport equation (PBTE) for predicting the k of 

semiconductors.   

Keywords: Thermal conductivity, Polymers, Polymer composites, Molecular Dynamics 

Simulation, semiconductors, first-principles computations, density-functional theory 
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CHAPTER 1: INTRODUCTION 

Thermal management has become a challenging problem in modern electronics industry 

since electronic devices have become more integrated, functionalized and miniaturized1, 2. If the 

heat cannot be dissipated efficiently, the lifetime, efficiency and reliability of the system can be 

reduced. Materials with high thermal conductivity are urgently needed to dissipate generated heat. 

Moreover, at nanometer length scales, Fourier law of heat conduction breaks down, decreasing 

effective thermal conductivity below bulk value, exacerbating heat dissipation in the process. The 

effect has been shown to lead to overheating, reducing reliability and performance in 

nanoelectronics applications. To improve thermal management at nanoscale, there is a strong need 

for materials with high nanoscale thermal conductivity. Thermoelectric devices with higher energy 

conversion efficiency, on the other hand, require materials with ultra-low thermal conductivity. 

This research work investigates a) enhancement of thermal conductivity in polymers and polymer 

nanocomposites, b) thermal conductivity enhancement in semiconductors, and c) ultralow thermal 

conductivity semiconductors for thermoelectric applications. Molecular dynamics simulations 

utilizing LAMMPS (Large Scale Atomic/Molecular Massively Parallel Simulator) are used to 

investigate polymers and polymer nanocomposites and first principles calculations are used for 

semiconductors.  

Thermal conductivity is a basic material property and is a measure of the ease with which 

heat is transmitted through a material. For steady and one-dimensional flow, the heat conduction 

according to Fourier law3 is given by  

Q =  −𝑘A
dT

dx
        (1.1) 

where Q is the rate of heat transfer (W), k is thermal conductivity (Wm-1K-1), A is cross sectional 

heat transfer area (m2), dT = Temperature difference (0 C) and dx = conduction path length (m). 

Materials with high thermal conductivity are called conductors. Metals having a thermal 

conductivity in the range of 20 to 400 Wm-1K-1 are treated as conductors. Materials with low 

conductivity are called insulators. Polymers and glasses have thermal conductivity in the range of 

0.1 – 0.5 Wm-1K-1 and are therefore considered as insulators. The heat transfer mechanism is 

dominated by different carriers in different materials. For examples, in solids the heat is 

transported by either electrons and holes (charge carriers) or by phonons (atomic lattice 

vibrations). In metals the heat transfer by electron dominates while in insulators and 

semiconductors the heat transfer is dominated by phonons.  
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The first goal of this study is to study thermal conductivity in aligned polymers using MD 

simulations and is discussed in chapter 2. Polymers offer several advantages over metals such as 

low cost, corrosion 

resistance, easy of 

moldability, lower weight 

and are widely used in 

thermal management 

applications such as 

automotive control units4, 

batteries5, electronic 

packaging6, solar panels7, 

solar water heating8  and water desalinations9. Polymers are comprised of ordered crystalline 

regions called lamellae10. Thermal conductivity along these lamellae can be very high, even 

exceeding that of metals. Random orientation of lamellae however, leads to overall poor thermal 

conductivity of the polymer matrix. Aligning these lamellae (Fig. 1) through techniques11 such as 

mechanical stretching can enhance thermal conductivity by two orders of magnitude. To achieve 

this, structures of amorphous polymers were created (Figure 1.2a) and subjected to strain to align 

polymer lamellae (Figure 1.2b) using Molecular Dynamics (MD). Molecular dynamics (MD) 

simulations are used to study the thermal conductivity. MD involves simulating the motion of 

atoms in a molecular system based on knowledge of interatomic forces and use of Newtonian 

dynamics12. Initial structure of a single polymer chain will be modeled using Nanoengineering-1 

software. PACKMOL13 software is used to create a random configuration of hundreds of polymer 

chains in a defined region of space.  System is relaxed, and material properties are simulated using 

Polymer 
lamellae 

Figure 1.1a). Randomly Oriented polymer 1b). Aligned polymer 

Randomly oriented 
polymer 

Aligned polymer 

Figure 1.2a). Randomly Oriented amorphous polyethylene b). Aligned Polyethylene 



3 
 

LAMMPS14 (Large-scale Atomic/Molecular Massively Parallel Simulator) MD simulator.  

Interatomic force interactions to compute atomic motions are modeled using existing force fields 

such as COMPASS15. Thermal conductivity of aligned polymers with varying degrees of 

alignment are simulated using non-equilibrium molecular dynamics based on Mueler Plathe 

scheme16.  

As another novel aspect of this research, change in temperature dependence of thermal 

conductivity is investigated as the polymer matrix is progressively aligned. In a recent 

publication17, we demonstrated that temperature dependence of thermal conductivity varies 

significantly as the polymer is strained. A peak in k is observed with respect to temperature shifting 

to lower temperatures upon aligning the system. Understanding of this temperature dependence 

was achieved in terms of a crossover from disorder to anharmonicity driven phonon transport, by 

varying the dihedral coefficients of polymer chain structure.  

To increase the thermal conductivity further, I studied thermal transport in polymer 

nanocomposites by embedding the high thermal conductivity fillers. Nanomaterials like graphene 

nanoplatelets have ultra-high in plane thermal conductivity (k) of ~2000 W/mK18 and are thus 

attractive for enhancing k of polymers. Effectiveness of graphene in enhancing polymer thermal 

conductivity is, however, limited by large interface thermal resistance between polymer and 

graphene. Mismatch in phonon vibrational spectra of polymer and graphene and weak force 

interactions mediated by weak van der Waals interactions between polymer and graphene (in the 

absence of covalent bonding) lead to large interface thermal resistance at graphene/polymer 

interface which diminishes overall thermal conductivity 

enhancement in polymer-graphene nanocomposites. 

Functionalization of graphene19 with polymer chains can 

dramatically enhance force interactions between polymer 

and graphene leading to two orders of magnitude 

enhancement in interface conductance. Mingchao Wang20 

et al. reported 156% enhancement in thermal conductivity 

through grafting of polymer chains. To achieve even higher k-values it is critically important to 

identify bonding schemes with superior interface thermal conductance between polymer and 

graphene. Garg recently showed using first-principles Green’s function calculations that edge-

functionalization can lead to nearly 75%21 superior interface thermal conductance compared to 

Figure 1.3. In plane and through 

plane  k of GnPs  

composites. 
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functionalization on the basal-plane. In chapter 3, I systematically investigated the superior effect 

of edge-functionalization on polymer-composite thermal conductivity through use of MD 

simulations. Our study shows that edge bonding can lead to significant enhancement in thermal 

transport over basal plane functionalization in polymer/graphene nanocomposites.  

Phononic band gap in group III-V semiconductors can lead to a large increase in thermal 

conductivity of these materials22. Phonon band gap suppresses anharmonic scattering of phonons 

leading to a large increase in phonon lifetimes, with a corresponding increase in thermal 

conductivity. This effect was recently predicted to lead to the thermal conductivity of Boron-

Arsenide exceedingly even that of diamond. Strain can increase phononic band gap further 

suppressing scattering of phonons, thus increasing thermal conductivity. I used first-principles 

methods to study the effect of strain on thermal conductivity enhancement of boron phosphide 

(BP) semiconductor. I reported a high thermal conductivity (k) of 802.5 W/mK in 4% biaxially 

compressed Boron Phosphide at 300K and discussed in chapter 4. This value is 35.8% higher than 

thermal conductivity of unstrained boron phosphide (BP) and is almost 5-fold the thermal 

conductivity of silicon (Si). 4% strained BP is also found to be more efficient nanoscale heat 

conductor.  At length scale of 200 nm and at 300 K, k of biaxially strained BP is estimated to be 

150.4 W/mK, almost 25% higher, compared to the value of 120 W/mK for unstrained BP.  

Likewise, thermoelectric materials require a low thermal conductivity to improve their figure 

of merit. Indium based semiconductors are promising materials for thermoelectric devices. In 

chapter 5, we report ~ 20% reduction in in-plane thermal conductivity of Indium arsenide (InAs) 

with 3% biaxial compressive strain. At 300 K, the bulk thermal conductivity of 33.85 Wm-1K-1 

computed for unstrained indium arsenide (InAs) is reduced to 27 Wm-1K-1 for 3% biaxially 

strained InAs. Similarly, in chapter 6, we report a 29% decrease in k of InSb through biaxial strain. 

k value decreases from 18.8 W/mK for unstrained InSb to 13.4 W/mK for 5% biaxially compressed 

InSb at 300 K. 

In Chapter 7-10, I report advanced material with high thermal conductivity in both bulk and 

nanoscale systems. In chapter 7, we are report high thermal conductivities of 1350 Wm-1K-1 and 

1050 Wm-1K-1 along a-axis and c-axis for pure 2H-GeC (Germanium Carbide). These values are 

130% higher than the thermal conductivity of 2H-silicon carbide and 20% lower than cubic 

germanium carbide (c-GeC). We also studied the thermal conductivity of nanostructured 2H-GeC 

for heat dissipation in nanoelectronics.  At room temperature, thermal conductivity of 2H-GeC at 
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nanometer length scale (L) of 100 nm is computed to be 70 Wm-1K-1, almost 100% higher than 

that of c-GeC (cubic-Germanium Carbide). In chapter 8, I report an ultra-high thermal conductivity 

of 2090 Wm-1K-1(1395 Wm-1K-1) for hexagonal pure (natural) BC6N(h-BC6N). This is the 3rd 

highest reported thermal conductivity of a bulk material after diamond and cubic boron arsenide. 

This ultra-high lattice thermal conductivity(k) is mainly attributed to high phonon group velocities 

of both acoustic and optical phonons arising from strong C-C and B-N bonds as well as the light 

atomic mass of the constituent elements such as boron(B), carbon(C) and nitrogen(N). At room 

temperature (300 K) and at nanoscale length (L) of 100 nm, k value of 175 Wm-1K-1 is observed. 

In chapter 9, I studied the thermal conductivity (k) of BC5, an ultra-hard diamondlike 

semiconductor material, using first-principles computations and analyzed the effect of isotopic 

disorder as well as length scale dependence. k of isotopically pure BC5 is computed to be 169 Wm-

1K-1 (along a-axis) at 300K. In chapter 10, I report a high thermal conductivity (k) of 162 Wm-1K-

1 and 52 Wm-1K-1 at room temperature, along directions perpendicular and parallel to c-axis of 

bulk hexagonal BC2P (h-BC2P) respectively, using first principles calculations. BC2P is also found 

to exhibit high thermal conductivity at nanometer length scales. At 300 K, a high k value of ~47 

Wm-1K-1 is computed for h-BC2P at nanometer length scale of 50 nm, providing avenues for 

achieving efficient nanoscale heat transfer. Interestingly, in h-BC2P optical phonons are found to 

make a large contribution of 30% to overall k along a direction perpendicular to c-axis at 300 K. 

These advanced materials discussed in chapter 7-9 can lead to improved thermal management at 

nanoscale.  

 Thermoelectric energy conversion requires low cost materials with ultra-low thermal 

conductivity. Magnesium chalcogenides-based semiconductors have attracted both scientific 

interest and technological applications. Among these, magnesium selenide and magnesium 

telluride are promising thermoelectric materials due to their ultrawide bandgap and high electron 

mobility. In chapter 11 and 12, I discussed the thermal conductivity of magnesium selenide 

magnesium telluride with different crystal structure such as; zincblende, rocksalt, wurtzite and 

nickel arsenic. We investigated the phonon bandgap and its effect on lattice thermal conductivity.  

 

2D materials has unique properties and becomes as a prominent research interest after the invention 

of graphene. In chapter 13, We discuss the lattice thermal conductivity of graphene like germanium 

carbide(2D-GeC) for the first time and with 6% equi-biaxial tensile strain, we report ~700% 
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enhancement in lattice thermal conductivity. We investigated the elastic constants, phonon  group 

velocity and linewidth for the enhancement of thermal conductivity.  
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CHAPTER 2: THERMAL CONDUCTIVITY ENHANCEMENT IN ALIGNED 

POLYETHYLENE – MOLECULAR DYNAMICS STUDY  

High thermal conductivity polymers play a key role in thermal management in wide array 

of applications including water desalination23, solar energy harvesting24, automotive control 

units25, and micro-electronics26. Polymers offer several advantages relative to metals such as low 

weight, low cost and lower fabrication energy27. Alignment of polymer chains has emerged as a 

promising approach to enhance thermal conductivity of polymers28, 29. Recently k of a single PE 

nanofiber with highly aligned PE chains was measured to be 104 Wm-1K-1 almost 200 times28 

larger than k of bulk PE (~0.5 Wm-1K-1). Aligned polymer chains also yielded a high thermal 

conductivity of ~16 Wm-1K-1 in polyethylene films drawn to large ratios approaching ~10030. More 

recently k of aligned polyethylene-graphene nanocomposites was measured to be significantly 

higher compared to k of aligned PE29. While these studies shed light on k-enhancement through 

alignment effects at room temperature, experimental studies have also been performed to 

understand temperature dependence of k in aligned polymers. Choy et al.31 measured k of aligned 

semi-crystalline polymers such as polypropylene and low-density polyethylene.  k along alignment 

direction was found to increase monotonically with temperature up to the highest studied 

temperature of 300 K. More recently Singh et al.32 measured k of chain-oriented amorphous 

polythiophene and found it again to be a weakly increasing function of T. In this work, we use 

non-equilibrium molecular dynamics (MD) simulations33, 34 to study temperature dependence of k 

of aligned amorphous PE. Alignment is achieved through application of strain. 

            Molecular dynamics (MD) simulations have been used in the past to study thermal 

transport in polymers. Zhang et al.35 used MD simulations to study temperature dependence of 

thermal conductivity of un-oriented amorphous PE, and found it to reach maximum at a 

temperature of 350 K. This peak in k of un-oriented amorphous PE was explained through 

morphological considerations by describing the increase in k below 350 K in terms of increase in 

radius of gyration and decrease in k above 350 K in terms of reduced inter-chain interaction. Liu 

et al.36 used MD to investigate role of strain rate on  k of aligned amorphous PE at room 

temperature. Higher k-values were achieved for slower strain rates. Algaer et al.37 used MD 

simulations to study temperature dependence of k of strained amorphous polystyrene, however, 

only small applied strains of up to 21% were considered in this study.  
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Aligned amorphous PE, focus of study in this work, differs in several aspects compared to 

polymer systems discussed above, providing novel avenues to understand thermal transport in 

chain-oriented polymers. Firstly, compared to semi-crystalline polymers, where two different 

phases exist (crystalline and amorphous), no such phase separation occurs in amorphous PE. 

Uniform morphology causes strain to uniformly impact the entire polymer structure. Absence of 

different phases can also eliminate phonon scattering that exists at the interface between crystalline 

and amorphous regions in semi-crystalline polymers, leading to potentially new features in 

temperature dependence of k.  Furthermore, while previous MD simulations of k of amorphous 

polystyrene37 considered strains of only up to 21%, in this work, we investigate much larger strains 

of 400%.  At the small applied strains considered earlier, change in polymer structure was small, 

leading to small change in temperature dependence of k with respect to the unstrained case. Much 

larger strain used in this work17, 38, will lead to significant structural changes, enabling associated 

larger changes in temperature dependence of k. Understanding of temperature dependence is of 

interest, both for gaining fundamental insights in to the underlying thermal transport processes in 

strained polymers, as well as for addressing low temperature applications of polymer based heat 

exchangers39, 40.  

 

2.1 METHODS - MOLECULAR DYNAMICS SIMULATION 

To perform MD simulations of thermal transport, we use the LAMMPS41 simulation 

package. Interatomic force interactions needed to compute atomic motion are modeled using the 

COMPASS force field42. COMPASS is an ab 

initio force field and has been used widely to 

simulate polymer systems. To study thermal 

transport in amorphous PE, the structure of 

amorphous polymer is carefully constructed35 

(Fig. 2.1) by first equilibrating a single 

extended polyethylene chain of length 1000 C 

atoms at 300 K for 1 ns to form a compact 

relaxed chain. Choice of 1000 C atoms chain 

length leads to a good representation of the 

bulk behavior. 40 of these relaxed chains are 

Fig. 2.1 Structure preparation of amorphous 

polyethylene and its alignment through 

application of strain.  

Relaxation at 300 K

Randomly pack 40
chains in a box

Increase T to 600K

perform NPT run

quench to 300 K

Apply Strain
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then randomly packed into a cell leading to a total system size of 1.2105 atoms. To achieve the 

final amorphous structure, the energy of the entire system is minimized followed by increasing the 

system temperature to 600 K at a rate of 50 K/ns using NPT (constant number of particles, pressure 

and temperature) ensemble, a further NPT run at 600 K for 4 ns to generate polyethylene system 

with relaxed and amorphous structure, then quenching the system to 300K and finally an NPT run 

for 4 ns to equilibrate the structure at 300K (Fig. 2.1). 

  After achieving the amorphous PE structure, deformation simulations were performed at 

300 K to stretch the polymer. Strain was applied uniaxially along the x-axis of the periodic 

simulation cell to align the polymer chains along this direction (Fig. 2.1). Later thermal 

conductivity is reported along the same direction in this work. Pressure was kept constant at 1 atm 

for all other boundaries during deformation using NPT ensemble (Fig. 2.1). Strained polymer 

samples were further relaxed using NPT to obtain stable structures. Outlined procedure enabled 

polymer structures with strains of up to 400% to be achieved. The drawing process was performed 

at 300 K. To study the temperature dependence of k, temperature of the strained polymer was 

varied between 50 – 400 K again using NPT ensemble. 

Thermal conductivity at different temperatures was computed using reverse non-

equilibrium molecular dynamics (RNEMD) simulations based on the Muller-Plathe scheme43 by 

imposing a heat flux 𝑗𝑥 across a simulation cell and 

estimating the resulting average temperature gradient, 

〈𝜕𝑇/𝜕𝑥〉.  Fourier’s law of heat conduction, 𝑘𝑥 =

−𝑗𝑥/〈𝜕𝑇/𝜕𝑥〉 was then used to compute the thermal 

conductivity 𝑘𝑥 along stretch direction. Through the Muller 

Plathe scheme, system is divided in to bins, and heat flux is 

imposed by exchanging energies between the hot and the 

cold bins located at the center and edge of the system 

respectively. To achieve a reliable estimate of ensuing 

temperature gradient, RNEMD simulations were run for 

time period of 1 ns, long enough to yield the steady state. Simulation was then run for another 0.2 

ns, during which the time-averaged temperature profile was estimated (typical profile for 

unstretched polymer at 300 K is shown in Fig. 2.2). Linear section of this profile was used to 

compute the temperature gradient.  

Fig. 2.2 Typical temperature 

profile obtained from NEMD 

simulations. 
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2.2 RESULTS 

2.2.1 Thermal conductivity with strain 

The results of thermal conductivity simulation at 

different strains and temperatures are provided 

in Fig. 2.3 (error bars are estimated by repeating 

simulations with different starting 

configurations). First, we notice that increasing 

the strain from 0% (unstrained) to 400% causes 

monotonic increase in thermal conductivity at 

each temperature. This enhancement in k with 

increasing strain is well understood in terms of 

increasing alignment of the dominant heat 

conducting C-C covalent bonds in each polymer 

chain with the direction of heat transfer. Such 

polymer chain alignment, typically characterized through calculation of an average orientational 

order parameter36 (P2) is shown in Fig. 2.4 for different temperatures. P2 is estimated by describing 

the local chain direction at each atom by a unit vector, 𝐞i, computed from the chord vectors 

connecting the atom to its nearest neighbors: 𝐞i = (𝐫i+1 − 𝐫i−1)/|𝐫i+1 − 𝐫i−1|  and taking the 

projection of 𝐞i along the alignment direction (x-direction) through the equation, P2 =

1.5〈(𝐞i ∙ 𝐞x)2〉 − 0.5, where, 𝐞𝐱 is the unit vector in the direction of applied strain. The values of 

P2 of the polymer samples after they are strained 

by different strains varying from 0% (unstretched) 

to 400% are shown in Fig 2.4. For the unstretched 

case, the value of P2 is close to 0 indicating 

randomly oriented chains. As the strain is 

increased, the value of P2 increases, suggesting 

increasingly aligned chains. P2 is also only weakly 

dependent on temperature, indicating that 

alignment is mostly a function of strain. Increase 

in P2 leads to the observed increase in k at each 

temperature.  

Fig. 2.3 Variation of thermal conductivity of 

amorphous polyethylene with temperature at 

different strains.  
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2.2.2 Temperature dependence thermal conductivity with strain 

We next investigate the effect of temperature on thermal conductivity. Fig. 2.3 shows that 

the thermal conductivity for each strain reaches a maximum with temperature. For the unstretched 

polymer, thermal conductivity reaches a maximum at 350 K; this has been explained previously 

through morphological considerations35. The focus in this work is on studying the change in 

temperature dependence as the polymer is strained. Fig. 2.3 shows that as the strain is increased, 

the temperature corresponding to maximum thermal conductivity (Tpeak) shifts to lower values. For 

strain of 100%, maximum thermal conductivity is reached at a temperature of 200 K. As the strain 

is further increased to 400%, the temperature corresponding to peak thermal conductivity 

decreases to 100 K. This temperature corresponding to peak k for strain of 400% is lower compared 

to that for unstretched polymer by almost 250 K. Above results, suggest that strained amorphous 

PE can be even more effective for thermal management at lower temperatures. This is seen by 

noticing that while at a temperature of 350 K, drawing the polymer to a strain of 400% leads to an 

increase in thermal conductivity from 0.30 W/mK (unstrained case) to 2.0 W/mK representing an 

enhancement of ~6.5-fold in k, at the lower temperature of 200 K, a much larger enhancement in 

k of 18-fold is achieved from 0.24 W/mK to 4.43 W/mK, as the polymer is strained from 0% to 

400%. We also studied size effects by using a smaller system size of 0.6105 atoms. k was found 

to be higher for the larger system size of 1.2105 atoms by 10-15%, however, peak k (focus of this 

study) occurred at the same temperature for both these systems.   

 

2.2.3 ROLE OF DISORDER AND ANHARMONICITY 

The large shift in Tpeak with increasing strain can be understood in terms of an interplay between 

disorder and anharmonic phonon scattering. Heat in polymer systems is mainly conducted by 

lattice vibrations (phonons). Contribution of a phonon mode 𝜆 to overall thermal conductivity is 

described by44,  𝑘𝜆 ∝ 𝐶𝜆𝑣𝜆
2𝜏𝜆 where 𝐶𝜆, 𝑣𝜆 and 𝜏𝜆 are the specific heat, group velocity and lifetime, 

respectively, of the phonon mode 𝜆. Lifetime of a phonon mode is determined by the total 

scattering rate (1/𝜏𝜆), equal to the sum of scattering due to both disorder (1/𝜏𝜆)disorder and the 

anharmonicity (1/𝜏𝜆)anharmonicity  of polymer chains44, 1/𝜏𝜆=(1/𝜏𝜆)disorder + (1/𝜏𝜆)anharmonicity . Disorder 

scattering involves scattering of phonons from abrupt changes in chain orientation and across 

polymer chains45, 46. Disorder scattering rates are mostly temperature (T) independent, while 
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anharmonic scattering rates increase linearly with temperature44, being weak at low T and 

increasing at higher T.   At low T, weak anharmonic effects result in disorder being the dominant 

scattering mechanism while at higher T anharmonic scattering increases in magnitude and begins 

to determine phonon lifetimes. Tpeak corresponds to this transition from disorder to anharmonic 

phonon transport. This is seen by observing that at low T, the dominant disorder scattering is 

independent of temperature44, causing 𝜏𝜆 to become constant. Specific heat (𝐶), however, has been 

known to increase with T even in classical MD simulations due to anharmonic effects47, causing 

𝑘𝜆 to also increase with T in the disorder dominated regime. At high T, in the anharmonicity 

dominated regime, however, anharmonic scattering rates increase with increasing T causing 

phonon lifetimes, 𝜏𝜆, to decrease as T is increased, now causing the thermal conductivity (k) to 

decrease with increasing T. Increasing k with increasing T in the disorder dominated regime, 

followed by the opposite trend in the anharmonic regime, causes k to reach a peak at the 

temperature corresponding to transition from disorder to anharmonicity dominated phonon 

transport.    

As the strain increases, transition from disorder to anharmonic regime shifts to lower T 

causing Tpeak to also shift to lower values. This can be understood by noticing that at the low 

alignment levels achieved at low strains, polymer chains still have large number of abrupt turns 

and bends, leading to large disorder which causes disorder scattering rates to be large48. It requires 

a large increase in anharmonic scattering, to exceed these large disorder scattering rates, in turn 

requiring high temperatures, thus causing the peak k to occur at high T. As the applied strain is 

increased, the polymer structure becomes more 

aligned, causing the level of disorder to decrease. 

Relatively smaller increases in anharmonic scattering 

(requiring low T) can now cause it to overcome 

disorder scattering. Transition from disorder to 

anharmonic regime thus occurs at progressively lower 

T at higher strains, explaining the shift in peak k to 

lower T with increasing strain observed in Fig. 2.3.  

We provide evidence supporting the above 

presented mechanism for shift in Tpeak with increasing 

strain, by modifying system disorder and observing the 
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resulting changes in Tpeak. According to the presented mechanism, increasing the system disorder 

should shift Tpeak to higher values. At higher disorder, transition from disorder to anharmonicity 

dominated phonon transport would require higher anharmonic scattering rates, in turn requiring 

higher temperatures, causing Tpeak to shift to higher values. Vice versa, a decrease in disorder 

should shift Tpeak to lower values.  Both anharmonicity and disorder can be changed by modifying 

the potential parameters. Effect of change in disorder can, however, be studied in isolation without 

impacting other parameters such as phonon frequencies.   This can be achieved by changing the 

dihedral energy parameters. Dihedral energy parameters control torsion angles, thus enabling 

control of the structure of the polymer chain, and therefore disorder. Since dihedral energies are 

much smaller than bond energies (as seen by noticing that the largest coefficients in energy terms 

for bond energy are of the order of 345 Kcal/mole while those for dihedral energies are ~ 0.1 

Kcal/mole), changing dihedral terms does not significantly impact vibrational frequencies (which 

are instead determined by bond energies), enabling understanding of the effect of change in 

disorder alone. Changing anharmonicity, however, requires a change in bond energy parameters 

(since bond energy terms are the largest contributors to anharmonicity), which also leads to a 

change in vibrational frequencies, precluding a study of the effect of change in anharmonicity 

alone.  We therefore choose to study the effect of change in disorder through a change in dihedral 

energy parameters of the C-C-C-C dihedral, as these are most relevant for controlling polymer 

backbone chain structure.   

 Through COMPASS42 potential, 

dihedral energy is computed using the 

expression 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = 𝐾1(1 −

𝑐𝑜𝑠𝜙) + 𝐾2(1 − cos(2𝜙)) + 𝐾3(1 −

cos(3𝜙)). For the C-C-C-C dihedral, the 

parameters K1, K2, K3 are given by K1 = 

0, K2 = 0.054 and K3 = -0.143 

Kcal/mole. The energy for these 

parameters is shown in Fig. 2.5 (solid red 

line) and the distribution of the dihedral 

angles for this case is shown in Fig. 2.6 

(labeled ‘Original’ in the figure). The 

Fig. 2.6 Distribution of dihedral angles for 

modified and original dihedral parameters for 

strains of a) 400% and b) 100%.  
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dihedral angle of 180 corresponds to trans conformation, while dihedrals angles of 60 and 300 

correspond to gauche transformation. Trans conformations lead to stiff straight chains, while 

gauche transformations allow change in orientation, introducing disorder. By manipulating the 

parameters, K1, K2 and K3, the relative distribution of trans and gauche conformations can be 

modified, changing disorder.  

As a first effect, we increase disorder by changing the parameters to K1 = 0, K2 = -0.1, 

and K3 = -0.43 Kcal/mole for the polymer with 400% strain. This corresponds to the energy profile 

shown by dashed blue line in Fig. 2.5. By lowering the energy corresponding to gauche state, 

number of gauche transformations is increased (Fig. 2.6a), thereby increasing disorder. To 

compute k for the new set of parameters, polymer matrix was prepared with these modified 

dihedral coefficients, strained by 400%, and finally relaxed to different temperatures to compute k 

as a function of temperature. The results are shown in Fig. 2.7 (values for original and modified 

dihedral parameters are shown by solid and open squares respectively). First it is noticed that 

compared to k computed using original dihedral parameters (solid squares in Fig. 2.3), the k 

computed using modified parameters is lower, as expected for a system with increased disorder. 

Secondly, while k through the original parameters reached peak at 100 K (Fig. 2.3 and 2.7), the k 

using modified parameters (leading to higher disorder) reaches maximum at higher temperature of 

150 K (Fig. 2.7). This is in agreement with the presented mechanism.   

Next, we also decrease disorder by 

manipulating dihedral energy parameters and 

study its impact on k of polymer with strain of 

100%. A decrease in disorder should cause 

anharmonicity to become dominant at lower 

temperatures, shifting the peak k to lower 

temperatures. To achieve lower disorder, we 

decrease the number of gauche transformations by 

using the parameters of K1=0, K2=0.1 and K3=-

0.072 Kcal/mole. These parameters cause the 

energy corresponding to gauche state to increase 

(dashed-dotted line in Fig. 2.5), causing the 

number of gauche transformations to decrease 

Fig. 2.7 Temperature dependence of k of 

amorphous PE with modified and original 

dihedral parameters for strains of 100% 

and 400%.  
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(Fig. 2.6b) thus lowering disorder. The thermal conductivity of strained polymer with strain of 

100% and prepared with these new dihedral parameters is shown in Fig. 2.7 (as open triangles). 

The k value for the new set of parameters is found to be higher compared to the original COMPASS 

potential, as expected for a system with lower disorder. Again, while k through the original 

parameters reached peak at 200 K, the k using modified parameters (leading to lower disorder) 

reaches maximum at lower temperature of 150 K, again in agreement with the presented 

mechanism.   

Above results validate the presented mechanism for shift in Tpeak to lower values with 

increasing strain.  Presented results for strained amorphous PE differ from measurements on 

strained amorphous polythiophene, where for the strained case, k was found to be a weakly 

increasing function of T even at higher temperatures32. This was explained in terms of presence of 

only short-range order in strained polythiophene, leading to phonon transport being dominated by 

disorder even in strained system. The opposite trend of decreasing k with increasing T in strained 

amorphous PE at higher T (~ 200-300 K) suggests longer range order which causes phonon 

transport to be anharmonicity dominated at higher T.   Above results, showing a transition of peak 

k to lower temperatures, suggest that strained polymers can be even more effective for thermal 

management at lower temperatures. 

 

2.3 CONCLUSION 

 In summary, we have studied the temperature dependence (in the range of 50-400 K) of thermal 

conductivity of amorphous polyethylene drawn to strains of up to 400% using molecular dynamics 

simulations. Results demonstrate that thermal conductivity (k) peaks with respect to temperature 

for all strains; this temperature corresponding to peak thermal conductivity shifts to lower values 

as the applied strain increases. While k of unstretched polymer is maximum at 350 K, k of polymer 

with strain of 100% peaks at 200 K. This values further decreases to 100 K for strain of 400%.  

The effect is explained in terms of a cross-over from disorder to anharmonicity dominated phonon 

scattering regime. Increasing strain decreases disorder, allowing anharmonic scattering to become 

dominant at progressively lower temperatures, causing the peak k temperature to shift to lower 

values.  The effect is validated by modifying disorder through a change in dihedral energy 

parameters. Increasing the disorder is found to shift the temperature related to peak k to higher 
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values; vice versa, decreasing the disorder lowers that temperature. Both these results agree with 

the presented mechanism. Shift in peak k to lower temperatures at higher strains leads to significant 

enhancement in k of aligned amorphous PE at lower temperatures. These results can lead to new 

avenues for use of aligned polymers for thermal management at sub-ambient temperatures.  
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CHAPTER 3: SUPERIOR EFFECT OF EDGE RELATIVE TO BASAL PLANE 

FUNCTIONALIZATION OF GRAPHENE IN ENHANCING POLYMER-GRAPHENE 

NANOCOMPOSITE THERMAL CONDUCTIVITY 

Thermal conductivity of polymers can also be enhanced further by blending of polymers 

with high thermal conductive fillers49-51  and crosslinking of polymers. Graphene49, 50 is widely 

used as a filler because of its superior k of 2000-5000 Wm-1K-1. However, enhancement of 

nanocomposite thermal conductivity through addition of graphene nanoplatelets is limited due to 

large interface thermal resistance between polymer and graphene52. The large interfacial thermal 

resistance is due to the mismatch in phonon vibrational spectra between polymer and graphene. 

Interfacial thermal conductance can be significantly increased by functionalizing graphene with 

chemical groups that are compatible with surrounding polymer53. Two orders of magnitude 

increase in interface conductance was obtained through functionalization of graphene with 

polymer chains54. 156% enhancement in thermal conductivity was achieved through grafting of 

polymer chains on to graphene20. To achieve largest enhancement in thermal conductivity, it is 

essential to achieve understanding of functionalization schemes that lead to largest enhancement 

in thermal conductivity.  

Konatham et al.55 demonstrated almost 50% reduction in the interfacial thermal resistance between 

functionalized graphene and octane using molecular dynamics (MD) simulations study. It was 

suggested that edge functionalization retained efficient thermal transport phenomenon without 

compromising graphene structure. Comparative study between edge and basal plane 

functionalization revealed the superiority of edge bonding by 75% over the basal plane 

functionalization21. Mungse et al. presented excellent tribo-interfaces through the basal plane 

functionalization of graphene oxide using long octadecyl chains56 and also developed edge 

functionalized graphene oxide modified by octadecyl amine which enhanced the stability of 

dispersion and mechanical strength57. In another study, the effect of interconnected 3D network 

structure of edge or basal plane modified graphene oxide on electrical conductivity58 was studied.  

Different studies54, 57, 59-61  show this structural effect of functionalized graphene on the mechanical 

and physical properties of composites. 

In this study, we demonstrate for the first time that functionalization on edge can lead to 

superior thermal conductivity enhancement relative to functionalization on basal plane using MD 

simulation. We carried out molecular dynamics simulations of the effect of graphene 
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functionalized with polyethylene chains on both basal plane and edge, on thermal conductivity 

enhancement of polyethylene-graphene nanocomposites.  We analyzed the effect of number of 

graphene layers within the nanoplatelet on overall heat transfer enhancement in the polymer 

nanocomposites. Role of inner layers in phonon thermal transport is elucidated using phonon 

vibrational power spectrum for each sheet in both edge and basal plane functionalization.  

3.1 METHODS 

3.1.1 Molecular Dynamics Simulations 

To simulate the thermal transport in polymer nanocomposites using MD simulation, we 

employed LAMMPS14 package. we use the Condensed Phase Optimized Potentials for Atomic 

Simulations (COMPASS)15 force field to define the interactions between the atoms. Interactions 

between graphene layer, functionalized materials and the polymers are described by Lennard-

Jones potential. Polyethylene chain and functionalized graphene nanoplatelet (with lateral 

dimension of 10nmx10nm and with different number of layers) were constructed in Nanoengineer-

1(figure 1a,b and c) and the molecules were packed using PACKMOL62.We have modelled the 

composites with 35% weight of graphene nanoplatelet for all of our simulations. Energy 

minimization using conjugate gradient algorithm was performed and the structure relaxed in 

isothermal-isobaric (NPT) ensemble at 1 atm and 300 K for 5 ns to release the residual stress. We 

simulated all the systems with a timestep of 0.1 fs throughout. Prior to final calculations, our 

systems were analyzed critically for any possible voids using visual molecular dynamics(VMD)63. 

The heat transfer in polyethylene and functionalized graphene nanocomposites were investigated 

using non-equilibrium molecular dynamics(NEMD)64 simulation where opposite ends of the 

simulation box were thermostatted with a temperature difference of 50 K. 

To validate our models, we simulated the thermal conductivity of pure polyethylene with a density 

of 0.72 gcm-3 and computed the value to be 0.3 Wm-1K-1 at 300 K which is in good agreement with 

other simulations17, 65 and experimental results.  
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3.2 RESULTS 

3.2.1 Overall composite comparison  

To compare edge and basal plane case, we prepared composite embedded with edge and basal 

plane functionalized graphene nanoplatelet (simulation details are presented in section 3.1.1). A 

temperature difference of 50 K was imposed across the composite and resulting heat flux was 

(a) 

(b) 

Figure 3.1. (a) EFGNP (Edge functionalized graphene nanoplatelet), c) BFGNP (Basal plane 

functionalized graphene nanoplatelet), b and d) Temperature Profiles in (b) PE/EFGNP & (d) 

PE/BFGNP nanocomposite, respectively (e) Energy transferred as a function of time for edge 

and basal plane cases, (f) Heat flux ratio for different nanoplatelet thicknesses.  
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compared. Two ends of the simulation box were thermosetted for NEMD simulation with a 

Figure 3.2 a-g). Vibrational power spectra across different layers in EFGNP and BFGNP. High 

vibrational power in EFGNP inner layer than BFGNP is due to strong coupling of in-plane phonons. 
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temperature difference (T) of 50 K and the energy exchange between the thermosetted region 

were plotted with time as shown in Fig 3.1a. The heat flux was calculated using the slope value 

from the plot.  

J=E/(A.t)             (3.1) 

where E is the change in energy, A is the cross-sectional area and t is the total time. Energy 

exchange(E) with time is shown in Fig 3.1a for EFGNP and BFGNP. We can observe that heat 

flux for the EFGNP is higher than BFGNP. Fig 3.1a shows an almost 48% higher heat flux for 

edge case. This higher heat flux is mainly due to all layers of graphene nanoplatelet being 

efficiently coupled to polymer matrix leading to lower interfacial thermal resistance for edge 

bonding case. Such coupling of all layers ensures that the entire graphene nanoplatelet participates 

in heat transfer for edge case, while for basal plane case, only the outermost layers participate.  

The effect of this efficient coupling in enhancing heat transfer can be seen directly in Fig 3.1 c and 

d. by comparing temperature profiles across the nanocomposite for the two cases; for the edge case 

temperature profiles is significantly smoother at the interface between graphene and polymer, 

relative to basal plane case, indicating a smaller interface thermal resistance, resulting in higher 

effective thermal conductivity. In addition to the edge bonding enabling the beneficial effect of 

coupling all graphene layers to polymer, we demonstrate other advantages of edge bonding in this 

work, namely a) allowing heat to be conducted by inner layers, which are less damped by 

surrounding polymer and b) higher thermal conductivity of edge-functionalized graphene sheets 

(studied using MD). 

 

3.2.2 Effect of number of sheets on interface conductance 

The effect of number of sheets (n = 4,6,8 and 10 sheets) on the difference in heat flux(J) 

between EFGNP/PE and BFGNP/PE is calculated using molecular dynamics simulation. For each 

n, filler weight percentage is kept constant (35%) and the functionalized graphene nanoplatelet 

and polymers were packed into the simulation box using PACKMOL62 package and the system is 

relaxed for 5 ns. The heat flux difference between EFGNP and BFGNP  increases with increase in 

n for both EFGNP and BFGNP. For example, with 4 sheet thick nanoplatelet, EFGNP has 25% 

high flux than BFGNP; as the sheet thickness increases to 10, this difference in heat flux also 

increases to 48%. The difference in heat flux (J) increases with increase in n due to basal plane 

functionalized nanoplatelet becoming progressively less efficient in conducting heat with increase 
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in thickness (mediated by larger number of inner layers which are not efficiently coupled to the 

surrounding polymer) as compared to the edge case, where all layers conduct heat efficiently.  

 

3.2.3 Single Nanoplatelet 

As discussed above, the key effect leading to higher heat flux for edge case, is the coupling 

of all graphene layers with surrounding polymer matrix. To demonstrate this more effectively Fig. 

shows that when temperature gradient is applied across all layers of the nanoplatelet, the resulting 

heat flux is much higher, as opposed to the case when temperature gradient is applied across only 

the top and bottom layers. These simulations were performed for a single nanoplatelet.  

Figure 3.3 : Temperature dependence thermal conductivity of pristine, edge functionalized 

and basal plane functionalized graphene at  a) 20 nm b) 30 nm c) 40nm 

Fig. 3.5 a) and b) Relaxed atomic 

configurations for edge and basal 

plane functionalization. 
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Minimal 
distortion 

a) b) 

Figure 3.4 : Temperature distribution along the simulation box in pristine, edge and basal plane 

functionalized graphene 
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3.2.4 Power density spectrum 

As another significant advantage of edge-functionalization, we show that vibration 

damping induced by surrounding polymer more adversely impacts basal plane functionalized case. 

It is well understood that during heat conduction the vibrations in the outer layers of a graphene 

nanoplatelet are damped by the surrounding polymer. Since outer layers are more important for 

heat conduction in the case of basal plane functionalization, a damping of vibrations in outer layers 

by surrounding polymer, more adversely impacts the heat transfer performance for basal plane 

functionalization. To clearly quantify this effect, we use the phonon vibrational power spectrum 

in this work.   

The phonon vibrational power spectrum is a powerful method based on computing the discrete 

Fourier transform of the velocity autocorrelation function as shown below66, 

𝐷() = ∫ < 𝑣(0). 𝑣(𝑡) > exp (−𝑖ɷ𝑡)𝑑𝑡
𝜏

0
                 (3.2) 

where < 𝑣(0). 𝑣(𝑡) > is the velocity autocorrelation obtained by correlating the velocity at every 

2 fs, is the total correlation time = 5 ps and  𝐷() is the phonon vibrational power spectra at 

frequency (). Figs 3.3 a-h show the vibrational power spectrum computed for individual sheets 

in a 6 sheet nanoplatelet for both edge and basal plane functionalization case. The Sheet 1 denotes 

the outermost layer from bottom. Due to the symmetry in nature, we have shown the vibrational 

power spectra of sheets 1-3. Since the outer layers of BFGNP is functionalized, its vibrating power 

is more suppressed than EFGNP (Figure 3.2 a and e as shown in sheet1). The vibrating power in 

inner layer of EFGNP and BFGNP is recovered by increasing the number of layers and is less 

dampen by the surrounding polymers (Figure 3.2 f-h). We may also notice that, the damping effect 

is realized in 2nd layer of BFGNP from the outer layer. Since all the layers in EFGNP is 

functionalized, the strong coupling of in-plane phonons increases the vibrational power in EFGNP 

whereas there is no coupling between the polymers and the graphene in BFGNP and hence its 

inner layer has poor vibrational power (Figure 3.2 b-d).  

 

3.2.5 Thermal conductivity of individual graphene sheets 

 As yet another advantage of edge-bonding, we show that edge-bonded graphene sheets 

have superior thermal conductivity relative to basal plane functionalized graphene sheets. To 

understand effects of functionalization on thermal conductivity of a single layer graphene, we 

computed the temperature and length dependent thermal conductivity of individual functionalized 
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graphene sheet and compared with pristine graphene. We can observe that, upon functionalization, 

edge functionalized graphene has higher thermal conductivity than the basal plane 
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functionalization case. At length scale of 10 nm, and at room temperature (300 K), thermal 

conductivity (k) of 106 Wm-1K-1 computed for pristine graphene reduced to 93 Wm-1K-1 and 78 

Wm-1K-1 for the edge and basal plane functionalized graphene respectively. Similarly, at 40 nm 

length scale, k for pure, edge functionalized and basal functionalized graphene are 219 Wm-1K-

1,192 Wm-1K-1 and 133 Wm-1K-1 respectively. This reduction in thermal conductivity upon 

functionalization is due to the distortion in the graphene structure. Large reduction in thermal 

conductivity in basal plane functionalization is attributed to much larger distortion of graphene in 

its basal plane as shown in Fig 3.5b. Edge bonding distorts graphene to a much smaller degree 

compared to basal plane case, seen in the relaxed DFT structures in Fig. 3.6a and b. Carbon atoms 

on the basal plane of graphene are sp2 hybridized; in forming an extra bond to functionalize, they 

transform to sp3 state, protruding outwards and distorting graphene in the process. Unlike inner 

carbon atoms, edge atoms can adopt tetrahedral geometries more freely without causing extra 

strain. Hence, lower distortion through edge bonding can result in significantly higher kgraphene 

relative to basal plane case. To elucidate further, we plotted the temperature distribution along the 

simulation box in 10 nm pristine, edge functionalized and basal plane functionalized graphene. We 

have divided the simulation box (100 Å) into 50 bins.  We can observe a sudden temperature drop 

at the functionalized site in basal plane functionalization indicating a reduction in thermal 

conductivity (k = (Q*x)/(A*T). Temperature distribution within the edge functionalized 

graphene is, however, linear due to the minimal distribution. Hence, edge functionalization 

conducts heat better than basal plane functionalized graphene.  

 

3.3 CONCLUSION  

Using molecular dynamics simulation, we systematically studied the effects of edge and 

basal plane functionalization in graphene for thermal conductivity in graphene nanocomposites. 

Our MD simulations reveals that, edge functionalization has better heat flux than basal 

functionalization and the different in heat flux increases with number of layers since the inner 

layers are actively participating in heat conduction in edge than basal plane case. Also, edge 

functionalization has low distortion compared to basal plane functionalization means less damage 

to the graphene structure and has better thermal transport.  
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CHAPTER 4: BIAXIAL STRAIN INDUCED THERMAL CONDUCTIVITY 

ENHANCEMENT IN BORON PHOSPHIDE – A FIRST PRINCIPLES STUDY 

Materials with high thermal conductivity are a primary focus for the modern electronic 

industries in order to improve thermal management for improving device performance and 

reliability67, 68. Boron Phosphide (BP) is an isotropic semiconductor with superior properties such 

as high mechanical hardness69, chemically inertness, high thermal conductivity70 and stability at 

high temperatures71. Electrical72, thermal73 and magnetic properties of a semiconductor can be 

manipulated through strain and pressure. Thermal conductivity of a semiconductor can be 

modulated through various mechanism such as doping, defects, pressure and strain. Strain affects 

the materials properties through changes in structure, lattice constants, symmetry74 and band 

gaps75, 76. Strain may increase or decrease the thermal conductivity of the materials based on their 

structural properties. Thermal conductivity enhancement in semiconductors73, polymers17 and 

polymers nanocomposites77 through strain has been reported in various works. Mostafa et. al78 

reported 125% increase in thermal conductivity of hexagonal boron arsenide (h-Bas) for 3% strain. 

Recently 53% enhancement in thermal conductivity of Gallium Nitride(GaN) with 5% biaxial 

compressive strain was reported by Dao Sheng et. al79. Thermal conductivity of silicon film was 

found to decrease with the strain80. In this work we study effect of strain on thermal conductivity 

of BP. We find the 24.21% and 48.3% enhancement in in-plane thermal conductivity of Boron 

Phosphide81 for 2% and 4% biaxial compression respectively using first-principles calculations. 

This enhancement in thermal conductivity upon biaxial compression is attributed to the 

suppression of phonon-phonon scattering and thus increase in phonon lifetime. This is explained 

through increase in phonon bandgap upon biaxial compression. We also observed anisotropy in 

thermal conductivity with in-plane thermal conductivity becoming higher than out of plane thermal 

conductivity. This provides an avenue for tuning the thermal conductivity of semiconductors 

through biaxial compression. The increase in thermal conductivity is observed through reduction 

in phonon linewidth82-84, which is a measure of the scattering rate.  

At nanometer length scales, Fourier law of heat conduction breaks down, decreasing 

effective thermal conductivity below bulk value, exacerbating heat dissipation in the process. The 

effect has been shown to lead to overheating, reducing reliability and performance in 

nanoelectronics applications. The effect was also demonstrated experimentally. To improve 

thermal management at nanoscale, there is a strong need for materials with enhanced thermal 
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conductivity at these length scales. In this work, we also show that biaxial strain can significantly 

enhance thermal conductivity of Boron Phosphide at nanoscale by specifically suppressing 

scattering of phonons at higher frequencies, where phonon meanfreepaths are in the nanometer 

range.  

 

4.1 DENSITY FUNCTIONAL THEORY(DFT): Thermal conductivity in this work is predicted 

for cubic Boron Phosphide using 

first principles calculations85, 86 

which involve solving the Phonon 

Boltzmann Transport Equation 

(PBTE), both in the single mode 

relaxation time approximation 

(SMRT) and also exactly.  The key 

step, in the approach involves 

deriving 2nd and 3rd order interatomic 

force constants (IFCs), needed for k 

prediction, from density-functional 

theory (DFT).  

DFT has been shown to yield highly accurate IFCs, overcoming limitations of empirical potentials, 

leading to unprecedented accuracy in the prediction of lattice k. Thermal conductivity (k) 

prediction, based on solving of PBTE87 in the single mode relaxation time (SMRT) approximation, 

is given by, 

𝑘𝛼 =
ℏ2

𝑁𝛺𝑘𝑏𝑇2
∑ 𝑐𝛼𝜆

2 𝜔𝜆
2𝑛̅𝜆𝜆

(𝑛̅𝜆 + 1)𝜏𝜆      (4.1) 

where 𝛼, ℏ , 𝛺, 𝑘𝑏,T, are the cartesian direction, Planck constant, unit cell volume, Boltzmann 

constant, and absolute temperature respectively. 𝜆 represents the vibrational mode (qj) (q is the 

wave vector and j represents phonon polarization). N is the size of the q mesh used for summation 

in above equation. 𝜔𝜆, 𝑛̅𝜆, and 𝑐𝛼𝜆 (= 𝜕𝜔/𝜕𝑞) are the phonon frequency, equilibrium Bose-

Einstein population and group velocity along cartesian direction 𝛼, respectively of a phonon mode 

𝜆. These are derived from the knowledge of phonon dispersion computed using 2nd order IFCs. 𝜏𝜆 

is the phonon lifetime (equal to the inverse of scattering rate). In the SMRT approximation, phonon 

lifetime (𝜏𝜆) is computed using the following equation, 

Figure 4.1a. Cubic Boron phosphide crystal structure 

with lattice constant as 8.44 Å. b) Boron Phosphide after 

4% compression in x and y direction and relaxed in z 

direction.  
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1

𝜏𝜆
= 𝜋 ∑ |𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 × [2(𝑛𝜆′𝜆′𝜆′′ − 𝑛𝜆′′)𝛿(𝜔(𝜆) +  𝜔(𝜆′) − 𝜔(𝜆′′)) + (1 + 𝑛𝜆′ +

𝑛𝜆′′)𝛿(𝜔(𝜆) −  𝜔(𝜆′) − 𝜔(𝜆′′))]    

               (4.2) 

where 𝑉3(−𝜆, 𝜆′, 𝜆′′) are the three-phonon coupling matrix elements computed using both 

2nd and 3rd order IFCs. Phonon scattering due to anharmonicity can be classified into two processes 

– absorption and decay processes. In absorption process, a phonon mode (q) scatters by absorbing 

another phonon mode(q), yielding a higher energy (q) phonon mode, whereas in decay 

process, a phonon mode decays into two lower energy phonons. Both processes satisfy energy and 

momentum conservation. These are given by += (energy), q+q = q (momentum) for 

absorption process and =+ (energy), q=q + q (momentum) for decay process. The first 

delta function in above equation, represents the absorption process, whereas the second delta 

function represents the decay process.  

 

4.2 COMPUTATIONAL METHODS 

 DFT calculations were carried out using QUANTUM-ESPRESSO88 using norm-

conserving pseudopotentials in the local-density approximation (LDA) with a plane-wave cut off 

Figure 4.2: Phonon dispersion and density of states for the 0 %, 2 % and 4% strained BP 
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100 Ry. Monkhorst k-point mesh of 12 x 12 x 12 was used to describe the electronic properties. 8 

x 8 x 8 q-grid was used to compute the dynamical matrix and the 2nd order force constants. 3rd 

order (anharmonic) force constants were computed using D3Q89-91 package, on a 4 x 4 x 4 

supercell. Acoustic sum rules were imposed on both 2nd and 3rd order force constants. Phonon 

linewidth and thermal conductivity calculations were carried out on 30 x 30 x 30 q-mesh. For the 

exact solution of thermal conductivity, 50 iterations were carried out for the convergence. 

Energy minimization was carried out for the unstrained cubic BP with respect to the lattice 

constant yielding a lattice parameter of a = 8.44 Å. The phonon dispersion along the high symmetry 

points92 for the unstrained case is shown in Fig. 4.2. The computed phonon frequencies are in good 

agreement with the experimental datasets obtained through x-ray scattering93. For the strained 

cases, the lattice was compressed by 2% and 4% in the x-y plane (along both x and y directions) 

and relaxed in the z-direction (Fig. 1b). The lattice dimensions obtained after relaxing the structure 

corresponded to a Poisson ratio of 𝜈 = 0.19, which is in good agreement with reported values. 

4.3 RESULTS  

 

 

 

 

Figure 4.3: In-plane thermal conductivity of 0%, 2% and 4% strained boron phosphide using 

SMA relaxation method and iterative exact solution method. 

100 200 300 400 500

1000

10000

200

T
h
er

m
al

 C
o
n
d
u

ct
iv

it
y
 (

W
m

-1
K

-1
)

Temperature (K)

  = 0%,  In-plane

  = 2%,  In-plane

  = 4%,  In-plane

  = 0%,  Out of plane

  = 2%,  Out of plane

  = 4%,  Out of plane

b) SMRT

100 200 300 400 500

1000

10000

200

T
h
er

m
al

 C
o
n
d
u
ct

iv
it

y
 (

W
m

-1
K

-1
)

Temperature (K)

  = 0%,  In-plane

  = 2%,  In-plane

  = 4%,  In-plane

  = 0%,  Out of plane

  = 2%,  Out of plane

  = 4%,  Out of plane

a) Exact



30 
 

4.3.1 Phonon dispersion and density of states 

The phonon dispersions of unstrained and strained cases are compared in Fig. 4.2. It can 

be seen that as the lattice is biaxially 

compressed, phonon band gap between 

acoustic and optical phonons increases. For 

the unstrained boron phosphide, the phonon 

band gap is estimated to be 168 cm-1, while 

for 2% and 4% compressive strains, the 

phonon band gap increases to 177 cm-1 and 

186.5 cm-1 respectively representing an 

increase of 5.35% and 11.0% respectively.  

 

4.3.2 Lattice thermal conductivity 

Figs. 4.3 a and b show the thermal 

conductivity of unstrained, and 2% and 4% 

strained boron phosphide using an exact 

solution and single mode relaxation time 

(SMRT) approximation respectively. The 

computed k of unstrained BP is in good 

agreement with previously reported first-

principles computations and measurements. 

Fig. 4.3 shows that in-plane (defined as the 

plane in which compressive biaxial strain is 

applied) k increases with increase in biaxial 

compressive strain. At 300K, while k of 

unstrained BP is computed to be 591 W/mK, 

the values for 2% and 4% strain are estimated 

to be 699 W/mK and 802.5 W/mK, 

representing an increase of 18.3% and 35.8% 

respectively. The value of 802.5 W/mK 

obtained for 4% strained BP is almost 5-times 
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the thermal conductivity of silicon (k = 155 W/mK at 300K), providing avenues to significantly 

enhance heat dissipation in electronic applications. Similarly, the out of plane k increases by 

17.76% and 36.75% for the 2% and 4% biaxial strain respectively.  

Length scale dependence of k was estimated by introducing additional Casimir scattering 

in the exact solution of PBTE.  Fig 4.4. shows that biaxial strain leads to considerable increase in 

thermal conductivity at nanometer length scales. At length scale of 200 nm, an increase in k of 

25% from 120.6 W/mK (=0%) to 150.4 W/mK (=4%) is observed at 300 K.  At 400 nm, the 

increase in k is even higher, by almost 30%, from 180 W/mK to 232.5 W/mK for the same change 

in strain. The increase in nanoscale k is found to be higher at higher temperatures. At 500 K, out 

of-plane k increases by 30% and 33% at 200 nm and 400 nm, respectively, for increase in strain 

from 0 to 4%. These large increases in nanoscale k point to the potential of applying biaxial strain 

for enhancement of nanoscale heat dissipation in electronic applications.  

We first discuss increase in thermal conductivity for bulk BP (at infinite sample length), 

seen in Fig. 4.3. We find this increase in k to be due to a combination of decrease in phonon 

scattering and increase in phonon velocities. The two effects are not additive, and cannot be 

separated in magnitudes. However, by forcing the linewidths for all strains to be the same as for 

unstrained case, but using the actual velocities and frequencies, we find an increase in thermal 

conductivity of 10% for . Thus, an increase in velocities alone would have resulted in 10% increase 

in k, indicating that a decrease in scattering rates is the dominant effect.  To understand this 

decrease in phonon scattering, we compare the scattering rates (phonon linewidths) for the acoustic 

modes of unstrained, and 2% and 4% biaxially strained BP in Fig. 4.5. We can observe that phonon 

linewidths (scattering rates) computed based on lowest order three-phonon scattering, decrease in 

strained BP, as the strain is increased from 0% to 4%. Figs. also show that the decrease in scattering 

is significant at 500 K and 300 K, however, as the temperature is decreased to 100 K, the change 

in scattering rates becomes diminished. To understand the decrease in phonon scattering at higher 

temperatures (exceeding ~ 300 K), we compare the scattering rates along -X in Fig. 4.6. It is 

noted that upon applying strain, TA mode along -X loses degeneracy, and splits into TA1(lower 

energy) and TA2 (higher energy) modes. Here we only show TA1 mode (behavior of TA2 mode is 

similar).  It can be seen (in Fig. 4.6b) that linewidth of TA mode decreases with increasing strain 

along entire -X, while same holds true for LA mode for significant part of -X (seen in Fig. 4.6a). 
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This decrease can be understood by looking at relevant scattering channels involved in the 

scattering of LA and TA modes (shown in Fig. 4.6c and d, respectively).  

In particular we look at the magnitude of the following scattering channels (other channels 

were found to have negligible contribution to overall scattering rate) in the scattering of acoustic 

phonons -  a) 𝑎 + 𝑜 → 𝑜, b) 𝑎 + 𝑎 → 𝑜, c) 𝑎 + 𝑎 → 𝑎, and d) 𝑎 → 𝑎 + 𝑎. We observe from Figs. 

6c and d, that for large part of -X, the most significant contribution to scattering of LA and TA 

phonons in BP is from the 𝑎 + 𝑎 → 𝑜 scattering channel. In Figs. 4.6e and f, we compare the effect 

of strain on this dominant 𝑎 + 𝑎 → 𝑜 (acoustic + acoustic→ optical) scattering channel for LA and 

TA modes, respectively. We observe a decrease in the magnitude of  𝑎 + 𝑎 → 𝑜 channel for TA1 

mode with strain throughout Γ-X direction (Fig. 4.6f). Magnitude of  𝑎 + 𝑎 → 𝑜 for TA1 mode 

decreases by 16.1% and 28% for the 2% and 4% strain respectively at Brillouin zone edge (X-

point). For LA phonon mode (Fig. 4.6e), we observe a reduction in magnitude of 𝑎 + 𝑎 → 𝑜 

channel for most part of -X, except close to zone edge (X point), where an increase is observed. 
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This observed decrease in 𝑎 + 𝑎 → 𝑜 scattering channel strength for most of the Brillouin zone, is 

a direct consequence of increase in phonon band gap between acoustic and optical phonons (seen 

in Fig. 4.3). This is seen by considering that in unstrained case, a TA acoustic phonon of frequency 

=158 cm-1 can scatter by absorbing an LA (acoustic) phonon of frequency =532 cm-1, yielding 

Figure 4.6a: Dominant 

scattering mechanisms in 

boron phosphide of LA 

phonon mode 4.6b. TA 

phonon mode modes for 

different strain rate along Γ-

X direction. 4.6c and d : 

Total scattering rate due to 

all possible scattering for LA 

and TA phonon mode 

respectively for different 

strain rate. 6e: Scattering due 

to 𝑎 + 𝑎 → 𝑜 for LA phonon 

modes for different strain 

rates.4.6f: Scattering due to 

𝑎 + 𝑎 → 𝑜for TA1 phonon 

modes with different strain 

rate.  
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the lowest energy optical phonon of frequency =690 cm-1 (+=)  (provided the appropriate 

momentum conservation is satisfied). In the 2% strained case, however, due to the increase in 

phonon band gap, this scattering channel becomes prohibited, since the optical phonon frequencies 

become higher than 690 cm-1. Minimum optical phonon frequency (min,optical) in 2% strained case 

is 711.9 cm-1, causing sum of acoustic (158 cm-1) and acoustic (532 cm-1) to become less than 

min,optical (711.9 cm-1) (acoustic +acoustic <min,optical), thus making energy conservation for such 

𝑎 + 𝑎 → 𝑜 channels, infeasible. This causes such 𝑎 + 𝑎 → 𝑜 channels (which were feasible in 

unstrained BP) to become completely forbidden in the strained case.  Removal of 𝑎 + 𝑎 → 𝑜 

scattering channels diminishes scattering of TA phonons by optical phonons in the strained Boron-

Phosphide along entire -X, enhancing TA phonon lifetimes. Same decrease in 𝑎 + 𝑎 → 𝑜  

scattering also occurs for LA phonons.   

However, for LA phonons, an increase 

in 𝑎 + 𝑎 → 𝑜 scattering is also observed near 

the Brillouin zone edge. This can be explained 

by a shift of the optical phonon frequencies to 

higher values in strained BP as seen in phonon 

dispersion in Fig. 4.2. As an example, in the 

2% biaxially strained BP, an LA phonon of 

frequency =500 cm-1 can scatter by 

absorbing another LA phonon of frequency 

=340 cm-1, yielding optical phonon of 

frequency =840 cm-1 (+=), 

(provided the appropriate momentum 

conservation is satisfied). Presence of higher 

frequency optical phonons in strained BP 

(spanning frequency range of 711 cm-1 – 848 

cm-1) makes such a channel feasible in the 2% 

strained BP, since  =840 cm-1 lies within the 

optical frequency range of strained BP. In the 

unstrained case, however, optical phonon 

Fig. 4.7a: Spectral dependence of thermal 

conductivity in strained Boron Phosphide at 

300 K. b) Phonon mean freepath of BP with 

strain 
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frequencies are lower (690 cm-1 – 820 cm-1), and an optical phonon of frequency =840 cm-1 

does not exist, making the above channel infeasible in unstrained case. The presence of additional 

scattering channels for higher energy LA phonons near the zone edge (in strained BP), increases 

their linewidths in strained case.  

We also find a small increase in 𝑎𝐿𝐴 → 𝑎 + 𝑎 scattering for LA modes, and 𝑎𝑇𝐴 + 𝑎 → 𝑎 

scattering for TA modes in strained BP. However, magnitudes of these channels are significantly 

smaller, than  𝑎 + 𝑎 → 𝑜 channel; decrease in 𝑎 + 𝑎 → 𝑜 scattering of both LA and TA phonons, 

then, results in a decrease in overall scattering rate, resulting in the observed increase in thermal 

conductivity of strained Boron-Phosphide.  

 Competing mechanisms, with decreasing and increasing contributions (discussed above)  

to 𝑎 + 𝑎 → 𝑜 channel for LA phonons, cause smaller overall decrease in scattering of LA phonons 

compared to TA phonons.  

 We next address the enhancement in nanoscale thermal conductivity in strained BP, by 

first studying the spectral dependence of thermal conductivity in strained BP. Fig. shows that peak 

contribution to thermal conductivity in strained BP is made by phonons of higher frequencies (~ 

240 cm-1) than in the case of unstrained BP (~ 240 cm-1). This shift of peak k to higher frequencies, 

can be understood by noticing that the decrease in 𝑎 + 𝑎 → 𝑜 scattering (that drives overall 

scattering) is dominant at higher wavevectors (q>0.2 along G-X) and thus leads to a decrease in 

overall scattering rate at higher frequencies (>200 cm-1 as seen in Fig. 4.3). At small wavevectors, 

the 𝑎 + 𝑎 → 𝑜 channel is almost completely absent, as the frequencies of these acoustic phonons 

are too small to scatter in to the higher energy optical phonons. As frequency of acoustic phonon 

increases, it becomes large enough to enable absorption of another acoustic phonon, such that the 

sum is a high energy optical phonon, causing the 𝑎 + 𝑎 → 𝑜 channel to be dominant at higher 

frequencies. The elimination of this channel in strained BP due to increase in optical phonon 

frequencies, thus leads to larger decrease in overall scattering at higher frequencies (>200 cm-1). 

This decrease in phonon scattering at higher frequencies of >200 cm-1 combined with a very large 

phonon density of states near 250 cm-1, leads to peak thermal conductivity shifting to 250 cm-1. 

The effect is also found to lead to a spectral focusing of thermal conductivity in strained BP.  

The enhancement in thermal conductivity at nanoscale can be understood by comparing 

phonon meanfreepaths in strained BP relative to unstrained case at different frequencies as shown 

in Fig. 4.7b shows that there is an increase in phonon meanfreepaths at higher frequencies in 
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strained BP where meanfreepaths are in the nanometer range. This increase in meanfreepaths at 

higher frequencies is a direct consequence of the decrease in 𝑎 + 𝑎 → 𝑜 scattering at these 

frequencies.  In unstrained BP, meanfreepaths are seen to decrease as frequency increases. 

However, in strained BP, decrease in 𝑎 + 𝑎 → 𝑜 scattering at frequencies exceeding ~ 200 cm-1 

slows down this rate of decrease in meanfreepaths, resulting in a plateauing (flattening) of the 

meanfreepath behavior with respect to frequency at meanfreepaths around 200nm. This increases 

the number of phonons at meanfreepaths in the ~100 nm This increase in phonon density at 

nanometer freepaths, increases thermal conductivity at nanometer length scale.  Finally, it is noted 

that thermal conductivities in this work are computed based on the lowest order three-phonon 

scattering. Role of four-phonon processes was shown to be minimal in BP in a recent work.  

 

4.4 CONCLUSION  

By deriving harmonic and anharmonic interatomic force interactions, from density 

functional theory and using them along with an exact solution of the Boltzmann transport equation, 

we have provided a microscopic description of thermal transport in biaxially strained Boron 

Phosphide. Thermal conductivity of 4% biaxially compressed Boron-Phosphide (BP) is computed 

to be 802.5 W/mK at 300 K. This value is almost 35.8% higher than the value of 591 W/mK, 

computed for unstrained BP, and almost 5-fold the thermal conductivity of silicon (Si). Above 

enhancement in thermal conductivity is found to be due a decrease in scattering of acoustic 

phonons, mediated by an increase in phonon band gap in strained BP, which suppresses acoustic 

+ acoustic → optical scattering channel, the dominant scattering channel in unstrained BP. A shift 

in spectral dependence of thermal conductivity is also observed in strained BP. While in unstrained 

BP, peak contribution to thermal conductivity occurs from phonons with frequencies less than 200 

cm-1, in 4% strained BP, peak contribution shifts to higher frequencies of ~250 cm-1. Finally, we 

find that biaxially strained BP exhibits superior heat conduction at nanometer length scales. In 

unstrained BP, phonons of meanfreepaths lower than 600 nm have a thermal conductivity 

contribution of 248 W/mK, while for 2% and 4% strain case, this value increases to 290 W/mK 

and 330 W/mK. These results have important implications for improving thermal management in 

nano-scale applications.  
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CHAPTER 5: STRAIN TUNED THERMAL CONDUCTIVITY REDUCTION IN 

INDIUM ARSENIDE(InAs) – A FIRST PRINCIPLES STUDY 

Thermoelectric (TE) materials, which are capable of converting heat into electric current through 

Seebeck effect, draw significant attention among researchers due to the eco-friendly energy 

conversion94-96. The efficiency of a thermoelectric material is expressed by dimensionless figure 

of merit (ZT=S2T/ k), where  is the electrical conductivity, S is the Seebeck coefficient, T is the 

temperature and k is the thermal conductivity97. High ZT can be obtained by either increasing the 

power factor (S2) 98, 99 or by minimizing lattice thermal conductivity100, 101. Over the years, several 

materials have been reported with high thermoelectric performance such as PbTe102, SnSe103, 

Bi2Te3
104, PbS and SiGe alloys105. PbTe and PbS are used as thermoelectric materials because of 

their very good electrical conductivity and low thermal conductivity106, 107. The key strategy to 

improve figure of merit without affecting electrical conductivity and Seebeck coefficient is to 

reduce the lattice thermal conductivity. Thermal conductivity can be reduced by introducing 

disorder which leads to increase in phonon scattering. Strain engineering is another promising 

approach to modify thermal conductivity by controlling the phonon bandgap between acoustic and 

optical phonons. In a recent work, increase in thermal conductivity of BP is reported through 

Figure 5.1: Indium Arsenide with a) 0% and b) 3% strain c) Phonon dispersion and 

density of states for unstrained and 3% biaxially compressed InAs.  
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biaxial compressive strain81. Increase and decrease in thermal conductivity of wurtzite gallium 

nitride have been reported for 5% biaxial compression and biaxial tension respectively79. Effects 

of biaxial strain on thermal conductivity modulation is yet to be explored for thermoelectric 

materials.  

 

Indium Arsenide (InAs) is a direct band gap semiconductor with high electron mobility 

and is used for field effect transistors, quantum-well structures, and substrate for magnetic field 

sensors, lasers and detectors because of its large Hall coefficient108, 109. Indium Arsenide based 

thermoelectric materials110, 111 with a power factor of 10-3 W/mK2 were observed over a 

temperature range of 300 to 600 K. An order of increase in power factor was observed at 20K in 

InAs nanowires112. In this work113, we report 20% reduction in in-plane thermal conductivity of 

InAs through 3% biaxial compressive strain. Reduction in thermal conductivity is due to increase 

in phonon scattering rate and decrease in phonon group velocities of both TA and LA phonons. 

  

5.1 COMPUTATIONAL METHODS 

Cubic InAs was relaxed until the residual stress and forces acting on the atoms became 

zero. The computed equilibrium lattice constant of 5.967 Å is in good agreement with the 

previously reported first-principles values114. A Monkhorst k-point mesh of 12 x 12 x 12 was used 

to describe the electronic properties during self-consistent calculations115. To compute the 

dynamical matrix and 2nd order force constants, an 8 x 8 x 8 q-grid was used. 4 x 4 x 4 q-grid was 

Figure 5.2: a) In-plane and out-of-plane thermal conductivity of 0%, 3% biaxially compressed InAs 

b) TA, LA and optical phonon mode contribution to overall thermal conductivity. 
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used to compute the 3rd order force constants using QUANTUM ESPRESSO D3Q89, 90 package. 

Acoustic sum rules were imposed on both 2nd and 3rd order force constants. Phonon group 

velocities, frequencies and Bose-Einstein populations were calculated using 2nd order force 

constants and phonon lifetimes were calculated using both 2nd and 3rd order interatomic force 

constants. 30 x 30 x 30 q-mesh was used to calculate phonon linewidths and thermal conductivity 

and the solution of Boltzmann transport equation was found to be converged after 8 iterations. 

 

5.2 RESULTS 

5.2.1 Phonon dispersion 

Phonon dispersions for the unstrained and 3% biaxial strained InAs are compared in figure 

6.1. We can observe changes in phonon band gap between acoustic and optical phonons. Phonon 

band gap for the unstrained InAs is 18.65 cm-1, while for 3% biaxially strained case, it was found 

to be reduced by 11.62% to 16.48 cm-1.  

5.2.2 Lattice Thermal conductivity 

Lattice thermal conductivity of InAs was calculated by solving Boltzmann transport 

equation (BTE) using both single mode relaxation approximation and exactly using iterative 

solution116. For convenience, we have shown only the exact solution in Fig 5.2a. The computed 

values are shown in Fig 5.2a and are in good agreement with the previously reported117 first 

principles calculations for unstrained InAs. At 300 K, thermal conductivity (k) of unstrained InAs 

is 33.85 Wm-1K-1 which is reduced to 27 Wm-1K-1 along in-plane direction (a decrease of 20.23%).   

Fig 5.2b shows the mode contribution of TA, LA and optical phonons to overall thermal 

conductivity. We can observe a reduction in thermal conductivity in both TA and LA phonon 

modes with strain. With 3% biaxial compressive strain, thermal conductivity (k) of TA phonon 

mode contribution drops from 18.17 Wm-1K-1 to 15.06 Wm-1K-1 and LA phonon mode drops from 

12.68 Wm-1K-1 to 9.82 Wm-1K-1. Optical phonon modes have less than ~2.5% contribution to 

overall thermal conductivity.  To understand this reduction in thermal conductivity, we compare 

the phonon linewidths (inverse of phonon lifetime) and phonon group velocities of TA and LA 

phonon modes, as shown in Fig 5.3a and b respectively. From 5.3a we can observe an increase in 

phonon scattering rates of both TA and LA phonon modes with 3% biaxial compressive strain. In 

Fig 5.3b, a small reduction in phonon group velocity of LA phonons is observed. Hence, k 
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reduction of both TA and LA phonons are due to the combined effect of increase in phonon 

scattering rate and decrease in phonon group velocity.  

Intrinsic three-phonon anharmonic phonon scattering can be categorized into absorption 

and decay processes. During the absorption process, a phonon mode (q) scatters by absorbing 

another phonon mode (q) and yielding a higher energy phonon mode (q). During the decay 

process, a phonon mode (q) decays into two lower energy phonons. Both absorption and decay 

processes satisfy energy and momentum conservation. For example, an absorption process has to 

satisfy both energy (+=) and momentum (q+ q = q) conservation. Similarly, decay 

process has to satisfy energy (=+) and momentum (q=q + q ) conservation.  

Figure 5.4a and b represent the total scattering rate of TA and LA mode for unstrained and 

strained cases along -X. For the 3% biaxial compressive strain, we can observe an increase in 

total scattering rate of TA phonons throughout -X.  To elucidate this increase in TA phonon 

modes, we have analyzed the dominant scattering channels of TA phonon modes as shown in Fig 

5.4c. Figure 5.4c and d represent all the possible phonon scattering channels of TA and LA phonon 

mode for unstrained InAs such as, a) an acoustic mode decaying into two acoustic phonons (a → 

a+ a), b) an acoustic phonon absorbing an optical phonon to yield higher energy optical phonon (a 

+ o → o), c) an acoustic phonon absorbing another acoustic phonon yielding higher energy optical 

phonons (a + a → o) and d) an acoustic phonon absorbing another acoustic phonons yielding a 

higher energy acoustic phonon (a + a → a). 

Figure 5.3 a) Phonon linewidth (inverse of lifetime) and b) average phonon group velocity of  

      InAs with 0% and 3% strain 
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From Fig 5.4c, we can observe that, the dominant phonon scattering channels of TA modes are 

a+a → a and a+a → o. The scattering rates of both these modes increase with applied strain (shown 

in Fig 5.4e and f). At q = 0.55 (reduced units) along -X, scattering due to a+a → o mode is found 

to increase by 50%. Dominant scattering channels for LA phonons are a+a →o and a→a+a (Fig. 

5.4d). The effect of strain on these channels is shown in 5.4g and f. k reduction of LA phonons is 

due to the combined effect of reduction in phonon group velocities and increase in phonon 

scattering. 

 

5.3 CONCLUSION 

Using first-principles calculations and by solving Phonon Boltzmann Transport Equation 

iteratively, we have studied the thermal transport in biaxially strained Indium Arsenide (InAs). 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

1

2

3

4

5

6

0.001

0.01

0.1

1

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4

5

6

T
o

ta
l 

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 = 0%

 = 3%

a) TA phonons

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)  aTA→a +a

 aTA+o →o

 aTA+a →o

 aTA+a →a

c)

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 = 0 %

 = -3 %

aTA+a →a

e)

aLA+a →o

S
c

a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 = 0 %

 = -3 %

aTA+a →o

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

f)

T
o

ta
l 

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 = 0%

 = 3%

b) LA phonons

Γ X

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 aLA→a +a

 aLA+o →o

 aLA+a →o

 aLA+a →a

XΓ

d)

S
c
a
tt

e
r
in

g
 r

a
te

(c
m

-1
)

 = 0 %

 = -3 %

Γ X

aLA → a + a

g)

 = 0 %

 = -3 %

Γ X

h)

Figure 5.4: a) and b) Total scattering rate of TA and LA phonon modes, respectively, c) and d) 

dominant scattering channels of TA and LA phonon modes, respectively, e) and f) scattering of 

TA phonon modes due to a+a→ a and a+ a→ o, respectively, g) and h) scattering of LA phonons 

due to a→a+a and a+a→o respectively for the 0% and 3% biaxial compressive strained InAs. 
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Thermal conductivity (k) of 3% biaxial compressively strained InAs reduced by ~20 % along in-

plane direction. Phonon group velocity and phonon scattering rate of TA and LA phonon modes 

upon strain were investigated and our first principles calculations reveal that reduction in k is due 

to a combination of increase in phonon scattering rate and decrease in phonon group velocity of 

both TA and LA phonons. These results provide an avenue for improving the thermoelectric 

performance by reducing the lattice thermal conductivity through biaxial strain. 
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CHAPTER 6: STRAIN TUNED LOW THERMAL CONDUCTIVITY IN INDIUM 

ANTIMONIDE(InSb) THROUGH INCREASE IN ANHARMONIC SCATTERING – A 

FIRST PRINCIPLES STUDY 

Indium Antimonide (InSb) is a promising candidate material for thermoelectric 

applications118-120 because of its high mobility of electrons of about 104-105 cm2V-1s-1 and bandgap 

of about 0.18 eV121. The performance of a thermoelectric material can be expressed by the 

dimensionless figure of merit, ZT=S2T/ k, where , S, T and k are the electrical conductivity, 

Seebeck coefficient, absolute temperature and thermal conductivity respectively. Thermoelectric 

performance of InSb can be increased by increasing the power factor (S2)99, 122 and reducing 

lattice thermal conductivity100, 123. Various strategies such as disorder87, 124, nano structuring125, 126, 

strain79 and defects127, 128 can be used to reduce the lattice thermal conductivity. In this work129, 

we report 29% and 17% reduction in in-plane (plane in which compressive biaxial strain is applied) 

and out-of-plane thermal conductivity of cubic InSb through 5% biaxial compressive strain. This 

decrease in k is found to be due to a large increase in three-phonon scattering rates of LA phonons 

driven by a shift of TA frequencies to lower values. Simultaneously TA phonon scattering rates 

also increase mediated by an increase in absorption scattering channels in strained InSb. First-

principles computations are used to present understanding of the role of strain in modifying 

Figure 6.1: Indium Antimonide with a)0% and b) 5% strain c) Phonon dispersion and 

density of state for unstrained and biaxial compressive strained InSb. Note: For the 

purpose of comparison, we plotted along the same direction. 
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scattering rates in strained InSb. These 

results have important implications for 

high efficiency thermoelectric materials.  

 

 

6.1 COMPUTATIONAL DETAILS  

DFT calculations were carried out using QUANTUM-ESPRESSO88. Norm-conserving 

pseudopotentials in the local-density approximation (LDA) were used with a plane-wave cut-off 

of 100 Ry. Monkhorst115 k-point  

mesh of 12 x 12 x 12 was used to describe the electronic properties. 9 x 9 x 9 q-grid was used to 

compute dynamical matrices and the 2nd order IFCs. 3rd order IFCs were computed using D3Q90 

package, on a 3 x 3 x 3 q points. Acoustic sum rules were imposed on both 2nd and 3rd order force 

constants. Phonon linewidth and k calculations were carried out on 40 x 40 x 40 q-mesh and 

smearing of 0.05 cm-1. For the exact solution of PBTE, typically 10 iterations were found to be 

sufficient to achieve convergence91.  

 

6.2 RESULTS  

Figure 6.3: Comparison between unstrained and 

strained InSb of a) Phonon linewidths at 300 K b) 

mean velocity in in-plane x-direction and c) mean 

velocity in out-of-plane z-direction.  
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Figure 6.2: Computed in-plane and out-of-

plane thermal conductivity of unstrained and 

5% biaxially compressed InSb.  
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6.2.1 LATTICE PARAMETER and THERMAL CONDUCTIVITY 

Lattice parameter of unstrained InSb was determined through energy minimization to be 

a0 = 6.389 Å. For the strained cases, the lattice was compressed by 5% in the x-y plane (along both 

x and y directions) and relaxed in the z-direction. The lattice dimensions of the biaxially strained 

InSb are computed to be a = b = 0.95a0, and c = 1.108a. Computed phonon dispersion for 

unstrained (which is in good agreement with the experimental measurements24) and strained case 

is shown in Fig 1.  Strain is found to shift TA phonon frequencies to lower values (seen also a shift 

in phonon density of states) while leading to an increase in LA phonon frequencies.  

At 300K, thermal conductivity of unstrained InSb is computed to be 18.83 Wm-1K-1 (Fig. 

6.2), in good agreement with measurements130. Upon biaxial compression, k is reduced to 13.38 

Wm-1K-1 and 15.62 Wm-1K-1 along in-plane and out-of-plane directions, representing a reduction 

of 29% and 17%, respectively.  To understand this reduction and anisotropy in k in strained InSb, 

we analyze the effect of strain on phonon group velocities and scattering rates in Fig. 6.3.   

Figure 6.4: Comparison of  unstrained and strained InSb in terms of total scattering rate at 300 K 

along -X of a) LA and b) TA phonon modes. Contribution of dominant scattering channels at 

300 K in unstrained InSb for c) LA and d) TA phonons. Comparison between unstrained and 

strained InSb of e)  𝑎𝐿𝐴 → 𝑎 + 𝑎 channel, f) 𝑎𝑇𝐴 + 𝑎 → 𝑎 channel and g) 𝑎𝑇𝐴 + 𝑜 → 𝑜 channel 

at 300 K.  
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Fig. 6.3a shows large increase in 

scattering rates of acoustic phonons in 

strained InSb, particularly for the LA 

phonons. At a frequency of ~70 cm-1, the 

scattering rate of LA phonon for example, 

increases by nearly a factor of 5 from ~0.5 

cm-1 to ~2.5 cm-1, at 300 K. Scattering rates 

of TA phonons also increase in strained InSb, 

however, the increase is smaller than for LA 

phonons.  Mean phonon velocities, along the 

in-plane direction (plane in which bi-axial 

strain is applied), however, are found to 

remain almost the same for unstrained and 

strained InSb (Fig. 6.3b). Decrease in in-

plane k in strained InSb is, therefore, 

primarily due to an increase in scattering 

rates. Along the, out-of-plane direction, an 

increase in phonon velocities of LA phonons 

in strained InSb (Fig. 6.3c), partially cancels 

the effect of increase in scattering rates, leading to lower decrease in k along this direction.  

6.2.2 INCREASE IN LA PHONON SCATTERING 

To understand increase in phonon scattering in strained InSb, we analyze the scattering rates 

of LA and TA phonons along -X in Fig. 6.4. A large increase of 330% in scattering rate of LA 

phonon is observed in strained InSb at wavevectors close to the middle of the Brillouin zone (at qx 

= 0.45) in Fig. 6.4a. Fig. 6.4c shows that a dominant contribution to scattering of LA phonons is 

from the 𝑎 → 𝑎 + 𝑎 channel which represents decay of an acoustic phonon into two lower 

frequency acoustic phonons. The scattering rate for the 𝑎 → 𝑎 + 𝑎 channel is found to peak with 

respect to wavevector for unstrained InSb at qx=0.60 (Fig. 6.4e); in strained InSb, the scattering 

rate for this channel increases at lower wave-vectors, seen also as a shift in peak scattering rate to 

lower wavevector of qx=0.45. The peak scattering rate for 𝑎 → 𝑎 + 𝑎 channel for LA phonons 

Figure 6.5: a) Phase space for scattering of LA 

phonons in strained and unstrained InSb b) 

phase space for scattering of LA at different 

frequencies and c) Comparison of three-phonon 

coupling elements in strained and unstrained 

InSb.  
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increases significantly in magnitude in strained InSb, by almost a factor of 2 relative to peak in 

unstrained InSb (Fig. 6.4e). 

Fig. 6.1 shows that strain shifts TA phonons to lower frequencies. Above increase in 

scattering rate of mid-Brillouin zone LA phonons is found to be due to this decrease in TA 

frequencies, through two important effects – a)  an increase in number of decay scattering channels 

and b) an increase in magnitude of three-phonon coupling elements, as described next. We first 

describe increase in number of decay channels for LA phonons at mid-Brillouin zone wave-

vectors. To understand this increase, it is realized that scattering rate of 𝑎𝐿𝐴 → 𝑎 + 𝑎 channel is 

almost entirely due to decay of LA phonons in to two TA phonons, i.e the 𝑎𝐿𝐴 → 𝑎𝑇𝐴 + 𝑎𝑇𝐴 

channel, as seen in Fig. 4e. Decrease in TA phonon frequencies in strained InSb (Fig. 6.1), 

increases the probability of scattering of lower frequency LA phonons in to these larger number 

of TA phonons now available at lower frequencies, leading to an increase in number of 𝑎𝐿𝐴 →

𝑎𝑇𝐴 + 𝑎𝑇𝐴 scattering (decay) channels, for low frequency (mid Brillouin zone) LA phonons in 

strained InSb.  

To show this increase clearly, we define scattering phase space Φ for the 𝑎𝐿𝐴 → 𝑎𝑇𝐴 +

𝑎𝑇𝐴, as Φ = 1/(4𝑁) ∑ 𝛿(𝜔𝐿𝐴(𝑞) −  𝜔𝑇𝐴(𝑞′) − 𝜔𝑇𝐴(𝑞′′ = 𝑞 − 𝑞′)𝜆′ ), N is the size of the 𝑞′ mesh 

used for summation (summation is performed only over the TA modes).  The phase space as 

defined above, is indicative of the number of decay scattering channels contributing to the 

magnitude of 𝑎𝐿𝐴 → 𝑎𝑇𝐴 + 𝑎𝑇𝐴 channel (the definition essentially assumes all of the three-phonon 

coupling elements to be unity, and ignores absorption processes in Equation 4.2). Fig. 6.5a shows 

an increase in scattering phase space for LA phonons at smaller wavevectors (lower frequencies) 

in strained InSb (Fig. 6.5a). While peak phase space for unstrained InSb occurs at qx ~ 0.60, this 

peak shifts to lower wavevector of qx ~ 0.45 in strained InSb. At wavevector qx=0.45, phase space 

for scattering of LA phonon in strained InSb is almost 55% higher, relative to the case of unstrained 

InSb (Fig. 6.5a).  

To see that this increase in phase space for lower frequency LA phonons is directly due to 

shift of TA frequencies to lower values, we show distribution of TA phonon frequencies 

contributing to the scattering phase space for 𝑎𝐿𝐴 → 𝑎𝑇𝐴 + 𝑎𝑇𝐴 channel in Fig. 6.5b.  This 

distribution is shown as a function of the larger of the two TA phonon frequencies involved in 

decay of LA phonon through LA=TA+TA, denoting it by  on x-axis in Fig. 6.5b. This split 

of overall phase space for the channel 𝑎𝐿𝐴 → 𝑎𝑇𝐴 + 𝑎𝑇𝐴 into contributing frequencies is shown at 
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the two wavevectors discussed above, namely, qx=0.60 for unstrained and qx=0.45 for strained 

cases (wavevectors at which 𝑎𝐿𝐴 → 𝑎 + 𝑎 channel is seen to peak in Fig. 6.4e), Fig. 6.5b shows 

that the peak contribution to scattering of LA phonon at qx=0.60 ( =103 cm-1) in unstrained InSb 

is from TA phonons with frequency ~60 cm-1 (with corresponding =43 cm-1); these 

frequencies correspond to the two peaks in phonon density of states (Fig. 6.1). In strained InSb, 

however,  Fig. 6.5b shows that strong contribution to scattering of LA phonon at qx = 0.45 ( = 

82.2 cm-1) is from TA phonons of much lower frequencies, with peak contribution occurring from 

 ~ 48 cm-1 (with =34.2 cm-1) (Fig. 6.5b) in strained InSb. This provides evidence of the 

dominant role of lower frequency TA phonons in increasing scattering rates of mid-Brillouin zone 

LA phonons in strained InSb. 

  However, while the peak phase space shifts to lower wavevector in strained InSb relative 

to unstrained InSb, the peak value of this phase space remains almost the same in magnitude 

(~0.11) for strained and unstrained cases (Fig. 6.5a),and cannot alone explain the ~2-fold higher 

peak scattering rate in strained InSb (seen in Fig. 6.4b), relative to peak rate for unstrained InSb.  

This increase can be explained by an increase in magnitude of three-phonon coupling elements in 

strained InSb. Notice that the three-phonon coupling elements |𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 in equation 3.2 are 

inversely proportional to the product of the three frequencies involved in scattering44, 

|𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 ∝
1

𝜔(𝜆)𝜔′(𝜆′)𝜔′′(𝜆′′)
. A shift in scattering to lower frequencies in strained InSb 

increases the magnitude of these coupling elements. The approximate ratio of |𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 

corresponding to peak frequency contributions to scattering of wavevector qx = 0.60  in unstrained 

and qx = 0.45 strained InSb (described above and shown in Fig. 5b) can be computed as  

|𝑉3(−𝜆,𝜆′,𝜆′′)|
𝑠𝑡𝑟𝑎𝑖𝑛,   𝑞𝑥=0.45

2

|𝑉3(−𝜆,𝜆′,𝜆′′)|𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛,   𝑞𝑥=0.60
2 =

(103)(43)(60)

(82.2)(34.2)(48)
 = 1.97. Distribution of all |𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 involved in 

scattering of LA phonons at the two wavevectors is also shown in Fig 6.5c. Overall, the average 

value of |𝑉3(−𝜆, 𝜆′, 𝜆′′)|2 involved in scattering of LA phonon at qx = 0.45 in strained InSb is found 

to be almost two-fold higher relative to the case of qx=0.60 in unstrained InSb. These higher 

magnitudes of three-phonon coupling elements (Fig. 6.5c) combined with increase in scattering 

phase space (Fig. 6.5a) lead to the observed large increase in scattering rates of LA phonons in the 

middle of the Brillouin zone in strained InSb. 
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6.2.3 INCREASE IN TA PHONON SCATTERING 

For TA modes, strain is found to increase the magnitude of 𝑎 + 𝑎 → 𝑎 and 𝑎 + 𝑜 → 𝑜 scattering 

channels (Fig. 6.4f and g, respectively) leading to an increase in TA phonon scattering rate by a 

maximum of ~60% close to zone edge (point X) (Fig. 6.4b). Increase in 𝑎 + 𝑎 → 𝑎 scattering for 

TA phonons can be understood by an increase in frequencies of LA phonons in strained InSb. Fig. 

6.1 shows that, while, maximum LA phonon frequency in unstrained InSb is 150.4 cm-1, the peak 

frequency in strained InSb is 162.8 cm-1. This increase in LA frequencies introduces new 𝑎 + 𝑎 →

𝑎 channels for TA phonons. This is seen through an example, by considering that in strained InSb, 

a TA phonon of frequency =20 cm-1 can scatter by absorbing an LA phonon of frequency =140 

cm-1, yielding an LA phonon of frequency =160 cm-1, thus satisfying energy conservation 

+= (provided the momentum conservation is satisfied) (Fig. 6.1). In unstrained case, 

however, LA phonon frequencies are lower, and an LA phonon of frequency =160 cm-1 does 

not exist, forbidding this channel. The presence of additional scattering channels in strained InSb 

leads to increase in 𝑎 + 𝑎 → 𝑎 scattering for TA phonons. The effect is found to lead to larger 

increase in scattering at higher wavevectors (Figs. 6.4b and f); this can be understood by realizing 

that a TA phonon of frequency  can only scatter into a final LA phonon of frequency   higher 

than , restricting the frequency range (𝜔𝐿𝐴,𝑚𝑎𝑥
′′ − 𝜔) for scattering as  increases.  Increase in 

LA frequencies in strained InSb by increasing this frequency range, thus resulting in a more 

dramatic increase in scattering of higher frequency TA phonons.  

  Increase in 𝑎 + 𝑜 → 𝑜 channel for TA phonons can similarly be understood in terms of 

increase in optical frequency range in strained InSb. While in unstrained InSb, optical phonons 

range from 140.8 - 200.5 cm-1, in strained InSb, the corresponding range is from 144.1 – 217.7 cm-

1. This increase in optical phonon frequency range introduces new channels for scattering of higher 

frequency TA phonons. This can be again be seen through an example, by considering that in 

strained InSb, a TA phonon of frequency 30 cm-1 can absorb an optical phonon of frequency 180 

cm-1 to yield an optical phonon of frequency 210 cm-1. However, in unstrained such a scattering 

channel is forbidden because of the lower optical phonon frequencies.  

      Above presented increase in scattering rates of TA and LA phonons diminishes their k 

contributions in strained InSb. While in unstrained InSb, TA and LA phonons contribute 10.52 

and 8.30 W/mK to total k at 300 K, in strained InSb, their contribution decreases to 7.91 and 5.47 

W/mK, respectively, along the in-plane direction, leading to the observed 29% decrease in k.  
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Strain induced increase in phonon scattering may provide avenues to enhance thermoelectric 

efficiency through above demonstrated decrease in k. Biaxial strain investigated in this work, can 

be achieved by growth of a material on a lattice mismatched substrate131, providing avenues for 

realization of outlined decrease in k in applications. 

 

6.4 CONCLUSION 

Using first principles approach we have provided a microscopic description of decrease in 

thermal conductivity (k) in strained Indium Antimonide (InSb). While k of unstrained InSb is 

computed to be 18.82 W/mK at 300 K, upon 5% biaxial compression, k decreases to 13.38 W/mK 

and 15.62 W/mK along in-plane (plane in which biaxial strain is applied) and out-of-plane 

directions. This reduction in k is due to increase in phonon scattering rates of both longitudinal 

(LA) and transverse (TA) acoustic phonons. Increase in scattering of LA phonons is found to be 

due to a shift in TA phonon frequencies to lower values in strained InSb, which both increases the 

phase space for scattering and the magnitude of three-phonon coupling elements involved in 

scattering of mid-Brillouin zone LA phonons, leading to a large 330% increase in scattering rate 

of zone-center LA phonons. Increase in TA scattering rates is found to be due to increase in LA 

and optical phonon frequencies in strained InSb, which increase the number of absorption 

scattering channels for TA phonons. These results have important implications for design of high 

efficiency InSb based thermoelectrics.  
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CHAPTER 7: FIRST PRINCIPLES INVESTIGATION OF ULTRA-HIGH THERMAL 

CONDUCTIVITY in HEXAGONAL GERMANIUM CARBIDE(2H-GeC) 

Thermal conductivity in nanostructures differs from bulk values because of the comparable  

meanfreepaths (MFP) to the characteristic length of the nanostructures132. Thermal conductivity is 

reduced significantly when the dimensions are reduced to nanoscale due to  boundary scattering 

of phonons133, 134. In bulk materials with phonon mean free path of the acoustic phonons higher 

than the system size, boundary scattering will occur when the system is reduced. Typically, 

acoustic phonons conduct most of the heat due to high phonon group velocities and vibrational 

frequencies with optical phonons being the scattering channels for the acoustic phonons through 

Umklapp scattering. Various materials have been reported with optical phonons making a 

significant contribution to overall thermal conductivity 135-138. Despite having an ultra-high thermal 

conductivity (k) of 1517 Wm-1K-1 in cubic germanium carbide(c-GeC)139, k of its wurtzite structure 

is unknown. Electronic properties of bulk140 and monolayer141 hexagonal germanium carbide have 

been reported; however, there is lack of knowledge of its thermal conductivity. In this work142, we 

are reporting an ultra-high thermal conductivity of 1350 Wm-1K-1(1050 Wm-1K-1) along the a-axis 

(c-axis) in hexagonal germanium carbide(2H-GeC) which is 130% higher than the hexagonal 

silicon carbide (2H-SiC)143. We systematically investigate the contributions from transverse 

acoustic (TA), longitudinal acoustic (LA) and optical phonons modes. Our first principles 

calculations reveal that, optical phonons with high 

phonon group velocity contribute ~46% to overall 

thermal conductivity at room temperature (300 K). 

We also report the length dependent thermal 

conductivity between 10 nm - 1000 nm for 

application in nanoscale. At nanometer length scale 

of L = 100 nm, a high thermal conductivity of ~65 

Wm-1K-1 is reported. High thermal conductivity of 

2H-GeC in both bulk and nanoscale indicates that, 

2H-GeC will be a promising material for thermal 

management applications.  

a 

c 

Figure 7.1: Atomic structure of 2H-GeC 
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7.1 COMPUTATIONAL METHODS: The geometry of the 2H-GeC with 4 atoms unit cell is 

optimized until the forces on all atoms are less than 10-5 eV Å-1 and the energy difference is 

converged to 10-12 Ry. A plane-wave cutoff energy of 80 Ry was used. Monkhorst-Pack115 k-point 

mesh of 12 x 12 x 8 is used during the variable cell optimization. Optimized 2H-GeC structure 

with lattice constants of a=3.188 Å and c/a=1.646, is shown in Fig. 7.1 (in good agreement with 

the previous study140). Elastic constants were computed using QUANTUM ESPRESSO 

thermo_pw package and Voigt-Reuss-Hill approximation144 is used to calculate the bulk modulus, 

shear modulus(G) and Young’s Modulus(E). Lattice thermal conductivity is calculated by deriving 

the most important ingredients, namely, the harmonic and anharmonic interatomic force 

interactions from density-functional theory and using them with an exact solution of the phonon 

Boltzmann transport equation (PBTE)85, 89, 91 . Phonon linewidth and lattice thermal conductivity 

were calculated iteratively using QUANTUM ESPRESSO thermal2 code with 30 x 30 x 24 q -

mesh and 0.05 cm-1 smearing until the ∆k values are converged to 1.0e-5. Casimir scattering145 is 

imposed for length dependent thermal conductivity calculations. Thermal conductivity for 

naturally occurring 2H-GeC was computed by introducing phonon scattering arising out of mass-
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Figure 7.2: Phonon dispersion and phonon density of state for the 2H-GeC with lattice constants 

a=3.188 Å and c/a=1.646   
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disorder due to random distribution of isotopes146 of Carbon and Germanium throughout the 

crystal. 

 

7. 2 RESULTS 

7.2.1 Phonon dispersion and elastic constants 

Table 7.1: Elastic constants of 2H-GeC 

Phonon dispersion and phonon density of states for the 2H-GeC with equilibrium lattice 

constants a=3.188 Å and c/a=1.646 are shown in Fig 7.2. Positive phonons frequencies of all the 

phonon branches indicate dynamical stability of 2H-GeC. To validate the mechanical stability of 

the system, we calculated elastic constants to check the Born stability criteria147. Elastic constants 

of 2H-GeC are listed in Table 7.1 and the values are in good agreements with the previously 

reported value140. The calculated elastic constants satisfied the Born stability criteria of C66=(C11-

C12)/2, C11 > C12, C33(C11+C12) > 2(C13), C44 > 0, C66 > 0, and hence the system is mechanically 

stable. Bulk modulus(B), Young modulus(E) and Shear modulus based on Voigt-Reuss-Hill 

Material C11 C33 C44 C66 C12 C13 

Bulk 

Modulus(B) 

Young 

modulus(E) 

Shear 

Modulus(G) 

2H-GeC 440.6  488.13 136.6 181 78.5 36.5 185.8 389 169 

2H-SiC 522.5 557.7 156.1 214.9 92.64 43.6 218 453.2 196.4 

Figure 7.3: Temperature dependent lattice thermal conductivity of the isotopically pure and 

natural 2H-GeC along a and c axis. 3b) Length dependent lattice thermal conductivity of 2H-

GeC along a and c axis. 
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approximation are also listed in Table 7.1. The computed values are slightly lower than the 

hexagonal diamond. These constants indicate the mechanical and dynamical stability of 2H-GeC. 

   

7.2.2 LATTICE THERMAL CONDUCTIVITY  

Temperature dependence thermal conductivity (k) of pure (solid lines) and naturally (dotted lines) 

occurring 2H-GeC., obtained by solving 

the phonon Boltzmann transport equation 

exactly, is shown along a- and c-axis in 

Fig 7.3a. At 300 K, thermal conductivity 

of pure and naturally occurring 2H-GeC 

is 1396 Wm-1K-1(1135 Wm-1K-1) and 255 

Wm-1K-1(233 Wm-1K-1) respectively 

along the a-axis (c-axis). k of naturally 

occurring 2H-GeC is just 18.2% 

(20.52%) of the pure 2H-GeC along a-

axis which is in good agreement with the 

cubic germanium carbide (c-GeC)139. 

This is due to the large number of natural 

Figure 7.4 a) Phonon group velocity and b) phonon linewidth (inverse of lifetime) for a 

hexagonal germanium carbide(2H-GeC) 
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isotopes146 of germanium (20.57% 69.924Ge, 27.45% 71.922Ge,7.75% 72.923Ge, 36.5% 73.921Ge and 

7.73% 75.921Ge) and carbon ( 98.93% 12C and 1.07% 13.003C).  

 

This ultra-high thermal conductivity of 2H-GeC is mainly attributed to high phonon 

frequencies (𝜔) and phonon group velocities (= 𝜕𝜔/𝜕𝑞) of both acoustic and optical phonons 

(Shown in Fig.7.4a) as well as the large phonon bandgap (~335 cm-1) between the acoustic and 

high frequency optical phonons. These high frequencies are due to the strong bonds between the 

germanium and 

carbon atoms and 

the light atomic 

mass of the 

constituent atoms C 

and Ge. These 

strong bonds are 

verified by the 

elastic constants 

presented in Table 

7.1 with 2H-SiC148, 

149 which are in 

good agreement 

with the previous 

study. Elastic 

constants of 2H-

GeC are slightly 

lower than the 2H-

SiC. This is due to 

the strong covalent bond between germanium and carbon atoms. Interestingly, we can observe 

that, optical phonons have significant phonon group velocities (Fig 7.4a) and phonon lifetimes 

(Fig 7.4b). To elucidate contribution of optical phonons to overall thermal conductivity, we 

computed the mode dependent thermal conductivity of transverse acoustic (TA1 and TA2), 

longitudinal acoustic (LA) and optical phonon modes (shown in Fig 7.5). We can observe that, at 

Figure 7.6: Phonon meanfreepaths (nm) of TA1, TA2, LA and acoustic 

phonon modes for 2H-GeC at room temperature 
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300 K, optical phonons contribute 621 Wm-1K-1(398 Wm-1K-1) to overall thermal conductivity 

along a-axis(c-axis). This is approximately 46% (45%) contribution to overall thermal 

conductivity and is higher than both transverse and longitudinal acoustic phonon modes. This is 

due to the high phonon group velocities and phonon lifetimes of optical phonons.  

We also report the length dependent lattice thermal conductivity between 10 nm and 1000 

nm as shown in Fig 7.3b for the thermal management in nanostructures. At nanoscale length of 

L=100 nm, room temperature thermal conductivity of 70 Wm-1K-1 is 100% higher than that the 

cubic germanium carbide. This is due to the large contribution from optical phonons with phonon 

meanfreepath in the range of 100 nm as shown in Fig 7.6.  

 

7.3 CONCLUSION 

In summary, using first principles calculations, we report the lattice thermal conductivity 

(k) of isotopically pure and naturally occurring hexagonal germanium carbide(2H-GeC) by solving 

the Boltzmann transport equation exactly. At room temperature, we report an ultra-high thermal 

conductivity of 1350 Wm-1K-1(1050 Wm-1K-1) along the a-axis (c-axis) for the pure hexagonal 

germanium carbide(2H-GeC) which is 130% higher than the value for hexagonal silicon 

carbide(2H-SiC). We observed a large reduction (approximately 80%) in k due to large number of 

isotopes of germanium and moderate isotopic variation in carbon. We also report the length 

dependence lattice thermal conductivity for the applications in micro/nanoelectronics. At 

nanometer length scales of L=100 nm, a high thermal conductivity of 70 Wm-1K-1 is 100% higher 

than cubic germanium carbide. These results may lead to potential applications of 2H-GeC in 

nanoscale thermal management. 
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CHAPTER 8: ULTRAHIGH THERMAL CONDUCTIVITY IN HEXAGONAL BC6N- AN 

EFFCIENT MATERIAL FOR NANCOSCALE THERMAL MANAGEMENT – A FIRST 

PRINCIPLES STUDY 

Cubic150-152 and hexagonal diamond153 (also known as lonsdaleite) have been reported as 

the most thermally conductive materials on earth due to strong covalent bonds and light atomic 

mass of carbon atoms. Likewise, boron70, 136, 137, 154-159 based compounds were reported with high 

thermal conductivity due to high phonon group velocity arising from the light atomic mass. 

Recently, Sadeghi et al., reported a high thermal conductivity of 2073 Wm-1K-1 for the hexagonal 

BC2N(h-BC2N)137. Likewise, Shafique et al., reported a high thermal conductivity of 1275 Wm-

1K-1 for the monolayer graphene like BC2N
156. Mortazavi et al., reported an ultra-high thermal 

conductivity 1710 Wm-1K-1 for the monolayer BC6N
160 but its counterpart of bulk thermal 

conductivity is yet to be reported.  In this work161, we analyzed the thermal conductivity of bulk 

and nanostructured hexagonal BC6N(h-BC6N) through first principles calculations. Our first 

principles calculations reveal an ultra-high bulk thermal conductivity (k) of 2090 Wm-1K-1(1395 

Wm-1K-1) for the pure (natural) hexagonal BC6N which is among the highest thermal conductivity 

values ever reported (lower only to diamond and boron arsenide157). Likewise, at nanometer length 

scales such as 100 nm, room temperature thermal conductivity is computed to be 175 Wm-1K-1, 

indicating h-BC6N will be a candidate material for thermal management in nanoelectronics. We 

systematically investigated the elastic constants, 

mode-contribution thermal conductivity of 

transverse acoustic (TA), longitudinal acoustic 

(LA) and optical phonon modes, phonon group 

velocity, phonon scattering rates and phonon mean 

free paths. We noticed that, optical phonons with 

considerable phonon group velocities and phonon 

lifetimes, contribute significantly to overall 

thermal conductivity in h-BC6N. 

 

8.1 COMPUTATIONAL METHODS 

The geometry of the hexagonal BC6N(h-

BC6N) with 8 atoms unit cell is optimized until the 

N 

C 

B 

a 

c 

Figure 8.1: h-BC6N crystal structure with 

lattice parameters a= 2.4802 Å and 

c/a=3.3438. Blue, red and green represents 

the boron, carbon and nitrogen atoms 

respectively. 
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forces on all atoms are less than 10-5 ev Å-1 and the energy difference is converged to 10-15 Ry. A 

plane-wave cutoff energy of 80 Ry was used. Electronic calculations were performed using 12 x 

12 x 4 Monkhorst-Pack115 k-point mesh. Optimized h-BC6N structure with lattice constants of 

a=2.4802 Å and c/a=3.3438 is shown in Fig. 8.1. Elastic constants were computed using 

QUANTUM ESPRESSO thermo_pw package and Voigt-Reuss-Hill approximation144 is used to 

calculate the bulk modulus(B), Young’s Modulus(E) and shear modulus(G). Dynamical matrix 

and harmonic force constants were computed using 12 x 12 x 4 q-grid. 6 x 6 x 2 q-points were 

used to compute the anharmonic force constants using QUANTUM ESPRESSO D3Q89-91 package. 

Acoustic sum rules were imposed on both harmonic and anharmonic interatomic force constants.  

Lattice thermal conductivity(k) is calculated by solving phonon Boltzmann transport equation 

(PBTE)85, 89, 91. 

 Phonon linewidth and lattice thermal conductivity were calculated iteratively using 

QUANTUM ESPRESSO thermal2 code with 30 x 30 x 10 q -mesh and 0.05 cm-1 smearing until 

the ∆k values are converged to 1.0e-5 Wm-1K-1. Iterative results were converged after 6 iterations. 

Figure 8.2: Phonon dispersion and phonon density of states for the hexagonal BC6N with 

lattice constants a= 2.4802 Å and c/a=3.3438. Green, blue and purple color represents the 

contributions from carbon (C), nitrogen (N) and boron (B) respectively.  
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Casimir scattering145 is imposed for size dependence thermal conductivity calculations for the 

nanostructured h-BC6N.  

Table 8.1: Elastic constants (in GPa) of h-BC6N, h-Diamond and h-BC2N. 

 

8.2 RESULTS 

8.2.1 Phonon dispersion and elastic constants 

Phonon dispersion and phonon density of states for the hexagonal BC6N with its 

equilibrium lattice constants a= 2.4802 Å and c/a=3.3438 is shown in Fig 8.2. Positive phonons 

frequencies of all the phonon branches indicate the dynamical stability of h-BC6N. Elastic 

constants of h-BC6N are listed in Table 8.1 and compared against h-diamond and h-BC2N. The 

calculated elastic constants satisfied the Born stability criteria and hence the system is 

mechanically stable. Bulk modulus(B), Young modulus(E) and Shear modulus(G) based on Voigt-

Material C11 C33 C44 C66 C12 C13 

Bulk 

Modulus

(B) 

Young 

modulus

(E) 

Shear 

Modulus

(G) 

h-BC6N 1182.98 1298.11 438.90 537.20 108.58 20.33 440.00 1107.40 512.30 

h-Diamond 1251.52 1367.74 483.00 579.40 92.61 20.00 450.74 1182.45 556.31 

h-BC2N 1091.10 1146.23 399.50 498.70 93.60 2.97 391.90 1007.40 470.05 

Figure 8.3 a): Temperature dependent lattice thermal conductivity along a and c axis for pure and 

naturally occurring h-BC6N. b) Room temperature size dependence thermal conductivity of pure 

h-BC6N. 
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Reuss-Hill approximation are also listed in Table 8.1. The computed values are slightly lower than 

the hexagonal diamond. These 

elastic constants and positive 

frequencies in phonon dispersion 

indicate the mechanical and 

dynamical stability of h-BC6N. 

 

8.2.2 LATTICE THERMAL 

CONDUCTIVITY  

Temperature dependent 

lattice thermal conductivity (k) of 

the pure (solid lines) and 

naturally (dotted lines) occurring 

h-BC6N, obtained by solving the 

phonon Boltzmann transport 

equation exactly, is shown along a-axis and c-axis in Fig 8.3a. At 300 K, thermal conductivity of 

pure and naturally occurring h-

BC6N is 2090 Wm-1K-1(1082 

Wm-1K-1) and 1395 Wm-1K-

1(832 Wm-1K-1) respectively 

along the a-axis (c-axis). k of 

naturally occurring h-BC6N is 

33.25% lower than the pure h-

BC6N. Thermal conductivity 

for naturally occurring h-BC6N 

was computed by introducing 

phonon scattering arising out of 

mass-disorder due to random 

distribution of isotopes of 

Boron, Carbon and Nitrogen 

throughout the crystal. The 

Figure 8.4: Phonon group velocity of TA1, TA2, LA and 

Optical phonon modes of h-BC6N. 

Figure 8.5: Phonon linewidths of TA1, TA2, LA and optical 

phonons for h-BC6N.Red, Blue, Green and brown color 

represents the TA1, TA2, LA and optical phonons respectively. 
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small mass variation in isotopes of B (atomic mass of 10.012 a.u with 19.9% concentration and 

atomic mass of 11.009 a.u with 80.1% concentration), C (atomic mass of 12 a.u with  98.93% 

concentration and 13.0033 a.u with 1.07% concentration) and N (atomic mass of 14.003 a.u with 

99.636% concentration and 15.0 a.u with 1.07% concentration) atoms162, induces moderate 

additional phonon scattering, causing only 33.25% decrease in thermal conductivity of naturally 

occurring h-BC6N relative to the pure case. At 300K, lattice thermal conductivity of h-BC6N 

within the SMA is 1601 Wm-1K-1 (999 Wm-1K-1) along the a-axis (c-axis); this value is 23.3% 

(7.67%) lower than the iterative solution.  

This ultra-high thermal conductivity of h-BC6N is mainly attributed to high phonon 

frequencies (𝜔) and phonon group velocities (= 𝜕𝜔/𝜕𝑞) of both acoustic and optical phonons. 

These high frequencies are due to the strong C-C, B-C and B-N bonds and the light atomic mass 

of the constituent atoms B, C and N. These strong bonds are verified by the elastic constants 

presented in Table 8.1 with diamond and h-BC2N. Bulk modulus and Young modulus for h-BC6N 

is close to that of diamond. This is due to the strong covalent bond network through sp3 

hybridization of the atoms.  

To elucidate further, we analyzed the mode contribution thermal conductivity, phonon 

group velocities and phonon scattering rates of transverse acoustic (TA), longitudinal acoustic 

(LA) and optical phonons. At 300 K, we observed that, TA1, T A2, LA and optical phonons 

contribute 21.9% (16.62%), 18.11% 

(15.77%), 17.37% (18.87%) and 

42.62% (48.74%) to overall thermal 

conductivity, respectively, along a-axis 

(c-axis). Typically, acoustic phonons 

are considered as major heat carrier 

phonons and optical phonons serve as a 

scattering channels for the acoustic 

phonons163. It is interesting to note that 

in BC6N, optical phonons also 

contribute significantly to overall 

thermal conductivity. This is mainly 

due to the fact that optical phonons 

Figure 8.6: Phonon mean free path of TA1, TA2, LA 

and Optical phonons for h-BC6N. 

At L< 100 nm, Optical 

phonons contributes to 

its overall k 
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have considerable high phonon group velocities (Fig 8.4) and phonon lifetimes (inverse of the 

phonon linewidths as shown in Fig 8.5).  

To explore the thermal transport in nanostructures, we have computed the size dependent 

thermal conductivity of h-BC6N by introducing phonon boundary/Casimir145 scattering. We have 

computed the length dependence of only pure h-BC6N.  Length dependent thermal conductivity(k) 

of h-BC6N between 10 nm and 10 um is shown in Fig 8.3b. For an example, at nanometer length 

scales of L = 100 nm, room temperature k of h-BC6N is 175 Wm-1K-1 along the a-axis which is 

significantly higher than the thermal conductivity of  bulk silicon164. To understand this further, 

we computed the phonon mean free paths of TA1, TA2, LA and optical phonon modes as shown 

in Fig 8.6. We can observe that acoustic phonons have mean free path higher than 100 nm and will 

be scattered significantly for nanostructures smaller than 100 nm, due to boundary scattering. 

Optical phonon meanfreepaths, however, are in the range of nanometers, contributing to the high 

nanoscale thermal conductivity in h-BC6N. 

 

8.3 CONCLUSION 

By solving Boltzmann transport equation with first principles calculations, we report an 

ultra-high lattice thermal conductivity of 2090 Wm-1K-1(1082 Wm-1K-1) along a-axis(c-axis) for 

pure hexagonal BC6N(h-BC6N) which is the 3rd highest reported thermal conductivity after 

diamond and cubic boron arsenide. This ultra-high thermal conductivity is mainly attributed to 

high phonon frequencies and phonon group velocities arising from the strong C-C, B-C and B-N 

bonds and the light atomic mass of the constituent atoms B, C and N. We also observed a 

significant phonon scattering due to isotopic disorder.  Elastic constants show that h-BC6N is 

ultrahard with elastic constants almost equal to diamond. We also computed the size dependent 

thermal conductivity of h-BC6N between 10 nm and 10000 nm. At nanometer length scales of 

L=100 nm, a high room temperature thermal conductivity of 175 Wm-1K-1 was reported. This 

points to the promising nature of h-BC6N as candidate for nanoscale thermal management 

applications. 
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CHAPTER 9- ULTRAHARD BC5 – AN EFFICIENT NANOSCALE HEAT 

CONDUCTOR THROUGH DOMINANT CONTRIBUTION OF OPTICAL PHONONS  

 

Boron and carbon based compound-semiconductors are promising materials for thermal 

management due to their high thermal conductivity emerging from light mass of atoms involved 

and strong bonds of C-C and B-C136, 165-169. An ultra-high thermal conductivity of 2305 Wm-1K-1 

for the super-hard bulk hexagonal BC2N was reported by Safoura et al.137. Similarly, high 

anisotropic thermal conductivities of 1275.79 Wm-1K-1 and 893.90 Wm-1K-1 were reported for 

monolayer BC2N along zig-zag and arm-chair directions156. BC5 is a diamond-like ultra-hard 

semiconductor with exceptional hardness of 83 GPa and experimental bulk modulus of 335 GPa170, 

171. In this work172, we use first principles calculations to analyze the thermal conductivity of BC5. 

At 300 K, we report a high thermal conductivity (k) of 169 Wm-1K-1 for bulk BC5 (inifinte 

dimensions) along a-axis. A high nanoscale thermal conductivity of ~ 51 Wm-1K-1 is reported for 

length scale of 50 nm (at 300 K), indicating BC5 will be a promising material for thermal 

management in nanoelectronics. To understand the origin 

of this high nanoscale thermal conductivity we 

systematically analyzed elastic constants, phonon group 

velocities and phonon scattering rates of different phonon 

modes. The high nanoscale thermal conductivity is found 

to be due to a dominant contribution of optical phononos to 

overall thermal conductivity in BC5; at 500 K and 1000 K, 

optical phonons (with meanfreepaths in the nanometer 

regime) contribute almost ~54% and 57.3%, respectively to 

the overall thermal conductivity along the a-axis. First-

principles computations are used to shed light on the 

dominant role of optical phonons in BC5 thermal 

conductivity. 

 

9.1 COMPUTATIONALS METHODS 

Figure 9.1: Atomic arrangements of 

BC5 with space group P3m1. Red 

and green sphere represents the 

carbon and boron respectively. 
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The geometry of the tetragonal (space group P3m1) BC5 with 6 atoms unit cell is optimized 

until the forces on all atoms are less than 10-5 eV Å-1 and the energy difference is converged to 10-

12 Ry. A plane-wave cutoff energy of 100 Ry was used. Electronic calculations were performed 

using 12 x 12 x 6 Monkhorst-Pack115 k-point mesh. Optimized BC5 structure is shown in Fig. 9.1; 

obtained lattice constants of a=2.516 Å and c/a=2.506 are in good agreement with the previous 

first principles calculations173. Elastic constants were computed using QUANTUM ESPRESSO 

thermo_pw package and Voigt-Reuss-Hill approximation144 is used to calculate the bulk modulus, 

shear modulus(G) and Young’s Modulus(E). Lattice thermal conductivity is calculated by deriving 

the most important ingredients, namely, the harmonic and anharmonic interatomic force 

interactions from density-functional theory and using them with an exact solution of the phonon 

Boltzmann transport equation (PBTE)85, 89, 91 . Dynamical matrix and harmonic force constants 

were calculated using 8 x 8 x 4 q-grid. 4 x 4 x 2 q-points were used to compute the anharmonic 

force constants using QUANTUM ESPRESSO D3Q89-91 package. Acoustic sum rules were 

imposed on both harmonic and anharmonic interatomic force constants. Phonon linewidth and 

lattice thermal conductivity were calculated iteratively using QUANTUM ESPRESSO thermal2 

code with 30 x 30 x 15 q-mesh and 0.05 cm-1 smearing until the ∆k values are converged to 1.0e-

5. Casimir scattering145 is imposed for length dependence thermal conductivity calculations.  

Figure 9.2: a) Thermal conductivity of BC5 along a-axis and c-axis at different temperatures 

b) Length dependence of thermal conducticity (300 K) of BC5 between 10 nm and 10000 nm. 
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9.2 RESULTS 

9.2.1 Lattice thermal conductivity 

Lattice thermal conductivity of isotopically pure and isotopically disordered (naturally 

occurring) BC5 along a-axis and c-axis is shown in Fig 9.2a as a function of temperature. At room 

temperature (300 K), computed thermal conductivities of bulk BC5 along a-axis and c-axis are 165 

W/mK and 169 Wm-1K-1, respectively, for pure BC5. Our reported k values are higher than the k 

values of  silicon (153 Wm-1K-1)174 at room temperature suggesting that BC5 will be a promising 

material for thermal management applications.  

Table 9.1: Elastic constants of BC5, Silicon and Diamond in GPa 

Materi

al C11 C33 C44 C66 C12 C13 

Bulk 

Modul

us 

Young 

modulu

s 

Shear 

Modulus 

BC5 911 1061.8 394.5 361.1 189 97 405 894 396 

Silicon 159.5 159.5 78.1 78.1 61.3 61.3 94.1 158.1 64.8 

Diamond 1099.5 1099.5 601.4 601.4 127.1 127.1 451.3 1176.8 552.3 

Figure 9.3: Phonon dispersion along the high symmetry points of tetragonal BC5 and and 

phonon density of states 
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This high thermal conductivity of 

BC5 is a direct consequence of  high phonon 

frequencies and phonon group velocities in 

BC5 as seen in Fig. 9.3 resulting from the 

strong C-C and B-C bonds, and the light 

mass of B and C atoms.  While in silicon, the 

maximum LA phonon frequency reaches 

400 cm-1 175, Fig. 9.3 shows that in BC5, LA 

phonons have higher frequencies, reaching 

values greater than 600 cm-1.  The strong 

bonding in BC5 is seen by noticing that the 

bulk modulus and Young Modulus of BC5 

are higher than Silicon and almost equal to the values for Diamond. This is due to the strong 

covalent bond network through sp3 hybridization176.  

We also estimated k of naturally occurring BC5 to be 146 Wm-1K-1and 158 Wm-1K-1, along 

a-axis and c-axis, respectively at 300 K. k of naturally occurring BC5 is only lower by 11.5% and 

6.5% relative to pure BC5 along a-axis and c-axis respectively. Thermal conductivity for naturally 

occurring BC5 was computed by introducing additional phonon scattering arising out of mass-

Figure 9.5a) Spectral distribution of k with frequency at 100 K, 300 K and 500 K. b and c) 

Percentage contribution by transverse acoustic (TA1 and TA2), longitudinal acoustic (LA) and 

optical phonon modes.  
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disorder due to random distribution of isotopes of Boron and Carbon throughout the crystal. The 

small mass variation in isotopes of both B (atomic mass of 10.013 a.u with 19.9% concentration 

and atomic mass of 11.009 a.u with 80.1% concentration)  and C (atomic mass of 12 a.u with  

98.93% concentration and 13.003 a.u with 1.07% concentration) atoms162, induces only a small 

additional phonon scattering, causing only a minor decrease in thermal conductivity of naturally 

occurring BC5 relative to the pure case.  

Length dependent k of pure BC5 was also investigated by introducing Casimir scattering 

(boundary scattering). High thermal conductivity of ~ 51 Wm-1K-1 at nanometer length scale of L 

= 50 nm (at 300 K) is observed in Fig. 9.2b.  Nanoscale thermal conductivity of BC5 is more than 

a factor of 2 higher than silicon as seen in Fig. 9.4 where we compare the phonon meanfreepath 

dependence of thermal conductivity accumulation in BC5 and silicon. In silicon, phonons with 

meanfreepath below 100 nm contribute only ~40 W/mK at 300 K; in BC5, however, phonons in 

Figure 9.6 Phonon linewidths of transverse acoustic, longitudinal acoustic and optical phonon 

modes at a) 100 K b) 300 K c) 500 K. d) Phonon group velocity of all phonon modes 

 



68 
 

the same meanfreepath range, contribute a much higher value of ~95 W/mK along a-axis in BC5. 

This higher nanoscale thermal conductivity of BC5 provides promising new avenues for achieving 

efficient nanoscale thermal management.  

This much higher nanoscale thermal conductivity in BC5 is found to be due to the dominant 

role played by optical phonons in conducting heat in BC5. At 500 K and 1000 K, optical phonons 

contribute 54% and 57.3%, respectively, to overall k along a-axis. This is in contrast to typical 

semiconductors like silicon, where optical phonon contribution to k is in the range of ~5%164 at 

300 K.  Large contribution of optical phonons can also be seen in Figures 5a and b which show 

the spectral distribution of k as well as percentage contribution of transverse acoustic (TA), 

longitudinal acoustic (LA) and optical phonon modes to overall k. At T > 300 K, optical phonons 

have a considerable contribution to overall thermal conductivity.  

First-principles computations reveal that this dominant contribution of optical phonons to 

overall thermal conductivity in BC5 is due to a combination of high optical phonon velocities (Fig. 

9.6d) and comparable optical phonon scattering rates to acoustic phonons at temperatures greater 

than 300 K (Fig. 9.6a-c). This second effect is particularly interesting, since higher optical phonon 

frequencies typically result in optical phonon scattering rates to be significantly larger than 

acoustic phonons. While at 100 K, optical phonon scattering rates in BC5 are indeed higher than 

acoustic phonons (Fig. 9.6a), as temperature increases optical-phonon scattering rates increase at 

a much slower rate compared to acoustic phonons, causing optical and acoustic phonon scattering 

rates to become comparable (Fig. 9.6b and c).  
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This weak dependence of optical phonon scattering rates on temperature and comparable 

scattering rates of optical and acoustic phonons in BC5 at T > 100 K can be understood by 

observing that optical phonons in BC5 have significantly higher frequencies than in materials like 

silicon. This causes optical phonons in BC5 to scatter by decaying into phonon modes which also 

have high frequencies. In Fig. 9.7a we show the dominant contributions to scattering phase space 

(indicative of the number of scattering channels) of an optical phonon mode with wavevecor q = 

(0.25,0,0)(2π/a) (where a is the lattice parameter) and frequency  = 1021.6 cm-1. A phonon mode  

with frequency  can scatter either by an absorption process (energy conservation:  +  = ) 

or by a decay process (energy conservation:  =  + ) represented by the first and second delta 

functions in k equation 4.2. The x-axis of Fig. 9.7a corresponds to lower of the two frequencies  

and  (denoted by  in Fig. 7a) involved in the scattering of above outlined optical phonon mode 

with frequency . The high frequency of the optical phonon (in Fig. 9.7a) ensures that frequencies 

of phonons involved in the decay channels are also high (in the range of 400 cm-1). It is also clearly 

visible that decay channels make a large contribution to overall scattering phase space of optical 

phonons. 

The relative insensitivity of optical phonon linewidths to temperature can now be 

understood by noticing that the scattering rates due to decay processes are proportional to 1 +

𝑛𝜆′ + 𝑛𝜆′′ (second term in Equation 4.2). The high frequencies of the phonons (~400 cm-1 as seen 

in Fig. 7a) involved in decay of optical phonons causes their populations (𝑛𝜆′ and 𝑛𝜆′′) to be remain 

less than 1.0 even as the temperature increases from 100 K to 800 K (Fig. 9.7b). The presence of 

a constant prefactor of 1 in the decay term 1 + 𝑛𝜆′ + 𝑛𝜆′′, then ensures that the overall magnitude 

Figure 9.8: Phonon meanfreepaths in BC5 at a) 100 K b) 300 K and 500 K. 
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of the term, 1 + 𝑛𝜆′ + 𝑛𝜆′′, does not increase significantly over the temperature range of 100 – 800 

K, due to the populations, 𝑛𝜆′ and 𝑛𝜆′′ , not exceeding 1.0 over this temperature range. This causes 

the linewidths of optical phonons to increase slowly with temperature.  

For acoustic phonons, however, the dominant scattering mechanism involves absorption 

scattering channels, which have a population dependence of 𝑛𝜆′ − 𝑛𝜆′′
 (first term in Equation 4.2). 

Acoustic phonon scattering rates thus 

increase in direct proportion to the increase 

in phonon populations with temperature 

resulting in a strong increase in linewidths 

of acoustic phonons. This coupled with 

only a small increase in linewidths of 

optical phonons with increase in 

temperature, causes the linewidths of the 

two phonon modes to become comparable 

at temperatures of 300 K and higher (Fig. 

9.6). These results along with high phonon 

group velocities of optical phonons and a 

large phonon density of states of optical phonon modes at frequencies 𝜔 > 500 cm-1 causes optical 

phonon modes to be a dominant heat carrying channel for the BC5 system.  

     Optical phonon meanfreepaths in BC5 are in the range of nanometers (tens of nanometers)  as 

seen in Fig. 9.8. The large optical phonon contribution to thermal conductivity coupled with optical 

phonon meanfreepaths being in the nanometer regime, leads to a large contribution to k in 

nanoscale regime in BC5.  Furthermore, as temperature increases to 300 K and higher, the large 

increase in acoustic phonon linewidths also causes their meanfreepaths to decrease to nanometers 

(Fig. 9.8), further contributing to high nanoscale k in BC5. Though the hardness of BC5 is 

comparable to diamond, its thermal conductivity is much lower than diamond. The presence of 

large number of optical phonon branches, results in a dramatic increase in scattering phase space, 

resulting in phonon scattering rates being significantly larger in BC5 than in diamond (Fig. 9.9).  

 

 

 

Figure 9.9: Phonon linewidths of BC5 and Diamond 
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9.3 CONCLUSION 

  In summary, using first principles calculations, we analyzed the thermal conductivity of an 

ultrahard BC5 by solving the Boltzmann transport equation exactly. At room temperature, we 

report a high thermal conductivity of 169 Wm-1K-1 for the bulk BC5 and 51 Wm-1K-1 at the 

nanometer length scales of L= 50 nm. Ultrahard BC5 will be a promising material for thermal 

management due to its high thermal conductivity. We also reveal the contributions of optical 

phonons to overall thermal conductivity to be dominant at high temperatures. At 500 K, optical 

phonons contribute ~54% to the overall thermal conductivity. This large contribution of optical 

phonons to overall k was found to be due to comparable group velocities and scattering rates to 

acoustic phonons at temperatures greater than 300 K. The comparable scattering rates of optical 

phonons arise from the particular population dependence of decay channels involved in scattering 

of optical phonons. The large contribution of optical phonons coupled with their meanfreepaths 

being in the nanometer regime leads to high nanoscale thermal conductivity in BC5. These results 

may lead to potential applications of BC5 in nanoscale thermal management.  
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CHAPTER 10 – THERMAL CONDUCTIVITY OF h-BC2P- A FIRST PRINCIPLES 

STUDY 

Carbon based materials such as diamond177-179, graphene180-182 and stacked-graphene183 (graphene 

nanoplatelets) exhibit ultrahigh thermal conductivity due to light mass of carbon (C) atom and 

strong C-C bonds. Likewise, boron based III-V compound semiconductors such as boron nitride 

(BN)184, boron phosphide (BP)70, 81, 159 and boron arsenide (BAs)157, 185 have very high thermal 

conductivity due to light mass of Boron atom and due to a phonon bandgap in vibrational spectra 

of these materials which suppresses scattering of acoustic phonons by optical phonons thus leading 

to high acoustic phonon lifetimes. Recently, ultra-high thermal conductivities of 2305 Wm-1K-1 

and 4196 Wm-1K-1 were reported137 for bulk ultra-hard hexagonal BC2N(h-BC2N) at 0 GPa and 

150 GPa respectively. Similarly, for monolayer BC2N, high thermal conductivities of 1275.79 

Wm-1K-1 and 893.9 Wm-1K-1 were reported along the zigzag and armchair directions, respectively. 

These results provide motivation to further explore thermal conductivity of III-IV-V compounds. 

In this work we explore thermal conductivity of hexagonal BC2P.  

In this work186, thermal conductivity of bulk hexagonal BC2P is computed from first-principles by 

deriving harmonic (2nd order) and anharmonic (3rd order) interatomic force interactions from first-

principles and using them along with an exact solution of the phonon Boltzmann transport equation 

Figure 10.1: a) Atomic arrangements of h-BC2P with 3 x 3 x 3 supercell with lattice constants 

a= 5.2686 bohr and c/a=1.686 b) front view c) top view d) side view. Red, black and yellow 

sphere represents boron, carbon and phosphorous respectively. 

d) Side view 
b) Front view 

c) Top view 

a) Crystal 

structure 
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(PBTE). We find an anisotropic high thermal conductivity (k) of 162 Wm-1K-1 and 52 Wm-1K-1 

along directions perpendicular and parallel to c-axis, at 0 GPa. Interestingly, optical phonons are 

found to contribute 30% (~50 Wm-1K-1) and 14.5% (~7.54 Wm-1K-1) at 300 K, to overall thermal 

conductivity along directions perpendicular and parallel to c-axis, respectively, due to their high 

group velocities. Finally, a high k value of 68 Wm-1K-1 at nanometer length scale of 100 nm (at 

300 K) shows that BC2P will be a promising material for thermal management in nanoelectronics.  

 

10.1 COMPUTATIONAL METHODS 

Computations were performed using norm-conserving pseudopotentials and exchange-

correlation was computed in the local density approximation187. The geometry of the hexagonal 

BC2P with 4 atoms unit cell, was optimized until forces on all atoms were less than 10-6 Ry/bohr. 

Plane-wave energy cutoff of 80 Ry and 12 x 12 x 8 Monkhorst-Pack115 k-point mesh were used 

for electronic structure calculations. Optimized lattice constant (crystal structure of Fig. 10.1) of 

BC2P was obtained to be a=5.2686 bohr with c/a=1.686. For k calculations, a 21 x 21 x 14 q -mesh 

was used and  
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Figure 10.2: Phonon dispersion curve and phonon density of states for the h-BC2P. Blue, green 
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iterations in the exact solution of the PBTE were performed until ∆k between consecutive iterations 

diminished to below1.0e-5. Casimir scattering145 is imposed to include the effect of boundary 

scattering for computing length dependent thermal conductivity.  

 

10.2 RESULTS 

10.2.1 Phonon dispersion and Lattice constants 

Phonon dispersion and phonon density of states for hexagonal BC2P are shown in Fig 10.2. 

Positive phonon frequencies indicate stability188 of computed h-BC2P crystal structure. Phonon 

modes at higher frequencies (above 750 cm-1) are mainly dominated by C and B atoms due to light 

mass and stiff C-C and B-C bonds, whereas P atoms dominate lower frequencies (less than 500 

cm-1) due to heavy mass and moderate bond strengths of B-P and C-P. Elastic constants of 

hexagonal BC2P at 0 GPa are computed to be,  C11=675 GPa, C33=680.6 GPa, C44=198 GPa, C66= 

305 GPa, C12= 65.0 GPa, C13= 30.8 GPa which satisfies the Born stability criteria147 of C66= (C11-

C12)/2, C11 > C12, C33(C11+C12) > 2(C13)
2, C44 > 0, C66 > 0. Young modulus (E), bulk modulus (B), 

shear modulus (G) and poisson ratio  based on Voigt-Ruess-Hill approximation144 are 582.2 GPa, 

253.6 GPa, 260.6 GPa and 0.117 respectively. These values are higher than silicon189, 

germanium189 and silicon carbide190.  
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10.2.2 Lattice thermal conductivity 

Computed thermal conductivity of the h-BC2P is reported in Fig 10.3. Figure 10.3a shows 

the temperature dependent thermal conductivity of h-BC2P along directions perpendicular and 

parallel to c-axis. At 300 K, computed thermal conductivity of 162 Wm-1K-1 , perpendicular to c-

axis, is almost 3 times higher than the value, parallel to c-axis,  of 52 Wm-1K-1. This is due to the 

higher phonon frequencies of TA, LA and optical phonons modes, in a direction perpendicular to 

c-axis, relative to parallel to c-axis, as seen in the computed phonon dispersion. thermal 

conductivity of h-BC2N is also higher than that of silicon86. Perpendicular to c-axis, TA1, TA2 and 

LA phonon modes contribute 19.8%, 27.5% and 35.7% to overall thermal conductivity while along 

c-axis, the corresponding contributions are 23%, 30% and 32% to overall k. Interestingly, at 300 

K, optical phonon modes contribute 30% and 14.5% to overall thermal conductivity, perpendicular 

and parallel to c-axis, respectively. This contribution is significantly higher than typical 

semiconductor materials such as silicon, where optical phonons contribute ~5% to overall k.   This 

is due to the high phonon group velocities of optical phonons (Fig. 10.4a) and optical phonon 

linewidths being comparable to that of acoustic phonons, in the frequency range of ~ 300-550 cm-

1 (Fig. 10.4b).  

An advantage of BC2P is its relatively high thermal conductivity at nanometer length 

scales. Length dependence of thermal conductivity was calculated by introducing Casimir 

Figure 10.4a) Phonon group velocity and b) phonon linewidth of TA, LA and optical phonon 

modes of h-BC2P at 300 K.  



76 
 

scattering 1/τboundary = |v|/L, where v is the phonon velocity and L is the system size. Length 

dependent thermal conductivity is shown in Fig 10.3b. We observe that at a length scale of 100 

nm, the predicted thermal conductivity of  ~ 68 Wm-1K-1 is significantly high. This can lead to 

potential avenues for use of BC2P in nanoscale thermal management applications. This high 

nanoscale thermal conductivity of BC2P is due to the relatively large k contribution of optical 

phonons, which typically have meanfreepaths in the nanometer regime.  

 

10.3 CONCLUSION 

 Thermal conductivity of hexagonal BC2P(h-BC2P) is computed by solving phonon 

Boltzmann transport equation exactly coupled with force-constants derived from first principles 

calculations. We report an anisotropic thermal conductivity (k) of 162 Wm-1K-1 and 52 Wm-1K-1 

along directions perpendicular and parallel to c-axis of BC2P respectively. This high thermal 

conductivity is due to the high frequency and phonon group velocity arising from light mass of the 

constituent atoms (B, C, P) and stiff C-C, B-C and B-P bonds. Anisotropy in k is due to higher 

phonon frequencies and group velocities along direction perpendicular to c-axis relative to the 

parallel direction. Moreover, optical phonon modes are found to contribute significantly to k along 

directions both perpendicular to c-axis (30%) and parallel to c-axis (14.5%) at 300 K. Finally, a 

high room temperature thermal conductivity of 68 Wm-1K-1 at 100 nm length scale, makes BC2P 

attractive for thermal management in nanoelectronics.  
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CHAPTER 11 – THERMAL CONDUCTIVITY OF MAGNESIUM SELENIDE(MgSe) – A 

FIRST PRINCIPLES STUDY 

Wide bandgap materials have attracted various scientific and technological interest due to 

its reduced energy consumption, low power loss and can accommodate higher operating 

temperatures, high switching speed and high voltage, high frequencies191-193 and thermoelectric 

applications194-197. Magnesium chalcogenides such as magnesium sulphide (MgS), magnesium 

selenide (MgSe) and magnesium telluride (MgTe) are wide bandgap semiconductors which are 

extensively studied for their electronic198-200, magnetic199, optical198, structural199, 201-203 and 

vibrational204, 205 properties. Understanding thermal conductivity of these materials is critical for 

optimum thermal design of devices based on these materials. There are, however, limited studies 

on thermal properties which is critical for wide range of applications such as thermoelectrics206-

211, thermal management systems17, 136, 154, 156, 158, 212, opto-electronics213, thermal barrier 

coatings214-216 and solar cells217-219 etc., which inspired us to compute it. In this work220, 221, we 

report the temperature and length dependence thermal conductivity of magnesium selenide (MgSe) 

with different crystalline phases using first principles calculations and phonon Boltzmann transport 

equation. MgSe exists in four crystalline phases; zincblende(ZB), rocksalt(RS), wurtzite(WZ) and 

nickel arsenic(NiAs)204. We also report the length dependence thermal conductivity for its 

nanostructures. At 300 K, the first principles computed thermal conductivities of MgSe are – a) 

4.54 Wm-1K-1 along a-axis and 6.37 Wm-1K-1 along c-axis for NiAs structure, b) 11.89 Wm-1K-1 

d) Zincblende c) Rocksalt b) Wurtzite a) NiAs 

Mg Se 

Figure 11.1 a-d): Crystal structure of MgSe with crystalline phases; NiAs (a=7.216 bohr, 

c/a=1.6672), wurtzite (a=7.924 bohr, c/a=1.6149), rocksalt (a=10.2617 bohr) and zincblende 

(a=11.16 bohr) respectively. 

a 

c 
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for Rocksalt structure, c) 19.58 Wm-1K-1 a-axis and 20.39 Wm-1K-1 along c-axis for WZ structure 

and d) 21.27 Wm-1K-1 for Zinc-Blende structure. Understanding of differences in thermal 

conductivity is achieved through analysis of differences in phonon scattering arising from different 

phonon dispersions for different structures.  

 

11. 1 COMPUTATIONAL DETAILS 

All the first principles calculations were performed using QUANTUM ESPRESSO88 

package. Norm-conserving pseudopotential with local density approximation (LDA)187 exchange-

correlation functional is used for electronic calculations. The geometries of the zinc-blende and 

rocksalt MgSe with 2 atom unit cell and wurtzite and NiAs structures with 4 atom unit cell, were 

optimized until forces on all atoms were less than 10-6 Ry/bohr. Plane-wave energy cutoff of 70 

Ry was used for electronic calculations.  Monkhorst-Pack115 k-point mesh sizes of 8 x 8 x 8 and 

12 x 12 x 8 were used for zinc-blende/rocksalt and wurtzite/NiAs structures, respectively, to 

a
) 

b
) 

c) 

d
) 

Figure 11.2: Phonon dispersion and phonon density of states(PDOS) of MgSe with crystalline 

phase; a) zincblende b) wurtzite c) rocksalt and d) nickel arsenic. 

  

  

a) b) 

c) d) 
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integrate over the Brillouin zone. Relaxed structures with equilibrium lattice constants of MgSe 

with different lattice crystal phases are shown in Fig 11.1 and also listed in Table 11.1 (in excellent 

agreement with previously published values200, 204, 222-224 ). Lattice thermal conductivity (k) was 

computed by solving phonon Boltzmann transport equation (PBTE)91 in both single mode 

relaxation approximation (SMRT)225 and exactly by using a variational method.  

 

Harmonic force constants were computed on an 8 x 8 x 8 q-grid for ZB and RS systems 

and on a 9 x 9 x 6 grid for WZ and NiAs structures. Anharmonic force constants were computed 

on a 4 x 4 x 4 grid for ZB and RS and on a 3 x 3 x 2 grid for WZ and NiAs structures, using D3Q89-

91 package within QUANTUM-ESPRESSO. Acoustic sum rules were imposed on both harmonic 

and anharmonic interatomic force constants. Phonon linewidth and lattice thermal conductivity 

were calculated using ‘thermal2’ package within QUANTUM ESPRESSO. For these calculations, 

q-mesh of 30 x 30 x 30 was used for ZB and RS structures, while a mesh of 30 x 30 x 20 was used 

for WZ and NiAs structures. Iterations in the exact solution of the PBTE were performed until ∆k 

between consecutive iterations diminished to below 1.0e-5. k values were typically converged after 

4 iterations. Casimir scattering145 was imposed to include the effect of boundary scattering for 

computing length dependent thermal conductivity in the nanoscales. Phonon-isotope scattering is 

included for the effect of isotope variation with naturally occurring isotopes of Mg and Se226. 

Elastic constants were computed using QUANTUM ESPRESSO thermo_pw package. Voigt-

Reuss-Hill approximation144 was used to calculate Bulk modulus, Shear modulus(G), Young’s 

Modulus(E) and Poisson’s ratio ().   

 

11.2 RESULTS 

11.2.1 Phonon Dispersion and Lattice Constants 

 Phonon dispersion and phonon density of states (PDOS) for the MgSe with crystalline 

phases of zincblende(ZB), wurtzite (WZ), rocksalt(RS) and nickel arsenic(NiAs) are shown in Fig 

11.2 a-d. Computed dispersions are in good agreement with previously reported values204.  Elastic 

properties such as Young’s modulus (E), Bulk modulus (B), Shear modulus (G) and Poisson’s 

ratio based on Voigt-Ruess-Hill approximation are listed in Table 11.1 and are also in excellent 

agreement with the previously published work204.  
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Table 11.2: Lattice constants, Bulk modulus(B), Youngs modulus(E), Shear modulus(G) 

and poisson’s() ratio of MgSe with different crystal phase. 

S. No Crystal phase a (bohr) c/a B (GPa) E(GPa) G(GPa)  

1. Nickel arsenic (NiAs) 7.216 1.667 67.36 92.8 36.53 0.2703 

2. Wurtzite (WZ) 7.9238 1.615 50.7 55.34 21 0.3182 

3. Rocksalt (RS) 10.2617  67.7 113.07 46.28 0.2216 

4. Zincblende (ZB) 11.16  49.695 47.903 17.933 0.3356 

 

11.2.2 Lattice Thermal Conductivity 

Lattice thermal conductivity (k) of MgSe for different crystalline phases is shown in Fig 

11.3a. Single-mode relaxation results (SMA) are 5% less than the iterative solution. At room 

temperature (300K), computed k of pure MgSe is as follows; kNiAs (4.54 Wm-1K-1 along a-axis and 

6.37 Wm-1K-1 along c-axis) < kRS(11.89 Wm-1K-1) < kWZ(19.58 Wm-1K-1 along a-axis and 20.39 

Wm-1K-1 along c-axis) < kZB(21.27 Wm-1K-1). Fig 11.3c shows the length dependent thermal 

conductivity of MgSe between 10 nm and 10m. At 300K and at 100 nm, k of different crystalline 

Figure 11.3: Temperature dependent lattice thermal conductivity of MgSe with different 

crystalline phase with a) iterative solution of BTE c) Length dependent thermal conductivity of 

MgSe at room temperature(300K). 
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phases are as follows; kNiAs(3.25 Wm-1K-1 along a-axis and 4.67 Wm-1K-1 along c-axis) < kRS(5.71 

Wm-1K-1) < kWZ(8.05 Wm-1K-1 a-axis and 8.76 Wm-1K-1 along c-axis) < kZB(8.82 Wm-1K-1).   

Lattice thermal conductivity of naturally occurring MgSe, which includes the effect of 

isotopic disorder is shown in Fig 11.4. Thermal conductivity of naturally occurring MgSe at 300K 

is as follows; kNiAs(4.36 Wm-1K-1 along a-axis and 6.13 Wm-1K-1 along c-axis) < kRS(11.31 Wm-

Figure 11.5: Mode contribution thermal conductivity of MgSe at 300K for different 

crystalline phase. 
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Figure 11.4 a and b) Temperature and length dependent (300 K) thermal conductivity of natural 

MgSe with isotopic scattering for different crystalline phase.  
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1K-1) < kWZ(17.5 Wm-1K-1 a-axis and 18.3 Wm-1K-1 along  c-axis) < kZB(19.04 Wm-1K-1). These 

Figure 11.6: Phonon group velocity and scattering of MgSe with crystalline phase; a) zincblende 

b) wurtzite c) rocksalt and d) nickel arsenic 

a) 

b
) 

c) 

d
) 
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values show that isotopic scattering reduces its lattice thermal conductivity by a maximum of 

~10% for ZB and WZ phase.  

As seen above, thermal conductivity of the NiAs crystal phase is the lowest, while that of 

zincblende phase is the highest. Thermal conductivity of MgSe with zincblende crystal structure 

is 4.68 times that of the NiAs phase along a-axis. In Fig. 11.5, we also compare contributions of 

different vibration modes to overall thermal conductivity in different crystalline phases. 

Interestingly, in NiAs and wurtzite MgSe, k contribution from optical phonon is higher than the 

acoustic phonon modes.  

This is mainly due to the suppression of phonon-phonon scattering in zincblende structure 

mediated by a large phonon bandgap (~100 cm-1) in the phonon dispersion of zinc-blende structure. 

We have presented the phonon scattering rates (inverse of phonon lifetime) and phonon group 

velocities of MgSe with different crystalline phases in Fig 11.6. We can observe from Figs 11.6a 

and d that, scattering rate of TA1 and TA2 for NiAs is approximately one order of magnitude higher 
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than that of the zincblende phase causing a dramatic reduction in thermal conductivity 

contributions of TA1 and TA2 phonon modes in NiAs structure.  

The effect can be understood by observing that anharmonic scattering of phonons through the 

lowest-order three phonon processes can be classified into two categories - absorption scattering 

process, where a phonon mode (q) scatters by absorbing another phonon mode (q), yielding a 

higher energy (q″″) phonon mode, and decay processes, where a phonon mode decays into two 

lower energy phonons. These processes satisfy energy and momentum conservation given by, 

+=″ (energy), q + q = q″ (momentum) for absorption process and =+″ (energy), q=q 

+ q″ (momentum) for decay process.  

 

            The large energy gap in the phonon dispersion of zincblende structure suppresses the 

absorption scattering channels for acoustic phonons involving scattering of an acoustic phonon by 

absorbing another acoustic phonon to convert into an optical phonon. The large energy gap in the 

phonon dispersion of the zinc-blende structure prohibits energy conservation (+=″) for such 

absorption scattering channels. This is seen through an example, where, an acoustic phonon of 

frequency 100 cm-1 cannot scatter into an optical phonon, even by absorbing the highest frequency 

acoustic phonon (168.05 cm-1). This is because the lowest optical phonon frequency 269.25 cm-1 

is higher than the sum of the frequencies of above two listed acoustic phonons. This elimination 

of absorption scattering channels in zinc-blende structure dramatically decreases overall scattering 

rates in zinc-blende case. We have shown this for all crystalline phases in Fig. where we compare 

the magnitude of absorption scattering channel with the overall scattering rates.  

It can be seen that for zincblende and wurtzite structures (with a large bandgap in their 

phonon dispersions), the magnitude of absorption channels is significantly smaller than for the 

case of rocksalt and NiAs structures. Below a frequency of 100 cm-1, the absorption channel is 

seen to be almost completely absent in zinc-blende and wurtzite structures. This smaller rate of 

absorption scattering in zincblende and wurtzite structures also leads to a smaller overall scattering 

rate in these structures. At a frequency of 50 cm-1, the overall scattering rate in zinc-blende and 

wurtzite structures is ~0.1 cm-1, almost an order of magnitude lower, relative to the scattering rate 

of 1 cm-1 in NiAs structure. The higher scattering rates in rocksalt and NiAs structures (due to 

smaller or absent phonon band gap) lead to lower thermal conductivity in these crystalline phases.                                 
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Higher contribution of optical phonon modes to overall thermal conductivity in NiAs and 

Wurtzite structures can now be understood in terms of the phonon band gap in these materials. In 

NiAs structure, the large scattering rates of acoustic phonons (due to absence of a band gap in 

phonon dispersion), imply that the scattering rates of low frequency optical phonons become 

comparable to that of acoustic phonons. Significant group velocities of optical phonons in NiAs 

structure combined with comparable phonon scattering rates to acoustic phonons, leads to high 

thermal conductivity contribution of optical phonons in NiAs structure. In Wurtzite crystalline 

phase, the high thermal conductivity of optical phonons arises due to the large phonon band gap 

in the dispersion. Fig 11.7 shows that some of the optical phonons are below the band gap. Similar 

to the case of acoustic phonons, these optical phonons also experience inhibited scattering from 

optical phonons above the band gap. 

 

10.3 CONCLUSION 

Thermal conductivity of magnesium selenide (MgSe) with four crystalline phases; 

zincblende, rocksalt, wurtzite and nickel arsenic were computed by first principles calculations 

with phonon Boltzmann transport equations. Our first principles calculations show a low thermal 

conductivity of less than ~ 20 Wm-1K-1 for all the crystalline phases of MgSe. Isotopic disorder 

scattering has minimal effect (less than 10%) to its overall thermal conductivity. We systematically 

investigated the phonon group velocity, phonon scattering rate and mode dependent thermal 

conductivity of MgSe. Our first principles calculations show that, NiAs and wurtzite has higher 

contributions from optical phonons than NiAs and rocksalt. At nanometer length scales such as 

100 nm, thermal conductivity of less than 3.25 Wm-1K-1 for MgSe with NiAs crystalline phase 

shows a promising nature of MgSe for thermoelectric applications.  
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CHAPTER 12- THERMAL CONDUCTIVITY OF MAGNESIUM TELLURIDE(MgTe) – 

A FIRST PRINCIPLES STUDY 

Magnesium chalcogenides-based semiconductors have attracted both scientific and technological 

applications199, 204, 227. Magnesium206, 207, 209, 228 and Telluride208, 210, 217, 219, 229-231 based 

thermoelectric and photovoltaic materials are getting attention among the scientific community 

due to its ultra-low thermal conductivity and tunable electronic bandgap. Magnesium 

telluride(MgTe) is extensively studied for its structural198, 199, 203, 227, electronic198, 199, 204, 227, 

elastic198, magnetic199, 227, optical198 and vibrational204, 205 properties. Despite these extensive 

studies, thermal conductivity of MgTe is unknown. Thermal conductivity of a material is critical 

for wide varieties of application such as thermal management system17, 68, 136, 154, 157, 212, 232, 233, 

thermoelectrics234-236, opto-electronics213 and solar cells218, 237 etc., MgTe are known to exist in 

four crystalline phases such as zinc-blende (ZB), rocksalt (RS), wurtzite (WZ)204, 238, 239 and nickel 

arsenic (NiAs). In this work240, we report bulk and nanoscale thermal conductivity of all the four 

crystalline phases of MgTe using density functional theory and phonon Boltzmann transport 

equation. We also report an ultra-low thermal conductivity of MgTe at nanometer length scales. 

We systematically investigated the elastic constants, phonon group velocity, phonon bandgap and 

phonon scattering rate (inverse of phonon lifetime) for all the crystalline phases.  At 300 K, bulk 

thermal conductivity of 2.645 (NiAs), 6.26 (RS), 8.83 (WZ) and 10.05 (ZB) Wm-1K-1 shows that 

MgTe will be a promising thermoelectric material. These results have important implications for 

d) Zincblende c) Rocksalt b) Wurtzite a) NiAs 

Mg Te 

Figure 12.1 a-d): Crystal structure of MgTe with crystalline phases; NiAs (a=7.8585 bohr, 

c/a=1.6281), wurtzite (a=8.5287 bohr, c/a=1.6286), rocksalt (a=11.0985 bohr) and zincblende 

(a=12.073 bohr) respectively. 
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applications of MgTe in thermoelectric energy conversion techniques, solar-cells and other opto-

electronics.  

 

12.1 COMPUTATIONAL DETAILS 

All the first principles calculations were performed using QUANTUM ESPRESSO88 

package. Norm-conserving pseudopotential with local density approximation (LDA)187 exchange-

correlation functional is used to approximate the MgTe. The geometry of the zinc-blende and 

rocksalt MgTe with 2 atoms (4 atoms for wurtzite and NiAs) unit cell were optimized until forces 

on all atoms were less than 10-6 Ry/bohr. Plane-wave energy cutoff of 80 Ry and 8 x 8 x 8 (12 x 

12 x 8) Monkhorst-Pack115 k-point mesh were used integrate over the Brillouin zone. Relaxed 

structure with equilibrium lattice constants of MgTe with different lattice crystal phases are shown 
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in Fig 12.1 and also listed in Table 12.1 which are in excellent agreement with previously published 

values G.P.Srivatsava et.al204.  

Lattice thermal conductivity(k) was computed by solving phonon Boltzmann transport 

equation (PBTE)91 in both single mode relaxation approximation (SMRT) and iteratively using a 

variational method. Harmonic force constants for ZB and RS systems were calculated on 8 x 8 x 

8(9 x 9 x 6 for WZ and NiAs) q-grid. Anharmonic force constants for ZB and RS were computed 

on a 4 x 4 x 4 (3 x 3 x 2 for WZ and NiAs) q point grid using D3Q89-91 package within QUANTUM-

ESPRESSO. Acoustic sum rules were imposed on both harmonic and anharmonic interatomic 

force constants. Phonon linewidth and lattice thermal conductivity were calculated using 

‘thermal2’ package within QUANTUM ESPRESSO. For these calculations, 30 x 30 x 30(for ZB 

and RS) and 30 x 30 x 20(for WZ and NiAs) q -mesh was used and iterations in the exact solution 

of the PBTE were performed until ∆k between consecutive iterations diminished to below1.0e-5. k 

values were converged after 5 iterations. Casimir scattering145 is imposed to include the effect of 

boundary scattering for computing length dependent thermal conductivity in the nanoscales. 

Elastic constants were computed using ‘thermo_pw’ package in QUANTUM-ESPRESSO; Voigt-

Reuss-Hill approximation144 was used to calculate Bulk modulus, Shear modulus(G), Young’s 

Modulus(E) and Poisson’s ratio().   

12.2 RESULTS 
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12.2.1 Phonon dispersion and Lattice Constants 

Phonon dispersion and phonon density of states for the four crystalline phases of MgTe is 

shown in Fig 12.1 which are in good agreement with previous work204. Structural parameters such 

as Young’s modulus(E), Bulk modulus(B), Shear modulus(G) and Poisson’s ratio computed based 

on Voigt-Ruess-Hill approximation are listed in Table 12.1 which are also in excellent agreement 

with the previously published work204, 205 for all the four crystalline phases of MgTe.  

Table 12.3: Lattice constants, Bulk modulus(B), Youngs modulus(E), Shear modulus(G) 

and poisson’s() ratio of MgTe with different crystal phase. 

S. No Crystal phase a (bohr) c/a B (GPa) E(GPa) G(GPa)  

1. Nickel arsenic (NiAs) 7.8585 1.6281 52.82 63.97 24.64 0.2981 

2. Wurtzite (WZ) 8.5287 1.6286 38.97 44.92 17.18 0.3076 

3. Rocksalt (RS) 11.0985  52.7 86.12 35.07 0.2276 

4. Zincblende (ZB) 12.073  38.39 37.1 13.88 0.3367 

 

12.2.2 Lattice Thermal Conductivity  

Lattice thermal conductivity(k) calculated by solving the phonon Boltzmann transport equation 

(PBTE) is shown in Fig 12.3. Fig 12.3a and b represents the temperature dependent lattice thermal 

conductivity of MgTe with different crystalline phase by solving the PBTE iteratively and at SMA. 

SMA results are just 5% less than that of the iterative solutions. At 300 K, full iterated thermal 

conductivity(k) of MgTe is as follows: kNiAs(2.645 Wm-1K-1) < kRS(6.26 Wm-1K-1) < kWZ(8.83 Wm-
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1K-1) < kZB (10.05 Wm-1K-1). These low 

thermal conductivity of less than ~ 10 

Wm-1K-1 shows the promising nature of 

MgTe in thermoelectric applications. k 

of 10.05 Wm-1K-1 for the zincblende 

phase MgTe is 3.8 times of the k of NiAs 

phase. This is due to the large phonon 

bandgap (~ 100 cm-1) which eliminates 

the phonon scattering rates. Whereas 

ultra-low thermal conductivity of 2.645 

Wm-1K-1 for the NiAs phase is due to the 

Figure 12.6: Phonon group velocity of MgTe with crystalline phase a) nickel arsenic (NiAs) 

b) rocksalt (RS) b) wurtzite (WZ) d) zincblende (ZB) at 300K 
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acoustic phonons are scattered by low frequency optical phonons because of the less phonon 

bandgap (~25 cm-1).  To explain this, we have analyzed the mode contributions thermal 

conductivity of transverse acoustic (TA1, TA2), longitudinal acoustic (LA) and optical phonon 

modes, phonon group velocities, phonon linewidths (scattering rates) and its spectral distribution.  

Figure 12.4 represents the thermal conductivity contribution from each phonon mode along 

^ and || to the c-axis (For cubic MgTe k along ^ - c-axis and II – c-axis are same) at single-mode 

relaxation time approximation. For the cubic systems, optical phonon contributions are less than 

~3.5 %. Whereas optical phonons has a major contributions in both wurtzite and NiAs crystal 

phase due to the low frequency optical phonons. For an example, 1.245 Wm-1K-1 along the c-axis 

for with NiAs phase is 34.2% to its overall thermal conductivity and is higher than both TA and 

LA phonon modes.  Likewise, 2.404 Wm-1K-1 along ^ -c-axis is 27.5 % to its overall thermal 

Figure 12.7: Phonon linewidth of MgTe with crystalline phase a) nickel arsenic (NiAs) b) 

rocksalt (RS) b) wurtzite (WZ) d) zincblende (ZB) at 300K 
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conductivity in wurtzite MgTe. To understand this, we plotted a spectral distribution of thermal 

conductivity over the entire frequency (Fig. 12.5) and we can observe that, low frequency optical 

phonons has significant contributions to its overall thermal thermal conductivity. Whereas in cubic 

(NiAs and ZB) MgTe, TA modes between 25 - 75 cm-1 has a major contribution to its overall 

thermal conductivity. To illustrate this further, we have plotted the phonon group velocities and  

Fig 12.6 a-d represents the phonon group velocities of MgTe with different crystalline 

phase. We can observe that, low frequency optical phonons (less than 130 cm-1) has a considerable 

phonon group velocities to that of the acoustic phonons in NiAs and wurtzite phase.  Fig 12.7 a-d 

shows the phonon linewidth for MgTe with different crystalline phase. In cubic systems, 

zincblende has the lowest phonon linewidth (less than 2 cm-1) for acoustic modes due to large 

phonon bandgap and has the highest thermal conductivity (~10 Wm-1K-1) whereas TA phonons in 

rocksalt has one order of magnitude higher scattering rate than of the zincblende and has low 

thermal conductivity. Likewise, TA and LA phonons in NiAs has 8 times scattering rate than its 

counterpart wurtzite structure. Optical phonons in NiAs has considerable phonon lifetime (inverse 

of scattering rate) and hence has a significant contribution to its overall thermal conductivity.  

For the nanostructures, length dependent thermal conductivity of MgTe between 30 nm and 1000 

nm is computed by introducing the boundary/Casimir scattering and is shown in Fig 12.3c. At 

300K and at 100 nm, zincblende has a maximum thermal conductivity of ~ 4 Wm-1K-1 shows the 

promising nature of MgTe for the thermoelectric applications.  

 

12.3 CONCLUSION 

Thermal conductivity of magnesium telluride (MgTe) with four crystalline phases; 

zincblende, rocksalt, wurtzite and nickel arsenic were computed by first principles calculations 

with phonon Boltzmann transport equations. Our first principles calculations shows a low thermal 

conductivity of less than ~ 10 Wm-1K-1 for all the crystalline phase of MgTe. We systematically 

investigated the phonon group velocity, phonon scattering rate and mode dependent thermal 

conductivity of MgTe. Our first principles calculations shows that, NiAs and wurtzite has 

significant contributions from optical phonons than ZB and rocksalt. At nanometer length scales 

such as 50 nm for NiAs phase, thermal conductivity of less than 1.4 Wm-1K-1 shows a promising 

nature of MgTe for thermoelectric applications.  
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CHAPTER 13- EQUI-BIAXIAL STRAIN TUNED HIGH THERMAL CONDUCTIVITY 

IN MONOLAYER GERMANIUM CARBIDE(2D-GEC) - A FIRST PRINCIPLES STUDY 

 

Ever since the invention of monolayer graphene with ultra-high thermal conductivity, two 

dimensional materials with high thermal conductivity have attracted great attention for thermal 

management in micro/nano electronics. Cubic germanium carbide is known to have an ultrahigh 

thermal conductivity of 1750 Wm-1K-1, however, thermal conductivity of monolayer germanium 

carbide (2D-GeC) is unknown. In this work, we report a high thermal conductivity of 125 Wm-1K-

1 for the unstrained 2D-GeC. To fine tune the thermal conductivity, we also study the effect of 

strain engineering as it shows a promising trend to achieve higher thermal conductivity. Our first 

principles calculations report 725% enhancement in lattice thermal conductivity (k) in monolayer 

germanium carbide (2D-GeC) through 6% equi-biaxial tensile strain. At room temperature, k of 

125 Wm-1K-1 for the unstrained monolayer germanium carbide(2D-GeC) increased to 906 Wm-

1K-1 through 6% equi-biaxial tensile strain. We analyzed the mode contribution from out-of-plane 

acoustic (ZA), in-plane acoustic (TA and LA) and optical phonons (ZO, TO and LO) with strain. 

First principles calculations reveal that, k monotonically increases with strain upto 6% and 

dropping down at higher strain rate (>6%). The underlying mechanism is explained with interplay 

between the vibrational frequency and the phonon lifetime. We also report the thermal 

conductivity enhancement at nanometer length scales. At 50 nm and at room temperature, thermal 

conductivity of 30 Wm-1K-1 for unstrained 2D-GeC increased to 100 Wm-1K-1 with 6% equi-

biaxial tensile strain. This high thermal conductivity of 100 Wm-1K-1 for the strained 2D-GeC at 

nanometer length scales (L=50 nm) shows that, strained 2D-GeC will be a promising material for 

thermal management applications.  

Thermal management in modern electronic devices is a critical issue in integrating millions 

of transistors into a single chip due to its hot spots3, 232, 233, 241. Hence, materials with high thermal 

conductivity have attracted remarkable attraction for efficient heat dissipation to improve the 

system reliability. Ever since the monolayer graphene was reported as an ultra-high thermal 

conductivity of 3000-5000 Wm-1K-1,180, 242-244 tremendous work has been invested in exploring 

other two-dimensional materials such as h-BN245, 246, h-BP247, h-BAs78, 247, h-GaN248, h-AlN249, h-

SiC250 (where B,N, P, As, Ga, Al, Si,C represents boron, nitrogen, phosphorous, arsenic, gallium, 

aluminum, silicon and carbon respectively) etc.,  
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Cubic Germanium Carbide (c-GeC) has an ultra-high thermal conductivity of 1517 Wm-

1K-1.139 Nevertheless, k of monolayer Germanium Carbide is unknown. In this work, we report a 

high thermal conductivity of 125 Wm-1K-1 for the unstrained 2D-GeC. This high thermal 

conductivity is mainly due to the high phonon frequency and velocity as well as large phonon 

bandgap. To fine tune the thermal conductivity, we also introduce strain engineering as it shows a 

promising trend to achieve higher thermal conductivity. Our first principles calculations show a 

maximum of 725% enhancement in lattice thermal conductivity(k) at room temperature in 

monolayer germanium carbide(2D-GeC) through 6% equi-biaxial tensile strain and started 

dropping down due to the interplay between phonon scattering rate and phonon velocity. At room 

temperature, k of 125 Wm-1K-1 for the unstrained monolayer germanium carbide(2D-GeC) 

increased to 906 Wm-1K-1 through 6% equi-biaxial tensile strain and started dropping down beyond 

that. To understand the interplay between the phonon group velocity and phonon scattering rate, 

we keep the velocity term constant and studied the change in k due to the scattering rate. Increase 

in phonon group velocity is explained with elastic constants and increase in scattering rate beyond 

6% strain is analyzed with phonon band gap.  

 

13.1 COMPUTATIONAL 

METHODS: First principles 

computations were performed using 

local density approximations187 with 

norm-conserving pseudopotentials using 

QUANTUM ESPRESSO88 package. The 

geometry of the monolayer GeC with 2 

atoms unit cell is optimized until the 

forces on all atoms are less than 10-5 eV 

Å-1 and the energy difference is 

converged to 10-15 Ry. We maintained a 

vacuum of 20 Å to avoid the interaction 

between the neighboring layers. A plane-

wave cutoff energy of 120 Ry was used. Monkhorst-Pack115 k-point mesh of 24 x 24 x 1 is used 

during the variable cell optimization. Optimized monolayer GeC structure is shown in Fig. 13.1; 

Ge 

C 

Figure 13.1: Atomic configuration of monolayer 

germanium carbide. Black and red color represents 

the Carbon and Germanium respectively. 
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obtained lattice constants of a=3.192 Å and are in good agreement with the previous first principles 

calculations. The relaxed structure is equibiaxially strained along x and y direction by changing 

the lattice constants. Elastic constants were computed using QUANTUM ESPRESSO thermo_pw 

package. Dynamical matrix and harmonic force constants were calculated using 24 x 24 x 1 q-

grid. 8 x 8 x 1 q-points were used to compute the anharmonic force constants using QUANTUM 

ESPRESSO D3Q89-91 package. Acoustic sum rules were imposed on both harmonic and 

anharmonic interatomic force constants. Phonon linewidth and lattice thermal conductivity were 

calculated iteratively using QUANTUM ESPRESSO thermal2 code with 140 x 140 x 1 q -mesh 

and 0.1 cm-1 smearing until the ∆k values are converged to 1.0e-5.  

 

13.2 RESULTS 

13.2.1 Phonon dispersion and density of states: Phonon dispersion along the high symmetry 

points and phonon density for the monolayer germanium carbide(2D-GeC) with equibiaxial strain 

upto 8% is shown in Fig 13.2. The results showing positive frequencies indicating the system is 

dynamically stable under equi-biaxial tensile strain. We can also observe a quadratic ZA phonon 

Figure 13.2: Phonon dispersion and phonon density of states for the monolayer germanium 

carbide with strain between 0% and 8% 
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branch251 and linear TA and LA phonons near Γ point which are commonly observed in 2D 

materials. We can observe that, out-of-plane vibration mode (ZA) is increasing with strain and is 

observed in other monolayer materials as well252, 253. The high acoustic frequency of upto ~400 

cm-1 is mainly due to the strong bonding between the germanium and carbon atoms and light 

atomic mass.  It is also clearly seen that, there is a bandgap between acoustic and optical phonon 

branches and are known as phonon bandgap (457.26 cm-1 for the unstrained 2D-GeC) which is 

mainly due to the mass difference between the atoms254, 255.  

Young’s modulus(E) and Shear modulus(G) for a 2D system can be calculated256 from their elastic 

constants using E2D= (𝐶11
2 - 𝐶12

2 )/C11 and G2D=C66=(C11-C12)/2. Elastic constants, Young’s modulus 

(E) and shear modulus(G) for monolayer germanium carbide with equi-biaxial tensile strain are 

shown in table 1 and Fig 3 and are in good agreement257 with the unstrained 2D-GeC.  

Table 13.1: Elastic constants, Young’s modulus, Shear modulus and phonon bandgap with 

equibiaxial tensile strain for 2D-GeC 

Strain C11  

(GPa) 

C12  

(GPa) 

C66  

(GPa) 

Young’s Modulus 

(GPa) 

Shear Modulus 

(GPa) 

Phonon 

bandgap 

(cm-1) 

0 485.78 154.00 165.71 436.95 165.71 457.26 

2 494.07 155.88 169.01 444.89 169.01 409.66 

4 483.44 138.64 173.56 443.89 173.56 368.50 

6 421.72 78.977 171.37 406.93 171.37 324.913 

8 357.47 37.7 159.88 353.494 159.88 286.699 

Figure 13.3: Elastic constants of monolayer germanium carbide with strain 
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13.2.2 Lattice thermal conductivity: Temperature dependent lattice thermal conductivity along 

arm-chair (kxx) and zig-zag(kyy) direction is shown in Fig 13.4 a and b. At room temperature 

(T=300 K), 2D-GeC has a high thermal conductivity of 127.79 Wm-1K-1(59.65 Wm-1K-1 ) and 
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Figure 13.4a and b) Temperature dependent lattice thermal conductivity along arm-chair 

and zig-zag direction with strain for a pure monolayer germanium carbide(2D-GeC) c) 

Lattice thermal conductivity of monolayer germanium carbide with strain at 300 K.  

c) 



98 
 

126.23 Wm-1K-1(58.47 Wm-1K-1) along arm-chair and zig-zag direction respectively for the 
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Figure 13.5: Lattice thermal conductivity of monolayer germanium carbide(2D-GeC) with 

isotopic scattering for strains between 0% and 8%. 

Figure 13.6: Phonon group velocity of monolayer germanium carbide with strain 
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iterative(SMA) solution of the Boltzmann transport equation. With isotope scattering, 115 Wm-

1K-1 and 113.64 Wm-1K-1 indicates that, Isotope scattering has a minimal effect (~10%) on its over 

thermal conductivity as shown in Fig 13.5.  

Room temperature lattice thermal conductivity of 2D-GeC with equibiaxial strain is shown 

in Fig 13.4c. It is clearly seen that, k is increasing with strain upto 6% and starts decreasing beyond 

that. With 6% equi-biaxial strain, k value of 900 Wm-1K-1(910.84 Wm-1K-1) is ~ 708% higher than 

that of unstrained 2D-GeC k of 127.79 Wm-1K-1 (126.23 Wm-1K-1) along the armn-chair(zig-zag) 

direction. This increase in k is analyzed with phonon group velocity, phonon scattering rate 

(inverse of lifetime), phonon bandgap and elastic constants.  

 

Fig 13.6 and 13.7 shows the phonon group velocity and phonon linewidth of 2D-GeC with 

strain. From Fig 6, We can clearly see that, phonon group velocity of ZA mode increases with 

strain. This is due to the stiffening of ZA mode with strain. Whereas, phonon group velocity of TA 

Figure 13.7: Phonon linewidth of monolayer germanium carbide with strain 
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and LA mode decreases and is 

due to the softening of TA and 

LA modes with strain. After 6%, 

k value decreases, due to a 

reduction in phonon bandgap as 

shown in Fig 8 which allows for 

an increase in scattering of 

acoustic branches through 

absorption processes.  

 

13.3 CONCLUSION: By 

solving Phonon Boltzmann 

Transport equation within the 

density functional theory, we 

report a high thermal conductivity (k) of ~127 Wm-1K-1(126 Wm-1K-1) for the monolayer 

germanium carbide(2d-GeC) along the arm-chair and zig-zag direction. With 6% equi-biaxial 

strain, k reaches a peak of ~900 Wm-1K-1 and starts decreasing due to a reduction in phonon 

bandgap. This increase in thermal conductivity is mainly attributed  to an increase in phonon group 

velocity of ZA phonons due to stiffening of ZA modes. This study provides an avenue for 

modulating the k of a 2D materials for thermal management applications.  
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