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Abstract

Cloud condensation nuclei (CCN) are known to affect both the electrical and the

dynamic evolution of storms, but the effects on storm electrification in different storm

modes have not been thoroughly examined. We will detail the impacts of CCN in

simulations of the high-precipitation Geary, Oklahoma supercell storm from the Thun-

derstorm Electrification and Lightning Experiment (TELEX) on 29-30 May 2004, as

well as in the simulations of the lower-precipitation Kimball, Nebraska supercell storm

from the Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone-A

(STERAO-A) on 10 July 1996. The simulations were run and analyzed using five dif-

ferent CCN concentrations (100, 300, 500, 1000, and 2000 cm−3) in the Collaborative

Model for Multi-scale Atmospheric Simulation (COMMAS), a three-dimensional cloud

model using a three-moment microphysics scheme with six hydrometeor types, and

with a bulk electrification scheme utilizing both inductive and non-inductive charging.

The simulations provide details on changes in storm dynamics, kinematics, and elec-

trification as a function of a controlled change in a single variable, the CCN. The CCN

concentration of each model run significantly affected the storm dynamics, kinemat-

ics, and electrification in both storms. There were differences in storm polarity and

charging rates across the different CCN concentrations.

Similar patterns were observed in both case studies. In both case studies, very

low CCN concentrations had opposite vertical polarity structure than that of higher

CCN concentrations in our control simulations. The overall evolution of the storm also

differed with CCN concentration including the spatial extent (horizontal and vertical),

lifetime of the storm, as well as the evolution of warm and cold rain processes. These

variables were analyzed and compared for both the TELEX and STERAO-A case stud-

ies. Upon analysis, differences due to CCN concentration were present regardless of

amount of precipitation within the storm. Further sensitivity studies were conducted

xiii



using two non-inductive charging and microphysics schemes. Results from the simula-

tions of both case studies were compared to observations collected during the TELEX

and STERAO-A field campaigns.
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Chapter 1

Introduction

The electrical structure of a thunderstorm is closely related to the microphysical com-

position of the storm. Aerosols that act as cloud condensation nuclei (CCN) can

significantly impact the microphysical, electrical, and dynamic structures of a thun-

derstorm (Tao et al., 2012). Past studies have noted these impacts observationally

and numerically, some of which are described below, but the full extent of CCN effects

on thunderstorm structures has yet to be studied in all storm modes. Cloud-aerosol

processes are still not fully understood, yet anthropogenic aerosols have a significant

impact on radiative and convective properties of clouds. The Intergovernmental Panel

on Climate Change (IPCC) lists aerosol indirect effects as one of the key uncertainties

in our changing environment in their fourth and fifth annual reports (Solomon et al.,

2007; Stocker et al., 2013). Although the scale of these effects may initially be on the

microphysical scale, when summed over larger spatial and temporal scales they can be

significant. Better understanding these integrated processes over various storm modes

and environments provides a more detailed picture of the effect CCN has on the electric

and dynamic structure of supercells, as well as the potential severe weather threats of

a changing environment.

Also originating at the microphysical scale, non-inductive collisional charging is

believed to be the primary driver of thunderstorm electrification and occurs primarily in

the mixed phase region of the storm where ice crystals, riming graupel, and supercooled

liquid water are all present (Reynolds et al., 1957; Takahashi, 1978; Saunders and Peck,

1



1998; Saunders et al., 2006). Net charge and ice mass are transferred during collisions

of riming graupel and ice crystals (Mason and Dash, 2000). The polarity of the charge

transferred is dependent on ambient temperature, liquid water content, and impact

speed of the colliding particles. Many laboratory experiments have been conducted

(e.g., Takahashi, 1978; Jayaratne and Saunders, 1983; Pereyra et al., 2000; Saunders

et al., 1991; Saunders and Peck, 1998; Saunders et al., 2006) to determine net polarity of

riming graupel electrification following a rebounding collision. It has been hypothesized

that whichever particle is growing more rapidly by vapor diffusion gains a net positive

charge during the rebounding collision (Baker et al., 1987) through the transfer of mass

from the quasi-liquid layer surrounding each particle (Baker and Dash, 1994). There is

substantial uncertainty stemming from the various constraints of the laboratory studies

which have been performed, and thus there are multiple non-inductive electrification

parameterizations (Fig. 1.1) available for modeling the electric structure of storms,

a single one of which may not be fully representative of electrification as it occurs in

nature (Saunders et al., 2006; Mansell et al., 2005).
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Figure 1.1: Non-inductive charge separation sign-reversal curves for Takahashi (1978);

Pereyra et al. (2000); Saunders and Peck (1998); Saunders et al. (2006). [Figure adapted

from Saunders et al. (2006) ]

How the particles separate net charge in the mixed phase region of the storm will

later determine the storm’s charge structure. After particles separate charge on the

microphysical scale, storm kinematics and differential fall speeds control the motions of

these particles resulting in large-scale charge separation and the formation of net charge

layers or regions. Updrafts advect cloud ice to relatively high altitudes in the storm,

while denser hail and graupel remain at lower altitudes of the storm via differential

sedimentation. The magnitude of charge separated ultimately depends on the number

and size of colliding particles, liquid water content and ambient temperature. The

typical charge structure of an unsheared thunderstorm is a positive-negative-positive

vertical charge layer structure (Fig.1.2b), also referred to as a positive (normal) tripole

structure (e.g., Williams, 1989). In the normal tripole structure, following collisions at

high altitudes and cold temperature within the mixed phase region, negatively charged

3



graupel tends to accumulate in the middle of the cloud and positively charged ice crys-

tals are carried up to higher parts of the cloud. At some lower altitude and warmer

temperatures determined by the reversal curve, the polarities reverse with negatively

charged ice crystals congregating in the middle layer, and positively charged graupel

sedimenting in the bottom layer. The polarity reversal is a function of ambient temper-

ature, liquid water content, and impact speed of the colliding particles. These reversal

curves have been studied in various laboratory experiments, as mentioned above. An

inverted (anomalous, negative) tripole structure (Fig.1.2d) would have vertical charge

layers in a negative-positive-negative order (Marshall et al., 1995). Storms can also

have a dipole structure, where only two main vertical charge layers exist. A positive

dipole structure (Fig.1.2a) would be a positive layer over a negative layer of charge,

while an inverted dipole structure(Fig.1.2c) would be reversed (Seimon, 1993).
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Figure 1.2: Conceptual model of charge structure of a thunderstorm. (a) Normal

dipole model, containing upper positive and lower negative charge centers. (b) Normal

tripole model, containing upper positive, main negative, and smaller lower positive

charge centers. (c) Inverted dipole, lower positive charge and upper negative charge

centers. (d) Inverted tripole, main positive with upper and lower negative charge

centers. [Figure and caption adapted from Kuhlman et al. (2005)].

Adding vertical wind shear to the environment or turbulent motions within the

storm add a horizontal component to the particle motions impacting charge separation

and horizontal inhomogeneities in the microphysical environment, which can impact

the polarity or magnitude of hydrometeor electrification. With the addition of verti-

cal wind shear, the charge structure of supercells can be rather complicated. Current

dipole/tripole models are too simplistic to apply to all mature thunderstorms and

mesoscale convective systems (Rust and Marshall, 1996). Stolzenburg et al. (1998)

suggested a more complex charge structure for high shear thunderstorms, consisting of

four main charge regions near the updraft and six charge regions outside the updraft in

the convective precipitation region. In severe storms, typically a lot of small pockets of
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charge exists in the vicinity of the updraft. Brothers et al. (2018) through simulations

found charge advection tendency was more textured inside the updraft region of the

storms where more resolved eddy-rich flow was present. Despite the complexity of the

net charge, however, the potential was much simpler and reflected the local charge sed-

imentation tendency, which ultimately determines the lightning structure.These small

pockets of high electric potential are more conducive to more numerous and smaller

flashes, which is especially seen around the updraft region where charge structures tend

to be more complex (Bruning and Macgorman, 2013).

The environmental CCN concentration significantly influences the microphysics of

warm and cold rain processes, thereby affecting the process of non-inductive charging.

CCN serve as the key ingredient of heterogeneous droplet nucleation in warm rain

processes (Pruppacher and Klett, 1978). For cold rain processes, ice nuclei (IN) are

needed for heterogeneous nucleation. Not every aerosol will serve as a good IN particle,

so changes made to CCN concentration would have a more direct effect on warm

than on cold rain processes. Although homogeneous droplet nucleation is possible

in laboratory experiments, the extreme supersaturation required for this process is

not typically found in nature. In convective clouds, an increase in CCN results in

more numerous liquid droplets with a smaller radius, resulting in a narrower drop

size distribution. Environments with a large number of CCN and a narrow drop size

spectrum, produce weak collision and coalescence processes resulting in suppressed

or delayed onset of precipitation (Twomey, 1977; Albrecht, 1989; Gunn and Phillips,

1957). Polluted mixed-phase clouds typically contain relatively high concentrations of

ice (Lance et al., 2011). Higher ice concentrations can be a result of delayed warm-rain

processes preserving a larger cloud water content to low temperatures. Small droplets

are easily lofted into the colder levels of the cloud and reaching homogeneous freezing
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temperatures, resulting in a high concentrations of ice particles at upper levels which

might influence the charging mechanisms aloft.

The microphysical impact aerosols have on thunderstorms further extends into the

large-scale dynamics of the storm. A higher concentration of CCN leads to increased

latent heat release by both condensational and freezing processes within mixed phase

clouds (Li et al., 2011; Rosenfeld et al., 2008; Khain et al., 2005). An increase in latent

heat release invigorates convection, enhancing updrafts and encouraging secondary

convection; however, an excess of CCN can result in suppression of the coalescence and

collision processes and result in a weaker storm. Fan et al. (2009) found invigoration of

convective strength by aerosols in cases where weak windshear is present but found the

contrary to be true under strong wind shear. As an updraft becomes more vigorous,

more hydrometeor mass is lofted into the mixed phase region of the storm instead

of falling out as precipitation. This in turn causes charge separation to occur more

rapidly, as more particles are colliding in mixed phase regions. It can also eventually

result in turbulent structures at the interface of the updraft, which produce a lot of

small flashes in the updraft region and thereby enhance overall flash rates more than

a simple increase in charging rates would imply (Bruning and Macgorman, 2013).

Observationally, impacts of CCN on lighting and thunderstorm charge structures

have been inferred by using remote satellite data and various lightning ground networks

to understand the cloud’s composition and structure. Many of these studies have been

conducted over urban areas (e.g., Pawar et al., 2017; Hu et al., 2019; Ren et al., 2018;

Sun et al., 2021) or in the vicinity of wildfires (e.g., Kochtubajda et al., 2011; Altaratz

et al., 2010). Hu et al. (2019) compared CCN retrievals from the Visible Infrared Imag-

ing Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership

(NPP) satellite with measurements by polarimetric radar and a Lightning Mapping

Array (LMA) in the Houston, Texas region. This study a found positive relationship
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between CCN concentrations and convective intensity as measured by maximum echo

top height below concentrations of 1,000 CCN cm−3. Hu et al. (2019) also found that

lightning flash rates increased by an order of magnitude between CCN concentrations

of 400 to 1,000 cm−3 but decreased beyond that. This is similar to the findings of

Altaratz et al. (2010); Pawar et al. (2017); Ren et al. (2018), and Kochtubajda et al.

(2011), which all found positive relationships between flash rates and aerosols con-

centrations until a threshold concentration. Ren et al. (2018) found this pattern of

enhanced lighting at higher CCN was more evident when convective available poten-

tial energy (CAPE) values were low and wind shear weak. It has also been suggested

that aerosols can influence the development of net charge structures in a storm. Pawar

et al. (2017) found thunderstorms with inverted polarity occurred on days with sig-

nificantly higher (Aerosol Optical Depth) AOD than days with more normal polarity

non-severe thunderstorms, however many other variables showed strong correlations to

inverted polarity days, such as high dewpoint depressions. Kochtubajda et al. (2011)

suggested the presence of smoke with elevated cloud bases may have contributed to

enhanced +CG production, indicative of anomalous charge structures. Kochtubajda

et al. (2011) also found positive peak current strengths during wild fire season in-

creased by more than 30 kA, while the negative peak current strengths were weaker

than climatology by as much as 20kA. The downside of these observational studies is

that much of the data from satellites and ground networks only give a partial picture

of the processes occurring within the cloud. The natural environment changes quickly

and has many variables, so it is hard to find a pure comparison between different CCN

concentrations within an otherwise uniform environment.

Idealized simulations in numerical models can be used to isolate the response of

such electric and dynamic properties to changes made solely to CCN concentration,

while holding all other environmental conditions constant. Similar to the observational
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studies, CCN impacts on the electrical structure of thunderstorms have been investi-

gated using numerical models (e.g., Mitzeva et al., 2006; Zhao et al., 2015; Mansell and

Ziegler, 2013; Sun et al., 2021). Mansell and Ziegler (2013) modeled CCN effect on

updraft volume, speed, and electrification on a low-shear ordinary thunderstorm and

found lightning rates had a weak response to CCN concentrations below 700 cm−3, un-

til Hallett-Mossop rime-splintering ice multiplication becomes more active. However,

beyond that point, rates increased with increasing CCN and until very high concen-

trations. Mansell and Ziegler (2013) also found that high CCN concentrations acted

to invigorate updrafts via increased latent heat release and resulted in suppression of

precipitation. Sun et al. (2021) and Zhao et al. (2015) found delays in lightning ac-

tivity and higher charge densities in polluted air than clean air, as a result of more

ice particles participating in the electrification process. In polluted cases, Zhao et al.

(2015) and Mitzeva et al. (2006) found that aerosol loading led to increased cloud

water content, which resulted in more negative charging aloft and the addition of an

upper-level negative charge region, above the main positive charge center, which was

weaker on non-existent in their clean/maritime simulations. This implies a change in

the active non-inductive electrification regimes experienced within the storms. These

studies all link the changes in the electric structure to the effect aerosols have on the

microphysical and dynamic processes occurring within the storm.

Numerical studies have also found the dynamic evolution of the storm to be sensi-

tive to CCN concentrations (e.g., Storer et al., 2010; Seigel and Van Den Heever, 2012;

Kalina et al., 2014; Lerach and Cotton, 2012; Khain et al., 2011). Storer et al. (2010)

modeled aerosol impacts on convective storms in different environments. They found

that in more polluted simulations, surface rainfall rates and evaporative cooling near

the surface was lower and therefore affected the extent and depth of cold pool forma-

tions, which was also found in the studies by Lerach and Cotton (2012) and Khain et al.
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(2011). The formation of the cold pool further affected the evolution of the strength

and spatial extent of storm. Storms in environments with lower aerosols had larger

and deeper cold pools, and the storms themselves had a larger spatial extent with a

longer life span (Storer et al., 2010). In a two-dimensional model framework, Khain

et al. (2011) found that the reaction of cold pool formations to different CCN con-

centrations was highly dependent on environmental conditions, where under relatively

dry low-level conditions cold pools were smaller at high CCN, but with moist low-level

conditions with moderate vertical wind shear, the cold pool area is nearly constant

with respect to CCN concentration. Storer et al. (2010) also found that many of the

changes seen because of varying aerosol concentrations were of either the same order

or larger magnitude than those brought about by changing the convective environment

in terms of CAPE.

In this paper, we present sensitivity studies on how CCN affects the dynamic and

electric structure in two different supercell regimes using the Collaborative Model for

Multi-scale Atmospheric Simulation (COMMAS) model. Sensitivity studies were con-

ducted to test the reaction of microphysical and dynamic processes to various CCN

concentrations. These sensitivities were compared in simulations of both the high-

precipitation (HP) Geary, Oklahoma supercell storm from the Thunderstorm Elec-

trification and Lightning Experiment (TELEX) on 29-30 May 2004 and the low-

precipitation (LP) Kimball, Nebraska supercell storm from the Stratosphere-Troposphere

Experiment: Radiation, Aerosols, and Ozone-A (STERAO-A) on 10 July 1996. This

thesis is organized as follows: Chapter 2 presents data and methodology used in the

study, Chapters 3 & 4 presents the modeling results of the HP and LP case studies

respectively, Chapter 5 provides a comparison of the simulated supercells to observa-

tional data from both case studies, and Chapter 6 completes this thesis with discussion

and conclusions.
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Chapter 2

Data/Methods

In this study, five CCN concentrations (100, 300, 500, 1000, and 2000 cm−3) will

be compared in two different case studies; the high precipitation supercell from the

TELEX field campaign and the low-precipitation supercell from the STERAO-A field

campaign as described below. These simulations were run using two different non-

inductive charging schemes (Takahashi, 1978; Saunders and Peck, 1998), and resulting

changes in the electrical characteristics of the storms were compared with a single

microphysics scheme. As a sensitivity test, simulations with these five concentrations

were also completed using both the two-moment (2M) and three-moment (3M) options

of the National Severe Storms Laboratory (NSSL) microphysics scheme (Mansell et al.,

2010) with a single electrification scheme. This resulted in a total of 15 simulations

for each case study. Radar data were available from both cases, but only TELEX

had three-dimensional observations of total lightning activity. Thus, results from the

simulations of the Geary, Oklahoma storm were compared with observed electrical, as

well as kinematic, characteristics for this case. While the STERAO-A simulations are

only compared to the observed kinematic characteristics.
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2.1 Model Background

2.1.1 Numerics

All simulations were run using the Collaborative Model for Multi-scale Atmospheric

Simulation (COMMAS) model, a three-dimensional cloud model (Wicker and Wilhelm-

son, 1995) which incorporates parameterizations of lightning and both inductive and

non-inductive charging (Mansell et al., 2010). The model uses the basic equation set

from Klemp and Wilhelmson (1978) for momentum, pressure, potential temperature,

and turbulence kinetic energy (Coniglio et al., 2006). The model used a third-order

Runge-Kutta time integration scheme (Wicker and Skamarock, 2002), with fifth-order

upwind differencing on the first two iterations and ninth-order weighted essentially

non-oscillatory (WENO) scheme on the final step (Jiang and Shu, 1996; Shu, 2003;

Balsara and Shu, 2000).

2.1.2 Microphysics

The model describes form and phase changes among six hydrometeor types: cloud

droplets, raindrops, cloud ice crystals, snow particles, hail, and graupel. The micro-

physics schemes used in these simulations were adapted from Ziegler (1985) and Straka

and Mansell (2005). The scheme predicts both the mixing ratio (3rd moment) and

number concentration (zeroth moment) for the six hydrometeor categories, and the

three-moment version further predicts the reflectivity (6th moment) for rain, grau-

pel, and hail. Bulk particle density is predicted for graupel and hail. This is further

described in Mansell et al. (2010) and Dawson et al. (2014). Hydrometeor size distri-

butions are assumed to follow a gamma function distribution. Microphysical processes

include cloud droplet and cloud ice nucleation, condensation, deposition, evaporation,
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sublimation, collection–coalescence, variable-density, riming, shedding, ice multiplica-

tion, cloud ice aggregation, freezing and melting, and conversions between hydrometeor

categories (Mansell and Ziegler, 2013). The model does not assume any aerosol type

and CCN concentration is predicted with a bulk activation spectrum (NCCNa=CCN

× Sk,where k= 0.6, NCCNa= number of activated CCN, and S= supersaturation)

tracking the number of un-activated CCN and depleting local CCN concentrations as

particles becomes activated (Mansell et al., 2010; Mansell and Ziegler, 2013). CCN

particles are subject to advection and subgrid mixing via turbulence but have no other

interactions with hydrometeors. Initial CCN concentrations are initialized to have a

constant number mixing ratio (# kg−1) across the domain and are assumed to be well

mixed. Initial concentrations are scaled by sea-level air density (CCN(z) = CCNbase

[ρair(z)/ ρo]), following that in Mansell and Ziegler (2013).

2.1.3 Electrification

COMMAS has options for various bulk non-inductive (NI) charging schemes as well

as inductive (or polarization) graupel-droplet charging. Both NI and inductive charg-

ing are utilized in this study. Laboratory and modeling experiments suggest that NI

charging is the primary process responsible for generating large electric fields within

storms (e.g., Saunders and Peck, 1998; Takahashi, 1978; MacGorman and Rust, 1985).

NI charging is used in the model when riming graupel and ice crystals/snow collide and

rebound in the presence of supercooled water. In this study we will compare results

using the Takahashi (1978) NI electrification scheme (henceforth TAK; Fig. 2.1) to

simulations using the NI electrification parameterization based on the results of the

Saunders and Peck (1998) laboratory experiments (henceforth SP98; Fig. 2.2). The

SP98 scheme has been modified to follow Brooks et al. (1997) for temperatures above

-15oC (T>-15oC) (Mansell et al., 2010). More information on this scheme and its
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modification can be found in Calhoun et al. (2014). SP98 determines sign of charge

exchanged between rebounding particles as a function of rime accretion rate (RAR)

and ambient temperature. The sign and magnitude of the charge transferred to the

graupel during a rebounding collision is strongly influenced by the amount of water ac-

creted on the graupel (i.e., the rimer) as negative charge typically goes in the direction

of mass transfer. In the TAK scheme the sign of charge transferred to rimer during

a rebounding collision depends on cloud water content and temperature (Takahashi,

1978), with a weaker dependence on crystal size and impact speed (Takahashi, 1984).

There are a couple of methods through which inductive charging occurs. Inductive

charging occurs in the presence of an electric field when two polarized hydrometeors

pass charge upon a rebounding collision. It is believed to also affect a storm’s charge

structure, but not to the same magnitude as NI charging (Mason 1988; Brooks and

Saunders 1994). The model assumes that, in the presence of an electric field, inductive

charge transfer during collisions between frozen particles is too slow to have a significant

effect and collisions between liquid particles are likely to result in coalescence rather

than charge exchange. Thus, inductive collisional charging only occurs in the model

when graupel and hail undergoing dry growth collide and rebound with water droplets

Hydrometeors can also gain (or lose) charge via attachment of free ions under the

influence of both the pre-existing hydrometeor charge and the ambient electric field,

another inductive charging method. For example, electric fields outside a cloud can

drive ion currents that attach to cloud particles at cloud edges to form screening charge

layers. More details of the non-inductive and inductive charging parametrizations can

be found in Mansell et al. (2005).
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Figure 2.1: Electrificiation of rime using drop distributions. open circles show positive

charge, solid circles negative charge and crosses represent uncharged cases. The electric

charge of rime per ice crystal collision is shown in units of 10−4 esu given by the

contours. [Adapted from Takahashi (1978).]
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Figure 2.2: Non-inductive charge separation sign-reversal curve by the polarity of the

charge transferred to the rimer. The critical RAR curve follows Saunders and Peck

(1998) for T < -15oC (shown as dashed curve for T > -15oC) and Brooks et al. (1997)

at warmer temperatures. Charge transfer is set to zero for T < -33oC. [Adapted from

Mansell et al. (2010).]

The charge density on each of the six hydrometeor types is explicitly predicted

from collisions rates between the various types and is transferred between categories in

proportion to the mass transferred from one category to another. Charge is conserved

within the model domain and follows the charge continuity equation from Mansell et al.

(2005). Charge is not completely conserved, however, due to charge movement from

ion currents entering or exiting the domain, advection through a lateral boundary, or

transport to ground by lightning. Conservation equations account for both positive and
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negative ions and take into account advection, mixing, drift motion (ion motion induced

by the electric field), cosmic ray generation, ion recombination, ion attachment to

hydrometeors, corona discharge from the ground, and release of ions from evaporating

hydrometeors (Mansell et al., 2005). A fair-weather state is also implemented from

Gish (1944) and includes background ions generated by cosmic rays.

Lightning flashes are parameterized by a stochastic dielectric breakdown model

as described by Mansell et al. (2002, 2005). A flash is initiated when the electric

field magnitude exceeds a height-dependent threshold for breakdown. A flash’s light-

ning channels are then simulated by a stochastic 3D-branched parameterization, in

which positive (negative) leaders having very high conductivity carry positive (neg-

ative) charge and tend to propagate preferentially through regions of net negative

(positive) charge density (MacGorman et al., 2001; Mansell et al., 2002) until the elec-

tric field at the tip of the channel drops below the threshold for continued propagation.

As the flash develops, the electric potential of each point on the conducting channels is

computed. After the propagation of all channels in a flash ends, the charge on channels

is computed by Gauss’s Law from the difference in potential compared with the points

surrounding each channel. The resulting lightning charge is deposited at each point on

the channel as small ions (Mansell et al., 2010).

2.1.4 Model Domain and Initialization

For the Geary, OK case study, the model was initialized to be horizontally homogeneous

in an environment (Fig. 2.3) based on the combination of two soundings. Below 400 mb,

the sounding was taken from an environmental sounding released near Weatherford,

OK and above 400 mb, the data were from the sounding released at the Norman, OK,

National Weather Service office at 0000 UTC (Fig. 2.4). This is similar to the sounding

used by Calhoun et al. (2014) except it has been smoothed to remove neutral layers
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(personal communications, C. Zeigler 2021). A single thermal bubble (3K) was inserted

into the boundary layer to initiate convection. The bubble has a horizontal radius of

10 km and a vertical radius 1.4 km. The size of the model domain was 100 km x 120

km x 24 km, with a horizontal grid spacing of 500 m and a vertical grid spacing of 200

m stretched to a maximum of 500 m at 20 km over 63 grid points. The model was run

for 4 hours with a time step of 1 second.

Figure 2.3: Initialization atmospheric sounding used to simulate Geary, Oklahoma case

study
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Figure 2.4: Atmospheric Sounding launched from Norman, Oklahoma NWS (OUN) at

0000 UTC 30 May 2004 (Plot courtesy of the University of Wyoming 2)

The Kimball, NE simulation also used a horizontally homogeneous environment

based on the sounding from Skamarock et al. (2000)(Fig.2.5). A simple thermal impulse

was unable to sustain convection, so in this case a forcing region in the boundary layer

initiated convection with a vertical acceleration term. The region has a horizontal

radius of 10 km and a vertical radius 1.4 km and a central acceleration of 0.06 m s−2,

and the forcing was maintained for the first 30 minutes of the simulation. The size of

the model domain was 100 km x 100 km x 24 km, with a horizontal grid spacing of

2http://weather.uwyo.edu/upperair/sounding.html
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500 m and a vertical grid spacing of 200 m stretched to a maximum of 500 m at 20 km

over 63 grid points. The model was run for 3 hours with a time step of 2 seconds.

Figure 2.5: Initialization atmospheric sounding used to simulate Kimball, NE case

study

2.2 Overview of Observed Storms

2.2.1 Geary, OK Case Study

The Geary, Oklahoma supercell began late on 29 May 2004 in west-central Oklahoma,

roughly 45 miles west of Oklahoma City, and lasted 12 hours into 30 May. This storm
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was an intense isolated high-precipitation supercell which underwent a storm split early

in its lifecycle. It produced 18 tornadoes before decaying near the Arkansas-Oklahoma

border (Potvin et al., 2013; Calhoun et al., 2013; Betten et al., 2018). This event was

documented as part of the Thunderstorm Electrification and Lightning Experiment

(TELEX) field campaign, which was focused on exploring the relationship of storm

electrification and lightning to storm dynamics and microphysics. TELEX concen-

trated multiple observational resources on this supercell storm until it passed east of

Oklahoma City (Calhoun et al. 2014). Due to the comprehensive documentation of

this case, multiple observational and numerical studies have focused on this storm (e.g.,

Potvin et al., 2013; Calhoun et al., 2013; Betten et al., 2018). Similar to the analyses

in previous studies, this study will mainly focus on the right-mover. Storm analysis

will be taken from the 90-minute period of 2350-0120 UTC, analyzed by Betten et al.

(2018).

The synoptic set-up for this event included a broad upper-level trough over the

northwest United States and a short ridge over the Mississippi valley. A deepening

surface low was located over southeastern Colorado and propagated eastward into

Kansas through the analysis time (Calhoun et al., 2013). In the mid-levels, westerly

winds advected warm dry air, setting up an elevated mixed layer as observed in the 0000

UTC 30 May upper-air sounding launched from Norman, OK (OUN; Fig. 2.4). Low-

level southerly winds advected warm moist air from the Gulf of Mexico. Temperatures

in the 0000 UTC sounding were super-adiabatic from the surface up until 800 mb and

created a capped environment, with roughly 2100 J Kg −1 of CAPE above the cap.

The storm was initiated by an approaching dryline around 2130 UTC 29 May (Betten

et al., 2018). Dewpoints ahead of the dryline ranged from 20 to 22oC and behind it

ranged from -8 to -3oC, marking a large axis of instability. Further details on this

evolution can be found in Calhoun et al. (2013) and Betten et al. (2018).
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2.2.2 Kimball, NE Case Study

The Kimball, Nebraska supercell began 10 July 1996 near the southern end of the

Wyoming-Nebraska border, along the Cheyenne Ridge and traveled south-southeast

into Colorado. This storm was part of the Stratosphere-Troposphere Experiment: Ra-

diation, Aerosols, and Ozone-A (STERAO-A) field experiment, which was focused on

understanding thunderstorms’ roles in the distribution of chemical components in the

troposphere, especially NOx production by lightning and NOx transport by convective

and mesoscale features. Multiple numerical studies have analyzed this particular storm

(e.g., Skamarock et al., 2000; Lang et al., 2000; Barth et al., 2007; Dye et al., 2000). It

was a single, intense low-precipitation storm that evolved from a multicellular line of

storms.

Synoptic conditions for this case included a broad ridge over the southern plains,

and an upper-level shortwave trough that propagated from northwest New Mexico

eastward into the region. This shortwave passed through too early in the period (1200

to 0000 UTC, 10-11 July) to serve as a forcing mechanism for the observed convection

of that day. A surface stationary front extending from Western South Dakota down

through eastern New Mexico served as a baroclinic zone with cool moist air (dew

points from 13 to 16oC) to the east and warm dry air (dew points from 3 to 10oC)

to the west of the boundary (Skamarock et al., 2000). On the warm side, the 0000

UTC upper-air sounding from Denver (Fig. 2.6), Colorado (DNR) shows a very dry

boundary layer, with easterly surface winds veering with height. On the cool side,

the 0000 UTC sounding from Dodge City, Kansas (DDC; Fig. 2.7) shows a moist

boundary layer extending up to about 850 mb, with southeasterly surface winds also

veering with height. The DDC sounding showed a strong cap which would prevent any

surface-based convection.
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Figure 2.6: Atmospheric Sounding launched from Denver, Colorado NWS (DNR) at

0000 UTC 11 July 1996 (Plot courtesy of the University of Wyoming4)

4http://weather.uwyo.edu/upperair/sounding.html
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Figure 2.7: Atmospheric Sounding launched from Dodge City, Kansas (DDC) at 0000

UTC 11 July 1996 (Plot courtesy of the University of Wyoming 6)

Around 2200 UTC 10 July, convection began along the eastern edge of the Cheyenne

Ridge as a result of elevated heating and upslope flow from the south. The multicellular

formation was apparent on satellite imagery by 2300 UTC, with the strongest updrafts

just east of the Wyoming-Nebraska border just after 0000 UTC on 11 July. The

particular cell in this case study originated just outside Kimball, NE at this time and

continued to strengthen and move eastward over the following two hours. Further

details on this evolution can be found in Skamarock et al. (2000) and Dye et al. (2000).

6http://weather.uwyo.edu/upperair/sounding.html
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2.3 Observational Data

2.3.1 SMART Radars

The Geary, OK case study was well documented by various observational data sets.

In this study, a comparison between the various model runs and observations will

be conducted to evaluate model configurations. Radar data was collected using two

C-band Shared Mobile Atmospheric Research and Teaching (SMART) radars with a

beam width of 1.5o (Biggerstaff et al., 2005). The SMART radars collected very high

resolution (in both space and time) reflectivity and velocity data for an intense obser-

vational period, completing sector volume scans approximately every 3 minutes over

120o sectors. The radars were able to capture about three hours of the storm life cycle.

The 90-minute period from 2350-0120 UTC described by Betten et al. (2018) which

will be used in this study included the dissipating stage of one mesocyclone, the entire

lifecycle of a second mesocyclone, and the organizing stage of a third mesocyclone.

Earlier evolution is described in Calhoun et al. (2014). Elevation angles ranged from

0.5o to 59o, with increments of 0.3o–3.0o (Biggerstaff et al., 2005; Calhoun et al., 2014;

Betten et al., 2018). The three-dimensional wind field was derived using Dual-Doppler

analysis from the Custom Editing and Display of Reduced Information in Caresian

Space (CEDRIC, Mohr et al. (1986)) by the National Center for Atmospheric Re-

search (NCAR). Analysis was performed on a grid with 0.75 km horizontal spacing

and 0.5 km vertical spacing at 22 analysis times as fully described in Betten et al.

(2018).
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2.3.2 Lightning Data

Oklahoma Lightning Mapping Array (OKLMA, Thomas et al. (2004); MacGorman

et al. (2008)) data was also collected for the Geary, OK case study. The OKLMA

is a three-dimensional lightning locating system used to map intracloud and cloud to

ground lightning flashes. The OKLMA triangulates timings and locations of very high

frequency (VHF) radiation pulses emitted by developing lightning channels by using

the time of arrival of VHF peaks at the various stations in a cluster at 80 µs intervals

with an accuracy of 40 ns. A central processor determines whether the times of arrival

from multiple stations are grouped together closely enough to possibly be from a single

source. If so, it computes the location and time of a source that minimizes the reduced

chi-squared statistic.

For VHF sources to be considered valid for this analysis, they must be detected by

at least six stations and have a reduced chi-squared value less than one, although other

values are sometimes used by other studies. The updraft of the Geary supercell during

the study period was within 71 km of the center of the OKLMA, corresponding to

≥88% flash detection efficiency and standard deviations in altitude solutions of ≤0.15

km at the time of the storm following Chmielewski et al. (2019).

VHF sources were then grouped into flashes with lmatools (Fuchs et al., 2016). For

VHF sources to be considered a flash and not random environmental noise we required

at least 10 VHF sources, the distance between adjacent sources must be within 3 km,

and time between any two sources must be within 0.15 s. The maximum expected

flash duration allowed by our study was 3 s. These criteria are consistent with values

that have been used by other studies (e.g., Fuchs et al., 2016; Calhoun et al., 2013;

Chmielewski et al., 2020). VHF sources have been subjectively assigned charge polarity

(e.g., Calhoun et al., 2013; Coleman et al., 2003; Rust et al., 2005) following standard

expectations of a bidirectional flash (Kasemir, 1960; Mazur and Ruhnke, 1993; Rison
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et al., 2016) and physical differences in negative and positive breakdown processes.

This analysis corresponds well to net charge regions and electric potential observed by

in situ measurements and can be overlaid on radar-observed storm structure to get

insight on the charge structure and evolution of the storm (e.g., Lang et al., 2004;

Rust et al., 2005; MacGorman et al., 2005; Wiens et al., 2005; Maggio et al., 2009;

Chmielewski et al., 2020)
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Chapter 3

Geary, OK Case Study

3.1 Dynamic Structure

A few dynamic differences stood out between the five CCN concentrations in the Geary,

OK storm. These differences were compared using both the two-moment (2M) and

three-moment (3M) microphysics options described in Chapter 2 to test for overall

sensitivity. The electrification has no feedback to microphysics or the dynamic struc-

ture, so only the SP98 scheme will be discussed in this section. We will refer to the

3M SP98 simulations as the control set.

Geary, OK Supercell Evolution

100 CCN 300 CCN 500 CCN 1000 CCN 2000 CCN

Initial Precipitation 10 minutes 12 minutes 12 minutes 14 minutes 15 minutes

Storm Split 40 minutes 42 minutes 44 minutes 50 minutes 52 minutes

Initial Flash 24 minutes 24 minutes 26 minutes 24 minutes 24 minutes

Table 3.1: Table of important times in the evolution of Geary, OK simulations (control

set of simulations)
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The initial onset of precipitation (e.g., reflectivity > 0) was delayed with high CCN

concentrations (Table 3.1). In the control simulations, the 100 CCN cm−3 simulation

shows precipitation aloft starting around Time (T)=10 minutes into the simulation, at

T=12 minutes for 300 and 500 CCN −3, T=14 minutes for 1000 CCN cm−3, and T=

15 minutes for 2000 CCN (Table 3.1). Although slight differences in timing were noted

between the 2M and the control simulations, the overall pattern of delayed precipitation

at high CCN concentrations remained the same (Fig. 3.2). This pattern agrees with

the findings of Twomey (1977); Albrecht (1989) and Gunn and Phillips (1957), where

increased CCN was found to suppress the initial onset of precipitation via weakened

collision and coalescence processes. Along with the initial delay in precipitation, the

altitude at which this initial precipitation was occurring is also different among the

different CCN concentrations. At higher CCN concentrations, the altitude of the initial

precipitation was also higher (Fig. 3.1). This pattern was also evident in the 2M

simulations (Fig. 3.2).

Figure 3.1: Time-height plot of maximum (Reflectivity (color fill; dBZ) and maxi-

mum vertical velocity (black contours; m/s) for Geary, OK case simulations (control

simulations) just for the right-moving cell
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Figure 3.2: Same as Fig. 3.1, but for 2M set of simulations

Lasher-Trapp et al. (2018) found when increasing the CCN in simulations, warm

rain processes were slowed and the graupel mass contributing to surface rainfall de-

creased, which is similar to what is occurring in this case (Fig. 3.3 & 3.4).Hydrometeor

concentration and mass were both analyzed. While hydrometeor concentration de-

scribes the total amount of each particle type, hydrometeor mass gives insight on the

warm and cold rain processes occuring resulting in certain hydrometeor types to grow

more or faster then others. The simulations with higher CCN had more mixed-phase

hydrometeor processes, with these cold rain processes occurring at higher altitudes for

majority of the simulation (Fig. 3.5) as evidenced by the presence of frozen hydrome-

teors. Rain concentrations were found also occured at higher altitudes for higher CCN

concentrations, which suggests that warm rain processes were displaced to higher alti-

tudes. As expected, these rain concentrations consistently occurred at altitudes lower
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than, and presumably at temperatures warmer than, the cold rain processes. Jouan

and Milbrandt (2019) noted, in their simulations of a squall line, the importance of

graupel in rain production and the sensitivity of graupel growth rates on changes to

droplet concentrations. They found graupel concentration decreased and hail concen-

trations increased with increasing CCN, similar to the patterns we are seeing in this

case study (Fig. 3.3 & 3.4).

Figure 3.3: Integrated hydrometeor mass (kg) with time for the Geary, OK case over

entire domain (control simulations)
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Figure 3.4: Integrated hydrometeor concentrations (count) with time for the Geary,

OK case over entire domain (control simulations)
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Figure 3.5: Integrated hydrometeor concentrations (count) with height for the Geary,

OK case over entire domain (control simulations)

Other differences in evolution were also noted. A storm split occurred early in the

simulation, and like the initial onset of precipitation, this split was further delayed at

higher CCN (Fig. 3.6). For the 100 CCN cm−3 case, the storm split occurred at T=40

minutes, at T=42 minutes for 300 CCN cm−3 , T=44 minutes for 500 CCN cm−3 ,

T=50 minutes for 1000 CCN cm−3 , and T= 52 minutes for 2000 CCN cm−3 (Table

3.1). This is roughly a 12-minute delay between the lowest and highest concentrations.

This delay is likely a result of the hindered warm rain processes previously explained

(Fig. 3.3). As the storm continued to evolve, differences in the horizontal spatial extent
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of the storm appeared. The storm became more spatially compacted at higher CCN

concentrations, with differences in the size of the left-mover displaying this quite well.

In the 2000 CCN cm−3 case, the left-mover was significantly smaller and shorter lived

then in the lower CCN simulations. This will be further examined later in this section.

Figure 3.6: Aerial view of composite reflectivity (dBZ) of the Geary, OK storm (control

simulations) at time T=120 minutes

The intensity of the storm can be analyzed using updraft volume and speed (Fig.

3.7). From reflectivity alone, it is hard to compare intensities as the storm appears to

be cycling at different time intervals across the five concentrations (as seen in Fig. 3.1).

Maximum vertical velocity may also be a poor indicator of updraft strength for this

case study, as the maximum vertical velocity is rather consistent across all five con-

centrations (Fig. 3.7c). This similarity suggests that a strong supercell will still be a
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strong supercell despite the CCN concentration. Differences between the CCN concen-

tration simulations arise when observing the amount of volume the updraft occupies,

with a larger updraft volume signaling a stronger storm. Updraft volume at both >5

and >10 m s−1 were generally larger in the simulations with lower concentrations (Fig.

3.7a,b). This first becomes evident right around the time of the storm split where the

three lowest concentrations have a distinctly larger volume than the two highest CCN

concentration simulations. Between the storm split and up until around T=150 min-

utes, the updraft volume remains consistent between the five concentrations. At this

point only the right mover remains in the full model domain (previously described in

chapter 2) and any vertical motion from the left-moving cell is not included in this cal-

culation. In the last 90 minutes of the simulation (T=150 onwards), differences in the

updraft volume begin to arise again where the three lowest CCN concentrations have

the largest updraft volume, with 300 CCN cm−3 having the overall largest volume.

In the last 20 minutes of the simulation, contamination from secondary convection

complicates the calculations of updraft volume.

Although a perfectly linear pattern is not observed in our study, these results suggest

that an increase in CCN concentration results in smaller updraft volumes in an HP

supercell. This contradicts the findings by Mansell and Ziegler (2013); however the

simulated storm in that study was a low-shear ordinary thunderstorm with a shorter

lifetime. Differences in our simulation took much longer to appear than in the study by

Mansell and Ziegler (2013). Fan et al. (2009) found suppression of convective strength

by aerosols in cases where strong windshear is present; however under weak wind shear,

the opposite was found. The suppression of convection by aerosol loading was found

to result from higher evaporation and sublimation rates in the updraft region resulting

in significantly lower net latent heat release at increased CCN in strong windshear

environments (Fan et al., 2009).
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Figure 3.7: a.) Plot of updraft volume for all grid points with vertical motion (w)

greater than 5 m s−1 with time for Geary, OK case study (control simulations). b.)

Same as in a. but for updrafts greater than 10 m s−1. c.) Maximum vertical velocity

with time

Cold pool formation provides good insight into the observed storm evolution. The

baroclinicity between the cold pool and surrounding environment promotes lift and
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encourages secondary convection. The stronger the potential temperature difference

along the edge of the cold pool, the stronger the lift associated with it. At higher CCN

concentrations, the depth (potential temperature perturbation) and spatial extent were

smaller (Fig. 3.8). At T=120 minutes (same as in Fig. 3.6), the cold pool deficit at

100 CCN cm−3 reached 7 oC, while the 2000 CCN cm−3 case only had a deficit of 1

oC. By the end of the simulation (T=240 minutes; not shown), the cold pool produced

potential temperature deficits of up 15 oC in the 100 CCN cm−3 simulation. In the

2000 CCN cm−3 simulation, the potential temperature difference along the cold pool

only reached 5 oC by the end of the simulation.

Figure 3.8: Surface potential temperature perturbation (K) at T=120 minutes for

Geary, OK case (control simulations) for 5 CCN concentrations
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Storer et al. (2010); Lerach and Cotton (2012), and Khain et al. (2011) found a

similar pattern; where more polluted simulations had warmer cold pools. The difference

in rainfall amounts (Fig. 3.9) and size of the hydrometeors between the different CCN

concentrations influences evaporative cooling near the surface. The higher CCN cases,

where we have seen less liquid precipitation and more cloud ice, also produced smaller

and warmer cold pools as a result of reduced evaporative processes at the surface.

The supercell simulations of Storer et al. (2010) also included a storm split, and in

changing the CCN concentration they found a large difference in secondary convection

triggered by the cold pool of the left-moving storm. In their study, the low CCN case

had colder cold pools and produced more secondary convection, similar to our model

results. This sets up a positive feedback loop, as smaller and weaker cold pools provide

less forcing for secondary convection, a reduction in convective coverage and intensity,

and ultimately less precipitation and so on.

At T=120 minutes the weaker cold pools (Fig. 3.8) correspond to the weaker up-

draft volumes (Fig. 3.7a,b) and smaller storms (Fig. 3.6). At this time, the 2000

CCN cm−3 case had no cold pool formation in the vicinity of the left mover, which had

reflectivities (Fig. 3.6e) that were significantly weaker than the other four concentra-

tions. The timing of cold pool formation (not shown) was also found to be delayed at

higher CCN concentrations, resulting from the delay in initial formation and growth

of precipitation.
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Figure 3.9: Total surface accumulated liquid precipitaion (kg m−2) for Geary, OK

(control simulations) for 5 CCN concentrations. Accumulations are over the entire

domain and model run time

3.2 Electric Structure

The electric structure was investigated by altering the NI charging schemes or the

microphysics schemes. To obtain an overview of the average charge structure of the

storm throughout its lifetime, average charge density, electric potential, and flash rates

with height were analyzed over the entirety of the simulation for each of the five CCN

concentrations. Average flash area will also be analyzed in this section. These averages
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were taken over each model level and only for the right-moving storm. We note that

this average approach only shows the total charge imbalance by height and time.

Figure 3.10: Time-height plot of average charge density of the right-mover (fill), average

domain temperature (black contours; oC) for Geary, OK (control simulations)

First, we will analyze the results of our control simulations (3M SP98 NI scheme,

Fig. 3.10). The 100 CCN cm−3 simulation had a normal (positive) dipole with a nega-

tive charge region from the surface to around 5 km, a positive charge region between 5

and 14km, and an upper negative screening layer extending from 14 km to 16 km. The

300 CCN cm−3 simulation initially produced a normal (positive) dipole with a similar

structure as the 100 CCN simulation for the first 90 minutes of the simulation, but

later displayed a more complex structure. Around 90 minutes into the simulation it

produced a net charge structure with five vertically stacked layers: a positive charge

region dominated from the surface to 5 km, with a shallow layer of negative charge
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above, followed by region of positive charge between 7 and 12 km, followed by a weak

negative region between 12 km and 15 km, and topped off by a shallow positive layer.

As the simulation progresses, the polarity and charge structure of the storm alternated

between normal and inverted polarity, with additional charge layers developing with

time. The 500, 1000, and 2000 CCN cm−3 simulations had similar charge structures

to each other. For majority of the simulation, these three simulations exhibited an

inverted dipole structure on average, with positive charge regions from the surface to

roughly 10 km, a negative region between 10 and 14 km with a pronounced positive

screening layer 14 km to 17 km. As the storm evolved the negative charge layer expands

from a depth of roughly 2 km to 5 km in all three cases. Starting around T=200 min-

utes, a lower negative layer suggestive of an inverted tripole structure began to build

around 5 and 6 km and lasts through the end of the simulation for the 500 and 1000

CCN cm−3 cases, with the 2000 CCN cm−3 case showing this negative layer weakly

appeared in the last few minutes of the simulation.

Along with differences in the location of these charge layers, the magnitude of charge

within these layers also changes, with the magnitude of average charge being higher

at higher CCN concentrations. This could be due to overall higher charge densities

or to a more uniform vertical distribution of net charge in the storm. The 2M test

produced charge layers at the same altitudes as the control simulations for each of the

5 concentrations, but with slightly weaker magnitudes (Fig. 3.11). The pattern of

higher charge magnitudes associated with higher CCN concentrations also occurs. Sun

et al. (2021) and Zhao et al. (2015) found similar results in which charge density was

stronger in polluted air than in clean air as a result of more ice particles participating

in the electrification process. By its nature, electric potential gives a smoother outline

of these charge layers and provides insight as to where lightning would propagate (Fig.

3.12). The evolution of electric potential is very similar to that of the charge density,
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with 100 CCN cm−3 case producing a normal dipole structure and having opposite

polarity to that of the higher CCN cases, and the 300 CCN cm−3 case demonstrating

an alternation between normal and inverted polarity.

Figure 3.11: Same as in Fig. 3.10, but for 2M set of simulations
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Figure 3.12: Time-height plot of average electric potential (V) of the right-mover

(fill) and average domain temperature (black contours; oC) for Geary, OK (control

simulations)

The flash rates associated with the Geary, OK storm were relatively high in the

simulations, as shown by the time series of total rates (Fig. 3.13a) and flash initiations

point densities (Fig.3.14). At higher CCN concentrations flash rates were higher (Fig.

3.13a). Flash rates in the 100 CCN cm−3 case were around 15-30 flashes per minute

through the entirety of the simulation, for 300 and 500 CCN cm−3 cases the flash

rates started around 15-30 per minute and reached around 50 flashes per minute by

the end of the simulation. In the 1000 CCN cm−3 case, flash rates started at 30

to 50 flashes per minute and averaged around 100 flashes per minute by the end of

the simulation. In the 2000 CCN cm−3 case flash rates were around 50 flashes per

minute for majority of the period and reached over 150 flashes per minute in the last
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60 minutes. These results are similar to many other studies (e.g., Mansell and Ziegler,

2013; Altaratz et al., 2010; Pawar et al., 2017; Ren et al., 2018; Kochtubajda et al.,

2011), in which higher lightning rates were produced at higher aerosol concentrations

below a threshold concentration; however in our simulations of this case we see a

somewhat more monotonic relationship throughout majority of the simulation time.

In all five simulations, flash rates increased significantly in the last twenty minutes

as secondary convection began. As mentioned in the dynamics section, secondary

convection was significant in the last twenty minutes of the simulation. This secondary

convection results in closely spaced updrafts and downdrafts, increased turbulence,

increased interactions between particles and an increase in the occurrence of flashes.

This increase in flash rates may also be a product of having higher charge separation

rates, where the electric field builds up quickly before charge can advect very far.
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Figure 3.13: a.) Time series of average 1-minute flash rates per 2-minute period for

Geary, OK (control set) b.) Same as (a.) but for TAK NI scheme
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Figure 3.14: Time-height plot of horizontally integrated flash initiation points for

Geary, OK (control simulations). Total flash initiation points at one time is the same

as the flash rate.

The altitude of these initiations differed amongst the 5 simulations (Fig.3.14 &

3.15). These flash initiation points at low CCN concentrations were spread out over

various altitudes, with flash initiations disbursed between 8 and 15 km for the 100 CCN

cm−3 case. In the 300 CCN cm−3 case, three distinct layers of initiations points become

evident at 5 km, 10 km, and 12 km. These layers are still evident in the 1000 and 2000

CCN cm−3 simulations; however the highest flash rates are occurring in the middle

layer around 10 km. At higher CCN concentrations these flash initiations appear to be

more concentrated at a singular altitude. Initial flashes began around 25 minutes into

the simulation in each of the 5 concentrations (Table 3.1), and no delay was observed

46



like in Sun et al. (2021). The 2M scheme produced a very similar pattern in terms of

timing, location, and flash rate of these initiation points (not shown).

Figure 3.15: Distributions of flash count with altitude for all five CCN concentrations.

Simulations using SP98 in purple, simulations using TAK NI scheme in blue.

This analysis was also conducted using the TAK NI scheme. There is uncertainty

about which charging scheme best represents the environmental NI charging and this

is further complicated by model predictions of variables like rime accretion rate or

effective water content. Compared to SP98, the Takahashi scheme is not as sensitive

to impact speed and is more likely to produce normal tripole charge structures. In
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the 3M TAK set of simulations, the net charge density layers are quite different and

stronger in magnitude than those produced with SP98 (Fig. 3.16). This could be a

result of more uniform charge layers or higher charge densities. In the 100 CCN cm−3

simulation, a ”bottom-heavy” normal tripole structure is observed with positive charge

regions between the surface and 6 km, a negative region between 6 and 12 km, and

a weak positive layer from 12 and 15 km. This is opposite polarity to the polarity

that was seen in most of the SP98 simulation. Instead of seeing different polarities in

the higher concentrations, additional negative charge layers are seen above 15 km and

near the surface. At higher CCN concentrations, the lower positive layer was weaker

and shallower as a negative charge region appeared to build near the surface. This

layer is dominated by surface corona discharge in response to the electric field. It is

hypothesized that the development of the lower positive charge is delayed by at higher

CCN by the delayed appearance of graupel in the 0 to -15oC layer within the updraft.

The lower positive charge layer is very weak and almost completely non-existent in

the 2000 CCN cm−3 case, which was noted in Mansell and Ziegler (2013) as the point

at which Hallett-Mossop ice splintering becomes less effective because there are fewer

large droplets. Electric potential again showed a similar pattern to the charge density

(Fig. 3.17); however now an inverted dipole structure is seen instead of a normal

tripole structure in the 100 CCN cm−3 case. Electric potential shows the higher CCN

concentrations having opposite polarity to the 100 CCN case. These results line up

more with the results of Zhao et al. (2015) and Mitzeva et al. (2006) who found that

in polluted cases aerosol loading leads to increased cloud water content, resulting in a

more negative charging and a new negative charge region developing above the main

positive charge center. Zhao et al. (2015) used the same adjusted SP98 NI scheme as

used in this study (refer to Chapter 2), while Mitzeva et al. (2006) used an NI charging

scheme based on the laboratory data of Brooks et al. (1997).
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Figure 3.16: Same as in Fig.3.10, but for TAK set of simulations

Figure 3.17: Same as in Fig. 3.12, but for TAK set of simulations
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The flash rates using the TAK NI scheme were significantly lower than when using

the SP98 scheme (Fig. 3.13b & 3.18). Flash rates were less than 5 flashes per minute

in the 100 CCN cm−3 simulation, around 15 flashes per minute for 300 CCN cm−3,

around 20 flashes per minute for 500 CCN cm−3, and up to 40 flashes per minute for

1000 and 2000 CCN cm−3. Although the magnitude of flash rate differed from those

of the SP98 set, the pattern of higher flash rates at higher CCN was maintained with

this scheme. The three distinct layers of flash initiations are still produced with the

TAK scheme, with the middle layer at 10 km producing higher flash rates than the

other layers with higher CCN (Fig. 3.15).

Figure 3.18: Same as in Fig. 3.14, but for TAK set of simulations

With the average charge density layers being larger in magnitude with the TAK NI

charging scheme than with the SP98 scheme, one might have expected that the flash

rates would have also been higher. By looking at a cross-section of the storm at a single
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time (Fig. 3.19 & 3.20) more information about the charge structure can be obtained

than from the domain average. At time T=200 minutes, after the left mover exited the

domain, the net charge structure was more complicated than what is seen in the time-

height average. These cross sections also illustrate sloping charge layers outside the

updraft region and toward the forward flank and anvil. The stronger upward velocities

lift charge layers to higher altitudes in the updraft column, from which the charged

particles advect horizontally and fall to lower altitudes. The SP98 NI charge scheme

produces many small pockets of adjacent positive and negative charge, especially above

the updraft core. With the horizontal averaging these small pockets of charge get

averaged and cancelled out resulting in weaker magnitudes. The TAK NI scheme has

more continuous charge layers in comparison, which when averaged horizontally result

in higher charge density magnitudes.
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Figure 3.19: Top Row: Aerial view of composite reflectivity with parallel cross sections

marked in black at T=200 minutes for Geary, OK. Middle Row: Parallel cross sections

of charge density in coulombs (C) using 3M SP98 500 CCN simulation from southwest

to northeast Bottom Row: Same as middle row using 3M TAK 500 CCN simulation.

X and Z axis in kilometers
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Figure 3.20: Same as in Fig. 3.19, but cross sections done perpendicularly and plotted

from northwest to southeast

Electric potential is also plotted along these cross-sections (Fig. 3.21 & 3.22). Elec-

tric potential gives a clearer picture of where lightning would initiate and propagate,

especially when the charge has complex small-scale structure as it does here. The

polarity of the electric potential under the SP98 simulation is opposite to that of the

TAK simulation. The rear flank shows more complexity in the electric potential in the

SP98 simulation then in the TAK simulation
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Figure 3.21: Top Row: Aerial view of composite reflectivity with parallel cross sections

marked in black at T=200 minutes for Geary, OK. Middle Row: Parallel cross sections

of electric potential using 3M SP98 500 CCN simulation from southwest to northeast,

with reflectivity overlaid in black contours and ambient temperature in yellow contours

(dashed is -40oC and solid is 0oC). Bottom Row: Same as middle row using 3M TAK

500 CCN simulation
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Figure 3.22: Same as in Fig. 3.21, but cross sections done perpendicularly and plotted

from northwest to southeast

Differences were also seen in average flash area across the five CCN concentrations.

The control set of simulations produced smaller average flash areas at higher CCN

concentrations (Fig. 3.23). The median flash area at 100 CCN cm−3 was around 150

km2 and was 100 km2 for the 4 higher CCN concentrations. Recall, the highest flash

rates were at the highest CCN concentrations for both the SP98 and TAK NI charge

scheme. This suggests that, in the control simulations at least, as flash rates increase

with CCN concentrations, the average flash areas decrease, as might be expected by
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the typical inverse relationship between flash rates and areas (e.g., Bruning and Mac-

gorman, 2013). However, the TAK charging scheme produced contrary results. At

higher CCN the TAK simulations produced larger average flash areas. The median

flash area was around 50 km2 at 100 and 300 CCN cm−3, and around 100 km2 for

the three higher CCN concentrations. This would suggest that at higher CCN, the

TAK simulations are producing fewer yet larger flashes. In either NI charge scheme,

the distribution in the flash area was narrower at higher CCN concentrations. We

hypothesize that this difference between the two NI charging schemes is a response of

the charging to the changing microphysical conditions and the horizontal homogeneity

over which that occurs. The TAK NI charge scheme is perhaps more sensitive to the

cloud water content, which is higher at higher CCN concentrations.
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Figure 3.23: Distribution of average flash area (km2) for the Geary, OK (3M simula-

tions). SP98 NI charging scheme plotted in blue, TAK NI charging scheme in green
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Chapter 4

Kimball, NE Case Study

4.1 Dynamic Structure

Similar responses to CCN concentrations were produced in the LP Kimball NE simula-

tions as in the HP Geary, OK supercell. The simulations with different CCN also pro-

duced differences in timing, spatial extent, cold pool formation, and updraft strength

in the LP case study. The dynamic structure of this supercell was also analyzed using

the 2- and 3-moment microphysics as a sensitivity test. Similar to the Geary, OK

supercell, only the simulations with the SP98 scheme will be analyzed in this section.

Kimball, NE Supercell Evolution

100 CCN 300 CCN 500 CCN 1000 CCN 2000 CCN

Initial Precipitation 15 minutes 17 minutes 20 minutes 20 minutes 22 minutes

Initial Flash 26 minutes 26 minutes 24 minutes 24 minutes 24 minutes

Table 4.1: Table of important times in the evolution of Kimball, NE simulations (con-

trol set)

The initial onset of precipitation was delayed at higher CCN concentrations (Fig.4.1,

Table 4.1). Using the control set, the 100 CCN cm−3 simulation shows precipitation
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starting around T=15 minutes into the simulation, at T=17 minutes for 300 CCN

cm−3, T=20 minutes for 500 and 1000 CCN cm−3, and T= 22 minutes for 2000 CCN

cm−3. Like the Geary case, slight differences in timing were noted between the 2M and

3M simulations, but the overall pattern of delayed precipitation at higher CCN concen-

trations remained the same (Fig.4.2). This further supports the finding by Twomey

(1977); Albrecht (1989), and Gunn and Phillips (1957). The altitude of the initial

precipitation also increased with increasing CCN, with the 100 CCN cm−3 simulation

producing the initial precipitation at altitudes around 3 km, while the 1000 and 2000

CCN cm−3 simulations have the initial precipitation around heights of 5 to 6 km, illus-

trating the delay of the warm rain process and transition to more dominant cold rain

processes contributing to precipitation.

Figure 4.1: Time-height plot of maximum (reflectivity (color fill; dBZ) and maximum

vertical velocity (black contours; m/s) for Kimball, NE case simulations (control sim-

ulations) just for the right-moving cell
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Figure 4.2: Same as Fig. 4.1, but with 2M

Like the Geary case, hail and cloud ice concentrations were higher, while graupel

concentrations and mass were lower at higher CCN concentrations (Fig. 4.3 & 4.4).

At higher CCN concentraions, these warm and cold rain processes occcured at higher

altitudesproducing an increase in presence of frozen hydrometeors (Fig. 4.5).
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Figure 4.3: Integrated hydrometeor mass (kg) with time for the Kimball, NE case over

entire domain (control simulations)
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Figure 4.4: Integrated hydrometeor concentrations (count) with time for the Kimball,

NE case over entire domain (control simulations)
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Figure 4.5: Integrated hydrometeor concentrations (count) with height for the Kimball,

NE case over entire domain (control simulations)

The evolution of this supercell also displayed differences amongst the different CCN

concentrations. The overall horizontal spatial extent of the storm decreased with in-

creasing CCN (Fig. 4.6). The control set produced a small storm split in the 100 CCN

cm−3 at the beginning of the simulation, that was not observed in the higher concen-

tration simulations. This split was more prominent in the 2M scheme but was also only

observed in the lowest CCN concentration simulation (not shown). Towards the end

of the 3M simulations, secondary convection arose just east of the main updraft in the

low CCN cases, but this did not appear in the higher CCN concentrations, with the
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2000 CCN case maintaining one single updraft throughout the simulation.At higher

CCN concentrations, the reflectivities appeared to be consistently higher. The highest

reflectivities were produced in the 2000 CCN case at around 70 dBZ in the last twenty

minutes of the storm (Fig. 4.1). This is seen in the time-height plot in Figure 19 and

is even more apparent in the 2M set of simulations where reflectivities were typically

higher than the control set of simulations (Fig. 4.2). This may be the result of hail

growth in one continuous updraft, while the lower concentrations had cycling through

various updraft centers.

Figure 4.6: Aerial view of composite reflectivity (dBZ) of the Kimball, NE storm

(control simulations) at time T=140 minutes

Throughout the storm’s evolution, maximum updraft speed remained relatively

similar amongst the five CCN concentrations; although the updraft velocity of the
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2000 CCN cm−3 case was often lower than the others (Fig. 4.7c). Updraft volumes

(>5 m s−1; 10 m s−1) for the five concentrations remained almost identical for the first

50 minutes of the simulation but diverged at later times (Fig. 4.7a,b). With an almost

monotonic pattern, the updraft volumes were lower at higher CCN at later times. The

5 m s−1 updraft volumes (Fig. 4.7a) for the control set reached higher than 40 km3

for the 100 CCN cm−3 case, but remained below 20 km3 for the 2000 CCN cm−3 case.

This matches the findings of our Geary, OK analysis and supports Fan et al. (2009), in

which aerosol loading in high windshear environments was found to weaken convection

and updrafts.

Figure 4.7: a.) Plot of updraft volume for all grid points with vertical motion greater

than 5 m s−1 with time for Kimball, NE case study (control simulations). b.) Same as

in a. but for updrafts greater than 10 m s−1. c.) Maximum vertical velocity with time
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The formation of cold pools for this case study showed similar patterns to the Geary,

OK supercell, although not as intense in coverage or magnitude. At higher CCN con-

centrations, potential temperature perturbations were weaker and had smaller spatial

coverage (Fig. 4.8). With cold pools being more spatially extensive and having a larger

potential temperature perturbation in the very low CCN concentrations, more lift and

secondary convection along these potential temperature boundaries would be expected,

as seen in the compositive reflectivities (Fig. 4.6). By the end of the simulation (T=180

minutes), the 100 CCN cm−3 case had a potential temperature perturbation as strong

as -10 oC, while the 2000 CCN cm−3 case had a perturbation of only -5 oC. Similar to

the Geary supercell, the timing of the initial cold pool formation was also delayed and

the accumulated surface precipitation was lower at higher CCN concentration (Fig.

4.9), further supporting the findings of Storer et al. (2010); Lerach and Cotton (2012),

and Khain et al. (2011).

Figure 4.8: Surface potential temperature perturbation (K) at T=140 minutes for

Kimball, NE case (control simulations) for 5 CCN concentrations
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Figure 4.9: Total surface accumulated liquid precipitaion (kg m−2) for Kimball, NE

(control simulations) for 5 CCN concentrations. Accumulations are over the entire

domain and model run time

4.2 Electric Structure

Similar to the Geary case study, the electric structure of this supercell was examined

with two different non-inductive charging schemes as well as the 2- and 3-moment

microphysics schemes. To obtain an overview of the average charge structure of the

storm throughout its lifetime, average charge density with height was analyzed over the

entirety of the simulation for the entire domain for each of the five CCN concentrations.

We’ll first analyze the electric structure using the SP98 NI charge scheme (our control),

and later compare the results to simulations using the TAK charging scheme.
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Figure 4.10: Time-height plot of average charge density (fill) and average domain

temperature (black contours; oC) for Kimball, NE (control simulations)

The control simulations in the Kimball, NE case (Fig. 4.10) produced results similar

to those of the control simulations of the Geary, OK case. The overall magnitude of

charge density in this storm was much lower than that of the Geary case (Fig. 3.10).

At 100 CCN cm−3, the supercell maintains a positive dipole structure throughout the

simulation, with a negative charge layer from the surface to 7 km, a positive charge

layer between 7 and 11 km, and topped by a negative screening layer, near 13 km. As

the storm evolved the middle positive charge layer expanded in depth, filling 7 and 12

km by the end of the simulation, with the upper negative layer now extending from 12

km to 15 km. The 300 CCN cm−3 simulation starts off with a positive (normal) dipole

structure similar to the structure of the 100 CCN simulation for the first 100 minutes of

the simulation. Beyond 100 minutes, this positive charge layer builds from the surface
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to 5 km, with a 3 km deep layer of negative charge followed by a layer of positive

charge between 8 and 10 km, followed by a negative layer between 10 km and 12 km,

and topped off by a weak positive layer. As the simulation progresses, the polarity and

charge structure of the storm alternates between what might be considered normal and

inverted polarity, as averaged layers appear to slowly descend and are later topped by

a positive screening layer. The 500 CCN cm−3 case starts off with an inverted tripole

structure for the first 40 minutes of the simulation, but quickly builds an additional

upper positive layer above 11 km and a lower positive charge layer from the surface up

to 7 km. The lower negative layer dissipates, while the upper negative layer expands

in depth and strengthens in magnitude as the storm evolves. The 1000 and 2000 CCN

cm−3 simulations had similar charge structures. For the majority of the period these

two simulations exhibited a negative dipole structure, with a positive charge layer from

the surface to roughly 10 km, a negative region between 10 and 13 km, and a positive

region, likely a screening layer, from 13 to 17 km. As the storm evolves the negative

charge region expands from a depth of roughly 2 to a depth of 5 km, in both cases.

Along with differences in the altitude of these charge layers, the magnitude of net

charge within these layers also changes, with the magnitude of charge maximized in

the 300 CCN cm−3 case. The 2M set of simulations shows charge layers in the same

locations for all 5 concentrations, but with slightly stronger magnitudes (Fig. 4.11);

however weaker magnitudes were seen in the 2M Geary case. Electric potential for the

control set of simulations produced similar results (Fig. 4.12) with a positive dipole

structure at 100 CCN cm−3 , with opposite polarity at higher CCN concentrations,

and alternating polarity in the 300 CCN cm−3 case.
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Figure 4.11: Same as in Fig. 4.10, but for 2M set of simulations

Figure 4.12: Time-height plot of average electric potential (V; fill), average domain

temperature (black contours; oC) for Kimball, NE (control simulations)
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In comparison to the Geary case study, the flash rates for this supercell were much

lower. The higher CCN concentration simulations produced the highest flash rates

(Fig. 4.13a & 4.14). In the control run, flash rates for the 100 CCN cm−3 case

were around 5 to 10 flashes per minute, while 300 CCN cm−3 produced flash rates

around 15 to 20 per minute, 500 CCN cm−3 up to 20 flashes per minute, and the two

highest concentrations up around 30 to 40 flashes per minute. This further supports

the findings of Mansell and Ziegler (2013); Altaratz et al. (2010); Pawar et al. (2017);

Ren et al. (2018); Kochtubajda et al. (2011).

Figure 4.13: a.) Time series of integrated 5-minute averaged flash rate for Kimball,

NE (control set) b.) Same as (a.) but for TAK NI scheme
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Figure 4.14: Time-height plot of horizontally integrated flash initiation points for Kim-

ball, NE (control simulations). Total flash initiation points at one time is the same as

the flash rate.

Unlike the Geary simulations, the majority of flashes were initiated around one

single altitude (Fig. 4.14 & 4.15), except for the 300 CCN cm−3 case in which flashes

initiated in roughly four different layers. Again in the Kimball case, the initial flashes

beganaround the same time (T=25 minutes; Table 4.1) for all CCN concentrations.

The 2M case showed the same pattern but had overall higher flash rates across all five

concentrations (not shown).
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Figure 4.15: Distributions of flash count with altitude for each CCN concentrations.

Simulations using SP98 (control) in purple, simulations using TAK NI scheme in blue.

As a comparison, the electrical structure of the Kimball, NE supercell was also

analyzed using the TAK NI charging scheme (Fig. 4.16). The 3M TAK simulations

produced quite different charge density layers but with roughly the same magnitude

of charge as SP98. Similar to the TAK simulations in the Geary case study, no full

polarity flip was observed between the lowest and higher CCN simulations. In the 100

CCN cm−3 run, an inverted dipole structure is observed, with a positive charge region

between the surface and 5 km, a negative region in between 5 and 10 km, topped off by
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a positive screening layer. The polarity is opposite to what was seen in most of the SP98

simulations. Like the Geary case, additional negative charge regions are produced by

this NI charging scheme below 15 km for the 4 higher CCN concentrations. At higher

CCN concentrations, the lower positive region is weaker and shallower as a negative

charge region appears at the surface. By the 2000 CCN cm−3 case, the lower positive

charge region is very weak and almost completely dissipated. The overall average

charge structure is more prominent in the time-height plots of electric potential (Fig.

4.17), but rather similar to that of the average charge density.

Figure 4.16: Same as in Fig.4.10, but for TAK set of simulations
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Figure 4.17: Same as in Fig. 4.12, but for TAK set of simulations

Figure 4.18: Same as in Fig. 4.14, but for TAK set of simulations
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Flash rates were again lower with the TAK charging scheme (Fig. 4.13b & 4.18)

than with the SP98. For 100 CCN cm−3 flash rates were less than 2 per minute, 300

and 500 CCN cm−3 had flash rates around 5 flashes per minute, while 1000 and 2000

CCN cm−3 had flash rates as high as 8 to 10 flashes per minute. This again raises the

unintuitive relationship between low flash rates with this NI scheme and high average

charge density magnitudes. The cross-sections at T= 150 minutes again show that

the storm’s charge layers are much more complicated than the domain average was

showing (Fig. 4.19 & 4.20). The sloping of charge layers as you move away from

the updraft center is again prominent in this case study. Similar to the Geary, OK

case, the SP98 scheme produces a lot of small pockets of charge, especially above the

updraft region, while the TAK scheme has more consistent and continuous layers. It

can also be assumed here that the domain averaging over these little pockets in the

SP98 scheme resulted in the averaging out of charge, ultimately resulting in weaker

domain-averaged charge layers. Cross sections of electric potential (Fig. 4.21 & 4.22)

also showed opposite polarities between he SP98 and TAK simulations. The SP98

simulations again showed more complexity in electric potential just east of the updraft.
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Figure 4.19: Top Row: Aerial view of composite reflectivity with parallel cross sections

marked in black at T=150 minutes for Kimball, NE. Middle Row: Parallel cross sections

of charge density in coulombs(c) using 3M SP98 500 CCN simulation from southwest

to northeast Bottom Row: Same as middle row using 3M TAK 500 CCN simulation
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Figure 4.20: Same as in Fig. 4.19, but cross sections done perpendicularly and plotted

from northwest to southeast
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Figure 4.21: Top Row: Aerial view of composite reflectivity with parallel cross sections

marked in black at T=150 minutes for Kimball, NE. Middle Row: Parallel cross sections

of electric potential using 3M SP98 500 CCN simulation from southwest to northeast,

with reflectivity overlaid in black contours and ambient temperature in yellow contours

(-40oC represented with a dashed line and 0oC with a solid line). Bottom Row: Same

as middle row using 3M TAK 500 CCN simulation
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Figure 4.22: Same as in Fig. 4.21, but cross sections done perpendicularly and plotted

from northwest to southeast

Similar to the Geary, OK case study, differences also occurred in average flash area

across the five CCN concentrations. The control set again produced smaller average

flash areas at higher CCN concentrations (Fig. 4.23). The median flash area at 100

and 500 CCN cm−3 was around 100 km2, while median flash area was around 70 km2

for 300, 1000, and 2000 CCN cm−3. This again follows the typical inverse relation-

ship between flash rates and areas (e.g., Bruning and MacGorman 2013). The TAK

simulations produced average flash areas that were relatively consistent across the five
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CCN concentrations with a median flash area around 50 km2. Both NI charge schemes

again produced a larger distribution of flash area sizes at lower CCN concentrations,

and a very narrow distribution at higher concentrations. Although not as direct, these

results would again suggest that the difference produced by changing CCN concentra-

tions between the two NI charging schemes is a response to the changing microphysical

conditions and the horizontal homogeneity over which that occurs.

Figure 4.23: Distribution of average flash area (km2) for the Kimball, NE (3M simula-

tions). SP98 NI charging scheme plotted in blue, TAK NI charging scheme in green
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Chapter 5

Comparison to Observations

5.1 Geary, OK

In this section, the control set of simulations from the Geary, OK case will be compared

to the SMART radar and OKLMA data, collected in the 2004 TELEX field campaign.

All five CCN concentrations exhibited smaller reflectivity values than the radar anal-

yses by roughly 10 dBZ (Fig. 5.1 & 5.2). As found by Calhoun et al. (2014), these

lower reflectivities were mostly in the region of the southern overhang and within the

back shear anvil and forward flank hail core. The model reflectivity assumes a simple

Rayleigh scattering that does not take any effects of resonance or liquid coating, which

may account for this difference. For this analysis, simulations at time T=150 minutes

were compared to observations at 0016 UTC 30 May, T=160 to 0027 UTC, and T=170

to 0036 UTC. These observations and model times were chosen as the evolution of the

hook echo and updraft were similar at these time intervals; however it should be noted

that one shouldn’t necessarily expect a one-to-one match given the long-lived nature

of this supercell.

5.1.1 Dynamic Structure and Evolution

At 0016 UTC (T=150 minutes in the simulations), the 2000 CCN cm−3 simulation

appears to match the observations best in the low-levels (1.1km AGL; Fig. 5.1). The
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overall size and extent of the storm is similar to radar observations, with a weak hook

echo present. Reflectivity values also matched best to observations in the 2000 CCN

simulation. A bounded weak echo region was observed at this time, which is roughly

produced in the 500 and 2000 CCN cm−3 simulations, but not in the other three CCN

concentrations. Observations at this time also show a weak rear-flank downdraft, which

is present in all five simulations, but the spatial extent of the downdraft matches best

at the higher CCN simulations. Updraft sizes and locations are most similar to the

observations in the 300 and 500 CCN cm−3 simulations, located mainly along the inflow

notch.
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Figure 5.1: Top Row: Aerial view of reflectivity at 1.1km AGL shaded every 10 dBZ

and vertical velocity contoured in black every 5 m/s for 0016, 0027, and 0036 UTC

30 May 2004 from SMART radar observations. Rows 2-6: Same as Row 1, but for

simulations at 150, 160, and 170 minutes for 100, 300, 500, 1000, and 2000 CCN,

respectively. X and Y axis in kilometers (km) from domain/radar center
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At this time, reflectivities in the mid-levels (4.6 km AGL, Fig. 5.2) are weaker than

closer to the surface; however all five simulations produced reflectivities roughly 10 dBZ

weaker then observed. The shape and extent of these reflectivities best matched the

300, 500, and 1000 CCN cm−3 cases, with a weak hook and broad bounded weak echo

region. Observations at this level, show a split maximum updraft in this bounded weak

echo region, while the simulations all produced one broad updraft. Cross-sections at

45o from southwest to northeast were taken through the rear-flank, updraft, and anvil

regions. At 0016, a large region of high reflectivity is present in the rear flank and above

the updraft (Fig. 5.3). The cross sections through the model simulations all seemed

rather reasonable compared to observations, with the exception of the 300 CCN cm−3

case in terms of shape and extent. At the surface below the updraft is a secondary

region of relatively higher reflectivities. This lower reflectivity region is only seen in the

2000 CCN cm−3 case. A split updraft maximum is also observed in the observations at

this time, with magnitudes of 60 and 30 ms−1, but only a single updraft was produced

by the model at this time. All five concentrations preformed rather well simulating the

updraft magnitude and size.
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Figure 5.2: Same as Fig.5.1 but for 4.5km AGL
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Figure 5.3: a-e.) Cross sections taken at 45o of reflectivity shaded every 10 dBZ and

vertical velocity contoured every 10 m/s for simulations at 150 minutes with 100, 300,

500, 1000, and 2000 CCN, respectively. f.) Cross-section of observed radar reflectivity

every 10 dBZ and vertical vetical velocity contoured in black for 0016 UTC 30 May

2004.

At 0027 UTC (T=160 minutes in the simulations), the 1000 CCN case matches

best with the observations in the low levels (Fig. 5.1). At this time the observed storm

has maintained its hook and has begun to form a rear-flank gust front. The rear flank

downdraft has strengthened and is now located just west of the inflow notch. The

updraft is focused along the southeast edge of the hook echo, and a bounded weak

echo region is still very present. The hook, gust front, and updraft region best line up

with the 1000 CCN cm−3 case at this time. The hook and gust front are also weakly

present in the 300 and 500 CCN cm−3 cases, but the location and shape of updraft and
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downdraft regions are less comparable to observations. In the mid-levels (Fig. 5.2), the

hook has become more evident, and the updraft region has become focused just east

of the inflow notch. This again, best lined up with the 1000 CNN cm−3 simulation.

Precipitation along the rear-flank gust front is building in the observations at this level;

however this is not yet present in any of the simulations. Reflectivity cross sections

(Fig. 5.4) are quite similar to the previous time, but with weaker reflectivities in the

rear-flank in the low to mid-levels. The observed secondary updraft has weakened and

only a single updraft is present with a larger magnitude of 70 ms−1. The updraft

again is generally well simulated; however roughly 10 m s−1 weaker than observed.

Reflectivities in the anvil region have begun to sink closer to the surface following the

weakening of the secondary updraft. This best aligns with the reflectivity pattern in

the two higher CCN simulations.

Figure 5.4: Same as Fig.5.3, but for model time T=160 minutes and observation time

0027 UTC
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At 0036 UTC (T=170 minutes in the simulations), the observed storm still main-

tains its hook structure and a rear-flank gust front at low levels (Fig. 5.1). The

downdraft remains west of the bounded weak echo region, and the updraft has weak-

ened and broadened but remains just southeast of the hook echo. This aligns best with

the 1000 CCN cm−3 simulation, which shows the hook, rear flank gust front, updraft

and downdraft all in the same regions as observed. In the mid-levels (Fig. 5.2), the

hook is still present, but not as defined, with an updraft region just southeast of the

inflow notch. Precipitation from the rear flank gust front is also quite prominent now

at this time in the mid-levels; however none of the simulations produced this feature at

the time of comparison. The 1000 CCN cm−3 case again best aligns with observations

at this time as it shows a clear hook and an updraft in the observed region. Cross

sections (Fig. 5.5), show reflectivities weakening in the rear-flank downdraft at mid-

levels, but now completely bound the updraft. This is captured well in the 1000 CCN

simulation, although slightly delayed in timing. The updraft has continued to weaken

now with a magnitude of only 40 m s−1. All five simulations model this updraft core

well but produce updrafts 10 m s−1 stronger then observed.
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Figure 5.5: Same as Fig.5.3, but for model time T=170 minutes and observation time

0036 UTC

5.1.2 Electric Structure and Evolution

The electric structure of the storm can be inferred from the characteristics of the

VHF sources observed by the OKLMA. Following standard expectations of a bidirec-

tional flash (Kasemir, 1960; Mazur and Ruhnke, 1993; Rison et al., 2016; MacGorman

et al., 1981; Coleman et al., 2003) and expected differences in negative and positive

breakdown, we can infer the polarity of the charge structure of the storm from the

characteristics of the VHF sources. At 0016 UTC (Fig. 5.6f), the rear flank shows

mostly sources suggesting positive charge, but with a small pocket of negative charge

around 12 km in altitude. Another pocket of negative charge exists above the updraft

at an altitude of 10 km; however a lot of unassigned VHF sources are also located

above the updraft suggesting a rather complex charge structure. The anvil region
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shows mostly positive charge with a thin layer of unassigned sources around 12 km.

Looking at the cross sections of electric potential, the structure in the higher CCN

cases most resembled that of the VHF observations.

Figure 5.6: a-e.) Cross sections taken at 45o of simulated electric potential (V), re-

flectivity contoured in black every 10 dB, and ambient temperature (oC ) contoured

in green for simulations at 150 minutes with 100, 300, 500, 1000, and 2000 CCN, re-

spectively. f.) Cross-section of observed radar reflectivity every 10 dBZ contoured in

black and potential assigned VHF sources as red, green, and blue markers (positive,

negative, unassigned, respectively) for 0016 UTC.

At 0027 UTC (Fig. 5.7f), VHF sources along the cross-section suggest a positive

charge region below 10 km in the rear flank, with small pockets of negative charge

around an altitude of 12 km. In the updraft region, sources suggest mostly positive

charge below 10 km, with a lot of unassigned sources above 12 km. The anvil/forward

flank sources suggest a layer of positive charge around 9 km and a small layer of
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negative charge around 10 km. A pocket of unassigned sources around 12 km, suggests

the charge structure in this region is relatively complicated. This observed structure

resembles the simulated structure of all but the lowest CCN concentration, which

produces a charge structure opposite in polarity to that produced by the higher four

concentrations.

Figure 5.7: Same as Fig.5.6, but for model time T=160 minutes and observation time

0027 UTC

At 0036 UTC (Fig. 5.8f), VHF sources along the cross-section suggest the rear

flank has positive charge clustered between 6 and 10 km, and negative charge clustered

above 10 km. Above the updraft a cluster of negative charge is observed around 10 km,

and a region of unassigned VHF sources exists above that. Moving toward the anvil the

inferred structure becomes more complicated with a positive charge layer around 6 km,

negative charge layer around 9 km, and positive charge around 11 km. The structure

in this region is further complicated by the large cluster of unassigned sources. This
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source structure best resembles the more complex electric potential structure of the

1000 CCN cm−3 simulation.

Figure 5.8: Same as Fig.5.6, but for model time T=170 minutes and observation time

0036 UTC

No one simulation perfectly matched the evolution of the dynamic and electric

structure of the observed Geary, OK supercell. At 0016 UTC, the middle three CCN

concentrations resembled the observed storm, but when it came to the overall evolu-

tion of the simulations the 1000 CCN cm−3 case best lined up with the observations,

especially in the electric evolution. At the time the storm was recorded by the SMART

radars, a lot of crop dust and wheat fragments were being ingested into the storm’s in-

flow (personal communication M. Biggerstaff, 2021), suggesting that the environment

from which storm evolved had a higher CCN concentration which may have played

a role in its evolution. This hypothesis is not inconsistent with the results of these
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simulations, but the environmental aerosol concentrations were not directly sampled

for this case and that lacks substantial uncertainty.

5.2 Kimball, NE

In this section, the control set simulations of this case study are compared to the

analysis of CHILL radar data analyzed in Skamarock et al. (2000) and Dye et al.

(2000). Only a dynamic comparison was conducted on this case study. No analysis (or

observations useful to this study) of the electrical structure of the Kimball storm were

recorded. The only lightning observations for this storm would be from the National

Lightning Detection Network (NLDN) and interferometer data. The interferometer

recorded two-dimensional data (modern interferometer techniques can do more) and

thus is not useful like three-dimensional LMA data for identifying breakdown polarity

and charge structure. Defer et al. (2001), has details on lightning observations of

this supercell, which noted the polarity of CG flashes throughout the evolution of the

storm, but this does not provide much information on the actual three-dimensional

charge structure. The evolution of our simulations from multicellular to supercellular

were best lined up with simulations at 3000 s, 6000 s, and 9000 s and radar observations

at 2312, 0005, 0128 UTC 10-11 July 1996, respectively (Fig. 5.9 & 5.10).
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Figure 5.9: Aerial view of reflectivity at 4.5 km MSL (3 km AGL) shaded every 10

dBZ for simulations at 3000 s, 6000 s, and 900 s for Kimball, NE case. Rows 1-5: for

simulations at 100, 300, 500, 1000, and 2000 CCN, respectively
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5.2.1 Dynamic Structure and Evolution

Observations by the CHILL radar show the storm initially starting off with a multicel-

lular structure at 2312 UTC, with cells taking a northwest to southeast linear pattern

(Fig. 5.10b). At 4.5 km MSL (3 km AGL), observed reflectivities were upwards of 55

dBZ with cells remaining relatively compact. Simulations at this time (T=3000 s, or

50 min) all showed a similar multicellular structure with reflectivities all around the

same magnitude (Fig. 5.9).

Figure 5.10: Horizontal sections (CAPPIs) from the CSU-CHILL radar for the July

10 storm sowing the reflectivity structure at 4.5 km msl during (a) the early phase, (b

and c) the multicellular phase, and (d) the supercellular stage. Tracks of the W3PD

are depicted for 20 min segments centered on the time of the CAPPI. Diagonal lines

indicate the vertical cross sections shown in Fig.5.13. [Caption and figure adapted from

Dye et al. (2000)]
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At 10.5 km MSL, observations still show this multi-cellular pattern, but at this level

the horizontal extent of these cells are much broader, with reflectivities still around 55

dBZ (Fig. 5.11b). Simulated reflectivities at this time are all still quite similar across

the five CCN concentrations (Fig. 5.12). The structure of the simulated storms at 10.5

km all match that of the observations, but reflectivity values are weaker by 20 dBZ.

Observed cross-sections at this time show two distinct convective cells (Fig. 5.13b),

which is also observed in our simulations (Fig. 5.14(a-e)), with the best matching

structure and reflectivities in the three lowest CCN simulations.

Figure 5.11: Horizontal sections (CAPPIs) from the CSU-CHILL radar for the July 10

storm sowing the reflectivity structure at 10.5 km msl during (a) the early phase, (b

and c) the multicellular phase, and (d) the supercellular stage. Tracks of the W3PD

are depicted for 20 min segments centered on the time of the CAPPI. Diagonal lines

indicate the vertical cross sections shown in Fig.5.13. [Caption and figure adapted from

Dye et al. (2000)].
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At 0005 UTC (3000s later in the simulation), observations show the cluster of cells

have broken apart into 4 cells and one supercell becomes rather distinct from the

group (Fig. 5.10c). At 4.5 km, the observed maximum reflectivity of this cell is 55

dBZ. At this time in the simulations (T=6000s or 100 minutes) the different CCN

concentrations begin to diverge from one another, with lower CCN concentrations still

displaying a semi-multicellular structure and higher CCN displaying a more discreet

supercell structure (Fig. 5.9). This seems to be a result of stronger downdrafts and

colder outflow triggering secondary convection. At 10.5 km, reflectivity cores appear

in the radar analysis, with only two cells having reflectivities over 55 dBZ (Fig. 5.11c).

Similar to the lower levels, the simulations at 10.5 km (Fig. 5.12) for lower CCN

concentrations display a more multicellular structure while higher CCN display a more

discrete supercell structure. The simulated reflectivities of cells at this level were of

the same order of magnitude and size as the radar observations, with the exception of

the 300 CCN case which was roughly 20 dBZ lower. Observed cross sections at this

time (Fig. 5.13c), show two distinct cells with the eastern cell being more horizontally

extensive. Comparing this to simulations at this time (Fig. 5.14(f-j)), only the 300,

500, and 1000 CCN cm−3 cases display this structure.
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Figure 5.12: Same as Fig.5.9 but at 10.5 km MSL
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Figure 5.13: Constructed vertical sections through the core of the storm for the same

time as those in Figures 10 and 13. The projections of Citation and WP3D tracks are

superimposed. [Caption and figure adapted from Dye et al. (2000)]

At 0128, the radar observations show the large cell maintaining its strength but

the smaller cells to the northwest and southeast weakening (Fig. 5.10d & 5.11d). In

our simulations (Fig. 5.9), the three lowest CCN concentrations show these smaller

cells strengthening with time, while the two highest CCN concentrations only display

the largest cell. This pattern is also prominent at 10.5 km (Fig. 5.12). Observed

cross sections at this time show one singular supercell (Fig. 5.13d). Similar to the

Geary, OK case, no singular simulation stood out as a best match to the evolution of

the observed storm. Initially, all the simulations closely matched the observations, but

diverged over time. Considering mainly the evolution, the 500 and 1000 CCN cm−3

cases best resembled the radar analysis, but more detailed observations of electric

structure would be beneficial to make this comparison. All five simulations reasonably
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modeled the dynamic evolution of the observed supercell, suggesting the environment

and microphysics used in the simulations are reasonable. This is turn helps support the

case that the model is also doing reasonable things with electrification and its response

to changes in CCN concentration.

Figure 5.14: Cross sections taken at 150o of reflectivity shaded every 10 dBZ and

vertical velocity contoured every 10 ms−1 for simulations with 100, 300, 500, 1000, and

2000 CCN, at simulation times 3000s (a-e.) and 6000 s (f-j.). Altitude in MSL.

101



Chapter 6

Conclusions

Aerosols and cloud condensation nuclei are known to significantly impact the micro-

physical, electrical, and dynamic structures of thunderstorms. In this study, CCN

influenced the dynamic and electric evolution of both high and low-precipitation su-

percells. In both cases, similar patterns in dynamic and electric development were

seen when adjusting CCN concentrations in each simulation. These results suggest

that the influence CCN concentrations has on the evolution of supercells is not largely

dependent on the amount of precipitation within the storm and will still have an effect

on the dynamic and electric structure of the storm despite the amount of precipitation

supported by the background environment.

In both cases, the initial onset of precipitation was delayed at higher CCN con-

centrations, as more numerous smaller droplets weaken the collision and coalescence

(”warm rain”) processes. This pattern agrees with the findings of Twomey (1977);

Albrecht (1989), and Gunn and Phillips (1957). The altitude of the initial onset of

precipitation was also higher at higher CCN concentrations, which indicated a transi-

tion from less warm to more cold rain processes at higher CCN concentrations. The

overall dynamic evolution of the storm appeared to be affected by CCN concentrations

as well. At high CCN concentrations, the storm’s evolution was delayed and horizontal

extent limited. Warm rain processes and precipitation efficiency resulted in differences

in rainfall amounts and hydrometeor sizes influence evaporative cooling near the sur-

face and therefore cold pool formations. In the higher CCN cases, in which there is
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less liquid precipitation and more cloud ice, cold pools are smaller and warmer. This

set up a positive feedback loop, as smaller and weaker cold pools provide less forc-

ing for secondary convection therefore leading to an overall reduction in convective

coverage and intensity, and ultimately resulting in less precipitation and so on. This

delayed evolution in more polluted air matches the findings of Storer et al. (2010);

Lerach and Cotton (2012), and Khain et al. (2011). In both cases, updraft speed was

not substantially affected by CCN concentration, but updraft volumes differed among

the five CCN concentrations. Our findings suggest that an increase in CCN concen-

tration results in smaller updraft volumes, and this supports the findings of Fan et al.

(2009), who found suppression of convective strength by aerosols in cases where strong

windshear is present.

The electric structure and evolution were also affected by CCN concentration. In

both cases, higher lightning rates were produced at higher aerosol concentrations.

These results are similar to results found by Mansell and Ziegler (2013); Altaratz

et al. (2010); Ren et al. (2018); Lerach and Cotton (2012), and Kochtubajda et al.

(2011). In these studies, lighting rates peaked at an intermediate CCN concentration,

but our results had closer to a monotonic pattern. This pattern may change if the study

were expanded to include higher CCNC. Flash rates were much lower under the TAK

scheme then under the SP98 NI scheme but still produced the same trend with more

flashes at higher CCN concentrations. The altitude of flash initiations was also found

to differ with CCN concentrations. All five CCN concentrations produced the majority

of initiations at 10 km for Geary and 8 km for Kimball. With the SP98 scheme, two

additional layers of flash initiations were produced above and below the main layer. In

both cases, these additional layers were not active at higher CCN concentrations. This

pattern was not observed under the TAK NI scheme. A delay in the initial flash was

only produced in the TAK simulations for Geary, but no delay occurred in the SP98
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or any of the Kimball simulations. This lack of delay contradicts the findings of Sun

et al. (2021). Average flash areas also differed among the simulations, although this

was depended more on the NI scheme used. With the SP98 NI scheme, flash areas

were smaller at higher CCN concentrations, which follows the typical inverse relation-

ship between flash rates and areas (e.g., Bruning and Macgorman, 2013). With the

TAK scheme, flash areas either remained constant or were larger at higher CCN con-

centrations, which would contradict the expected relationship between flash rates and

areas mentioned above. Analysis of electric potential layers suggests that the differ-

ence between the two NI charging schemes is a response to the changing microphysical

conditions and the horizontal homogeneity over which that occurs. Both NI schemes

produced flash area distributions which became narrower at high CCN concentrations,

suggesting that at high CCN flash areas remained more homogeneous in size.

The electric structure of the storm was very dependent on the NI charging scheme

used, as seen in previous studies (Helsdon et al., 2001; Mansell et al., 2005). In both

cases under the SP98 NI scheme, at low CCN the net charge structure could be de-

scribed as a positive (normal) dipole structure, but at higher CCN the net charge

structures were closer to inverted dipole structures with pronounced upper positive

screening layers. In both cases at 300 CCN cm−3 the net polarity evolved throughout

the simulation, suggesting that at this concentration a transition between dominant

NI charging mechanisms exists. Higher net charge densities occurred at higher CCN

concentrations due to more ice particles participating in the electrification process,

following the findings of Sun et al. (2021) and Zhao et al. (2015). Uusing the TAK

NI scheme, simulations with low CCN produced an inverted dipole structure, while at

higher CCN additional negative charge in the screening layer was observed above 15

km, which was different to the range of structures produced by the SP98 NI scheme.

Cross-sections of the storms revealed that the charge structures of these supercells are
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more complex than their domain-averaged charge densities, with simulations using the

SP98 scheme producing a lot of small pockets of charge, especially above the updraft

region, while the TAK scheme had more consistent and continuous charge layers, which

contributed to the different flash sizes produced.

Comparing to observations, none of the Geary case simulations stood out as a

best match for all features, but the 1000 CCN experiment from the control set of

runs matched the evolution of this storm well, especially in the electrical evolution.

This suggests the environment in which the Geary, OK supercell evolved in may have

contained more polluted air. From the dynamic evolution alone, the Kimball, NE

case observations best matched those to the 300 and 1000 CCN simulations, with the

other three CCN concentrations still producing supercells reasonably similar to the

observed storm, suggesting the environment and microphysics used in the simulations

are reasonable. This helps support the case that model is also doing reasonable things

with electrification and its response to changes in CCN concentration.

The work in this study could be expanded by modeling a broader range of CCN

concentrations, like that of Mansell and Ziegler (2013). This would give a more de-

tailed look at the microphysical and dynamic differences at some intermediate CCN

concentrations and detail some complexities in the patterns produced in this study.

In particular, the multiple transitions in the polarity of the charge distribution in the

300 CCN simulation may indicate the vicinity of an inflection point in the response to

changes in CCN concentrations, so an analysis of CCN concentrations slightly above

and below 300 cm−3 may be useful to explore the details of the changes in microphysical

conditions and how they impact the NI charging mechanism across the inflection point.

A comparison involving a broader range of storm environments would also be bene-

ficial to this study. This would provide a more comprehensive look into whether the

observed patterns mentioned above will hold in a variety of supercell environments.
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