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3.11 Evaluating the effective bore amplitude (' =
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]
'
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(0546 UTC; thin solid blue contours). The letters N and S refer to the
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4.6 Verification of the bore environment forecasts. The color shading displays

the ensemble forecasts from different experiments based on the nearest 49

reference points from the northern most reference grid in Fig. 4.4 (number

of ensemble members contributing to each experiment, denoted by (, is
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4.7 Understanding how the assimilated PECAN data affects the forecasted

bore environment. Panel (a): Percentage change differences between
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potential temperature from PECAN_ALL (BASELINE), which is used for
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horizontal lines for BASELINE and PECAN_ALL, respectively). Panel (c):

Ambient wind speed from BASELINE (solid black curve) and PECAN_ALL

(dashed black curve) projected in the direction opposite to density current

propagation and averaged over the last 10 km of the density current cross

section in panel (b). The wind profile from the corresponding radiosonde

and Doppler wind lidar data is overlaid using gray color shading. Note that

the verifying observations are averaged between 0345 UTC and 0430 UTC,

consistent with the gray box in Fig. 4.5. The width of the gray color shading
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4.12 Flow regime diagnostics on the bore-generating cold pool in Nebraska for
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4.15 Equivalent radar reflectivity (lowest elevation angle) from the KOAX radar
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4.19 Composite cross sections for the BASELINE, AERI and WIND_PROF

experiments generated in the neighborhood of the southern convective

cluster (S; refer to the aqua reference points in Fig. 4.4). The first column
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5.6 Example of how the assimilation of different ground-based profiling networks
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AGL (|; color shading) and 30 dBZ composite MRMS reflectivity (black

contours) at 0600 UTC. The dashed ellipses in panels (a) and (c) mark the
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5.10 FP3 innovation time series of specific humidity
(
3@

)
averaged over the

950-850 hPa layer and shown for the second half of the 6-hour EnKF cycling
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the ensemble mean minus observation differences; the blue and red colors

refer to the background (bg) and analysis (anl) innovations, respectively. . . 147
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5.13 Vertical cross sections through the cold pool associated with the parent

MCS on 2 July 2015. The color shading displays the horizontal wind speed

parallel to the cross section
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+| |

)
, with positive (negative) values indicating

flow oriented in the positive (negative) G-direction. The solid black contours

show the virtual potential temperature and are plotted every 2 K, starting

from 310 K near the surface. Vertical velocities are also shown as solid blue

contours whose spacing and initial value are both set to 0.25 ms−1. The

maximum value of the vertical velocity (Wmax) is additionally labelled in

the lower-left corner of each panel. All cross sections are valid at 0530 UTC,

which corresponds to a 2.5h forecast lead time for this PECAN case. . . . . 151
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ground D-wind bias profiles for UVPROF and SONDE (blue and red colors,
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5.16 Dynamical interpretation of the forecast improvements during the 5 June

2015 case. Panel a: Analysis increments for SONDE at 0300 UTC. The

meaning of all symbols is the same as in Fig. 5.11, except that the @

increments are drawn at ±0.5, ±1, ±2 and ±4 gkg−1, whereas the ratio of

background to increment wind (represented by the black and white arrows,

respectively) is ∼1:3. The dashed yellow ellipse shows the position of the

northeasterly wind increment discussed in the main text. Panel b: SONDE-

CTL analysis mean @ differences (Δ@; color shading) at 2 km AGL and

valid at 0300 UTC. Regions where Δ@ is equal to -0.5 gkg−1 are highlighted

with bisque contours. The solid black contours and black arrows represent

SONDE’s analysis mean of 30 dBZ reflectivity and wind at 2 km AGL,

respectively, while the purple dots indicate grid points where the analysis

mean vertical velocity at 1 km AGL exceeds 0.15 ms−1. Panel c: SONDE’s

analysis mean updraft strength at 1 km AGL (|+; blue shading) and its

change relative to CTL (red contours starting at 0.1 ms−1 and plotted every

0.2 ms−1) at 0310 UTC. The solid black contours and black arrows have the

same meaning as in panel (b), but are shown for 1 km AGL. Finally, the

position of the FP3 site is marked with a yellow star in all panels. . . . . . . 156
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during two EnKF cycles on 5 June 2015: one before and another after the
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The data shown in these panels are the same as in Fig. 5.16a, except that the

ratio of background to increment wind (black and white arrows, respectively)

here is ∼2:5 and the ±0.25 gkg−1 @ increment is additionally plotted. . . . . 157

xxxiii



Abstract

Advances in Numerical Weather Prediction (NWP) require a synchronous improve-

ment in the structure of the underlying Global Observing System (GOS). However, recent

progress toward high-resolution modeling has not been accompanied by a commensurate

increase in the number of available observations. For more than two decades, the meteo-

rological community has identified a striking gap in the observational coverage within the

Planetary Boundary Layer (PBL). This gap is particularly detrimental for convective-scale

models whose forecasts depend strongly on the initial PBL structure. In an effort to confront

the existing observational limitations, scientists and engineers have begun to rapidly develop

novel ground-based remote sensing technology. Its ability to describe the diurnal evolution

of the PBL is expected to bring large benefits for the next generation of convective-scale

NWP models. In this dissertation, we support this hypothesis by showing how ground-based

remote sensing instruments can improve the forecasts of bore-generating nocturnal convection

observed during the Plains Elevated Convection at Night (PECAN) field campaign.

To evaluate the forecast impact of these novel instruments, we first develop an

object-based algorithm for the identification and tracking of convective outflow boundaries in

NWP models. The most distinct feature of the algorithm, which sets it apart from previously

suggested frameworks, is its ability to seamlessly analyze density currents and bores, both of

which play an important role in the dynamics of bore-generating nocturnal convection. The

unified classification of these morphologically different phenomena is achieved through a

multivariate approach combined with appropriate image processing techniques. The tracking

component of the algorithm utilizes two dynamical constraints, which improve the object

association results in comparison to methods based on statistical assumptions alone. We

use a retrospective PECAN case study to illustrate how the newly developed algorithm can

objectively analyse both the structure of atmospheric bores as well as the environmental

conditions in which they form.
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The original version of the algorithm is then extended to allow for an object-based,

neighborhood verification of the ensemble bore forecasts against data from thermodynamic

remote sensors. This new framework is utilized to investigate the impact of different PECAN

observations on the forecasts of a bore-driven convective event that took place on 6 July

2015. Specifically, we examine the forecast impacts with respect to (i) the bore environment,

(ii) the explicitly resolved bore, and (iii) the bore-initiated convection. Our findings suggest

that ground-based remote sensors provide considerable advantages over conventional in situ

observations, especially when the retrieved data are assimilated at a high temporal frequency.

The clearest forecast improvements are seen in terms of the predicted bore environment

where the assimilation of kinematic remote sensors reduces a preexisting bias in the structure

of the low-level jet.

Finally, the aforementioned single case findings are generalized by performing

systematic experiments with 10 additional PECAN cases that feature a diverse spectrum of

convective dynamics. The purpose of these systematic experiments is to compare the forecast

benefits coming from different ground-based profiling networks. Aggregated verification

statistics demonstrate that the best forecast skill is achieved by simultaneously assimilating

in situ and remote sensing profilers, both in terms of the parent convective system as well as

the explicitly resolved bore. Our analysis suggests that it is often advantageous to collocate

thermodynamic and kinematic profilers. On the other hand, the impacts from single profiler

networks tend to be highly flow-dependent, with thermodynamic (kinematic) profilers

playing a dominant role in cases with relatively low (high) convective predictability. In

addition, deficiencies in the underlying data assimilation (DA) system as well as complexities

in the governing moisture dynamics can further limit the efficacy of such networks.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Global Observing System

The Earth is comprised of many physical components, such as the atmosphere, hy-

drosphere, cryosphere, and biosphere (Fig. 1.1). Understanding the complex processes

happening on Earth requires not only accurate knowledge of the dynamics associated

with individual components, but also the interactions between them. Historically, the

meteorological community has dedicated significant efforts to study the behaviour of the

atmosphere because of its direct influence on our everyday weather. In recent years, however,

there has been a gradual shift toward the development of coupled Earth system approaches

that are capable of representing how the atmospheric state is influenced by other Earth

system components (e.g., Penny and Hamill 2017). Aside from improving our overall

physical understanding, these coupled systems hold great promise for a variety of important

applications. For example, the ability to describe how snow and ice loss affects the global

circulation is crucial for generating reliable climate projections. On shorter time scales,

correctly simulating the heat, momentum and energy exchanges between the atmosphere and

underlying ocean should improve the prediction of hurricanes and, as a result, reduce their

damage to the economy and infrastructure of many countries around the globe.
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Figure 1.1: The physical components of the Earth system and their interactions. Schematic
adopted from IPCC (2007).

Importantly, gleaning meaningful insights into the inner workings of the Earth system

requires a comprehensive observation network. The first attempts for a more coordinated

monitoring of the environmental conditions began with the deployment of a small number

of surface meteorological stations during two World Wars. These stations provided valuable

information for predicting the synoptic weather patterns ahead of critical military operations,

such as D-Day (Persson 2020) . Since then, the number of ground-based synoptic and

climatological sites has expanded rapidly to reach a truly global scale. These stations have

also been complemented by measurements collected on a variety of additional observing

platforms, including ships, ocean buoys, aircrafts, satellites and weather radars, that provide

a more complete picture of the Earth system as a whole. Collectively, all these observations

form the backbone of the so-called Global Observing System (GOS; see Fig. 1.2) maintained

on behalf of the World Meteorological Organization (WMO).
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Figure 1.2: The Global Observing System (GOS). Schematic adopted from WMO (2021).

1.1.2 The observation gap in the Planetary Boundary Layer

Advances in science and technology have enabled the GOS to continue expanding its

operational capabilities. The plethora of measurement techniques depicted in Fig. 1.2 speaks

for the vast progress made over the last century. As a case in point, data from Doppler

weather radars are now routinely assimilated in many regional numerical weather prediction

(NWP) models even though the first experiments were conducted less than 20 years ago

(Snyder and Zhang 2003). Despite these fast developments, some parts of the Earth system

remain poorly observed. One prominent example is the Planetary Boundary Layer (PBL) –

the lowest part of the atmosphere where most of the life on Earth resides. Besides having a

direct influence on our daily activities, the PBL has the important function to couple the

atmosphere with other Earth system components through the near-surface heat, momentum

and energy exchanges. As a result, the PBL has been identified as a crucial component in

both short- and long-range Earth system predictions (e.g., Stewart 1979).
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There are two distinct, but closely related factors contributing to the inadequately

observed PBL. The first one is linked to important gaps in the current GOS. Consider, for

instance, the surface observation network: it consists of many stations around the world,

but those only measure the environmental conditions directly above the surface, leaving

a signficant portion of the PBL unobserved. Many ground-based synoptic stations also

launch radiosondes (weather balloons), which are often regarded as the golden standard

for upper-air atmospheric profiling. In an operational setting, however, radiosondes are

only launched twice a day and this is far from sufficient to depict the significant diurnal

changes in PBL structure. Commercial aircrafts occasionally provide lower atmospheric

data during take-offs and landings, but such measurements are usually concentrated around

big airports and do not capture the large spatial variability of the PBL. Referring back to

Fig. 1.2, it appears that weather satellites are the only major component of the GOS not

discussed so far. Although they offer a truly global coverage, satellite measurements lack

the necessary resolution within the PBL. This problem is especially relevant for certain

instrument types, such as microwave (MW) sounders, whose quality is much worse than that

of radiosondes. The resolution within the PBL can be somewhat improved with infrared (IR)

instruments, but this is limited to clear-sky conditions. Recently, the radio occultation (RO)

technique has also gained popularity, especially in the midst of the COVID-19 pandemic

when world-leading NWP centers demonstrated its efficacy in the absence of regular aircraft

observations (Ingleby et al. 2020). However, the resolution of RO data – around 500 m in the

vertical and 150-200 km in the horizontal, is still not suitable for accurately describing PBL.

The second contribution to the existing PBL gap is based on phenomenological con-

siderations. This point can be illustrated with the aid of Fig. 1.3 by Orlanski (1975) who

classified atmospheric processes according to their characteristic spatiotemporal scales.

It is evident from this diagram that many of the depicted processes have their origins in

the PBL – turbulence, tornadoes, dust devils, convection, urban effects and topographic

disturbances. In addition, many of these processes are located in the lower-left portion of the
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Figure 1.3: Characteristic scales of meteorological processes according to Orlanski (1975).
Schematic adopted from the COMETr Program (2018).

diagram, which is associated with relatively small characteristic scales. The rapid evolution

of these PBL phenomena can be captured only with an observation network whose density is

considerably larger compared to other parts of the atmosphere. As an example, consider the

current radiosonde network: it might be sufficient to accurately describe the characteristics

of upper-level troughs and ridges, but it is too coarse for many important lower atmospheric

processes, such as the transition from a diurnal, convective-driven boundary layer (CBL) to

a night-time, stable boundary layer (SBL).

1.1.3 The need for ground-based remote sensing

The need for denser PBL observations in the US has been brought to the fore ever since

the beginning of the 21st century by various participants in the North American Observing

System (NAOS) and the USWeather Research Program (USWRP). These early efforts to raise
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awareness of the existing PBL gap were, to a large extent, driven by the growing evidence

that predicting severe weather can be greatly enhanced by better monitoring of the PBL

processes. The strong dependence of convective initiation on the convergence of low-level

PBL winds is a classic example to illustrate this link (e.g., Trier 2003). Nevertheless, more

coordinated guidance on how to expand the PBL observation capabilities only arrived in

2009 with a dedicated report from the National Research Council (NRC; National Research

Council 2009). After concluding that the present observation capabilities are highly variable

in quantity, quality, accessibility, instrument set, site selection, and metadata, this NRC

report offered a vision for a new mesoscale observation network. In agreement with our

earlier discussion, the NRC panel found that the vertical component of the US mesoscale

network is particularly inadequate and that the largest number of unmet requirements lies

below 5 km. To address these deficiencies, the NRC committee members recommended the

procurement of an adaptive network of networks that integrates existing and new mesoscale

networks into a national "network of networks". The committee further suggested that

these new mesoscale networks should consist of ground-based remote sensing instruments

on account of their high prospects for measuring the PBL structure at a sufficiently high

resolution. Their assessment also found that a nationwide deployment of 400 profiling sites

would be a great first step toward closing the existing PBL observation gap.

This original NRC report was crucial for increasing the community awareness of the

existing observational deficiencies. Since then, a lot of attention has been focused on

determining the optimal requirements for the newly planned mesoscale observation network.

For example, a workshop was organized shortly after the NRC report which identified

several candidate instruments and determined both their desired measurement accuracy (1

K and 1 gkg−1) and resolution (30-100 m in the vertical). A more recent report from the

National Academy of Sciences, Engineering and Medicine (NASEM; 2018) further refined

these observation requirements and reinforced the value of ground-based remote sensing.

In particular, high-resolution water vapor (WV) profiles in the PBL were labelled as an

6



Essential Climate Variable by WMO’s Global Climate Observing System (GCOS) program.

Enhancing the current PBL wind observations was similarly found to be a priority for both

the research and private sectors.

More recently, the recognition for the value of ground-based remote sensing profilers

has spread even beyond the US. For example, Illingworth et al. (2019) discuss how existing

ground-based profiling instruments in Europe have great prospects to improve the quality

of weather forecasts over this region. Fruitful collaborations between several European

agencies and instrument manufacturers have resulted in improved retrieval algorithms,

unified calibration procedures and real-time flow of PBL-relevant measurements.

1.2 Contributions and dissertation overview

The 2018 Decadal Survey by NASEM stated that a better understanding of the PBL

processes is crucial for improving NWP. This need is even more pertinent for high-resolution,

limited area models (LAMs) where the PBL plays an important role for the initiation

and evolution of explicitly resolved convection (World Meteorological Organization 2018).

Compared to global NWP models, LAMs exhibit greater sensitivity to the initial moisture

fields which are much more variable compared to other state variables (temperature, wind

and pressure). The latter serves as an important motivation for the currently ongoing efforts

to establish a denser ground-based PBL network.

According to Section 1.1.3, the present consensus is that ground-based remote sensing

profilers represent the most promising candidate for confronting the PBL observation gap. As

explained earlier, enhancing the current GOS with these novel instruments is expected to be

particularly beneficial for convective-scale models due to their increased sensitivity to PBL

processes. In this dissertation, we will support this claim by utilizing data collected during

the 2015 Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) field campaign.

Specifically, we add to the growing evidence that ground-based remote sensors could be a

valuable component of the GOS by demonstrating their positive impact on a particularly
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challenging meteorological phenomenon – that of bore-generating nocturnal convection

(Parsons et al. 2019a). As will be explained in Chapter 4, these convective systems are

very difficult to simulate in contemporary LAMs due to their complex dependence on many

different PBL processes, including the night-time PBL stability and Nocturnal Low-Level

Jets (NLLJs). Nevertheless, our numerical experiments will demonstrate that a frequent

assimilation of thermodynamic and kinematic profilers can bring forecast improvements as a

result of the better initial conditions within the PBL. Our detailed analysis will examine the

value of various ground-based remote sensing instruments and discuss why their impacts are

sensitive to the underlying atmospheric predictability.

In addition to showing the potential of ground-based remote sensing for convective-scale

NWP, the second contribution of this dissertation is the formulation of a new verification

method for atmospheric bores. The application of suitable forecast verification techniques

has always been a crucial element at every NWP center because any change to an existing

numerical model needs to be rigorously tested prior to its operational implementation.

Assessing the quality of LAM forecasts poses even greater challenges due to the discontinuous

and intermittent nature of the simulated processes. The use of traditional verification metrics

often leads to the so-called double penalty problem, wherein a small displacement of the

forecasted phenomenon can result in extremely poor categorical scores. To alleviate this

problem and foster future advances in convective-scale modeling, there is currently a move

afoot to develop new, object-based (or feature-based) verification methods whose output

agrees more favorably with subjective human assessment. So far, most of these algorithms

have focused on achieving a better comparison between forecasted and observed convective

storms (Davis et al. 2006). However, there are many other features in convective-scale

NWP models whose adequate verification can offer useful guidance for future model

development. Atmospheric bores are one prominent example as their dynamics are crucial

for the maintenance of bore-generating convection. Therefore, one should expect that an
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objective identification and tracking of these PBL features will help us better understand the

forecast errors associated with this challenging mode of convection.

We conclude our discussion here by briefly outlining how the remainder of this dissertation

is structured. Chapter 2 offers a more technical introduction to this work and describes

the PECAN datasets assimilated in our numerical experiments. Chapter 3 presents the

identification and tracking components of the newly developed object-based bore algorithm

and provides examples of its application in convective-scale model output. Next, we

demonstrate the value brought by ground-based remote sensing instruments on the forecasts

of bore-generating nocturnal convection – first for a single case study (Chapter 4) and then

for a collection of 10 additional cases which feature diverse convective dynamics (Chapter

5). The purpose of the single case study is two-fold: (i) to help us determine the optimal

configuration of the employed analysis-forecast system and (ii) to guide us develop a set of

meaningful research questions for the following systematic study. Finally, Chapter 6 gives

an overall summary of the main results and discusses future research directions.

It is also noted that significant parts of this dissertation are direct excerpts of Chipilski

et al. (2018, ©American Meteorological Society) and Chipilski et al. (2020, ©American

Meteorological Society).
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Chapter 2

Theory, data and methods

The research conducted in this dissertation spans a broad range of topics from the

fields of DA, NWP, fluid dynamics and remote sensing. Therefore, we first introduce

some preliminaries that will help in the interpretation of subsequent Chapters. Rather than

reviewing the highly technical details, we instead focus on introducing some of the key

theoretical concepts .

2.1 Atmospheric bores

Atmospheric bores are an inseparable part of the night-time environment in the U.S.

Great Plains. Recently, our community has started to pay closer attention to these features as

they are believed to play an important role in the initiation and maintenance of nocturnal

convection (Parsons et al. 2019a). Interestingly, much of the diagnostic tools employed for

their analysis come from century-long developments in fluid dynamics. For instance, the

flow regime diagrams used to evaluate the environmental conditions in which atmospheric

bores form have their origins in hydraulic theory. In what follows next, we outline the main

considerations behind this theory and then briefly discuss its limitations.

The dynamics of bores is intimately related to that of density (or gravity) currents,

which form due to differences in the near-surface density field and propagate as a result

of the corresponding pressure gradient force. There are many different ways in which

such low-level density variations might be generated, including thunderstorms, sea breezes
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Figure 2.1: The typical evolution of a convectively generated density current in the nocturnal
environment of the U.S. Great Plains. Schematic adopted from Haghi et al. (2017).

and river discharges. The first quantitative understanding of density current propagation

comes from the seminal work of Benjamin (1968) who studied the classical problem of

lock-exchange with a neutrally stratified environment (ambient). In an atmospheric context,

Benjamin’s theory is relevant for understanding the behavior of daytime density currents

which propagate in a well-mixed, convective PBL (CBL). However, the presence of ambient

stratification – a prominent characteristic of the night-time, stable PBL (SBL) present in

our numerical simulations, complicates the theoretical treatment of density currents. Under

certain conditions, formally referred to as transcritical resonance, we observe a transfer

of energy from the density current to the ambient environment, which in turn gives rise to

nonlinear internal waves (see Fig. 2.1). Bores and solitary waves are two particular examples

of these nonlinear disturbances and tend to occur frequently in the night-time atmosphere of

the Great Plains (Haghi et al. 2017).
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2.1.1 Hydraulic theory

The framework that is most often used to describe atmospheric bores is based on a variant

of two-layer hydraulic theory presented in Rottman and Simpson (1989; RS hereafter).

Its main application is to determine the extent to which the mesoscale environment is

favourable for the generation of bores upstream of a nocturnal cold pool, which is typically

done by assessing the flow regime in a parameter space defined by the Froude number and

non-dimensional density current height (defined later). In Chapter 4.4, the RS89 flow regime

diagrams are also used to assess the impact of ground-based remote sensors on the forecasts

of the bore environment (cf. Fig. 4.6).

Throughout the remainder of this Section, we will sketch the derivation of RS89’s flow

regime diagram by considering the behavior of single-layer flow around a solid obstacle1.

As explained in RS89, the transition to a two-layer hydraulic theory is made by simply

replacing the acceleration due to gravity 6 with a reduced gravitational constant 6′ B 6
d1−d2
d1

(where the subscripts 1 and 2 correspond to the bottom and top fluid layers, respectively). In

our exposition, however, the primes shall be omitted for notational convenience.

2.1.1.1 Setup

As a starting point in our exposition, consider the Navier-Stokes equations of motion and

mass continuity, viz.

�u
�C

= −1
d
∇?−6k̂+ a∇2u, (2.1a)

1
d

�d

�C
+∇ ·u = 0, (2.1b)

1 From a meteorological point of view, the solid obstacle represents the cold pool generated by a night-time
thunderstorm.
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where �
�C
B m

mC
+D m

mG
+ { m

mH
+| m

mI
is the material derivative, u – the three-dimensional velocity

of the fluid, d and ? – the fluid’s density and pressure, respectively, whereas a – the kinematic

viscosity coefficient. Assuming that the flow is incompressible, inviscid and hydrostatic, the

above set of equations can be transformed into a new set which is more appropriate for the

single-layer setup drawn in Fig. 2.2a:

mD

mC
+D mD

mG
= −1

d

m?

mG
, (2.2a)

0 = −6− 1
d

m?

mI
, (2.2b)

∇ ·u = 0. (2.2c)

Let ?0 be the fluid pressure at I0 = ℎ0 +[. Integrating the hydrostatic relation in (2.2b)

from I0 to an arbitrary height I within the fluid yields

?(G, I, C) = ?0 + d6(ℎ0 +[− I), (2.3)

which can be used to rewrite the pressure gradient force on the right-hand side of (2.2a) as

−1
d

m?

mG
= −6m[

mG
. (2.4)

Analagous to the classic shallow water theory, we integrate the mass continuity equation

(2.2c) over the depth of the fluid, imposing the following lower and upper kinematic boundary

conditions on the vertical component of velocity:

|(G,0, C) B �30
�C

= D
m30
mG

, (2.5a)

|(G, ℎ0 +[, C) B
� (ℎ0 +[)

�C
=
m[

mC
+D m[

mG
. (2.5b)

With that, our new system of governing equations becomes
13



Figure 2.2: Setup of single-layer hydraulic theory (modified following Haghi 2017). Panel
a: Flow behavior in the absence of nonlinear upstream disturbances. The variables 30, 3
and [ correspond to the solid obstacle’s height, the fluid’s depth and the fluid’s displacement
relative to its unperturbed height ℎ0. Panel b: Flow behavior in the presence of an upstream
hydraulic jump (bore) that moves away from the solid obstacle at a constant speed 21. As it
passes through the bore, the fluid transitions from a supercritical to a subcritical state, which
causes an abrupt decrease in its speed (from D0 to D1) and an abrupt increase in its depth
(from ℎ0 to ℎ1). The flow returns back to a supercritical state downstream of the obstruction.
For the quasi-steady state bore assumed in the derivation of single-layer hydraulic theory,
critical flow conditions are reached at the highest point of the obstacle (with maximum
height 3<) where the depth and speed of the fluid are ℎ2 and D2, respectively.
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mD

mC
+D mD

mG
= −6m[

mG
, (2.6a)

m[

mC
+ m
mG
(D3) = 0. (2.6b)

2.1.1.2 Steady state solutions without jump conditions

To evaluate the behaviour of the flow around the solid obstacle, we consider the

steady-state versions of Eqs. (2.6a) and (2.6b), which can be combined into

(� −1) m3
mG

=
m30
mG

. (2.7)

The variable � B D2

63
in (2.7) is referred to as the Froude number. This non-dimensional

parameter plays a key role in hydraulic theory (e.g., Baines 1984) and is often interpreted in

the following two ways:

• the ratio of the fluid’s speed and the phase speed of shallow water waves;

• the ratio of the fluid’s kinetic and potential energies.

If � > 1 (� < 1), we say that the flow is supercritical (subcritical). The relationship in

(2.7) implies that supercritical (subcritical) flows increase (decrease) their depth as they

pass over the solid obstacle. For critical flows (�→ 1), however, this relationship does not

provide sufficient information for describing the flow properties because m30
mG
= 0, which

would only be true far away from the obstacle or along its crest. To avoid this singularity, we

first integrate the system (2.6) in the G-direction, making use of the upstream flow conditions

(D = D0, 30 = 0 and 3 = ℎ0) to pin down the coefficients of integration. The resulting two

expressions are then combined by grouping into powers of D. This procedure results in

+3�2

2
++

(
� − �

2

2
−1

)
+1 = 0, (2.8)
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where � B 30
ℎ0

is the non-dimensional obstacle (density current) height and + B D
D0

is the

normalized fluid velocity. Next, to obtain the AB+AD curve from RS89, we follow Houghton

and Kasahara (1968) who find that + = �−2/3 when the flow reaches a critical state at the

crest. Substituting this relation in (2.8), we get

� =
1
2
�2− 3

2
�2/3 +1, (2.9)

which is the mathematical expressions for AB+AD. From a physical point of view, this

boundary curve describes the largest obstacle height for which flows with a fixed upstream

value of � remain symmetric about the obstruction; a further increase in � breaks down the

flow symmetry and gives rise to a blocked or partially blocked regime. Another consequence

from the shape of the AB+AD curve is that critical upstream flows (�→ 1) tend to quickly

become unstable regardless of the obstacle’s height. By contrast, if upstream flows remain

far away from such critical conditions, their behavior is increasingly less sensitive to the

characteristics of the underlying topography.

2.1.1.3 Steady state solutions with jump conditions

Although the AB+AD boundary curve gives useful information about the expected flow

regime, it does not reveal what type of disturbances will form in transcritical resonance

conditions when the flow loses its symmetry. However, early laboratory experiments (Long

1954, 1974; Baines 1984) have demonstrated that flows which transition to a critical state

near an obstruction often develop upstream and downstream hydraulic jumps or bores,

motivating fluid dynamicists to start incorporating jump conditions in their treatment of

critical hydraulic phenomena. In essence, the purpose of these hydraulic jumps is to split the

flow into multiple segments which are then dynamically reconnected through the application

of conservation laws.
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To derive the remaining RS89 boundary curves, we consider a special type of bores

which form upstream of the obstacle (Fig. 2.2b) and cause an abrupt increase (decrease) in

the fluid’s height (speed). Furthermore, a quasi-steady state is assumed such that the fluid

reaches a critical state at the obstacle’s peak (i.e., D = D2 =
√
632). In this idealized setup,

there are 4 unknown variables we need to solve for: D1 (the speed of the fluid downstream of

the jump), 31 (the depth of the fluid downstream of the jump), 21 (the speed of the bore) and

32 (the critical fluid depth over the crest). Therefore, 4 independent constraints are needed to

describe the flow behavior subject to this jump condition. The first two can be obtained by

imposing mass conservation at the two locations where critical flow conditions are observed,

i.e. across the bore and over the obstacle’s crest, i.e.

(D0 + 21)ℎ0 = (D1 + 21)ℎ1, (2.10a)

D1ℎ1 = D2ℎ2 . (2.10b)

Note that the addition of 21 in (2.10a) is necessary to ensure the legitimate use of mass

conservation within a reference frame moving with the bore. The third constraint comes

from the momentum principle

mdD2

mG
+ mdD|

mI
+ m?
mG

= 0, (2.11)

which can be easily obtained by merging the steady state equations for mass conservation(
mD
mG
+ m|
mI
= 0

)
and momentum in the G-direction

(
D mD
mG
+ 1
d

m?

mG
= 0

)
2. Integrating over a

control volume enclosing the hydraulic jump, applying the divergence theorem and using

the hydrostatic relation, we get

2 In particular, multiply the momentum and mass conservation equations by d and Dd, respectively, and then
collect terms.
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d(D0 + 21)2ℎ0 +
1
2
d6ℎ2

0 = d(D1 + 21)2ℎ1 +
1
2
d6ℎ2

1, (2.12)

which can be further simplified to

(D0 + 21)2 =
1
2
6ℎ1

(
1+ ℎ1

ℎ0

)
(2.13)

in view of (2.10a). The final restriction is based on Bernoulli’s principle, which is applied

from an arbitrary point within the subcritical flow downstream of the bore to the obstacle’s

crest. In particular, we integrate the steady state form of the momentum equation (2.6a)

along the G-direction, upon which we find that

1
2
D2

1 +6ℎ1 =
1
2
D2
2 +6(3< + 32). (2.14)

Having obtained the complete set of constraints, we now examine two limiting cases.

In the first one, we set the bore speed 21 to 0, which, after some extensive algebraic

manipulations, recovers the AE boundary curve from RS89:

� =
1+ (1+8�2)3/2

16�2 − 3
2
�2/3− 1

4
. (2.15)

Note that the region between AE and AD has been previously shown to give rise to both

supercritical and partially blocked regimes depending on the underlying experimental design

(Pratt 1983). In the second limiting case, we set D1 to 0 to obtain another relation between �

and �, namely

� = (� −1)
√

1+�
2�

, (2.16)
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which corresponds to curve BC and marks the separation between partially and completely

blocked regimes.

Another distinct feature in Fig. 4.6 are the dashed black curves which demarcate the

bore strength ( B ℎ1
ℎ0

in partially blocked regimes. These can be derived after dividing the

Bernoulli relation in (2.14) by 6ℎ0 and substituting in the definition for D2. The result is

( = � − 1
2
D2

1
6ℎ0
+ 3

2

(
(
D1√
6ℎ0

)2/3

, (2.17)

with

D1√
6ℎ0

=
�

(
− (−1

(

21√
6ℎ0

. (2.18)

Note that D1 is obtained separately by applying mass conservation (2.10a) across the bore.

One important observation from Eqs. (2.17) and (2.18) is that the bore strength ( is

directly proportional to the bore speed 21. A similar conclusion can be drawn after we

slightly modify the momentum principle in (2.13) such that

21√
6ℎ0

=

√
1
2
((1+ () −�. (2.19)

2.1.2 Limitations of hydraulic theory

While the aforedescribed variant of hydraulic theory has been successfully used to

predict the properties of many observed atmospheric bores (Koch et al. 1991; Koch and

Clark 1999; Koch et al. 2008a,b), the representation of density currents as solid obstacles is

an oversimplification, which allows its height and shape to be prescribed independently of

the background flow. In reality, however, the height of a density current is closely related to

its speed (Benjamin 1968), whereas its shape is often deformed by the environmental flow
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(Khodkar et al. 2018). To address these deficiencies, White and Helfrich (2012) proposed an

alternative two-layer hydraulic theory where the density current is seen as a free boundary

subject to a separate momentum constraint of the form

∫ (
? + dD2

)
3I = const. (2.20)

The authors proposed an improved jump condition and further extended the RS89 framework

to an ambient with arbitrary thickness. Analogous to the setup with a solid obstacle, their

new theory predicts the existence of subcritical and supercritical regimes as well as a

transcritical resonant band within which upstream disturbances are generated. More recently,

a vorticity-based approach has also been adopted in lieu of the classic hydraulic treatment

to describe the behaviour of two-layer flows (Khodkar et al. 2018) as well as more general

flows with arbitrary stratification and shear profiles (Nasr-Azadani and Meiburg 2016).

The second notable limitation of hydraulic theory is that its steady-state nature does not

offer any insights into the temporal evolution of bores. Traditionally, the maintenance of

these night-time disturbances has been assessed through linear wave theory (Scorer 1949),

which gives first-order accounts on the properties of the ambient waveguide (Haghi et al.

2017). However, this can lead to significant errors due to the highly nonlinear nature of the

internal waves forming ahead of the density current. In fact, very recent work from Haghi

and Durran (2021) suggests that linear wave dynamics do not to govern the dynamics of

bores and can give misleading information on the ambient waveguide characteristics. A

nonlinear treatment of the transcritical resonant problem exists (White and Helfrich 2012,

2014), but its validity is yet to be confirmed with atmospheric bore observations.
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2.2 Ensemble Kalman filtering

2.2.1 Data assimilation overview

Despite their abundance, the measurements provided by the Global Observing System

(GOS) do not give sufficient information to adequately determine the initial conditions in

NWP models. One reason for this obstacle is related to their insufficient number relative to

the total degrees of freedom in the simulated dynamical system. As alluded to in Chapter

1, some components of the Earth system are especially prone to this problem, such as the

Planetary Boundary Layer (PBL) located in the lowest parts of the atmosphere. Another

closely related problem is the inhomogeneous character of the GOS – dense continental

observation networks often border with sparsely observed regions over the oceans.

In an effort to overcome these challenges, the field data assimilation (DA) estimates the

model’s initial conditions (ICs) by combining the highly irregular observation networks with

short-range model predictions. This procedure is especially important for poorly observed

regions where the ICs are heavily weighted toward the model forecasts. The statistical

blending of two information sources has the additional benefit of relaxing the otherwise

stringent requirements for optimally sampling the rapidly evolving components of the Earth

system (National Research Council 2009).

In the geosciences, there are two commonly used approaches for defining the model’s

ICs. The first one utilizes a variational framework in which the resulting analysis minimizes

some objective functional that measures the distance of the model state to both the short-term

forecast and the current observations. Variational methods, such as 4D-Var (e.g., Courtier

et al. 1994), are very popular for global NWP. Their success comes from the ability to

explicitly incorporate dynamical balances, which are well-known at the relatively large

scales governing the global model dynamics. However, a significant disadvantage of these

methods is that the error properties of short-range model predictions (the model background)

remain constant in time – a significant restriction for the type of convective scale applications
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discussed in this dissertation. For instance, one should anticipate that background errors

near regions of convective activity are significantly larger than other parts of the model

domain. One way to address this problem is to use an ensemble-based approach wherein

the background errors are estimated from the sample statistics of a short-range ensemble

forecast. This idea lies at the core of the so-called Ensemble Kalman Filter (EnKF), which

was originally developed by Evensen (1994) and is now widely used in high-resolution LAM

models. In this work, we adopt one particular variant of the EnKF method to assimilate

the ground-based remote sensing retrievals collected during the PECAN field campaign.

The following sections provide a short overview of the method, tracing its origins to earlier

developments in estimation theory.

2.2.2 The general filtering problem and its solution

The theoretical basis for many DA methods is often masked by extensive details about

their algorithmic implementation, commonly expressed in the language of matrix algebra

(Bertino et al. 2002). Unfortunately, such algorithmic representation often hinders our ability

to abstract ideas and develop new DA techniques. To circumvent this problem, we first

present some key concepts from the field of estimation theory, which is a unifying framework

for all existing DA methods (Cohn 1997).

As explained in the previous section, the goal of DA is to optimally combine observations

with short-range model predictions. In estimation theory, these two information sources are

formally encoded through the so-called state-space model representation, first introduced in

the pioneering work of Kalman (1960). The state-space model is often written as a system

of two discrete-time, discrete-state (DTDS) stochastic processes, viz.

x= = 5 (x=−1,ξ=−1), (2.21a)

y= = ℎ(x=,ε=). (2.21b)

22



The first equation above represents the evolution of our model state x (a vector with

#G components) from time C=−1 to time C=, whereas the second one indicates how state

measurements y (a vector with #H components) are being made at time C=. Here we should

also point out that the high-dimensional maps 5 : R#G → R#G and ℎ : R#G → R#H have two

arguments corresponding to the deterministic and stochastic components of the state-space

model, respectively. In the DA literature, the stochastic terms ξ= and ε= are often referred to

as the model and observation errors and their specification is crucial for the derivation of

different estimation algorithms.

Having established this notation, we are now in a position to give a more precise

definition of the filtering problem that EnKF tries to solve. Let Y= B {y1,y2, ...,y=} denote

the observation stochastic process. Given this history of observations, the ultimate goal

of filtering is to find the conditional probability density function ?(x= |Y=) at each time

C=. This is to be contrasted with 4D-Var’s smoothing problem where the objective is to

evaluate ?(x= |Y=+;) for some fixed ; ∈ Z. Even without presenting the derivation of these two

commonly used methods, the general definitions above suggest that EnKF and 4D-Var are

solving two fundamentally different problems. In particular, filtering provides state estimates

which are only based on current and past observations, whereas the model trajectory in the

smoothing problem is further constrained by observations collected at future times.

Following Cohn (1997), the general solution of the filtering problem can be obtained

after repeatedly applying the definition of conditional probability, which gives

?(x= |Y=) =
?(y= |x=,Y=−1)?(x= |Y=−1)

?(y= |Y=−1)
. (2.22)

Written in this form, the filtering solution can be interpreted as a special version of Bayes’

theorem in high dimensions, with ?(x= |Y=−1) and ?(y= |x=,Y=−1) corresponding to the prior

density and likelihood function, respectively. To further establish the connection to Bayes’

theorem, observe that the denominator in (2.22) can be equivalently obtained after integrating
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the numerator over the current model state x=. Indeed, upon applying the definitions of

marginal and conditional probability to the denominator, we get

?(y= |Y=−1) =
∫

?(y= |x=,Y=−1)?(x= |Y=−1)3x=. (2.23)

One of the commonly used assumptions in filtering theory is that the stochastic process

{εC} is white in time (E[ε<εT= ] = 0 for < ≠ =). The latter allows us to further simplify the

likelihood function as

?(y= |x=,Y=−1) = ?(y= |x=). (2.24)

Here we note that (2.24) can be readily obtained by applying a change of variables in (2.21b).

To evaluate the prior density, we first rewrite it in a more convenient form. Once again, using

the definitions of marginal and conditional probability, we have that

?(x= |Y=−1) =
∫

?(x= |x=−1,Y=−1)?(x=−1 |Y=−1)3x=−1

=

∫
?(x= |x=−1)?(x=−1 |Y=−1)3x=−1. (2.25)

The simplification in the second equality follows from another commonly used assumption

in filtering theory which states that the two error processes and the model state are mutually

independent at all times C=. Furthermore, note that (2.25) represents a special form of the

Chapman-Kolmogorov equation (cf. Jazwinski 1970). Similar to our manipulation of the

likelihood function, the transition density ?(x= |x=−1) in this equation can be evaluated by

applying a change of variables to (2.21a).

The aforementioned prior representation is particularly appealing because the second

density in the integrand ?(x=−1 |Y=−1) represents the filtering solution from the previous time
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step. Then, starting with some initial model state distribution ?(x0), the filtering solution at

the present time can be found recursively, by alternating between a forecast step, in which

one evaluates the prior density through the Chapman-Kolmogorov relation, and an update

(analysis) step, where the Bayes’ theorem is used to update the prior state estimates based

on the newly arrived batch of observations. In theory, the application of such a recursive

algorithm can provide a complete description of the model state uncertainty. In practice,

however, its application is not feasible for the type of high-dimensional problems considered

in our work since the probability density of the initial state ?(x0) and the exact form of

the state-space model are rarely known. Moreover, evaluating the multivariate integrals in

the forecast and analysis steps of our recursive algorithm is simply not possible with any

currently available technique.

2.2.3 Kalman filter (KF)

The Kalman filter (KF) and its ensemble-based implementation make several important

assumptions that lead to a closed-form solution of the general filtering problem. First, we

consider a linear and additive version of the general state-space model

x= =M=−1x=−1 +ξ=−1, (2.26a)

y= =H=x= +ε=, (2.26b)

where theM ∈ R#G×#G and H ∈ R#H×#G are the Jacobians of the dynamical propagator and

observation operator, respectively. We further assume that

ξ= ∼ N (0,Q=) , (2.27a)

ε= ∼ N (0,R=) , (2.27b)

x0 ∼ N
(
x00 ,P

0
0
)
. (2.27c)

Eqs. (2.27a) and (2.27b) state that the model and observation errors follow a Gaussian

distribution with a zero mean (unbiased) and some known covariance. Likewise, we also
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assume that the initial state is drawn from a known Gaussian distribution with a mean x0 and

covariance P00 .

Applying some of these assumptions in (2.26a) gives (cf. Cohn 1997)

x 5= =M=−1x0=−1, (2.28a)

P 5
= =M=−1P0=−1M

T
=−1 +Q=−1, (2.28b)

where

x 5= B E [x= |Y=−1] , (2.29a)

P 5
= B E

[
(x=−x 5= ) (x=−x 5= )T |Y=−1

]
, (2.29b)

and

x0=−1 B E [x=−1 |Y=−1] , (2.30a)

P0=−1 B E
[
(x=−1−x0=−1) (x=−1−x0=−1)

T |Y=−1
]

(2.30b)

are the conditional mean/covariances of the prior distribution at time C= and the posterior

distribution at time C=−1, respectively. The system (2.28) describes how the mean and

covariance of the posterior distribution propagate from C=−1 to C=. Moreover, since Gaussian

distributions are completely described by these two quantities, the system (2.28) gives an

exact solution of the Chapman-Kolmogorov equations (the forecast step in our recursive

filtering solution). Similarly, we can use the linearized version of the stochastic observation

model (2.26b) to find that the first two moments of ?(y= |x=) and ?(y= |Y=−1) are {H=x=,R=}

and {H=x 5= ,R= +H=P 5
=HT

= }, respectively. Having completely described all three densities on

the right-hand of the general filtering solution (2.22), we can now multiply them together
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and work out that the filtering (posterior) density ?(x= |Y=) is also Gaussian with a mean x0=
and covariance P0= given by

x0= = x 5= +K=

(
y=−H=x 5=

)
, (2.31a)

P0= = (I−K=H=)P 5
= , (2.31b)

where

K= B P 5
=HT

=

(
R= +H=P 5

=HT
=

)−1
(2.32)

is known as the Kalman gain in the DA literature.

While this presentation of the KF may not be the shortest one, it establishes a clear link

to the general filtering problem and, importantly, exposes the role of different assumptions

in obtaining the KF solutions. For example, it turns out that the Gaussian approximations in

(2.27) are not explicitly needed until one proceeds to the KF update step (see Cohn 1997).

In other words, the forecast equations in (2.28), which describe how the first two moments

of the filtering distribution evolve, are valid for any state-space model of the form (2.26),

regardless of the nature of the underlying stochastic processes.

A much simpler KF derivation, widely used in atmospheric DA textbooks, assumes that

the model state at the current time step x̂0= can be written as a linear combination of the

forecasted state estimate from the previous time x̂ 5= and the current observations y=, i.e.

x̂0= = x̂ 5= +W
(
y=−H=x̂ 5=

)
, (2.33)

where W is some weight that is chosen to minimize the total variance of x̂0= . Upon explicitly

writing the covariance matrix of x̂0= and differentiating its trace with respect to x=, we find

that W is none other but the Kalman gain matrix K defined in (2.32). Even more generally,

it can be shown (cf. Cohn 1997) that given the stochastic observation model (2.26b) together
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with (2.27b) and no assumptions on the underlying distributions, the Kalman gain in (2.32)

minimizes the scalar E
[ (
x̂0= −x=

)
S
(
x̂0= −x=

)T] for any choice of the positive definite matrix

S. This result is formally referred to as the best linear unbiased estimate (BLUE) property

of the KF.

We conclude our discussion on the KF by stating its perhaps most fundamental property:

under the filtering assumptions considered so far, theKF provides theminimum error-variance

solution, which is a direct consequence of the following powerful result in estimation theory:

Theorem 1. Consider the quadratic functional J : R#G → R defined by

J B (x=− x̂=)TS(x=− x̂=),

where x= and x̂= are the model state and its estimate at time C=, and S is some positive definite

matrix.

Then E (J) is minimized uniquely for any S if x̂= is taken to be the conditional mean

E [x= |Y=]. Furthermore, this particular choice of x̂= is unbiased.

Proof. See Appendix A of Cohn (1997). �

To verify the minimum error-variance property of the KF under the assumption of a

Gauss-linear state-space model (2.26), recall that (2.310) represents the conditional mean

of the filtering (posterior) density ?(x= |Y=). In this special case, it can be further shown

that the conditional mean (i) minimizes a much broader class of cost functions J and (ii)

coincides with the conditional mode (maximum a posteriori) estimate. The latter property

is often used in textbooks to demonstrate the equivalence between the Kalman filter and the

three-dimensional variational DA method.

2.2.4 EnKF as a Monte Carlo implementation of the KF

The KF and other linear filtering algorithms were originally developed for aeronautical

applications and played a crucial role in the success of several important missions, such
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as Apollo (Hutchinson 1984). However, the large size of the KF covariance matrices and

the restriction to Gauss-linear state-space models make these filters impractical for most

Earth system applications. To overcome this, Evensen (1994) proposed a Monte Carlo

implementation of the KF method – the ensemble Kalman filter (EnKF), where one uses

a small number of ensemble forecasts to approximate the evolution of the state and its

uncertainty. In particular, each member is evolved according to the nonlinear dynamics in

(2.21a) to generate a sample from the prior density ?(x= |Y=−1). The sample statistics from

the propagated ensemble members are then used to approximate the true prior mean x 5= with

x̂ 5= and the true prior covariance P 5
= with P̂ 5

= .

With this in mind, the main idea of every EnKF algorithm is to update the prior ensemble

mean x̂ 5= and covariance P̂ 5

= such that they converge to the true KF analysis mean x0= and

covariance P0= in the limit of an infinite ensemble size (see Mandel et al. 2011). Within the

original EnKF formulation, this is achieved by updating each prior ensemble member x 5
:
3

(: = 1, ..., ;  being the ensemble size) according to (see Burgers et al. 1998)

x0: = x 5
:
+K

(
y: −Hx 5

:

)
, (2.34)

where y: B y+ε: and ε: is sampled from N(0,R). This analysis scheme is inherently

stochastic as each prior member x 5
:
is corrected with a perturbed version of the original

observation vector4. By contrast, deterministic EnKFs avoid the need to sample from ε by

solving for the matrix square root of P̂0, i.e. X′0 such that X′0 (X′0)T = P̂0. Now, since X′0

can be also written as a matrix holding the analysis member perturbations, viz.

X′0 =
[
x′01 , ...,x

′0
 

]
, (2.35)

3 Note that the explicit time dependence will be omitted hereafter.
4 Very recently, van Leeuwen (2020) showed that a more consistent interpretation of the stochastic EnKF
requires that the noise term ε: is added to the observed prior Hx 5

:
instead of the observations y: .
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with x′0
:
B x0

:
−x0 and x0 being the KF analysis mean from (2.31a), the posterior ensemble

members in deterministic filters can be recovered by simply setting

X0 =
[
x01 , ...,x

0
 

]
= x01T#G

+X′0, (2.36)

where 1#G
is a vector of #G ones. Due to the inherent non-uniqueness of X

′0, past studies

have introduced several deterministic EnKF approaches to solve X′0 in a different way

(Tippett et al. 2003). Nevertheless, they all share the same motivation – to improve the

numerical properties of the ensemble-based analysis covariance matrix P̂0. In particular,

note that P̂0 = X′0 (X′0)T is guaranteed to be a positive semidefinite matrix, which is a key

requirement for every covariance matrix (e.g., Jazwinski 1970).

2.2.5 Ensemble square root filter (EnSRF)

The ground-based profiling instruments studied in this work are assimilated with a

particular deterministic EnKF variant called the ensemble square root filter (EnSRF), which

was first proposed by Whitaker and Hamill (2002). To make a clear distinction between their

method and the stochastic (perturbed-observation) EnKF, the authors begin their presentation

by first assuming that the ensemble perturbation update in any EnKF method can be written

as

x′0: = x
′ 5
:
+ K̃

(
y′: −Hx

′ 5
:

)
. (2.37)

Albeit rather heuristic at first sight, this representation has a form that mimics the covariance

update in square root KFs (e.g., see Eq. 2.39 below). The stochastic EnKF of Burgers

et al. (1998) can be recovered by setting K̃ = K, upon which E
[
x′0x′0T

]
= P0 as  →∞

(Mandel et al. 2011). In deterministic EnKFs, y′
:
= 0 and the goal is to find K̃ such that

E
[
x′0x′0T

]
= P0 as  →∞ still holds.
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One solution for K̃ was given by Potter (1964) in the special case of serially assimilated

observations5. Under this restriction, the matrix sum R+HP 5H) appearing in the Kalman

gain (2.32) reduces to a scalar and can be trivially inverted. In his derivation, Potter rewrites

the KF covariance update (2.31b) based on the matrix square roots S 5 and S0 of P 5 and P0,

respectively, upon which he shows that

K̃ =

(
1+

√
R

R+HP 5H)

)−1

K. (2.38)

This reduced Kalman gain is then used to solve the square root version of the KF covariance

update

S0 = (I− K̃H)S 5 . (2.39)

It can be easily verified that if y′
:
= 0 in (2.37), then E

[
x′0x′0T

]
correctly recovers the true

analysis covariance P0 obtained by taking the transpose of (2.39).

The EnSRF represents a Monte Carlo extension of Potter’s square root KF in which the

traditional Kalman gain K is used to update the ensemble mean x 5 according to (2.31a),

whereas its reduced version K̃ – the ensemble perturbations following (2.37). The serial

nature of the algorithm is implemented as follows: each time a new observation becomes

available, the input ensemble members are updated and subsequently used as a new prior

(background) for the next available one. In this case, since the evaluation of K̃ pertains to a

simple rescaling of K, the computational costs of EnSRF are comparable to those required

by stochastic EnKFs.

5 This rather strong assumption is only valid if the observation errors are uncorrelated, i.e. if R is diagonal.
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2.3 Overview of the PECAN field campaign

The data from the ground-based remote sensors used in this dissertation come from the

Plains Elevated Convection at Night (PECAN) field campaign (Geerts et al. 2017), which

took place during the months of June and July 2015. The main objective for their deployment

was to better understand and predict mesoscale convective systems (MCSs) forming in the

nocturnal environment of the Great Plains. These systems are important from a societal

point of view as they contribute to the well-known maximum of warm-season precipitation

in this region (e.g., Wallace 1975).

The decrease in surface-based instability at night means that the mechanisms responsible

for convective maintenance differ substantially from those observed during the day. Prior to

the PECAN field campaign, there were several possible hypotheses to explain the dynamics

of nocturnal MCSs. They all envisioned a multistep process, in which convection first

initiates over the Rocky Mountains and then propagates eastward over the Great Plains where

it is maintained by some favourable processes in the night-time environment. However, the

exact mechanisms leading to convective maintenance were not well understood. Some past

work has suggested that nocturnal convection is sustained thanks to the deep-tropospheric

gravity waves (e.g., Fovell et al. 2006) and mesoscale potential vorticity (PV) anomalies

(Li and Smith 2010) generated in the early evolution of these systems. Other investigators

(e.g., Parsons et al. 2019a) have argued in favour of atmospheric bores, which, by contrast,

occur in the later stages of convective development. The transport of low-level moisture

from nocturnal low-level jets (NLLJs; Shapiro et al. 2016) is another external factor that can

additionally enhance the ongoing convective activity (Arritt et al. 1997). Very likely, all

of the aforementioned mechanisms play some role in the nocturnal convective dynamics.

However, the rich datasets collected during PECAN can help us quantify some of their relative

contributions. For example, Reif (2020) recently conducted idealized numerical simulations

based on 108 proximity radiosondes from PECAN and concluded that atmospheric bores and
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NLLJs are more important than PV anomalies for the initiation of no-boundary convective

events.

Despite their dynamical importance, nocturnal convective systems are still poorly

represented in contemporary NWP models (Trenberth et al. 2003; Surcel et al. 2010). In the

case of global NWP, convective parameterizations appear to be ill-suited for the night-time

environment of the Great Plains (Davis et al. 2003; Clark et al. 2007). However, even

convection-permitting LAMs have been found to experience problems associated with the

timing, location and duration of nocturnal convective events. Therefore, the second important

goal of the PECAN project was to understand whether the unique datasets collected during

PECAN can systematically improve the nocturnal convective forecasts. As explained in

Section 1.2, this dissertation attempts to partially address this objective by studying the

impact of ground-based remote sensors on the forecasts of bore-generating nocturnal MCSs.

The companion studies of Degelia et al. (2019) and Degelia et al. (2020) complement

our work by evaluating the impact of these instruments on the closely related problem of

nocturnal CI. In what follows next, we provide a brief summary of all datasets assimilated in

our experiments.

2.4 Assimilated datasets

2.4.1 Conventional observations

The numerical experiments presented in Chapters 4 and 5 use a data addition approach

whereby ground-based remote sensing retrievals are assimilated on top of operationally

relevant (conventional) observations. In our case, the conventional datastream consists of in

situ measurements coming from surface stations, radiosondes, commercial aircrafts, ships,

and buoys (NDAS; Rogers et al. 2009) as well as WSR-88D radar reflectivity and radial

velocity data processed with the WDSS-II software package (Lakshmanan et al. 2007).

Here we make the important remark that in several past studies, the impact of ground-

based remote sensors has been studied in the absence of radar data (e.g., Zhang and Pu
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2011; Zhang et al. 2016b; Lewis et al. 2020; Wang et al. 2020). Throughout this dissertation,

however, we consider these observations to be part of our conventional dataset in view of

their operational use in many convection-permitting LAMs. While the assimilation of radar

observations will likely decrease the overall impact of ground-based remote sensors, we

believe this is an important prerequisite for objectively examining the value of these novel

systems in future NWP models.

2.4.2 Thermodynamic remote sensors

The primary thermodynamic remote sensor considered in this dissertation is the Atmo-

spheric Emitted Radiance Interferometer (AERI). This instrument retrieves high-frequency

profiles of temperature and moisture in the lower troposphere by measuring the downwelling

infrared radiation for wavelengths ranging between 3.3 and 19 µm. Each AERI retrieval also

comes with its own uncertainty estimate that is obtained from the imaginary component

of the instrument’s calibration equation (Revercomb et al. 1988). In Chapter 4, we test the

sensitivity of the forecasts to a simple scaling of these original error estimates, whereas

in Chapter 5 we further modify the AERI uncertainties to account for the representation

component of the observation errors (Janjić et al. 2018).

Since the observation impacts in Chapter 4 were only examined for a single case study, we

had the computational resources to assimilate additional PECAN observations and compare

their forecast impacts against those obtained with ground-based remote sensors. One of these

special datasets comes from the Lidar Atmospheric Sensing Experiment (LASE) on-board

the NASA DC-8 aircraft (Browell et al. 1998). This instrument is a differential absorption

lidar (DIAL) which operates in two different wavelength – an absorbing and a non-absorbing

one. The vertical water vapor profiles in LASE are obtained by taking the ratio of the

returned (backscattered) signals from these two wavelengths.
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2.4.3 Kinematic remote sensors

There were two different types of ground-based kinematic remote sensors assimilated in

this work. The first one is the radar wind profiler (RWP) – a pulsed Doppler radar which

typically operates in the ultrahigh frequency (UHF) range (300-3000 MHz) in the context of

PBL applications. The RWPs measure the amount of backscattered electromagnetic signal

from turbulence-induced gradients in the refractive index. A key assumption in the retrieval

process is that the turbulent eddies causing the scattering are carried along with the mean

flow.

The second source of vertical wind profiles comes from the Doppler wind lidar (DWLs).

Its measurement principle is very similar to that of the RWP, but the emitted signal represents

laser light instead of radio waves. Another key difference is that the backscattered signal

comes from aerosol particles, which are assumed to be ideal tracers for atmospheric winds.

Although the temporal resolution of DWLs is significantly better compared to RWPs, the

fact that most aerosol particles are concentrated within the PBL limits its operational range.

Optically thick clouds are another prominent obstacle as they tend to attenuate the transmitted

signal. The reader is referred to Reitebuch et al. (2001) for a more detailed discussion on the

differences between these two instruments.

2.4.4 In situ PECAN observations

The remote sensors described above were also supplemented with frequent radiosonde

measurements. As will be discussed separately in Chapter 5, the collocation of in situ and

remotely sensed observations is crucial for objectively measuring the impact of different

ground-based profiling networks. During PECAN, the number of radiosondes was typically

between 2 and 4, although on 20 June 2015 one of the PECAN sites collected measurements

every 30 minutes for a total of 6 hours. To account for this high temporal frequency, the

special PECAN radiosondes were treated as a distinct observation type and were thus

removed from the conventional datasets.
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Our experiments in Chapter 4 also considered surface data from both fixed and mobile

PECAN sites. Similar to the special PECAN radiosondes, the temporal frequency of these

surface measurements was very high (1-5 min) and required the construction of a special

experiment that can differentiate them from the operational datastream.

2.5 GSI-EnKF-WRF system

The numerical simulations presented in this dissertation are conductedwith the convective-

scale analysis-forecast system of Johnson et al. (2015). This system integrates three distinct

software packages and provides an end-to-end capability for performing real-time DA

experiments. Below we briefly outline key facts about each of these components.

Prior to their assimilation, observations are processed and quality controlled with version

3.4 of the Gridpoint Statistical Interpolation (GSI) package. This software was originally

developed by the National Center for Environmental Prediction (NCEP) for their legacy

Spectral Statistical Interpolation (SSI) analysis system (Parrish and Derber 1992). Since

then, GSI has been modified to operate in physical space and to take advantage of newly

emerging parallel architectures. The main contribution of Johnson et al. (2015) was to

introduce a new GSI capacity that allows for an efficient processing of radar reflectivity and

radial velocity observations, both of which are an essential component of our conventional

datasets. In addition to preparing observations for their subsequent assimilation, another

important feature of GSI is its comprehensive observation operator ℎ : R#G → R#H which

projects the prior ensemble members
{
x 5
:

: : = 1, .., 
}
to observation space.

The output from GSI comes in the form of diagnostic files containing all necessary

observation-space statistics for calculating the serial EnSRF analysis. Here we use version

1.0 of a GSI-based EnSRF code developed by the National Oceanic and Atmospheric

Administration (NOAA) Earth System Research Lab (ESRL) in collaboration with the

research community. To make efficient use of the high-performance computing architectures

on which our experiments are performed, the parallel EnKF implementation of Anderson
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and Collins (2007) is adopted. The main idea behind this approach is to avoid the

inefficient re-evaluation of the observed prior ensemble
{
ℎ

(
x 5
:

)
: : = 1, .., 

}
every time a

new observation is assimilated. This problem can be ameliorated by solving two additional

equations which are analogous to (2.31a) and (2.37), but instead update the observed prior

ensemble corresponding to the remaining observations in the sequence. Aside from this

highly efficient EnSRF implementation, we also use standard techniques to tackle problems

commonly encountered in ensemble-based DA. Specifically, the adverse impact of sampling

errors is limited through the Gaspari-Cohn localization technique (Gaspari and Cohn 1999),

whereas the lack of ensemble diversity during model integration – through the constant

multiplicative inflation and relaxation to prior spread (RTPS) methods of Whitaker and

Hamill (2012). Following Wang and Wang (2017), random Gaussian noise is also added

during each EnSRF cycle so that newly formed storms can be quickly introduced in the

EnSRF analysis.

Finally, the forecast component of our system is driven by the Weather Research and

Forecasting (WRF) model which solves the fully compressible, non-hydrostatic Euler

equations (Skamarock et al. 2008). First developed in the late 1990s as a multi-agency effort,

this community tool now accommodates diverse Earth system applications with scales from

a few meters to thousands of kilometers. Similar to the GSI and EnKF packages, WRF

has been found to perform very well on parallel computing architectures (e.g., Michalakes

et al. 2004), which is a critical requirement for efficiently running ensemble forecasts at

convection-permitting resolutions. In this dissertation, we use the Advanced Research WRF

(ARW) dynamical core largely maintained by the Mesoscale and Microscale Meteorology

(MMM) laboratory at the National Center for Atmospheric Research (NCAR). More details

regarding the exact configuration of the WRF-ARW model in our experiments are deferred

to Chapters 4 and 5.
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Chapter 3

Object-based algorithm for the identification and tracking

of convective outflow boundaries in numerical models

3.1 Introduction

Convectively generated outflow boundaries, such as density currents and bores, have

an important contribution to the dynamics of mesoscale convective systems (MCSs). The

theoretical importance of density currents is well established due to their critical role in

the MCS evolution (e.g., Rotunno et al. 1988; Weisman and Rotunno 2004). On the other

hand, atmospheric bores are still less familiar to the meteorological community, but these

disturbances have received considerable attention recently, including being a focus of the

Plains Elevated Convection at Night Field Campaign (PECAN; Geerts et al. 2017). The

increasing interest in bores is largely driven by their ability to initiate and maintain nocturnal

MCSs (Carbone et al. 1990; Crook et al. 1990; Locatelli et al. 2002; Parker 2008; Blake

et al. 2017; Parsons et al. 2019a). Recent work has also shown that bores occur commonly in

association with warm season nocturnal convection over the Great Plains (Haghi et al. 2017).

The dynamical significance of convective outflow boundaries has prompted the scientific

community to create automated algorithms for identifying and tracking these features. The

earliest algorithm developed for this purpose was entirely based on observational data and

closely connected to the procurement plans for the Next-Generation Radar (NEXRAD)

system (e.g., Crum and Alberty 1993). In particular, Uyeda and Zrnić (1986) as well as
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Smith et al. (1989) were the first to describe radar-based algorithms for gust front (density

current) detection that relied on the velocity convergence along radials. Later enhancements

to these algorithms included the addition of radar reflectivity in the Advanced Gust Front

Algorithm (AGFA; Eilts et al. 1991) and the use of knowledge-based signal processing in

the Machine Intelligent Gust Front Algorithm (MIGFA; Delanoy and Troxel 1993; Troxel

et al. 1996; Smalley et al. 2005). Likewise, advances in computational resources have made

it possible to identify and track convective outflow boundaries in high-resolution model

outputs. Previous model-based algorithms have focused on detecting density currents by

incorporating various physical parameters, such as temperature (Torri et al. 2015; Gentine

et al. 2016), buoyancy (Tompkins 2001; Seigel 2014), wind (Langhans and Romps 2015),

radial gradients in the density potential temperature (Drager and van den Heever 2017) or a

combination of several relevant parameters (Li et al. 2014).

Although the aforementioned methodologies have greatly enhanced our understanding

of density current and gust front dynamics, these approaches are somewhat restricted in

their application compared to the algorithm presented in this chapter. On the one hand, the

previously mentioned approaches are not suitable for detecting multiple types of convective

outflow boundaries. This limitation can be problematic with regards to typical night-time

environments in which density currents can trigger atmospheric bores upon their interaction

with the stable boundary layer (White and Helfrich 2012). The frequent generation of bores

during the night-time hours (Haghi et al. 2017) and their important role in the maintenance of

nocturnal MCSs (Parker 2008; Blake et al. 2017) necessitate the development of methods to

detect and track bores as well as their parent density currents. The other limitation of earlier

convective outflow algorithms is that they have been mostly applied in idealized modeling

frameworks, which may make them inappropriate for real-time forecasting applications.

In order to understand the interplay between nocturnal outflow boundaries and convective

systems in real-time high-resolution Numerical Weather Prediction (NWP) models, this

study presents a novel object-based algorithm that is capable of seamlessly identifying
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density currents and bores. The latter is achieved by employing a multivariate approach

similar to the dryline identification algorithm of Clark et al. (2015). Rather than attempting

to detect all convective outflow boundaries present in high-resolution model simulations,

the objective of this algorithm is to isolate only those that provide sufficient lifting for the

initiation and maintenance of nocturnal MCSs. The latter goal falls in line with the recent

findings of Parker (2008), French and Parker (2010) and Parsons et al. (2019a) who suggest

that the primary lifting mechanism for nocturnal MCSs can change from a density current to

an internal bore with the onset of nocturnal cooling.

Aside from the specific choice of identification parameters, the proposed algorithm

differs from the previously discussed methods in terms of how it tracks the identified objects

in time. Traditionally, object tracking techniques rely on statistical methods to match objects

from two different model time steps (Lakshmanan 2012). By contrast, the object tracker

proposed in this study accounts for the dynamics of convective outflow boundaries in an

explicit manner. As will be shown later in the chapter, imposing dynamical constraints in the

algorithm yields more robust tracking results compared to an algorithm based on statistical

considerations alone. It is also worth remarking that developing algorithms with due regard

to the dynamical aspects of the tracked objects was a key recommendation of Davis et al.

(2009b) – one of the first studies focusing on object-based identification and verification

using NWP data.

In addition to the technical details behind the algorithm framework, this chapter also

highlights a spectrum of additional algorithm applications relevant for bore research and

operational forecasting of nocturnal storms. Generally speaking, these algorithm applications

can be utilized in two different ways. The first one pertains to the verification of numerically

simulated convective outflow boundaries. With the advance of convection-allowing NWP

models, object-based verification techniques like the Method for Object-based Diagnostic

Evaluation (MODE; Davis et al. 2006) have become a popular choice for validating the

accuracy of localized and spatially inhomogeneous fields such as precipitation (e.g., Davis
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et al. 2009a; Johnson et al. 2011a,b; Johnson and Wang 2012; Johnson et al. 2013; Johnson

and Wang 2013; Clark et al. 2014). Unfortunately, the majority of these object-based

methods cannot be readily extended to verify bore forecasts. MODE, for instance, relies on

the presence of continuous observational data sets in order to verify model forecasts, which

is not feasible in the case of convective outflow boundaries.

Secondly, the algorithm applications proposed in this chapter can be also used to obtain a

better understanding of the underlying bore dynamics as well as the role of bores in initiating

and maintaining nocturnal MCSs. In order to examine the characteristics of numerically

simulated bores, previous studies (e.g., Martin and Johnson 2008; Koch et al. 2008a) had to

first identify their location by subjectively examining the appropriate model output fields.

While this is a reasonable approach in terms of single case studies, analyzing the dynamical

properties of bores in large data sets spanning a large number of numerical simulations is

considerably more time consuming and, additionally, prone to human errors.

The algorithm framework and the attendant algorithm applications in this study are

illustrated through a forecast experiment based on the 6 July 2015 PECAN case study.

Using the Weather Research and Forecasting (WRF) model (Powers et al. 2017), 40

ensemble members with a horizontal grid spacing of 1 km are run between 03 UTC and 09

UTC. These high-resolution forecast members are initialized with a Gridpoint Statistical

Interpolation (GSI)-based convection-allowing ensemble data assimilation system (Johnson

et al. 2015; Johnson and Wang 2017; Wang and Wang 2017) after assimilating both radar

and conventional data over a time window of 3 and 12 hours, respectively.

The rest of the chapter is organized as follows. Sections 3.2 and 3.3 introduce the

identification and tracking components of the algorithm. Section 3.4 describes several

algorithm tools and their application to the 6 July 2015 case study. Finally, Section 3.5

summarizes the main aspects of the algorithm, outlines some of its limitations and suggests

possible ways to overcome those in future work.
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3.2 Identification of convective outflow boundaries

3.2.1 Concept

As elucidated in Section 3.1, the novelty of this algorithm comes from the unified

description of density currents and bores, which is made possible by taking into account

the dynamical similarities between these two convective outflow boundaries. Specifically,

it is well known that (i) density currents and bores are characterized by high values of

vertical velocity along their leading edge and that (ii) their passage leads to a sudden jump

in pressure near the surface. The pressure rise in density currents is mostly hydrostatic in

nature and arises due to the horizontal advection of cold air behind them, but it also contains

a non-hydrostatic component associated with the deceleration of the density current relative

inflow. This is to be contrasted with the pressure increase in a bore, which is caused by

the net upward displacement and subsequent adiabatic cooling of near-surface stable air.

The identification component of the algorithm parameterizes these effects through the 1-km

above the ground level (AGL) vertical velocity (|1km) and the temporal change in mean

sea level pressure (Δ?), where Δ represents the model time step and is set to be 15 min

in this study. Although the choice of a particular height level for the vertical velocity is

somewhat arbitrary, the 1-km AGL was selected because it (i) marks the location where

the prefrontal updraft of a convective outflow boundary is likely to be found (e.g., Rotunno

et al. 1988) and (ii) has been used in some real-time NWP forecast products to assist the

bore missions during the PECAN field campaign (Johnson and Wang 2017). After carefully

choosing representative threshold values for these two model variables (see Section 3.2.2 for

details), their corresponding binary fields are combined through a binary AND operation (1

and 0 for meeting or not meeting the criteria, respectively; see bottom left-hand side of Fig.

3.1). Later on, the algorithm utilizes the temporal change in the 2-m temperature (Δ)) to

determine the morphology of the identified objects. By definition, density currents cause a

drop in the near-surface temperature, i.e. Δ) < 0◦C (15min)−1. Nevertheless, the algorithm
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Table 3.1: Parameter values for the identification and tracking components of the object-
based algorithm. The identification thresholds refer to the smoothed and/or filtered model
identification fields.

classifies the identified objects as density currents only if Δ) < Δ)DC = −1◦C (15min)−1,

where the superscript DC denotes that the Δ) threshold refers specifically to density currents

(see Table 3.1). The lower Δ)DC value is chosen deliberately to ensure that the algorithm (i)

captures only sufficiently strong density currents that are likely to have dynamic significance

and (ii) accounts for the overall cooling of the nocturnal boundary layer. Since the passage

of bores either does not change the 2-m temperature or leads to a slight near-surface

warming (Koch and Clark 1999), a convective outflow object is classified as a bore only

if Δ) ≥ Δ)B = 0◦C (15min)−1, where the superscript B is a shorthand for bores. It is

namely these distinct surface temperature responses that permit the object-based algorithm

to determine the morphology of the identified convective outflow boundaries.
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Figure 3.1: Workflow for the identification component of the algorithm. The variables ?mslp,
|1km, )2m, |∇? | and �$ refer to the mean sea level pressure, 1-km Above Ground Level
(AGL) vertical velocity, 2-m temperature, horizontal gradient of mean sea level pressure
and object area. The current and previous algorithm processing times are denoted as C
and C −ΔC, while Csep represents the separation time beyond which the numerical noise
magnitude is significantly reduced (see text for more details). To simplify the notation,
superscripts are removed upon taking temporal differences between variables (e.g., Δ? is
equivalent to Δ?mslp). The parallelograms symbolically represent data I/O, the rectangles –
the execution of specific algorithm routines, while the rhombi – the decision-making process
needed for classifying the identified convective outflow objects as density currents or bores.
The parameter values associated with the identification component of the algorithm are
summarized in the first half of Table 3.1.
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The workflow associated with the identification component of the algorithm is further

illustrated through the 1-km horizontal grid spacing simulation of the 6 July 2015 case

study (Fig. 3.2), the details of which are summarized in Section 3.1. In particular, the

information contained within the Δ? and |1km fields from Figs. 3.2a,b is used to create the

convective outflow objects shown in Fig. 3.2c. The Δ) field from Fig. 3.2d emphasizes the

heterogeneous morphology of the identified objects. For example, the southern portion of

the tracked object (refer to the black contours in Fig. 3.2c) resembles an atmospheric bore

(Δ) is neutral or positive), while the northern portion behaves like a density current (Δ) is

mostly negative). As expected, the model-simulated reflectivity field in Fig. 3.2b suggests

that the density current is located next to a convectively active region – in contrast to the

bore, which has already propagated away from the parent MCS.

Additional evidence for the discriminating capabilities of the algorithm is provided in

Fig. 3.3. The first column of this figure shows the algorithm output for two consecutive

times during which the tracked object splits into two additional objects and the southern

one changes its morphology from a density current to a bore. The objectively-determined

outflow classification results (Figs. 3.3a,c) verify successfully against the vertical cross

sections for the corresponding forecast lead times (Figs. 3.3b,d). More specifically, the

vertical cross section from Fig. 3.3b shows classical density current signatures, such as

an enhanced prefrontal updraft and a sudden drop in the virtual potential temperature (\{)

following the passage of the boundary. Contrastingly, there is an amplitude-ordered wave

train in the wake of the first convective outflow boundary on Fig. 3.3d (for G between 0 and

10 km on the cross-section), which is typical for the passage of an undular bore. It is worth

remarking that the bore on Fig. 3.3d is immediately followed by its parent density current.

The latter is located around x=0 km on the cross-section and appears to be considerably

shallower in comparison to the previously shown forecast lead time (Fig. 3.3b). Note that

the significantly weaker vertical velocities at the leading edge of the shallow density current

prevent the object-based algorithm from identifying it. This example portrays the algorithm’s
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Figure 3.2: Illustrating the identification component of the algorithm. Panels (a) and (d)
show the 15-min changes in the mean sea level pressure (Δ?) and 2-m temperature (Δ)),
respectively, after these fields have been smoothed and/or filtered with the Discrete Cosine
Transform (DCT). Panel (b) displays the 1-km AGL vertical velocity (|1km, color shaded)
and the 35-dBZ contour of simulated radar reflectivity (dark cyan contours). Panel (c) shows
all convective outflow boundaries identified by the object-based algorithm; the target objects
tracked in this particular algorithm run are plotted in black, while the rest of the convective
outflow objects detected at the current model time step (06:45 UTC on 6 July 2015) – in
gray.

46



objective to only detect convective outflow boundaries that provide sufficient lifting for

the initiation and maintenance of nocturnal convection. The scenario depicted in Fig. 3.3

corresponds quite well to the idealized simulations of Parker (2008), wherein the primary

lifting mechanism required for the sustenance of a nocturnal squall line changes from a

density current to a bore following the stabilization of the underlying boundary layer.

3.2.2 Implementation

All variables used in the identification component of the algorithm are modified in order

to yield meaningful identification results. As far as the |1km and Δ) fields are concerned,

Gaussian filters with standard deviations of f| = 3 km and fΔ) = 5 km are applied to

remove any small-scale noise (Table 3.1). The alteration of Δ? is slightly more involved

due to the presence of numerical noise for short forecast lead times. Specifically, the use

of data assimilation (DA) in the numerical simulations from this study introduces spurious

inertia-gravity waves due to the imbalance between mass and wind fields (Lynch and Huang

1992; Wang et al. 2013). Although it is possible to remove this spurious numerical noise

by exploiting initialization techniques such as the nonlinear normal mode initialization

(Baer and Tribbia 1977) and digital filter initialization (Lynch and Huang 1992), this work

proposes an alternative technique to remove the numerical noise within the formulation

of the algorithm itself. In particular, the Discrete Cosine Transform (DCT; Ahmed et al.

1974) is applied to the pressure tendency field Δ? in an attempt to filter out the spurious

inertia-gravity waves whose wavelength is considerably larger than the wavelength of the Δ?

signal defining the convective outflow boundaries. The choice of DCT was guided by the

study of Denis et al. (2002), which emphasized the suitability of the method for limited area

models with aperiodic model fields. Although the choice of a scale separation wavelength

_sep is somewhat arbitrary, tuning experiments over 3 diverse case studies showed that _sep =

150 km is optimal. In order to filter out the large-scale Δ? features, the spectral coefficients

corresponding to _sep > 150 km are set to 0 before inverting the Δ? field back to physical
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Figure 3.3: Example of classifying convective outflow objects for two different forecast
times – 04:00 UTC (first row) and 06:30 UTC (second row). Panels (a) and (c) show the
location of the identified objects. The color shading inside them corresponds to the object
morphology as determined by the identification component of the algorithm: blue represents
density currents (DC), red – bores (B), while gray marks those parts of the convective outflow
objects whose morphology cannot be determined unambiguously (CO). The final shape of
the objects is additionally modified with the medial axis transform. The cross sections in
panels (b) and (d) are taken along the line segment ��′ and show the vertical velocity (|;
color shading) as well the virtual potential temperature (\{; black curves). The thick black
contours embedded within the cross sections outline the subjectively determined density
current and bore, while the stippled gray shading represents the terrain height.
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space. Finally, since the filtered Δ? field still contains small-scale features that can degrade

the identification capabilities of the algorithm, a Gaussian filter with fΔ? = 1.5 km is applied

to the filtered Δ? field. The relatively small value of fΔ? allows the object-based algorithm

to detect dissipating bore objects, in which the Δ? signature is weak.

It is worth mentioning that the DCT filter may be not as effective during the first hour

or two of model integration when the spurious gravity wave activity is prolific and spans

a larger spectrum of wavelengths. To address this issue, the algorithm has the option to

substitute the Δ? field with the magnitude of the horizontal mean sea level pressure gradient

|∇? | close to the model initialization time (upper-left portion of Fig. 3.1). Similar to Δ?,

the |∇? | field is smoothed via a Gaussian filter with f|∇? | = 2 km. The time at which the

pressure identification variable changes from |∇? | back to Δ? is referred to as a separation

time Csep and is defined to be the forecast lead time beyond which the absolute value of the

domain-averaged |∇? | does not show significant temporal trends (Csep = 2h 30min for the

numerical simulation used in this study). Algorithm tests comparing its performance with

the two pressure identification variables confirmed that |∇? | is a reasonable substitute of Δ?

for very short forecast lead times, but degrades the object identification results in the absence

of significant numerical noise. Further note that the threshold value of |1km for C < Csep is 3

times larger compared to its counterpart value for C > Csep, i.e. |−1 = 3|−2 (refer to Table 3.1).

The latter is intended to help the algorithm identify decaying convective outflow objects with

weak vertical motions. Alternative approaches for optimally defining the threshold values of

the identification parameters are examined in Section 3.5.

Lastly, we discuss the application of morphological image processing techniques within

the identification component of the object-based algorithm. The latter aims to address the

discontinuous nature of the convective outflow objects produced as a result of merging

the |1km and Δ? (or |∇? |) fields through the binary AND operation. More specifically,

the algorithm incorporates the so-called open-close filter (Dougherty 1992) defined as the

sequential application of 1 binary opening and 10 binary closing iterations (see Table 3.1).
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This filter was chosen because of its restoration property, which removes both union and

subtractive noises (Dougherty and Lotufo 2003). In particular, binary opening removes

small-scale objects identified incorrectly by the algorithm, while binary closing fills the gaps

between adjacent outflow objects, making their structure more coherent. Note that binary

opening is applied first in order to prevent the spurious growth of small-scale objects. The

choice of binary iterations (8bo and 8bc; Table 3.1) was based on several tuning experiments, in

which the structure of the identified outflow objects was assessed qualitatively. To ensure that

only sufficiently large objects are considered by the algorithm, an additional size thresholding

is applied (�$ > �−; bottom-left corner of Fig. 3.1 and Table 3.1 for the value of �−) prior

to the classification of the identified convective outflow boundaries as density currents or

bores.

3.2.3 Grid-spacing considerations

Apart from the need to choose appropriate model parameters, the identification of

convective outflow boundaries in the algorithm is ultimately dependent on the ability of

NWP models to correctly represent their dynamical characteristics (e.g., surface warming,

pressure rise). Past studies (Koch et al. 2008a; Martin and Johnson 2008; Johnson and Wang

2017) alongside with additional analyses based on the 6 July 2015 simulations (see Fig.

OS1 in the supplement material of Chipilski et al. (2018)) have concluded that the adequate

representation of atmospheric bores in NWP models requires a horizontal grid spacing of

less than 4 km. This, in turn, implies that the object-based algorithm should be only used in

conjunction with data from higher-resolution convection-permitting NWP models. With a

view of making our algorithm applicable to a broader range of model configurations, the

remainder of this section discusses how changes in the horizontal resolution of convection-

allowing models impact its identification capabilities. In particular, we comment on the key

modifications required to successfully adapt the algorithm to a coarser 3-km model output,
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which is more typical of the currently operational convection-allowing NWP systems such

as the High-Resolution Rapid Refresh model (HRRR; Smith et al. 2008).

It is well known that coarser resolution model simulations tend to have a smoothing

effect on the underlying model fields, which can, in turn, have downstream impacts on the

number and/or extent of objects identified by the algorithm. Nonetheless, the application

of a Gaussian filter implicitly circumvents this problem as it smooths the identification

variables from different model resolutions to the same spatial scale. This statement is

supported both by Table 3.2 and Figs. OS2a,b in the supplementary material of Chipilski et al.

(2018), which show that the median and interquartile range (IQR) values associated with the

smoothed identification variables are nearly identical on the 1-km and 3-km model domains,

i.e. their ratio is ∼1. The only exception is the magnitude of the mean sea level pressure

gradient |∇? |, for which the median and IQR values on the 3-km domain are lower than their

respective values on the 1-km domain (refer to Figs. OS2c,d in the supplementary material of

Chipilski et al. (2018)). The aforementioned discrepancy arises because the Gaussian filter

is applied to model variables with different statistical characteristics: |∇? | ∈ [0,∞), while

|1km,Δ?,Δ) ∈ (−∞,∞). In order to use the pressure gradient magnitude as an identification

variable on the coarser 3-km model output, the threshold value |∇? |− from Table 3.1 needs

to be scaled accordingly. In this study, the latter was achieved via the quantile mapping

(QM) technique (e.g., Reiter et al. 2018). The QM results summarized in Table 3.2 indicate

that the scaling factor for the |∇? |− threshold is U1→3
|∇? | ∼ 0.6, i.e. the |∇? |− value needs to be

reduced by 40% on the 3-km grid in order for the algorithm to provide equivalent object

identification results. As expected, the scaling factors for the other identification variables

are ∼1, suggesting that their corresponding thresholds do not need to be changed if the

algorithm is to be run on numerical simulations with a horizontal grid spacing of 3 km.

Another important consequence of using coarser convection-allowing model simulations

with the object-based algorithm is the requirement to adjust the number of iterations in the

open-close filter, i.e. 8bo and 8bo in Table 3.1. Assuming there is a one-to-one correspondence
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Table 3.2: Dependence of the algorithm’s identification component on the horizontal
resolution of convection-allowing NWP models. The second and third columns show the
median and interquartile range (IQR) ratios of the coarser 3-km identification variables to
the original 1-km ones. To obtain these ratios, the median and IQR values from one of
the ensemble members are averaged throughout the 6-h model integration period used in
the 6 July 2015 case study. The fourth column shows the scaling factor U1→3 that needs
to be applied to the identification thresholds corresponding to the 3-km model output so
that the algorithm results from the 1-km and 3-km model outputs match. As explained in
the text, U1→3 is derived using the quantile mapping (QM) technique. The star (*) next to
U1→3
|1km indicates that the threshold scaling factor for |1km refers to both of its thresholds, i.e.
|−1 = 0.6 ms−1 and |−2 = 0.2 ms−1

between the binary fields on two different model domains with a horizontal grid spacing of

Δ1 and Δ2, it can be shown that

(
8boΔ2
, 8bcΔ2

)
Δ2 =

(
8boΔ1
, 8bcΔ1

)
Δ1, (3.1)

i.e. the number of open-close iterations on the new domain is inversely proportional to the

change in model resolution. To account for the fact that the number of iterations must be an

integer number, i.e. 8bo
Δ
, 8bc
Δ
∈ Z, the relationship from (3.1) is further approximated as

(
8boΔ2
, 8bcΔ2

)
=

(
8boΔ1
, 8bcΔ1

)
\Δ2
Δ1
, (3.2)

where \ represents an integer division. Applying (3.2) and using the information from Table

3.1 gives 8bo3km = 0 and 8bc3km = 3, suggesting that the algorithm should not use any binary

opening iterations if it is run on model data with a horizontal grid spacing of 3 km.
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Figure 3.4: A schematic showing the concept behind the tracking component of the
algorithm as well as the typical evolution of a convective outflow boundary in the night-time
environment starting from an analysis time C0. The blue (red) objects represent density
currents (atmospheric bores), while the arrows denote the objects’ motion vectors.

3.3 Tracking of convective outflow boundaries

3.3.1 Concept

The concept behind the object tracker is presented in Fig. 3.4. This schematic shows

how a convective outflow boundary might evolve in a typical night-time environment and

also highlights the key processes that the object tracker is expected to handle. Suppose that

the left-most object in Fig. 3.4 is one of the many objects identified by the algorithm at

some initial time C0. Throughout its evolution, the aforementioned object could undergo

various changes including (i) translation (C0→ C0 +ΔC), (ii) splitting (C0 +ΔC→ C0 +2ΔC), (iii)

merging (C0 +3ΔC→ C0 +4ΔC) and (iv) morphology transformation (C0 +2ΔC→ C0 +3ΔC; blue

to red color shading). The purpose of the object tracker is to recognize all of these changes

by associating objects between two consecutive image frames (separated by the model time

step ΔC).
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3.3.2 Implementation

Association of objects from two neighboring image frames is a challenging problem,

particularly in cases of object splitting, merging or rapid evolution (all of which are common

for convective outflow boundaries). Past work on multi-object tracking has examined several

techniques with a varying degree of complexity (Lakshmanan 2012). Those methods range

from a simple minimization of object distances (greedy approach; Dĳkstra 1959) to Kalman

Filter applications (Kalman 1960). Nevertheless, the aforementioned tracking techniques

are prone to errors, especially when the identified objects undergo rapid structural changes.

To address these problems, Lakshmanan et al. (2003) developed a hybrid tracking approach

that exhibits superior performance over the aforementioned methods. In this work, we use a

variation of the hybrid tracking approach to formulate our object tracker.

The components of the object tracker are summarized by the block diagram in Fig. 3.5

and further illustrated in Fig. 3.6 through a representative case scenario, in which a target

object (black shading) splits into two smaller objects (#1 and #2; gray shading) at the current

model time step. In addition to these two objects, the binary field in Fig. 3.6 contains an

additional third object (#3), which is not physically related to the target object. Ideally, the

tracking component of the algorithm should only associate objects 1 and 2 with the target

object. Within the framework of the object tracker, this is achieved through a sequential

application of three different constraints, the technical details of which are explained in the

remainder of this section.

The first constraint is purely statistical in nature and utilizes the template matching

technique (Brunelli 2009). Template matching calculates the 2D cross-correlation between

an image � (G, H) and a kernel  (G, H), i.e.

� (G, H) ◦ (G, H) =
8=|/2∑
8=−|/2

8=ℎ/2∑
8=−ℎ/2

� (G + 8, H + 9) (8, 9), (3.3)
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Figure 3.5: Workflow for the tracking component of the algorithm that illustrates the
association procedure between a target object identified in a previous image frame ()) and
a candidate object from the current image frame ($). The meaning of different diagram
blocks remains the same as in Fig. 3.1. The superscripts TM/CD refer to the template
matching/closest distance approaches used in calculating the candidate object’s motion
vector ®+$ ; −∇Π is the pressure gradient force (PGF), while ∠V( ®+$ ,−∇Π) denotes the angle
between ®+$ and −∇Π. The parameter values associated with the tracking component of the
algorithm are summarized in the second half of Table 3.1.
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Figure 3.6: Application of the object tracker to a splitting case scenario (panel a). The black
and gray color shading shows the position of the target and candidate objects, respectively.
Their centroids are marked with a blue dot and used to estimate the candidate object’s motion
vector ®+$ (green arrow). The red arrows show the direction of the PGF (−∇Π) computed
from the cluster of red points along the target object. The yellow boxes to the right of
each candidate object summarize the output of the object tracker. Panel (b) illustrates the
cross-correlation coefficient (��) field between the target object and candidate object 1.
The red star and the boxed text in the lower-left corner of the figure show the location and
value of the maximum cross-correlation coefficient ��max. Panel (c) shows the mean sea
level pressure (?mslp; blue color shading) and the direction of the pressure gradient force
(PGF, −∇Π; red arrows) along the target object.
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where (G, H) is a coordinate pair from the model domain, while | and ℎ denote the width

and height of the kernel. The purpose of template matching is to measure the degree of

statistical similarity between a candidate object1 from the current image frame and a target

object identified in the previous image frame.

Template matching is performed on each target-candidate object pair for a given algorithm

analysis time. We let the smaller of those objects be the kernel  (G, H), while the larger

one – the image � (G, H) (refer to splitting and merging scenarios in Fig. 3.5). To account

for different kernel shapes and sizes, the result from (3.3) is normalized by the sum of the

kernel values to yield the 2D cross-correlation coefficient ��, i.e.

�� =

∑8=|/2
8=−|/2

∑8=ℎ/2
8=−ℎ/2 � (G + 8, H + 9) (8, 9)∑8=|/2

8=−|/2
∑8=ℎ/2
8=−ℎ/2 (8, 9)

. (3.4)

The object tracker assumes that two objects are statistically related to each other for sufficiently

large values of the maximum correlation coefficient (��max). The value of 0.72 for ��max

on Fig. 3.6b implies there is a high likelihood that candidate object 1 is associated with the

target object. Furthermore, the location of ��max suggests that object 1 originates from the

southern portion of the target object. Both of these inferences are consistent with the object

splitting scenario depicted on Fig. 3.6a.

Apart from measuring the statistical similarity between candidate and target objects, the

template matching procedure provides an estimate for the motion vector ®+$ (denoted as ®+TM
$

;

see Fig. 3.5). In particular, ®+TM
$

is calculated by dividing the Euclidean distance between the

location of the central kernel point2  00 (- 00) and the location of ��max (-��max), i.e. the

distance between the two object centroids, through the model time step ΔC. Mathematically,

®+TM
$ =

‖-��max , - 00 ‖
ΔC

=

√
(G��max − G 00)2 + (H��max − H 00)2

ΔC
. (3.5)

1 A candidate object is an object to be associated with the target object.
2 Note that the centre of the kernel  00 is taken to be the closest point to  (0,0) where  = 1.
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Past algorithm tests have shown that the ®+TM
$

estimates can be impacted negatively if objects

undergo rapid structural changes. To address this issue, the tracker incorporates a second

estimate of ®+$ ( ®+CD
$

; see Fig. 3.5), which is based on the “greedy approach” of Dĳkstra

(1959) and measures the shortest distance between the center of the kernel -��max and the

collection of image points I = {(G� , H�) : � (G, H) = 1} corresponding to the coordinates of the

larger object, i.e.

®+CD
$ =

min{‖- 00 , I‖}
ΔC

. (3.6)

As indicated in Fig. 3.5, ®+$ = ®+TM
$

only if | ®+TM
$
− ®+CD

$
| < X = 3 ms−1.

Unlike other approaches, the tracker presented in this chapter prioritizes the dynamics of

convective outflow boundaries by adding two dynamical constraints as part of the object

association procedure. The first one makes use of the pressure gradient force (PGF, −∇Π3)

in an attempt to restrict the direction towards which objects are allowed to propagate. Given

that density currents and bores are associated with jumps in the surface pressure, one should

expect them to move approximately in the direction of the PGF (red arrows in Fig. 3.6c).

Having said that, a candidate object can be associated with a target object only if the angle

between the object’s motion vector and the PGF, i.e. ∠V( ®+$ ,−∇Π), is sufficiently small. The

second dynamical constraint imposes an upper limit on the object’s propagation speed and

is denoted as ++
$
. Ideally, ++

$
should be derived from theoretical considerations regarding

either the density current speed (e.g., Eq. 2 in Koch et al. 1991) or the bore speed (e.g., Eqs.

2.4 and 3.1 in Rottman and Simpson 1989). However, to assess the overall feasibility of

the second dynamical constraint in the initial algorithm tests, ++
$
was assumed to remain

constant throughout the algorithm runs. A similar approach was undertaken by Davis et al.

(2006) in their definition of “rain systems”.

3 Π ≡ − 1
d0
?mslp is the mean sea level pressure normalized by the reference density value.
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Association between a target and a candidate object occurs only if the following

three conditions are met simultaneously: [��max ∈ (��−,��+)] ∧ [∠V( ®+$ ,−∇Π) <

V+] ∧ [| ®+$ | < ++$] (refer to the second half of Table 3.1 for the values of ��−, ��−, V+

and ++
$
). According to the object splitting scenario in Fig. 3.6a, all candidate objects are

able to pass the template matching threshold of ��− = 0.3. However, only candidate objects

#1 and #2 successfully meet the additional dynamical requirements regarding the object’s

propagation speed and direction. Therefore, this example shows how the tracker is able to

handle the complex dynamical behavior of convective outflow boundaries by exploiting their

statistical and dynamical properties simultaneously.

The addition of dynamical constraints in the object tracker is beneficial for several reasons.

Firstly, the simultaneous fulfillment of three different conditions relaxes the prescribed

threshold values used for object association (Table 3.1). Tracking objects only with the

aid of template matching, e.g. the hybrid tracking approach of Lakshmanan et al. (2003),

would have required significantly higher value of ��− in order to avoid spurious object

associations. While a higher ��− would decrease the amount of false alarms, it can also

lower the probability of detection, especially when convective outflow objects undergo

significant structural changes.

Another benefit of incorporating dynamical constraints in the algorithm’s tracker is to

make the search area, i.e. the area within which target and candidate objects are associated,

flow-dependent (dynamic). This idea is illustrated in the schematic from Fig. 3.7 where all 3

candidate objects are perfectly correlated with the target object (��max = 1.0), but only the

first one is physically associated. In this example, both the statically- and dynamically-defined

search areas correctly discard object #3 from the association process. Nevertheless, due to

its isotropic search radius (' = 'B), the static method will spuriously associate object #2

with the target object despite that the aforementioned candidate object is located upstream of

the target’s propagation direction. This result is contrasted by our flow-dependent tracking

method, which would shrink the search area in accordance to the PGF direction and correctly
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Figure 3.7: A schematic illustration highlighting the benefits of using dynamical constraints
in the object tracker. The black-filled shape represents a target object from a previous image
frame, while the three gray-filled shapes (numbered 1, 2 and 3) – candidate objects identified
in the current image frame. The black arrow indicates the direction of the PGF (−∇Π), while
the meaning of the blue dots is the same as in Fig. 3.6. The red circle and green semicircle
correspond to the static and dynamic tracker search areas whose radii is given by ' = 'B and
' =++

$
ΔC, respectively

disassociate candidate object #2 from the target object. It is also worth noting that a

tracking method using a static search radius will underperform in cases featuring extreme

environmental conditions for which the convective outflow boundaries propagate faster than

usual. For instance, candidate object #1 in Fig. 3.7 fails to pass the object association test

for the static approach since it moves beyond ' = 'B in a single model time step. Provided

that ++
$
is defined according to theory, the model-derived environmental information should

increase the value of ++
$
and, as a result, extend the search radius ' = ++

$
ΔC of the tracker.

As revealed by the schematic example in Fig. 3.7, object #1 falls within this extended search

area and will be correctly associated with the target object.
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The use of dynamical constraints is essential when candidate objects are perfectly

correlated with the target object, i.e. ��max = 1 (e.g., all candidate objects on Fig. 3.7).

While a perfect match between a candidate and a target object is certainly possible, these

situations typically occur if one of the objects is so small that it can fit entirely into the other

one. In such cases, the additional dynamical information provided by ∠V and ++
$
is essential

in determining whether the two objects are physically related to one another.

3.4 Applications of the object-based algorithm

The intention of this section is to discuss the development of specific algorithm tools

relevant for both research and operational forecasting applications. Special emphasis is

placed on using the algorithm in conjunction with convection-allowing ensemble prediction

systems.

3.4.1 Theoretical prediction of bores based on environmental profiles from NWP

models

One application of the object-based algorithm is to use hydraulic and linear wave theories

in order to determine whether a density current can trigger a bore and whether this bore

will be maintained in the night-time environment. Predicting the development and longevity

of bores is desirable due to their potential role in modifying convective instability and

initiating deep convection (Carbone et al. 1990; Karyampudi et al. 1995; Koch and Clark

1999; Locatelli et al. 2002; Wilson and Roberts 2006). During the PECAN field campaign,

such theoretical predictions were made by manually picking two environmental profiles

on both sides of a numerically-simulated density current (Haghi et al. 2015; Geerts et al.

2017). Despite the encouraging results from such a forecasting approach, its application

is highly subjective and time consuming. In the context of ensemble prediction systems

where information from multiple ensemble members is integrated to provide probabilistic

bore forecasts, an automated objective method is much more desirable. As a result, the
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algorithm introduced in Sections 3.2 and 3.3 is extended to objectively determine whether

the night-time environment can support convectively generated bores using environmental

profiles from NWP models.

The method for extracting environmental profiles of meteorological variables on both

sides of a density current will be referred to as a four-dimensional (4D) distance minimization

and is schematically portrayed in Fig. 3.8a. The key variable in this method is the user defined

reference point ' = (GA , HA) (blue dot on Fig. 3.8a), which indicates where the theoretical bore

analysis is to be performed. For the sake of explaining the minimization procedure, Fig. 3.8a

considers a collection of 3 target objects identified by the algorithm for the first 3 algorithm

time steps, i.e. T = {T0,TΔC ,T2ΔC}. Here the set TC = {)TC
B = (GTC

B , H
TC
B ) : 1 < B < #TC , B ∈ Z}

represents the target coordinates at time C, while #)C – the total number of points associated

with TC . Let the Euclidean distance between ' and a point located within target TC be defined

as 3TC
B B ‖)TC

B , '‖. Analogous to the previous definitions, we now define the corresponding

set D = {D0,DΔC ,D2ΔC}, where DC = {3TC
B : 1 < B < #TC , B ∈ Z} represents the collection of

Euclidean distances between the reference point R and the coordinate points comprising

TC . The objective of the 4D minimization procedure is to find the smallest distance from

point ' to any of the three target objects T = {T0,TΔC ,T2ΔC} considered in this example,

i.e. 3min B 3
TCmin
Bmin = min{D}. The previous expression indicates that the distance 3min is

uniquely associated with the positional index Bmin from the nearest target object TCmin . The

latter positional index defines the so-called pivot point % = )TCmin
Bmin (light blue dot on Fig.

3.8a). In the schematic diagram from Fig. 3.8a, Cmin = ΔC and the pivot point % is located in

the middle parts of TΔC . The main purpose of point P is to mark the center of the pivot line

(PL) segment ��′ (red line on Fig. 3.8a), which intersects the density current needed for the

theoretical bore analysis. Note that the orientation of ��′ is parallel to the direction of the

PGF (−∇Π), i.e. approximately in the direction of density current propagation.

The 4D minimization procedure is typically applied throughout the entire time period

for which the algorithm is run, such as in the example from Fig. 3.8b. The time series
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Figure 3.8: Four-dimensional (4D) distance minimization of convective outflow objects
with respect to a user-defined reference point. The schematic in panel (a) demonstrates the
minimization procedure for an idealized example in which a convective outflow boundary
propagates in the positive G-direction at a constant speed �. The minimum distance (3min)
between the reference point ('; dark blue dot) and the pivot point within the convective
outflow object (%; cyan dot) occurs during the second image frame at C = ΔC = Cmin. The
red line segment ��′, parallel to the PGF (−∇Π), displays the position of the vertical
cross section required for the theoretical and explicit object analyses. Panel (b) shows the
application of the 4D minimization method to the ensemble forecast experiment from 6 July
2015, with point ' prescribed to have a latitude of 42.4◦ and a longitude of -96.4◦. The
gray curves show the minimum distance between ' and the convective outflow object at a
particular forecast lead time, i.e. min(DC). The red circles mark the values of (3min, Cmin) for
each ensemble member, while the black triangles indicate where the trajectory of a particular
ensemble member is terminated.
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showing the minimal distances for different time steps suggests that the objects from most

of the ensemble members pass over the user-selected reference point ' ∼ 4 hours after the

numerical model is initialized. It is worth pointing out that the time of passage Cmin is

not necessarily identical between different ensemble members. The latter results from the

inherent ensemble diversity with regards to the simulated density currents and highlights the

ability of the 4D minimization framework to analyse those density currents in a dynamically

consistent way, i.e. at the time of their passage over the reference point '.

An example of a probabilistic bore prediction using theoretical considerations is shown

in Fig. 3.9 and refers to a specific choice of ' with a latitude of 43.4◦ and a longitude

of -97.7◦. The two environmental profiles needed for the theoretical bore forecasts are

extracted from the end points of the PL segment ��′. The total length of ��′ is relatively

large (80 km) to ensure that the aforementioned profiles are taken sufficiently away from

the non-hydrostatic density current head. The first part of this analysis uses the two-layer

hydraulic theory of Rottman and Simpson (1989) in order to determine the likelihood of

bore development. According to this theory, the development of a bore is dependent upon

the value of the Froude number (�) and non-dimensional height (�) (see more details in

Rottman and Simpson 1989). The analysis of the vertical profiles from points � and �′

allows us to calculate the flow regime for each of the ensemble members and plot their

distribution in the parameter space of � and �. For instance, the ensemble forecast results

shown on Fig. 3.9a suggest a partially blocked flow regime, in which an atmospheric bore is

expected to form ahead of the analyzed density current. Moreover, the mode of the ensemble

distribution reveals that the most likely bore strength is ( = 2.2, which corresponds to a

weakly turbulent atmospheric bore.

The second part of the probabilistic bore prediction utilizes linear wave theory and

estimates whether the environmental conditions are favorable for maintaining the convectively

generated atmospheric bore. In particular, the algorithm calculates the ensemble distribution

of the Scorer parameter ;2 (Scorer 1949) ahead of the density current, i.e. at point �′. The
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Figure 3.9: Theoretical bore predictions performed over a reference point ' with a latitude
of 43.4◦ and a longitude of -97.7◦. Panel (a) shows the ensemble flow regime distribution
upstream of a density current. Forecast results are plotted in the parameter space of the
Froude number (�; H-axis) and the non-dimensional height (�; G-axis). The solid black
curves separate different flow regimes, while the dashed black curves mark phase regions
with constant bore strength ( = ℎ1/ℎ0 . The partially blocked regime is located between
the thick solid black curves. The red color shading displays the ensemble probability of
a particular flow regime; probability contours (blue curves) are plotted at intervals of 0.3,
starting from 0.05. The green dot indicates the position of the most likely flow regime,
i.e. the mode of the ensemble distribution. Panel (b) displays the ensemble forecast results
associated with the vertical Scorer parameter (;2) profile; the black curve refers to the median
Scorer profile, while the gray-shaded region shows the interquartile range of ;2 at a given
height. The dashed blue curve corresponds to ;2 = 0.
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example ;2 distribution from Fig. 3.9b shows a sharp decrease in ;2 from the surface to 1

km above the ground, where ;2 approaches 0 m−2. The latter condition indicates that waves

originating in the subcritical bore region are likely to be trapped4, i.e. maintain the bore for a

longer time. This example also highlights the enhanced variability in the ensemble forecasts

of ;2 near the surface, which possibly results from the inherent difficulty of numerical models

to describe the nocturnal boundary layer structure. The increased range of ;2 values near the

surface is likely to yield different wave trapping characteristics (Haghi et al. 2017).

3.4.2 Analysis of object attributes based on explicitly resolved convective outflow

boundaries

The ability of convection-allowing NWP models to explicitly simulate convective

outflow boundaries provides a unique opportunity for the object-based algorithm to extract

dynamically relevant density current and bore attributes. One of them is the propagation

speed �, which has been routinely analyzed in previous work (e.g., Goff 1976; Koch et al.

1991). Although the object-algorithm already utilizes motion vector estimates for the

purposes of object tracking (see discussion on ®+$ in Section 3.3.2), we propose an alternative

method to estimate � in the neighborhood of the user-defined reference point ', i.e. �'.

Such a consideration takes into account the scarcity of bore observations and allows the

algorithm to perform model verification only in regions where such data is readily available.

In order to calculate �', we consider the target object containing the pivot point % at

time C = Cmin (TCmin; black color shading on Fig. 3.10a) and the target objects from the two

neighboring time steps (TCmin−ΔC and TCmin+ΔC; gray color shading in Fig. 3.10a). Prior to

estimating �', the three target objects are skeletonized using the medial axis transform

(MAT; Lakshmanan 2012), i.e. TC
MAT−−−−→ Tsk

C for some time C. This transform intends to

4 If : is a horizontal wavenumber, then the square of the vertical wavenumber <2 = ;2− :2 becomes negative
for ;2→ 0 m−2 and finite values of : . According to linear wave theory, if <2 transitions from positive to
negative values, wave trapping will occur in the layer characterized by positive <2 values (like in the example
from Fig. 3.9b).
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Figure 3.10: Evaluating the propagation speed�' of a convective outflow object in proximity
of the user-defined reference point R=(41.7◦,-97.4◦). Panel (a) shows the methodology for
calculating �' based on the length of the pivot lines (PLs; purple to red colors indicating
increasing PL lengths) as well as the variability of �' in the neighborhood of ' (box-and-
whisker diagram in the figure inset). The meaning of the other symbols is summarized
in the legend at the bottom right-hand side of the figure. Panel (b) displays the ensemble
distribution of �'. The values associated with the first, second and third quartiles (@1,@2
and @3) of this distribution are shown at the top left corner of the figure. The second quartile
(the median) is additionally plotted as a dashed red line.

increase the accuracy of the �' estimate due to its property to simplify the shape of the

objects. Since the pivot point P may no longer belong to Tsk
C as a result of the MAT,

we define a new pivot point %sk which minimizes the distance between % and Tsk
C , i.e.

%sk = min{‖%,Tsk
C ‖}. Then, using the direction of the PGF (−∇Π) at point %sk and the

closest 9 neighboring points, we define a total of 10 PL segments (colored lines on Fig.

3.10a), each having a length of 80 km. If the set of coordinates for a particular PL is denoted

as L, then {-Cmin−ΔC , %
sk, -Cmin+ΔC } = {L

⋂
TCmin−ΔC ,L

⋂
TCmin ,L

⋂
TCmin+ΔC} is the set of 3 points

where the PL intersects the objects considered in this analysis. Therefore, the propagation

speed of the object associated with the 8th pivot line (�8
'
) is defined as the Euclidean distance

between the -Cmin−ΔC and -Cmin+ΔC points divided over twice the model time step (ΔC), i.e.

�8' B
‖-Cmin−ΔC , -Cmin+ΔC ‖

2ΔC
. (3.7)
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Fig. 3.10b shows the distribution of the propagation speeds from all quality-controlled

ensemble members and neighboring points (32 × 10=320 points in total) in proximity to

point ', which has a latitude of 41.7◦ and a longitude of -97.4◦ in this example. For this

particular choice of ', the median and interquartile range values turn out to be 17.6 ms−1

and 2.1 ms−1, respectively. Similar to the theoretical bore analysis, the ensemble distribution

of �' does not refer to a single model time, but rather corresponds to the time when a

convective outflow object associated with a particular ensemble member passes over the

reference point '.

There are at least two advantages of calculating �' via the aforementioned neighborhood

method. On one hand, this approach takes into account the inherent uncertainty of the �'

estimate (indicated by the coloring of the PLs in Fig. 3.10a), which can arise both due the

differential propagation of the tracked objects as well as the algorithm’s inability to calculate

the exact location of the 3 intersection points {-Cmin−ΔC , %
sk, -Cmin+ΔC } used in the calculation

of �'. The box-and-whisker diagram inset in Fig. 3.10a reveals that the velocity in the

neighborhood of point ' can vary by more than 2 ms−1, making the single-valued estimates of

�' not representative of the object’s propagation speed. On the other hand, the neighborhood

approach also leads to a significant increase in the sample size of the �' ensemble (Fig.

3.10b) and, as a result, improves the overall representation of ensemble uncertainty with

respect to the object’s propagation speed. In particular, sensitivity experiments indicated

that the ensemble distribution of �' becomes more Gaussian after including the additional

speed estimates from the neighboring points (not shown).

The second explicit analysis tool concerns the evaluation of bore amplitude and lifting in

the vicinity of the reference point ', i.e.

(' =

[
ℎ1
ℎ0

]
'

(3.8)

and
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Δℎ' = [ℎ1− ℎ0]', (3.9)

where ℎ0 and ℎ1 denote the height of the stable boundary layer (SBL) prior and after the

passage of the bore. Calculating (' and Δℎ' rests on the assumption that the virtual potential

temperature \{ is conserved when air parcels undergo bore lifting. Note that the accuracy of

this approach will decrease in the presence of convectively induced latent heating, whereby

\{ surfaces can no longer treated as material surfaces.

The procedure for estimating (' and Δℎ' starts with constructing a cross section over

the central PL segment from Fig. 3.10a. The length of the resulting cross-section (Fig.

3.11a) is the same as in the theoretical bore analysis from Section 3.4.1 (80 km) and restricts

the algorithm to only sample the undisturbed environment away from the bore front. Here

we utilize one of the theoretical bore analysis routines in order to get a first estimate of

the inversion height upstream of the approaching bore (ℎ̂0; gray diamond shape). More

specifically, ℎ̂0 is defined as the depth over which the environmental lapse rate exceeds the

moist adiabatic lapse rate (see Haghi et al. 2017, for more details). The height of the stable

layer downstream of the bore (ℎ̂1; gray diamond shape) is then defined as the maximum

height of the \{ (I = ℎ̂0) surface (gray dotted curve).

It is worth remarking that the definition of ℎ̂1) in this object-based algorithm differs from

previous studies, wherein ℎ̂1) is typically calculated as the average stable layer height in

the wake of the bore. The rationale behind our definition of ℎ̂1) is based on qualitatively

analyzing the diverse bore structures in our ensemble simulations. Specifically, examination

of certain ensemble members revealed that bores may either (i) not show a semi-permanent

increase in the SBL height or (ii) be characterized by a rather shallow \{ slope owing to more

pronounced dispersion effects. The atypical bore characteristics in such cases meant that it is

not appropriate to artificially divide a bore into subcritical and supercritical regions and then

estimate the average post-bore height in the subcritical region. By letting the post-bore SBL

height ℎ̂1) be the maximum height of the \{ (I = ℎ̂0) surface, the algorithm is able to better
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Figure 3.11: Evaluating the effective bore amplitude (' =
[
ℎ1
ℎ0

]
'
in proximity of the user-

defined reference point ' = (41.7◦,−97.4◦). The methodology for finding (' (panel a) is
illustrated with the aid of a cross-section showing the vertical velocity (|; color shading) and
the virtual potential temperature (\{; black solid curves) along the central pivot line from
Fig. 3.10a. The gray dots show the original SBL height estimate provided by the theoretical
bore analysis. The minimum and maximum heights of the original SBL height estimate
(ℎ̂0 and ℎ̂1) are marked with the two gray diamonds, while its uncertainty range – with the
two dashed gray curves. The green dots refer to the optimal SBL height, i.e. the \{ surface
experiencing maximum bore lifting. The minimum and maximum values of this optimal
SBL height define ℎ0 and ℎ1 (green diamonds), which are used in the (' estimate. Note that
the gray and the green diamonds in this example overlap due to their similar location along
the cross section. Finally, panel (b) shows the ensemble distribution of ('. The meaning of
the symbols in this histogram are the same as Fig. 3.10b
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capture the intrinsic bore diversity and provide more consistent ensemble results. With these

considerations in mind, our first estimates of the effective bore amplitude and lifting nearby

point R can be written as (̂' =
[
ℎ̂1
ℎ̂0

]
'
and Δ̂ℎ' = [ℎ̂1− ℎ̂0]', respectively.

Analogous to the estimation of the propagation speed �, we also give first-order accounts

to the accuracy of the retrieved SBL height ℎ̂0, which is a traditionally challenging variable

to estimate (Vickers and Mahrt 2004). In particular, model results have indicated that

neighboring \{ surfaces can differ significantly with respect to their post-bore displacement

heights. To alleviate this sensitivity, the deterministic value of \{ (I = ℎ̂0) is perturbed by

±2 to create a broad range of stable boundary layer heights (dashed gray curves on Fig.

3.11a) that accounts for errors in the retrieval technique as well as the underlying ambiguity

in terms of defining the SBL height. Within this envelope of possible SBL heights, the

algorithm searches for the \{ surface with the highest vertical displacement (green dotted

curve on Fig. 3.11a), which is then used to get optimal estimates of ℎ0 and ℎ1 (green diamond

shapes). In particular, ℎ0 and ℎ1 are defined to be the minimum and maximum of the

aforementioned \{ surface. These optimal SBL heights are then used to redefine the bore

amplitude and lifting in (3.8) and (3.9).

Repeating the outlined procedure for the entire ensemble of 36 quality-controlled

members provides the ensemble distribution of bore amplitudes in Fig. 3.11b. For this

specific choice of ' = (41.7◦,−97.4◦), ( varies between 1.5 and 2.7 and has a median value

of 2.1. The interquartile ensemble range implies that ∼1/4 of the ensemble members predict

the development of a bore with laminar characteristics, while the remainder ∼3/4 of them

anticipate a weakly turbulent bore. Further analysis also revealed that there is a positive

correlation between�' and (' for the ensemble forecasts used in this study (not shown). The

latter is consistent with the two-layer hydraulic theory presented in Rottman and Simpson

(1989) [refer to their Eqs. (2.4) and (3.1)] and suggests that the explicit bore routines provide

physically sound results.
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3.4.3 Object-based probabilities of explicitly resolved convective outflow boundaries

Apart from its ability to objectively analyze the characteristics of explicitly resolved

convective outflow boundaries, the algorithm presented herein can also provide probabilistic

information regarding their representation in convection-allowing ensemble prediction

systems. Given that each member in the ensemble forecast is associated with two distinct

binary fields corresponding to the location of the simulated density currents and bores,

object-based probabilities can be generated by simply calculating the relative frequency of the

aforementioned binary fields over different model grid points. An example application of the

outlined procedure is shown in Fig. 3.12 and illustrates how the object-based probabilities that

are linked to the largest convective outflow object identified close to the model initialization

time (03:15 UTC; refer to Figs. 3.12a,c) evolve after more than 3 hours of model integration

(Figs. 3.12b,d). Note that the object-based probabilities evaluated with respect to the other

target objects are not shown in Fig. 3.12 for clarity.

The sequence of images in Fig. 3.12 suggests that the largest convective outflow boundary

initialized in our numerical simulations is expected to move southeast and that the main

lifting mechanism associated with this particular boundary is very likely to change from a

density current to a bore in the later forecast hours. Although a similar evolution is also

evident in the deterministic forecast from Fig. 3.3, the algorithm-derived probabilities in

this example contain additional information that could be potentially useful to operational

forecasters. For instance, Figs. 3.12b,d, reveal that the bore (density current) probabilities

in the southern portion of the tracked outflow boundary are higher (lower) compared to

its northern parts. Given a hypothetical scenario in which the ensemble members predict

the development of convection in the vicinity of the highest bore probabilities, operational

forecasters would have an additional physical insight about the forcing mechanism behind

the model-simulated convection. If the radar and surface observations collected later on do

(or do not) confirm the presence of a bore, these operational forecasters will have strong

evidence that the NWP products used as part of their analysis are accurate (inaccurate) and
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Figure 3.12: Object-based density current (panels a and b) and bore (panels c and d)
probabilities computed with respect to the largest convective outflow boundary in the 1-km
ensemble forecasts of the 6 July 2015 case study. The first set of probabilities (left column)
is generated for 03:15 UTC and coincides with the time when the largest convective outflow
object is initialized by the algorithm. The second set of probabilities (right column) is plotted
for 06:30 UTC or after the algorithm has tracked the largest convective outflow boundary for
3 hours and 15 minutes. Probability fields are smoothed with a Gaussian kernel (f=2 km).
The 35%, 65% and 95% probability values are plotted with solid lime contours.
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would be able to adjust their forecasts accordingly. This idealized example suggests that the

ability of the object-based algorithm to discriminate between density currents and bores

could serve as useful guidance for the operational forecasting of nocturnal convection.

It is important to add that the object-based probabilities calculated with respect to the

initial target objects are not the only means of utilizing the ensemble information contained in

convection-allowing NWP models. In particular, density current and bore probabilities can

be produced by independently considering all objects identified at a given model time step.

However, since the latter approach does not make use of the algorithm’s tracker, operational

forecasters would be unable to follow the evolution of convective outflow boundaries that

are of particular interest to them. By contrast, the object-based probabilities in the example

from Fig. 3.12 do not only add a temporal component to the algorithm’s output, but are also

quite relevant in the context of short-range and rapidly-updating NWP systems, e.g. the

HRRR (Smith et al. 2008), wherein convective outflow boundaries are commonly present in

the model’s initial conditions.

3.5 Summary

This study describes the development of an object-based algorithm for the automatic

identification and tracking of convectively generated outflow boundaries. While object-

based techniques to analyze density currents have been developed previously (Li et al.

2014; Drager and van den Heever 2017), a unique aspect of this algorithm is its ability to

simultaneously account for both density currents and atmospheric bores. The detection

of these morphologically different convective outflow boundaries is possible only after

combining several model fields. Although the use of multiple identification variables

is not a new concept (e.g., Clark et al. 2015), the specific parameter choice made in

this algorithm is fundamentally different from past studies and is designed to target only

those convective outflow boundaries that provide sufficient lifting for the initiation and

maintenance of nocturnal MCSs. It is important to note that some of the identification
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variables are challenging to use without additional pre-processing steps. In particular, the

spatial inhomogeneity of vertical velocity (|1km) and the contamination of mean sea level

pressure tendencies (Δ?) with spurious numerical noise require the application of carefully

tuned image processing/filtering techniques in order to obtain physically meaningful results.

Another novel feature of the proposed algorithm is its object tracker. Following the

suggestion of Davis et al. (2009b), the object tracker is formulated to explicitly account

for the dynamics of convective outflow boundaries. The inclusion of the pressure gradient

force direction (∠V) and the maximum translational velocity (++
$
) as dynamical constraints

for object association is especially important if objects experience rapid structural and/or

morphological changes. In these cases, traditional statistical methods such as template

matching are likely to provide erroneous tracking results. Likewise, the incorporation of

dynamical information provides a better link between the algorithm and the underlying

model data. For instance, it should be possible to relate differences in the speed or direction

of object propagation back to the pressure gradient force used in the formulation of the

algorithm.

To address the growing interest in atmospheric bores amongst researchers and operational

forecasts (e.g., during the PECAN field campaign; Geerts et al. 2017), the second objective

of the chapter was to describe several algorithm applications relevant to the analysis and

prediction of bores in NWP models. These applications were shown in the context of

a convection-allowing ensemble forecast experiment from 6 July 2015. To the authors’

best knowledge, this is the first time a dedicated methodology for describing the ensemble

distribution of specific bore parameters is presented. Such ensemble estimates are expected

to provide valuable information for assessing the predictability of the studied phenomenon.

The four-dimensional minimization procedure, which lies at the heart of the suggested

algorithm tools, allows algorithmusers to automatically sample convective outflowboundaries

and perform various diagnostics pertinent to their own research objectives. The specification

of user-defined verification (reference) points through the aforementioned minimization
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procedure obviates the need for a spatially continuous verification data set, which is required

in other object-based verification methods such as MODE (Davis et al. 2006). The post-

processing tools developed as part of this object-based algorithm represent a natural extension

of previous PECAN efforts to forecast the development and maintenance of bores based

on manual input from model-derived environmental profiles (Haghi et al. 2015; Geerts

et al. 2017). Apart from completely automating the routines needed for the theoretical bore

analysis, the ability of the algorithm to determine the likelihood of bore occurrence could

prove especially beneficial to operational forecasters by guiding them where the initiation of

nocturnal convection is more likely.

Despite the encouraging performance of the newly developed object-based algorithm, it

is also important to point out some of its limitations. The algorithm weaknesses are largely

associated with its identification component. Most evidently, the static threshold values used

to define convective outflow boundaries in the model domain are global in nature and only

valid over relatively short periods of time. Within this study, the aforementioned problem is

addressed by introducing two different sets of threshold values dependent upon the forecast

lead time and the magnitude of the spurious numerical noise. One way to improve the

identification capabilities of the algorithm is to use adaptive thresholding methods, e.g.

through utilizing image histograms (Tobias and Seara 2002). Alternatively, introducing more

sophisticated techniques such as marker-controlled watershed segmentation (Soille 2003)

could completely remove the need for prescribing threshold values. Past experience related to

the development of methods for detecting and tracking convective outflow boundaries in radar

data can be also helpful in bolstering the identification results of our object-based algorithm.

For instance, Delanoy and Troxel (1993) show how tracking gust fronts and anticipating

their location in future radar scans improves the overall identification results. Another

potentially useful concept incorporated in the aforementioned study is the application of

Functional Template Correlation (FCT) filters (Delanoy et al. 1992). In particular, this type of
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matched filters can be designed to describe the topological characteristics of model-simulated

convective outflow boundaries and, hence, reduce the number of spuriously identified objects.

Finally, it is hoped that this chapter will serve as a foundation for future studies aiming

at advancing the algorithm’s capabilities as well as developing other relevant algorithm

applications. A particularly interesting line of research would be to determine whether

the classification of convective outflow boundaries can be extended to more complex

features such as solitons and deep tropospheric gravity waves. Future work should also take

advantage of the algorithm’s capability to objectively analyse some of the dynamical aspects

of convective outflow boundaries. In line with the observational study of Toms et al. (2017),

the algorithm could offer a convenient framework to examine the temporal evolution of the

wave trapping characteristics following a model-simulated bore. Such an analysis could lend

important insights into the two-way interactions between atmospheric bores and the ambient

environment in which they develop and maintain.
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Chapter 4

Impact of assimilating PECAN profilers on the prediction

of bore-driven nocturnal convection: a multiscale forecast

evaluation for the 6 July 2015 case study

4.1 Introduction

Convectively-generated bores forming in the Great Plains of the United States are an

integral part of the night-time convection that occurs over this region (Crook et al. 1990;

Koch and Clark 1999; Parker 2008; Blake et al. 2017; Haghi et al. 2017; Parsons et al.

2019a; Grasmick et al. 2018; Haghi et al. 2018). Nevertheless, the representation of bores

in numerical weather prediction (NWP) models is very challenging due to the presence of

multiple processes driving their initiation and subsequent evolution. For example, as with

any convective system, numerical forecasts need to accurately capture both the location and

timing of convection initiation (CI) as well as how the simulated convection evolves towards

the late afternoon/early evening hours. Assuming that the aforementioned convective activity

is simulated well, successfully predicting the formation of a bore further depends on how

well the model resolves the interactions between the convectively-generated cold pools and

the flow within the stable boundary layer (SBL). Capturing the evolution of the bore, on

the other hand, is contingent upon the model’s ability to adequately simulate the nocturnal

low-level jet (LLJ), whose curvature aids in trapping wave energy behind the leading edge of
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the bore (e.g., Karyampudi et al. 1995). Finally, the generation of bore-driven convection is

sensitive to both the structure of the bore as well as the thermodynamic properties of the

ambient environment (Crook 1986).

Given these challenges, high quality initial conditions in and above the SBL are necessary

to obtain accurate forecasts of the bores and their influence on nocturnal convection. The

low spatiotemporal resolution of current observational networks is insufficient to capture the

salient mesoscale features in the lowest 5 km of the atmosphere (Geerts et al. 2017). The

solution put forth by several reports from the National Research Council (National Research

Council 2009, 2010, 2012) was to design a network of high-frequency thermodynamic

and kinematic profilers capable of conducting continuous unattended measurements of the

lower troposphere. Advances in remote sensing have already led to the development of

such instruments, with several early studies reporting that profilers provide considerable

advantages over conventional radiosondes1 (e.g., Hogg et al. 1983b,a; Bleck and Brummer

1984; Westwater et al. 1984). A notable characteristic of these original profiling systems,

which utilized VHF and UHF Doppler radars, was their ability to provide wind measurements

with high vertical resolution – an important impetus for the later development of the NOAA

Wind Profiler Network (e.g., Weber et al. 1990). Having recognized the potential benefits of

the newly introduced kinematic profilers, the meteorological community started to examine

the feasibility of these new measurements for different NWP applications. The seminal paper

of Kuo et al. (1987), for instance, demonstrated that the assimilation of wind profilers can

increase the short-range (0-48h) skill associated with mesoscale NWP models. Benefits from

assimilating wind profilers were also found in several other papers (e.g., Cram et al. 1991;

Smith and Benjamin 1993; Guo et al. 2000) and eventually led to the operational assimilation

of these kinematic profilers (Bouttier 2001; Benjamin et al. 2004). More recently, several

research groups have also considered the assimilation of Doppler Wind Lidar (DWL) data.

1 Throughout Chapter 4 the term radiosonde would be used in lieu of rawinsonde to denote balloon launches
with GPS readings.
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The ability of DWLs to provide high-resolution wind information in the lower parts of the

BL and in the near-storm environment has led to improvements in the convective forecasts

from high-resolution NWP models (Zhang and Pu 2011; Kawabata et al. 2014).

Although early profiling systems, such as the prototype Profiler system discussed in

Hogg et al. (1983b), did have radiometric profiling capabilities, the vertical resolution of

the retrieved temperature and moisture profiles was much coarser than the corresponding

wind profiles and comparable to the resolution obtained from satellites (Bleck and Brummer

1984). Later developments in remote sensing technology gave rise to new profiling strategies

that allowed for a detailed description of the thermodynamics in the lower troposphere.

Examples for some of these instruments include the Raman lidar (Melfi and Whiteman

1985; Melfi et al. 1989) and the Differential Absorption Lidar (DIAL; Browell et al. 1998;

Weckwerth et al. 2016), both of which are based on active remote sensing techniques. The

NASA Lidar Atmosphere Sensing Experiment (LASE Moore et al. 1997) is one of the most

widely used DIAL instruments and has been deployed throughout multiple field campaigns.

The assimilation of LASE data has also been shown to improve the forecasts of hurricanes

(Kamineni et al. 2003, 2006) and deep moist convection over the Great Plains (Whiteman

et al. 2006). Parallel with the steady progress in lidar technology, the development of passive

infrared sensors has also made it possible to obtain simultaneous profiles of temperature

and moisture in the lower troposphere. One such instrument is the Atmospheric Emitted

Radiance Interferometer (AERI Revercomb et al. 1988; Feltz et al. 2003; Knuteson et al.

2004a,b; Turner and Löhnert 2014) whose experimental assimilation has improved the

analysis and forecasts of large-scale extratropical systems (Hartung et al. 2011; Otkin et al.

2011) and deep moist convection (Coniglio et al. 2019; Degelia et al. 2019).

Despite the encouraging results from the previous studies, further work is still needed

to justify a national observational network of profilers that can be assimilated routinely

in NWP models. A critical component of establishing this justification is assessing the

potential benefit of these novel instruments in predicting high impact weather, such as
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nocturnal convection. To address this requirement, the Plains Elevated Convection At Night

(PECAN) field campaign, which took place in the summer of 2015, utilized a rich set of

thermodynamic and kinematic profilers that targeted nocturnal convective events (Geerts

et al. 2017). In an effort to understand whether these state-of-the-art profiling instruments can

adequately sample the broad spectrum of processes occurring in the nocturnal environment,

this chapter examines how their assimilation affects the numerical prediction of the bore-

driven convection event from 6 July 2015. The performance of the PECAN profilers is

assessed against the operational observation network as well as the high-frequency surface

and radiosonde observations collected during this PECAN Intensive Observing Period

(IOP). The primary objective of this chapter is to understand whether the assimilation of

thermodynamic and kinematic data from these PECAN profilers can improve the simulation

of the wide range of processes accompanying bore-initiated convection. To address this goal,

verification results are presented separately with respect to (i) the environment in which the

bore forms, (ii) the explicitly resolved bore and (iii) the bore-initiated nocturnal convection.

The benefits from remote-sensing profilers are expected to be maximized if their assimilation

leads to the simultaneous improvement of all three forecast components.

Studying the impact of remote-sensing instruments on the numerical prediction of

bores and bore-driven nocturnal convection is a novel aspect of this work, which has been

previously hampered due the lack of appropriate verification metrics. The object-based

convective outflow algorithm of Chipilski et al. (2018) was an important development

that provided the necessary tools for conducting the present investigation. As detailed in

Section 4.3.2, the aforementioned algorithm has been further extended to accommodate

a neighborhood verification of the ensemble bore forecasts as well as diagnostic tools to

examine the properties of the simulated bores in the context of the ambient environment. The

results reported herein complement the work of Degelia et al. (2019) who demonstrated the

ability of PECAN profilers to improve the forecasts of nocturnal CI. Despite their common

focus on assimilating novel remote-sensing profilers, the two studies look at different aspects
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of the nocturnal environment and differ in their underlying experimental designs. More

specifically, the assimilation of PECAN data in this chapter is done in a data addition

framework, wherein each new instrument type is added on top of the current conventional

observation network. This approach allows us to assess the relative strengths and weaknesses

of different instrument types.

The rest of this article is organized as follows: Section 4.2 provides a brief discussion

of the case study used in our real-time experiments and highlights the relevancy of the

assimilated data with respect to the underlying research objectives. Section 4.3 describes the

experimental design as well as the methodology used for the objective verification of the

ensemble forecasts. Data impacts with respect to the three forecast components are discussed

separately in Sections 4.4, 4.5 and 4.6 and then reconciled in Section 4.7. The chapter

concludes with a brief discussion regarding the implications of our findings and provides

some suggestions on how the representation of nocturnal convection can be improved in

future NWP systems.

4.2 Case study overview and PECAN data availability

The forecast impact of assimilating novel PECAN observations is assessed with respect

to the 6 July 2015 case study (IOP20). The radar overview in Fig. 4.1 shows that there were

three regions of afternoon convection (northwestern parts of NE as well as across the NE-SD

and SD-MN borders) that grew upscale during the night and eventually merged into a large

mesoscale convective system (MCS). During the development of the nocturnal SBL, the

strength of the leading convective line across the northern parts of NE decreased and new

convective activity developed upstream of theMCS. The presence of such convective initiation

is commonly referred to as discrete propagation and has been shown to play an important

role in the maintenance of nocturnal convective systems (Crook and Moncrieff 1988; Fovell

et al. 2006; Bodine and Rasmussen 2017). For this PECAN case, the discrete propagation

of the MCS was associated with two separate episodes of bore-initiated convection – one
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Figure 4.1: Radar evolution of the 6 July 2015 nocturnal MCS case study based on a 1-km
NEXREAD reflectivity mosaic (http://www2.mmm.ucar.edu/imagearchive). The locations
corresponding to the first and second episodes of bore-initiated convection are indicated
with a magenta ellipse in panels (d) and (g), while the horizontal scale of the maps – in the
upper right corner of panel (a).

between 0500 UTC and 0615 UTC a second one between 0630 UTC and 0800 UTC (refer

to purple ellipses in Fig. 4.1). The increased longevity of the MCS as a result of the two

initiation episodes makes this case especially relevant for the objectives of our study.

Selecting IOP20 to conduct our data assimilation experiments was largely driven by the

large number of observations collected in this PECAN mission. The nocturnal environment

on 6 July was sampled by both fixed and mobile PECAN Integrated Sounding Systems

(PISAs) as well as all three research aircrafts deployed during the field campaign (refer to

Table 4.1). It is apparent from Fig. 4.2 that there were two main regions of data collection.

The first one was located in the south-eastern parts of South Dakota and featured a mobile

array of AERI, DWL, wind profiler, radiosonde and surface instrumentation. These mobile
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Table 4.1: PECAN instruments assimilated during the 6 July 2015 case study. The variables
) , "{,* and+ stand for temperature, mixing ratio and the two components of the horizontal
wind. The asterisk (*) in the last row indicates that the NSSL’s Mobile Mesonet (NSSL
MM) suite consists of 6 vehicles in total – 2 NSSL vehicles, 2 NSSL MGAUS vehicles, 1
CSU MGAUS vehicle, and the NSSL NOXP scout vehicle.

units were able to observe both sides of the approaching cold pool, providing a unique

opportunity to examine the accuracy of the bore environment predictions. However, it

should be noted that the cold pool in South Dakota was not observed as well as the ambient

environment ahead of it due to the inability of certain profiling instruments (e.g., AERI and

DWL) to operate in heavy rain conditions. The other location of intensive data collection

was the fixed PISA site in Minden, Nebraska (FP4 hereafter), which hosted AERI, wind

profiler, radiosonde and surface instrumentation. Similar to the mobile array, the FP4

site was able to observe the region upstream of the approaching bore and bore-initiated

convection. Additionally, the Compact Raman Lidar (CRL) mounted on-board the University

of Wyoming King Air Research Aircraft (UWKA; Wang et al. 2016) sampled the structure

of the observed bore in Nebraska (downward-pointing maroon triangles in Fig. 4.2b) and

generated a valuable dataset for verifying the explicit bore forecasts (discussed in Section

4.5).
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Figure 4.2: Spatial distribution of the IOP20 PECAN observations during (a) the final
analysis time at 0300 UTC (cf. Fig. 4.3) and (b) the first episode of bore-initiated convection
at 0500 UTC. Observation locations are plotted over a 10-minute period centered around
these two times. Overlaid on the two panels are composite reflectivity from the Multi-Radar
Multi-Sensor (MRMS) system (color shading) and the ensemble mean 2-m mixing ratio
from the BASELINE experiment (solid black contours with values in gkg−1).

4.3 Methods

4.3.1 Experimental design

The data assimilation experiments in this study were conducted with an ensemble data

assimilation and prediction system based on version 3.7.1 of the Weather Research and

Forecasting – Advanced Research core model (WRF-ARW; Skamarock et al. 2008) and a

Gridpoint Statistical Interpolation (GSI)-based Ensemble Kalman Filter that was enhanced

with convective scale radar data assimilation capabilities (Johnson et al. 2015; Wang and

Wang 2017). The model parameterization schemes utilized in our numerical experiments

follow the configuration of Johnson and Wang (2017) and are summarized in Table 4.2. The

timeline in Fig. 4.3b illustrates the experimental design for the data addition experiments.

First, an outer 9-km domain (d01; Fig. 4.3a) was run with initial and lateral boundary

conditions based on 20 members from the Global Ensemble Forecast System (GEFS; Wei
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et al. 2008) and 20 members from the Short-Range Ensemble Forecast (SREF; Du et al.

2014). In the period between 1500 UTC on 5 July 2015 and 0000 UTC on 6 July 2015,

conventional data (surface, radiosonde, ship, buoy and aircraft flight level) from the North

American Mesoscale Forecast System Data Assimilation System (NDAS) were assimilated at

a 3-hour frequency on the d01 domain. Then, the 9-km ensemble analyses were downscaled

to create two additional model nests at 3 km (d02) and 1 km (d03). Between 0000 UTC and

0300 UTC, data assimilation was conducted on the highest resolution 1-km (d03) domain and

the conventional NDAS observations were assimilated together with radar data at a temporal

frequency of 10 minutes, following Johnson and Wang (2017). Finally, the ensemble

analyses obtained at 0300 UTC were used to launch a 40-member ensemble forecast for an

additional period of 6 hours. The model configuration described so far serves as a control

experiment and is referred to as BASELINE hereafter. Additional data impact experiments

were also conducted, in which PECAN observations from IOP20 were assimilated on the

d03 domain. The name of those experiments alongside with optimally tuned2 localization

values for EnKF are summarized in Table 4.3. Arguably, the vertical localization value in

LIDAR_VAD is relatively large, especially in view of the rapidly decreasing accuracy of the

DWL instrument over height. However, since additional LIDAR_VAD experiments with

different horizontal and vertical localization scales resulted in very little forecast impacts

(not shown), the optimal localization choices for this experiment were not explored any

further in this study.

It is important to mention that all PECAN observations were pre-processed before

assimilation (cf. Table 4.4) by closely following the methodology outlined in Degelia et al.

(2019). However, a notable difference with the aforementioned study is that the AERI

observation errors were not additionally inflated to account for representativeness errors. The

decision to retain the original AERIoe error profiles was motivated by the better forecast skill

obtained in this particular case study; nevertheless, future work is still needed to understand

2 Localization (and observation error) values were tuned to maximize the skill of the convective forecasts.
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Table 4.2: WRF-ARW model physics.

Table 4.3: List of all numerical experiments conducted as part of the 6 July 2015 case study.
AIRCRAFT contains both NOAA P-3 flight level data and NASA DC-8 LASE mixing ratio
profiles, while WIND_PROF only considers the assimilation of the 915 MHz radio wind
profiler at the FP4 site. Note that the AERI retrievals in AERI_REDUCED are assimilated
at the frequency of the FP4 radiosonde data. The horizontal and vertical EnKF localization
values in the second and third columns are optimally tuned to maximize the skill of the
convective forecasts (cf. Section 4.6). Note that the two localization values reported next to
BASELINE refer to the conventional and radar observations, respectively.

the optimal ways of assimilating these novel thermodynamic profilers. Some insights into

this question are provided in Section 4.6.1 where the sensitivity of the AERI convective

forecasts is tested for different error and assimilation frequency choices. Lastly, we also

note that the wind profilers from the mobile array in South Dakota were discarded from

WIND_PROF and PECAN_ALL experiments due to the presence of large systematic errors3.

3 Examination of the raw wind profiler data revealed large deviations in wind direction when compared to the
nearby mobile radiosonde units.
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Table 4.4: Pre-processing and error statistics associated with the PECAN observations from
IOP20.

4.3.2 Verification and diagnostics of the bore forecasts

The impact of assimilating PECAN observations on the quality of the bore forecasts

was assessed objectively using the convective outflow algorithm of Chipilski et al. (2018).

This algorithm tracks convective outflow boundaries simulated during an ensemble forecast

and diagnoses their properties (e.g., bore height) over a user-prescribed reference point R,

which is chosen to coincide with the location of the verifying bore observations. Although

the aforementioned point-based approach provides a quantitative assessment of forecast

accuracy, the verification results will likely not be representative as convective outflow

boundary are capable of exhibiting pronounced spatial and temporal variability (Haghi et al.

2017). Moreover, the verification statistics could suffer from sampling errors due to the

finite size of the ensemble forecasts.

With a view of making the verification results more statistically robust, this study extends

the original formulation of the algorithm to accommodate an ensemble-based neighborhood

verification of the bore forecasts. As illustrated in Fig. 4.4a, this extension is achieved

by generating a reference grid close to a verifying bore observation. The reference grid
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Figure 4.3: Experimental design. Panel (a): Model domains used for the numerical
experiments in this study. The horizontal grid spacing of domains d01, d02 and d03 is 9km,
3km and 1km, respectively. Each model domain consists of 50 model levels distributed
according to the default WRF settings. Panel (b): Timeline of the data assimilation
cycling and ensemble free forecasts. Based on initial and lateral boundary conditions from
GEFS/SREF, a 40-member ensemble forecast is run between 12 UTC and 15 UTC to provide
the ensemble background for the first data assimilation cycle on the outer 9-km (d01) domain.
Conventional (NDAS) observations are then assimilated every 3 hours until 00 UTC on 6
July 2015, at which point the data assimilation calculations switch to the highest-resolution
(d03) domain for another 3 hours. During this period, assimilation frequency is reduced
to 10 minutes and the conventional observations are complemented by radar and PECAN
IOP20 data. Finally, the 1-km ensemble analyses at 0300 UTC are used to launch 6-hour
ensemble forecasts in order to evaluate the PECAN data impacts.
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consists of multiple reference points (four in the example from Fig. 4.4a) from which the

algorithm extracts relevant attributes at the time of object passage. The three reference grids

generated as part of this work are shown in Fig. 4.4c; note that their extent corresponds

to a neighborhood radius consisting of 99 reference points, which is the largest number

of neighboring points used in this work. The first two reference grids are used to verify

the bore environment over the mobile array in South Dakota as well as the explicit bore

forecasts near the two UWKA intercepts. The third reference grid is located near the region

of bore-initiated convection and is used to understand whether the PECAN impacts are due

to changes in the mesoscale ambient environment or the characteristics of the explicitly

resolved bore. Analogous to Chipilski et al. (2018), the calculation of object attributes over

a particular reference point (Fig. 4.4b) is achieved by constructing a cross section oriented

along the direction of the pressure gradient force. Note, however, that unlike the original

formulation of the algorithm, these cross sections are recentered about the location of the

leading prefrontal updraft, which allows us to generate composite density current/bore cross

sections derived from multiple ensemble members and reference points.

Verifying the bore environment forecasts is accomplished by utilizing the flow regime

diagrams of Rottman and Simpson (1989). These diagrams make theoretical predictions as

to whether a density current intruding into an SBL is capable of generating an atmospheric

bore. The primary reason for adopting this methodology is in its relative simplicity. In

particular, the flow regime diagram describes the characteristics of the bore environment

as a single point in the phase space of two non-dimensional parameters – the normalized

density current depth (�) and the Froude number (�).

4.4 Bore environment

The correct use of flow regime diagrams requires their application prior to the generation

of an upstream bore disturbance. To ensure this criterion is met, we used time series of

surface pressure and temperature from both PECAN observations and model forecasts to
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Figure 4.4: Neighborhood verification of the ensemble bore forecasts. Panel (a) illustrates
schematically the construction of a reference grid in proximity to a verifying bore observation.
The new version of the algorithm performs a four-dimensional (4D) distance minimization
at each reference point (cf. panel b) in order select which convective outflow boundaries
to analyze for each ensemble member. Once these objects are determined, the algorithm
generates cross sections oriented parallel to the direction of the surface Pressure Gradient
Force (%��; solid magenta vector) to calculate various object attributes, such as the pre- and
post-bore heights (ℎ0 and ℎ1). Panel (c) displays the location of the 3 reference grids used
for the analysis in this study. Additional information overlaid on this panel figure includes
the position of the verifying bore observations (e.g., mobile array, UWKA I2 and I6), the
location of the KUEX and KOAX radar sites, and the 30 dBZ MRMS reflectivity during the
first episode of bore-initiated convection (0546 UTC; thin solid blue contours). The letters
N and S refer to the northern and southern clusters of bore-initiated convection, while I2
and I6 — to the 2nd and 6th bore intercepts from the UWKA aircraft.
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determine the morphology of the convective outflow boundary that passed over the mobile

array in South Dakota. Analysis of these time series revealed a simultaneous rise in pressure

and decrease in temperature between 0345 UTC and 0430 UTC (not shown), confirming

that the sampled convective outflow boundary had density current characteristics.

4.4.1 Observed bore environment

For a complete description of the observed flow regime, thermodynamic and kinematic

profilers need to simultaneously observe both sides of a density current, which was not

always possible during IOP20. In order to make the best use of the PECAN observations

collected on 6 July 2015, data from all relevant mobile sites were combined to estimate the

variables needed for the flow regime calculations. Such a framework fits our object-based

neighborhood approach and is justified due to the spatial proximity of the mobile instruments.

In the context of the flow regime diagram, the ambient environment ahead of the cold

pool is characterized by 3 variables – the SBL depth (ℎ0), the phase speed of shallow water

waves propagating on the SBL inversion (�6|) and the mean inversion wind speed4 projected

in the direction of density current propagation (*0). These flow regime variables were

estimates using the available mobile radiosonde, AERI and DWL observations. It is evident

from Fig. 4.5 that both ℎ0 and*0 increase during the night, coincident with the strengthening

SBL inversion and low-level jet (LLJ). It is worth pointing out that the temporal evolution of

�6| follows closely that of ℎ0 and is not displayed here for brevity. Note that observations

from different mobile sites are averaged over a 45-minute time window prior to the density

current arrival (gray boxes in Fig. 4.5), resulting in a single estimate from each mobile site.

A closer examination of the data during this period reveals large regional differences in the

observed ambient environment, with ℎ0 varying between 350 m and 850 m and*0 exhibiting

a bimodal distribution.

4 Mean inversion wind is defined as the wind averaged over the depth of the SBL.
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Figure 4.5: Observations of the ambient bore environment from the mobile array in
southeastern South Dakota showing the temporal evolution of (a) the SBL depth (ℎ0) and
(b) the mean inversion wind projected in the direction of density current propagation (*0).
The cross markers in the time series show Mobile PISA (MP) estimates derived from either
AERI (panel a) or Doppler wind lidar (panel b) retrievals. The gray box between 0345 UTC
and 0430 UTC highlights the 45-minute time period used for deriving the observed flow
regime in Section 4.4.

93



One of the salient features of IOP20 was the spatial collocation of several instruments

from the mobile array in South Dakota, which allowed us to check the quality of the retrieved

ambient flow regime variables. As an example, MP1 (CLAMPS) simultaneously operated

an AERI, a DWL and a mobile radiosonde; the radiosonde data made it possible to assess

the accuracy of the first two remote sensing instruments. The favorable agreement between

the two MP1*0 estimates (green colors in Fig. 4.5b) does not only demonstrate the DWL’s

ability to accurately measure the winds within the SBL, but also provides further evidence

for the existence of regional variabilities in the observed LLJ. By contrast, the SBL depth

derived from the MP1 AERI retrievals is nearly half of the corresponding radiosonde value.

Further comparison of these two instruments showed that the lower AERI ℎ0 value arises

due to a stronger vertical gradient in the virtual potential temperature, which acts to lower the

SBL depth derived from the Haghi et al. (2015) method. Although the ℎ0 estimate from the

MP1 AERI instrument is not too far from the one derived at the nearby MP2 site, we decided

to discard it from any subsequent flow regime calculations due to the superior accuracy of

the collocated MP1 radiosonde measurements.

The density current properties needed for the flow regime calculations are its depth (30)

and propagation speed (�6). For consistency with the object-based algorithm of Chipilski

et al. (2018), 30 is taken to be the height at which the virtual potential temperature in the

density current profile equals its corresponding surface value in the ambient environment.

Using the value of 30, the density current’s propagation speed �6 is defined as

�6 =

√
630

Δd

d0
−U*0, (4.1)

where g is the gravitation acceleration, Δd = d3 − d0 is the difference in surface air density

between the density current and the ambient environment, and U = 0.75 is a correction

coefficient that accounts for the slowing of the cold pool as a result of the ambient head wind

*0 (Liu and Moncrieff 2002). Estimates of the density current properties were only based
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Table 4.5: Density current and flow regime characteristics according to the radiosonde
observations from the MG2 (NSSL2) and MG3 (CSU) mobile sites. The variables 30 and
�6 refer to the depth and propagation speed of the cold pool, while � and � denote the
non-dimensional density current depth and Froude number. The flow regime classification
in the last column follows Rottman and Simpson (1989).

on the MG25 (NSSL2) and MG3 (CSU) mobile radiosonde units as heavy precipitation

following the passage of the cold pool forced the two AERI instruments to discontinue their

data collection process. It is important to remark that while the location of the NSSL2 and

CSU units coincided throughout IOP20 (Fig. 4.4), the balloon launches from these two

mobile units occurred at different times. Due to the slowly-varying nature of the SBL, the

different launching times had very little impact on the ambient flow regime variables (Fig.

4.5). However, the values in Table 4.5 indicate that they inevitably caused large deviations in

terms of the observed density current properties.

In order to provide a fair estimate of the bore environment that integrates all available

mobile observations in South Dakota, we generated a set of possible flow regimes by

randomly combining the values from each of the five flow regime variables. In doing

so, special care was taken to account for any theoretical relationships between them. For

example, low (high) values of ℎ0 and 30 were only paired with low (high) values of �6| and

�6. The red crosses in Fig. 4.6 display the location of all possible flow regimes alongside

with the individual flow regime estimates from the CSU and NSSL2 radiosonde sites (refer

to the cyan and pink rectangles in Fig. 4.6 as well as the numbers in Table 4.5). The

observations collected from the mobile array in South Dakota provide strong evidence that

the flow regime during IOP was partially blocked, with the majority of the theoretical bore

amplitudes (dashed curves) ranging from 2 to 4. According to Rottman and Simpson (1989),

these values are associated with a moderately turbulent type B bore. It is interesting to

5 MG stands for a Mobile GPS Advanced Upper-Air Sounding System.
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remark that the position of the CSU and NSSL2 estimates in phase space (relative to the

set of possible flow regime values) reveals that most of the variability in the observed bore

environment comes from the heterogeneous properties of the density current as the two

radiosonde sites produce very similar observations of the ambient environment (cf. blue and

red dots in Fig. 4.5).

4.4.2 Forecast impacts

The impact from assimilating PECAN observations on the forecasted bore environment

was evaluated for 8 neighbourhood radii in order to investigate whether results are consistent

across different scales of motion. Since the obtained verification statistics were found to

be largely invariant to the chosen neighbourhood radius (e.g., Fig. 4.7a), the discussion

herein is restricted to a representative grid containing 49 reference points. Examination

of the ensemble forecasts from BASELINE (Fig. 4.6a) reveals that the control experiment

is able to correctly predict a partially blocked flow regime. The presence of two distinct

forecast modes, located at theoretical bore amplitudes of ∼2 and ∼2.7, is also consistent

with the tendency of the flow regime observations to cluster around certain portions of

the phase space. It should be also noted that while the ensemble spread in BASELINE

covers most of the possible flow regime values, the forecast range appears to be slightly

displaced towards the origin of the diagram. Improvements in the flow regime predictions

are only visible after assimilating observation types that contain wind information, i.e. in

the LIDAR_VAD (Fig. 4.6e), WIND_PROF (Fig. 4.6f), RADIOSONDE (Fig. 4.6g) and

SURFACE (Fig. 4.6h) forecasts. Out of the aforementioned experiments, the best forecast

performance is seen in RADIOSONDE and LIDAR_VAD, for which the number of ensemble

members below the lower range of possible flow regime values is considerably reduced.

In the case of LIDAR_VAD, the ensemble spread is also better aligned with the direction

of the observed flow regime uncertainty, which helps increase the ensemble probability

over the cluster of possible flow regime values in proximity to the NSSL2 site. As one
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Figure 4.6: Verification of the bore environment forecasts. The color shading displays the
ensemble forecasts from different experiments based on the nearest 49 reference points from
the northern most reference grid in Fig. 4.4 (number of ensemble members contributing to
each experiment, denoted by (, is shown in the upper-left corner of each panel). The flow
regime forecasts are verified against individual flow regime estimates from the NSSL2 (pink
rectangle) and CSU (cyan rectangle) radiosonde units as well as the set of possible flow
regime values derived from all available mobile units in South Dakota (red crosses; see text
for more details).
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might expect, the assimilation of all available observations in PECAN_ALL (Fig. 4.6b)

inherits a lot of the positive changes from the well-performing data addition experiments,

including the lower likelihood for an undular bore (amplitude less than 2) as well as the larger

number of ensemble members over the NSSL2 cluster. Nevertheless, a shortcoming of the

PECAN_ALL forecasts is that they are slightly more confident compared to the empirically

derived observation uncertainty and produce only a single mode in the forecasted flow

regime.

4.4.3 Examination of the forecast impacts

Understanding why the assimilation of kinematic profilers contributes to improvements

in the bore environment forecasts requires a careful examination of the relative changes

in different flow regime variables. The bar plot in Fig. 4.7 shows a summary of those

changes for the PECAN_ALL experiment which produced the largest changes with respect

to BASELINE. The most significant discrepancy between the two experiments concerns

the magnitude of the inversion wind (*0), which is ≥ 30% larger in PECAN_ALL for all of

the examined neighborhood radii. The composite wind profiles in Fig. 4.7c confirm this

finding and show that the PECAN_ALL forecasts are in much better agreement with the

verifying DWL and radiosonde observations. Other notable differences between the two

experiments include an 8-10% reduction in ℎ0 and a corresponding 10-15% reduction in �6|.

The lower ℎ0 and �6| values in PECAN_ALL are caused by the smaller static stability in

the SBL (compare the spacing of the first three isentropes in Fig. 4.7b), which acts to lower

the height at which the \{ gradient exceeds its threshold value in the ℎ0 retrieval method

(Haghi et al. 2015). On the other hand, the properties of the cold pools in BASELINE and

PECAN_ALL are nearly identical, most likely due to (i) the lack of observations within

the cold pool and (ii) the negligible moisture differences ahead of the cold pool (which is

opposite to our findings in Section 4.6). The small decrease in the strength of the cold pool
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(30 and �6) in PECAN_ALL can be explained by the slightly larger buoyancy values in the

upper parts of the cold pool (red contours in Fig. 4.7b).

Taken as a whole, the relative experimental differences in individual flow regime variables

would cause a simultaneous increase in both � and �, shifting the PECAN_ALL’s forecast

towards the upper-right parts of the flow regime diagram and alleviating the amplitude bias

in the BASELINE experiment (Fig. 4.6a). The fact that the largest discrepancy between the

two experiments pertains to the representation of the LLJ also explains why the assimilation

of kinematic information is crucial in improving the bore environment predictions.

4.5 Explicitly resolved bore

The purpose of the reference grid generated in proximity to the two UWKA intercepts

(red dots in Fig. 4.4c) is to investigate how the assimilated PECAN observations impact the

explicit bore forecasts near the FP4 site. In this section, mixing ratio cross sections from

the object-based algorithm are compared to UWKA-derived moisture profiles to determine

the ability of the forecasts to correctly simulate the observed bore structure during the two

verification times. Forecast errors are also quantified objectively for different neighborhood

radii using the convective outflow algorithm of Chipilski et al. (2018). The SBL depth

in the UWKA retrievals and in the composite model cross sections is defined based on

the 11.25 gkg−1 mixing ratio contour, which was objectively found to provide the best

description of bore structure in observations and model simulations. The values of ℎ0 and

ℎ1 are determined by taking the average height of the 11.25 gkg−1 contour in the subcritical

and supercritical portions of the bore. Note that the use of remotely-sensed mixing ratio

profiles to define the SBL depth was also adopted in Johnson et al. (2018) and Johnson and

Wang (2019).
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Figure 4.7: Understanding how the assimilated PECAN data affects the forecasted bore
environment. Panel (a): Percentage change differences between PECAN_ALL and BASE-
LINE for all 5 flow regime variables and 8 different neighborhood radii using 9, 16, 25,
36, 49, 64, 81 and 99 reference points (from left to right). Panel (b): A composite density
current cross section based on the northernmost reference grid in Fig. 4.4 with 99 reference
points. The buoyancy field from PECAN_ALL is color shaded, while its difference relative
to BASELINE is contoured in red (contours plotted every 1× 10−2 ms−2, starting from
±1×10−2 ms−2). The � = −5×10−2 ms−2 value from BASELINE is marked with a heavy
solid blue curve as a reference. Additionally, the solid (dashed) black contours display
the virtual potential temperature from PECAN_ALL (BASELINE), which is used for the
calculation of the density current and SBL depths (solid black and gray horizontal lines
for BASELINE and PECAN_ALL, respectively). Panel (c): Ambient wind speed from
BASELINE (solid black curve) and PECAN_ALL (dashed black curve) projected in the
direction opposite to density current propagation and averaged over the last 10 km of
the density current cross section in panel (b). The wind profile from the corresponding
radiosonde and Doppler wind lidar data is overlaid using gray color shading. Note that the
verifying observations are averaged between 0345 UTC and 0430 UTC, consistent with the
gray box in Fig. 4.5. The width of the gray color shading shows the variability over this
45-min period.
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Figure 4.8: Evolution of the observed bore in Nebraska based on moisture profiles from
UWKA’s Compact Raman Lidar (CRL) system. The heavy black curves denote the 11.25
gkg−1 mixing ratio contour used to approximate the height of the SBL in the supercritical
and subcritical portions of the bore (see text for more details).

4.5.1 UWKA observations and forecast impacts

The height-time resolved mixing ratio ("{) profiles in Fig. 4.8 indicate that the observed

bore experiences a rapid evolution over the 50-minute time window between the two UWKA

intercepts: the post-bore height (ℎ1) increases from 1.3 to nearly 2 km AGL and is coincident

with an increase in the pre-bore SBL height (ℎ0) from 450 to 600 m. As a result, the amount

of bore lifting (Δℎ B ℎ1− ℎ0) increases significantly between UWKA I2 and UWKA I6 and

likely explains the onset of bore-initiated convection around the second verification time.

The composite cross sections in Fig. 4.9 are created in proximity to UWKA I2 and

examine the structure of the simulated bore during its early evolution. First, it is clear

that the control experiment (Fig. 4.9a) tends to underestimate (overestimate) the amount

of moisture in the pre-bore (post-bore) environment. More pronounced improvements in

the forecasted bore environment are visible only after assimilating all available PECAN

observations (Fig. 4.9b), which causes an increase in the SBL mixing ratio by ∼0.6 gkg−1.

The enhanced SBL moisture in PECAN_ALL also corrects a slight negative bias in the

pre-bore height (ℎ0; compare the thick blue contour and the right-most magenta line in Fig.

4.9a). As far as the structure of the simulated bore is concerned, the PECAN impacts are most

101



evident with respect to the numerically predicted bore height (ℎ1), which is overestimated in

BASELINE by some 300-400 m (compare the blue contour and left-most magenta line in

Fig. 4.9a). Most of the data assimilation experiments exacerbate this error, with AERI and

PECAN_ALL featuring the largest deviations from the UWKA-derived ℎ1 estimate. It is

perhaps interesting to note that the post-bore SBL increases in AIRCRAFT and SURFACE

are most prominent downstream of the hydraulic jump, which is opposite to AERI and

PECAN_ALL where the largest changes occur immediately downstream of the bore’s leading

edge. On the other hand, WIND_PROF (Fig. 4.9f) shows a strong deviation from the other

data assimilation experiments – it decreases ℎ1 by ∼200-400 m and, consequently, nearly

halves the bore height bias in BASELINE. Similar to AERI and PECAN_ALL, the largest

changes in the WIND_PROF-predicted SBL height occur very close to the hydraulic jump.

Insofar as the other experiments are concerned, LIDAR_VAD and RADIOSONDE produce

the smallest differences in the explicitly resolved bore relative to BASELINE. Whereas the

absence of DWL profiles upstream of the bore justifies the lack of visible forecast impacts in

LIDAR_VAD, a possible explanation for the small RADIOSONDE-BASELINE differences

is the coarse temporal resolution of the FP4 radiosonde measurements compared to the other

observation types.

During the second verification time (UWKA I6), the ambient moisture environment in

BASELINE (Fig. 4.10a) is represented much better, which in turn also improves the structure

of the explicitly resolved bore. Furthermore, the experimental differences at UWKA I6 are

considerably smaller than UWKA I2; only the AERI (Fig. 4.10c), WIND_PROF (Fig. 4.10f)

and PECAN_ALL (Fig. 4.10b) experiments display visible deviations from BASELINE.

Despite the apparent reduction in errors, however, none of the ensemble forecasts reproduces

the rapid bore evolution depicted in UWKA’s moisture profiles. Given that the experimental

differences between the two verification times remain similar, the slower increase of the

numerically simulated bore height acts to change the sign of the PECAN impacts between

UWKA I2 and I6. For instance, the strongly negative impact in AERI at UWKA I2 (Fig.
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Figure 4.9: Verification of the explicit bore forecasts near UWKA I2 (∼0500 UTC). Panel (a)
displays mixing ratio (color shading) and virtual potential temperature (solid black contours)
from the BASELINE experiment. The heavy solid blue contour marks the SBL depth,
while the two horizontal lines correspond to the UWKA-derived pre-bore and post-bore
SBL heights, respectively. Note that all forecasted SBL heights are calculated using the
11.25 gkg−1 mixing ratio value, consistent with Fig. 4.8. The rest of the panel figures (b-h)
display mixing ratio differences associated with various data assimilation experiments. The
virtual potential temperature and SBL height from BASELINE are overlaid as thin and heavy
dashed black contours, respectively.
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4.9c) on ℎ1 transforms into a marginal improvement at UWKA I6 (Fig. 4.10c). Likewise,

the addition of boundary layer moisture in PECAN_ALL is beneficial early in the forecast

(Fig. 4.9b), but it leads to an overestimate of ℎ0 in vicinity of UWKA I6 (Fig. 4.10b).

A summary of the average PECAN impacts on the structure of the explicitly resolved

bore is presented in Fig. 4.11 through the Mean Average Errors (MAEs6). Note that the

verification statistics in Fig. 4.11 are dominated by the forecast performance at UWKA I2

where the error magnitudes and experimental differences are significantly larger relative to

UWKA I6. Despite differences in methodology, however, the MAE results in Fig. 4.11 are

largely consistent with the subjective conclusions presented so far. For instance, Fig. 4.11a

confirms the presence of a small positive bias in PECAN_ALL’s prediction of ℎ0, while Fig.

4.11b highlights that the assimilation of wind profiler (AERI) data has a positive (negative)

impact on the predictions of the numerically simulated bore height.

The structure of a convectively-generated bore is important as it affects errors associated

with derived variables, such as bore amplitude (( B ℎ1/ℎ0 ) and bore lifting (Δℎ B ℎ1− ℎ0).

Both of these variables play a crucial role in determining the propagation of a bore (e.g.,

White and Helfrich 2012) as well as its ability to initiate convection (Parsons et al. 2019a).

Given the additive nature of Δℎ errors and the fact that changes in ℎ1 are much greater

than changes in ℎ0 (e.g., Fig. 4.9), the accuracy of the bore lifting predictions is mostly

determined by how the assimilated PECAN observations affect the height of the explicitly

resolved bore. Indeed, 4.6 confirms that the overprediction of ℎ1 in all experiments translates

to a positive bias in the Δℎ forecasts. Analogous to the MAE ℎ1 results (Fig. 4.11b), the

WIND_PROF (AERI) experiments produce the largest positive (negative) impact on the

forecasts of bore lifting.

The values summarized in Table 4.6 also indicate that the bore amplitude predicted

in BASELINE (3.26) is very close to the verifying UWKA retrievals (3.10) despite the

6 The estimation of the Mean Average Errors (MAEs) is a two-step process. First, the ensemble mean error
is computed at a particular reference point based on all available ensemble members. Then, the ensemble
mean errors are averaged over all reference points falling within a particular neighbourhood radius.
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Figure 4.10: Verification of the explicit bore forecasts near UWKA I6 (∼0550 UTC). The
meaning of all symbols remains the same as in Fig. 4.9.
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Figure 4.11: Summary of the verification statistics associated with the explicit bore forecasts
over UWKA I2 and UWKA I6. Solid curves with filled markers display the Mean Average
Errors (MAEs) with respect to the (a) pre-bore height (ℎ0) and (b) post-bore height (ℎ1) for
a different number of reference points (G-axis). The gray box at the bottom of the two panel
figures shows the percentage of Statistically Different Reference Points (SDRP) relative to
the BASELINE experiment.

presence of large biases in the predicted bore height. According to Rottman and Simpson

(1989), both of these S values would result in an identical flow regime characterized by the

generation of an upstream bore disturbance with moderate amounts of turbulence. The small

( error in BASELINE experiment can be explained by noting that (i) ( is a ratio of ℎ1 and

ℎ0 and (ii) errors in ( are relative in nature. Since ℎ0 � ℎ1, the value of ( is expected to be

highly sensitive to small changes in the depth of the SBL ahead of the bore. Because the

BASELINE experiment produces fairly accurate predictions of ℎ0 at both UWKA intercepts,

the large overestimate of ℎ1 only contributes to a small positive bias in (. Similar arguments

can be applied to justify the bore amplitude results in the other data assimilation experiments.

For example, while the reduction of ℎ1 in WIND_PROF is almost as high as the increase of

ℎ1 in AERI (cf. Table 4.6), the attendant decrease of ℎ0 by 50 m prevents WIND_PROF

from correcting the amplitude bias in BASELINE. Likewise, the increase of ℎ0 and ℎ1 in

106



Table 4.6: Example PECAN impacts on the forecasted bore structure for a reference grid
with 10 points and based on the MAE results in Fig. 4.11. The numbers in the first row refer
to the UWKA-derived bore estimates, while the remaining rows display forecast results from
the main numerical experiments presented in this study. The bracketed numbers next to each
experiment denote changes relative to BASELINE.

PECAN_ALL is on the same order of magnitude (∼100m), but the higher sensitivity of ( to

ℎ0 produces a notable reduction in the predicted bore amplitude.

4.5.2 Examination of the forecast impacts

The nonlinear dynamics of atmospheric bores makes the interpretation of the PECAN

data impact results inherently challenging. This is because their formation and evolution are

very sensitive to the properties of the parent convection and its cold pools. Despite these

difficulties, multiple studies have demonstrated the success of hydraulic theory in explaining

the complex behaviour of observed atmospheric bores (Koch et al. 1991, 2008a,b). As a

result, the analysis here makes use of hydraulic theory to identify where differences in the

AERI and WIND_PROF bore forecasts originate from. We focus on these two experiments

not only due to their considerable deviations from the BASELINE experiment, but also to

emphasize the dependence of the PECAN data impacts on the assimilated instrument types

(i.e., thermodynamic vs. kinematic).

The characteristics of the bore environments in BASELINE, AERI and WIND_PROF are

investigated by generating cross sections near the verifying UWKA intercepts. It is apparent

from the ensemble mean fields in Fig. 4.12 that the largest differences in the three experiments

are due to the depth of the bore-generating density current (30). The near-surface isentropes
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between G = −60 km and G = −20 km indicate that the cold pool in AERI (WIND_PROF) is

stronger (weaker) than BASELINE. According to well-established theoretical results (e.g.,

Benjamin 1968), changes in the depth of the cold pool (30) are also correlated to changes in

its propagation speed (�6), which was confirmed by a subjective analysis of several ensemble

mean fields. Apart from changes in the cold pool characteristics, the magnitude of the

inversion wind (*0) in WIND_PROF is 1-2 ms−1 smaller than BASELINE (Fig. 4.12b),

causing a further decrease in the forecasted Froude number �. Analogous to Section 4.4, the

reduction of the mean inversion wind (*0) in WIND_PROF is connected to the ability of the

assimilated FP4 wind profiler to correct a bias in the representation of the LLJ (not shown).

The aforementioned differences in the bore-generating density current are related to

perturbations in the near-surface moisture field at the FP4 site, which are subsequently

transported towards this cold pool during the free forecast period (Figs. 4.13 and 4.14). As

a result of their interaction with the cold pool’s updraft, the positive (negative) moisture

perturbations in AERI (WIND_PROF) strengthen (weaken) the parent convection and,

through changes in precipitation loading, produce a stronger (weaker) cold pool. It is

important to remark that while the positive moisture increments in AERI are introduced

primarily due to a moisture bias at the beginning of the 1-km DA cycling period, the drying

in WIND_PROF arises due to the inherent mass-wind correlations in the ensemble Kalman

filter analyses. For instance, the wind perturbations at 0100 UTC are oriented towards

the northeast (magenta arrows in Fig. 4.13d) and act to strengthen the magnitude of the

LLJ. Further note that these perturbations are directed perpendicular to the pre-existing

moisture boundary in central Nebraska (black contours in Fig. 4.2). Owing to the stronger air

advection from the southwest, the SBL in WIND_PROF becomes drier, generating negative

mixing ratio perturbations that are subsequently transported towards the bore-generating

cold pool in Nebraska (Fig. 4.14f).
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Figure 4.12: Flow regime diagnostics on the bore-generating cold pool in Nebraska for the
(a) AERI and (b) WIND_PROF experiments. The color shading on the two cross sections
shows the ensemble mean inversion wind projected in the direction of density current
propagation (*0; color shading), with negative (positive) values indicating flow oriented
towards (away) from the density current. Negative (positive) differences in*0 with respect to
the BASELINE experiment are displayed as solid blue (red) contours. The virtual potential
temperature from AERI/WIND_PROF and BASELINE is plotted with solid and dashed
black contours, respectively.
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Figure 4.13: Moisture impacts on the explicit bore forecasts for the AERI (left column)
and WIND_PROF (right column) experiments. Color shading refers to ensemble mean
differences in mixing ratio relative to BASELINE (the letters A and F stand for analysis
and forecast differences). Contours are plotted every 2 gkg−1 with solid lime and bisque
colors (first contour appears at ±1 gkg−1). Black and magenta arrows show the ensemble
mean wind in AERI/WIND_PROF and their difference with BASELINE. The 30 dBZ
composite reflectivity and the regions where vertical velocity at 1km AGL exceeds 0.5 ms−1

are visualized as solid black contours and purple dots. (Continue to Fig. 4.14)
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Figure 4.14: (Continued from Fig. 4.13) The 3 red stars at the bottom portion of the panel
figures show the location of the FP4 site and the two UWKA intercepts (labelled in panel
a), while the heavy solid black line – the position of the density current cross section from
Fig. 4.12. Note that both the mixing ratio and vertical velocity fields are smoothed using a
Gaussian filter with f = 2.0 km.
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4.6 Bore-initiated convection

The development of bore-initiated convection can be viewed as a manifestation of

all multi-scale processes driving the evolution of the bore and its surrounding ambient

environment. Therefore, the purpose of this section is to perform an objective assessment

of the convective forecasts and then link them to the previously discussed PECAN data

impacts. Note that our analysis only focuses on the first episode of bore-initiated convection

(0500-0615 UTC; Fig. 4.2) when the experimental differences were most pronounced.

4.6.1 Radar observations and forecast impacts

The convectively-generated bore in Nebraska was captured very well in the low-level

reflectivity data from the KOAX radar site (Fig. 4.15), where it shows up as a series of three

radar fine lines propagating towards east-southeast. Convection initiation along the bore was

discrete and characterized by the occurrence of two main convective clusters. The northern

one, denoted as N, started its development around 0500 UTC at the leading edge of the

nocturnal MCS. As the bore propagated away from the MCS, convection initiation associated

with cluster N shifted ahead of the main convective system. The southern cluster (S)

developed approximately 30 minutes after N and moved in the direction of bore propagation.

The skill of the convective forecasts is assessed objectively using neighborhood ensemble

probability (NEP; Schwartz et al. 2010) with a threshold of 30 dBZ and a neighborhood

radius of 30 km. Comparison of the NEP field from BASELINE and the observed 30 dBZ

value derived from Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016a) data in Figs.

4.16a-c shows that the first episode of bore-initiated convection is underpredicted in the

control experiment. Despite an initial increase of NEP to 50% near the location of cluster N

(Fig. 4.16a), the BASELINE forecasts do not maintain the newly developed bore convection

for a sufficiently long time.
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Figure 4.15: Equivalent radar reflectivity (lowest elevation angle) from the KOAX radar site
(Omaha, Nebraska) depicting the evolution of the first episode of bore-initiated convection
for the 6 July 2015 case study. The letters N and S show the location of the northern and
southern convective clusters. Radar images are generated using the Python Atmospheric
Radiation Measurement (ARM) Radar Toolkit (Py-ART Helmus and Collis 2016).
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Figure 4.16: Impact of assimilating PECAN observations on the forecasts of bore-initiated
convection. The first row shows results for the BASELINE experiment through the
Neighborhood Ensemble Probability (NEP; color shading) of model-simulated reflectivity
exceeding 30 dBZ with a neighborhood radius of 8 km. (Continue to Fig. 4.17)

114



Figure 4.17: (Continued from Fig. 4.16) The rest of the panel figures display differences
in NEP with respect to the other data assimilation experiments. The observed 30 dBZ
composite reflectivity from the Multi-Radar Multi-Sensor (MRMS) system is contoured in
black.
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The convective impacts from the other data addition experiments are shown as differences

in NEP relative to the BASELINE experiment. Examination of these difference fields reveals

that LIDAR_VAD (Figs. 4.17a-c), AIRCRAFT (Figs. 4.16j-l) and SURFACE (Figs. 4.17j-l)

exert a negligible impact on the convective forecasts. The latter is not so surprising due to (i)

the absence of DWL and aircraft data upstream of the forecasted bore convection and (ii)

the relatively small impact that surface observations have had on the forecast results so far

(cf. Sections 4.4 and 4.5). The most successful prediction of the observed bore-initiated

convection is produced by the AERI experiment (Figs. 4.16g-i), which is able to (i) increase

the NEP values by more than 50% and (ii) successfully capture the initiation and propagation

of the southern convective cluster (S). By contrast, assimilation of the FP4 wind profiler

data leads to a slight degradation in the convective forecast skill, evident by the reduction in

NEP in Figs. 4.17d-f.

The significant improvement of the convective forecast skill in AERI prompted us to

conduct two additional experiments aimed at exploring the sensitivity of the results to

alternative DA configurations. In the first one, the AERI profiles were assimilated with

static GSI radiosonde error statistics (AERI_SOUNDERR; Fig. 4.18b). Since radiosonde

errors are notably larger than their AERIoe counterparts (refer to Degelia et al. 2019),

AERI_SOUNDERR can be thought of as an experiment which crudely accounts for the

errors of representation inherent in the AERIoe profiles. According to Figs. 4.18a and 4.18b,

both AERI experiments result in similar convective forecasts, although AERI_SOUNDERR

tends to slightly overestimate the convective probabilities around cluster S. Nonetheless,

additional diagnostics revealed that AERI_SOUNDERR degrades the quality of the bore-

related forecasts (not shown), which justifies our choice of dynamically retrieved error

profiles in the control AERI experiment. The goal behind the second sensitivity experiment

(AERI_REDUCED; Fig. 4.18c) was to understand the extent to which the quality of the

convective forecasts is affected by the AERI’s assimilation frequency. More specifically,

the thermodynamic retrievals in AERI_REDUCED were assimilated at the same frequency
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Figure 4.18: Sensitivity of the AERI convective forecasts to different data assimilation
configurations. NEP fields from 0530 UTC are shown for the original (a) AERI and (d)
RADIOSONDE experiments as well as the additionally conducted (b) AERI_SOUNDERR
and (c) AERI_REDUCED experiments, which test the forecast sensitivity to different
observation errors and assimilation frequencies, respectively. The rest of the symbols remain
the same as in the first row of Fig. 4.16.

as the FP4 radiosonde observations, i.e. every 3 hours. The striking resemblance of the

AERI_REDUCED and RADIOSONDE (Fig. 4.18d) forecasts implies that the assimilation

of novel AERI data adds no value to the quality of the NWP forecasts unless it is assimilated

at a high temporal frequency. Observation space statistics from the FP4 site (not shown)

further confirm that the continuous assimilation of AERI profiles over a 3-hour period results

in a model state that agrees favourably with the collocated radiosonde observations at 0300

UTC.

Lastly, we note that the simultaneous assimilation of all PECAN observations yields

mixed impacts on the convective forecasts. The higher NEP values to the east of cluster
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N (Fig. 4.16d-f) appear to be associated with spurious convection that develops earlier

in the PECAN_ALL simulation, which ultimately inhibits the subsequent development

of bore-initiated convection over the chosen verification region. Analogous to the results

from Section 4.5, the presence of mixed impacts in AERI and WIND_PROF prevents

PECAN_ALL from providing the best forecast results.

4.6.2 Examination of the forecast impacts

The accuracy of bore-initiated convection depends on the representation of the explicitly

resolved bore as well as the ambient environment ahead of it. Verification results presented

so far indicate that the assimilation of PECAN profilers affects both of these factors. By

generating composite cross sections near the region of bore-initiated convection (aqua dots

in Fig. 4.4c), this section seeks to establish a link between the skill of the convective forecasts

and the PECAN impacts discussed in Sections 4.5.2 and 4.6.2. Similar to Section 4.4, the

analysis herein focuses on the AERI and WIND_PROF experiments since they produce the

largest deviations from the control forecasts.

It is clear from Figs. 4.19a,d,g that the explicitly resolved bores simulated in the three

experiments differ from each other. Consistent with the verification results in Section 4.5,

the post-bore height (ℎ1) is higher in AERI, and lower in WIND_PROF, than in BASELINE.

Changes in the ambient moisture environment also align with the verification results from

the previous section. For example, the AERI experiment leads to a significant increase in

mixing ratio ("{) that reaches nearly 2 gkg−1 in the 3-3.5 km AGL layer (Fig. 4.19d). As

a result, the elevated CAPE in this experiment increases by 100-500 Jkg−1 (Fig. 4.19e).

Combined with a more pronounced bore lifting and nearly neutral changes in the elevated

CIN values (Fig. 4.19f), conditions in AERI become favourable for the development of

stronger and longer-lived bore convection. By contrast, the slight decrease of moisture in

WIND_PROF (∼0.2-0.3 gkg−1 at 3-3.5 km; Fig. 4.19g) tends to lower CAPE by ∼100 Jkg−1
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(Fig. 4.19h) and, together with a slight reduction in the amount of bore lifting (Fig. 4.19g),

results in a lower probability of bore-initiated convection (Figs. 4.17d-f).

The analysis presented so far serves as a good example of how the assimilated profiling

instruments lead to multi-scale forecast impacts. The moisture perturbations in AERI and

WIND_PROF affect the quality of the convective forecasts by simultaneously modifying

the elevated instability in the ambient environment and changing the height of the explicitly

resolved bore.

4.7 Summary

Recent studies have suggested that bores are an inherent component of the nocturnal

environment over the Great Plains (Geerts et al. 2017; Haghi et al. 2017), capable of

maintaining ongoing nocturnal convection by destabilizing broad regions in their wake

(Parsons et al. 2019a), and initiating deep convection on their own (Parker 2008; Grasmick

et al. 2018). Despite the growing need to adequately represent bores in NWP models,

capturing their initiation and evolution depends on the ability of these models to accurately

simulate a wide range of multiscale processes, such as the formation of cold pools from

late afternoon/early evening convection as well as the simultaneous development of a stable

boundary layer and a low-level jet in the nocturnal environment. Since the individual

modelling of these processes is already a difficult task on its own (e.g., Weisman et al.

2008), prediction of bore-driven nocturnal convection poses significant challenges to current

convective-scale NWP models. One of the possible ways to reduce errors associated with

these processes is by improving the model’s initial conditions in a carefully designed

multi-scale data assimilation system. The present article represents the first attempt to

address this idea by assimilating novel kinematic and thermodynamic profilers deployed

during the 2015 PECAN campaign. Using data from the 6 July 2015 PECAN case study, we

try to understand whether the initial conditions obtained after assimilating these PECAN

profilers can improve various aspects of the bore-driven nocturnal convection, including (i)
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Figure 4.19: Composite cross sections for the BASELINE, AERI and WIND_PROF
experiments generated in the neighborhood of the southern convective cluster (S; refer to the
aqua reference points in Fig. 4.4). The first column shows the distribution of moisture from
these three experiments (mixing ratio for BASELINE and differences in mixing ratio for
AERI and WIND_PROF). The SBL height (based on the 11.25 gkg−1 mixing ratio value)
is plotted either with a heavy solid blue curve for individual experiments or with a heavy
dashed black curve for the BASELINE experiment in panels (d) and (g). The pre- and
post-bore heights from UWKA I6 are overlaid as heavy horizontal magenta lines. The color
shading in the second and third columns shows the composite CAPE and CIN fields for the
three experiments. Virtual potential temperature is plotted in all panels with solid black
contours.
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Table 4.7: Summary of the key PECAN impacts for the 6 July 2015 case study. The upward-
and downward-pointing arrows correspond to positive and negative forecast impacts with
respect to BASELINE, while the neutral forecast impacts are denoted with a dash. The
number of arrows in each of the three forecast categories provides a subjective ordering of
the data assimilation experiments according to the magnitude of their impacts.

the environment in which the bore develops, (ii) the characteristics of the explicitly resolved

bore, and (iii) the accuracy of the convective forecasts.

For the reader’s convenience, Table 4.7 presents a summary of all forecast impacts

discussed throughout Chapter 4. The verification statistics outlined in Table 4.7 suggest

that the clearest impacts from assimilating PECAN data refer to the numerically simulated

bore environment where nearly all observation types improve the forecasted flow regime.

Section 4.4.3 demonstrates that these improvements arise from a better representation of the

low-level jet that interacts with the bore-generating cold pool.

By contrast, the PECAN impacts on the explicitly resolved bore and bore-initiated

convection appear to be mixed and largely dependent on the chosen verification time. For

example, while the AERI experiment produces a large positive bias in the predicted bore

height early in the forecasts, it also provides the closest match to the verifying UWKA

retrievals around the time of convection initiation. Combined with a better depiction of the

moisture content in the ambient environment, the AERI experiment provides the best forecast

of the observed bore-initiated convection. These mixed forecast impacts can be explained

by the fact that bores and bore-initiated convection are associated with motions that act on

very small spatiotemporal scales. The parameterization of these subgrid-scale processes

inevitably leads to model errors and may even mask any benefits brought by the assimilation

of high-frequency PECAN profilers. Although the assimilation of thermodynamic and
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kinematic remote sensors appears to be beneficial for the prediction of nocturnal convection

in NWP models, there are still a lot of open research questions. One of the them concerns

the optimal design of a profiler network. Even though our findings highlight the advantages

of assimilating high-frequency profiler data, more work still needs to be done in order

to determine the optimal spacing between profiling instruments. In addition, the relative

merits of assimilating collocated thermodynamic and kinematic profilers need to be better

understood. Past Observation System Simulation Experiments (OSSEs) have reported

benefits from such an observation design (e.g., Hartung et al. 2011), but the results from this

study suggest that the simultaneous assimilation of kinematic and thermodynamic profilers

often leads to mixed forecast results. Therefore, one of the goals of future research should

be to determine effective ways of combining the information from collocated profiling

instruments. A systematic data impact study featuring 10 bore IOPs from the PECAN field

campaign is currently underway to provide more insight into this question and generalize the

findings of this chapter.
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Chapter 5

The value of assimilating different ground-based profiling

networks on the forecasts of bore-generating nocturnal con-

vection

5.1 Introduction

The Planetary Boundary Layer (PBL) has crucial implications for many Earth system

processes, such as radiative transfer, air pollution and land-atmosphere exchanges (Wulfmeyer

et al. 2015). But compared to other parts of the atmosphere, the PBL is characterized by

considerably smaller spatiotemporal scales, especially with respect to water-related variables

(Lilly and Perkey 1976). Therefore, to adequately describe the inherently large variability

within the PBL, we require a dense observing network that can frequently sample the

thermodynamic and kinematic properties of the lower atmosphere.

Despite its significance, the PBL is poorly observed by the current observing systems.

This fact became first apparent in early studies of convection initiation. For example, Crook

(1996) used a high-resolution, non-hydrostatic model to show that small changes in the PBL

structure, which are comparable in magnitude to typical measurement uncertainties, "can

make the difference between no initiation and intense convection". Similarly, Weckwerth et al.

(1996) found that there is large moisture variability within daytime PBLs (1.5−2.5 g kg−1)

and concluded that water vapor is undersampled by traditional observation techniques (see
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also Weckwerth and Parsons 2006). Having realized these limitations, the National Research

Council (NRC) developed a comprehensive report in 2009 which proposed the establishment

of 400 sites with ground-based remote sensors (NRC 2009). These recommendations

were further refined in subsequent NRC reports (NRC 2010, 2012) and recently updated

by the World Meteorological Organization (WMO 2018) to address the needs of future

high-resolution NWP systems.

Importantly, the growing awareness of the PBL’s observation gap catalyzed research

efforts aimed at examining the ability of various ground-based remote sensors to improve

the regional NWP performance. At the very beginning, the technology underpinning

thermodynamic remote sensors was still not sufficiently well developed and most of the

original investigations were conducted with the more widely available radar wind profiler

(RWP). After several studies demonstrated the short-range forecast value coming from

the National Oceanic and Atmospheric Administration (NOAA) Profiler Network (NPN),

some of the leading NWP centers decided to start assimilating these novel wind datasets

(Bouttier 2001; Benjamin et al. 2004). Recently, experiments have also been conducted with

another kinematic profiler – the Doppler wind lidar (DWL), whose ability to capture some

of the fine-scale features in the wind field makes it particularly suitable for high-resolution

applications. The forecast potential of DWL retrievals was first demonstrated in Zhang and

Pu (2011) on a warm-season mesoscale convective system (MCS). Kawabata et al. (2014)

confirmed the forecast value of this instrument, but also discussed the important synergy

between lidar and radar observations in improving the overall convective skill.

The microwave radiometer (MWR) was the first thermodynamic remote sensor to be

used for NWP purposes, including fog forecasting (Vandenberghe and Ware 2002) and

1D-Var retrievals (Martinet et al. 2015, 2017). Although its ability to operate under all-sky

conditions is an important advantage, the vertical resolution of the MWR (300-1000m in

the first 2km above the ground) is too coarse for most contemporary convection-allowing

models. As a result, most recent impact studies have focused on exploring the advantages
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of another passive thermodynamic remote sensor – the Atmospheric Emitted Radiance

Interferometer (AERI; Revercomb et al. 1988; Feltz et al. 2003; Knuteson et al. 2004a,b;

Turner and Löhnert 2014), and have demonstrated that its assimilation can be beneficial for

a variety of convective applications (Coniglio et al. 2019; Hu et al. 2019; Chipilski et al.

2020; Degelia et al. 2020; Lewis et al. 2020). Concurrently, the past decade has also seen

advances in active thermodynamic sensing. Instruments such as the Raman lidar (RL; Melfi

and Whiteman 1985; Melfi et al. 1989; Wandinger 2005; Dai et al. 2018) and the differential

absorption lidar (DIAL; Browell et al. 1998; Weckwerth et al. 2016) have been crucial in

improving our understanding of near-surface Earth system processes (Wulfmeyer et al. 2015,

and references therein). Research-grade RLs have also been found to improve the simulated

PBL structure (Adam et al. 2016) as well as the ability of regional NWP models to predict

heavy precipitation (Leuenberger et al. 2020; Yoshida et al. 2020).

In this Chapter, we will provide more evidence about the NWP value of ground-based

remote sensing by demonstrating its systematic benefits on the relatively newly studied

problem of bore-generating nocturnal convection (Haghi et al. 2018; Parsons et al. 2019a).

This goal will be achieved by using 10 diverse cases from the Plains Elevated Convection at

Night (PECAN; Geerts et al. 2017) field campaign. Many of these cases have been already

examined as part of recent publications (Mueller et al. 2017; Trier et al. 2017; Johnson et al.

2018; Johnson and Wang 2019; Smith et al. 2019; Miller et al. 2020; Parker et al. 2020;

Stechman et al. 2020; Carroll et al. 2021; Lin et al. 2021), giving us an important context

for discussing our results. Crucially, the forecast impacts presented here will confirm and

further generalize some of the positive single case findings of Chipilski et al. (2020; CWP20

hereafter), which is highly encouraging on account of the wide spectrum of atmospheric

bores and convective environments sampled in our dataset.

By further refining the experimental design of CWP20, the second goal of this study

would be to compare the relative merits of different ground-based profiling networks. The

motivation here is that most research in the past has focused on the assimilation of single
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remote sensors that only measure the thermodynamic or kinematic components of the

unknown model state (e.g., Lewis et al. 2020; Li et al. 2020; Yoshida et al. 2020; Wang

et al. 2020; Leuenberger et al. 2020; Qi et al. 2021). While several studies have attempted

to simultaneously assimilate multiple profiling instruments, they have reached somewhat

inconsistent conclusions. For instance, Hu et al. (2019) found AERIs to be more important

than DWLs in improving the early evolution of a tornadic supercell. At the same time, the

study of Fourriè et al. (2021) indicated that RWPs outperform RLs in forecasting heavy

precipitation events. A careful look at the present literature also reveals that even fewer

studies have attempted to evaluate the performance of remote sensors against a reference

radiosonde network. Throughout this work, we will demonstrate that the impacts from

assimilating thermodynamic and kinematic remote sensors are highly flow-dependent and

their combination is often necessary for achieving a statistically meaningful increase in the

forecast skill. We will also present evidence that the most robust forecast benefits come from

hybrid ground-based networks that host both in situ and remote sensing profilers.

The remainder of this Chapter is organized as follows: Section 5.2 offers a schematic

illustration of our problem by showing the typical evolution of bore-generating nocturnal

convection in the context of the assimilated ground-based profiling networks. Section 5.3

gives more details about the underlying experimental design, system configurations and

available PECAN observations. Aggregated verification statistics associated with the parent

MCSs and explicitly resolved bores are presented in Section 5.4, while Section 5.5 offers an

interpretation of our main findings based on 3 representative cases. Finally, we conclude

with a brief summary, a critical discussion and future outlooks in Section 5.6.

5.2 Problem statement

Throughout this study, we will be concerned with the forecast accuracy of a particular

class of nocturnal convection – one associated with the generation of atmospheric bores

(bore-generating nocturnal convection hereafter). Our interest in these convective systems
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is motivated by their common occurrence during the night (Haghi et al. 2017) and inherently

low predictability (see Section 1 of CWP20). Fig. 5.1 illustrates the typical evolution of

bore-generating nocturnal convection within the 10 PECAN cases used in this study. Our

data assimilation (DA) period usually covers the time from the initial formation of small

convective cells (Fig. 5.1a) to their upscale growth and eventual merging into a mesoscale

convective system (MCS) with a well-developed surface-based cold pool (Fig. 5.1b). Note

that while surface-based cold pools do not necessarily form in all nocturnal MCSs (e.g.,

Maddox 1980; Trier and Parsons 1993), they were found to be a ubiquitous feature during the

PECAN field campaign (Hitchcock et al. 2019) and an important precursor for the initiation

of bores in our experiments.

A critical requirement for our case study selection was the presence of ground-based

profilers upstream of the convective developments shown in Figs. 5.1a and 5.1b. Because

of this strategic deployment, the PECAN instruments provided valuable information about

the mesoscale environment in which the bore-generating convective systems developed.

Therefore, it was expected that the assimilation of these PECAN observations will also

bring measurable forecast improvements. Our dynamically relevant DA period attempts to

evaluate this hypothesis in a more controlled manner: by ensuring that the model initial

conditions feature a mature MCS with a well-developed cold pool, we know that the future

convective evolution will be mostly driven by the characteristics of the environment in which

it propagates. By contrast, if the forecasts were to be initialized earlier (e.g., during the

process of upscale convective growth), the subsequent MCS changes will be highly sensitive

to the exact precipitation history of the system (Parker et al. 2020; Parker 2021), making it

challenging to quantify how different environmental conditions affect the forecasts.

Once the DA period finishes, the bore-generating MCS is forecasted for another 5 hours.

During this time, the interaction between its cold pool and the nocturnal PBL generates a

hydraulic response in the form of an atmospheric bore (Fig. 5.1c). In some our PECAN cases,

the bore remained closely attached to its parent MCS and was responsible for the initiation
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Figure 5.1: A schematic illustrating the typical evolution of a bore-generating convective
system in the context of the ground-based profiling instruments assimilated in this study.
Our main objective is to evaluate the impact of the assimilated profilers on the forecasted
parent MCS, bore-induced convection initiation (CI; both direct and indirect) and explicitly
resolved atmospheric bore (all shown in panel c).

of new convection (i.e., bore-initiated convection), whereas in other cases it propagated

far away from its source region and did not produce any additional convective activity. To

account for this inherent dynamical coupling, we adopt a verification approach that is similar

to CWP20 in that the impact from different profiling instruments is examined according to

their ability to improve both the convective and bore components of the nocturnal system

depicted in Fig. 5.1c 1.

5.3 Experimental design

To better understand the synergies between different ground-based profiling networks, we

refine the experimental design of CWP20 such that only sites with collocated radiosondes and

remote sensing instruments are assimilated. This approach is similar to Degelia et al. (2020)

1 Themain difference with CWP20 is that we verify over both the parent MCS and any bore-initiated convection,
whereas CWP20 only focused on the forecast skill of the latter.
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with the exception that our control experiments do not assimilate any PECAN soundings.

The rationale behind this choice is that the PECAN radiosondes are released at a much

higher frequency compared to the operational radiosonde network, meaning that they can no

longer be treated as a conventional data source. Degelia et al. (2020) sidestep this problem

by only assimilating observations close to the operational 00 UTC launch; in our case, all

available radiosondes are assimilated and subsequently treated as a reference against which

the performance of ground-based remote sensors can be evaluated.

Our observation network with collocated in situ and remote sensing instruments serves

two distinct purposes. First, it allows us to compare the impacts of remote sensors and

radiosondes in a more objective way in which the increased (or decreased) sensitivity of

the forecasts to the initial conditions in different parts of the model domain is implicitly

accounted for. Given that the assimilated PECAN instruments observe the environmental

conditions over the same location, it follows that differences in their performance can be

solely attributed to the underlying measurement technique, sampling rate and observation

error characteristics. The second advantage of assimilating collocated instruments is that we

can explore the benefits of several different ground-based observation networks by seeking

answers to the following critically relevant questions:

• Is it more beneficial to assimilate the highly frequent, but less accurate remote sensing

retrievals than the less frequent, but highly accurate radiosonde measurements?

• How competitive is the performance of networks that consist of single remote sensors

compared to networks which host both thermodynamic and kinematic profilers? Do the

added benefits of such combined remote sensing networks justify the additional expenses

for their initial deployment and subsequent maintenance?

• Do we notice any observation synergies after combining (i) thermodynamic and kinematic

profilers or (ii) remote sensing and in situ instruments? In other words, does the

simultaneous assimilation of these instruments result in forecast improvements which are

visibly larger than the forecast improvements brought by individual instruments?
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Table 5.1: List of WRF physics options.

• Does the forecast value of different ground-based profiling networks depend on the inherent

predictability of the atmospheric flow?

5.3.1 System configurations

The impact results presented here were obtained with the sameGSI-EnKF-WRF ensemble

data assimilation and forecast system as described in CWP20. However, the systematic

nature of our PECAN experiments necessitated several minor changes in its configuration.

Most notably, simulations were carried out on two (instead of three) model domains – an

outer (d01) 12-km one and an inner (d02) 4-km one. The size of the d02 domains was the

same for all 10 cases (352 by 301 grid points), but their position (see gray rectangles in Fig.

5.2) was modified according to the location of the bore-generating convective systems. The

model physics were chosen to be broadly consistent with CWP20, with the exception of

several minor changes, which can be identified by comparing Table 5.1 to Table 2 in CWP20.

All experiments were initialized by downscaling the 00 UTC global GEFS/SREF

ensemble (40 members in total) valid on the day before each bore-generating MCS event

(see Fig. 5.2c). Conventional observations from the North American Mesoscale Forecast

System Data Assimilation System (NDAS) were then assimilated every 3 hours for a total

of 8 cycles. Afterwards, much more frequent EnKF cycling was carried out on the inner

4-km domain where conventional observations were assimilated together with radar data
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Figure 5.2: Some aspects of the experimental design used in this study. Panel a: Location of
the outer 12-km (d01; thick white rectangle) and inner 4-km (d02; thinner white rectangles)
model domains as well as the assimilated fixed PISA (FP) sites (red stars). Panel b: Location
of the assimilated mobile PISAs (MPs) (filled stars) and thermodynamic remote sensors used
for bore verification (filled dots). Panel c: A timeline corresponding to our analysis-forecast
system. Following Section 5.2, the final analysis time in each PECAN case (C0) is chosen
such that the bore-generating (parent) MCS has a well-developed cold pool. The alternating
red and blue lines between 21 UTC and 00 UTC indicate that the d02 EnKF cycling can
begin at either of these two times (see main text for more details).
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Table 5.2: EnKF cycling period and assimilated PISA sites for the 10 PECAN cases used in
this study. The numbers in the last 7 columns of the table indicate how many radiosondes
were launched at each of the assimilated PISA site.

and PECAN ground-based profilers at 10-min intervals. As explained in Section 5.2, the

length of the inner DA window was dependent on the convective evolution in each case, but

varied between 2.5 hours on 16 July 2015 to 7 hours on 20 June 2015 (see Table 5.2 for more

details). For the majority of the PECAN cases, the d02 EnKF cycling started at 00 UTC on

the day of the bore-generating MCS event; one exception to this setup, however, was the 7

June 2015 case where the 4-km DA period began 3 hours earlier to account for the early

convective initiation on that day.

5.3.2 PECAN observations

The PECAN profiling observations assimilated in our experiments were obtained from 6

fixed and 2 mobile PECAN Integrated Sounding Arrays (PISAs), whose location relative

to the inner (d02) WRF domains is indicated in Figs. 5.2a and 5.2b. These PISAs were a

unique aspect of the PECAN field campaign as they hosted both in situ and remote sensing

instruments. Analogous to CWP20, AERI was the only thermodynamic profiler assimilated

in our study, whereas the RWPs and DWLs were blended into a single kinematic profiler

following Degelia et al. (2020).

The number of PISA sites available for each case was determined based on the overall

availability of PECAN radiosonde data. Specifically, a certain PISA site was assimilated

in our experiments only if there was at least one radiosonde release during the selected
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DA period. As a result of this restriction, the number of assimilated stations was usually

reduced to 3 or 4 (see Table 5.2). At each of the assimilated PISA sites, the typical number

of radiosonde launches was between 3 and 5, although on one occasion (20 June 2015), the

FP3 site released a total of 13 radiosondes over the 7-hour DA period.

5.3.3 Experiments

To examine the value of different ground-based profiling networks, we adopted a data

addition framework whereby each new PECAN instrument was added on top of operationally

assimilated NDAS data. Our first group of experiments only considered single instrument

types: SONDE assimilated the special PECAN radiosondes, TQPROF – the thermodynamic

AERI retrievals, while UVPROF – the wind retrievals from the combined DWL and RWP

instruments. By contrast, our second group of experiments sought to explore the value of

assimilating multiple profilers and to identify the existence of any synergies between them.

For instance, ALLPROF combined the two ground-based remote sensors, whereas ALL

considered all available PECAN observations for a given case. The performance of these 5

ground-based profiling networks was then compared against a control (CTL) experiment in

which only conventional NDAS data were assimilated.

5.4 Results

5.4.1 Convective impacts

5.4.1.1 Aggregated statistics

We first assess the impact of assimilating different ground-based profilers on the quality

of the convective forecasts. For each of the 10 cases, we compute the Fractions Skill Score

(FSS) based on the Neighborhood Ensemble Probability (NEP) of radar reflectivity exceeding

30 dBZ and the merged composite reflectivity product from the Multi-Radar Multi-Sensor
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(MRMS; Zhang et al. 2016a) program. These scores are evaluated at 15-min increments

within a verification domain centered over the bore-generating MCS.

Fig. 5.3 displays the aggregated FSSs for 3 different neighborhood radii (') – 5 km, 25

km and 150 km. Each of these scores carries a different physical meaning. For example, the

smallest ' value is comparable to the model’s horizontal grid spacing, in which case the

FSSs provide a nearly point-wise measure of the convective skill. The intermediate ' value

is commensurate with the smallest scales resolved by the model (∼8ΔG), whereas the largest

one is located toward the upper end of the meso-V spectrum, making it comparable to the

characteristic scale of large density currents and bores (Zuidema et al. 2017). As expected,

the FSSs increase with ' for a given lead time, reflecting correctly the higher predictability

of larger scales. On average, the experimental differences persist for ∼2 hours, although this

tends to be slightly longer as ' increases.

Regardless of the chosen verification scale, the ALL experiment provides the best forecast

performance, with the FSS differences being statistically significant at smaller ' and when

the forecast lead time is between 1 and 2 hours. Given that the forecast skill at these smaller

scales is completely lost toward the end of the 5-hour forecasting window 2, our verification

statistics indicate that the analysis benefits brought by ALL last for more than 30% of the

typical convective predictability timescale experienced by CTL. Another interesting aspect

of these aggregated statistics is the similarity of the FSSs at the start of the forecasting period

– a result which is opposite to some of the findings reported in Degelia et al. (2020) (e.g., see

their Fig. 4). The comparable short-term performance of CTL and ALL in our study implies

that the environmental perturbations brought by the assimilation of PECAN profilers need to

first experience additional growth before they affect the subsequent convective evolution.

Somemarginal improvements are also observedwith respect to theALLPROF experiment,

but they are considerably smaller and much shorter-lived. We further note that while the

2 The loss of convective skill is evident in the small FSS changes at the end of the forecasting window. Error
saturation for ' = 5 km, for instance, occurs when the lead time is 4.5 hours.
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Figure 5.3: Fractions skill scores (FSSs) averaged over the 10 PECAN cases and calculated
for 3 different neighborhood radii (5, 25 and 150 km). The markers at the bottom of each
panel indicate whether the FSS differences between a given PECAN experiment and CTL
are statistically significant at the U = 0.01 level, as determined by a bootstrap method with
10,000 resamples. The + and – symbols differentiate between positive and negative impacts,
respectively.

most pronounced ALLPROF benefits occur at ' = 150 km (where ALLPROF is nearly as

skillful as the best performing ALL experiment), the FSS changes at this verification radius

are not statistically significant.

The impacts from single profiler experiments (SONDE, TQPROF and UVPROF) are

generally smaller than both ALL and ALLPROF. In addition, the verification statistics here

are sensitive to the chosen verification radius: even though the 3 single profiler experiments

generally improve upon the CTL skill scores at ' = 5 km (especially SONDE), the forecast

impacts at larger ' values become neutral or even slightly negative.

5.4.1.2 Dependence of the forecast impacts on the convective predictability

One of the most interesting characteristics of this systematic study was the strong

variability of the overall convective skill. To understand how this variability modulated

the average observation impacts discussed so far, the 10 PECAN cases were split into 3

predictability categories based on the 2-hour FSS in the CTL experiment (see Fig. 5.4). The

choice of this specific lead time was motivated by our observation that the least predictable

PECAN cases (LP category; 5 July, 11 July and 14 July) tended to completely lose their
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Figure 5.4: As in Fig. 5.3, but the FSSs here are conditioned on the 3 predictability categories
(LP, MP and HP; see main text for more details) and are only shown for ' = 25 km. Note
that statistical significance has not been tested here due to the small number of cases in each
predictability category.

convective skill 2 hours into the forecast. In addition, this predictability definition is

consistent with the average longevity of the experimental differences in the aggregated FSS

statistics (see Fig. 5.3).

The FSS behaviour in the other 2 predictability categories – medium (MP; 5 June, 26

June and 16 July) and high (HP; 6 June, 7 June, 20 June and 2 July), was fairly similar,

although the experimental differences in the HP cases become visible only after the 2nd

forecast hour. It is also interesting to note that while the 20 June simulations were the most

skillful ones across our entire PECAN dataset, the parent convective system from this case

has been previously found to incite significant errors in a global NWP model (Parsons et al.

2019b). The aforementioned discrepancy with our results ultimately suggests that even small

errors on the convective scale can sometimes interact with the large-scale flow and limit the

overall atmospheric predictability.

Similar to the average FSS results, ALL remains the best performing experiment in the

LP category (Fig. 5.4a): the peak differences with CTL reach 0.1 and translate to 15 min of

additional convective predictability. The largest contributions to these improvements come

from TQPROF, though its impacts are much shorter-lived. We also notice that the skill of

ALLPROF is bounded by TQPROF and UVPROF, suggesting that the thermodynamic and
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kinematic remote sensors do not provide synergistic information. This is to be contrasted with

the visible improvements in ALL which differs from ALLPROF only due to the additionally

assimilated PECAN radiosondes.

In comparison to the LP category, the MP verification statistics are much more difficult

to interpret. Beyond 2 hours of forecast lead time, for example, we observe that the impacts

from TQPROF and UVPROF are consistently negative. Nevertheless, the forecast impacts

for such long periods of time should be interpreted with extra caution; this is because the

highly nonlinear convective evolution in our forecasts makes it increasingly difficult to

establish a link between the observed experimental differences and the analysis changes

brought by the assimilation of certain profilers. During the first 2 hours, when the effect

of such model nonlinearities is less pronounced, the single remote sensors still degrade

the forecasts, but their combined assimilation in ALLPROF leads to a visible gain in the

convective skill. Given that competitive short-term forecasts are also produced by SONDE,

we can conclude that the simultaneous assimilation of mass and wind observations is a

critical aspect in these MP cases.

As discussed earlier, the experimental differences in the HP category are most prominent

beyond the first 2 hours of model integration. Except from SONDE, consistent improvements

appear in all other PECAN experiments, which suggests that ground-based remote sensors are

quite effective in this predictability regime. In contrast to the LP category, however, UVPROF

performs better than TQPROF; in fact, UVPROF is the most skillful PECAN experiment,

which implies that the two combined profiling networks (ALLPROF or ALLPROF) are not

synergistic in nature.

A concise summary of the main convective impacts is given by the violin plots in Fig. 5.5.

The color shaded distributions in each panel show how the FSS differences change according

to the underlying convective predictability. We first notice that the interquartile ranges

(IQRs) associated with the best performing LP and HP experiments (ALL and UVPROF,

respectively) lie entirely above 0, which in turn indicates that the forecast improvements in
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Figure 5.5: Violin plots showing the predictability-dependent FSS differences between the 5
PECAN experiments and CTL. The LP and MP cases combine all FSS differences during
the first 2 hours, whereas the HP category only considers FSS differences with lead times
between 2 and 5 hours.

this predictability category are statistically robust. It is also evident that the variability of the

forecast impacts is highly dependent on the type of assimilated ground-based network. This

effect is most pronounced in the HP regime where the distribution spread associated with

the best performing UVPROF experiment is much smaller compared to SONDE. Finally,

the striking similarity between the SONDE, ALLPROF and ALL violins in the MP category

(Fig. 5.5b) reaffirms our earlier conclusions regarding the importance of simultaneously

observing the thermodynamic and kinematic components of the model state.

5.4.2 Bore impacts

5.4.2.1 Verification methodology

Atmospheric bores are particularly challenging to identify and track in view of their

complex dynamical footprint on several meteorological variables. Although NWP-based

algorithms have been proposed in the past (Chipilski et al. 2018), the objective detection

of bores in observational datasets remains elusive. In spite of these limitations, our study

attempts to provide a comprehensive assessment of how the assimilation of different ground-

based profilers affects the forecast skill of explicitly resolved bores. Toward this end,

ensemble mean forecasts from all PECAN experiments are verified in two different ways.

Similar to Geerts et al. (2017) (see their Fig. 8), we first examine the spatial representation of

138



bores by comparing model fields of vertical velocity at 1 km AGL (|1km) against the position

of fine lines in low-level reflectivity data. This methodology is similar to the one utilized

in Wilson and Roberts (2006) and aims to examine the realism of various bore attributes,

including position, extent and propagation direction.

Our second verification method examines the extent to which the ensemble mean forecasts

are able to accurately simulate the amount of bore lifting (Δℎ), i.e. the difference between

the post- and pre-bore PBL heights. The choice of this metric is motivated by its relevance to

the initiation and maintenance of nocturnal convection: a larger Δℎ value translates to more

pronounced mechanical lifting at the leading edge of the bore, which in turn creates more

favorable conditions for air parcels to reach their level of free convection. To estimate Δℎ,

we follow Chipilski et al. (2018) and search for the water vapor mixing ratio (@) or virtual

potential temperature (\{) contour that exhibits the largest vertical displacement near the

ground. Together with the University of Wisconsin King Air (UWKA) moisture retrievals

used in CWP20, the present bore verification dataset features additional thermodynamic

profiles from ground-based AERI sites as well as moisture retrievals from the National

Aeronautics and Space Administration (NASA) DC-8 aircraft. All 20 Δℎ measurements

(see filled circles in Fig. 5.2) are then compared to model-derived Δℎ estimates obtained by

constructing vertical cross-sections in proximity to the observed bore locations.

5.4.2.2 Spatial impacts

Analysis of |1km fields revealed that bores were successfully forecasted in all 10 PECAN

cases, which confirms the suitability of our chosen model initialization times. In terms of

the CTL experiment, our summary in Table 5.3 indicates that the spatial structure of the

simulated bores was consistent with the verifying radar observations in 4 out of the 10 cases.

For the remaining 6 cases, the most common forecast issues pertained to the maintenance

and extent of the predicted bores. Interestingly, these problems occurred most frequently in

the LP regime where the parent MCSs also dissipated too quickly. This close relationship
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Table 5.3: Subjective evaluation of the forecast impacts pertaining to the spatial characteristics
of the explicitly resolved bores; the + and − symbols denote positive and negative impacts,
respectively. Some of the entries in the last column contain the word synergy, which indicates
that the positive impacts in ALLPROF and/or ALL exceed those caused by the assimilation
of single profiling instruments.

between the forecast skills of the bore and its parent MCS has a clear dynamical explanation;

namely, the premature dissipation of the parent MCS leads to a weaker and shorter-lived cold

pool that is in turn not capable of sustaining upstream-propagating disturbances for a very

long time (see Section 7 of White and Helfrich 2012). In the majority of these situations,

the assimilation of ground-based profilers resulted in visible forecast improvements. One

such example is the 5 July case (see Fig. 5.6) where the ALL experiment was able to

successfully recover the eastern segment of the bore (originally missing in the CTL forecast).

In agreement with the convective LP findings from Section 5.4.1.2, the largest contribution

to this positive impact came from TQPROF.

The second, less common problem in CTL involved the spatial orientation/propagation

direction of the explicitly resolved bores. The assimilation of PECAN profilers was also found

to be valuable here. One relevant example comes from the 5 June case in Fig. 5.7 where the

baseline experiment incorrectly simulated a southeast- rather than a southwest-propagating

bore (compare Figs. 5.7a and 5.7b). Similar to the 5 July case, the simultaneous assimilation

of thermodynamic and kinematic remote sensors was essential for producing better forecast

results (Fig. 5.7d); however, unlike the 5 July case, the inclusion of PECAN radiosondes did

not bring any additional forecast benefits (compare Figs. 5.7c and 5.7d).
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Figure 5.6: Example of how the assimilation of different ground-based profiling networks
affects the predicted bore extent during the 5 July 2015 case. Panel a: Observed low-level
reflectivity mosaic at 0554 UTC (taken from the PECAN field catalogue). Panels b-g:
Analysis mean vertical velocity at 1 km AGL (|; color shading) and 30 dBZ composite
MRMS reflectivity (black contours) at 0600 UTC. The dashed ellipses in panels (a) and (c)
mark the location of the eastern bore segment discussed in the main text.
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Figure 5.7: Same as Fig. 5.6, but with respect to the propagation direction of the explicitly
resolved bore during the 5 June 2015 case. Both observed and forecasted data are displayed
at 0530 UTC on that day.
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5.4.2.3 Structural impacts

In Fig. 5.8, the Δℎ ensemble mean forecasts from all 6 experiments are objectively

compared against the available bore observations. But before commenting on the performance

of different ground-based networks, we would like to first note that the average Δℎ value in

our observation dataset (810.5 m) is commensurate with other recently published composite

bore studies (Parsons et al. 2019a; Loveless et al. 2019). Furthermore, the wide range of

observed Δℎ values indicates that the thermodynamic profilers used in our observation

analysis were able to sample a large variety of atmospheric bores.

The CTL forecasts were generally skillful at discriminating between weak and strong

bore events, but tended to underestimate the amount of bore lifting, especially with respect

to the high-amplitude bore cases. Amongst the single profiler experiments (Figs. 5.8d-5.8f),

TQPROF led to the strongest forecast changes; however, the impacts from this ground-based

network were not necessarily all positive: while the root-mean-square (RMS) error was

reduced by ∼60 m, TQPROF further exacerbated the negative bias in CTL by ∼10 m.

On the other hand, the two combined ground-based networks (Figs. 5.8b and 5.8c) were

able to improve both of the aforementioned verification metrics. We also observe that the

performance of ALLPROF and ALL was very similar, which implies that the assimilation of

radiosonde data on top of ground-based remote sensing retrievals had a negligible impact

overall.

5.5 Case studies

The results from Section 5.4.1.2 indicated that the forecast skill associated with single

profiling networks (SONDE, TQPROF and UVPROF) can be strongly dependent on the

underlying convective predictability. To better understand this important sensitivity, the

following sequel presents a detailed analysis of 3 representative cases, in which we attempt
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Figure 5.8: Systematic verification of the forecasted bore lifting (Δℎ). The bias and root-
mean-square error (RMSE) associated with different experiments are summarized in the
upper left corner of each panel.
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to establish a relationship between the forecast performance of single profiling experiments

to both their DA impacts as well as the governing convective dynamics.

5.5.1 Low predictability case: 11 July 2015

For the LP category, we selected the 11 July case since its FSS time series were most

representative of the average impacts in this predictability regime (see Fig. 5.4a). The same

11 July case was also the focus of a recently published work by Carroll et al. (2021) who

combined lidar observations and Rapid Refresh model analyses to study the mesoscale

moisture transport responsible for the initiation of the parent bore-generating MCS on this

date.

Fig. 5.9 shows the forecast performance at 0700 UTC – the time when the experimental

differences reached their peak values. The low NEPs that the CTL experiment predicted

inside the parent MCS are a manifestation of rapid convective dissipation, which was quite a

common feature in this and the other 2 LP cases. Based on the FSS values in the upper left

corner of each panel, we can conclude that the most significant gains in forecast skill come

from ALL and TQPROF, despite the tendency of these experiments to generate regions

of spurious convection to the east of the parent MCS.3 Slight improvements were also

produced by ALLPROF, whereas the assimilation of SONDE and UVPROF led to a marginal

degradation of the CTL forecast.

The green scatter dots in Figs. 5.9b-f indicate that the aforementioned convective impacts

are correlated with differences in the low-level moisture field. In particular, it appears that

the continuous assimilation of the thermodynamic AERI retrievals resulted in a significant

moisture increase that helped maintain the MCS for a longer time. The magnitude of these

moisture changes was slightly reduced when kinematic profilers were added (see ALLPROF

in Fig. 5.9c), but further increased when all PECAN instruments were assimilated together

3 Additional tests showed that including the region of spurious convection in the FSS calculations did not
change the fact that ALL and TQPROF were the best performing experiments for this case.
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Figure 5.9: Convective forecasts for the 11 July 2015 case, valid at 0700 UTC (corresponding
to a 1h forecast lead time). The color shading in panel (a) represents the NEP values associated
with CTL, whereas the color shading in the remaining panels – the NEP differences between
a given PECAN experiment and CTL. Overlaid on these plots are also the 30 dBZ composite
MRMS reflectivity (solid black contours), the experimental differences in the ensemble
mean of water vapor mixing ratio at 500 m above the ground (Δ@; light and dark green dots
correspond to areas where Δ@ exceeds 0.5 and 1 gkg−1, respectively) as well as the position
of assimilated ground-based PISA sites (yellow stars).

(see ALL in Fig. 5.9b). To gain further insights into these results, an additional experiment

termed ALLTQ was conducted where only thermodynamic data (either in situ or remotely

sensed) were assimilated. ALLTQ produced the highest FSSs amongst all experiments (not

shown), implying that the forecast improvements in ALL (relative to TQPROF) were caused

by the thermodynamic component of the radiosonde observations. This enhanced sensitivity

to the low-level moisture aligns well with the recently published work of Carroll et al. (2021)

which showed that convection initiation during the 11 July case was coincident with an

observed maximum in the water vapor flux.

Although both the AERIs and the radiosondes provided valuable moisture information

that was crucial for the accurate simulation of the bore-generating MCS, the positive moisture

differences created by the former were significantly larger. To explain this effect, we now
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Figure 5.10: FP3 innovation time series of specific humidity
(
3@

)
averaged over the 950-850

hPa layer and shown for the second half of the 6-hour EnKF cycling period on 11 July
2015. Note that the innovation values plotted here represent the ensemble mean minus
observation differences; the blue and red colors refer to the background (bg) and analysis
(anl) innovations, respectively.

refer to Fig. 5.10 which shows the low-level moisture innovations at one of the PECAN sites

(FP3). First focusing on the two solid curves, we observe that the TQPROF background

is consistently drier after cycle 23. However, the frequent assimilation of AERI retrievals

continuously nudges the TQPROF forecasts toward the observed state such that the moisture

innovations during the last EnKF cycle become negligible. During cycle 24, the SONDE

innovations are also negative and similar in magnitude to TQPROF. However, due to the

complete lack of observations in the upcoming cycles, the background innovations continue

to grow, reaching 2 gkg−1 during the final analysis time – values that resemble the Rapid

Refresh model analysis errors reported in Carroll et al. (2021). At this point, even though

the assimilation of FP3 radiosonde data produces large moisture increments, the SONDE

analysis innovations remain strongly negative. In other words, our diagnostics suggest that

the lack of appreciable moisture changes in SONDE is caused by the small number of

PBL observations that cannot effectively suppress the growing background errors in this

experiment.

In an effort to justify the forecast degradation caused by UVPROF, we compare its DA

performance relative to TQPROF at 0600 UTC (Fig. 5.11). During this last EnKF cycle,
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the low-level moisture background in both experiments contains a localised region of dry

air ahead of the parent MCS. Assimilating the MP1 AERI instrument, which happens to

be located within the dry region, generates positive increments in water vapor mixing ratio

(red contours in Fig. 5.11a). By contrast, the MP1 kinematic profiler further enhances the

strength of the dry region. To understand where these opposite impacts come from, we

need to first recall that @{ is not a directly observed variable in UVPROF, meaning that all

moisture corrections in this experiment are entirely determined by the empirical covariances

provided by the background ensemble. And since @{ represents a passive tracer in the

absence of moisture sources or sinks, the background covariances in UVPROF mostly reflect

the advection of @{ by the wind. With this in mind, we now observe that the MP1 kinematic

profiler induces a westerly wind increment (eastward-pointing white arrows in Fig. 5.9b)

that acts upon a sharp moisture gradient around the MP1 site. But since @{ is considerably

smaller upstream of the MP1 site, an increase in the westerly component of the wind will be

inevitably correlated with a decrease in the moisture content.

5.5.2 High predictability case: 2 July 2015

The observation impacts in the HP category are exemplified through the 2 July case,

which was characterized by a quickly moving MCS with a large, eastward propagating bore.

As expected, the CTL experiment had a very satisfactory forecast of the parent MCS even 3h

into the forecast (Fig. 5.12a). Notably, the excellent forecast performance in this HP case

occurred even though the total DA period was twice as small compared to its LP counterpart.

The latter observation further confirms our overall impression that the convective skill

across the 10 PECAN cases was mostly driven by differences in the inherent atmospheric

predictability rather than specific details in our employed DA methodology.

The main motivation for selecting the 2 July event was the superior performance of

UVPROF (cf. NEP changes in Fig. 5.12f) – a typical characteristic in this HP category

(see Fig. 5.5c). Unlike the 11 July case, the convective forecasts here were most sensitive
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Figure 5.11: Comparing the 500 m AGL analysis increments in (a) TQPROF and (b)
UVPROF during the last EnKF cycle on 11 July 2015. The color shading, black arrows and
solid black contours represent the background ensemble means of water vapor mixing ratio
(@), wind and 30 dBZ reflectivity, respectively. Positive (negative) @ increments are shown
as red (blue) contours and are displayed for the following values: ±0.15, ±0.25, ±0.5, ±1,
±1.5, ±2 and ±2.5 gkg−1. Wind increments are shown as white arrows and are additionally
magnified ∼10.6 times relative to the background wind. Note that the moisture and wind
increments inside the parent MCS are deliberately clipped in order to better highlight the
environmental changes brought by the assimilated ground-based remote sensors (see yellow
stars).
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Figure 5.12: Same as Fig. 5.9, but for 0600 UTC on 2 July 2015 (corresponding to a 3h
forecast lead time). The green (yellow) dots show negative (positive) differences in the
D-component of the ensemble mean wind at 500 m AGL; the lighter (darker) colors mark
regions where these differences exceed 0.5 (1) ms−1.

to differences in the forecasted low-level wind field. In particular, the black arrow in Fig.

5.12f indicates that UVPROF predicted a stronger inflow toward the parent MCS. To reveal

how these wind changes affected the subsequent convective evolution, we examined the

vertical structure of the simulated cold pools. The cross sections in Fig. 5.13 show that

the stronger inflow in UVPROF enhanced the low-level convergence along the cold pool’s

leading edge. The resulting updraft increase promoted a more sustained growth of new

convective cells, largely alleviating the premature MCS dissipation in CTL. Interestingly,

slight increases in the updraft’s strength were also observed in the other PECAN experiments,

especially ALLPROF and ALL. Despite their opposite near-surface wind impacts, these two

experiments were still able to deepen the cold pool’s inflow region and thus increase the

height-integrated convergence along the cold pool’s leading edge.

Similar to the LP analysis, we now seek to understand why the kinematic remote sensors

were more effective at improving the forecast skill than the corresponding radiosonde
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Figure 5.13: Vertical cross sections through the cold pool associated with the parent MCS
on 2 July 2015. The color shading displays the horizontal wind speed parallel to the cross
section

(
+| |

)
, with positive (negative) values indicating flow oriented in the positive (negative)

G-direction. The solid black contours show the virtual potential temperature and are plotted
every 2 K, starting from 310 K near the surface. Vertical velocities are also shown as solid
blue contours whose spacing and initial value are both set to 0.25 ms−1. The maximum
value of the vertical velocity (Wmax) is additionally labelled in the lower-left corner of each
panel. All cross sections are valid at 0530 UTC, which corresponds to a 2.5h forecast lead
time for this PECAN case.
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instruments. To answer this question, we consider innovation statistics from the FP3 site

where most of the forecasted inflow differences in UVPROF originated from. It it clear

from Fig. 5.14a that the wind innovations in UVPROF become negligible after the first

EnKF cycle (compare the solid and dashed blue lines). The small UVPROF increments

throughout most of the cycling period suggest that the high observation frequency of the

kinematic remote sensor was not an essential ingredient for improving the forecast skill in

this case. Instead, it was the ability of UVPROF to correct the model state early enough

in the DA window so that the resulting wind changes can affect the subsequent convective

evolution4. While this reduced sensitivity to the temporal frequency makes radiosondes a

potentially useful observing platform, the FP3 crew launched their first weather balloon

only during the last EnKF cycle, not leaving sufficient time for the wind corrections to be

advected toward the cold pool. In fact, comparison between the solid red and blue curves in

Fig. 5.14a indicates that the initial wind errors at FP3 amplified over the cycling period and

created an even greater observation misfit during SONDE’s first assimilation time.

The inability of TQPROF to create meaningful wind increments in this HP case can

be primarily attributed to the high accuracy of the background low-level moisture fields

(relative to the LP case), as evidenced by the root-mean-square innovation (RMSI) profiles

in Fig. 5.14b. In particular, the absence of large moisture innovations prevented the EnKF

from making significant changes to either observed or unobserved state variables. Additional

diagnostics, however, revealed that the small moisture innovations in TQPROF were further

compounded by the relatively small moisture-wind correlations. As a result, even the very

few EnKF cycles that featured relatively large moisture corrections were not able to produce

sizeable wind increments.

4 One could also argue that the increased sampling frequency of the kinematic remote sensor represents an
indirect benefit since it ensures that observations will be made at dynamically critical times.
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Figure 5.14: Observation space diagnostics for the 2 July 2015 case. Panel a: Background
D-wind bias profiles for UVPROF and SONDE (blue and red colors, respectively) at the
FP3 site. The two solid curves show statistics from a single cycle (21 or 218; see legend),
while the dashed curve – an average bias profile calculated between the 2nd and 18th cycles.
Panel b: Background root-mean-square innovation (RMSI) profiles of specific humidity (&)
associated with TQPROF for the 2 July 2015 (solid curve) and 11 July 2015 (dashed curves)
cases. All RMSI profiles are averaged over the last 3 hours prior to model initialization.

5.5.3 Medium predictability case: 5 June 2015

We close this Section by discussing the forecast impacts on 5 June when the convective

evolution was considerably more complex than the previous two cases. In particular, the

bore-generating MCS here interacted with another, much larger MCS to its northeast (see

the upper-right corner of Fig. 5.15a). Problems with the CTL experiment included the low

NEP values inside the parent MCS as well as the simulation of spurious NEP probabilities

to its east. Consistent with our conclusions for the MP category, forecast improvements in

this case required the simultaneous assimilation of thermodynamic and kinematic profilers.

By contrast, the use of single remote sensors resulted in either neutral or slightly negative

impacts, primarily due to further NEP reductions within the parent MCS (see Figs. 5.15e,f).

The location of the FP3 site (see yellow star in Fig. 5.16a), which was assimilated as

part of our 5 June experiments, partly explains why it was necessary to observe both the

thermodynamic and kinematic components of the model state. In particular, the FP3 site was
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Figure 5.15: As in Fig. 5.9, but for 0600 UTC on 5 June 2015 (corresponding to a 1.5h
forecast lead time).

positioned very close to a sharp near-surface boundary characterized by strong variations in

moisture and wind, and along which the bore-generating convective system developed in

later EnKF cycles.

Given that SONDE was the best performing single profiling experiment during this case,

we now examine its low-level increments (overlaid in Fig. 5.16a) in order to justify some

of the subsequent forecast improvements. First, we observe that the assimilation of FP3

radiosondes induced a widespread region of negative @ increments at 500 m AGL. These

negative increments also extended to 2 km AGL where the background wind was oriented

from south-southwest (see Fig. 5.16a). The resulting negative SONDE-CTL moisture

differences were then advected into the region of spurious convection and helped suppress the

excessively large NEP values in CTL. Insofar as the wind impacts in SONDE are concerned,

the white arrows in Fig. 5.16a indicate the existence of two main increment types. The first

one pertained to a broad area of southerly wind increments around the FP3 site that reflected

an underestimation of the background LLJ speed around the FP3 site. We also observe

northeasterly wind increments between the two convective cells to the northwest of FP3 (see
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yellow ellipse in Fig. 5.16a), which were instead caused by the spatial wind covariances

in the background ensemble. Regardless of their origin, however, the effect of both these

increment types was to strengthen the pre-existing low-level convergence to the north of

FP3. Somewhat analogous to the dynamical mechanisms discussed as part of the HP case,

the resulting enhancement in the low-level vertical velocity (see red contours in Fig. 5.16c)

created more favourable conditions for convective growth and likely explains the higher NEP

values in SONDE.

To understand why the TQPROF and UVPROF predictions were not as skillful compared

to SONDE, we examine the DA impacts in these single profiling experiments during two

different EnKF cycles. The first one is valid at 0310 UTC (first row of Fig. 5.17), which is

only 10 minutes after the assimilation of the first FP3 radiosonde observations. Although the

moisture and wind increments in TQPROF and UVPROF are not as coherent or widespread

as those in SONDE, they appear to be subjectively consistent – both in terms of the reduced

moisture content as well as the strengthened LLJ. This similarity between TQPROF and

UVPROF, which occurred during several other EnKF cycles, comes in contrast to the LP

case where the two experiments produced opposite increments. To explain this apparent

discrepancy, we note that the low-level moisture on 5 June varied on much larger scales

compared to the LP case and was also strongly correlated with the low-level wind field. In

particular, the dry air mass was clearly associated with south-southwesterly winds, whereas

the flow in the moist air mass had a predominantly easterly component. In this much simpler

dynamical context, measurements of either moisture or wind would be sufficient to accurately

estimate both of these variables.

The aforementioned dynamical situation changes during the last hour of EnKF cycling

when convection begins to develop over the FP3 site. As a result of the highly nonlinear

convective dynamics, the wind-moisture relationship becomes more complex and it is no

longer possible to accurately estimate the model state by only assimilating single remote

sensors. This effect is illustrated well on the bottom row of Fig. 5.17. Here we see that
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Figure 5.16: Dynamical interpretation of the forecast improvements during the 5 June 2015
case. Panel a: Analysis increments for SONDE at 0300 UTC. The meaning of all symbols
is the same as in Fig. 5.11, except that the @ increments are drawn at ±0.5, ±1, ±2 and ±4
gkg−1, whereas the ratio of background to increment wind (represented by the black and
white arrows, respectively) is ∼1:3. The dashed yellow ellipse shows the position of the
northeasterly wind increment discussed in the main text. Panel b: SONDE-CTL analysis
mean @ differences (Δ@; color shading) at 2 km AGL and valid at 0300 UTC. Regions where
Δ@ is equal to -0.5 gkg−1 are highlighted with bisque contours. The solid black contours and
black arrows represent SONDE’s analysis mean of 30 dBZ reflectivity and wind at 2 km
AGL, respectively, while the purple dots indicate grid points where the analysis mean vertical
velocity at 1 km AGL exceeds 0.15 ms−1. Panel c: SONDE’s analysis mean updraft strength
at 1 km AGL (|+; blue shading) and its change relative to CTL (red contours starting at 0.1
ms−1 and plotted every 0.2 ms−1) at 0310 UTC. The solid black contours and black arrows
have the same meaning as in panel (b), but are shown for 1 km AGL. Finally, the position of
the FP3 site is marked with a yellow star in all panels.
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Figure 5.17: Comparing the low-level analysis increments in TQPROF and UVPROF during
two EnKF cycles on 5 June 2015: one before and another after the initiation of convection
over the FP3 site (top and bottom rows, respectively). The data shown in these panels are the
same as in Fig. 5.16a, except that the ratio of background to increment wind (black and white
arrows, respectively) here is ∼2:5 and the ±0.25 gkg−1 @ increment is additionally plotted.
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TQPROF produces a distinctly negative moisture increment around the FP3 site, whereas the

moisture changes in UVPROF are more or less neutral, despite the fact that the background

moisture content in UVPROF is much larger. We hypothesize that it is namely these

cross-variable analysis errors that eventually degrade the TQPROF and UVPROF forecast

performance.

Finally, it is worth remarking that the strategic timing of the FP3 balloon launch likely

enhanced the overall forecast benefits brought by the SONDE network. In particular, the FP3

radiosonde provided vital observations shortly before convection initiation when the relatively

linear model state dynamics still allowed the EnKF algorithm to generate meaningful PBL

corrections. This setup is to be contrasted with the HP case where the lack of radiosonde

measurements early in the DA window limited their subsequent impacts.

5.6 Summary

This work evaluated the benefits of various ground-based profiling networks across 10

diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. We

explored the impact of assimilating both in situ and remote sensing instruments on the

short-range forecasts of bore-generating nocturnal convection. A total of 5 data addition

experiments were conducted in order to evaluate the relative merits of networks with single

or combined instrument designs.

Aggregated verification statistics across the 10 cases showed that the largest forecast

improvements are obtained by simultaneously assimilating in situ and remote sensing

profilers. Combining thermodynamic and kinematic remote sensors also resulted in

measurable benefits, especially with respect to the explicitly resolved bores. On the other

hand, the average impacts from single profiling networks were shown to be mostly neutral in

sign. Detailed analysis revealed that the lack of statistically detectable benefits from such

networks is related to their strong dependence on the underlying convective predictability.

In particular, while thermodynamic and kinematic remote sensors were beneficial in low and
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high predictability regimes, respectively, they were found to cause neutral or even slightly

negative impacts during moderately predictable convective events.

To illustrate the aforementioned sensitivities, we used 3 representative cases and showed

that the underlying dynamical context plays a critical role in shaping the forecast impacts

from different ground-based profiling networks. Our examination of the low predictability

case, for instance, revealed that the evolution of the bore-generating convective system was

highly sensitive to the low-level moisture analysis, which in turn explained the better forecast

performance caused by the assimilation of thermodynamic networks. Likewise, the positive

impacts from kinematic profilers during the high predictability case were naturally linked to

the enhanced sensitivity of the parent convective system to the low-level wind fields.

Aside from their strong dependence on the underlying convective predictability, our

analysis demonstrated that the performance of single profiling networks is also contingent

upon limitations in the underlying DA methodology. This is due to the fact that accurately

estimating the unobserved portion of the model state is closely related to the quality of the

background error covariances. The main advantage of the EnKF approach used in this study

is that it provides a flow-dependent covariance estimate based only on a small number of

ensemble members. In the special case of quasi-linear model dynamics and comparable

variability in the moisture and wind fields (Figs. 5.17a,b), we find that the EnKF-based

covariances are sufficiently accurate and allow single profilers to introduce physically sound

corrections to both mass and wind variables.

On the contrary, when the flow is governed by highly nonlinear dynamics (Figs.

5.17c,d) and/or the background moisture varies on scales that are much smaller than the

corresponding wind field (Figs. 5.11), an accurate estimation of the thermodynamic and

wind characteristics of the PBL with single remote sensors is no longer possible. In these

situations, the background covariances cannot faithfully describe the true wind-moisture

relationship – either as a direct consequence of the more complicated dynamics or due to

the insufficient number of ensemble members needed to accurately resolve the small-scale
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moisture variability. Consequently, errors in the analysis of unobserved state variables

accumulate over time and have an adverse impact on the forecasts. All in all, these findings

suggest that the spatiotemporal characteristics of the low-level moisture transport, which is

an archetypal feature of the nocturnal environment over the Great Plains (Trier and Parsons

1993; Trier et al. 2017; Hitchcock et al. 2019; Weckwerth and Romatschke 2019), have

important consequences on our ability to extract meaningful information from single remote

sensing instruments.

Undoubtedly, future developments in DA theory would be vital for the better utilization

of ground-based remote sensing technology. One possible research direction involves the

development of novel methods for estimating the optimal observation error statistics. The

high vertical resolution and temporal frequency of remote sensors, for instance, make it

necessary to introduce spatial and temporal correlations in the error covariance matrices.

Recent findings from Degelia and Wang (2021) have also demonstrated that convective

forecasts can be further improved by adopting a flow-dependent treatment of the observation

error statistics. Another interesting line of future research would be to explore the benefits

of directly assimilating the raw remote sensing measurements (as opposed to having to rely

on separate retrieval algorithms). Such an idea is highly appealing as it would allow for

a more straightforward quantification of the measurement uncertainties in the estimation

process. Finally, the contrasting moisture variability found in our cases naturally lends itself

to a multiscale DA approach that can impose different correlation structures as a function of

the analyzed scales (e.g., Wang et al. 2021).
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Chapter 6

Conclusions

6.1 Overall summary

Numerical weather prediction (NWP) is an initial-value problem which requires reliable

measurements of the entire Earth system in order for skillful predictions to be made. Ever

since the generation of the first successful computer-based weather forecast in 1950 (Charney

et al. 1950), the NWP field has been revolutionized through continuous, but gradual advances

in model formulation,initialization techniques and the introduction of new observation types

(Bauer et al. 2015). The increasing availability of computational resources has also enabled

unprecedented increases in model resolution, making it possible to treat convective motions

explicitly. As might be expected, however, the development of these new NWP systems has

also opened the doors for new scientific challenges that limit the overall practical utility of

NWP forecasts. For example, the ability of high-resolution models to resolve the -5/3 portion

of the kinetic energy spectrum allows small errors in the initial conditions (ICs) to grow

rapidly and contaminate the overall forecast quality. Typically, these small-scale analysis

errors would originate in the Planetary Boundary Layer (PBL) – the lowest portion of the

atmosphere, where processes are characterized by smaller scales compared to other parts

of the atmosphere. Despite the wealth of information provided by the Global Observing

System (GOS), the currently available instruments cannot effectively suppress the IC errors

in the PBL. Therefore, the last two decades have been dedicated toward the development of
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novel ground-based remote sensing profilers that can faithfully capture the thermodynamic

and kinematic structure of the PBL. Their high sampling frequency is believed to hold

great promise for the next generation of high-resolution NWP models. In this dissertation,

we have corroborated this claim by showing the value of ground-based remote sensing on

the forecasts of bore-generating convective systems observed during the Plains Elevated

Convection at Night (PECAN) field campaign.

In order to accurately assess the quality of our forecasts, we first developed an object-

based algorithm for the identification and tracking of convective outflow boundaries (cf.

Chapter 3). The ability of the proposed method to simultaneously detect density currents

and bores made it particularly suitable for evaluating the night-time forecast skill when

the evolution of these features is closely related. The new algorithm was further extended

in Chapter 4 to accommodate a neighborhood-based verification of the forecasted bores

that makes use of the available remote sensing data. This new functionality allowed us

to quantitatively evaluate the impact of the newly added observations on different aspects

of a bore-initiated convection event that took place on 6 July 2015, including the ambient

environment in which the bore formed, its explicitly resolved structure as well as its ability

to trigger new convective cells. Our experiments showed that ground-based remote sensors

have the largest forecast impact out of all assimilated PECAN observations. Overall, the

thermodynamic retrievals from the Atmospheric Emitted Radiance Interferometer (AERI)

led to the strongest positive impacts. Kinematic profilers, such as the Radio Wind Profiler

(RWP) and Doppler Wind Lidar (DWL), appeared to be highly beneficial for the bore-related

components of the forecasts, but degraded the subsequent convective skill.

In Chapter 5, the validity of the aforementioned conclusions was systematically tested

against 10 additional PECAN cases. By only assimilating collocated instruments, we

evaluated the relative merits of different ground-based profiling networks. The best forecasts

were obtained by combining in situ and remote sensing profilers, although statistically

significant improvements were also achieved through the simultaneous assimilation of
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thermodynamic and kinematic remote sensors. By contrast, the value of single profilers was

found to be highly case dependent, with thermodynamic (kinematic) instruments being most

beneficial in cases with low (high) convective predictability.

6.2 Discussion

The visible dependence of the forecast impacts on the underlying atmospheric pre-

dictability was an overarching topic in Chapter 5. Our systematic results suggested that

the convective evolution can be sensitive to both the mass and wind characteristics of the

initial state, making the value of individual profiling instruments highly case dependent.

For example, we found that thermodynamic (kinematic) profilers do not bring forecast

improvements when the simulatedMCS is mostly sensitive to the kinematic (thermodynamic)

component of the initial state. In these situations, ideally, the assimilation of single profiler

networks should not affect the overall forecast quality. However, deficiencies in the EnKF

method – either due to the limited ensemble size or complexities in the governing moisture

dynamics – inevitably led to forecast degradations. These problems were largely mitigated by

assimilating ground-based networks containing both thermodynamic and kinematic remote

sensors, which were able to provide a more complete description of the initial PBL state.

The considerable forecast gains brought by the simultaneous assimilation of remote

sensing and in situ instruments was another important finding in Chapter 5 that deserves a

special mention in view of its novelty. The value of radiosondes was found to be particularly

high with respect to the convective forecasts where the addition of these instruments was

able to further reduce the sensitivity of the observation impacts to the underlying convective

predictability. Given the relatively low costs of operating radiosondes as well as their

pronounced benefit, it appears that investment in such hybrid profiling systems should be

strongly considered as part of future mesoscale networks.

Weather-sensing uncrewed aerial systems (WxUAS), frequently referred to as drones,

represent another viable alternative for confronting the PBL observation gap (Bell et al.
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2020). Compared to ground-based remote sensors, drones are much cheaper, especially

considering that a single drone can simultaneously observe the thermodynamic and kinematic

structure of the PBL. Another notable advantage of WxUAS is their superior accuracy

due to the use of in situ sensors. While the current use of drones is subject to a lot of

restrictions from the Federal Aviation Administration (FAA), it is expected that their high

adaptability will make them increasingly more important in future efforts to address the

PBL observation gap. Recent experiments have shown that WxUAS data can improve the

accuracy of thermodynamic retrievals (Tyler Bell, personal communication), which serves

as an additional evidence for the synergies between in situ and remote sensing instruments.

However, the high sampling frequency of drones relative to radiosondes will make them even

more valuable in the context of the hybrid ground-based profiling systems mentioned above.

Other possible observation synergies involve satellite measurements. The NWP com-

munity has recently started to make increasing use of hyperspectral infrared (IR) sounders

such as the Atmospheric Infrared Sounder (AIRS), the Infrared Sounding Interferometer

(IASI) and the Cross-track Infrared Sounder (CrIS), which can be found on-board of various

polar orbiting satellites. While the accuracy and resolution of these instruments in the lower

atmosphere is still not comparable to radiosondes, they can resolve important changes in

the PBL structure over large geographical areas. As a result, the continued development of

hyperspectral IR sounders has been identified as an important priority for confronting the

PBL observation gap National Academy of Sciences, Engineering and Medicine (2018). In

the shorter term, the development of combined retrievals from ground-based and space-borne

stations could provide additional benefits for convective-scale numerical models.

6.3 Future work

While the results presented in this dissertation create a strong case for the operational

assimilation of ground-based remote sensing profilers, several questions still remain open.

One of them is whether the underlying DA technique might affect the presented observation
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impacts. Ensemble-based methods, such as the EnKF used here, have the advantage of

providing flow-dependent ICs; however, our systematic experiments have indicated that

the accuracy of the EnKF analyses might be compromised in the presence of spurious

cross-variable correlations. Variational DA methods like 4D-Var sidestep this problem by

explicitly modeling the dynamical balances between model state variables (see Bannister

2017). Given that, it might be possible to limit some of the negative impacts we have

observed in single profiling experiments by incorporating the effects of moisture advection in

the DA algorithm. Some combination between a static and an ensemble-based background

covariance estimate might be especially beneficial in convective-scale applications.

Another aspect of the DA system that our results might be sensitive to is the choice of a

moisture control variable (CV), as demonstrated recently by Thundathil et al. (2020) and

Wang et al. (2020). Our moisture CV (water vapor mixing ratio) happens to be the same as

the prognostic moisture variable used by our NWP model. In this case, the EnKF produces a

straightforward estimate of how moisture is correlated with other components of the state

vector. However, inaccurately estimated sample covariances due to a small ensemble size

could do more harm to the analysis than the absence of any covariance information at all

(Ross Bannister, personal communication). One possible solution to circumvent this problem

would be to construct an uncorrelated moisture CV, such as the pseudo-relative humidity

(Dee and da Silva 2003), although the latter may necessitate other changes in the underlying

DA algorithm (e.g., treatment of non-Gaussian distributions).

Finally, there is still a lot of scope to enhance the verification metrics used in convective-

scale NWP models. As discussed in Chapter 3, most of the work in this field has focused

on developing new techniques that permit an objective comparison between simulated and

observed convective clouds. However, there are many other small-scale features that either

affect the convective forecast skill or are important in their own right. One of the them is

the Nocturnal Low-Level Jet (NLLJ), which has been previously linked to the distribution

of warm-season precipitation in both South and North America. Recent work has been
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able to successfully detect NLLJ in model output (Oliveira et al. 2018), opening exciting

new opportunities for quantifying the accuracy of these features at convection-permitting

resolutions. Likewise, this dissertation documents the formulation of an object-based

algorithm for the identification and tracking of another pertinent mesoscale phenomenon

– convectively-generated atmospheric bores. However, the lack of adequate observational

datasets is an obstacle for both of these algorithms. For example, the detection of radar

fine lines that mark the position of bores is only possible in the absence of precipitation

echoes. Similarly, the lack of accompanying thermodynamic information precludes the

unambiguous discrimination between density currents and bores. To eliminate some of

these deficiencies, future investigators could attempt to design new observation-based bore

algorithms that combine radar and surface observations. Densely packed surface networks,

such as the Oklahoma mesonet, have already proven to be valuable for tracking the evolution

of night-time convective outflows (e.g., Haghi et al. 2017; Toms et al. 2017) and could be

potentially utilized in this type of research.
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