VAPORIZATION EQUILIBRIUM RATIOS FOR CO 2 AND $\mathrm{H}_{2} \mathrm{~S}$

IN PARAFFINIC, NAPHTHENIC, AND AROMATIC

SOLVENTS

By
CHARLES JOSEPH MUNDIS
Bachelor of Science Oklahoma State University
Stillwater, Oklahoma 1968
Master of Science Oklahoma State University Stillwater, Oklahoma 1970

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

May, 1976

$$
\begin{aligned}
& \text { Theoin } \\
& 19760 \\
& 1965 \mathrm{~V} \\
& \text { cor } 2
\end{aligned}
$$

VAPORIZATION EQUILIBRIUM RATIOS FOR CO_{2} AND $\mathrm{H}_{2} \mathrm{~S}$
IN PARAFFINIC, NAPHTHENIC, AND AROMATIC SOLVENTS

Thesis Approved:

964220

PREFACE

Vaporization equilibrium ratios (K-values) were determined for carbon dioxide and hydrogen sulfide at infinite dilution in the methane n -heptane, methane - methylcyclohexane, and methane - toluene systems at 20, $0,-20$, and $-40^{\circ} \mathrm{F}$ at pressures to 1500 psia. Measurements were made by the chromatographic technique. Results were confirmed by classical measurements on the carbon dioxide, hydrogen sulfide, methane and $n-$ octane system. Results were correlated well by a modified Redlich-Kwong equation.

I am indebted to Dr. R. L. Robinson, Jr., my advisor, for his excellent counseling, encouragement, and constant interest during this study. Assistance from Dr. John H. Erbar in the use of computer models was greatly appreciated. Discussions with other faculty members and my fellow graduate students were also of considerable help.

Much gratitude is extended to Amoco Production Company for use of their facilitties in taking the classical data and to Dr. Lyman Yarborough for his guidance and willing helpfulness in that phase of the work. Mr. Jim White was a great help in operating the equipment at Amoco Production Company.

I am indebted to the School of Chemical Engineering for financial support and use of its facilities during this study and to the School of Industrial Engineering for the financial support provided me in the final stages of the study.

Finally, I am indebted to my wife, Georg Ann, and my parents for their constant support and encouragement during my graduate studies.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. LITERATURE SURVEY 4
III. THEORETICAL DEVELOPMENT 8
Gas-Liquid Chromatography Experiment 8
The Basic Chromatographic Equations 8
Determination of GLC Column Void Volume 14
Classical Windowed Cell Experiment 15
Calculation of Relative Response Factors 16
Calculation of K-values 17
Correlation Framework 18
Redlich-Kwong Equation of State 18
Soave Modification of R-K Equation 19
Modifications of the Soave Equation for This Work 21
Calculation of K-values 23
IV. EXPERIMENTAL APPARATUS 26
Gas-Liquid Chromatography Experiment 26
The Constant Temperature Bath 28
Sample Valve 30
The GLC Column and Presaturator 30
Detector and Recorder 31
Pressure Control and Measurement 32
Flow Rate Control and Measurement 33
Auxiliary Equipment 34
Classical Windowed Cell Experiment 35
V. EXPERIMENTAL PROCEDURE 39
Gas-Liquid Chromatography Experiment 39
General 40
Preparation of Column Support 40
Chapter Page
Preparation of the Column and Presaturator 41
Temperature and Pressure Measurement 44
Flow Rate Measurement 45
Sample Trapping and Injection 46
Recording Sample Times 48
On-Stream Procedure 49
Classical Windowed Cell Experiment 51
Preparation of Mixtures 52
Sampling 53
Sample Injection and Chromatograph Runs 53
Calibration of Detectors 54
K-Value Data 55
VI. EXPERIMENTAL RESULTS 57
VII. DISCUSSION OF RESULTS 71
Error Analysis 71
Discussion of V_{g} 74
Comparison of Results with Other Work 78
Data Trends 92
Correlation of Data 94
Discussion of Correlation Parameter 94
Results 98
VİII. CONCLUSIONS AND RECOMMENDATIONS 119
BIBLIOGRAPHY 122
APPENDIX A - ERROR ANALYSIS 125
APPENDIX B - METHOD FOR CALCULATING EMPIRICAL CORRELATION FACTORS FOR BASIC SOAVE EQUATION 131
APPENDIX C - DERIVATION OF EQUATION 3-59 135
APPENDIX D - SAMPLE CALCULATIONS 139
APPENDIX E - CALIBRATION OF THERMOPILE 154
APPENDIX F - DISCUSSION OF EXPERIMENTAL WORK - DIFFICULTIES, TESTS, AND COMMENTS 157
APPENDIX G - PHYSICAL PROPERTIES 162

TABLE OF CONTENTS (Continued)

Chapter Page
APPENDIX H - COMPUTER PROGRAMS 165
APPENDIX I - RAW DATA 171
APPENDIX J - NOMENCLATURE 183
Table Page
I. Experimental K-Value Data from Literature 6
II. Chromatographic K-Values for Carbon Dioxide (Hydrogen Sulfide) at Infinite Dilution in Four Methane+Solvent Binary Systems 59
III. K-Values of Carbon Dioxide, Hydrogen Sulfide, Methane,
and n-Octane from Windowed Cell 61
IV. Estimated Uncertainties in Measurement of Experimental Parameters 72
V. Estimated Percentage Errors in Experimentally Determined K-Values 73
VI. Effect of Extrapolation Parameter on Calculation of K-Values 79
VII. K-Values of Carbon Dioxide and Hydrogen Sulfide in the Methane $+\mathrm{n}-0$ ctane System from Chromatographic Work, Windowed Cell Work, and Data of Asano 81
VIII. Critical Properties of Methane, Solutes, and Solvents 96
IX. Vapor Pressure Data and Calculated Acentric Factors 97
X. Empirical Interaction Parameters Employed in K-Value Correlation 99
XI. Results of Correlation of Binary K-Values 100
XII. Results of Correlation of Carbon Dioxide (Hydrogen Sulfide) K-Values at Infinite Dilution in Methane+ Solvent Binary Systems 113
XIII.' Itemized List of Terms in Integration of Equation 3-51 138
XIV. Compresibility Factors, Z, of Methane 163
XV. Methane Solubilities, X_{1}, of Solvents 164

```
LIST OF TABLES (Continued)
```TablePage
XVI. Raw Data for Carbon Dioxide and Hydrogen Sulfide
 Classical Windowed Cell Experiment 172
XVII. Raw Data for Carbon Dioxide and Hydrogen SulfideK-Values in the Methane \(+\mathrm{r}-\mathrm{Hep}\) tane System from theChromatographic Experiment 174
XVIII. Raw Data for Carbon Dioxide and Hydrogen SulfideK -Values in the Methane + Methylcyclohexane Systemfrom the Chromatographic Experiment 176
XIX. Raw Data for Carbon Dioxide and Hydrogen SulfideK-Values in the Methane+Toluene System from theChromatographic Experiment 178
XX. Raw Data for Carbon Dioxide and Hydrogen SulfideK-Values in the Methane \(+\mathrm{n}-0 \mathrm{ctane}\) System from theChromatographic Experiment. 180
Figure Page
1. Schematic Diagram of the Chromatographic Equipment 27
2. Schematic Diagram of the Classical Windowed Cell Equipment 36
3. Schematic Diagram of Switching Valves for Chromatographic System of Windowed Cell Experiment 38
4. K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+n-Heptane System 62
5. K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+Methylcyclohexane System 63
6. K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+Toluene System 64
7. K-Values for Carbon Dioxide at Infinite Dilution in the Methane+n-Heptane Sys.tem as a Function of. Reciprocal Temperature 65
8. K-Values for Hydrogen Sulfide at Infinite Dilution in the Methane+n-Heptane System as a Function of Reciprocal Temperature 66
9. K-Values for Carbon Dioxide at Infinite Dilution in the Methane+Methylcyclohexane System as a Function of Reciprocal Temperature 67
10. K-Values for Hydrogen Sulfide at Infinite Dilution in the Methane+Methylcyclohexane System as a Function of Reciprocal Temperature 68
11. K-Values for Carbon Dioxide at Infinite Dilution in the Methane+Toluene System as a Function of Reciprocal Temperature 69
12. K-Values for Hydrogen Sulfide at Infinite Dilution in the Methane+Toluene System as a Function of Reciprocal Temperature 70

\section*{LIST OF FIGURES (Continued)}
Figure Page
13. Consistency of Carbon Dioxide K-Values for Three Runs at \(0^{\circ} \mathrm{C}\) in the Methane \(+\mathrm{n}-\) Octane System 75
14. Consistency of Hydrogen Silfide K-Values for Three Runs at \(0^{\circ} \mathrm{C}\) in the Methane \(+\mathrm{n}-0\) ctane System 76
15. Extrapolation of Retention Volumes to Unretained Gas Using Different Extrapolation Parameters 80
16. Comparison of K-Values for Carbon Dioxide and Hydrogen Sulfide in the Methane \(+\mathrm{n}-0\) ctane System at \(0^{\circ} \mathrm{C}\) 82
17. Comparison of K-Values for Carbon Dioxide and Hydrogen Sulfide in the Methane \(+\mathrm{n}-0\) ctane System at \(-20^{\circ} \mathrm{C}\) 83
18. Comparison of K-Values for Carbon Dioxide at 500 psia 86
19. Comparison of K-Values for Carbon Dioxide at 1000 psia 87
20. Comparison of \(k\)-Values for Hydrogen Sulfide at 1000 psia 88
21. Comparison of K-Values for Hydrogen Sulfide at 500 psia 89
22. Comparison of \(K\)-Values for Methane and \(n-0 c t a n e\) from the Classical Windowed Cell Experiment 91
23. Ratio of K-Values for Hydrogen Sulfide in the Methane+ Toluene System to K-Values of Hydrogen Sulfide in the Methane+n-Heptane System 93
24. Predicted K-Values for Methane in the Methane \(+\mathrm{n}-\) Heptane Binary System 101
 Binary System 102
26. Predicted K-Values for Methane in the Methane+ Methylcyclohexane Binary System 103
27. Predicted K-Values for Methylcyclohexane in the Methane+ Methylcyclohexane Binary System 104
28. Predicted K-Values for Methane in the Methane + Toluene Binary System 105
29. Predicted K-Values for Toluene in the Methane+Toluene Binary System 106

\section*{LIST OF FIGURES (Continued)}
Figure Page
30. Predicted K-Values for Methane in the Methane+n-Octane Binary System 107
31. Predicted K-Values for Methane in the Methane+Hydrogen Sulfide Binary System 108
32. Predicted K-Values for Hydrogen Sulfide in the Methane+ Hydrogen Sulfide Binary System 109
33. Predicted K-Values for Methane in the Methane+Carbon Dioxide Binary System 110
34. Predicted K-Values for Carbon Dioxide in the Methane+ Carbon Dioxide Binary System 111
35. Predicted K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane \(+\mathrm{n}-\mathrm{Hep}\) tane System 115
36. Predicted K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+Methylcyclohexane System 116
37. Predicted K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+Toluene System 117
38. Predicted K-Values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane \(+\mathrm{n}-\) Octane System 118
39. Flow Diagram of Method Used to Calculate Empirical Correlation Factors 132
40. Deviation of Thermopile Readings from Thermocouple Table Readings (emf) as a Function of Temperature 156

\section*{CHAPTER I}

\section*{INTRODUCTION}

A knowledge of the vapor-liquid equilibrium relationship is a prerequisite to the description of a variety of processes for separation of the components of a mixture. Information is scarce on the vaporliquid equilibrium behavior of carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) and hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\) in absorber systems operating at subambient temperatures and moderate pressures. Experience in correlating vapor-liquid equilibrium ratios (K-values) has indicated that the non-hydrocarbons \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) usually require preferential treatment for the estimation of their Kvalues. Literature data are especially scarce for \(K-v a l u e s\) of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in aromatic and naphthenic solvents.

The purpose of this study was to (1) construct an apparatus which could be used to determine experimental K-values of \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{CO}_{2}\) in aromatic and naphthenic solvents, (2) measure the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in selected paraffinic, naphthenic, and aromatic solvents and (3) provide a suitable correlation for representation of the phase behavior of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in these solvents.

The apparatus constructed for this work employed the chromatographic technique. The literature on the subject of gas-liquid chromatography reveals that chromatography is firmly established as a reliable and applicable technique for studying thermodynamic properties of solutions. The chromatographic method of measurement was used because it is a
simple, accurate, and rapid means of obtaining \(K\)-value data. In addition, previous studies \((17,51)\) at Oklahoma State University using the chromatographic technique had resulted in establishment of some expertise in the use of this method.

The specific systems selected for study were designed to fill a critical gap in available data on the hydrocarbons and associated components. The proposed systems for study are:
1. \(\mathrm{CO}_{2}\) in the methane \(\left(\mathrm{C}_{1}\right)\)-toluene (Tol) system
2. \(\mathrm{CO}_{2}\) in the methane-methylcyclohexane (MCH) system
3. \(\mathrm{CO}_{2}\) in the methane-heptane \(\left(\mathrm{C}_{7}\right)\) system
4. \(\mathrm{H}_{2} \mathrm{~S}\) in the methane-toluene system
5. \(\mathrm{H}_{2} \mathrm{~S}\) in the methane-methylcyclohexane system
6. \(\mathrm{H}_{2} \mathrm{~S}\) in the methane-heptane system For each system the data range selected was 20 to \(-40^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{F}\right.\) intervals) at pressures to 1500 psia. The data were measured chromatographically with the \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) at infinite dilution in all cases.

The systems listed were chosen because they provide the desired combinations of the non-hydrocarbons with naphthenic and aromatic solvents and they are systems for which pertinent binary data are available (methane-toluene, methane-methylcyclohexane, methane-heptane, methane \(-\mathrm{CO}_{2}\), methane \(-\mathrm{H}_{2} \mathrm{~S}\)). The binary data are required for two purposes. First, the methane-solvent binary data are required for calculation of the \(K\)-values of \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{CO}_{2}\) from the chromatographic experiments. Second, the complete set of binary data listed above are useful in development of correlations: to predict vapor-liquid equilibrium.

In addition, the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in the methane-octane system at \(-20^{\circ}\) and \(0^{\circ} \mathrm{C}\) were measured both by the chromatographic technique and in a classical windowed cell. The windowed cell data help appraise the validity of the chromatographic data from this study.

The data from this work were correlated in terms of a modified form of the Redlich-Kwong equation of state, employing empirical interaction parameters. The basis for the correlation is the Soave modification of the Redlich-Kwong equation. Two correlational methods were used, one in which an energy term (\(\mathrm{T}_{\mathrm{cij}}\)) is modified and one in which both energy and distance (\(\mathrm{V}_{\mathrm{cij}}\)) terms were modified. The correlation was applied to the experimental results of this work.

\section*{LITERATURE SURVEY}

The literature survey for this study consisted of a search for (1) the binary vapor-liquid equilibrium (VLE) data needed for the experimental calculations, (2) binary VLE data needed for correlation work, and (3) all existing VLE data on K -values of \(\mathrm{CO}_{2}\) or \(\mathrm{H}_{2} \mathrm{~S}\) in heavy (heptane and heavier) alkanes, aromatics, or naphthenic hydrocarbons.

The history of chromatography, the application of gas-liquid partition chromatography to vapor-liquid equilibrium studies, and the theory of chromatography have been discussed in detail by several other investigators (24, 46, 51). The work of Van Horn goes into particular detail on the above subjects.

The binary vapor-liquid equilibrium data required for calculation of K-values at infinite dilution by the chromatographic technique consist of methane in each of the solvents over the range of studied. In this work the data were the following: (1) methane+heptane (2) methane+methylcyclohexane, (3) methane+toluene, and (4) methane+ n-octane. Table I gives all the data found and the range of the data source. The data which were used in this work are indicated with an asterick.

The binary VLE data needed for the correlation work consisted of the systems, methane + solvent, methane + gas \(\left(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}\right)\) and solvent + gas. The methane + solvent binaries have already been discussed. The
data for \(\mathrm{CO}_{2}\) or \(\mathrm{H}_{2} \mathrm{~S}\) in methane are listed in Table I. No data were found for \(\mathrm{CO}_{2}\) or \(\mathrm{H}_{2} \mathrm{~S}\) in the solvents (n-heptane, methylcyclohexane, toluene, or n-octane).

Finally, all VLE data which show the effects of aromatics or naphthenics on the behavior of \(\mathrm{CO}_{2}\) or \(\mathrm{H}_{2} \mathrm{~S}\) were gathered. Very few data are available, thus illustrating the need for the data of this work.

TABLE I

EXPERIMENTAL K-VALUE DATA FROM LITERATURE
\begin{tabular}{|c|c|c|c|}
\hline System & Temperature Range & Pressure Range (psia) & Data Source \\
\hline Methane+ n -Heptane & . 100 to \(0^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 100 \text { to } \\
& 3000
\end{aligned}
\] & 4* \\
\hline \begin{tabular}{l}
Methane+ \\
n-Heptane
\end{tabular} & 37 to \(137{ }^{\circ} \mathrm{C}\) & \[
\begin{array}{r}
45 \text { to } \\
255
\end{array}
\] & 13 \\
\hline \multirow[t]{2}{*}{Methane+ Toluene} & -100 to \(0^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 100 \text { to } \\
& 3000
\end{aligned}
\] & 6* \\
\hline & \(150{ }^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 100 \text { to } \\
& 5300
\end{aligned}
\] & 12 \\
\hline Methane Methylcyclohexane & -100 to \(0^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 100 \text { to } \\
& 3500
\end{aligned}
\] & 5* \\
\hline \multirow[t]{3}{*}{Methane+ n-Octane} & -50 to \(150{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& 150 \text { to } \\
& 1500
\end{aligned}
\] & 22* \\
\hline & -120 to \(200{ }^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 200 \text { to } \\
& 1600
\end{aligned}
\] & 23 \\
\hline & 40 to \(280{ }^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 50 \text { to } \\
& 1200
\end{aligned}
\] & 40* \\
\hline Methane+ Hydrogen Sulfide & 40 to \(340{ }^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 200 \text { to } \\
& 10,000
\end{aligned}
\] & 34 \\
\hline Methane + Carbon Dioxide & -100 to \(29^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& 200 \text { to } \\
& 1100
\end{aligned}
\] & 9* \\
\hline \(\cdots\) & -40 to \(10^{\circ} \mathrm{C}\) & 540 to
\[
1200
\] & 20 \\
\hline Carbon Dioxide+ n-Decane & 40 to \(280{ }^{\circ} \mathrm{F}\) & 50 to
\[
1150
\] & 35 \\
\hline Hydrogen Sulfide+ n-Decane & 40 to \(340{ }^{\circ} \mathrm{F}\) & \[
50 \text { to }
\]
\[
1900
\] & 36 \\
\hline \begin{tabular}{l}
Methane+ \\
Carbon Dioxide+ \\
Hydrogen Sulfide
\end{tabular} & -51 to \(-34.4{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& 300 \text { to } \\
& 700
\end{aligned}
\] & 15 \\
\hline
\end{tabular}

TABLE I (Continued)
EXPERIMENTAL K-VALUE DATA FROM LITERATURE

\section*{CHAPTER III}

THEORETICAL DEVELOPMENT

The theoretical development of the equations used to calculate experimental K -values is given in this chapter for both experimental methods. The development of the correlation framework is also discussed in this chapter.

\section*{Gas-Liquid Chromatography Experiment}

The Basic Chromatographic Equations

Pecsar and Martin (31) have presented a somewhat simple derivation of the basic chromatographic equation. A modified version of their derivation will be presented here, the final result being the equations which are appropriate for the systems used in this work.

The assumptions involved in the derivation of the equations are the following:
1. Sample size is inifinitely small.
2. The partition coefficient \(k\) is constant throughout the column.
3. The pressure drop along the column is negligible.
4. The amount of liquid in the column during solute elution remains constant.
5. The mixing and diffusion effects are negligible.
6. There is no interaction between solute and solid support in the column.
7. Instantaneous equilibrium of sample solute exists between the vapor phase (carrier gas) and the liquid phase (stationary liquid).

The partition coefficient \(\mathrm{k}_{\mathrm{i}}\) is defined by
\[
\begin{equation*}
k_{i}=\frac{\text { concentration of component } i \text { in the liquid phase }}{\text { concentration of component } i \text { in the vapor phase }} \tag{3-1}
\end{equation*}
\]
or
\[
\begin{equation*}
k_{i}=\frac{n_{L i} / v_{\dot{L}}}{n_{g i} / v_{g}}=\frac{x_{i} \rho_{\dot{L}}}{y_{i} \rho_{g}}=\frac{\rho_{L}}{K_{i} \rho_{g}} \tag{3-2}
\end{equation*}
\]
where \(n_{L i}=\) number of moles of component \(i\) in the liquid phase
\[
\begin{aligned}
& n_{g i}= \text { number of moles of component } i \text { in the vapor phase } \\
& V_{L}= \text { volume of stationary liquid in the gas-liquid chromatography } \\
& \text { (GLC) column } \\
& V_{g}= \text { void volume of the GLC column } \\
& x_{i}= \text { mole fraction of component } i \text { in the liquid } \\
& y_{i}= \text { mole fraction of component } i \text { in the vapor } \\
& \rho_{L}= \text { liquid density } \\
& \rho_{g}= \text { vapor density } \\
& K_{i}= K-v a l u e ~ o f ~ c o m p o n e n t ~ \\
& i
\end{aligned}
\]

The total number of moles of component \(i\) contained in the sample which passes through the column, \(n_{i}\), is the sum of the moles of component \(i\) in the vapor phase, \(n_{g i}\), plus the moles of component \(i\) in the liquid phase, \(n_{L i}\), or
\[
\begin{equation*}
n_{i}=n_{g i}+n_{L i} \tag{3-3}
\end{equation*}
\]

A "retention volume" of component \(i, V_{R i}\), can be defined as
\[
\begin{equation*}
v_{R i}=f t_{R i} \tag{3-4}
\end{equation*}
\]
where \(f\) is the carrier gas flow rate and \(t_{R i}\) is the retention time of component \(i\); that is, the time required for a sample pulse of component i to pass through the column.

The average linerar velocity of the sample pulse, \(u_{i}\), can be defined as
\[
\begin{equation*}
u_{i}=\mathrm{L} / \mathrm{t}_{\mathrm{Ri}} \tag{3-5}
\end{equation*}
\]
where \(L\) is the length of the chromatograph column. Combining Equations (3-4) and (3-5) gives
\[
\begin{equation*}
u_{i}=L f / V_{R i} \tag{3-6}
\end{equation*}
\]

Similarly, the carrier gas velocity can be defined as
\[
\begin{equation*}
u_{g}=L f / v_{g} \tag{3-7}
\end{equation*}
\]

The average linear velocity of the sample pulse (Equation (3-5)) can also be expressed in terms of the velocity of the sample pulse in the vapor, \(u_{g i}\), and in the liquid, \(u_{L i}\). The average linear velocity, \(u_{i}\), is the velocity of propagation of the impulse through the column and can be expressed as the average velocity of component i moving in the vapor phase and in the liquid phase, or
\[
\begin{equation*}
u_{i}=\frac{n_{g i} u_{g i}+n_{L i} u_{L i}}{n_{i}} \tag{3-8}
\end{equation*}
\]

Since the liquid phase is stationary, then
\[
\begin{equation*}
u_{L i}=0 \tag{3-9}
\end{equation*}
\]

The fraction of the sample pulse which is in the vapor phase will have a velocity equal to the carrier gas velocity, or
\[
\begin{equation*}
u_{g i}=u_{g}=L f / v_{g} \tag{3-10}
\end{equation*}
\]

Substituting Equations (3-9) and (3-3) into (3-8), the result is
\[
\begin{equation*}
\left(n_{g i}+n_{L i}\right) u_{i}=n_{g i} u_{g i} \tag{3-11}
\end{equation*}
\]

Equation (3-8) could be written
\[
n_{i} u_{i}=n_{g i} u_{g i}
\]
or
\[
\frac{n_{g i}}{n_{i}}=\frac{u_{g}}{u_{g i}}
\]

Combining Equation \((3-10),(3-6)\), and the above equation gives the fraction of the sample pulse in the gas phase as
\[
\frac{n_{g i}}{n_{i}}=\frac{V_{g}}{V_{R i}}
\]

The above illustrates that the ratio of the free gas volume to the sample retention volume is the fraction of the sample in the vapor phase.

Equation (3-11) can be rearranged and combined with Equation (3-6) and (3-10) to give
\[
\begin{equation*}
n_{g i}\left(\frac{L f}{V_{R i}}-\frac{L f}{V_{g}}\right)+n_{L i}\left(\frac{L f}{V_{R i}}\right)=0 \tag{3-12}
\end{equation*}
\]

Rearranging Equation (3-12), dividing through by \(\frac{n_{L i} f L}{\mathrm{~V}_{\mathrm{Ri}}}\), and substituting Equation \((3-2)\) for \(\frac{n_{g i}}{n_{L i}}\) gives
\[
\begin{equation*}
\frac{V_{g} \rho_{g} K_{i}}{V_{L} \rho_{L}} \quad\left[\frac{V_{g}-V_{R i}}{V_{g}}\right]=1 \tag{3-13}
\end{equation*}
\]

The moles of pure stationary liquid are equal to the moles of
liquid and gas solution minus the gas in solution, or
\[
W_{L}^{0}=\rho_{L} V_{L}-X_{1} \cdot \rho_{L} V_{L}
\]
or
\[
W_{L}^{o}=\left(1-\chi_{1}\right) \quad \rho_{L} V_{L}
\]
or finally
\[
\begin{equation*}
\rho_{L} V_{L}=\frac{W_{L}^{o}}{\left(1-\chi_{1}\right)} \tag{3-14}
\end{equation*}
\]
where
\(V_{L} \rho_{L}=W_{L}=\) the moles of stationary liquid and gas solution on \(\dot{p}\) the GLC column.
\(\mathrm{W}_{\mathrm{L}}^{0}=\) the moles of pure stationary liquid on the GLC column.
\(\chi_{1}=\) mole fraction of carrier gas in the liquid phase.
Equation (3-14) expresses \(\rho_{L} V_{L}\) in terms of variables which are measureable on the chromatographic apparatus. Equations (3-13) and
(3-14) are combined to give

Solving for \(K_{i}\) gives
\[
\begin{equation*}
K_{i}=\frac{W_{L}^{0}}{\left(1-x_{1}\right) \rho_{g}\left(V_{R i}-V_{g}\right)} \tag{3-15}
\end{equation*}
\]
where
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{i}}=\text { vapor liquid equilibrium constant of the sample pulse } i, \\
& \mathrm{~W}_{\mathrm{L}}^{\mathrm{O}}=\text { moles of pure stationary liquid in the GLC column, } \\
& \mathrm{X}_{1}=\text { mole fraction of the carrier gas in the liquid phase, } \\
& \rho_{g}=\text { density of the carrier gas } \\
& \mathrm{V}_{\mathrm{Ri}}=\text { retention volume of solute } \mathrm{i} \text { (sample pulse } \mathrm{i}) . \\
& \mathrm{V}_{\mathrm{g}}=\text { free gas volume, or volume of the gas phase in the GLC column. } \\
& \text { In this work, } \mathrm{V}_{\mathrm{Ri}} \text { has been calculated using the following equation: } \\
& \mathrm{V}_{\mathrm{Ri}}=\mathrm{V}_{\mathrm{Ri}}-\mathrm{V}_{\mathrm{Ri}}^{\mathrm{B}}
\end{aligned}
\]
where
\(\mathrm{V}_{\mathrm{Ri}}^{\mathrm{C}}=\) retention volume of component \(i\) from the sample valve to the detector, including the GLC column
\(\mathrm{V}_{\mathrm{Ri}}^{\mathrm{B}}=\) retention volume of component i from the sample valve to the detector, via the GLC column bypass.
Although \(V_{R i}^{B}\) should be the same for all components, tests indicated that there was a difference of 0.5 to 5.0 seconds in elution times \(\left(V_{R i}\right.\) \(\alpha \mathrm{t}_{\mathrm{ri}}\)) between helium and \(\mathrm{CO}_{2}\) samples, from 100 psia to 1500 psia, respectively. \(V_{R i}^{B}\) was measured with the GLC column bypass open and the GLC column blocked out of the system. The above equation can be combined with Equation (3-4) to give
\[
\begin{equation*}
v_{R i}=t_{R i}^{C} f^{C}-t_{R i}^{B} f^{B} \tag{3-16}
\end{equation*}
\]
where
\[
\begin{aligned}
& f^{C}=\text { carrier gas flow rate for the column run } \\
& f^{B}=\text { carrier gas flow rate for the bypass run } \cong f^{C}
\end{aligned}
\]

In this work the carrier gas flow rates, \(f\), were measured at ambient conditions with the carrier gas saturated with water vapor.

Thus, \(f\) can be expressed as
\[
\begin{equation*}
f=f_{a} \quad\left(\frac{P_{a}}{P}\right) \quad\left(\frac{T}{T_{a}}\right) \quad Z_{g} \tag{3-17}
\end{equation*}
\]
where
\[
\begin{aligned}
f, f_{a}= & \text { system and ambient flow rates } \\
P, P_{a}= & \text { system and ambient pressure } \\
T, & T_{a}=\text { system and ambient temperature } \\
Z_{g}= & \text { compressibility of carrier gas at column conditions, } T \text { and } \\
& P .
\end{aligned}
\]

The carrier gas flow rate at ambient conditions can be expressed in terms of experimentally measurable quantities using
\[
\begin{equation*}
f_{a}=\frac{V_{B}}{t_{B}} \quad\left(\frac{P_{a}-P_{H_{2}} O}{P_{a}}\right) \tag{3-18}
\end{equation*}
\]
where
\[
\begin{aligned}
V_{B} & =\text { calibrated volume of the bubblemeter } \\
t_{B} & =\text { residence time of the bubble in } V_{B} \\
P_{a} & =\text { ambient pressure }(m m \mathrm{Hg}) \\
P_{H_{2} O} & =\text { water vapor pressure at } T_{a}
\end{aligned}
\]

The water vapor pressure can be expressed as a function of ambient temperature (in \({ }^{\mathrm{O}} \mathrm{C}\)) by the following equation:
\[
\begin{equation*}
\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=9.412-0.266 \mathrm{~T}_{\mathrm{a}}+0.0366 \mathrm{~T}_{\mathrm{a}}^{2} \tag{3-18a}
\end{equation*}
\]

The above equation was derived by a simple second degree polynomial least squares curve fit of water vapor pressure data from the literature' (32).

Equations (3-15) to (3-18) are the basic equations used to calculate K-values from GLC elution data.

Determination of GLC Column Void Volume

The void volume, or free gas volumen, \(\mathrm{V}_{\mathrm{g}}\), of the GLC column is defined as the volume of gas phase in the GLC column.

The \(K-v a l u e s\) are dependent directly upon the value of \(\left(V_{R i}-V_{g}\right)\), as can be seen from equation (3-15). For highly retained components in which \(V_{R i}\) is large, a high accuracy in calculating \(V_{g}\) is not necessary, since \(V_{R i} \gg V_{g}\). But for very volatile components where the value of \(\mathrm{V}_{\mathrm{Ri}}\) approaches \(\mathrm{V}_{\mathrm{g}}\), the free gas volume, \(\mathrm{V}_{\mathrm{g}}\), needs to be known very accurately.

In this work the free gas volume was obtained from retention volume measurements on the spherical gases, helium (He) and argon (Ar), by extrapolating retention volumes of these two gases as a function of polarizability to the point of zero polarizability. This method is similar to that used by Yudovich (53). A plot of retention volume as a function of polarizability is shown in Figure 15. A linear extrapolation can be made numerically. The polarizabilities of helium and argon are 0.204 and 1.63 , respectively (25). Knowing the retention volumes of He and \(\mathrm{Ar}, \mathrm{V}_{\mathrm{RHe}}\) and \(\mathrm{V}_{\mathrm{RAr}}\), the slopes on Figure 15 can be written as
\[
\frac{\mathrm{V}_{\mathrm{RAr}}-\mathrm{V}_{\mathrm{RHe}}}{1.63-0.204}=\frac{\mathrm{V}_{\mathrm{RAr}}-\mathrm{V}_{\mathrm{g}}}{1.63-0.0}
\]
or
\[
\begin{equation*}
\mathrm{V}_{\mathrm{g}}=1.143 \mathrm{~V}_{\mathrm{RHe}}-0.143 \mathrm{~V}_{\mathrm{RAr}} \tag{3-19}
\end{equation*}
\]
where
\[
\begin{aligned}
\mathrm{V}_{\mathrm{g}} & =\text { free gas volume } \\
\mathrm{V}_{\mathrm{RHe}} & =\text { retention volume of helium } \\
\mathrm{V}_{\mathrm{RAr}} & =\text { retention volume of argon }
\end{aligned}
\]

The retention volumes of helium and argon were calculated using Equation (3-16); that is, runs for two helium samples and two argon samples were required to calculate \(\mathrm{V}_{\mathrm{g}}\).

\section*{Classical Windowed Ce11 Experiment}

In the classical experiments the samples of liquid and vapor were drawn from a closed equilibrium cell and analyzed either by a hydrogen flame detector (HF) or thermal conductivity detector (TC). The detectors had to be calibrated before the K-value data could be evaluated.

This section will discuss the equations used to calculate detector response factors for each component and the equations used to evaluate K-values from the cell data.

\section*{Calculation of Relative Response Factors}

Differences in thermal conductivity (for the TC detector) or in the number of carbon atoms per mole (for the HF detector) cause the response of the detectors to differ for different components. Thus, the response factor, \(\mathrm{RF}_{i}\), of component \(i\) is defined to be the chromatographic detector output response of component i per mole of component i. The output response for a component is the area under the peak on the strip chart recorder, or for this work, the number of counts on the digital integrator. Thus, the response factor for component is
\[
\mathrm{RF}_{\mathrm{i}}=\frac{\text { number of counts of component } i}{\text { number of moles of component } i}
\]

The "relative response," \(\mathrm{R}_{1 \mathrm{i}}\), of the component methane, Cl , to component i can be expressed as
\[
\mathrm{R}_{1 \mathrm{i}}=\frac{\mathrm{RF}{ }_{1}}{\mathrm{RF}_{\mathrm{i}}}=\frac{\text { counts } \mathrm{Cl} / \text { moles } \mathrm{Cl}}{\text { counts } \mathrm{C}_{\mathrm{i}} / \text { moles } \mathrm{C}_{\mathrm{i}}}
\]
or
\[
\begin{equation*}
\mathrm{R}_{1 i}=\frac{\text { moles } \mathrm{C}_{\mathrm{i}} / \text { moles Cl }}{\text { counts } \mathrm{C}_{\mathrm{i}} / \text { counts C1 }} \tag{3-20}
\end{equation*}
\]

Thus, the relative response factor can be found by making a mixture in which the numbers of moles of each component is known. A sample of the mixture must then be run through a chromatograph to find the number of counts which result for each component.

\section*{Calculation of K -values}

The experimental data from the windowed cell consist of the 'number of counts" of each component in both a vapor and a liquid sample; that is, the area under the peak of each component. By taking the ratio of the number of counts of component \(i\) to the number of counts of Cl and combining this with Equation (3-20), the molar ratio of all components to Cl can be found using
\[
\begin{equation*}
\frac{\mathrm{n}_{\mathrm{Ci}}}{\mathrm{n}_{\mathrm{C} 1}}=\left(\mathrm{R}_{1 i}\right) \quad\left(\frac{\text { counts } \mathrm{C}_{\mathrm{i}}}{\text { counts C1}}\right)=\frac{\text { moles } \mathrm{C}_{\mathrm{i}}}{\text { moles C1}} \tag{3-21}
\end{equation*}
\]

The total moles of mixture in the sample per mole of Cl in the sample can be calculated using
\[
\begin{equation*}
\frac{n_{T}}{n_{c l}}=\frac{\sum_{n^{n}}}{n_{c l}}=\sum_{i}\left(\frac{n_{c i}}{n_{c l}}\right) \tag{3-22}
\end{equation*}
\]

Summing over i components means summing all components, including \(C_{1}\). The mole fraction can now be calculated using
\[
\begin{equation*}
x_{i}=\frac{n_{c i}}{n_{t}}=\frac{n_{c i} / n_{c 1}}{\sum_{i}^{\left(n_{c i} / n_{c 1}\right)}} \tag{3-23}
\end{equation*}
\]

The liquid mole fraction, \(x_{i}\), is calculated using the liquid sample peak areas and the vapor mole fraction, \(y_{i}\), is calculated using the vapor sample peak areas.

The vapor-liquid equilibrium constant, \(\mathrm{K}_{\mathrm{i}}\), is then calculated using the expression
\[
\begin{equation*}
k_{i}=y_{i} / x_{i} \tag{3-24}
\end{equation*}
\]

Equations (3-20) to (3-24) are the basis for calculations of \(K\)-values in the windowed cell.

\section*{Correlation Framework}

The Soave modification to the Redlich-Kwong (\(R-K\)) equation of state is the basis of the correlation of the experimental data taken in this work. The following section will briefly describe (1) the \(R-K\) equation of state, (2) the Soave modification of the \(R-K\) equation of state, and (3) the application of modified mixing rules to the Soave equation.

\section*{Redlich-Kwong Equation of State}

The Redlich-Kwong equation of state (37) is commonly considered the best of the two parameter equations of state \((11,41)\) for predicting thermodynamic properties of hydrocarbons and nonhydrocarbons. The \(\mathrm{R}-\mathrm{K}\) equation was originally proposed for predicting pressure-volume-temperature behavior at temperatures above the critical temperature for any pressure.

The original \(\mathrm{R}-\mathrm{K}\) equation of state is
\[
\begin{equation*}
P=\frac{R T}{\overline{\mathrm{~V}}-b}-\frac{a / T^{1 / 2}}{\overline{\mathrm{~V}}(\overline{\mathrm{~V}}+\mathrm{b})} \tag{3-25}
\end{equation*}
\]
where \(a\) and \(b\) are individual parameters which are evaluated from the critical properties.

Letting
\[
\begin{gather*}
Z=\frac{p \stackrel{\rightharpoonup}{R T}}{R} \tag{3-26}\\
A=\frac{a p}{R^{2} T^{2.5}} \tag{3-27}
\end{gather*}
\]
and
\[
B=\frac{b p}{R T}
\]

Equation (3-25) can be written
\[
\begin{equation*}
z^{3}-z^{2}+Z\left(A-B-B^{2}\right)-A B=0 \tag{3-29}
\end{equation*}
\]

By setting the first and second derivatives of pressure with respect to volume equal to zero at the critical point, \(b_{c}\) and \(a_{c}\) can be written as
\[
\begin{equation*}
\mathrm{b}_{\mathrm{c}}=0.08664 \frac{\mathrm{RT}_{\mathrm{c}}}{\mathrm{p}_{\mathrm{c}}}=0.08664 \mathrm{~V}_{\mathrm{c}}^{\prime} \tag{3-30}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{a}_{\mathrm{c}}=0.4275 \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2.5}}{\mathrm{p}_{\mathrm{c}}}=0.4275 \mathrm{R} \mathrm{~T}_{\mathrm{c}}^{1.5} \mathrm{~V}_{\mathrm{c}}^{\prime} \tag{3-31}
\end{equation*}
\]
where \(T_{c}, P_{c}=\) critical temperature and pressure
\[
\begin{aligned}
\mathrm{R} & =\text { gas constant } \\
\mathrm{V}_{\mathrm{c}}^{\prime}=\mathrm{RT} \mathrm{c}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}} & =\text { ideal gas critical volume. }
\end{aligned}
\]

The \(R-K\) equation can be used to calculate the volumetric and thermal properties of pure compounds and of simple mixtures to a good degree of accuracy. However, its application to multicomponent vapor-liquid equilibrium calculations often gives poor results.

\section*{Soave Modification of R-K Equation}

Soave (42) believed the shortcomings of the R-K equation could not be attributed solely to the imperfection of the mixing rules (several people have introduced modified mixing rules into the \(R-K\) equation (7, 18)). He thought the equation's lack of accuracy in expressing the influence of temperature was partly the cause as reflected in the equation's low accuracy in calculating the vapor pressures of pure substances, which are not influenced by any mixing rule. Soave assumed that an improvement in reproducing saturation conditions of pure substances also leads to an improvement for mixtures. Soave modified the \(R-K\) equation
by replacing the term (\(\mathrm{a} / \mathrm{T}^{1 / 2}\)) with a temperature dependent term \(\mathrm{a}^{\prime}(\mathrm{T})\). Equation (3-25) is now written
\[
\begin{equation*}
P=\frac{R T}{\bar{v}-b}-\frac{a^{\prime}(T)}{\bar{v}(\bar{v}+b)} \tag{3-32}
\end{equation*}
\]

The parameters \(a^{\prime}\) and \(b\) can be found at the critical point to be
\[
\begin{equation*}
\mathrm{a}^{\prime}\left(\mathrm{T}_{\mathrm{c}}\right)=0.4275 \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2}}{\mathrm{P}_{\mathrm{c}}}=0.4275 \mathrm{RT}_{\mathrm{c}} \mathrm{~V}_{\mathrm{c}}^{\prime} \tag{3-33}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{b}_{\mathrm{c}}=0.08664 \mathrm{RT}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}}=0.08664 \mathrm{~V}_{\mathrm{c}}^{\prime} \tag{3-34}
\end{equation*}
\]

By introducing a dimensionless factor \(\alpha_{i}(T)\), \(a_{i}^{\prime}(T)\) may be written as
\[
\begin{equation*}
a_{i}^{\prime}(T)=a_{c i}^{\prime} \alpha(T) \tag{3-35}
\end{equation*}
\]
where
\[
\alpha_{i}\left(T_{c}\right)=1
\]

Soave expressed the empirical factor \(\alpha_{i}(T)\) as
\[
\begin{equation*}
\alpha_{i}(T)=\left[1+m_{i}\left(1-T_{R i} 0.5\right)\right]^{2} \tag{3-36}
\end{equation*}
\]
where \(T_{R i}=\) reduced temperature of component \(i=T / T_{c i}\)
\[
\begin{equation*}
m_{i}=0.480+1.574 \omega_{i}-0.176 \omega_{i}^{2} \tag{3-37}
\end{equation*}
\]
and \(\omega_{i}=\) the accentric factor of component \(i\).
A complete discussion of the basis of Equations (3-36) and (3-37) is presented by Soave (42).

For mixtures, Soave employed the following mixing rules
\[
\begin{gather*}
a^{\prime}=\underset{i}{\left(x_{i} a_{i}^{0.5}\right)^{2}} \tag{3-38}\\
b=\sum_{i} x_{i} b_{i} \tag{3-39}
\end{gather*}
\]
where \(a_{i}^{\prime}\) and \(b_{i}\) are defined by Equations (3-35) and (3-34), respectively. The terms \(\alpha_{i}(T)\) and \(a_{c_{i}}\) of Equation (3-35) are defined by Equations
(3-38) and (3-33), respectively. Equations (3-32) to (3-39) are the basic equations used by Soave.

\section*{Modifications of the Soave Equation for This Work}

Soave (42) found that his modified \(R-K\) equation fit experimental vapor phase and liquid phase data well for the hydrocarbon systems. He also concluded that the proposed equation was able to predict the phase behavior of mixtures in the critical zone. But large deviations were found for systems containing \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}\), and polar compounds although the vapor pressures of the single pure components were reproducible.

In the present work the simple mixing rules suggested by Soave (Equations (3-38) and (3-39)) for applicaltion of the equation to mixtures have been modified further by using more general mixing rules, as follows:
\[
\begin{equation*}
a^{\prime}(T)=\sum_{i \cdot j}^{\Sigma} \quad\left[x_{i} x_{j} \quad a_{c i j}^{\prime} \alpha_{i j}(T)\right] \tag{3-40}
\end{equation*}
\]
and
\[
\begin{equation*}
b=\sum_{i}^{\sum} \sum_{j}\left(x_{i} x_{j} b_{i j}\right) \tag{3-41}
\end{equation*}
\]
where
\[
\begin{align*}
& a_{c i j}^{\prime}=0.4275 R T_{c i j} V_{c i j}^{\prime} \tag{3-42}\\
& \alpha_{i j}(T)=\left[1+m_{i j}\left(1-T_{R i j} 0.5\right)\right]^{2} \tag{3-43}\\
& m_{i j}=0.480+1.574 \omega_{i j}-0.176 \omega_{i j}{ }^{2} \tag{3-44}\\
& \omega_{i j}=\left(\omega_{i} \omega_{j}\right)^{1 / 2} \tag{3-45}\\
& T_{R i j}=T / T_{c i j} \tag{3-46}\\
& T_{c i j}=\left(T_{c i} T_{c j}\right)^{1 / 2} \tag{3-47}\\
& V_{c i j}^{\prime}=\left[1 / 2\left(V_{c i}^{\prime}{ }^{1 / 3}+V_{c j}^{\prime}{ }^{1 / 3}\right)\right]^{3} \tag{3-48}
\end{align*}
\]
\[
\begin{equation*}
\mathrm{b}_{\mathrm{ij}}=\left(\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}\right) / 2=0.08664 \frac{\left[\mathrm{~V}_{\mathrm{c} i}^{\prime}+\mathrm{V}_{\mathrm{c}}^{\prime} j\right]}{2} \tag{3-49}
\end{equation*}
\]

Empirical correlation factors can be applied to the above generalized mixing rules to improve the Soave modification of the \(R-K\) equation. The correlation factors can be considered to be independent of system temperature, pressure, and composition. There are numerous ways in which empirical adjustment factors may be introduced into mixing rules. Direct adjustment factors can be applied to the constants a' and b, such as
\[
\begin{equation*}
a_{i j}^{\prime}=\left(a_{i} a!\right)^{1 / 2}\left(1-B_{1}\right) \tag{3-50}
\end{equation*}
\]
or
\[
\begin{equation*}
b_{i j}=\frac{\left(b_{i}+b_{j}\right)}{2}\left(1+B_{2}\right) \tag{3-51}
\end{equation*}
\]
or adjustment factors can be applied to parameters such as critical temperature and volume,
\[
\begin{align*}
& \mathrm{T}_{\mathrm{cij}}=\left(\mathrm{T}_{\mathrm{ci}} \mathrm{~T}_{\mathrm{cj}}\right)^{1 / 2}\left(1-\mathrm{B}_{3}\right) \tag{3-52}\\
& \mathrm{V}_{\mathrm{cij}}^{\prime}=\left[\left(\frac{\mathrm{V}_{\mathrm{ci}}^{\prime}{ }^{1 / 3}+\mathrm{V}_{\mathrm{cj}}^{\prime}}{2}\right)\left(1+\mathrm{B}_{4}\right)\right]^{3} \tag{3-53}
\end{align*}
\]

Since \(a_{i j}^{\prime}\) is a function of \(T_{c i j}\) and \(V_{c i j}^{\prime}\) (Equation \(3-42\)) and \(b_{i j}\) is \(a\) function of \(V_{c i j}^{\prime}\) (Equation \(3-49\)), correlation factors \(B_{3}\) and \(B_{4}\) indirectly affect, \(a_{i j}\), while correlation factor \(B_{4}\) directly affects \(b_{i j}\).

Lin and Robinson \((19,26)\) found that modification of both the energy (\(T_{c i j}\)) and distance (\(V_{c i j}^{\prime}\)) parameters was necessary to accurately represent second:virial coefficient data. Similar approaches have been used with other solution models (14, 27). In this work, two sets of empirical correlation factors were calculated. One method modified two parameters, as was suggested by Lin and Robinson; the other method
modified only the energy term (\(\mathrm{T}_{\mathrm{cij}}\)). The corresponding equations for application of the empirical correlation factors are shown below:

Method 1 - one empirical correlation factor (\(k_{i j}^{\prime}\))
\[
\begin{equation*}
T_{c i j}=\left(T_{c i} T_{c j}\right)^{0.5}\left(1-k_{i j}^{\prime}\right) \tag{3-54}
\end{equation*}
\]

Method 2 - two empirical correlation factors (\(k_{i j}, l_{i j}\))
\[
\begin{align*}
& T_{c i j}=\left(T_{c i} T_{c j}\right)^{0.5}\left(1-k_{i j}\right) \tag{3-55}\\
& V_{c i j}^{\prime}=\left[\frac{1}{2}\left(V_{c i}^{\prime}{ }^{1 / 3}+V_{c j}^{\prime}{ }^{1 / 3}\right)\left(1+\ell_{i j}\right)\right]^{3} \tag{3-56}\\
& b_{i j}=0.08664 V_{c i j}^{\prime} \tag{3-57}
\end{align*}
\]

Equation (3-54) replaces (3-47) in the modified mixing rules for the first method, while Equations (3-55) through (3-57) replace Equations (3-47) through (3-49) for the second method.

\section*{Calculation of K-values}

The K-value of component i can be expressed in terms of the liquid and vapor fugacity coefficients of component \(i\); that is,
\[
\begin{equation*}
k_{i}=\frac{\emptyset_{i L}}{\emptyset_{i g}}=\frac{f_{i L} / x_{i} P}{f_{i g} / y_{i} P}=\frac{y_{i}}{x_{i}} \tag{3-58}
\end{equation*}
\]
where
\[
\begin{aligned}
\emptyset_{i L}, \emptyset_{i g} & =\text { liquid and vapor fugacity coefficients } \\
P & =\text { system pressure } \\
x_{i}, y_{i} & =\text { liquid and vapor mole fractions } \\
f_{i L}, f_{i g} & =\text { liquid and vapor fucacities, } \\
\text { and } \quad f_{i L} & =f_{i g} \text { at equilibrium. }
\end{aligned}
\]

The fugacity coefficient of component \(i\) can be calculated using the expression
\[
\begin{align*}
\ln \phi_{i}= & -\ln \left(\frac{P(\overline{\mathrm{~V}}-\mathrm{b})}{\mathrm{RT}}\right)=\frac{2 \sum_{y_{i}} \mathrm{~b}_{i k}{ }^{-b}}{(\overline{\mathrm{~V}}-\mathrm{b})}-\frac{2 \sum y_{i} a_{i k}}{\mathrm{RT}^{1 \cdot 5} \mathrm{~b}} \ln \left(\frac{\overline{\mathrm{~V}}+\mathrm{b}}{\overline{\mathrm{~V}}}\right) \\
& -\frac{\left.\sum_{i} \mathrm{y}_{\mathrm{i}} \mathrm{~b}_{i k}-\mathrm{b}\right)}{\mathrm{RT}^{1 \cdot 5} \mathrm{~b}}\left[\frac{1}{(\overline{\mathrm{~V}}+\mathrm{b})}-\frac{1}{\mathrm{~b}} \ln \left(\frac{\overline{\mathrm{~V}}+\mathrm{b}}{\overline{\mathrm{~V}}}\right)\right] \tag{3-59}
\end{align*}
\]

Equation (3-59) can be derived by applying the following general thermodynamic relationship to Equation (3-25):
\[
\ln \phi_{i}=\frac{1}{R T} \int_{V}^{\infty}\left[\left(\frac{\partial P}{\partial n_{i}}\right) T, V, n_{k}-\frac{R T}{V}\right] \quad d V-R T \ln Z \quad(3-60)
\]

The derivation of Equation (3-59) from Equation (3-25) and (3-60) is given in Appendix \(C\).

Equation (3-60) was evaluated using the original \(R-K\) equation (Equation (3-25)) rather than the Soave Modification (Equation (3-32)) to derive Equation (3-59). This is valid and can be used if the following modifications are also incorporated.
\[
\begin{equation*}
a(T)=a_{c i} \alpha_{i}(T) \quad T_{R i} 0.5 \tag{3-61}
\end{equation*}
\]
where
\[
a_{c i}=0.4275 \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2.5}}{\mathrm{P}_{\mathrm{ci}}}
\]
instead of
\[
\begin{equation*}
a_{c i}=0.4275 \frac{R^{2} T_{c}^{2}}{P_{c}} \tag{3-62}
\end{equation*}
\]

The above can be proved by expressing the parameter a of the original \(R-K\) equation in terms of \(a^{\prime}\) of the Soave modification, or
\[
\begin{equation*}
\frac{a}{T^{1 / 2}}=a^{\prime} \tag{3-63}
\end{equation*}
\]

Substituting Equations (3-33) and (3-35) into (3-63) gives
\[
\frac{a_{i}}{T^{1 / 2}}=a_{i}(T)=a_{c i}^{\prime} \alpha_{i}(T)=0.4275\left[\frac{R^{2} T_{c i}{ }^{2} \alpha_{i}(T)}{P_{c i}}\right]
\]
or
\[
a_{i}=0.4275\left[\frac{R^{2} T_{c i}{ }^{2.5}}{P_{c i}}\right]\left[\frac{T}{T_{c i}}\right]^{1 / 2} \alpha_{i}(T)
\]

Finally, \(a_{i}\) can be written
\[
\begin{equation*}
a_{i}(T)=a_{c i}^{\prime} \alpha_{i}(T) T_{R i} 0.5 \tag{3-64}
\end{equation*}
\]
where
\[
a_{c i}^{\prime}=0.4275 \frac{R^{2} T_{c i}{ }^{2.5}}{P_{c i}}
\]

Thus, \(a_{i}\) of the original \(R-K\) equation is expressed in terms of \(\alpha_{i}(T)\) of the Soave modification. If Equation (3-64) is used along with the original \(\mathrm{R}-\mathrm{K}\) equation, then Equation (3-59) is valid for use in this work.

\section*{CHAPTER IV}

\section*{EXPERIMENTAL APPARATUS}

In this study, vapor-liquid equilibrium constants were measured experimentally on two different types of apparatus. The first apparatus consists of a continuous flow system in which vapor-liquid equilibrium data were measured from the retention time required for an infinitely dilute sample to pass through a chromatographic column. The second consisted of a variable volume static system in which known amounts of the components were mixed in a windowed cell from which vapor and liquid samples were extracted. Mole fractions were then found using a chromatographic system and a detector whose response factors are known.

A detailed description of the two experimental apparatus will be given in this chapter.

\section*{Gas-Liquid Chromatography Experiment}

The chromatographic method of measurement was used because it is simple, accurate and a rapid means of obtaining \(K\)-value data. A schematic diagram of the apparatus is shown in Figure 1.

The main components of the system are the following:
1) the constant temperature bath
2) the sample valve
3) the gas-liquid chromatography column and presaturator
4) the detector and recorder

5) the pressure control and measurement
6) the flow control and measurement, and
7) auxiliary equipment.

The apparatus was mounted on an angle iron frame. Plywood platforms were used to support the stripchart recorder, a potentiometer, the controller for the constant temperature bath, the electronic unit for the detectors, and the detectors. The valves, pressure controllers, pressure gauges, bubble meters, and sample valve were mounted on a vertical plywood board. Many of the above mentioned instruments were mounted such that their faces showed through the vertical plywood board. The temperature bath was mounted behind the main angle iron frame. The bath, which was mounted on a screw jack, could be raised and lowered around the gas-liquid chromatography (GLC) column and presaturator. The majority of the connecting tubing was \(1 / 8^{\prime \prime}\). O.D. stainless steel tubing. A vacuum pump and sodium hydroxide rinse apparatus were placed in a hood and were connected to the system by \(1 / 4\) inch \(0 . D\). copper tubing.

The main components of the system will be discussed in detail.

\section*{The Constant Temperature Bath}

The temperature bath and controller for the bath was made by Ladau and consisted of (1) Model KB-20 bath, (2) Electronic Relay Type R-10 and (3) Relay R-20 (controller).

The model KB-20 bath consists of a double walled bath vessel with coverplate. The inside dimensions of the bath were 8 inches by 8 inches by 14 inches long. The wall thickness is 2 inches. The insulation between the inner bath vessel and the outer housing is glass wool. A circulation pump is mounted on the top of the bath, at one end. The
pump includes a propeller at the end of the drive shaft which provides the internal stirring required to maintain good temperature control. Two outlets are available which could be used to circulate to another bath or simply for better agitation in the temperature bath. The pump has a 70 watt motor and a maximum circulation rate of \(21 / 4 \mathrm{gal} / \mathrm{min}\). The flow rate in an external circuit can only roughly be controlled. An internal coil allowed cooling of the bath from an external source. A platinum resistance thermometer and heating coil are mounted for optimum temperature control.

The Electronic Relay type \(\mathrm{R}-10\) and Relay \(\mathrm{R}-20\) contain the main controls for the bath. The R-10 contains the on-off switch for the pump and a potentiometer which controls the heater wattage from \(20 \%\) to \(100 \%\) of rated capacity. The \(\mathrm{R}-20\) is connected to the platinum resistance thermometer, which is mounted in the constant temperature liquid bath. The R-20 contains the on-off switch of the bath heater and the controls for setting the bath temperature. Cooling was supplied in two ways. For the \(-40^{\circ} \mathrm{F}\) isotherms, liquid nitrogen was passed through the internal coil in the bath. For the higher temperature isotherms, the bath liquid was circulated through a second external bath whose temperature could be lowered to \(-55^{\circ} \mathrm{C}\), but which could not be controlled accurately. The liquid from the external bath was not passed through the internal coil due to lack of pumping capacity for the external bath. The pump on the Ladau bath had very good pumping capacity, as was stated earlier.

The bath temperature was controlled by the R-20 relay. The bath temperature was read with a thermopile made of eight copper-constantan thermocouples. The thermopile was calibrated by the investigator (see

Appendix E). A Leeds and Northurp Volt Potentiometer was used to read the thermopile.

Sample Valve

The sample valve was developed by R. H. Jacoby and is very similar to the valve used by Yarborough and Vogel (50). The valve used in this work differs from that of Yarborough and Vogel in that the sample cavity is within a removable capsule. This gives the valve two significant advantages: (1) The fact that the sample cavity is removable makes it possible to machine it very precisely. (2) Since the sample cavity is easily removed, the size of the sample cavity may easily be changed for different types of gases or fluids, and the cavity may easily be replaced if the seat becomes worn or damaged.

The valve stem is non-rotating which should help preserve the seal. The sample cavity used in this work had a volume of \(40 \mu 1\). The sample sizes could be varied by varying the pressure at which the samples were trapped.

\section*{The GLC Column and Presaturator}

The GLC columns and presaturators were made from \(1 / 4\) inch O.D. stainless steel tubing. The columns were approximately ten inches long. Longer columns gave a larger differences in retention times between helium and the other components, but they also cause the peaks to spread out more. The columns were chosen to give the best compromise between the two effects. The presaturators were approximately 48 inches long. They were bent into a loop five inches in diameter, two and a half times around. The five inch diameter fit nicely into the temperature bath
and allowed both the column and presaturator to be submerged completely in the bath.

The chromatograph packing was acid washed, \(30 / 60\) mesh Chromosorb P (Tek Lab, catalog number \(C P-23060\)). The packing was used because it did not react with the samples. Other packings were tried (Poropak Q, Fluoropack 80), but would react with the samples. The liquid load of the stationary phase was approximately \(30 \%\) by weight.

\section*{Detector and Recorder}

The detector system consisted of a thermistor detector and thermistor power supply connected to a stripchart recorder.

The power supply was a Gow-Mac Thermistor Power Supply Control Model 40-002. It is compatible with all thermistor detector thermal conductivity cells and delivers a high quality direct current voltage to the thermal conductivity cell. The unit has a resistance of 8000 ohms at \(25^{\circ} \mathrm{C}\). An attenuator of sensitivity potentiometer acts as a voltage divider circuit. This enabled the user to adjust the size of the peaks which are displayed on the strip chart recorder. A polarity switch allowed the user to changed the direction of the peaks.

The thermistor detector consisted of the thermal conductivity cell block and the detector elements. The two elements (Gow-Mac, Model 13504) were mounted in the cell block directly in the gas flow path. The cell block was made from 304 stainless steel. The high sensitivity and rapid response of the thermistor are attributed to its very small volume. The internal volume of the detector cell was 0.012 cc.

The strip chart recorder (Brush Recorder, Mark 10) used a null-balance, potentiometric principle to plot the peaks in response to
variations in a dc input from the thermistors. Chart speeds of 2 inch/min and 5 inch/min were mostly used, although speeds of 1 and 10 inches/min were available on the recorder.

The cell block was placed in a metal box and surrounded by foam rubber. A small heater and temperature controller were connected to the cell block, but were not used in this work. As long as the block was well insulated, noise due to temperature fluctuations was negligible.

\section*{Pressure Control and Measurement}

The system pressure was controlled by two pressure regulators in a series. System pressure was measured between the sample valve and GLC column

The first of the pressure regulators (Hoke, Model 521B20) was a ballast-loaded high precision regulator. The carrier gas cylinders (high pressure methane) were connected directly to the regulator via a manifold. The pressure was reduced from the bottle pressure to approximately 100 psia above the system pressure using the first regulator. The second pressure regulator (Mity-Mite, Model 94) was also a ballastloaded regulator which was used to drop the pressure approximately 100 psia to the system pressure. Both of these regulators used trapped gas in a sealed dome to regulate the down stream pressure. A 15 inch piece of capillary tubing was in the carrier gas inlet line just after the second regulator. The high resistance to flow in the line helped to overcome any short term pressure fluctuations.

The main gas stream was divided into two streams, the sample stream and the reference stream. The reference stream contained a column which was approximately the length of a GLC column plus a presaturator. The
reference column was filled with dry packing. The purpose of the reference column was to provide approximately the same amount of resistance to flow in the reference stream as the GLC column provided to the sample stream.

The system pressure was measured with a Heise bourdon tube pressure gauge. The pressure of the gauge was \(0-3000\) psia, with 2 psi subdivisions. The pressures were recorded to the nearest 1 psi .

Flow Rate Control and Measurement

The flow rates of the sample stream and reference stream were each controlled with a Whitey micrometer control valve (Cat. No. 21RS2-316). The valve utilizes a 0.020 inch orifice diameter and a spring loaded stem to control flow rates. The stem has a very slight taper and is only 0.010 inch in diameter at the tip. The spring loaded stem guards against heavy handed operators who might overtighten it. The gas flow rates were measured using 50 cc soap bubble flow meters, made from 50 cc burettes. The bubble meter on the sample stream was calibrated with water. The reference stream bubble meter was not calibrated since the flow rate did not need to be known accurately.

The timer used for measuring flow rates was a Brenet (No. 67) stop watch with a 10 second sweep. The smallest divisions were 0.1 seconds and time could be read within 0.02 seconds. A Breno stopwatch with a 30 second sweep, 0.1 second divisions, and which could be read to 0.05 seconds was used, as well as the Brenet, to measure the time required for the samples to pass through the GLC column. The Breno was generally used when long retention times were expected.

\section*{Auxiliary Equipment}

The auxiliary equipment consisten of (1) a vacuum pump, (2) a balance, (3) a carrier gas saturation flask, (4) a sodium hydroxide \((\mathrm{NaOH})\) rinse bottle, (5) barometer, (6) thermometer, (7) ultra sonic cleaner, and (8) valves and fittings.

The vacuum pump (Welch, Duo-Seal, \(1 / 3\) horsepower) was used to evacuate the sample system before samples were injected into the valve. The sample system was purged at least twice with the gas to be used as the sample for the next run. An exception was the \(H_{2} S\) runs where the system was thoroughly evacuated before the samples were trapped. The system was not purged with \(\mathrm{H}_{2} \mathrm{~S}\) to minimize the possibility of leaking \(\mathrm{H}_{2} \mathrm{~S}\) to the atmosphere.

The balance (Mettler Instrument Company, \(0-100 \mathrm{gm}, 0.05 \mathrm{mg}\) divisions) was used for all weighing done in the course of taking data, which included weighing the empty and packed GLC columns and weighing the solid support, both wet and dry.

The carrier gas saturation flask was used to saturate the sample stream with water after it had passed through the detector and before it passed through the bubble meter. The gas entered the top of the dewar through a \(1 / 4\) inch 0.D. stainless steel tube, which extended to just above the water level. Bubbling the gas directly into the liquid caused a great deal of noise in the detector due to the flow upsets. Passing the gas into the dewar above the water would probably not thoroughly saturate the gas stream. Thus, cotton was suspended between two corks about three inches up the entry tube. As the gas exited the tube it passed through the cotton, which remained saturated with water. No flow upsets were caused by this system. The gas exited through a side arm.

The sodium hydroxide \((\mathrm{NaOH})\) rinse bottle was used not to neutralize the samples which passed through the GLC column (approximately \(40 \mu 1\) at 300 psi), but rather to neutralize that volume of \(\mathrm{H}_{2} \mathrm{~S}\) which filled the sample stream while charging the sample valve. This volume consisted of the tubing between the \(\mathrm{H}_{2} \mathrm{~S}\) bottle and sample valve, approximately 6 feet of \(1 / 8\) inch tubing and dead space in tubing joints. The \(\mathrm{H}_{2} \mathrm{~S}\) was purged through the NaOH solution with methane. The rinse bath was 12 inches high and \(21 / 2\) inches in diameter. The entry tube extended to within one inch of the bottom of the bath. The bath was filled with a NaOH solution to within two inches of the top. A flask was put in the line ahead of the NaOH rinse bath to prevent the possibility of sucking the NaOH solution back into the sample system. The gas would pass from the NaOH rinse into the fume hood.

A Sonogen-Z ultrasonic cleaner (Branson Instruments, Inc., Catalog No. LTH-126-6 (bath), Model A-300 (electrical unit)) was used to clean the inside of the columns, the \(1 / 8\) inch tubing used in the construction of the equipment, and all valves and fittings. All valves (Autoclave, 10V-2071) and fittings were manufactured by Autoclave.

\section*{Classical Windowed Cell Experiment}

The equilibrium cell used in this work was a variable volume windowed cell. The apparatus, both windowed cell and chromatographic analysis equipment, have been previously described by Yarborough and Vogel (50). The windowed cell employs a sampling valve similar to that used in the GLC work, which allows small samples to be taken and injected into the chromatograph flow stream. A schematic diagram of the windowed cell apparatus is shown in Figure 2.

\begin{tabular}{ll}
A-DEAD WEIGHT GAUGE & D-CATHETOMETER \\
B-HEISE GAUGE & E-VAPOR SAMPLE VALVE \\
C-DIFFERENTIAL PRESSURE \\
\begin{tabular}{c}
INDICATOR
\end{tabular} & F-LIQUID SAMPLE VALVE
\end{tabular}

Figure 2. Schematic Diagram of the Classical
Windowed Cell Equipment

Only minor modifications have been made to the apparatus for this work. The modifications are as follows:
1. The column used with the hydrogen flame detector was 12 feet of \(1 / 8\) inch 0.D. stainless steel thinwall tubing filled with 10 weight percent Methyl Silicone Gum Rubber SE-30 on \(60 / 70\) mesh Anakron ABS solid support.
2. The original dual hydrogen flame ionization detector was replaced with a Model 5750 flame detector retrofit kit to improve the linearity and sensitivity of response.
3. The filaments in the thermal conductivity detector were tungsten-rhenium "hot wire" filaments. The filaments were new at the beginning of this work and were calibrated for this work.
4. A schematic diagram of the chromatographic switching valves is shown in Figure 3. Also shown are the TC column, the HF column, a heated expander-mixer coil, and a flow stream splitter.
5. The air bath in which the windowed cell was confined was cooled with a Coplematic refrigeration unit (Model KATC-0100-CAH) which had a single stage compressor. The compressor was air cooled and designed for extra low temperature. The compressor was charged with Freon 502 (Monochloro-difluoromethane/chloropentafluoroethane).

Figure 3. Schematic Diagram of Switching Valves
for Chromatographic System of
Windowed Cell Experiment

\section*{CHAPTER V}

EXPERIMENTAL PROCEDURE

The procedures used in taking the experimental data will be described for the two experimental methods, the GLC experiment and the classical windowed cell experiment.

\section*{Gas-Liquid Chromatography Experiment}

An examination of the equations
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{i}}=\frac{\mathrm{w}_{\mathrm{L}}^{\mathrm{o}}}{\left(1-\mathrm{x}_{1}\right) \rho_{\mathrm{g}}\left(\mathrm{~V}_{R i}-\mathrm{V}_{\mathrm{g}}\right)} \\
& \mathrm{V}_{R i}=\mathrm{t}_{R i}^{\mathrm{C}} \mathrm{f}-t_{R i}^{B} \mathrm{f}
\end{aligned}
\]
and
\[
f=f_{a}\left(\frac{P}{P}\right)\left(\frac{T}{T_{a}}\right)\left(Z_{g}\right)
\]
which are the basic equations for determining \(K\)-values from chromatography elution data, reveals that the following parameters must be measured experimentally to calculate the \(K\)-value from the above equations:
(1) T-system temperature
(2) \(\mathrm{T}_{\mathrm{a}}\)-ambient temperature
(3) P-system pressure
(4) \(\mathrm{P}_{\mathrm{a}}\)-ambient pressure
(5) \(f_{a}\)-flow rate of the carrier gas
(6) \(t_{r i}\)-retention time of solute \(i\)
(7) \(W_{L}^{O}\)-total moles of pure liquid contained in the GLC column. The values of \(x_{1}, \rho_{g}\), and \(z_{g}\) were found in the literature.

The experimental procedure and technique used to obtain the parameters listed above are described below. Unless otherwise stated, the discussion will refer to Figure 1. All preparatory work, preparing columns, and the measurement of the temperature, pressure, and flow rate will be discussed first. The on-stream procedure will be discussed last.

General

The tubing, fittings, and valves were thoroughly cleaned in a sonogen ultrasonic cleaner before they were assembled to remove traces of oil and grease. The equipment was then rinsed with ethanol and thoroughly dried. After the equipment was assembled, carrier gas was passed through the lines to dry out any water vapor that may have condensed on the lines. All fittings were tightened and the system was pressure tested with Helium at 1700 psia.

\section*{Preparation of Column Support}

A pre-weighed amount of firebrick solid support was put in a clean eight ounce jar. The amount of liquid on the support should be about \(30 \%\) of the weight of the support plus liquid, thus
\[
\frac{\mathrm{L}}{\mathrm{~L}+\mathrm{S}}=0.30
\]
or
\[
L=\frac{0.3}{0.7} \mathrm{~S}=0.43 \mathrm{~S}
\]
where
\(L=\) weight of liquid needed, and
\(S=\) weight of solid.
The calculated amount of liquid was measured in a small beaker and then added to the solid support. The liquid loading needed only to be approximately \(30 \%\); thus, measurements need only be made roughly. The top was put on the jar and the jar was shaken until the slurry appeared to be homogenous. The mixture was then allowed to set for a few hours with occasional shaking. The jar was tightly sealed.

\section*{Preparation of the Column and Presaturator}

Care had to be taken in preparing the GLC column to be sure that the number of moles of liquid in the column, \(W_{L}^{O}\), was precisely known.

The column was made by installing the proper fittings on a ten inch piece of stainless steel tubing. The column was bent into a semi-circle shape with a five inch diameter. This shape was convenient for weighing, filling, and mounting the column in the liquid bath. The column was thoroughly cleaned in the ultrasonic cleaner, rinsed with ethanol and dried. The column was weighed and recleaned. When the column weight did not change by more than \(0.1 \mathrm{mg} .\), the procedure was stopped.

The column was then weighed with a small amount of glass wool (0.03 gm) and the weight was recorded. The column was placed in a vise. The packing was poured into the column with the aid of a funnel and some tygon tubing. A mechanical vibrator was placed on the column to aid in the settling of the packing. When the column was full, the ends were plugged with the weighed glass wool. The filled column was then quickly weighed and connected into the system. The filling and
weighing of the column was done quickly to allow as little as possible of the solvent to evaporate from the column. Tests indicated that liquid lost from the column was negiligible over a three to four minute interval. The difference in weights of the column before and after packing represented the weight of the column packing, the solid plus the liquid. To find \(W_{L}^{0}\), the exact amount of liquid in the column must be known. The weight of liquid was found by first cleaning and thoroughly drying a one ounce crucible. The empty crucible was weighed and then reweighed after filling it with some of the packing material from the same jar that was just used to fill the column. The crucible was then placed on a hot plate and the solvent was boiled from the solid. The dry solid was allowed to cool and then weighed. The dry solid was weighed until the weight agreed within 0.1 mg . with the previous weighing to be sure that the crucible had cooled to room temperature. The liquid loading was calculated using the relationship
\[
\begin{equation*}
W F L=\frac{(\text { Solid weight wet-solid weight dry })}{(\text { Solid weight wet-crucible weight })}=\frac{(\text { SWW-SWD })}{(\text { SWW-CW })} \tag{5-1}
\end{equation*}
\]
where
```

    WFL = weight fraction liquid
    solid weight wet (SWw) = solid + liquid + crucible
    solid weight dry (SWD) = solid + crucible
    crucible weight (CW) = crucible
    ```
 The number of moles of liquid in the GLC column, \(W_{L}^{0}\), can be
 calculated using
\[
\begin{equation*}
W_{L}^{O}=\frac{(P C F-P C E)(W F L)}{L M W} \tag{5-2}
\end{equation*}
\]
where
PCF = weight of packed column full

PCE \(=\) weight of packed column empty

LMW = liquid molecular weight

The weighing and drying of the packing was done very soon after the column was packed to assure that the packing being dried is the same as the column packing. Although negligible change occurred in six hours with the jar tightly sealed, the crucikle was filled soon after the column was packed.

Upon completion of an isotherm, the GLC column was isolated from the system (the bypass opened) and the bath was lowered from around the column. The column was given time to warm to room temperature (usually until the next morning, 7 or 8 hours), and then was removed and weighed. The amount of weight loss of liquid in the column was recorded.

The column was changed after most runs. Occasionally, if less than \(0.5 \%\) of the liquid was lost, the column would be replaced quickly and used for another isotherm. In general, columns were most often used twice for \(-40^{\circ} \mathrm{F}\) and \(-20^{\circ} \mathrm{F}\) runs, where the solvent vapor pressure is lowest.

The presaturator was installed in the carrier gas upstream of sample valve. The purpose of the presaturator was to saturate the carrier gas with solvent, thus minimizing the liquid losses in the GLC column. The assumption was made in the theoretical derivation of the equations that the number of moles of liquid on the column is known. If the liquid slowly bleeds off the column, it will cause an error in the calculated K-values. The presaturator was used to minimize this loss.

The procedure for preparing the presaturator was similar to preparing the GLC column. A 48 -inch piece of stainless steel tubing and
its fittings were thoroughly cleaned. A slurry was made up. Since the amount of liquid need not be known, the slurry was made as wet as possible so that it still poured easily and was not extremely gummy (\(\cong 35-40 \%\) liquid). The slurry was poured into the presaturator and vibrated to ensure a homogenous column. The presaturator was then coiled into a five inch diameter circle and mounted in stream.

The presaturator could be used for both a \(-40^{\circ} \mathrm{F}\) and \(-20^{\circ} \mathrm{F}\) run, but was generally refilled for the \(0^{\circ} \mathrm{F}\) and \(20^{\circ} \mathrm{F}\) runs. Note that the presaturator could not be bypassed. Thus, if any difficulties occurred that caused a great deal of delay while the equipment was on stream, the presaturator would continue to dry. Long delays are considered to be a minimum of ten hours. One to two hours were not critical.

\section*{Temperature and Pressure Measurement}

Ambient temperature and pressure had to be measured and system temperature and pressure had to be controlled and measured.

Ambient temperature was measured with a mercury in glass thermometer which was mounted on the side of the main equipment frame, approximately a foot from the bubble flow meters. The temperature was measured and recorded to within \(0.1^{\circ} \mathrm{C}\) just after each sample was run.

Ambient pressure was measured with a mercury barometer which had 0.1 mm Hg divisions. The barometer was read at least once an hour. The readings were extrapolated for samples run between readings.

A thermopile made of eight copper-constantan thermocouples was used to read the bath temperature. (See Appendix E for the calibration of the thermopile). The system temperature was checked every 10-15 minutes.

The system pressure was measured with a Heise bourdon tube pressure gauge at the entrance of the GLC column. The accuracy of the gauge was \(0.1 \%\) of full scale (3000 psia).

The system pressure was set with the Mity-Mite pressure regulator. Pressure drop along the column was negligible. The system pressure was reduced to atmospheric with a throttling valve after exiting the column. The pressure at the detector and at the flow bubblemeter was atmospheric.

\section*{Flow Rate Measurement}

Only the flow rate of the sample stream was measured accurately. The flow rate of the reference stream was set so that it was close to the sample stream flow rate.

The sample stream bubble meter had been calibrated with water. The time required for a bubble to rise between two predetermined marks was measured with a stopwatch which had a 10 second sweep and could be read within 0.02 seconds. The runs could be reproduced within 0.05 seconds.

The flow rates were not changed during a run. The flow rate was measured before and after runs with very short elution times, not during the runs. For samples with longer elution times, the flow rate would be measured while the sample was traveling through the column. The bubblemeter times would sometimes vary by 0.1 seconds during a 20 minute elution time. The variance was due to slight drifts in system pressure. The flow rates varied from \(45 \mathrm{cc} / \mathrm{min}\) at low pressures to about \(150 \mathrm{cc} / \mathrm{min}\) at 1500 psi.

The expansion valve was heated to prevent condensation of the column solvent in the throttling valve. Difficulties were encountered when the valve was not heated. The condensate would plug the valve,
restricting the flow area. The flow rate would slowly decrease. The plugging was a problem only at high pressure.

Sample Trapping and Injection

The high pressure gas cylinders containing the solute gases were connected with a manifold. Each bottle had its own pressure regulator, except \(\mathrm{H}_{2} \mathrm{~S}\). Two valves and a pressure gauge (stainless steel) were used to regulate the size of the \(\mathrm{H}_{2} \mathrm{~S}\) sample. The outlet of the sample system was vented to a fume hood. The sample system could be evacuated with the vacuum pump. The general procedure was as follows (see Figure 1).
1. With valves 7 and 8 closed, and valve 19 open, the system was purged with the solute gas. Valves 9,10 , and 18 are always kept closed except when trapping \(\mathrm{H}_{2} \mathrm{~S}\) samples. Purging consisted of pressuring the system up to 150 psia and then dropping the pressure to atmospheric. The system was purged twice, then the solute gas was allowed to flow continuously through the system for ten to fifteen seconds. The sample valve was left open during the purging.
2. The sample system was pressured to the appropriate pressure (25-200 psia). Pressure gauge \(H\) was used to read the sample pressure.
3. The sample valve was closed, trapping the sample.
4. The sample system was then purged with methane to flush out most of the solute gas between valves 12 and 13 . The system does not need to be thoroughly cleaned of. solute gas.
5. Valves 12 and 13 were closed. Valve 7 was slightly opened to allow the volume around the sample valve to come to system
pressure without greatly upsetting the pressure in the rest of . \(\stackrel{\rightharpoonup}{ }\) the system. Valve 8 was opened and valve 19 was closed.
6. Any traces of solute which were not removed by purging were now given time to elute from the system, or at least, they were ahead of the actual solute sample far enough that it did not affect the solute sample. In general, the solute was not injected until the traces of solute showed up on the strip chart recorder. When samples were to be passed through the GLC column, the column was bypassed until the traces showed up on the recorder. Only then was the GLC column put in the main stream.
7. The sample valve was opened and the stopwatch started.

Since purging the system with \(\mathrm{H}_{2} \mathrm{~S}\) twice was inappropriate, a somewhat different procedure was used with the \(\mathrm{H}_{2} \mathrm{~S}\).
1. Valve 11 was closed to keep \(\mathrm{H}_{2} \mathrm{~S}\) from contaminating the pressure regulators. Valve 14 was kept closed since the sample pressure was read on the stainless steel pressure gauge J. Values 7 and 8 were closed.
2. The system was evacuated back to valve 9 by opening valve 16 (close 15).
3. The \(\mathrm{H}_{2} \mathrm{~S}\) cylinder was opened and the volume between valve 9 and the cylinder was filled to cylinder pressure (\(\cong 350 \mathrm{psi}\)).
4. Valve 9 was opened slightly, and the volume between valve 9 and valve 16 was filled to the appropriate pressure. The sample valve was closed.
5. Quickly, valve 9 was opened fully and valve 15 was slightly cracked to bleed the \(\mathrm{H}_{2} \mathrm{~S}\) into the NaOH rinse (valve 17 was not open).
6. The methane cylinder was opened and the manifold filled to 150 psia. When the \(\mathrm{H}_{2} \mathrm{~S}\) pressure dropped to atmospheric pressure in the sample system, valve 11 was slightly opened and the system was purged with methane. Care had to be taken that the NaOH rinse was not blown out of the bottle. After a few minutes of purging valves 11 and 15 were closed and the system was evacuated with the vacuum pump.
7. Valves 12 and 13 were closed. The rest of the procedure was the same as for the other samples.

\section*{Recording Sample Times}

The retention time, \(t_{R i}\), is the time required for the sample to elute from the sample valve to the detector. The sample was considered to have reached the detector when the deflection (the peak) on the strip chart recorder reached its maximum. The exact maximum could not be seen visually, especially at high pressures, where the top \(1 / 2\) inch of a 6 inch peak would sometimes stretch out for one to two minutes.

The following method was used to find the exact time to the peak maximum. The recorder paper had a vertical line every 0.5 inches. As the pen passed over a selected vertical line, the stopwatch was stopped and the line marked. The line that was chosen was the first one passed by the stripchart recorder needle after the peak maximum came out. For peaks that were slow coming out, the line that seemed to be nearest the maximum was chosen. A ruler was then laid horizontally across the peak
and the midpoint of the peak was found at several points between the baseline and the maximum height of the peak. The midpoints should all lie on the same vertical line, but due to a small amount of tailing they did not. Extrapolating from these midpoints to the top of the peak gave position of the peak maximum. Knowing the chart speed and the distance from the peak maximum to the line at which the stopwatch was stopped, the exact elution time, \(t_{R i}\), was calculated. The timer was stopped at a vertical line as near the peak maximum as possible to minimize any error that might be caused by faulty chart speed or poorly spaced chart paper.

On-Stream Procedure

This section describes the general procedure used in taking data for an entire isotherm. The procedure described in the previous sections will be joined together. All isotherms for one solvent were run before a new solvent was begun. The \(-40^{\circ} \mathrm{F}\) isotherm was run first, then \(-20^{\circ} \mathrm{F}\), \(0^{\circ} \mathrm{F}\) and \(20^{\circ} \mathrm{F}\). For a given isotherm, the lowest pressure, 100 psia , was run first, 1500 psia was run last. For each pressure eight samples were injected, four blanks, that is, the GLC column was bypassed, and then four samples were passed through the GLC column. They were usually run in the following order: \(\mathrm{He}, \mathrm{Ar}, \mathrm{CO}_{2}\), and \(\mathrm{H}_{2} \mathrm{~S}\). All isotherms for one solvent were completed before runs with a new solvent were begun.

Column packing for the GLC column and presaturator were made up separately and allowed to set overnight. The GLC column and presaturator were thoroughly cleaned and allowed to dry overnight.

Runs were generally begun in the morning so that an entire isotherm could be completed without stopping (\(\tilde{=} 16\) hours \()\). The temperature of the
constant temperature bath was checked the first thing in the morning. Any overnight drift in temperature was corrected. The presaturator was filled with packing and connected into the system. A helium pressure of 1500 psia was applied to the system and the system was checked for leaks. The liquid temperature bath was raised up around the GLC column and presaturator. The helium was bled off the system and carrier gas flow was begun. The system pressure was set at 100 psia with the Mity-Mite pressure regulator and the flow rate was adjusted to about \(45 \mathrm{cc} / \mathrm{min}\). The carrier gas was allowed to flow through the GLC column for a few minutes to sweep out any air and helium in the column, but then the GLC column was blocked out of the system and the bypass was opened (valve 5). The system flow rate and the detector took about \(30-60\) minutes to reach steady state. The current setting to the detector filaments was 4.5 miliamperes. The attenuator was set on 64 for the 100 psia runs. During this time, the crucible was weighed and a sample of the GLC column packing was weighed. The drying of the sample was begun. The dry solid was weighed sometime later when the crucible had cooled.

A helium sample was trapped and the helium traces were allowed to pass through to the detector. The ambient temperature and pressure were recorded. This could be done at about the time the flow rate and recorder were lining out. The system temperature was checked for drift. The flow rate was recorded, the helium sample injected, and the retention time was recorded after the peak came out. An argon sample was then trapped, the traces allowed to pass, the flow rate recorded, and then it was injected. The procedure was continued for \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\). Note that the GLC column was being bypassed for these four samples.

The bypass was now closed and the GLC column opened to the flow stream. The four samples were run again. The bypass was opened when the traces of solute were being flushed before sample injection. The ambient pressure was recorded after the four samples.

Upon completion of the above eight sample injections, the system pressure was raised to 200 psia and the above procedure repeated, the GLC column was closed off and allowed to dry and warm to room temperature overnight. The next morning the GLC column was weighed to check for liquid loss.

\section*{Classical Windowed Cell Experiment}

The operating procedure for preparing for and taking the experimental data will be discussed in this section. Two types of data were taken with the windowed cell apparatus. First data were needed to calibrate the thermistor, that is, to find response factors for each component. For these runs the exact composition of the mixture must be known. The second type of data taken consisted of the K-value data. For these runs the exact composition of the mixture need not be known. The following topics will be discussed in this section: (1) preparation of mixtures, (2) sampling, (3) sample injection and chromatographic run, (4) calibration of detectors, and (5) measurement of K-value data.

The first three items above apply to both the taking of calibration data and K-value data. The fourth and fifth items explain the two procedures and the differences between them.

\section*{Preparation of Mixtures}

This section contains a discussion of the procedure for preparation of a mixture for a calibration run, one in which the quantity of each component is known precisely. For K -value measurement runs the exact amount of each component in the mixture need not be known, although the mixture was usually made so that it had approximately a predetermined composition. The mixtures contained methane (\(\mathrm{C}_{1}\)), hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\), carbon dioxide \(\left(\mathrm{CO}_{2}\right)\), and n-octane \(\left(\mathrm{C}_{8}\right)\). The procedure was as follows.

The windowed cell was thoroughly cleaned and dried. With the piston pushed forward (small volume) the cell was purged with methane several times. The windowed cell was then filled with methane to a predetermined volume and pressure. Two to three hours were allowed for the methane to reach cell temperature (approximately room temperature). The cell pressure was occasionally adjusted so that it was kept within 2 psia of the charging pressure. The number of moles of methane in the cell was calculated using the cell volume, temperature, pressure, and compressibility data from the literature (39).

The \(\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}\), and \(\mathrm{C}_{8}\) were added to the system as liquids by means of a screw pump. The \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{C}_{8}\) were charged at 1000 psia (the pressure most often used in charging the methane). The \(\mathrm{CO}_{2}\) was charged at 500 psia or 1500 psia, depending on the size of the charge and total amount of mixture in the cell. The number of moles of each component was calculated from the liquid densities at the charging temperature and pressure. Liquid densities were obtained from the literature (40, 45).

\section*{Sampling}

The method used in sampling is described.by Yarborough and Vogel (50). Slight variations in the procedure will be described below.
1. The sample vatve, purge valve, and short pieces of tubing were brought up to a temperature above the system temperature for vapor samples to avoid condensation of the vapor samples and brought to system temperature for liquid samples to avoid flashing the liquid.
2. Two valves were used in the sampling. An \(8 \mu \mathrm{l}\) valve was used for the liquid samples. A \(20 \mu\) lvalve was used for vapor samples.
3. In general, samples were taken in the following order: vapor, liquid, liquid, vapor. After the first vapor and liquid samples were taken and while the samples were being run through the chromograph, the cell was rocked, mixing the contents. The final liquid and vapor samples were then taken. A visual check was made of the size of the peaks recorded on the strip chart recorder to see if any of the four samples were visibly bad. If so, they were repeated.

\section*{Sample Injection and Chromatograph Runs}

The chromatograph system consisted of the carrier gas flow stream, two chromatograph columns in series with the two detectors (hydrogen flame ionization, HF, and thermal conductivity, TC), the strip chart recorders and the Infotronics unit.

After a sample had been trapped in the sample valve, the sample valve was disconnected from the windowed cell and reconnected to the
chromatograph system. The sample valve was placed in a heating block. The heating block was used to heat \(\left(75-100^{\circ} \mathrm{C}\right)\) the sample valve, thus insuring that the liquid samples were in a vaporstate. This would allow the entire sample to go directly into the carrier gas stream when the sample valve was opened. The sample valve dead space was purged with helium. The switching valves (see Figure 3) were then set so that the sample valve was in the main carrier gas flow stream.

The sample valve was opened, thus injecting the sample into the stream. Both strip chart recorders and the Infotronics unit were turned on. In general, the peaks came out in the following order: (1) methane (HF \(-1: 15\)), (2) methane (TC-2:30), (3) carbon dioxide (TC-3:15), (4) hydrogen sulfide (TC-4:30), and (5) n-octane (HF-5:00). The natation in parenthesis indicates which detector the component passed through and the time from injection in minutes and seconds, where 1:15 is one minute 15 seconds. At about 7:30 the n-octane peak would show up on the TC detector. The strip chart recorder gave a visual record of what was happening in the chromatograph system, while the Infotronics unit re-corded on tape a signal proportion al to the peak area. The tape was played back at a later date. A digital integrator converted the tape output to "number of counts," which was directly proportional to peak area.

\section*{Calibration of Detectors}

The chromatograph detectors must be calibrated so that the detector response can be converted into "moles of a component." The calibration procedure was the following.

A mixture was made in the windowed cell. The pressure was raised to 5500 psia and the cell rocked for three to four hours to insure that the mixture existed as a single phase. Four samples were taken from the cell, two from the top and two from the bottom. If the samples all had very nearly the same composition, the mixture was considered to have been in single phase. If the top and bottom compositions were not equal the cell was rocked for a longer period of time. Four more samples were taken. This procedure was continued until the mixture was in a single phase. In this work, the series of four samples never had to be taken more than twice.

The method of relative response was used to calculate the response factors for the two detectors (see Chapter III). The component response relative to the methane response was obtained for \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}\), and \(\mathrm{n}-\mathrm{C}_{8}\) on the thermal conductivity detector and for \(n-C_{8}\) on the hydrogen flame ionization detector.

\section*{K-value Data}

The general procedure used in taking the \(K\)-value data is discussed in this section. The overall procedure incorporates all the above subsections except that concerning the calibration of the detectors.

The cell was charged with mixture 6 (see Table XVI). All the K-value data were taken using this mixture. The cell was not recharged between isotherms.) The mixture was made at this composition so that the \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{CO}_{2}\) mole fractions would be relatively small (\(\cong 0.10\)). Six moles of mixture were made up because this amount fit two criteria which made easier operation of the windowed cell. Too small of a charge is difficult to pressurize into the single phase region because the
windowed cell volume can be decreased to only a given minimum amount. On the other hand, too large a charge cannot be dropped to 200 psia for the needed data, that is, the windowed cell volume can be increased only to a given maximum amount.

After the mixture reached the single phase region at 5500 psia and the calibration mixture run, the system was cooled down and the pressure was dropped to about 1500 psia. Since the oil on the dead weight gauge side of the diaphragm contracted while the system cooled down, the system has to be checked occasionally so too great of a pressure difference did not build across the diaphram. Once the cell reached \(0^{\circ} \mathrm{C}\), the cell was rocked for an hour at 1500 psia. The pressure was then gradually (30-60 minutes) lowered to 1000 psia while the cell was continually rocked. After reaching 1000 psia rocking was continued for 30 minutes.

The cell was stopped in the level position. The system temperature and pressure were recorded. The system pressure was raised about 10-20 psi again. Two samples were taken, one liquid and one vapor. The cell was rocked while the two samples were run through the chromatograph. Two more samples were then taken, liquid, then vapor. After running the latter two samples, the pressure was gradually dropped to 800 psia. The procedure was continued through 200 psia.

Upon completion of the \(0^{\circ} \mathrm{C}\) isotherm, the temperature was lowered to \(-20^{\circ} \mathrm{C}\) and the system pressure raised to 1500 psia. The cell was rocked for an hour, then the pressure was gradually lowered. The above procedure was repeated for the \(-20^{\circ} \mathrm{C}\) isotherm.

\section*{CHAPTER VI}

EXPERIMENTAL RESULTS

During this study, experimental K-value data were obtained for \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in several hydrocarbon systems over a range of temperatures and pressures. The experimental results are presented in tabular and graphical form in this chapter. Appendix I contains the raw experimental data from which the results reported here were obtained.

The data were taken on the following systems at the following conditions:

Chromatographic \(K\)-value data:
(a) carbon dioxide - methane - n-heptane
(b) hydrogen sulfide - methane - n-heptane
(c) carbon dioxide - methane - toluene
(d) hydrogen sulfide - methane - toluene
(e) carbon dioxide - methane - methylcyclohexane
(f) hydrogen sulfide - methane - methylcyclohexane
(g) carbon dioxide - methane - n-octane
(h) hydrogen sulfide - methane - n-octane

K-value data from windowed cell:
(i) hydrogen sulfide - carbon dioxide - methane - n-octane Systems (a) through (f) were run at temperatures of \(-40^{\circ} \mathrm{F}\) to \(20^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{F}\right.\) intervals) and eight pressures from. 100 to 1500 psia. Systems (g) and (h) were run at \(0^{\circ} \mathrm{C}\) and \(-20^{\circ} \mathrm{C}\) at six pressures from 100 to 1000 psia.

Although the K -value data for \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in methane - n-octane were not an original goal of this work, they were taken in order to confirm the reliability of the experimental technique as discussed in the following chapter. The experimental K -values of the systems (a) through. (h) listed above are given in Table II. The results of the windowed cell work, liquid and vapor mole fractions and K -values for \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}\), methane, and octane, are given in Table III.

Figures 4 through 6 illustrate the K -values of systems (a) through (f). Isothermal plots of the six systems are given. Figures 7 through 12 show isobaric plots of K -values as a function of reciprocal temperature.

TABLE II

CHROMATOGRAPHIC K-VALUES FOR CARBON DIOXIDE (HYDROGEN SULFIDE) AT INFINITE DILUTION IN FOUR METHANE+SOLVENT BINARY SYSTEMS
\begin{tabular}{|c|c|c|c|c|}
\hline Pressure, psia & \(-40^{\circ} \mathrm{F}\) & \[
\begin{aligned}
& \text { Tempe } \\
& -20^{\circ} \mathrm{F}
\end{aligned}
\] & \(0^{\circ} \mathrm{F}\) & \(20^{\circ} \mathrm{F}\) \\
\hline \multicolumn{5}{|c|}{Methane + Heptane} \\
\hline 100 & 4.62(0.968) & 5.93(1.348) & 7.00(1.687) & 8.43 (2.164) \\
\hline 200 & 2.42 (0.534) & \(3.09(0.726)\) & 3.63 (0.918) & 4.20(1.153) \\
\hline 400 & 1.37(0.328) & 1.66(0.425) & 2.05(0.543) & 2.32 (0.659) \\
\hline 600 & 1.02(0.267) & 1.22(0.339) & 1.49(0.425) & 1.63(0.507) \\
\hline 800 & 0.88(0.250) & 1.05 (0.311) & 1.23(0.381) & \(1.40(0.444)\) \\
\hline 1000 & 0.82 (0.260) & 0.94(0.299) & 1.12(0.362) & 1.23 (0.410) \\
\hline 1250 & \(0.84(0.285)\) & \(0.89(0.314)\) & \(1.03(0.362)\) & 1.17 (0.409) \\
\hline 1500 & 0.85(0.314) & 0.91 (0.351) & 0.94(0.375) & 1.07 (0.408) \\
\hline \multicolumn{5}{|c|}{Methane + Methylcyclohexane} \\
\hline 100 & 5.90(1.020) & 7.52(1.408) & 8.78(1.826) & 11.36(2.454) \\
\hline 200 & \(3.08(0.558)\) & 3.79 (0.742) & 4.66 (0.984) & 5.45 (1.257) \\
\hline 400 & 1.70(0.335) & 2.06 (0.437) & 2.47 (0.562) & 2.96 (0.707) \\
\hline 600 & 1.24(0.266) & 1.49(0.343) & 1.81(0.440) & 2.15(0.550) \\
\hline 800 & 1.07(0.246) & 1.27(0.306) & 1.47 (0.379) & 1.70 (0.467) \\
\hline 1000 & 0.96(0.245) & 1.13(0.297) & 1.35 (0.359) & 1.44(0.420) \\
\hline 1250 & \(0.94(0.270)\) & 1.07(0.305) & 1.23 (0.351) & 1.33 (0.408) \\
\hline 1500 & \(0.99(0.321)\) & 1.03(0.328) & 1.18(0.368) & 1.24(0.407) \\
\hline \multicolumn{5}{|c|}{Methane + Toluene} \\
\hline 100 & 4.27(0.411) & 5.78(0.626) & 7.55(0.923) & 10.71(1.246) \\
\hline 200 & 2.21(0.221) & 2.94(0.331) & 3.76 (0.477) & 4.63 (0.653) \\
\hline 400 & 1.26 (0.132) & 1.61 (0.194) & 2.03 (0.272) & 2.45(0.365) \\
\hline 600 & 0.93 (0.105) & 1.21(0.152) & 1.48(0.209) & 1.83(0.277) \\
\hline 800 & \(0.81(0.097)\) & 0.96(0.133) & 1.23 (0.183) & 1.47 (0.238) \\
\hline 1000 & 0.77 (0.099) & 0.89(0.128) & \(1.09(0.173)\) & \(1.32(0.223)\) \\
\hline 1250 & 0.78(0.112) & 0.89(0.134) & \(1.02(0.169)\) & \(1.14(0.213)\) \\
\hline 1500 & 0.82(0.128) & 0.91(0.148) & 1.00(0.178) & 1.09(0.207) \\
\hline
\end{tabular}

TABLE II (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pressure, psia} & \multicolumn{4}{|c|}{Temperature} \\
\hline & \(-40^{\circ} \mathrm{F}\) & \(-20^{\circ} \mathrm{F}\) & \(0^{\circ} \mathrm{F}\) & \(20^{\circ} \mathrm{F}\) \\
\hline \multicolumn{5}{|c|}{Methane + Octane*} \\
\hline 100 & --- & \(6.72(1.537)\) & 9.37(2.442) & --- \\
\hline 200 & --- & 3.45(0.822) & 4.86(1.276) & --- \\
\hline 400 & --- & 1.95(0.490) & 2.65(0.723) & --- \\
\hline 600 & --- & 1.42(0.382) & 1.89(0.550) & --- \\
\hline 800 & --- & 1.16(0.339) & 1.52(0.467) & --- \\
\hline 1000 & --- & 1.03(0.319) & 1.40(0.438) & --- \\
\hline
\end{tabular}
* Temperatures in \({ }^{\circ} \mathrm{C}\)

TABLE III
K-VALUES OF CARBON DIOXIDE, HYDROGEN SULFIDE, METHANE, AND n-OCTANE FROM WINDOWED CELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Composition} & \multirow[b]{2}{*}{Pressure (psia)} & \multicolumn{3}{|c|}{\(-20^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(0^{\circ} \mathrm{C}\)} \\
\hline & & ```
Vapor
 Mole
Fraction
 Y
``` & ```
    Liquid
    Mole
Fraction
    X
``` & \[
\begin{gathered}
\text { K-Value } \\
\text { K }
\end{gathered}
\] & Vapor Mole Fraction Y & Liquid Mole Fraction X & \[
\begin{gathered}
\text { K-Value } \\
\mathrm{K}
\end{gathered}
\] \\
\hline \multirow{5}{*}{\(\mathrm{CO}_{2}\)} & 200 & 0.0418 & 0.0116 & 3.59 & 0.0443 & 0.0085 & 5.22 \\
\hline & 400 & 0.0398 & 0.0209 & 1.90 & 0.0428 & 0.0175 & 2.44 \\
\hline & 600 & 0.0418 & 0.0295 & 1.42 & 0.0423 & 0.0234 & 1.80 \\
\hline & 800 & 0.0411 & 0.0350 & 1.18 & 0.0417 & 0.0284 & 1.47 \\
\hline & 1000 & 0.0405 & 0.0381 & 1.06 & 0.0410 & 0.0312 & 1.31 \\
\hline \multirow{5}{*}{\(\mathrm{H}_{2} \mathrm{~S}\)} & 200 & 0.0204 & 0.0255 & 0.798 & 0.0284 & 0.0226 & 1.25 \\
\hline & 400 & 0.0177 & 0.0376 & 0.470 & 0.0257 & 0.0371 & 0.693 \\
\hline & 600 & 0.0227 & 0.0579 & 0.392 & 0.0 .239 & 0.0444 & 0.538 \\
\hline & 800 & 0.0214 & 0.0614 & 0.348 & 0.0224 & 0.0472 & 0.474 \\
\hline & 1000 & 0.0194 & 0.0605 & 0.322 & 0.0201 & 0.0472 & 0.427 \\
\hline \multirow{5}{*}{Methane} & 200 & 0.938 & 0.096 & 10.59 & 0.927 & 0.081 & 11.85 \\
\hline & 400 & 0.942 & 0.185 & 5.44 & 0.931 & 0.165 & 5.70 \\
\hline & 600 & 0.935 & 0.265 & 3.70 & 0.934 & 0.232 & 4.19 \\
\hline & 800 & 0.937 & 0.331 & 2.91 & 0.936 & 0.302 & 3.09 \\
\hline & 1000 & 0.939 & 0.390 & 2.48 & 0.938 & 0.362 & 2.73 \\
\hline \multirow{5}{*}{Octane} & 200 & 0.000153 & 0.867 & 0.000177 & 0.000375 & 0.888 & 0.000423 \\
\hline & 400 & 0.000093 & 0.756 & 0.000122 & 0.000286 & 0.781 & 0.000366 \\
\hline & 600 & 0.000114 & 0.648 & 0.000176 & 0.000253 & 0.700 & 0.000361 \\
\hline & 800 & 0.000125 & 0.573 & 0.000218 & 0.000162 & 0.623 & 0.000261 \\
\hline & 1000 & 0.000554 & 0.512 & 0.00108 & 0.000731 & 0.560 & 0.00131 \\
\hline
\end{tabular}

Figure 4. K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+ n-Heptane System

Figure 5. K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+ Methylcyclohexane System

Figure 6. K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane+ Toluene System

Figure 7. K-values for Carbon Dioxide at Infinite Dilution in the Methane \(+\mathrm{n}-\) Heptane System as a Function of Reciprocal Temperature

Figure 8. K-values for Hydrogen Sulfide at
Infinite Dilution in the Methane \(+\mathrm{n}-\) Heptane System as a Function of Reciprocal
Temperature

Figure 9. K-values for Carbon Dioxide at Infinite Dilution in the Methane+Methylcyclohexane System as a Function of Reciprocal Temperature

Figure 10. K-values for Hydrogen Sulfide at Infinite Dilution in the Methane+Methylcyclohexane System as a Function of Reciprocal Temperature

Figure 11. K-values for Carbon Dioxide at Infinite Dilution in the Methane+Toluene System as a Function of Reciprocal Temperature

Figure 12. K-values for Hydrogen Sulfide at
Infinite Dilution in the Methane+Toluene System as a Function of Reciprocal
Temperature

\section*{CHAPTER VII}

\section*{DISCUSSION OF RESULTS}

This chapter presents the results of an examination, analysis and correlation of the experimental results which were cataloged in the previous chapter. The chapter begins with a discussion of the expected experimental uncertainty of this work. The results of this work, buth windowed cell and chromatographic, are compared to available literature data on similar systems. The correlation framework described in Chapter III is tested using data from this work as well as data from the literature.

\section*{Error Analysis}

The total expected error in any measured quantity is the sum of the contributions made by errors in measurement of each individual variable used to calculate the final quantity.

Details of the development of the equations necessary to calculate expected experimental uncertainty of the \(K\)-values measured by the chromatographic technique appear in Appendix A. The estimated uncertainties involved in the measurements of experimental parameters are listed in Table IV. The results of the error analysis are shown in Table V.

From Table V the experimental uncertainty is greatest for the lighter solute \(\left(\mathrm{CO}_{2}\right)\) at higher temperatures and lower pressures. At
```

ESTIMATED UNCERTAINTIES IN MEASUREMENT OF

```
 EXPERIMENTAL PARAMETERS
\begin{tabular}{|c|c|}
\hline Experimental Measurement & Estimated Uncertainty \\
\hline 1. Measurements made on Mettler balance for calculation of weight of liquid on column (SWW, SWD, CW, PCF, PCE) & 0.00020 gm \\
\hline 2. Solubility of methane in stationary liquid - \(x_{1}\) & 0.2\% \\
\hline 3. Ambient Pressure - \(\mathrm{P}_{\mathrm{a}}\) & 0.2 mmHg \\
\hline 4. Standard deviation in the calibration of bubblemeter \(-\mathrm{V}_{\mathrm{B}}\) & 0.019 cc \\
\hline 5. Time required for volume of gas \(V_{B}\) to pass pass through the bubblemeter \(-t_{B}\) & 0.05 sec \\
\hline 6. Ambient temperature - T & \(0.1{ }^{\circ} \mathrm{C}\) \\
\hline 7. Retention times \(-t_{R i}\), \(t_{R H e}, t_{R A R}\) & \[
\begin{aligned}
& 0.6 \mathrm{sec} \\
& \left(2 \frac{\mathrm{inch}}{\mathrm{~mm}} \text { chart speed }\right) \\
& 0.3 \mathrm{sec} \\
& \left(5 \frac{\mathrm{inch}}{\mathrm{~mm}} \text { chart speed }\right)
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE V

ESTIMATED PERCENTAGE ERRORS IN EXPERIMENTALLY DETERMINED K-VALUES

these conditions the retention time is smallest, thus the value \(\left(V_{R i}-V_{g}\right)\) is smallest. Several authors \((8,24,43,46)\) have discussed the importance of determining \(\mathrm{V}_{\mathrm{g}}\) accurately.

Error analysis for the classical windowed cell indicates that an uncertainty of approximately \(4.6 \%\) for \(\mathrm{CO}_{2}\) and \(6.0 \%\) for \(\mathrm{H}_{2} \mathrm{~S}\) is expected. Table \(V\) gives the results of the error analysis.

Appendix A discusses the development of the equations used in the error analysis for both the chromatographic experiment and the windowed cell experiment.

In an effort to access experimentally the uncertainties in the calculated \(K\)-values from the chromatographic experiments, three separate and complete runs were made for the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in the methaneoctane system at \(0^{\circ} \mathrm{C}\). For each run, all preparations and operations were done separately from those of any other runs; that is, separate columns and separate batches of column packing were employed for each run. Figure 13 and 14 illustrate the experimental scatter among these three separate runs. The greatest deviation was less than \(4 \%\) while the average deviation from the average was only approximately \(2 \%\), which was slightly larger than the calculation expected experimental uncertainty. The conclusion is drawn that there are some unknown factors other than random experimental measurement.
\[
\text { Discussion of } \mathrm{V}_{\mathrm{g}}
\]

In the present work the free gas volume, \(V_{g}\), was calculated by measuring the retention volumes of two noble gases, helium (He) and argon (Ar), and extrapolating these retention volumes as a function of the polarizability linearily back to a polarizability of zero. At zero polarizability the gas was assumed to be unretained.

Figure 13. Consistency of Carbon Dioxide K-values for Three Runs at \(0^{\circ} \mathrm{C}\) in the Methane +n Octane System

Figure 14. Consistency of Hydrogen Sulfide K-values for Three Runs at \(0^{\circ} \mathrm{C}\) in the Methane \(+\mathrm{n}-\) Octane System

The identification of the retention time of a substance with zero polarizability as being unretained is not substantiated by any rigorous theory. In fact, Masukawa (28) has discussed the hypothetical perfect gas perturbation method in detail and has suggested several alternative extrapolating parameters for determining retention volumes of an unabsorbed gas, such as, critical temperature, Lenord Jones potential parameter, or heat of adsorption.

The free gas volume, \(\mathrm{V}_{\mathrm{g}}\), can be expressed in terms of a general extrapolation parameter, \(\beta\), in the following way. From a plot of \(V_{R}\) vs \({ }^{\prime} \beta\), \(V_{R}\) will equal \(V_{g}\) at \(\beta=0\), or for helium and argon, the following identity can be written,
\[
\begin{equation*}
\frac{\mathrm{v}_{\mathrm{g}}-\mathrm{v}_{\mathrm{He}}}{0-\beta_{\mathrm{He}}}=\frac{\mathrm{v}_{\mathrm{AR}}-\mathrm{v}_{\mathrm{He}}}{\beta_{\mathrm{AR}}-\beta_{\mathrm{HE}}} \tag{7-1}
\end{equation*}
\]

Solving for \(\mathrm{V}_{\mathrm{g}}\), the result is
\[
\begin{equation*}
\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\mathrm{He}}-\frac{\mathrm{V}_{\mathrm{AR}}-\mathrm{V}_{\mathrm{He}}}{\left(\frac{\mathrm{AR}}{\beta_{\mathrm{He}}}-1\right)} \tag{7-2}
\end{equation*}
\]

Two possible extremes exist for the minimum and maximum values of \(\mathrm{V}_{\mathrm{g}}\).
1. In the case where \(\beta_{\mathrm{He}} \ll \beta_{\mathrm{AR}}\), Equation (7-2) indicates that \(\mathrm{v}_{\mathrm{g}}\) will approach \(\mathrm{V}_{\mathrm{He}}\). Since helium is definitely retained to a finite extent as it passes through the GLC column, the free gas volume must be less than \(\mathrm{V}_{\mathrm{He}}\). Thus, the value of \(\mathrm{V}_{\mathrm{g}}\) which is calcualted when \(\left[\beta_{A R} / \beta_{H e}\right.\)] is very large is the maximum value that \(\mathrm{V}_{\mathrm{g}}\) could have. The use of a larger value of \(\mathrm{v}_{\mathrm{g}}\) in the calculation of \(K\)-values can in no way be justified.
2. The opposite extreme would be the case where \(\left[{ }_{A R}{ }_{A B}{ }_{H e}\right.\)] is small. Of the extrapolation parameters suggested by Masukawa, the
parameter with the lowest ratio of values of argon to helium is heat of adsorption where \(\left[\frac{\beta \mathrm{AR}}{\beta \mathrm{He}}\right]=\left[\frac{\Delta \mathrm{H}_{\mathrm{AR}}}{\Delta \mathrm{H}_{\mathrm{He}}}\right]=5.81\).
Table VI lists the K-values which were calculated using the highest and lowest values of \(\mathrm{V}_{\mathrm{g}}\) from the two methods mentioned above. Changes in the K-values of \(3.1 \%\) for \(\mathrm{CO}_{2}\) and \(1.0 \%\) for \(\mathrm{H}_{2} \mathrm{~S}\) were caused by the variation in \(V_{g}\). The \(K-v a l u e s\) shown in Table VI are for the methane-MCH system. The small deviations in the calculated \(K\)-values indicate that the method used in this work for calculating \(V_{g}\) should not cause appreciable error. Figure 15 illustrates the method used to calculate. \(V_{g}\) using the three extrapolation parameters.

Comparison of Results with Other Work

In this section both the chromatographic results and static cell results of this work are examined along with available literature data to test the mutual consistency among the various data sources.

Asano et al. (1) measured the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in the methane-octane system at \(0^{\circ} \mathrm{C}\) and \(-20^{\circ} \mathrm{C}\) for pressures from 100 to 1000 psia using a technique quite similar to the method used in this work. The techniques differed only in the calculation of \(V_{g}\), where Asano used binary \(K\)-value data from the literature and radioactively tagged methane to experimentally find a retention volume for methane. Table VII gives the results of Asano and this work (chromatographic and static cell) over the same range of conditions. Figures 16 and 17 present comparisons of the data of Table VII. In the figures the results from the static cell of this work and the results of Asano are presented in terms of their percent deviations from the chromatographic K-values of this work. The chromatographic K-values of this work have an estimated

TABLE VI

\section*{EFFECT OF EXTRAPOLATION PARAMETER ON} CALCULATION OF K-VALUES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{System} & \multicolumn{6}{|c|}{Calculated K-Values} \\
\hline & \multirow[b]{4}{*}{Pressure (psia)} & 1 & 2 & 3 & & \\
\hline & & \multirow[b]{3}{*}{Polarizability
\[
\beta / \beta=7.0
\]} & \multirow[b]{3}{*}{\(\beta / \beta=8.0\)} & \multirow[t]{3}{*}{Heat of Adsorption \(\beta / \beta=4.81\)} & \multicolumn{2}{|c|}{Percent of Deviation} \\
\hline & & & & & 2-1 & 3-1 \\
\hline & & & & & 1 & 1 \\
\hline \multirow{3}{*}{\[
\begin{gathered}
\mathrm{CO}_{2} \\
-40^{\circ} \mathrm{F}
\end{gathered}
\]} & 100 & 5.90 & 5.97 & 5.87 & 1.19 & -0.51 \\
\hline & 800 & 1.07 & 1.09 & 1.066 & 1.87 & -0.37 \\
\hline & 1500 & 0.99 & 1.02 & 0.977 & 3.03 & -1.31 \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{CO}_{2} \\
& 20^{\circ} \mathrm{F}
\end{aligned}
\]} & 100 & 11.35 & 11.57 & 11.26 & 1.94 & -0.79 \\
\hline & 800 & 1.70 & 1.74 & 1.68 & 2.35 & -1.18 \\
\hline & 1500 & 1.24 & 1.28 & 1.22 & 3.23 & -1.61 \\
\hline \multirow{2}{*}{\(\mathrm{H}_{2} \mathrm{~S}\)} & 100 & 1.02 & 1.02 & 1.019 & 0 & -0.10 \\
\hline & 800 & 0.246 & 0.247 & 0.245 & . 41 & -0.41 \\
\hline \(-40^{\circ} \mathrm{F}\) & 1500 & 0.321 & 0.324 & 0.319 & . 93 & -0.62 \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S} \\
& 20^{\mathrm{o}} \mathrm{~F}
\end{aligned}
\]} & 100 & 2.45 & 2.46 & 2.45 & . 41 & 0.0 \\
\hline & 800 & 0.467 & 0.477 & 0.465 & 2.41 & -0.43 \\
\hline & 1500 & 0.407 & 0.411 & 0.405 & . 98 & -0.49 \\
\hline
\end{tabular}

Figure 15. Extrapolation of Retention Volumes to
Unretained Gas Using Different
Extrapolation Parameters

TABLE VII

K-VALUES OF CARBON DIOXIDE AND HYDROGEN SULFIDE IN THE METHANE+n-OCTANE SYSTEM FROM CHROMATOGRAPHIC WORK, WINDOWED
CELL WORK, AND DATA OF ASANO
\begin{tabular}{lccc}
\hline & & \multicolumn{2}{c}{ This Work } \\
& \begin{tabular}{c}
Pressure \\
(psia)
\end{tabular} & Chromatography & Static Cell
\end{tabular} Asano (1)

Figure 16. Comparison of K-Values for Carbon Dioxide and Hydrogen Sulfide in the Methane+n-Octane System at \(0^{\circ} \mathrm{C}\)

Figure 17. Comparison of K-values for Carbon
Dioxide and Hydrogen Sulfide
in the Methane +n -Octane
System at \(-20^{\circ} \mathrm{C}\)
uncertainty of \(\pm 3 \%\) (as denoted by the horizontal dashed line at \(\pm 3 \%\) in Figures 16 and 17); the static cell results, \(5 \%\) (bars drawn above and below diamond); and an uncertainty of \(\pm 3 \%\) was arbitrarily assigned to the results of Asano.

Figure 16 shows the \(\mathrm{CO}_{2} \mathrm{~K}\)-values of the static cell work and Asano to be in excellent agreement at \(0^{\circ} \mathrm{C}\) (except for 200 psia). The chromatographic data of this work appear somewhat higher than the others, although three of the five data points are within the combined experimental uncertainty. Figure 17 shows the \(\mathrm{CO}_{2} \mathrm{~K}\)-values at \(-20^{\circ} \mathrm{C}\) to be in reasonable agreement for all three data sets with somewhat better agreement between the two methods of this work. Khoury and Robinson (21), however, reported good agreement with the \(\mathrm{CO}_{2} \mathrm{~K}\)-values of Asano at \(-20^{\circ} \mathrm{C}\). They claimed agreement within \(1 \%\) although they presented no discreet numerical results. They also employed the chromatographic technique in their studies.

The comparison of \(\mathrm{H}_{2} \mathrm{~S}\) K-values in Figure 16 and Figure 17 show the data of Asano to be \(9-12 \%\) below the K-values of the chromatographic work at \(0^{\circ} \mathrm{C}\) and \(12-20 \%\) below at \(-20^{\circ} \mathrm{C}\). This difference is well outside the expected experimental uncertainties. The static cell data are in good agreement with the chromatographic data of this work. The disagreement illustrated in Figure 17 between the present chromatographic data and those of Asano was, in fact, the compelling reason for undertaking the windowed cell measurements.

Additional indirect comparisons of the experimental data of this work can be made with the \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}-\) values measured by Yarborough (49) in multicomponent systems. Yarborough made measurements in
(1) a system containing the hydrocarbons methane, ethane, propane, heptane and decane, and nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, and
(2) a system differing from the above-mentioned system in that toluene was also added to the mixture to make the \(C_{7+}\) fraction contain \(64 \%\) toluene.

Thus, the mixtures were identical except that the \(C_{7}+\) fraction for the first mixture consisted of heptane and decane while the second mixture had a \(C_{7+}\) fraction consisting of heptane, decane, and \(64 \%\) toluene. The measurements were made on the identical static cell apparatus used in this work. Figure 18 through 21 present comparisons of the \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) K-values of Asano (dashed line), this chromatographic work (in toluene and heptane) and the work of Yarborough (solid lines). The figures show the effect of temperature on \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}\)-values at 500 and 1000 psia.

Figure 18 reveals fair agreement among the \(K\)-values of \(\mathrm{CO}_{2}\) at 500 psia for the data of all investigators. The K-values in n-heptane from this work are about \(20 \%\) above the other investigators at low temperature, but approach the data of Yarborough at higher temperatures. The K-values of Asano show excellent agreement with Yarborough at low temperatures but begin to deviate at higher temperatures. Figure 19 shows the K -value of \(\mathrm{CO}_{2}\) at 1000 psia for Asano and Yarborough to be in excellent agreement, while the K -values in n-heptane from the present study are some \(10 \%\) higher. Again, the K-values of this work approach those of Yarborough at higher temperatures while the K-values of Asano begin to deviate from those of Yarborough. The presence of toluene does not have a great effect on the \(\mathrm{CO}_{2} \mathrm{~K}\)-values in the work of Yarborough or in this

Figure 18. Comparison of K-values for Carbon Dioxide at 500 psia

Figure 19. Comparison of K-values for Carbon Dioxide at 1000 psia

Figure 20. Comparison of K-values for Hydrogen Sulfide at 1000 psia

Figure 21. Comparison of K-values for Hydrogen Sulfide at 500 psia
work. The isobars for the two systems of Yarborough do cross at high temperatures in the two plots, while the isobars of this work would cross, but at a much lower temperature. This trend shows up in both figures.

Figure 20 shows the K -values for \(\mathrm{H}_{2} \mathrm{~S}\) at 1000 psia in heptane for this work to be in excellent agreement with the data of Yarborough (for paraffinic \(\mathrm{C}_{7+}\)), while the data of Asano are as much as \(25 \%\) lower at \(-40^{\circ} \mathrm{F}\). Further, the indicated effect of toluene on the \(H_{2} \mathrm{~S} \mathrm{~K}\)-value is quite consistent between this work and that of Yarborough; that is, the presence of \(64 \%\) toluene reduced the \(\mathrm{H}_{2} \mathrm{~S}\) K-values of Yarborough below the value in the paraffinic \(C_{7+}\) by about \(2 / 3\) of the amount that the chromatographic data of this work indicated. Figure 21 shows similar trends for \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}\)-values at 500 psia, but to a lesser extent. Eakin and DeVaney (10) measured the K -values of \(\mathrm{H}_{2} \mathrm{~S}\) in n-nonane and in mesitylene (an aromatic) using a static cell. They compared their results with those of Yarborough in heptane and toluene. They concluded that "both sets of data are consistent." Eakin and DeVaney found the aromatic reduced the \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}\)-values at low temperatures and enhanced them at higher temperatures.

K -values for the methane and heavy solvent were not measured in the chromatographic work; however, both methane and octane K -values were determined as part of the windowed cell measurements (see Table III). Figure 22 shows those \(K\)-values, along with the methane \(K\)-values (in octane) measured by Kohn and Bradish (22). Due to the low concentration of octane in the vapor, Kohn did not calculate octane K -values. The solid lines in Figure 22 show the methane and octane K-values which were predicted by correlating the data of Kohn and Bradish using the

Figure 22. Comparison of K -values for Methane and \(\mathrm{n}-0 \mathrm{ctane}\) from the Classical Windowed Cell Experiment

Soave modification of the \(R-K\) equation of state with one empirical factor added. The figure shows the methane K-values of this work to be \(15-20 \%\) below those of Kohn and Bradish. Yarborough (49) compared the methane K-values of his work with other investigators and found his K-values (taken on the identical windowed cell apparatus as this work) to be \(10-15 \%\) lower than the others. The octane \(K-v a l u e s\) appear to be in quite reasonable agreement with the correlation considering the very low concentrations of octane in the vapor phase which led to rather high uncertainties in the octane K-values.

\section*{Data Trends}

Based on the experimental results of this work, some general comments are possible regarding the effects that naphthenic and aromatic components in an absorber oil would have on the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\).

For \(\mathrm{CO}_{2}\), the K -value in MCH is from 15 to \(30 \%\) higher than in the paraffinic solvent \(n\)-heptane over the complete temperature range -40 to \(20^{\circ} \mathrm{F}\). The greater deviations are at lower pressures and higher temperatures. Toluene has much less effect on the \(\mathrm{CO}_{2} \mathrm{~K}\)-values, reducing them by about \(7 \%\) at the \(-40^{\circ} \mathrm{F}\) and increasing them by \(7 \%\) at \(20^{\circ} \mathrm{F}\).

Just the opposite effect is seen for the \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}\)-values. In MCH , the \(\mathrm{H}_{2} \mathrm{~S}\) K-values are approximately 1 to \(7 \%\) higher than in the paraffinic n-heptane, but in toluene the K -values are reduced from 45 to \(60 \%\). This effect of toluene is substantiated for both \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) by the work of !: Yarborough (49).

Finally, Figure 23 shows the ratio of the \(H_{2} \mathrm{~S}\) K-values in toluene to the \(\mathrm{H}_{2} \mathrm{~S}\) K-values in n -heptane as a function of pressure. The general trends illustrated in the figure are similar to results obtained for the

Figure 23. Ratio of K-values for Hydrogen
Sulfide in the Methane+
Toluene System to K-values of Hydrogen Sulfide in the Methane+n-Heptane System
\(K\)-values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in MCH relative to those in heptane. As the pressure increased, or the temperature decreased, the \(K\) ratio decreased in solvents MCH or toluene relative to heptane. Plots of the other systems showed considerably more fluctuations of data points and much more overlapping of isotherms, but the general conclusions were still the same.

\section*{Correlation of Data}

The data of this work have been correlated in terms of a modified form of the Redlich-Kwong equation of state, employing empirical interaction parameters. The basis for the correlation is the Scave modification of the Redlich-Kwong equation. In this section the steps taken in correlating the data are discussed in detail, along with the difficulties encountered in the correlation effort. The results are then compared with the basic Soave correlation.

Discussion of Correlation Parameter

The Soave modification of the Redlich-Kwong equation of state is discussed in detail in Chapter III. In the present work the mixing rules which were suggested by Soave have been modified into a more generalized form, which is given in Equation (3-40) through (3-49). Two sets of empirical correlation factors were calculated in this work. One set \(\left(k_{i j}^{\prime}\right)\) modified the energy term \(\left(T_{c i j}\right)\) while the other set \(\left(k_{i j}, l_{i j}\right)\) modified both the energy term and the distance term (through \(V_{c i j}^{\prime}\)). The equations showing the application of the two sets of empirical correlation factors are given in Equations (3-54) through (3-57). The use of the two separate methods was undertaken to determine whether or not there
is a need for more than one empirical correlation parameter to adequately represent the experimental data.

The correlation equations indicate that critical temperature, critical pressures \(\left(V_{c}^{\prime}=R T_{c} / P_{c}\right)\) and accentric factors are needed for the pure components used in this study. Critical temperatures and pressures have been found in the literature (30) and are given in Table VIII. Although available in the literature, acentric factors for each of the pure components were calculated in this work to optimize the accuracy of the Soave equation. Vapor pressure data were used along with the Soave modification of the Redlich-Kwong equation of state to find the acentric factors which resulted in the best prediction of vapor pressure data. Table IX shows the range of the vapor pressures used for each component and the acentric factors which were calculated. The vapor pressures of five of the systems were taken from one source (3). The original sources of the data are also listed.

The model used in this work thus required empirical factors (\(k\) ! \({ }_{i j}\) or \(k_{i j}\) and \(\ell_{i j}\)) for each binary pair appearing in the mixture. The empirical correlation factors were determined by non-linear regression to provide the best fit to binary phase equilibrium data taken from the literature. Binary data are available only for the methane binary system. For binary systems involving \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) with heavy solvents phase equilibrium data are not available. Thus, the empirical correlation factors for these systems were determined by direct fit of the model to the infinite dilution \(\mathrm{K}-\mathrm{values}\) for \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{CO}_{2}\) determined in the present study. In all evaluations of empirical correlation factors the objective function which was minimized in the non-linear regression was the sum of squares of the deviations between the experimental K-values

TABLE VIII

CRITICAL PROPERTIES OF METHANE, SOLUTES, AND SOLVENTS (30)
\begin{tabular}{|c|c|c|}
\hline Component & Critical Temperature (\({ }^{\circ} \mathrm{K}\)) & Critical Pressure (atm) \\
\hline Methane & 190.59 & 45.441 \\
\hline n -Heptane & 540.27 & 27.001 \\
\hline Methylcyclohexane & 572.20 & 34.261 \\
\hline Toluene & 591.80 & 40.548 \\
\hline \(\mathrm{n}-0 \mathrm{ctane}\) & 568.83 & 24.537 \\
\hline Carbon Dioxide & 304.21 & 72.877 \\
\hline Hydrogen Sulfide & 373.54 & 88.868 \\
\hline
\end{tabular}

TABLE IX
VAPOR PRESSURE DATA AND CALCULATED ACENTRIC FACTORS
\begin{tabular}{|c|c|c|c|c|}
\hline Component & Temperature and Pressure Range of Data & Calculated Acentric Factor & Number of Data Points & Data Source \\
\hline Heptane, \(\mathrm{C}_{7}\) & \[
\begin{aligned}
& 47.78-779.37 \mathrm{mmHg} \\
& 25.93-99.28{ }^{\circ} \mathrm{C}
\end{aligned}
\] & 0.345 & 20 & \((3,48)\) \\
\hline Methane, \(\mathrm{C}_{1}\) & \[
\begin{aligned}
& 105.03-2220.5 \mathrm{mmHg} \\
& (-181.0)-(-146.65){ }_{\mathrm{o}}{ }_{\mathrm{C}}
\end{aligned}
\] & 0.002 & 24 & (3, 16, 44) \\
\hline Toluene, TOL & \[
\begin{aligned}
& 47.66-779.33 \mathrm{mmHg} \\
& 35.37-111.50{ }^{\circ} \mathrm{C}
\end{aligned}
\] & 0.260 & 25 & \((3,48)\) \\
\hline Methylcyclohexane, MCH & \[
\begin{aligned}
& 47.66-779.33 \mathrm{mmHg} \\
& 25.59-101.83{ }^{\circ} \mathrm{C}
\end{aligned}
\] & 0.234 & 21 & \((3,48)\) \\
\hline Octane, \(\mathrm{C}_{8}\) & \[
\begin{aligned}
& 57.53-779.33 \mathrm{mmHg} \\
& 52.93-126.57{ }^{\circ} \mathrm{C}
\end{aligned}
\] & 0.394 & 19 & \((3,48)\) \\
\hline Carbon Dioxide, \(\mathrm{CO}_{2}\) & \[
\begin{aligned}
& 31027 .-54300 \cdot \mathrm{mmHg} \\
& 6.76-30.04{ }_{\mathrm{o}}^{\mathrm{C}}
\end{aligned}
\] & 0.239 & 19 & (40) \\
\hline \[
\begin{aligned}
& \text { Hydrogen Sulfide, } \\
& \mathrm{H}_{2} \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& 10343 .-67229 \cdot \mathrm{mmHg} \\
& 10.44-100.00{ }^{\circ} \mathrm{C}
\end{aligned}
\] & 0.107 & 12 & (40) \\
\hline
\end{tabular}
and the calculated K-values. For the binary systems containing methane and a heavy solvent, the methane \(K\)-values are three to four orders of magnitude greater than the solvent, thus the objective function of the minimization was much larger for the methane. In effect, only the methane K-values had any effect on the optimization. For the methane-C0 \({ }_{2}\) and methane \(-\mathrm{H}_{2} \mathrm{~S}\) binaries, both components affected the optimization. Appendix B explains the program used and shows a general flow chart of the program.

\section*{Results}

The results of the two correlations are given in this section. Table \(X\) presents the empirical correlation factors \(\left(k_{i j}\right.\) and \(\left.k_{i j}, l_{i j}\right)\) which resulted from the two correlational methods. Table XI lists the results of the correlation of the binary \(K\)-value data from the literature. The table gives the average absolute percent deviation between the K values predicted by the correlation and the experimental K-values from the literature. Since the correlation minimized the square of the difference between the experimental and predicted K-values, the correlation, in effect, was fitting only the methane \(K\)-values for the systems Cl-C7, C1-TOL, C1-MCH, and Cl-C8. The results illustrate this point in that the average deviations for the solvents are much higher than for methane. For \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\), where the K -values are within an order of magnitude of the Cl , the correlation fits both components more evenly. The general trend seems to be that the two constant correlational method fits the binary data slightly better than the one constant method.

Figures 24 through 34 illustrate the results of the correlation of the binary K-values. All data points that were used in the correlational fits are shown in the figures to demonstrate the range of the data used.

TABLE X

EMPIRICAL INTERACTION PARAMETERS EMPLOYED
IN K-VALUE CORRELATION
\begin{tabular}{lcccc}
\hline \begin{tabular}{l}
Components \\
"i" and " \(j\) "
\end{tabular} & k \({ }_{i j}\) & \(\mathrm{k}_{\mathrm{ij}}\) & \(\ell_{\mathrm{ij}}\) & \begin{tabular}{c}
Data \\
Reference
\end{tabular} \\
\hline \(\mathrm{C}_{1} / \mathrm{C}_{7}\) & 0.0464 & 0.1452 & 0.0634 & 4 \\
\(\mathrm{C}_{1} / \mathrm{C}_{8}\) & 0.0598 & 0.1719 & 0.0735 & 22 \\
\(\mathrm{C}_{1} / \mathrm{MCH}\) & 0.0675 & 0.1454 & 0.0514 & 5 \\
\(\mathrm{C}_{1} / \mathrm{Toluene}\) & 0.0784 & 0.1206 & 0.0500 & 6 \\
\(\mathrm{C}_{1} / \mathrm{CO}_{2}\) & 0.0441 & 0.0445 & -0.0382 & 9 \\
\(\mathrm{C}_{1} / \mathrm{H}_{2} \mathrm{~S}\) & 0.0414 & 0.0643 & -0.0440 & 40 \\
\(\mathrm{CO}_{2} / \mathrm{C}_{7}\) & 0.1536 & 0.2758 & 0.0398 & this work \\
\(\mathrm{CO}_{2} / \mathrm{C}_{8}\) & 0.1590 & 0.2918 & 0.0526 & this work \\
\(\mathrm{CO}_{2} / \mathrm{MCH}\) & 0.1719 & 0.2725 & 0.0310 & this work \\
\(\mathrm{CO}_{2} / \mathrm{Toluene}\) & 0.1339 & 0.2237 & 0.0249 & this work \\
\(\mathrm{H}_{2} \mathrm{~S} / \mathrm{C}_{7}\) & 0.0934 & 0.2297 & 0.0307 & this work \\
\(\mathrm{H}_{2} \mathrm{~S} / \mathrm{C}_{8}\) & 0.0930 & 0.2431 & 0.0465 & this work \\
\(\mathrm{H}_{2} \mathrm{~S} / \mathrm{MCH}\) & 0.1031 & 0.2240 & 0.0173 & this work \\
\(\mathrm{H}_{2} \mathrm{~S} / \mathrm{Toluene}\) & 0.0365 & 0.1549 & 0.0033 & this work \\
\hline
\end{tabular}

\section*{TABLE XI}

RESULTS OF CORRELATION OF BINARY K-VALUES

Figure 24. Predicted K-values for Methane in the Methane+n-Heptane Binary System

Figure 25. Predicted K-values for n-Heptane in the Methane \(+\mathrm{n}-H e p t a n e\) Binary System

Figure 26. Predicted K-values for Methane in the Methane+Methylcyclohexane Binary System

Figure 27. Predicted K-values for Methylcyclohexane in
the Methane+
Methylcyclohexane
Binary System

Figure 28. Predicted K-values for Methane in
the Methane + Toluene Binary
System

Figure 29. Predicted K-values for Toluene in the Methane+Toluene Binary System

Figure 30. Predicted K-values for Methane in the Methane \(+\mathrm{n}-0 \mathrm{ctane}\) Binary System

Figure 31. Predicted K-values for Methane in the Methane+Hydrogen Sulfide Binary System

Figure 32. Predicted K-values for Hydrogen Sulfide in the Methane+ Hydrogen Sulfide Binary System

Figure 33. Predicted K-values for Methane in
the Methane+Carbon Dioxide
Binary System

Figure 34. Predicted K-values for Carbon Dioxide in the Methane+ Carbon Dioxide Binary System

The results of the correlational work are given by the dashed lines (one constant correlational method) and the solid lines (two constant method). Some of the predicted isotherms are not shown to prevent cluttering the figures. In general, the highest and lowest temperatures are shown. The intermediate isotherms show similar trends. In Figure 25 , which shows heptane \(K\)-values for the methane-heptane system, the \(0^{\circ} \mathrm{F}\) and \(-40^{\circ} \mathrm{F}\) isotherms are data which were taken much more recently than the \(-20^{\circ} \mathrm{F}\) isotherm and were measured using an improved technique. In fact, the heptane, \(M C H\), and toluene \(K\)-values of Chang and Kobayoahi are all suspect. The correlation fits the new data quite well while the older data \(\left(-20^{\circ} \mathrm{F}\right)\) differs greatly from the correlation. Since Kohn and Bradish (22) did not report the octane \(K\)-values of their work, no figure is shown illustrating the correlation.

The results shown in Table XI and Figures 24 through 34 show that the two constant correlational method seems to fit the experimental data slightly better than the one constant correlational method.

Table XII lists the results of the correlation of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) K-values at infinite dilution from the experimental data of this work. The table gives the average absolute percent deviation between the experimental and predicted K-values. Results are shown for both correlational methods and for the original Soave modification of the \(R-K\) equation of state.

The two correlations of this work fit the experimental data much better than the Soave equation. The results indicate that the one constant correlational method fits the experimental data of this work slightly better than the two constant method for all cases except the methane

TABLE XII
RESULTS OF CORRELATION OF CARBON DIOXIDE
(HYDROGEN SULFIDE) K-VALUES AT
INFINITE DILUTION IN
METHANE+SOLVENT
BINARY SYSTEMS
\begin{tabular}{llllll}
\hline & & \multicolumn{3}{c}{\begin{tabular}{c}
Average Absolute Percentage Deviation \\
In Predicted K-Value
\end{tabular}} \\
System & Soave & \\
\hline
\end{tabular}
system. Figure 35 through 38 illustrate the fit of the two correlational methods to the experimental data.

The results demonstrate that the two parameter correlation provided in general a better fit to the binary data; however, the one parameter correlation seems to fit the data of this work better. The differences between the two correlations were minor. Both correlation methods fit the experimental data considerably better than the original Soave modification of the R-K equation of state.

Figure 35. Predicted K-values for Carbon Dioxide and Hydrogen
Sulfide at Infinite Dilution in the Methane+ n-Heptane System

Figure 36. Predicted K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution
in the Methane+Methylcy-
clohexane System

Figure 37. Predicted K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane + Toluene System

Figure 38. Predicted K-values for Carbon Dioxide and Hydrogen Sulfide at Infinite Dilution in the Methane \(+\mathrm{n}-0\) ctane System

This study consists of an investigation of the vaporization equilibrium ratios of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in aromatic and naphthenic solvents. An apparatus was constructed suitable for determination of chromagographic K-values for the components and conditions of interest in this study. The data of this study were correlated by a modified version of the Redlich-Kwong equation of state.

The following conclusions were made from this study:
(1) The design of the apparatus was sound, as illustrated by the precision and accuracy of the data taken. The apparatus was simple to use and experimental measurements were easy to make.
(2) The chromatographic data of this work and the static cell data of this work for the \(\mathrm{CO}_{2}\) or \(\mathrm{H}_{2} \mathrm{~S}\) in methane-octane system show reasonable agreement. The fact that these two experimental methods are entirely different tends to substantiate the accuracy as well as the precision of the present results.
(3) Error analysis indicates that the maximum expected uncertainty for the chromatographic experiment was less than \(2.5 \%\); however, inspection of the experimental results leads to the conclusion that the uncertainty is probably on the order of \(3 \%\). Similarly, for the windowed cell experiment, error analysis
predicts an uncertainty of \(5.0 \%\) while experimental results also demonstrate an uncertainty of \(5.0 \%\).
(4) Based on the agreement of the \(\mathrm{H}_{2} \mathrm{~S}\) K-values in octane by the two separate techniques of this work, the \(\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}\)-values of Asano (1) appear to be somewhat low.
(5) The presence of the aromatic component toluene in a solvent reduces the \(K-v a l u e\) of \(H_{2} S\) substantially relative to the paraffinic solvents, while the naphthenic component methylcyclohexane (MCH) has only a minor effect relative to the paraffins. These effects are very similar to that seen by Yarborough (49).
(6) The presence of the naphthenic component methylcyclohexane in a solvent enhances the K-values of \(\mathrm{CO}_{2}\) by as much as \(30 \%\) relative to the paraffinic solvents. The aromatic component toluene has only a minor effect relative to the paraffins on the K-values.
(7) The data of this work have been represented adequately by a modified Redlich-Kwong equation of state. This correlational scheme illustrates the applicability of the modified Soave equation to the representation of the phase behavior of \(\mathrm{H}_{2} \mathrm{~S}\) and \(\mathrm{CO}_{2}\) in various hydrocarbon solvents.
(8) The modified Soàve equation of state with one empirical interaction constant fit the ternary data of this work slightly better than the model employing two interaction constants, although the binaries were better represented by a two constant fit. The conclusion was reached that no justification was found for the inclusion of an additional second constant in the correlation framework.

The following recommendations are made from the results of this study for future work in this area of research:
(1) In this work, the detector was downstream of the expansion vaive, in a region of near atmospheric pressure. If a detector which could operate at the system pressure could be installed above the expansion valve, the more accurate method for calculating \(\mathrm{V}_{\mathrm{g}}\) suggested by Yudovich (51) could be employed (on systems for which liquid volumetric data exist for the binary carrier gas-solvent system).
(2) The correlations, in general, predict \(K\)-values which are slightly high at the higher temperature and slightly low at the lower temperature than the experimental data. This indicates that an empirical correlation factor which is temperature dependent could be employed to improve the accuracy of the prediction method.

\section*{BIBLIOGRAPHY}
1. Asano, K., T. Nakahara, and R. Kobayashi, J. Chem. Eng. Data, (1971), 16, 16 .
2. Beers, Y., "Introduction to the Theory of Error," Addison-Wesley, Reading, Mass., 2nd Ed. (1957).
3. Boublik, T., F. Vojtech, and E. Hala, 'Vapor Pressures of Pure Substances," Elsevier Pub. Co., New York, N.Y. (1973).
4. Chang, H. L., L. Hurt, and R. Kobayashi, AIChE J., (1966), 12, 1212.
5. Chang, H. L., and R. Kobayashi, J. Chem. Eng. Data, (1967), 12, 520.
6. Chang, H. L., and R. Kobayashi, J. Chem. Eng. Data, (1967), 12, 517.
7. Chueh, P. L., and J. M. Prausnitz, Ind. Eng. Chem., (1967), 6, 492.
8. Cruikshank, A. J. B., D. H. Everett and M. J. Westway, Trans. Faraday Soc., \((1965), \frac{61}{1}, 235\).
9. Donnelly, H. G., and D. L. Katz, Ind. Eng. Chem., (1954), 46, 511.
10. Eakin, B. E., and W. E. Devaney, AIChE Symp. Ser., (1974), 70(140), 80.
11. Edmister, W. C., and L. Yarborough, AIChE J., (1963), 9, 240.
12. Elbishlawl, M., and J. R. Spencer, Ind. Eng. Chem., (1951), 43, 1811.
13. Gunn, R. D., J. J. McKetta, and N. Ata, AIChE J., (1974), 20(2), 347.
14. Gunn, R. D., T. Yamada, and D. Whitman, AIChE J., (1974), 20, 906.
15. Hensel, W. E., Jr., and F. E. Massoth, J. Chem. E. Data., (1964), 9, 352 .
16. Hestermans, P., and D. White, J. Phys. Chem., (1961), 65, 362.
17. Hines, Anthony L., 'Vapor-Liquid Equilibrium Study of the MethaneHydrogen Sulfide-n-Decane System," M.S. Thesis, Oklahoma State University, 1967.
18. Hissong, D. W., and W. B. McKay, AIChE J., (1970), 16, 580.
19. Hiza, M. J., and R. L. Robinson, Jr., Advances in Cryogenic Eng., (1975), 20, 218.
20. Kaminishi, G., A. Yasuhiko, S. Saito, and S. Maeda, J. Chem. Eng. Japan, (1968), 1(2), 109.
21. Khoury, Fouad, and D. B. Robinson, J. of Chromatogr. Sciences, (1972), 10, 683.
22. Kohn, J. P., and W. F. Bradish, J. Chem. Eng. Data, (1964), \(\underline{\text { (1) , } 5 . ~}\)
23. Kohn, J. P., and F. Kurata, AIChE J., (1958), 4, 211.
24. Koonce, K. T., "Generalization of Gas Liquid Partition Chromatography to Study Multicomponent Vapor-Liquid Equilibria at High Pressures," Ph.D. Thesis, Rice University, November, 1963.
25. Lin, H. M., and K. C. Chao, unpublished manuscript.
26. Lin, H. M., Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma (in preparation).
27. Massengill, D. R., and R. C. Miller, J. Chem. Thermodynamics, (1973), 5, 207 。
28. Masukawa, S., and R. Kobayashi, J. of Gas. Chromatogr., (1968), 6, 257.
29. Messner, A. E., D. M. Rosie and P. A. Argabright, Anal Chem., (1959), 31, 231.
30. Passut, C. A., and R. P. Danner, I.E.C. Process Des. Develop., (1973), 12(3), 365.
31. Pecsar, R. E., and J. J. Martin, J. Anal. Chem., (1966), 38, 1661.
32. Perry, J. H., 'Chemical Engineers' Handbook," McGraw Hill Book Co., New York, N. Y., 4th Ed., (1.963).
33. Prausnitz, J. M., AIChE J., (1959), \(\underline{5}(1), 3\).
34. Reamer, H. H., B. H. Sage, and W. N. Lacey, IEC, (1951), 43, 976.
35. Reamer, H. H., and B. H. Sage, J. Chem. Eng. Data, (1963), 8, 508.
36. Reamer, H. H., F. T. Selleck, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem., (1953), 45, 1810.
37. Redlich, Otto, and J. N. S. Kwong, Chem. Rev., (1949), 44, 233.
38. Rosie, D. M., and R. L. Grob, Anal. Chem., (1957), 29, 1263.
39. Sage, B. H., and W. N. Lacey, "Thermodynamic Properties of Lighter Paraffins, Hydrocarbons, and \(\mathrm{N}_{2} \cdot "\) API Monograph Project RP-37, Published by API, New York, N.Y. (1 \(\overline{950})\).
40. Sage, B. H., and W. N. Lacey, API Monograph Project RP-37, "Some Properties of the Lighter Hydrocarbons, \(\overline{\mathrm{H}_{2} \mathrm{~S} \text {, and } \mathrm{CO}_{2}, " \text { Pub. by }}\) API, New York, N.Y. (1955).
41. Shah, K. K., and G. Thodos, Ind. Engr. Chem., (1965), 57, 30.
42. Soave, Giorgio, Chem. Eng. Sci., (1972), 27, 1197.
43. Stalkup, F. I., and R. Kobayashi, AIChE J., (1963), 9, 121.
44. Stock, A., F. Henning, and E. Kuss, Ber., (1921), 54, 1119.
45. Technical Data Book-Petroleum Refining, Pub. by API, Washington, D.C., p. 6A2.21, (1971).
46. Van Horn, L. D., and R. Kobayashi, "A Study of Low Temperature Vapor-Liquid in Light Hydrocarbon Solvents," Ph.D. Thesis, Rice University, 1966.
47. Vennix, A. J., T. W. Leland, Jr., and R. Kobayashi, J. Chem. Eng. Data, (1970), 15, 238.
48. Willingham, C. J., W. J. Taylor, J. M. Pignocco, F. D. Rossini, J. Research Natl. Bur. Standards, (1945), 35, 219.
49. Yarborough, Lyman, J. Chem. Eng. Data, (1972), 17(2), 129.
50. Yarborough, Lyman, and John L. Vogel, Chem. Eng. Prog. Symp. Series, (1967), 63(81), 1 .
51. Yudovich, Amos, 'Properties of Gas Mixtures and Liquid Solutions from Infinite Dilution Studies," Ph.D. Thesis, Oklahoma State University, 1966.
52. 'Conversion Tables for Thermocouples," Leeds and Northrup Co., Issue 3 .
53. Yudovich, Amos, R. L. Robinson, Jr., and K. C. Chao, AIChE J., 15, 238 (1970).

\section*{APPENDIX A}

\section*{ERROR ANALYSIS}

Error analysis was used to establish limits of accuracy for the calculation of K -values and to point out major sources of error present in the experiment. Beers (2) presents a detailed discussion of error analysis. His method for calculation of expected uncertainty was used in this work.

The experimental measurement errors were assumed to be independent and uncorrelated, that is, the accuracy with which the pressure could be measured was independent of the temperature, etc. Beers describes the effects of independent and uncorrelated errors on the dependent variables with the following equation
\[
\begin{equation*}
\varepsilon_{y}^{2}=\sum_{i=1}^{n}\left(\frac{\partial y}{\partial x_{i}} \varepsilon_{x i}\right)^{2} \tag{A-1}
\end{equation*}
\]
where the equation relating dependent and independent variables is given by
\[
\begin{equation*}
y=y\left(x_{1}, x_{2}, \cdot \ldots x_{n}\right) \tag{A-2}
\end{equation*}
\]

Chromatographic Experiment

For this work the equations used in the error analysis were
\[
\begin{equation*}
K_{i}=\frac{W_{L}^{o}}{\left.\left(1-x_{1}\right) \rho g V_{R i}-V_{g}\right)} \tag{A-3}
\end{equation*}
\]
where
\[
\begin{align*}
& V_{R i}=t_{R i}^{c} f^{c}-t_{R i}^{B} f^{B} \tag{A-4}\\
& f=f_{a} \frac{P_{a}}{P} \frac{T}{T_{a}} Z_{g} \tag{A-5}\\
& f_{a}=\frac{V_{B}}{t_{B}}\left[\frac{P_{a a}-P_{H_{2} O}}{P_{a}}\right] \tag{A-6}\\
& V_{g}=1.143 V_{R H e}-0.143 V_{R A r} \tag{A-7}\\
& \dot{V}_{R H e}=t_{R_{H e}}^{c} f^{c}-t_{R H e}^{B} f^{B} \tag{A-8}\\
& V_{R A r}=t_{R A r}^{c} f^{c}-t_{R A r}^{B} f^{B} \tag{A-9}\\
& P_{H_{2} O}=9.412-0.266 T_{a}+0.0366 T_{a}^{2} \tag{A-10}\\
& \rho_{g}=\frac{n}{V}=\frac{P}{Z_{g} R T} \tag{A-11}
\end{align*}
\]

Although \(P_{a}, T_{a}\), and \(t_{B}\) vary slightly from sample to sample, they were considered to be constant in the error analysis. Equations A-3 through A-11 can be combined to express \(\mathrm{K}_{\mathrm{i}}\) as
\[
\begin{equation*}
K_{i}=\frac{W_{L}^{o} R_{a} t_{B}}{\left(1-x_{1}\right)\left(t_{R i}-1.143 t_{R H e}+0.143 t_{R A r}\right) V_{B}\left(P_{a}-9.412+0.266 T_{a}-0.0366 \mathrm{~T}_{a}^{2}\right)} \tag{A-12}
\end{equation*}
\]
where
\[
t_{R i}=t_{R i}^{c}-t_{R i}^{B}
\]

Errors arise in the measurement of \(W_{L}^{0}, X_{1}, t_{R i}, t_{R H e}, t_{R A r}, P, T\), \(v_{B}\) and \(t_{B}\). The equation of Beers gives
\[
\begin{align*}
& \varepsilon_{K i}^{2}=\left(\frac{\partial K_{i}}{\partial W_{L}^{o}}\right)^{2} \varepsilon_{W}^{2}{ }_{\mathrm{L}}^{0}+\left(\frac{\partial K_{i}}{\partial X_{1}}\right)^{2} \varepsilon_{X_{1}}^{2}+\left(\frac{\partial^{\prime K}{ }_{\partial}}{\partial P_{a}}\right)^{2} \varepsilon_{\mathrm{P}}^{2}+\left(\frac{\partial K_{i}}{\partial t_{R i}^{c}}\right)^{2} \varepsilon_{t_{R i}^{c}}^{2} \\
& +\left(\frac{\partial K_{i}}{\partial t_{R A r}^{c}}\right)^{2} \varepsilon_{t_{R A r}^{c}}^{2}+\left(\frac{\partial K_{i}^{c}}{\partial t_{R H e}^{c}}\right)^{2} \varepsilon_{t_{R H e}^{c}}^{2}+\left(\frac{\partial K_{i}}{\partial t_{R B}^{B}}\right)^{2} \varepsilon_{t_{R I}^{B}}^{2}+\left(\frac{\partial K_{i}}{\partial t B}\right)^{2}{ }_{\text {RAr }}^{2}{ }_{t_{R A r}^{B}}^{2} \\
& +\left(\frac{\partial K_{i}}{\partial t_{R H e}^{B}}\right)^{2}{\underset{\mathrm{t}}{\mathrm{RHe}}}_{\varepsilon_{\mathrm{B}}}^{2}+\left(\frac{\partial \mathrm{K}_{\mathrm{i}}}{\partial \mathrm{~T}_{\mathrm{a}}}\right)^{2}{ }_{\varepsilon_{\mathrm{T}}}^{2}+\left(\frac{\partial K_{\mathrm{i}}}{\partial \mathrm{~V}_{\mathrm{B}}}\right)^{2} \varepsilon_{\mathrm{V}_{\mathrm{B}}}^{2}+\left(\frac{\partial K_{i}}{\partial t_{\mathrm{B}}}\right)^{2} \varepsilon_{\mathrm{t}_{\mathrm{B}}}^{2} \tag{A-13}
\end{align*}
\]

An equation for the percent error in the \(K-v a l u e\) can be obtained by dividing equation \((A-13)\) by \(\mathrm{K}_{\mathrm{i}}{ }^{2}\). Taking the partial derivatives and dividing through by \(K_{i}^{2}\), equation (\(A-13\)) reduces to
\[
\begin{align*}
& \frac{\varepsilon_{K_{i}}^{2}}{K_{i}^{2}}=\frac{\varepsilon_{W_{L}^{o}}^{2}}{W_{L}^{o 2}}+\frac{\varepsilon^{2}}{\left(1-\chi_{1}\right)^{2}}+\frac{\varepsilon_{1}^{2}}{\left[P_{a}-9.412+0.266 T_{a}-0.0366 T_{a}^{2}\right]^{2}} \\
& +\frac{\varepsilon_{t_{R i}^{c}}^{2}+{ }^{\varepsilon} t_{\mathrm{Ri}}^{2}+\left(1.143 \varepsilon_{t_{\mathrm{RHe}}}^{\mathrm{c}}\right)^{2}+\left(1.143 \varepsilon_{\mathrm{t}_{\mathrm{RHe}}}^{\mathrm{B}}\right)^{2}}{\left(\Delta t_{\mathrm{Ri}}-1.143 \Delta t_{\mathrm{RHe}}+0.143 \Delta t_{\mathrm{RAr}}\right)^{2}} \\
& +\frac{\left(0.143 \varepsilon_{t_{R A r}}\right)^{2}+\left(0.143 \varepsilon_{t_{R}}\right)^{2}}{\left(\Delta t_{R i}-1.143 \Delta t_{R H e}+0.143 \Delta t_{R A r}\right)^{2}} \\
& +\frac{\varepsilon_{t_{B}}^{2}}{t_{B}^{2}}+\frac{\varepsilon_{V_{B}}^{2}}{V_{B}^{2}}+\frac{\varepsilon_{\mathrm{T}}^{2}}{\left[\frac{T_{a}\left(P_{a}-9.412+0.266 T_{a}-0.0366 T_{a}^{2}\right)}{\left(P_{a}-9.412+0.0366 T_{a}^{2}\right)}\right]^{2}} \tag{A-14}
\end{align*}
\]

The weight of stationary liquid, \(W_{L}^{O}\), is calculated using equations (5-2) and (5-3), that is,
\[
\begin{equation*}
W_{L}^{O}=\left[\frac{S W W-S W D}{S W W-C W}\right]\left[\frac{P C F-P C E}{L M W}\right] \tag{A-15}
\end{equation*}
\]
where SWW-solid weight wet
SWD-solid weight dry
CW - crucible weight
PCF-weight of packed column full
PCE-weight of packed column empty
LMW-liquid molecular weight
using Beers equation to get percent error, we have
\[
\begin{align*}
& \frac{\varepsilon_{W_{L}^{o}}^{2}}{W_{L}^{o 2}}=\frac{\varepsilon_{S W W}^{2}}{\left[\frac{S W W-S W D)(S W W-C W)}{(S W D-C W)}\right]^{2}}+\frac{\varepsilon_{S W D}^{2}}{(S W W-S W D)^{2}} \\
& +\frac{\varepsilon_{\mathrm{CW}}^{2}}{(S W W-C W)^{2}}+\frac{\varepsilon_{P C F}}{(P C F-P C E)^{2}}+\frac{\varepsilon_{P C E}}{(P C F-P C E)^{2}} \tag{A-16}
\end{align*}
\]

The error in the measurement of the variables in equations (A-14)
and (A-16) will now be discussed.
(1) SWW, SWD, CW, PCF, PCE - All values are measured on the mettler balance. Expected error is \(\pm 0.00020 \mathrm{gm}\).
(2) \(\quad X_{1}\) - The concentrations of methane in the stationary liquid come from the literature \((4,5,6,22)\) and have an uncertainty of \(\pm 0.2 \%\).
(3) \(\mathrm{P}_{\mathrm{a}}\) - The ambient pressure was measured with a mercury in glass thermometer with 0.1 mm divisions. Readings were taken once an hour, varying by at most 0.4 mm Hg . Thus \(\varepsilon_{P_{a}}\) was equal to \(\pm 0.2\) mm Hg.
(4) \(t_{B}\) - The time required for a volume of gas \(V_{B}\) to pass through the bubble meter was measured to the nearest 0.02 seconds. It should be accurate to 0.05 seconds.
(5) \(\quad V_{B}\) - The standard deviation in the calibration of the bubble meter was \(\pm 0.019 \mathrm{cc}\).
(6) \(\mathrm{T}_{\mathrm{a}}\) - The ambient temperature was measured to within \(0.1^{\mathrm{O}} \mathrm{C}\).
(7) \(\quad t_{R i}\) - The uncertainty in the solute retention time depended upon the chart speed. For high pressure \(H_{2} S\) samples, \(\varepsilon_{t_{R i}}\) was estimated to be 0.6 seconds, since a chart speed of 2 inch/minute was used. At lower pressures a chart speed of 5 inch/minute was used, leading to an estimated uncertainty of 0.3 seconds.
(8) \(t_{\text {RHe }}, t_{\text {RAr }}\) - The uncertainty in the solute times of He and Ar was 0.3 seconds.

Sample calculations illustrating the use of the above equations are given in Appendix D. The results of the error analysis are discussed in Chapter VII.

\section*{Classical Windowed Cell Experiment}

This section will describe the derivation of the equations used to calculate the maximum expected uncertainty in the \(K\)-values from the windowed cell. The method of Beers (2) was again used, similar to that of the last section.

The K-values were calculated using Equations (3-21), (3-23) and (3-24),
\[
\begin{align*}
& \frac{n_{\mathrm{Ci}}}{\mathrm{n}_{\mathrm{C} 1}}=\left[\mathrm{R}_{1 i}\right]\left[\frac{\text { counts } \mathrm{C}_{\mathrm{i}}}{\text { counts } \mathrm{Cl}}\right] \tag{3-21}\\
& \mathrm{x}_{\mathrm{i}}=\frac{\mathrm{n}_{\mathrm{Ci}} / n_{\mathrm{C} 1}}{\sum_{i}^{\left(n_{\mathrm{Ci}} / n_{\mathrm{C} 1}\right)}} \tag{3-23}\\
& \mathrm{K}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} / y_{i} \tag{3-24}
\end{align*}
\]

The ratio of counts (counts \(C_{i} /\) counts \(C l\)) will be abbreviated by " \(C_{i}\)," while \(R_{1 i}\) will be simply written " \(R_{i}\). " Thus, the mole fraction of component \(i\), \(x_{i}\), in the liquid or vapor phase can be expressed as
\[
\begin{equation*}
x_{i}=\frac{R_{i} C_{i}}{\Sigma_{\mathrm{R}} \mathrm{C}_{j}} \tag{A-17}
\end{equation*}
\]

The expected errors in the measurement of \(R_{j}\) and \(C_{j}\) can be estimated. Applying the equation of Beers to Equation (\(\mathrm{A}-17\)), and dividing through by \(x_{i}^{2}\) to get percent expected uncertainty, the result is
\[
\begin{equation*}
\frac{\varepsilon_{x_{i}}^{2}}{x_{i}^{2}}=\frac{\sum_{j=1}^{n}\left[\left(\frac{\partial x_{j}}{\partial R_{j}}\right)^{2} \varepsilon_{R_{j}}^{2}+\left(\frac{\partial x_{j}}{\partial C}\right)^{2} \varepsilon_{c j}^{2}\right]}{x_{i}^{2}} \tag{A-18}
\end{equation*}
\]

Applying Equation (A-1) to (A-18) gives the following result,
\[
\begin{align*}
& \frac{\varepsilon_{X_{i}}^{2}}{x_{i}^{2}}=\left(1-x_{i}\right)^{2}\left[\left(\frac{\varepsilon R_{i}}{R_{i}}\right)^{2}+\left(\frac{\varepsilon}{C_{i}}\right)^{2}\right] \\
& +\sum_{\substack{j=1 \\
j \neq 1}}^{n}\left(x_{j}\right)^{2}\left[\left(\frac{{ }^{\varepsilon} R_{j}}{R_{j}}\right)^{2}+\left(\frac{{ }^{\varepsilon} C_{j}}{C_{j}}\right)^{2}\right] \tag{A-19}
\end{align*}
\]

The above equation can be used to calculate the maximum expected error for both the liquid and vapor mole fractions.

Equation (A-1) can be applied to Equation (3-24) to give the expected uncertainty in the calculation of the \(K\)-value from the windowed cell experiment, or
\[
\begin{equation*}
\left(\frac{{ }^{\varepsilon} \mathrm{Ki}}{\mathrm{~K}_{\mathrm{i}}}\right)^{2}=\left(\frac{\varepsilon_{\mathrm{xi}}}{\mathrm{x}_{\mathrm{i}}}\right)^{2}+\left(\frac{\varepsilon_{\mathrm{yi}}}{\mathrm{y}_{\mathrm{i}}}\right)^{2} \tag{A-20}
\end{equation*}
\]

\section*{APPENDIX B}

\section*{METHOD FOR CALCULATING EMPIRICAL CORRELATION}

FACTORS FOR BASIC SOAVE EQUATION

The empirical correlation factors of the methane binaries were determined by fitting the correlation to binary data from the literature. The results were then used along with the data of this work to calculate the empirical correlation factors of the \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) in solvent binaries. Figure 39 is a flow diagram descriking the procedure for calculating the empirical correlation factor \(k_{i j}\) (one constant method). Calculation of \(k_{i j}\) and \(\ell_{i j}\) (two constant method) is identical except that the mixing rules differ slightly (as given in Equations (3-54) to (3-57)), and two constants must be adjusted in minimizing the sum of squares. A listing of the subroutines which perform the Soave calculations is given in Appendix H .

The calculation of the best empirical correlation factors consists of two main loops. The innermost loop uses the present correlation factor to calculate \(K\)-values for each component at all temperatures and pressures and the outmost loop adjusts the correlation factors until the best fit of the experimental data is achieved.

A description of the procedure follows:
(1) Critical temperatures and pressures, and acentric factors were read in for each component. An initial value for the correlation factor was read in.

Figure 39. Flow Diagram of Method Used to Calculate Empirical Correlation Factors
(2) The temperature, pressure and corresponding experimental K-values for each component were read in. The experimental K-values were used as initial guesses in the trial and error solution of the K -value predicted by the Soave equation with the present correlation factor.
(3) Reduced temperatures, critical volume and critical temperature for mixtures were calculated.
(4) Liquid and vapor mole fractions were calculated from the K-values.
(5) A, B, and \(\alpha\) were calculated for the pure components and then for the binaries.
(6) The liquid and vapor compressibilities were calculated by an interval halving solution of the cubic form of the Soave modification of the R-K equation; i.e., Equation (3-28). Liquid and vapor volumes were calculated with the compressibilities.
(7) Liquid and vapor fugacity coefficients were calculated for each component using equation (3-50). K-values were then calculated for each component using the fugacity coefficients.
(8) If \(\left|\frac{K_{c_{c a l c}}-K}{k_{c a l c}}\right| \notin .001\) for all \(K_{i}\), then the calculated \(K_{i}\) is used as a new guess for \(K_{i}\) and steps 3 through 7 are required.
(9) If \(K_{c a l c}\) and \(K_{\text {exp }}\) agree, steps 2 through 8 are repeated for a new temperature and pressure.
(10) When all temperatures and pressures have been run, the sum of the deviations is calculated; i.e., \(\underset{T, P}{\sum}\left(K_{c a l c}{ }^{-K} \exp \right)^{2}\)
(11) A regression technique is then used to calculate a new empirical correlation factor. The above steps were repeated and a new sum of squares calculated.
(12) The empirical correlation factor was adjusted until the sum of squares was minimized.

\section*{APPENDIX C}

\section*{DERIVATION OF EQUATION 3-59}

The general equation for calculating the fugacity coefficient of component k in a multicomponent system using the Redlich-Kwong equation of state will be developed in this appendix.

The fugacity coefficient of a component is defined (37) as the ratio of that component's fugacity in the mixture to its partial pressure, or
\[
\phi_{i}=\frac{f_{i}}{y_{i} P}
\]

Prausnitz (33) presents the following equation, which relates \(\phi_{i}\) to the volumetric properties by
\[
\begin{equation*}
\ln \phi_{i}=\frac{1}{R T} \int_{V}^{\infty}\left[\left(\frac{\partial P}{\partial n_{i}}\right) T, V, n_{j}-\frac{R T}{V}\right] d V-\ln Z \tag{3-59}
\end{equation*}
\]

The above equation can be applied to pressure explicit equations of state, thus making it useful for this work.

The Redlich-Kwong equation of state can be written as
\[
\begin{equation*}
P=\frac{R T}{(\bar{V}-b)}-\frac{a}{T^{1 / 2} \bar{V}(\bar{V}+b)} \tag{3-32}
\end{equation*}
\]
where
\[
\begin{aligned}
& a=\sum_{j} \sum_{k} \quad y_{j} y_{k}{ }^{\mathrm{a}}{ }_{j k} \\
& \mathrm{~b}=\underset{\mathrm{j}}{\sum_{\mathrm{k}}} \sum_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{k}}^{\mathrm{b}}{ }_{\mathrm{jk}}
\end{aligned}
\]
and
\[
\begin{equation*}
\overline{\mathrm{v}}=\mathrm{v} / \mathrm{n} \tag{C-1}
\end{equation*}
\]

Since the partial derivative of \(P\) with respect to \(n_{K}\) must be taken, a and b must be written as
\[
\begin{equation*}
a=\frac{1}{n^{2}} \sum \sum \sum_{j} n_{j} n_{j k}=\frac{\tilde{a}}{n^{2}} \tag{C-2}
\end{equation*}
\]
and
\[
\begin{equation*}
b=\frac{1}{n^{2}} \sum_{j k} \sum_{k} n_{j} n_{k} b_{j k}=\frac{\tilde{b}}{n^{2}} \tag{c-3}
\end{equation*}
\]
where
\[
n=\sum_{j} n_{j}=\text { total moles }
\]

Substituting Equations (C-1), (C-2), and (C-3) into Equation (3-32) gives
\[
\begin{equation*}
P=\frac{R \operatorname{Tn}^{2}}{V_{n}-\left(\sum_{j k}^{\sum} n_{j} n_{k} b_{j k}\right)}-\frac{n\left(\sum_{j k} \sum_{j} n_{k} a_{j k}\right)}{T^{1 / 2} V\left[V_{n}+\left(\sum_{j} \sum_{k} n_{j} n_{k} b_{j k}\right)\right]} \tag{c-4}
\end{equation*}
\]

The following identities should be noted:
\[
\begin{gather*}
\frac{\partial(n)}{\partial\left(n_{i}\right)}=\frac{\partial\left(\sum n_{j}\right)}{\partial n_{i}}=1 \tag{C-5}\\
\frac{\partial n^{2}}{\partial n_{i}}=\frac{\partial\left[\left(\sum n_{j}\right)^{2}\right]}{\partial n_{i}}=2 n \tag{c-6}\\
\frac{\partial\left(\sum \sum_{i j} n_{i} n_{j} b_{i j}\right)}{\partial n_{i}}=2 \sum_{i} n_{i} b_{i k} \tag{C-7}\\
\frac{\partial\left[\left(\sum_{i} n_{i}\right)\left(\sum_{j k} n_{j} n_{k} a_{j k}\right)\right]}{\partial n_{i}}=\underset{i j}{\left.\left(\sum n_{i} n_{j} a_{i j}\right)+\underset{i}{2\left(\sum_{i}\right)} \underset{i}{\left(n_{i} n_{i k}\right.}\right)} \begin{array}{c}
=\tilde{a}+2 n\left(\sum_{i} n_{i} a_{i k}\right)
\end{array}
\end{gather*}
\]

From the above identities the following can be written
\[
\begin{align*}
& \left(\frac{\partial P}{\partial n}\right)_{T, V, n_{j}}=\frac{(V n-\tilde{b}) 2 R T n-R T n^{2}\left(V-2 \sum_{i} n_{i} b_{i k}\right)}{(V n-\tilde{b})^{2}} \tag{C-9}\\
& -\frac{T^{1 / 2} V\left[(V n+\tilde{b})\left(\tilde{a}+2 n \sum_{i} n_{i} a_{i k}\right)-\tilde{n} a\left(V+2 \sum_{i} n_{i} b_{i k}\right)\right]}{T V^{2}(V n+\tilde{b})^{2}} \tag{C-9}
\end{align*}
\]

Now the following integral must be evaluated:
\[
\int_{V}^{\infty}\left[\left(\frac{\partial P}{\partial n}\right) T, V, n_{k}-\frac{R T}{V}\right] d V
\]

Table XIII illustrates the integration. Equation C-9 will be separated into six terms. Column 1 of Table XIII shows each of the six terms as they are in Equations C-9. Column 2 shows each of the terms as they were written before being integrated. The term inside the square brackets is what must be integrated. Column 3 shows the results of integrating each term from \(V\) to \({ }^{\infty}\). Term number 7 is the \(\left(-\frac{R T}{V}\right)\) which is not a part of \(\left(\frac{\partial P}{\partial n_{i}}\right)\). Term 8 is the \(\left(\ln _{\mathrm{n}} z\right)\) term which is outside the integral sign in Equation (3-51).

The Equations (\(C-1\)), \((C-2)\), and \((C-3)\) can be substituted into the terms in column 3 for \(a, b\), and \(V\). The terms can then be summed and rearranged to give
\[
\begin{align*}
\ln \phi_{i} & =-\ln \frac{P(\overline{\mathrm{~V}}-\mathrm{b})}{R T}+\frac{2 \sum_{i} y_{i} b_{i k}-b}{(\overline{\mathrm{~V}}-\mathrm{b})}-\frac{2 \sum_{i} y_{i} \mathrm{a}_{i k}}{\mathrm{RT}^{1} \cdot 5_{b}} \ln \left(\frac{\overline{\mathrm{~V}}+\mathrm{b}}{\overline{\mathrm{~V}}}\right) \\
& -\frac{\mathrm{a}\left(2 \sum_{i} y_{i} \mathrm{~b}_{i k}-\mathrm{b}\right)}{R T^{1.5} \mathrm{~b}},\left\{\frac{1}{\overline{\mathrm{~V}}+\mathrm{b}}-\frac{1}{\bar{b}} \ln \left(\frac{\overline{\mathrm{~V}}+\mathrm{b}}{\ddot{\mathrm{~V}}}\right)\right\} \tag{3-59}
\end{align*}
\]

ITEMIZED LIST OF TERMS IN INTEGRATION OF
EQUATION 3-51
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline 1 & \[
\frac{(\mathrm{Vn}-\tilde{\mathrm{b}}) 2 \mathrm{RTn}}{(\mathrm{Vn}-\tilde{\mathrm{b}})^{2}}
\] & \(2 R T\left[\frac{1}{\left(v-\frac{b}{n}\right)}\right]\) & \(2 \mathrm{RT}[\ln \times 0]-2 \mathrm{RT} \ln \left(\mathrm{V}-\frac{\mathrm{b}}{\mathrm{n}}\right)\) \\
\hline 2 & \[
-\frac{\mathrm{RTn}^{2} \mathrm{~V}}{\left(\mathrm{Vn}-\tilde{b}^{2}\right)^{2}}
\] & \[
-R T\left[\frac{V}{\left(V-\frac{\tilde{b}}{n}\right)^{2}}\right]
\] & \[
-R T \ln \infty+R T \ln \left(V-\frac{\tilde{b}}{n}\right)-\frac{R T \tilde{b} / n}{\left(V-\frac{\tilde{b}}{n}\right)}
\] \\
\hline 3 & \[
\frac{2 \sum n_{i} b_{i k}}{(\mathrm{Vn}-\tilde{\mathrm{b}})^{2}}
\] & \[
2 \operatorname{RT}\left(\sum_{i} n_{i} b_{i k}\right)\left[\frac{1}{\left(v-\frac{b}{n}\right)^{2}}\right]
\] & \(2 \operatorname{RT}\left(\sum_{i} n_{i} b_{i k}\right) \frac{1}{\left(v-\frac{b}{n}\right)}\) \\
\hline 4 & \[
\frac{-T^{1 / 2} V(V n+\tilde{b})\left(\tilde{a}+2 n \sum_{i} n_{i} a_{i K}\right)}{T V^{2}(V n+\tilde{b})^{2}}
\] & \[
-\frac{\left(\frac{\tilde{a}}{n}+2 \sum n_{i} a_{i k}\right)}{T^{1 / 2}}\left[\frac{1}{V\left(V+\frac{b}{n}\right)}\right]
\] & \[
-\frac{\left(\frac{\tilde{a}}{n}+2 \sum_{i} n_{i} a_{i k}\right)}{T^{1 / 2}(\tilde{b} / n)} \ln \left(\frac{\left(V+\frac{\tilde{b}}{n}\right)}{V}\right)
\] \\
\hline 5 & \[
\frac{T^{1 / 2} V^{2} n \tilde{a}}{T V^{2}(V n+\tilde{b})^{2}}
\] & \[
\frac{\tilde{a} / n}{T^{1 / 2}}\left[\frac{1}{\left(V+\frac{\tilde{b}}{n}\right)^{2}}\right]
\] & \[
\frac{\tilde{a} / n}{T^{1 / 2}}\left(\frac{1}{\left(V+\frac{\tilde{b}}{n}\right)}\right)
\] \\
\hline 6 & \[
\frac{T^{1 / 2} V n a ̃ 2 \sum_{i} n_{i} b_{i k}}{T V^{2}(V n+\tilde{b})^{2}}
\] & \[
\frac{2\left(\frac{\tilde{a}}{\mathrm{n}}\right)\left(\sum_{i} n_{i} b_{i k}\right)}{T^{1 / 2}}\left[\frac{1}{V\left(V+\frac{\tilde{b})^{2}}{n}\right.}\right]
\] & \[
\frac{2\left(\frac{\tilde{a}}{\mathrm{n}}\right)\left(\sum_{i} n_{i} b_{i k}\right)}{T^{1 / 2}}\left[\frac{1}{\frac{\tilde{b}}{n}\left(V+\frac{\tilde{b}}{n}\right)}\right] \frac{1}{(\tilde{b} / n)^{2}} \ln \left(\frac{V+\frac{\tilde{b}}{n}}{V}\right)
\] \\
\hline 7 & \[
\frac{\mathrm{RT}}{\mathrm{~V}}
\] & \(\operatorname{RT}\left[\frac{1}{\mathrm{~V}}\right]\) & \(-\mathrm{RT} \ell \mathrm{n} \infty+\mathrm{RT} \ell \mathrm{n} V\). \\
\hline 8 & & & - थn Z \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{SAMPLE CALCULATIONS}

The purpose of this appendix is to present examples of all calculations made for the experimental part of this work. Included are the following: (1) error analysis, (2) calculation of response factors for the detector of the windowed cell work, (3) calculation of \(K\)-values from equilibrium cell data, and (4) calculation of K-values from the chromatographic apparatus.

\section*{Error Analysis of Chromatographic Experiment}

This section will illustrate the use of the equations presented in Appendix A. The percent expected uncertainty in the measurement of \(K-\) values by the chromatographic technique can be expressed with Equations (A-14) and (A-16). The equations will not be written out in full here. Each term of the equations will be evaluated in this section, and the percent expected uncertainty will be calculated. The example case will be the \(\mathrm{Cl}-\mathrm{H}_{2} \mathrm{~S}-\mathrm{TOL}\) system at \(20^{\circ} \mathrm{F}\) and 100 psia. The data are the following:
\[
\begin{array}{ll}
\mathrm{SWW}=14.75050 \mathrm{gm} & \mathrm{PCF}=67.95506 \mathrm{gm} \\
\mathrm{SWD}=13.24605 \mathrm{gm} & \mathrm{PCE}=65.11584 \mathrm{gm} \\
\varepsilon_{\mathrm{SWW}}, \varepsilon_{\mathrm{SWD}}, \varepsilon_{\mathrm{CW}}, \varepsilon_{\mathrm{PCF}},{ }^{\varepsilon_{\mathrm{PCE}}}= \pm .00020 \mathrm{gm} \\
\mathrm{P}_{\mathrm{a}}=740.8 \mathrm{mmHg} & \varepsilon_{\mathrm{Pa}}= \pm 0.2 \mathrm{mmHg} \\
\mathrm{~T}_{\mathrm{a}}=27.8^{\circ} \mathrm{C} & \varepsilon_{\mathrm{Ta}}= \pm 0.1^{\circ} \mathrm{C}
\end{array}
\]

From the above data, numerical solutions for each term are the following:
\[
\begin{array}{r}
\frac{\left[\varepsilon_{\mathrm{SWW}}\right]^{2}}{\left[\frac{(\mathrm{SWW}-\mathrm{SWD})(\mathrm{SWW-CW})}{(\mathrm{SWD}-\mathrm{CW})}\right]^{2}}=\frac{(.0002)^{2}}{(14.75050-13.24605)^{2}(14.75050-9.25865)^{2}} \\
=0.932 \times 10^{-8}
\end{array}
\]
\[
\frac{\left[\varepsilon_{\mathrm{SWD}}\right]^{2}}{(\mathrm{SWW}-\mathrm{SWD})^{2}}=\frac{(.0002)^{2}}{(1.50445)^{2}}=1.767 \times 10^{-8}
\]
\[
\frac{{ }^{\left[\varepsilon_{\mathrm{CW}}\right]^{2}}}{(\mathrm{SWW}-\mathrm{CW})^{2}}=\frac{(.002)^{2}}{(5.49185)^{2}}=0.1326 \times 10^{-8}
\]
\[
\frac{\left[\varepsilon_{\mathrm{PCF}}\right]^{2}}{(\mathrm{PCF}-\mathrm{PCE})^{2}}=\frac{\left[\varepsilon_{\mathrm{PCE}}\right]^{2}}{(\mathrm{PCF}-\mathrm{PCE})^{2}}=\frac{(.0002)^{2}}{(67.95506-65.11584)^{2}}=0.496 \times 10^{-8}
\]
\[
\frac{\left[\varepsilon_{X_{1}}\right]^{2}}{\left(1-X_{1}\right)^{2}}=(0.002)^{2}=400 \cdot \times 10^{-8}
\]
\[
\frac{\left[{ }^{\varepsilon} t_{B}\right]^{2}}{t_{B}^{2}}=\frac{(0.05)^{2}}{(48.65)^{2}}=105.6 \times 10^{-8}
\]
\[
\begin{aligned}
& \mathrm{t}_{\mathrm{B}}=48.65 \mathrm{sec} \quad \varepsilon_{\mathrm{t}_{\mathrm{B}}}=0.05 \text { seconds } \\
& \mathrm{V}_{\mathrm{B}}=45.0993 \quad \varepsilon_{\mathrm{VB}}=0.019 \mathrm{cc} \\
& t_{\text {RHe }}^{C}=114.21 \mathrm{sec} \quad t_{\text {RHe }}^{B}=52.57 \mathrm{sec} \\
& t_{R A R}^{C}=115.79 \mathrm{sec} \quad t_{R A R}^{B}=52.76 \mathrm{sec} \\
& { }^{\varepsilon} \mathrm{t}_{\mathrm{RHe}}^{\mathrm{C}},{ }^{\varepsilon}{ }_{\mathrm{t}}^{\mathrm{B}} \mathrm{BHe}, \quad{ }^{\varepsilon} \mathrm{t}_{\mathrm{RAR}}^{\mathrm{C}},{ }^{\varepsilon}{ }_{\mathrm{T}}^{\mathrm{B}} \mathrm{BAR}, ~=0.3 \mathrm{sec} \\
& \mathrm{t}_{\mathrm{RCO}_{2}}^{\mathrm{C}}=136.94 \mathrm{sec} \quad \varepsilon_{\mathrm{t}_{\mathrm{RCO}_{2}}^{\mathrm{C}}}=0.3 \mathrm{sec} \\
& t_{\mathrm{RCO}_{2}}^{\mathrm{B}}=52.69 \mathrm{sec} \\
& { }_{\mathrm{t}_{\mathrm{RCO}}^{2}}^{\mathrm{B}}=0.3 \mathrm{sec}
\end{aligned}
\]

Since errors in retention times are all equal,
\[
\begin{aligned}
& \frac{2\left[_{\mathrm{tRi}}^{\varepsilon}\right]^{2}+2\left(1.143^{\varepsilon} \mathrm{tRHe}^{)^{2}}+2\left(0.14 \xi_{\mathrm{tRAr}}\right)^{2}\right.}{\left(\Delta \mathrm{t}_{\mathrm{Ri}}-1.143 \Delta \mathrm{t}_{\mathrm{RAr}}+0.143 \Delta \mathrm{t}_{\mathrm{RAr}}\right)^{2}} \\
& \frac{2 \varepsilon_{\mathrm{t}}^{2}\left(1+1.143^{2}+.143^{2}\right)}{(136.94-52.69)-1.143(114.21-52.57)+0.143(115.79-52.76)} \\
& =\frac{2(.3)^{2}(2.327)}{(30.48)^{2}}=45083 . \times 10^{-8}
\end{aligned}
\]

Summing the terms listed above (in boxes) gives
\[
\frac{{ }^{\left.\varepsilon_{\mathrm{Ki}}\right]^{2}}}{\mathrm{~K}_{\mathrm{i}}^{2}}=4.563 \times 10^{-4}
\]
\[
\frac{\varepsilon_{\mathrm{Ki}}}{\mathrm{~K}_{\mathrm{i}}}=2.1361 \times 10^{-2}
\]

Thus, the percent expected uncertainty is equalty to \(2.14 \%\).
\[
\begin{aligned}
& \frac{\left[{ }^{\varepsilon} \mathrm{V}_{\mathrm{B}}\right]^{2}}{\mathrm{~V}_{\mathrm{B}}{ }^{2}}=\frac{(.019)^{2}}{(45.0993)^{2}}=17.7 \times 10^{-8} \\
& \frac{\left[\varepsilon_{\mathrm{P}_{\mathrm{a}}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{a}}-9.412+.266 \mathrm{~T}_{\mathrm{a}}-.0366 \mathrm{~T}_{\mathrm{a}}{ }^{2}\right]}=\frac{(.2)^{2}}{\left[740.8-9.412+.266(27.8)-.0366(27.8)^{2}\right]^{2}} \\
& =\frac{(.2)^{2}}{(710.5)^{2}}=7.92 \times 10^{-8} \\
& \frac{\left[\varepsilon_{\mathrm{T}_{\mathrm{a}}}\right]^{2}\left(\mathrm{P}_{\mathrm{a}}-9.412+.0366 \mathrm{~T}_{\mathrm{a}}{ }^{2}\right)^{2}}{\mathrm{~T}_{\mathrm{a}}{ }^{2}\left(\mathrm{P}_{\mathrm{a}}-9.412+.266 \mathrm{~T}_{\mathrm{a}}-.0366 \mathrm{~T}_{\mathrm{a}}{ }^{2}\right]^{2}}=\frac{(.1)^{2}\left(740.8-9.412+.0366(27.8)^{2}\right]_{1}^{2}}{(27.8+273.15)(710.5)^{2}} \\
& =\frac{(.1)^{2}(759.7)^{2}}{(301.0)^{2}(710.5)^{2}}=12.6 \times 10^{-8}
\end{aligned}
\]

Investigation of the terms which contribute to \(\frac{\varepsilon_{\mathrm{Ki}}}{\mathrm{K}_{\mathrm{i}}}\) indicate that the errors in the measurement of the bubbletime, the retention times, and the solubility data from the literature make the largest contribution. Errors in retention times are definitely greatest. Results of other runs are given in Table V.

Error Analysis of Windowed Cell

This section illustrates the use of Equations (A-19) and (A-20) to calculate the maximum expected uncertainty in the calculation of \(K\)-values from windowed cell data. The data which were taken at \(0^{\circ} \mathrm{C}\) and 1000 psia will be used in the example and are shown below.

Relative Response and Ratio of Counts

Liquid Vapor
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{R}_{\mathrm{C} 1}\) & 1.0 & 1.0 & \(\varepsilon_{\mathrm{R}_{\mathrm{C} 1}} / \mathrm{R}_{\mathrm{C} 1}\) & 0.0 & 0.0 \\
\hline \(\mathrm{C}_{\mathrm{C} 1}\) & 1.0 & 1.0 & \[
\varepsilon_{\mathrm{C}_{\mathrm{C} 1}} / \mathrm{C}_{\mathrm{C} 1}
\] & 0.0 & 0.0 \\
\hline \({ }^{\mathrm{R}} \mathrm{C8}\) & 0.274 & 0.0805 & \[
\varepsilon_{\mathrm{R}_{\mathrm{C} 8}} / \mathrm{R}_{\mathrm{C} 8}
\] & 0.025 & 0.025 \\
\hline \({ }^{\text {C }}\) C8 & 5.6,504 & 0.00967 & \[
{ }^{\varepsilon} \mathrm{C}_{\mathrm{C} 8} / \mathrm{C}_{\mathrm{C} 8}
\] & 0.025 & 0.10 \\
\hline \[
\mathrm{R}_{\mathrm{H}_{2} \mathrm{~S}}
\] & 0.739 & 0.739 & \[
\varepsilon_{\mathrm{R}_{\mathrm{H}_{0} \mathrm{~S}}} / \mathrm{R}_{\mathrm{H}_{2} \mathrm{~S}}
\] & 0.035 & 0.035 \\
\hline \[
\mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}}
\] & 0.1764 & 0.02902 & \[
{ }_{\mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}}} / \mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}}
\] & 0.022 & 0.015 \\
\hline \[
\mathrm{R}_{\mathrm{CO}}^{2}
\] & 0.716 & 0.716 & \[
{ }_{\mathrm{R}_{\mathrm{CO}_{2}}} / \mathrm{R}_{\mathrm{CO}_{2}}
\] & 0.024 & 0.024 \\
\hline \[
{ }^{\mathrm{C}_{\mathrm{CO}}^{2}}
\] & 0.1204 & 0.06098 & \[
{ }^{\varepsilon_{\mathrm{C}}} \mathrm{CO}_{2} / \mathrm{C}_{\mathrm{CO}_{2}}
\] & 0.019 & 0.002 \\
\hline
\end{tabular}

An explanation of the calculation of the relative response and the ratio of counts shown above can be found in later sections of this appendix, that is, the sections dealing with the "calibration of detectors" and the "calculation of K-values for the windowed cell."

The liquid mole fraction for each component was calculated using Equation (3-23), or
\[
\begin{aligned}
& S=\sum_{j} R_{j} C_{j}=(1.0)(1.0)+(0.274)(5.6504)+(0.739)(0.1764) \\
& +(0.716)(0.1204) \\
& =(1.0+1.5492+0.1304+0.0862=2.7658 \\
& x_{C 1}=\frac{{ }^{R_{C 1}}{ }^{C_{C 1}}}{S}=\frac{1.0}{2.7658}=0.3616 \\
& \mathrm{x}_{\mathrm{C} 8}=\frac{\mathrm{R}_{\mathrm{C} 8}{ }^{\mathrm{C}} \mathrm{C} 8}{\mathrm{~S}}=\frac{1.5492}{2.7658}=0.5601 \\
& \mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{R}_{\mathrm{H}_{2} \mathrm{~S}}{ }^{\mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}}}}{\mathrm{~S}}=\frac{0.1304}{2.7658}=0.0471 \\
& \mathrm{x}_{\mathrm{CO}}^{2}=\frac{{ }^{\mathrm{R}_{\mathrm{CO}}^{2}}{ }^{\mathrm{C}_{\mathrm{CO}}}}{\mathrm{~S}}=\frac{0.0862}{2.7658}=0.0312
\end{aligned}
\]

Vapor mole fractions were calculated similarly. The results were \(y_{C 1}=\) \(0.9382, \mathrm{y}_{\mathrm{C} 8}=0.0007, \mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}=0.0201\), and \(\mathrm{y}_{\mathrm{CO}_{2}}=0.0410\). Equation (A-19) was used to calculate the maximum expected error in mole fractions. For the liquid mole fraction for \(\mathrm{H}_{2} \mathrm{~S}\), the expected error was
\[
\begin{aligned}
& \left(\frac{\varepsilon_{H_{2} S}}{X_{H_{2} S}}\right)^{2}=\left(1-x_{H_{2} S}\right)^{2}\left[\left(\frac{\varepsilon_{R_{H_{2}} S}}{R_{H_{2} S}}\right)^{2}\right]+x_{C 1}{ }^{2}\left[\left(\frac{{ }^{\varepsilon_{R}}{ }_{\mathrm{C} 1}}{\mathrm{R}_{\mathrm{C} 1}}\right)^{2}+\left(\frac{{ }^{\varepsilon_{\mathrm{C}}}{ }_{\mathrm{C} 1}}{\mathrm{C}_{\mathrm{C} 1}}\right)^{2}\right]
\end{aligned}
\]
\[
\begin{aligned}
& =(1.0-0.0471)^{2}\left[(0.035)^{2}+(0.022)^{2}\right]+(0.3616)^{2}\left(0.0^{2}+0.0^{2}\right) \\
& +(0.5601)^{2}\left[(0.025)^{2}+(0.025)^{2}\right]+(0.0312)^{2}\left[(0.024)^{2}+(0.019)^{2}\right] \\
& =0.001552+0.0+0.000392+0.000001 \\
& =0.001945
\end{aligned}
\]

A similar calculation for the vapor phase gave
\[
\left(\frac{{ }^{\varepsilon} y_{H_{2} \mathrm{~S}}}{\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}}\right)^{2}=0.001393
\]

Thus the maximum expected error in the K -value was
\[
\begin{aligned}
\underbrace{\mathrm{K}_{\mathrm{H}_{2} \mathrm{~S}}}_{\mathrm{K}_{\mathrm{H}_{2} \mathrm{~S}}})^{2} & =\left[\left(\frac{{ }_{\mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}}}{\mathrm{X}_{\mathrm{H}_{2} \mathrm{~S}}}\right)^{2}+\left(\frac{{ }^{\varepsilon} \mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}}{\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}}\right)^{2}\right]^{1 / 2} \\
& =(0.001945+0.001393)^{1 / 2} \\
& =(0.0578)
\end{aligned}
\]

The percent error was
\[
\left(\frac{{ }^{\varepsilon_{\mathrm{K}_{2}} \mathrm{~S}}}{\mathrm{~K}_{\mathrm{H}_{2} \mathrm{~S}}}\right) \times 100=5.8 \%
\]

Similar calculations for \(\mathrm{CO}_{2}\), methane, and octane gave the following results:
\[
\begin{aligned}
& \frac{{ }^{\varepsilon} \mathrm{K}_{\mathrm{C} 0}}{} \\
& { }^{\mathrm{K}_{\mathrm{CO}}}{ }_{2} \\
& \frac{{ }^{\varepsilon} \mathrm{K}_{\mathrm{C} 8}}{{ }^{\mathrm{K}} \mathrm{C}_{\mathrm{C}}}=4.3 \% \\
& \frac{{ }^{\varepsilon} \mathrm{K}_{\mathrm{C} 1}}{\mathrm{~K}_{\mathrm{C} 1}}=2.0 \%
\end{aligned}
\]

For the data at \(0^{\circ} \mathrm{C}\) and 200 psia, the results were
\[
\begin{aligned}
& \frac{\varepsilon_{\mathrm{K}_{\mathrm{H}_{2} \mathrm{~S}}}^{\mathrm{K}_{\mathrm{H}_{2} \mathrm{~S}}}=6.3 \%}{{ }^{\varepsilon_{\mathrm{K}_{\mathrm{CO}}}}} \frac{{ }^{\mathrm{K}} \mathrm{CO}_{2}}{\mathrm{~K}_{2}}=4.9 \% \\
& \frac{{ }^{\mathrm{K}_{\mathrm{C} 8}}}{\mathrm{~K}_{\mathrm{C} 8}}=10.3 \% \\
& \varepsilon_{\mathrm{K}}^{\mathrm{K} 1} \\
& \frac{\mathrm{~K}_{\mathrm{C} 1}}{}=3.2 \%
\end{aligned}
\]

Calculation of Response Factcrs for Windowed Cell Work

This section will illustrate the method used in calculating the number of moles of each component in the detector calibration mixture and the method used in calculating the response factors.

In making up the calibration mixture, preliminary calculations were made to find approximately the amount of each component which must be injected into the windowed cell. The approximate desired composition was the following: \(\mathrm{C} 1-0.55, \mathrm{C} 8-0.25, \mathrm{H}_{2} \mathrm{~S}-0.10, \mathrm{CO}_{2}-0.10\). The following table gives the amounts of each component which were injected into the cell (and the conditions).
\begin{tabular}{lccc}
Comp. & \begin{tabular}{c}
Temp \\
\(\left({ }_{\mathrm{O}}^{\mathrm{F})}\right.\)
\end{tabular} & 74.3 & \begin{tabular}{c}
Pressure \\
\((\) psia)
\end{tabular}
\end{tabular}

The following physical property data were taken from the literature (39, 40, 45) at the conditions that each sample was injected: \(\mathrm{C} 1, \mathrm{Z}=0.879\); \(\mathrm{C} 8, \rho_{\mathrm{L}}=161.17 \mathrm{cc} / \mathrm{mole} ; \mathrm{CO}_{2}, \mathrm{Z}=0.225 ; \mathrm{H}_{2} \mathrm{~S}, \rho_{\mathrm{L}}=42.77 \mathrm{cc} / \mathrm{mole}\). The moles of each component in the mixture can be calculated in the following way \(\left(R=669.97 \frac{\mathrm{psia} \mathrm{cc}}{\mathrm{gm} \mathrm{mol} \mathrm{OR}}\right)\) :
\[
\begin{aligned}
& \mathrm{Cl}: \quad \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{ZRT}}=\frac{(990 .)(1049.2)}{(0.879)(669.97)(459.7+74.0)}=3.305 \mathrm{gm} \mathrm{~mol} \\
& \mathrm{CO}_{2}: \quad \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{ZRT}}=\frac{\mathrm{gm}}{(0.225)(669.97)(459.7+77.4)}=0.591 \mathrm{gm} \mathrm{~mol} \\
& \mathrm{C} 8: \quad \mathrm{n}=\frac{\mathrm{V}}{\rho_{\mathrm{L}}}=\frac{241.74}{161.17}=1.500 \mathrm{gm} \mathrm{~mol} \\
& \mathrm{H}_{2} \mathrm{~S}: \quad \mathrm{n}=\frac{\mathrm{V}_{\mathrm{L}}}{\rho_{\mathrm{L}}}=\frac{25.67}{42.77}=0.600 \mathrm{gm} \mathrm{~mol}
\end{aligned}
\]

The mixture was pressured and shaken until it existed in single phase in the windowed cell. Four samples were taken from the windowed cell and injected into the chromatograph system. The results from the digital integrator are given below, followed by a table showing counts \(C_{i}\) /counts C1, calculated from the first table.

COUNTS
\begin{tabular}{l|ccccccc}
\begin{tabular}{l}
Sample \\
Number
\end{tabular} & \multicolumn{2}{c}{C 1} & \(\mathrm{CO}_{2}\) & TC & \(\mathrm{H}_{2} \mathrm{~S}\) & C 8 & C 1 \\
\hline 1 & 235414 & 61002 & 57501 & 399780 & 566853 & 3169290 \\
\hline 2 & 388016 & 98967 & 94675 & 630556 & 929611 & 5282490 \\
3 & 236444 & 61172 & 58301 & 399318 & 580005 & 3181920 \\
4 & 389773 & 99648 & 94523 & 629299 & 914235 & 5285040 \\
\hline
\end{tabular}

COUNTS \(\mathrm{C}_{\mathrm{i}}\) /COUNTS C1
\begin{tabular}{l|llll|ll}
& & & \\
1 & 1.0 & 0.25913 & 0.24425 & 1.6982 & 1.0 & 5.5910 \\
2 & 1.0 & 0.25506 & 0.24400 & 1.6251 & 1.0 & 5.6825 \\
3 & 1.0 & 0.25872 & 0.24657 & 1.6888 & 1.0 & 5.4860 \\
4 & 1.0 & 0.25566 & 0.24251 & 1.6143 & 1.0 & 5.7808 \\
AVG & 1.0 & 0.25714 & 0.24433 & 1.6566 & 1.0 & 5.6351 \\
\hline
\end{tabular}

The relative response factor, \(R_{1 i}\), of component \(i\) can now be calculated using Equation (3-20), or
\[
\begin{aligned}
& \mathrm{R}_{1 \mathrm{H}_{2} \mathrm{~S}}=\frac{\text { moles } \mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}} / \text { moles } \mathrm{C} 1}{\text { counts } \mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}} \text { counts } \mathrm{C} 1}=\frac{0.600 / 3.305}{0.24433}=0.7430 \\
& \mathrm{R}_{1 \mathrm{CO}_{2}}=\frac{0.591 / 3.305}{0.25714}=0.6954 \\
& \mathrm{R}_{1 \mathrm{C} 8}(\mathrm{TC})=\frac{1.500 / 3.305}{1.6566}=0.2740 \\
& \mathrm{R}_{1 \mathrm{C} 8}(\mathrm{HF})=\frac{1.500 / 3.305}{5.6351}=0.0805
\end{aligned}
\]

Seven mixtures were run. The resulting relative response factors of each are given below. The values marked by an asterick appear to be in error, thus they were not used in the calculation of the average response factor. Two of the mixtures only contained three components.
\begin{tabular}{ccccc}
Mixture & \(\mathrm{CO}_{2}\) & \(\mathrm{H}_{2} \mathrm{~S}\) & \(\mathrm{C8}(\mathrm{TC})\) & \(\mathrm{C} 8(\mathrm{HF})\) \\
\hline 1 & \(0.562 *\) & 0.701 & \(0.253 *\) & 0.0782 \\
2 & 0.701 & 0.719 & 0.268 & 0.0810 \\
3 & 0.735 & \(-\ldots\) & 0.277 & \(0.0973 *\) \\
4 & \(-\ldots\) & 0.800 & 0.287 & \(0.1008 \%\) \\
5 & 0.715 & 0.734 & 0.278 & 0.0812 \\
6 & 0.735 & \(0.994 *\) & 0.262 & 0.0818 \\
7 & 0.695 & 0.743 & 0.274 & 0.0805 \\
AVG & 0.716 & 0.739 & 0.274 & 0.0805 \\
\hline
\end{tabular}

The response factors for the seven mixtures were averaged arithmetically to give the factors which were used in the calculation of K-values.

Calculation of K-Values from Windowed Cell Data

This section will show the method used to calculate K -values from the relative response factors of the last section and the raw data from the digital integrator.

For the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) at \(0^{\circ} \mathrm{C}\) and 1000 psia, the results from the digital integrator are given below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Sample \\
Type
\end{tabular}} & \multicolumn{4}{|c|}{TC} & \multicolumn{2}{|c|}{HF} \\
\hline & C1 & \(\mathrm{CO}_{2}\) & \(\mathrm{H}_{2} \mathrm{~S}\) & C8 & C1 & C8 \\
\hline LIQ & 195419 & 22873 & 32601 & 1037558 & 287325 & 5750030 \\
\hline VAP & 136253 & 8340 & 3976 & -- & 202934 & 1955.3 \\
\hline VAP & 130496 & 7927 & 3766 & -- & 201719 & 1959.5 \\
\hline LIQ & 193952 & 24008 & 36070 & 1123242 & 283791 & 6237460 \\
\hline
\end{tabular}

The following table shows "counts Ci/counts C1," calculated from the above table. The second table below gives the average value of "counts Ci/counts C1" for the two liquid and two vapor samples. The average value is simply an arithmetic average.

COUNTS Ci/COUNTS C1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline & C1 & \(\mathrm{CO}_{2}\) & \(\mathrm{H}_{2} \mathrm{~S}\) & C8 & C1 & C8 \\
\hline LIQ & 1.0 & 0.11705 & 0.16683 & 5.3094 & 1.0 & 20.012 \\
\hline VAP & 1.0 & 0.06121 & 0.02918 & -- & 1.0 & 0.009635 \\
\hline VAP & 1.0 & 0.06075 & 0.02886 & -- & 1.0 & 0.009714 \\
\hline LIQ & 1.0 & 0.12378 & 0.1860 & 5.9913 & 1.0 & 21.979 \\
\hline
\end{tabular}
\begin{tabular}{l|cccc|cc}
& \multicolumn{5}{|c|}{ AVERAGE VALUES } \\
VAP & 1.0 & 0.06098 & 0.02902 & - & 1.0 & 0.009674 \\
LIQ & 1.0 & 0.12041 & 0.17641 & 5.6504 & 1.0 & 20.995 \\
\hline
\end{tabular}

The ratio of moles of each component to the moles of C1 were calculated using Equation (3-21). The sum of the ratios gives the ratio of the total moles to the moles of C 1 in that phase, or
C1
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{~S}\)
C8

LIQUID: \(1.0+(0.12041)(0.716)+(0.17641)(0.739)+(5.6504)(0.274)\)
\[
1.0+0.0862+0.1304+1.5482=2.7648
\]

VAPOR: \(1.0+(0.06098)(0.716)+(0.02902)(0.739)+(0.009674)(0.0805)\)
\[
1.0+0.0437+0.0215+0.00078=1.0660
\]

The liquid mole fraction, \(\mathrm{CO}_{2}\), for \(\mathrm{CO}_{2}\) is
\[
\mathrm{x}_{\mathrm{CO}}^{2} \text { }=\frac{\mathrm{n}_{\mathrm{CO}_{2}} / \mathrm{nC1}}{\mathrm{n}_{\mathrm{T}} / \mathrm{nC} 1}=\frac{0.0862}{2.7648}=0.0312
\]
while the vapor mole fracticn is

The K-values of \(\mathrm{CO}_{2}\) at \(0^{\circ} \mathrm{C}\) and 1000 psia can be calculated using
\[
\mathrm{K}_{\mathrm{CO}_{2}}=\frac{\mathrm{y}_{\mathrm{CO}}^{2}}{} \mathrm{x}_{\mathrm{CO}_{2}}=\frac{0.0410}{0.0312}=1.31
\]

The K -value of \(\mathrm{H}_{2} \mathrm{~S}\), C 8 , and C 1 would be
\[
\begin{aligned}
& \mathrm{K}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{y}_{\mathrm{H}_{2} \mathrm{~S}}}{\mathrm{x}_{\mathrm{H}_{2} \mathrm{~S}}}=\frac{0.0215 / 1.0660}{0.1304 / 2.7648}=0.427 \\
& \mathrm{~K}_{\mathrm{C} 1}=\frac{\mathrm{y}_{\mathrm{C} 1}}{\mathrm{x}_{\mathrm{C}} 1}=\frac{1.0 / 1.0660}{1.0 / 2.7648}=2.594 \\
& \mathrm{~K}_{\mathrm{C} 8}=\frac{\mathrm{y}_{\mathrm{C}}}{\mathrm{x}_{\mathrm{C}}}=\frac{0.00078 / 1.0660}{1.5482 / 2.7648}=0.00131
\end{aligned}
\]

\section*{Calculation of K-Values from Chromatographic Data}

This section shows the method used to calculate the K-values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) from the chromatographic data. The raw data for the run at \(20^{\circ} \mathrm{F}\) and 100 psia for the methane-toluene system are given below.
\[
\begin{array}{ll}
\mathrm{T}=20.0^{\circ} \mathrm{F}=-6.67^{\circ} \mathrm{C} & \mathrm{SWW}=14.75050 \mathrm{gms} \\
\mathrm{P}=101.5 \text { psia } & \mathrm{SWD}=13.24605 \mathrm{gms} \\
\mathrm{PCF}=67.95506 \mathrm{gms} & \mathrm{OW}=9.25865 \mathrm{gms} \\
\mathrm{PCE}=65.11584 \mathrm{gms} &
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \({ }^{\text {t }}\) B & \({ }^{\text {R }}\) i & \({ }^{P}\) A & \(\mathrm{T}_{\text {A }}\) \\
\hline \multirow{2}{*}{He} & Blank & 0:48.75 & 0:52.57 & 740.8 & 27.7 \\
\hline & Column & 0:48.70 & 1:54.21 & 740.8 & 27.9 \\
\hline \multirow{3}{*}{Ar} & Blank & 0:48.75 & 0:52.76 & 740.8 & 27.7 \\
\hline & & & & & - \\
\hline & Column & 0:48.65 & 1:55.79 & 740.8 & 27.9 \\
\hline \multirow{3}{*}{\(\mathrm{CO}_{2}\)} & Blank & 0:47.75 & 0:52.69 & 740.8 & 27.8 \\
\hline & & & , & & \\
\hline & Column & 0:48.65 & 2:16.94 & 740.8 & 28.0 \\
\hline \multirow{3}{*}{\(\mathrm{H}_{2} \mathrm{~S}\)} & Blank & 0:48.76 & 0:52.12 & 740.8 & 27.8 \\
\hline & & & & & \\
\hline & Column & 0:48.60 & 5:10.00 & 740.8 & 28.0 \\
\hline
\end{tabular}

Data from the literature which were used in the calculations were
LMW (TOL) \(=92.13, Z=0.9821\) and \(X_{I}=0.0180\).
The weight of liquid in the column, \(W_{L}^{0}\), was calculated with Equations (4-1) and (4--2), or
\[
\begin{aligned}
& W_{L}^{o}=\left[\frac{S W W-S W D}{S W W-C W}\right]\left[\frac{P C F-P C E}{L M W}\right] \\
& W_{L}^{o}=\left[\frac{14.75050-13.24605}{14.75050-9.25865}\right] \quad\left[\frac{67.95506-65.11584}{92.13}\right] \\
& W_{L}^{o}=0.008442 \mathrm{gm} \mathrm{mols}
\end{aligned}
\]

The retention volumes for each of the four components for both bypass and column runs were calculated, that is, eight values. The calculation of the retention volume for \(\mathrm{CO}_{2}\) will be shown here. Equations (3-17), (3-18), and (3-18a) can be combined to give
\[
f=\frac{V_{B}}{t_{B}}\left[\frac{P_{a}-P_{H_{2} 0}}{P_{a}}\right] \frac{P_{a}}{P} \frac{T}{T_{a}} Z_{g}
\]
where \(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=9.412-0.266 \mathrm{~T}_{\mathrm{a}}+0.0366 \mathrm{~T}_{\mathrm{a}}{ }^{2}\)
The water vapor pressures for the \(\mathrm{CO}_{2}\) runs were
\[
\begin{aligned}
\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}(27.8) & =9.412-0.266(27.8)+0.0366(27.8)^{2} \\
& =30.30 \mathrm{~mm} \mathrm{Hg} \\
\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}(28.0) & =30.66 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
\]

The carrier gas flow rates for the two runs were
\[
\begin{aligned}
& \mathrm{f}_{\mathrm{CO}_{2}}^{\mathrm{B}}=\frac{45.0993}{48.75}\left[\frac{740.8-30.30}{740.8}\right] \frac{(740.8 / 760 .)}{\frac{(101.5)}{(14.696)}} \frac{(-6.67+273.15)}{(27.8+273.15)}(0.9821) \\
&=0.1089 \frac{\mathrm{cc}}{\mathrm{sec}} \\
& \mathrm{f}_{\mathrm{CO}_{2}}^{\mathrm{C}}=\frac{45.0993}{48.65}\left[\frac{740.8-30.66}{740.8}\right] {\left[\frac{740.8 / 760 .}{\frac{101.5}{14.696}}\right]\left[\frac{-6.67+273.15}{28.0+273.15}\right](0.9821) } \\
&=0.1090 \frac{\mathrm{cc}}{\mathrm{se}}
\end{aligned}
\]

The retention volume for \(\mathrm{CO}_{2}\) was calculated using Equation (3-16), or
\[
\begin{aligned}
\mathrm{V}_{\mathrm{RCO}_{2}} & =\mathrm{t}_{\mathrm{RCO}_{2}}^{\mathrm{C}} f_{\mathrm{CO}_{2}}^{\mathrm{C}}-\mathrm{t}_{\mathrm{RCO}_{2}}^{\mathrm{B}} \mathrm{f}_{\mathrm{CO}_{2}}^{\mathrm{B}} \\
& =[2(60 .)+16.94](0.1090)-(52.69)(0.1089) \\
& =14.926-5.738=9.188 \mathrm{cc}
\end{aligned}
\]

Similar calculations for the other three components gave the following results:
\[
\mathrm{V}_{\mathrm{RHe}}=6.714 \mathrm{cc} ; \mathrm{V}_{\mathrm{RAr}}=6.879 \mathrm{cc} ; \mathrm{V}_{\mathrm{RH}_{2} \mathrm{~S}}=28.147 \mathrm{cc}
\]

The free gas volume, \(\mathrm{V}_{\mathrm{g}}\), was caiculated using Equation (3-19), or
\[
\begin{aligned}
\mathrm{V}_{\mathrm{g}} & =1.143 \mathrm{~V}_{\mathrm{RHe}}-0.143 \mathrm{~V}_{\mathrm{RAr}} \\
\mathrm{~V}_{\mathrm{g}} & =(1.143)(6.714) \cdots(0.143)(6.879) \\
\mathrm{V}_{\mathrm{g}} & =6.690 \mathrm{cc}
\end{aligned}
\]

The density of the carrier gas \(\rho_{\mathrm{g}}\) was calculated using
\[
\begin{aligned}
& \rho_{\mathrm{g}}=\frac{\mathrm{n}}{\mathrm{~V}}=\frac{\mathrm{P}}{\mathrm{ZRT}}=\frac{101.5 / 14.696}{(0.9821)(82.07)(-6.67+273.15)} \\
& \rho_{\mathrm{g}}=0.0003216 \frac{\mathrm{moles}}{\mathrm{cc}}
\end{aligned}
\]

Finally, the K -values of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{~S}\) were calculated using Equation (3-15), or
\[
\begin{aligned}
\mathrm{K}_{\mathrm{CO}_{2}} & =\frac{\mathrm{w}_{\mathrm{L}}^{\mathrm{o}}}{\left(1-x_{1} \rho_{\mathrm{g}}\left(\mathrm{~V}_{\mathrm{RCO}_{2}}-\mathrm{V}_{\mathrm{g}}\right)\right.} \\
& =\frac{0.008442}{(1 .-0.018)(0.0003216)(9.188-6.690)}=10.71 \\
\mathrm{~K}_{\mathrm{H}_{2} \mathrm{~S}} & =\frac{0.008442}{(1 .-0.018)(0.0003216)(28.147-6.690)}=1.246
\end{aligned}
\]

\section*{APPENDIX E}

\section*{CALIBRATION OF THERMOPILE}

A copper-constantan thermopile was used to measure the system termperature for the chromatographic experiment. The thermopile consisted of eight thermocouples connected in series. The thermopile was used because it provided eight times the emf for a given temperature, thus allowing more accurate temperature measurement.

The thermopile was calibrated in the Ladau constant temperature bath. An NBS platinum resistance thermometer was used to measure the temperature of the bath. The calibration of the platinum resistance thermometer was tested by use of a triple point cell. At the water triple point, the platinum resistance thermometer proved to be accurate within \(0.01^{\circ} \mathrm{C}\).

The thermopile was calibrated by recording the temperature from the platinum resistance thermometer and reading the emf of the thermopile. Figure 40 shows a plot of the difference between the thermopile emf reading and the emf reading which corresponded to the temperature measured with the platinum resistance thermometer, as a function of temperature. The solid line of the figure shows the emf correction used at a given temperature. From this figure, the emf corresponding to the temperatures at which data were to be taken were calculated. The following table shows the emf values which were used for the temperatures used in this work.
\begin{tabular}{cccc}
& \begin{tabular}{c}
Thermocouple Table \\
Reading (E \\
(millivolts) \()\)
\end{tabular} & Correction (C) & \begin{tabular}{c}
EMF For \\
Temperature
\end{tabular} \\
\hline\(-40^{\circ} \mathrm{F}\) & -1.463 & .032 & \begin{tabular}{c}
This Work \\
\(\left(8 \mathrm{E}_{\mathrm{T}}+\mathrm{C}\right)\)
\end{tabular} \\
\(-20^{\circ} \mathrm{F}\) & -1.072 & .021 & -11.672 \\
\(0^{\circ} \mathrm{F}\) & -0.670 & .011 & -8.555 \\
\(20^{\circ} \mathrm{F}\) & -0.254 & .002 & -5.349 \\
\(-20^{\circ} \mathrm{C}\) & -0.751 & .013 & -2.030 \\
\(0^{\circ} \mathrm{C}\) & 0.00 & -.003 & -5.995 \\
\hline
\end{tabular}

Figure 40. Deviation of Thermopile Readings from Thermocouple Table Readings (emf) as a Function of Temperature

\author{
APPENDIX F \\ DISCUSSION OF EXPERIMENTAL WORK - DIFFICULTIES, TESTS, AND COMMENTS
}

The purpose of this appendix is to discuss the chromatographic experimental work. Difficulties which were encountered are discussed. Several tests were run to see if any of several experimental variables would cause a change in K-values. This section contains a discussion of the experimental difficulties, the sensitivity tests, and other factors concerning the operating procedures. Hopefully, this section will aid some future investigator in avoiding some of the problems encountered in this work.

Difficulties

Two major difficulties were encountered during the work. At high pressures the sample stream flow rate would begin to drop although the system pressure remained constant. The reference stream was not affected. If the needle valve was heated with a heat gun, the flow rate would increase. Of course, the flow rate would not become steady until the valve had cooled to room temperature. This sometimes took 30 minutes to an hour. Thus, a heating tape was attached to the valves and they were heated constantly. This problem was most often encountered when running with toluene as the solvent. Even when the valves were heated, the problem would occasionally occur.

Before the GLC column bypass was installed, liquid loss of the GLC column was a problem. Some of the very first runs were made with decane as a solvent. After taking data for 12 hours, at \(25^{\circ} \mathrm{C}\), liquid losses were as much as \(5-7 \%\) of the total liquid of the column. Since the vapor pressures of heptane, MCH , and toluene are considerably greater than decane, a problem could be foreseen. Thus, the bypass was installed and liquid losses for a 16 hour run were less than \(1 \%\) of the total liquid.

A few precautions which were taken to help insure more consistant data are given below.
(1) When blank, or bypass, runs were being made, the flow rates were measured with the GLC column being bypassed. When column runs were made, flow rates were measured with the GLC column in the stream. In general, flow rates were not measured while the sample was in the stream.
(2) The valves in the flow stream between the sample valve and detector were always turned the same number of turns to insure identical free gas volumes for each run.
(3) When all data for a given pressure were complete and the system was pressured to a higher pressure, the pressure on the GLC column was raised at that time. Thus, while the bypass runs were being made, the GLC column solvent had time to become saturated with carrier gas.
(4) When an isotherm was completed, the GLC column was closed off (bypass opened) and the constant temperature bath was lowered away from the GLC column. The column was then left connected to the system overnight so that it would dry and come to room temperature.

In general, the equipment was easy to use. Many minor difficulties were corrected with improved and more experienced operating procedures.

Tests

This section describes several tests that were made to see if any parameters affected the experimental K-values obtained in this work. The majority of the tests were run because of the difference in results between this work and Asano (1). These tests were made to be sure that the procedures used in this work were not causing the differences. These tests were run before the classical windowed cell data were taken.

Almost all tests were run by measuring \(\mathrm{CO}_{2} \mathrm{~K}\)-values in the methane-octane system at \(-20^{\circ} \mathrm{C}\) or \(0^{\circ} \mathrm{C}\). The tests are listed below:
(1) Effect of flow rate on K-value was tested. Flow rates were varied by as much as a factor of 10 , that is from 18 to \(180 \mathrm{cc} /\). min. The K-values varied by at most \(5 \%\) and only an average of \(2.5 \%\). Lower flow rates gave higher K-values.
(2) Sample sizes were varied by a factor of ten by varying the pressure at which the samples were trapped. The average percent error was \(3.0 \%\). Larger samples had lower K-values. The tailing. was somewhat worse for large samples, as would be expected.
(3) Runs were made with varying amounts of liquid loading, that is, the percent liquid on the solid support. Runs were made with 15, 25,30 and \(35 \%\) loading. Again the results varied 3 to \(5 \%\), with no general trends being observed.
(4) Presaturator length was increased from 48 inches to 80 inches to insure that the carrier gas was saturated. No appreciable changes in results were noticed.
(5) Seven feet of \(1 / 8^{\prime \prime} 0 . D\). tubing was put in the sample stream directly before the GLC column and submerged in the constant temperature bath. The tubing was to insure that the carrier gas was at system temperature when it entered the column. No effect on K-values was noticed.
(6) A modified version of the system was built such that the void tubing between the sample valve and the detector was minimized (ten to fifteen inches) to see if excessive void volume affected results. No effect was noted.
(7) The sample valve was replaced by one used in the work of Yudovich (51). No effect was noted.
(8) Elution times were measured to the centroid of the peak (center of area) rather than by measuring horizontally across the peaks. A planimeter was used to calculate the areas. Elution times were increased slightly due to slight tailing, but that was the case for all samples and the differences canceled each other out. No effect was noted.
(9) Data were taken by starting at 1500 psia and decreasing the pressure continuously to 100 psia. No effects were noted.
(10) The solid support-solvent mixture was prepared by placing approximately \(40 \%\) liquid on the solid support and then slowly evaporating the solvent while tumbling the mixture until the loading was \(30 \%\). Results from this method were compared to the method used in this work. No effect was noted.

None of the above-mentioned tests had any appreciable effect on the measured K-values. These results illustrate the simplicity of the
chromatographic technique and show the soundness of the apparatus and experimental procedure used in this work.

\section*{APPENDIX G}

\section*{PHYSICAL PROPERTIES}

The purpose of the appendix is to list in tabular form the physical properties from the literature that were used in the calculation of chromatographic K-values in this work. The data consist of the compressibility factors of methane and the solubility of methane in the solvents heptane, toluene, methylcyclohexane, and n-octane. Table XIV lists the methane compressibility factors which were used in this work. They were calculated using the equation of Vennix (47). Table XV lists the methane solubilities. The source of the solubility data for each system is listed in the table. Plots of methane mole fractions in the liquid as a function of reciprocal temperature were used to interpolate the data to temperatures at which the data were not listed.

\section*{TABLE XIV}

COMPRESSIBILITY FACTORS, Z, OF •METHANE
\begin{tabular}{ccccccc}
\hline \begin{tabular}{c}
Pressure \\
(psia)
\end{tabular} & \(-40^{\circ} \mathrm{F}\) & \(-20^{\circ} \mathrm{F}\) & \(0^{\circ} \mathrm{F}\) & \(20^{\circ} \mathrm{F}\) & \(-20^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) \\
\hline 100 & 0.9725 & 0.9763 & 0.9794 & 0.9821 & 0.9788 & 0.9835 \\
200 & 0.9443 & 0.9521 & 0.9587 & 0.9641 & 0.9575 & 0.9671 \\
400 & 0.8857 & 0.9028 & 0.9167 & 0.9283 & 0.9141 & 0.9344 \\
600 & 0.8242 & 0.8522 & 0.8745 & 0.8928 & 0.8704 & 0.9023 \\
800 & 0.7600 & 0.8010 & 0.8327 & 0.8581 & 0.8269 & 0.8711 \\
1000 & 0.6948 & 0.7503 & 0.7920 & 0.8249 & 0.7846 & 0.8415 \\
1250 & 0.6198 & 0.6919 & 0.7454 & 0.7868 & & \\
\hline 1500 & 0.5690 & 0.6460 & 0.7068 & 0.7549 & & - \\
\hline
\end{tabular}

TABLE XV
METHANE SOLUBILITIES, \(\chi_{1}\), IN SOLVENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Solvent} & \multirow[b]{2}{*}{Temp .} & \multirow[b]{2}{*}{100} & \multicolumn{7}{|c|}{Pressure (psia)} \\
\hline & & & 200 & 400 & 600 & 800 & 1000 & 1250 & 1500 \\
\hline \multirow{3}{*}{\[
\begin{gathered}
\text { C8 } \\
(22)
\end{gathered}
\]} & \(0^{\circ} \mathrm{C}\) & 0.038 & 0.073 & 0.141 & 0.205 & 0.263 & 0.314 & -- & -- \\
\hline & \(-20{ }^{\circ} \mathrm{C}\) & 0.043 & 0.083 & 0.163 & 0.237 & 0.300 & 0.353 & -- & -- \\
\hline & \(20^{\circ} \mathrm{F}\) & 0.0400 & 0.0815 & 0.161 & 0.230 & 0.301 & 0.354 & 0.4190 & 0.470 \\
\hline \multirow{3}{*}{\begin{tabular}{l}
C7 \\
(4)
\end{tabular}} & \(0^{\circ} \mathrm{F}\) & 0.0445 & 0.0901 & 0.1744 & 0.2490 & 0.3160 & 0.3772 & 0.4452 & 0.4966 \\
\hline & \(-20^{\circ} \mathrm{F}\) & 0.0490 & 0.1033 & 0.1883 & 0.2668 & 0.3412 & 0.4078 & 0.4784 & 0.5388 \\
\hline & \(-40^{\circ} \mathrm{F}\) & 0.0556 & 0.1163 & 0.2081 & 0.2990 & 0.3728 & 0.4481 & 0.5160 & 0.5789 \\
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& \mathrm{MCH} \\
& (5)
\end{aligned}
\]} & \(20^{\circ} \mathrm{F}\) & 0.0305 & 0.0595 & 0.1155 & 0.1845 & 0.229 & 0.271 & 0.325 & 0.376 \\
\hline & \(0^{\circ} \mathrm{F}\) & 0.0333 & 0.0655 & 0.1274 & 0.1961 & 0.2439 & 0.2899 & 0.3470 & 0.3984 \\
\hline & \(-20^{\circ} \mathrm{F}\) & 0.0377 & 0.0737 & 0.1447 & 0.2088 & 0.2631 & 0.3165 & 0.3749 & 0.4274 \\
\hline & \(-40^{\circ} \mathrm{F}\) & 0.0417 & 0.0820 & 0.1588 & 0.2227 & 0.2831 & 0.3406 & 0.3975 & 0.4545 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { TOL } \\
& \text { (6) }
\end{aligned}
\]} & \(20^{\circ} \mathrm{F}\) & 0.0180 & 0.0360 & 0.0688 & 0.1060 & 0.140 & 0.176 & 0.210 & 0.2520 \\
\hline & \(0^{\circ} \mathrm{F}\) & 0.0193 & 0.0390 & 0.0740 & 0.1120 & 0.1495 & 0.1861 & 0.2230 & 0.2660 \\
\hline & \(-20^{\circ} \mathrm{F}\) & 0.0209 & 0.0410 & 0.0815 & 0.1211 & 0.1609 & 0.1989 & 0.2465 & 0.2900 \\
\hline & \(-40^{\circ} \mathrm{F}\) & 0.0230 & 0.0452 & 0.0867 & 0.1296 & 0.1729 & 0.2150 & 0.2626 & 0.3099 \\
\hline
\end{tabular}

APPENDIX H

COMPUTER PROGRAMS

This appendix lists the computer programs or subroutines of programs which were most pertinent to this work. The listings irclude (1) calculation of K-values for chromatographic experiment, (2) calculation of K-values for windowed cell experiment, and calculation of K-values using the two modifications of the Soave equation for the (3) binary data from the literature and (4) the ternary data of this work.

A short documentation is given at the first of each listing to explain the program nomenclature. The first two programs are self explanatory. The third and fourth listings are from subroutines from the the non-linear regression decks which were used to calculate the empirical correlation factors which best fit the data. These subroutines calculate K-values using the modifications of the mixing rules of Soave which were used in this work. In each of the two subroutines, cards marked with \(" * * 1 * * "\) were used in the one parameter correlation method while cards marked with \(1 * * 2 * *{ }^{\prime}\) were used in the two parameter correlation method. The equations used in the two programs and two subroutines are explained in detail in Chapter III.
```

This phegram calcllates the k-values of cor and has atinfminte

```

```

    SNM
    SWH=MEINT OF SELIC+ELLC
    *)
    WTHM - MOLECULAR HEIGHT EF SOLVENT,
    T = SYSTEM TEMPERATLFE ILEGG)
    M
    ```

```

THE FELLEWING TERMS APFLY TE RUNS MADE HITH THE GLC COLUMN IN STREAM,
C1D: RETENTONTINES* COMN, (NOSEC
TA = AMGIENT TEMPER

```

```

    *)
    The fellening TERHS ARE Sirilar To the bove ExeEpt that the olc
TME FELLENING TERHS ARE SIMILAR TOTHE
AB,QE,CR,OB,PAB,TAE,TFB,VPTB,FB,VR

```

```

    EXK = K=VALUE FROT LITEFATURE
    *)
    ```



```

$$
\begin{subarray}{c}{\mathrm{ SPCTIINC}}\\{MH=0}\end{subarray}
$$
M MM=0

```

```

    M MPTE(t,1),
    MEN(5, R)CP
    ```

```

WFL = (SWh-5WD)/(Shn-EhE)
WL, (ChPChE)*WFL/hTMh
WRITE (0,9889), WWNGTWW,CNF, SWD,WFL,CWE, BWE,WL

```

```

    M,
    M(1\times1)
    ```


38 CONHIRUE
9889 Febmat \(1 / 1 / 1 / 1 / / 1\)

\(Y C 8=R C F * A R V(1) / A V\)
\(Y C 1=1\)
\(Y C 1=1 \cdot / A Y\)
XHF
X RH
XCOF=RCOHARL(3)/ALF
\(X_{C} 8 F=R C F * A R L(1) / A L F\)
\(X_{1} C_{1}=1 \cdot / A L F\)
\(A L T=R H * A R L(4)+R C O * A F L(3)+R C T * A R L(2)+1\).
\(X H T=R H * A R(4)\)
\(X H T=R H * A R L(4) / A L T\)
XCOT \(=R C \theta * A R L(3) / A L T\)
XCBTTMCT
IF (XHF.NE:O.O) Gg TE E
\(V K H F=0 \cdot 0\)
\(G O T O 22\)
21 VKHF=YH/XHF
22 IF (XCOF•NE•O.O) GE TE 2S VKCEF=0.0 GO TO 24
33 VKCOF=YCE/XCOF
24 IF (XHT•NE•O•O) Ge Te \(\boldsymbol{a}^{\text {VK }}\) \(G K H=C \cdot 0\)
5 VKHT=YH/XHT
26 IF (XCOT•NE.O.O) GE Te 27
VKCET=0.0
GO TO 28
27 VKCOTEYCE/XCOT
28. CONTINUE

VKC8F=YC8/XC8F
VKC1F=YC1/XC1F
VKC8T=YC8/XC8T
VKC1T=YC1/XC1
DMHF=(VKHF=CM(4))/CM(4)*1CO.

DACEF=(VKCEF=AS(3))/AS(3)*100.
DMHT=(VKHT-CM(4))/Cr(4)*1CO. \(D_{M C O T}=\left(V K C E T=C_{M}(3)\right) / C_{N}(3) * 1000\) DAHT=(VKHT-AS(4))/AS(4)*1CO. DACOT=(VKCET-AS(3))/AS(3)*100. De \(40 \mathrm{~L}=1,10\)
\(40 \mathrm{~B}(\mathrm{~N}, \mathrm{~L})=\mathrm{TITLE}(\mathrm{L})\)
\(A(N, 1)=V K C O F\)
\(A(N, 2)=V K C E T\)
\(A(N, 4)=V K H T\)
\(A(N, 5)=A S(3)\)
\(A(N, 6)=A S(3)\)
\(A(N, 7)=A S(4)\)
```

    \(A(N, 8)=\Delta S(4)\)
    $A(N, 9)=C M(3)$
$A(N, 1)=C M(3)$
$A(N, 10)=C M(3)$
$A(N, 11)=C M(4)$
$A(N, 11)=C M(4$
$A(N, 12)=C M(4)$
$A(N, 13)=C^{A} C \theta$
$A(N, 14)=D A C E T$
$A\left(N N_{15}\right)=C A H$
$4(N, 16)$
$A(N, 17)=$ DMC
$A(N, 18)=C M C \theta$
$A(N, 19)=D M H F$
$A(N, 20)=$ DM $^{M H T}$
$A(N, 20)=0 M H T$
$A(N, 21)=V K C_{1}$
$A(N, 21)=v K C 1 F$
$A(N, 22)=V K C 1 T$
$A(N, 23)=v K C 8 F$
A(N)24) $V$ VKC8T
IF(MU-NE.0)GO TO
WRITE(6,101) (TITLE (1) $=1,10$ )

```

```

    VKC1F
    WRITE \((6,103\) ) VKMF, AS (4), CALF, VKHF, CM(4), OMH
    WRITE(6,104) VKCES, AS (S), CACEF, VKCOF, CMI 31, DMCOF
    WRITE(6)1C5) VKITLE(S),
    WRITE (6)102,YH,YCO,YC8,YC1, XHT, XCOT,XCBT,XCIT,VKHT, VKC日T,VKKCBT,
    VKCIFIRFT,SUMRFT
    WRITE(6)103) VKHT,AE(4), CAHT,VKHT,CM(4)
    ```

```

101 FGRMATI 1 CA4, 14 HHYOREGEA FLAME $/ 11$,

```



```

    IEV. =JF1C.6/I23X,5HEXP =JF10.6,5X,7HMUNG =FF10.6,5X,11HPCT. DEV.
    2=,F10-6/11
    105 FBRMATIICA4, OOHTHERMAL CENDUCTIVITY ////)
6 CONTINUE
7 CONTINUE
IFIMU-NE.1.0) GO Te
DO 250 N = 1, MUN

```

```

201 FERMAT (14X,17HHF
15(1cx,F1C06,5x,F10.6,1Cx,F10.6,5x,Fi0.6/1/1/1)
250 CONTINU
IFIMU-NE.2) Ge TO 74

```


```

    CNPPENENT NUMGERS
    2-. COMPENENT F
    T= 
    ```



```

    EK1,EK2*
    l
    M,
    lol
    M,
    \V,\mp@code{NL:}
        *)
        MIGLIC FLSACITY COEFFICIENT
    ```

```

    EF1,ER2- AECCENTDEVIATION BETWEN EXPER
    DOUBLE FPECLSION B,xx,2z
    M,
    covmer,\CMM|/2WTF
    I0 IF (1-1) 10, 50, 10, (1)
M0 LTMM=
LNMN5C
T=(x(1)+549.66)*5./5.
M=\x(2)/14
R2*T/TETC1,PC1
\ VC2:R*TCP/PCP
*)
EK==x\times(3)
*)
M,
2* (2*EK2

```


\({ }^{c}\) CALCULTE LIGUID CORFRESEIEILITY FACTGR

\(\bar{c}\) CALCULATE VAPOR cOiffessibility factor

\begin{tabular}{l}
CeNTI \\
RETV \\
END \\
\hline
\end{tabular}
THIS PREGRMM CALCULATES EMPIRICAL CORRELATION FACTORS FROM THE
TERMARY K=VALUE DOTA EF THIS WORK.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
 \\
f-1く1)
\end{tabular} \\
\hline R= & 3-(selvent) gas censtant \\
\hline T= & SYSTEP TEMPERATURE (DEGREES-k) \\
\hline \({ }^{\text {P/ }}\) & SYETEF PRESSURE (AMM) \\
\hline \(\mathrm{FC}=\) & CaIticol pressure \\
\hline \({ }_{\text {cke }}^{\text {če }}\) & \\
\hline \(\times \mathrm{F}=\) & Liguic rele frac \\
\hline YF= & vaper rele fractiens \\
\hline & liglic and vapor e fram mixing rule \\
\hline & LIELIE Ano vapir arrom mixing ruls \\
\hline YCN: & CRITICAL VELUME EF MIXTURE \\
\hline TrH. & retlcec temperature of mixture \\
\hline w- & actentil Factor \\
\hline HM & accenticic factor of mixtu \\
\hline & Parate ter alpha of son \\
\hline AM- & paraneter a of soave \\
\hline & Pafanter b of soave \\
\hline & Liglic ano vapor compressibility fa \\
\hline Lewr & Liglic no vaprr holar volumes ficients \\
\hline EKC= & Calcllated k value \\
\hline ER= & pefient deviation aetueen experimental \\
\hline
\end{tabular}

50
50 LMNe"C
\(R=(0.0 \varepsilon 2 C 54\)
\(T=(\times \times 11)+459.6) * 5 . / 5\)

- \(\mathrm{VC}(\mathrm{M})=\mathrm{BR}+\mathrm{C}(\mathrm{M}) / \mathrm{PC}(\mathrm{M})\)
20 continut


```

    \, (%)
    ```


```

    NM(KNL)=(W(K)*W(L)N*C+E
    ```

```

    MRM(KNL)**0.5.*NC(L)
    *)
    ```

```

    *)
    ```

```

    30
    c
MC=1AXM*P)/R**2****SS)
MC=BXH*F/(R*T)

```

```

calculate vapor Compresgigility factor
AC=(AYMFP)(R**2*T**SS)
PLO-1, BC-BC**2
MLN-AC*BCLL,OL,OL,2V,2TAN)
NMLVV+R+Y/R

```

```

    CALL FUG (VL
    ```

```

    IF(DABSIER(M)I.GT.C.CC1)GE TE 220
    42 CONTINUE
    220 continue, ncount) ge re alt
\,
211 MNORL:*NGRL+1
210 Z2OEK(1)
DE\&5, L=3,MKL
*5 VEENTHUL\=EKC(JLO:
\&NO

```

\section*{APPENDIX I}

\section*{RAW DATA}

This appendix presents the data which were recorded during the experimental work. Table XVIpresents the data of the windowed cell experiment. The values presented in the table are the "number of counts" output by the digital integrator. These values are proportional to the sample size. The octane concentration in the vapor phase is very low and was not visible on the TC detector output. In two instances, faulty experimental technique caused the methane results from the hydrogen flame detector to be lost. The table lists results of only two of the calibration runs. The raw data were lost in the other cases. The calibration runs shown are for the last two calibration runs, mixtures 6 and 7. Thewindowed cell K-value data were taken with mixture 6 in the cell.

Tables XVII through XX present the data of the chromatographic experiment. All data taken using a given column are listed immediately after the data concerning the column weight, that is, after SWW, SWD, etc. Thus, eight of nine runs for a given column may be at \(20^{\circ} \mathrm{F}\) and one may be at \(0^{\circ} \mathrm{F}\). This happened in a few cases where a bad run made it necessary to redo a data point. The numbers preceding the rows indicate the sample which corresponds to the data, where helium is 1 , argon \(2, \mathrm{CO}_{2} 3\), and \(\mathrm{H}_{2} \mathrm{~S} 4\). The " B " and " C " indicate whether the sample was passed through the column bypass, or through the column, respectively.

TABLE XVI

RAW DATA FOR CARBON DIOXIDE AND HYDROGEN SULFIDE K-VALUES IN THE METHANE+ N-OCTANE SYSTEM FROM THE CLASSICAL WINDOWED
CELL EXPERIMENT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{-} & \multicolumn{4}{|c|}{TC} & \multicolumn{2}{|c|}{HF} \\
\hline & Methane & \(\mathrm{CO}_{2}\) & \(\mathrm{H}_{2} \mathrm{~S}\) & Octane & Methane & Octane \\
\hline \multirow{4}{*}{\[
{ }_{0}^{1000}{ }_{0} \text { psia }
\]} & 195419 & 22873 & 32601 & 1057558 & 287325 & 5750030 \\
\hline & 136253 & 8340 & 3976 & - & 202934 & 1955.3 \\
\hline & 130496 & 7927 & 3766 & -- & 201719 & 1959.5 \\
\hline & 193952 & 24008 & 36070 & 1123242 & 283791 & 6237460 \\
\hline \multirow{4}{*}{\[
\begin{gathered}
800 \\
0_{0} \mathrm{p} \\
\mathrm{C}
\end{gathered}
\]} & 84630 & 11111 & 17981 & 834169 & 154515 & 4024420 \\
\hline & 149633 & 9375 & 4894 & & 280489 & 7374.3 \\
\hline & 152276 & 9412 - & 4883 & --- & 286169 & 4821.3 \\
\hline & . 85449 & 11245 & 18034 & 647394 & 152429 & 3802870 \\
\hline \multirow{4}{*}{\[
{ }_{0}^{600}{ }_{0} \mathrm{psia}
\]} & 83987 & 12057 & 22063 & 945230 & 181630 & 7621910 \\
\hline & 506245 & 32059 & 17198 & -_- & - 1209431 & 4000.8 \\
\hline & 507182 & 32107 & 17942 & --- & 1200096 & 4095.7 \\
\hline & 53144 & 7365 & 13576 & 571637 & 120762 & 4516710 \\
\hline \multirow{4}{*}{\[
400{ }_{0}{ }^{\circ} \mathrm{psia}
\]} & 34283 & 5029 & 10280 & 596393 & 76272 & 4382610 \\
\hline & 325850 & 20906 & 11521 & --- & 761665 & 2905.8 \\
\hline & 35064 & 5287 & 10850 & 602734 & 77280 & 4755810 \\
\hline & 331209 & 21276 & 13038 & --- & --- & --- \\
\hline \multirow{4}{*}{\[
\begin{gathered}
200 \mathrm{psia} \\
0^{\circ} \mathrm{C}
\end{gathered}
\]} & 16556 & 2561 & 5996 & 649141 & 36931 & 4785250 \\
\hline & 153377 & 10233 & 6321 & --- & 358164 & 1804.6 \\
\hline & 26343 & 3652 & 10434 & 1080761 & 56749 & 8722310 \\
\hline & 148914 & 9957 & 6202 & - & 350858 & 1764.1 \\
\hline \multirow{4}{*}{\[
{ }_{-20}^{1000} \mathrm{C} \text { pia }
\]} & 176435 & 24104 & 37088 & 837750 & 395691 & 6829640 \\
\hline & 103657 & 6261 & 2875 & --- & 244085 & 1759.4 \\
\hline & 102179 & 6138 & 2905 & --- & 241890 & 1804.3 \\
\hline & 174706 & 23836 & 36693 & 844112 & --- & 6409260 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 800 \text { psia } \\
& -20^{\circ} \mathrm{C}
\end{aligned}
\]} & 85744 & 12717 & 21611 & 554591 & 184957 & 4268370 \\
\hline & 126176 & 7720 & 3896 & --- & 294280 & 6617.9 \\
\hline & 86488 & 12705 & 21679 & 534319 & 184503 & 4052430 \\
\hline & 123299 & 7563 & 3793 & --- & 282615 & 3001.7 \\
\hline
\end{tabular}

TABLE XVI (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{TC} & \multicolumn{2}{|c|}{HF} \\
\hline & Methane & \(\mathrm{CO}_{2}\) & \(\mathrm{H}_{2} \mathrm{~S}\) & Octane & Methane & Octane \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 600{ }^{\circ} \mathrm{psia} \\
& -20
\end{aligned}
\]} & 102388 & 16415 & 31466 & 949477 & 224555 & 7491650 \\
\hline & 513739 & 32016 & 16656 & -- & 1192405 & 1609.1 \\
\hline & 529227 & 33068 & 17613 & -- & 1261166 & 2027.3 \\
\hline & 98596 & 14872 & 27965 & 843306 & 210497 & 6685370 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 400{ }^{\circ} \mathrm{psia} \\
& -2 \mathrm{C}_{\mathrm{C}}
\end{aligned}
\]} & 66005 & 10633 & 18382 & 1001682 & 155654 & 877295 \\
\hline & 335590 & 19769 & 8453 & -- & 840650 & 982.9 \\
\hline & 66276 & 10262 & 17966 & 970279 & 145516 & 7927350 \\
\hline & 351567 & 20757 & 8993 & -- & 851230 & 1085.3 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 200{ }_{-2}{ }^{\circ} \mathrm{Csia} \\
& \mathrm{C}
\end{aligned}
\]} & 32642 & 5471 & 11448 & 1047787 & 73645 & 8882670 \\
\hline & 174351 & 10904 & 5029 & -- & 426642 & 1128.3 \\
\hline & 164462 & 10221 & 4936 & -- & 403284 & 572.1 \\
\hline & 32040 & 5526 & 11916 & 1091588 & 71903 & 9019020 \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { Mixture } \\
6
\end{gathered}
\]} & 428152 & 30262 & 23932 & 444250 & 710786 & 2332940 \\
\hline & 709623 & 50028 & 39696 & 637581 & 1188395 & 3644630 \\
\hline & 434504 & 30555 & 24503 & 419498 & 711913 & 2116690 \\
\hline & 680622 & 48731 & 39786 & 701723 & 1115174 & 375551 \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { Mixture } \\
7
\end{gathered}
\]} & 235414 & 61002 & 57501 & 399780 & 566853 & 3169290 \\
\hline & 388016 & 98967 & 94675 & 630556 & 929611 & 5282490 \\
\hline & 236444 & 61172 & 58301 & 399318 & 580005 & 3181920 \\
\hline & 389773 & 99648 & 94523 & 629699 & 914235 & 5285040 \\
\hline
\end{tabular}

RAW DATA FOR CARBON DIOXIDE AND HYDROGEN SULFIDE
K-VALUES IN THE METHANE+n-HEPTANE SYSTEM FROM THE CHROMATOGRAPHIC EXPERIMENT

\section*{TABLE XVII (Continued)}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(t_{B}\) & \(t_{R}\) & \(\mathrm{P}_{\mathrm{a}}\) & \(r_{a}\) & \(\mathrm{V}_{\mathrm{R}}\) \\
\hline \multicolumn{6}{|l|}{} \\
\hline & \(=-4 C .0000\)
0.33 .85 & 2.23.2a & 399.50
743.5 & \(28.4{ }^{\text {V6 }}\) & \(=11.4049\) \\
\hline & 0.33,85 & \({ }_{\text {8.31.06 }}^{\text {8.3. }}\) & 743.3 & 28.4 & \({ }^{16.066}\) \\
\hline \({ }_{2}^{2} 8\) & & 2.25.72 & 743.5 & \({ }_{28}^{28.4}\) & 4. 5803
16.608 \\
\hline \({ }^{3}\) & 0.33.85 & \({ }_{2} 2.26 .56\) & 7-3.4 & 28.4 & 4.608 \\
\hline \({ }_{4}^{3}\) & -.33.85 & 10.53 .02
2.25 .54
10.6 & \(\xrightarrow{7+3.2}\) & \({ }_{28.4}^{28.4}\) & \(\begin{array}{r}20.497 \\ \hline 4.576\end{array}\) \\
\hline - & 0.34 .00 & 18. & 743 & 28.4 & 34.3 \\
\hline & - -4.00000 & & \$97.50 & & \\
\hline \({ }^{1} 18\) & C.27.25 & \(2.56 . c_{3}\)
10.50 .74 & 7422.9 & \({ }_{\text {a }}^{28.3}\) & 15:7497 \\
\hline 2 t & 0.27.25 & 2.51 .60 & 74.9 & \({ }^{28.2}\) & 4.342 \\
\hline \({ }_{3}^{2}\) & O.27.35
0.27 .25 & 11.14.0c & & 28.0 & 16.340
4.365 \\
\hline 3 c & 0.27 .35 & \(13.40 \cdot 65\) & \(7 \times 2.6\) & 27.9 & 19.907 \\
\hline \(4{ }_{4}{ }_{\text {B }}\) & 0:27.35
0.27 .35 & \({ }_{21}^{2.59 .36}\) & 742.8
\(7 \times 2.6\) & & 31:514 \\
\hline \multirow[t]{6}{*}{} & \(\because 8.0 .0000\) & F* & 797.50 & & \\
\hline & C. 21.95
0.21 .95 & 3.12 .32
12.23 .32 & \({ }^{7} 42.38\) & \(\xrightarrow{27.7}\) & \({ }_{15.533}\) \\
\hline & 0.21.95 & 3.16.52 & 74.20 & 27 & 4.107 \\
\hline & 0.22 .00
0.21 .95 & \begin{tabular}{l}
12.51 .62 \\
3.17 .58 \\
\hline 1
\end{tabular} & 742.3
\(7+2.3\) & 27.7
27.7 & 16.088
4.129 \\
\hline & C.22.00 & \({ }_{15.24 .50}^{150}\) & 742.3 & 27.7 & 19.275 \\
\hline & 0.21 .95
0.21 .95 & 3.17 .23
22.47 .50 & \(\xrightarrow{7+2.3}\)\begin{tabular}{l}
\(7 \times 2.3\) \\
\hline
\end{tabular} & 27.7
27.7 & \\
\hline \multirow[t]{6}{*}{} & -40.0000 & \({ }^{\text {P }}\) & cce. 50 & & \({ }^{412}\) \\
\hline & C. 18.25
0.18 .45 & \({ }^{3} 4.25 .68\) & 742.8
\(7+2.8\) & 27.7
27.6 & 3.770
15.253 \\
\hline & c. 188.25
0.18 .45 & 3.29 .79
14.32 .64 & \(7+2.8\)
7 & 27.7 & 3.8.45
15.829 \\
\hline & - 8188.25 & 14.32 .64
3.30 .4
17 & 742.8 & 27.6
27
27 & 15.859 \\
\hline & - \(0.12 \cdot 45\) & \(\underset{\substack{17.01 .88 \\ 3.30 .52}}{ }\) & \(\xrightarrow{742.8}\) & 27.5
27.7 & \(\begin{array}{r}18.547 \\ 3.858 \\ \hline .858\end{array}\) \\
\hline & -.18.45 & 23.32.5E & 7-2.8 & 27.5 & 25.638 \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned} e^{\top}
\]} & \(=.40 .0000\)
0.16 .00 & 3.47.9.9 \({ }^{\text {P }}\) & 247.50
743. & \(27.3{ }^{\text {Va }}\) & \(9^{49}\) \\
\hline & (616.10 & 16.41.48 & , 73.5 & \({ }_{2}^{27.8}\) & 14.989 \\
\hline & C. 16.160
C.16.15

a & 17.53.08 & +73.3 & \({ }_{26.6}^{27.3}\) & 3.497
15.546 \\
\hline & -.16.00 & 3.53.85 & 7+3.4 & 27.3 & 3.509 \\
\hline & -.16.20 & \({ }_{19}^{19.43 .14}\) & 743.7 & 26 & 17.629 \\
\hline & C. 16.00 & 25.09.12 & 743.5 & 26.9 & 22.697 \\
\hline \multicolumn{2}{|r|}{0000} & & c2.50 & va & - 11.506 \\
\hline \multirow[t]{2}{*}{\(\begin{array}{ll}1 \\ 1 \\ 1 & \text { c } \\ 2\end{array}\)} & 0.14 .60
0.460 & 4:13.74 & 7.3.8 & \({ }_{26}^{26} 3\) & \({ }^{3}\) \\
\hline & 0.14 .60 & 4.17.4 & 743.8 & 26.3 & 3.247 \\
\hline \begin{tabular}{l}
2 \\
2 \\
2 \\
\\
e \\
\hline
\end{tabular} & C.14.45 & 20.16.2c & 7+3.8 & 26.3 & 15.4 \\
\hline \multirow[t]{2}{*}{\({ }^{3} 3{ }^{3} \mathrm{~B}\)} & 0.14 .55
0.14 .45 & & \(\xrightarrow{743.8}\) & 26.3
26.3 & 3.270
17.045 \\
\hline & ¢:14.50 & 27:12:C6 & 743.8 7 & \({ }_{26.3}^{26.3}\) & 3.277
20.915 \\
\hline
\end{tabular}

TABLE XVIII

\title{
RAW DATA FOR CARBON DIOXIDE AND HYDROGEN SULFIDE \\ K-VALUES IN THE METHANE+METHYLCYCLOHEXANE \\ SYSTEM FROM THE CHROMATOGRAPHIC \\ EXPERIMENT
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{t}_{\mathrm{B}}\) & \(\mathrm{t}_{\mathrm{R}}\) & \(\mathrm{P}_{\mathrm{a}}\) & \(T_{a}\) & \(V_{\text {R }}\) \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{\multirow[b]{2}{*}{**}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SwW }=14.59760 \\
& \text { SWD }=13.24980
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { PCF }=74.12320 \\
& \text { PCE }=71.28494
\end{aligned}
\]}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(\mathrm{CH}=9.25860\)}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|r|}{\(T=20.0000\)} & 0 F \({ }^{\text {\% }}\) & \(=99.50\) & \multicolumn{2}{|r|}{VG \(=\begin{gathered}6.232 \\ 5.797\end{gathered}\)} \\
\hline & 0.55 .50
0.55 .60 & 0.58 .74
2.02 .96 & \begin{tabular}{l}
4.51 .5 \\
\hline 741.7
\end{tabular} & 26.0
26.5 & 5.797
12.075 \\
\hline \(2{ }^{2}\) & \(0 \cdot 55.50\) & 0.58.98 & 874.5 & \(26 \cdot 2\) & \(5 \cdot 814\) \\
\hline \({ }_{8}\) & 0.55 .60
0.55 .50 & \(2.06 .4 E\)
0.59 .15 & \(\underline{741.7}\) & 26.6 & 12.418
5.826 \\
\hline \(3{ }^{5}\) & C.55.55 & 2.28 .56 & \({ }_{6} 71.8\) & 26.7 & 14.595 \\
\hline \multirow[t]{2}{*}{4 c} & C.F5.50 & 0.58 .81 & 17.1 .6 & 26.4 & 5.791 \\
\hline & c.55.50 & 4.01 .96 & 6741.8 & 26.9 & 23.765 \\
\hline \multicolumn{2}{|r|}{\(T=20.0000\)} & \multicolumn{2}{|r|}{\(F=20 c c .50\)} & \multicolumn{2}{|l|}{} \\
\hline \({ }_{1}^{1}{ }_{1}^{1}\) & 0.46 .00
0.46 .00
0.460 & 1.36 .96
3.27 .33 & 6 \(\begin{gathered}7.1 \\ 741.8\end{gathered}\) & \({ }_{27}^{27}{ }^{27}\) & \(5 \cdot 588\)
11.928 \\
\hline 8 & 0.46.00 & 1-37.4¢ & -741.8 & 27.3 & \(5 \cdot 611\) \\
\hline \({ }_{3}^{2}\) & 6.46 .05
0.46 .00 & 3.34 .56
1.37 .43 & 7.1 .8
741.8 & 27.5
27.4 & 12.331
5.609 \\
\hline \(3{ }^{3} \mathrm{c}\) & & 4.13 .31 & (741.8 & 27.6 & 5.609
14.549 \\
\hline \multirow[b]{2}{*}{4 c} & C.46.00 & 1.37.36 & +71.8 & 27.4 & 5.605 \\
\hline & c.46.10 & 6.47 .9 c & 741.8 & 27.6 & 23.397 \\
\hline \multicolumn{2}{|r|}{\(T=20.0000\)} & 0 F \(=\) & - 4 C1.50 & & = 6.250 \\
\hline & \(0.34 \cdot 75\)
0.34 .70 & 2. \({ }^{26 \cdot 18.84}\) & 7.1 .8
74.8 & 27.7 & 5.371
11.669 \\
\hline & 0.34 .70
0.34 .75 & 5.18 .95
2.28 .96 & + \(\begin{aligned} & 7.1 .8 \\ & 7.1 .8\end{aligned}\) & 27.9 & 11.669
5.448 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{ll}
2 & 8 \\
2 & c \\
3 & 6
\end{array}
\]} & 0.34 .70 & 5.3c.36 & 741.8 & 27.9 & 12.087 \\
\hline & C.34.75 & 2.28 .87 & 741.8 & 27.7 & \(5 \cdot 445\) \\
\hline \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & ¢.34.70
6.34 .75 & 6.28 .28
2.28 .020 & 741.8
741.8 & 28.6
27.8 & 14.198
5.411 \\
\hline \(4{ }_{4}^{4} \mathrm{C}\) & C. 34.70 & 10.04 .84 & 741.8 & 28.0 & 22.116 \\
\hline \multicolumn{2}{|r|}{\(T=20.0000\)} & \(\bigcirc \mathrm{P}\) - & - 597.50 & & - 6.236 \\
\hline & C.3C.95
C. 31.15 & \(3 \cdot 20 \cdot c ¢\)
7.20 .75 & 741.8
741.8 & \({ }^{28.1}\) & \(5 \cdot 2^{96}\)
11.583 \\
\hline \multirow[t]{2}{*}{\({ }_{2}^{2}{ }_{2}^{2}\)} & c.30.95 & 3.22.ct & 741.8 & 28.1 & \(5 \cdot 350\) \\
\hline & & 1.37.35 & 7.1 .6
7.1 .8 & & 11.996
5.362 \\
\hline 3
3
3
4
0 & C.31.25 & 8.54 .94 & 741.4 & 28.3 & +14.002 \\
\hline \multirow[t]{2}{*}{\({ }_{4}^{4} \mathrm{C}\)} & c. 31.05 & 3.22.86 & 741.8 & 28.2 & 5.351 \\
\hline & c.31.30 & 13.24.cc & 741.2 & 28.3 & 21.009 \\
\hline \multicolumn{2}{|r|}{- 20.0000} & & 798.50 & & = 6.236 \\
\hline & (.24.15 & 3.32.c̄1 & 741.2 & 28.3 & 5.169 \\
\hline \(1{ }^{1} 8\) & C.24.10
C. 4.15 & 7.56 .11
3.35 .24
3.3 & 741.2
741.2 & 28.5
28.3 & 11.461
5.243 \\
\hline \multirow[t]{2}{*}{\(?\)} & c.ẽ.05 & 8.09.3. & 740.0 & 28.6 & 11.927 \\
\hline & C. 24.15 & 3.35.56 & 741.2 & 28.3 & 5.250 \\
\hline \({ }^{3}\) c & C.24.05 & 9.25.87 & 740.8 & 28.6 & 13.808 \\
\hline 4 R & C. 24.15
0.64 .25 & 3.35.2t
13.37 .30 & \(741 . ?\)
740 & 28.3
28.7 & 5.243
19.926 \\
\hline
\end{tabular}

TABLE XVIII (Continued)

RAW DATA FOR CARBON DIOXIDE AND HYDROGEN SULFIDE K-VALUES IN THE METHANE+TOLUENE SYSTEM FROM

THE CHROMATOGRAPHIC EXPERIMENT

\section*{IABLE XIX (Continued)}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(t_{B}\) & \(\mathrm{t}_{\mathrm{R}}\) & \(\mathrm{Pa}_{\text {a }}\) & \({ }^{\text {T }}\) & \(V_{\text {R }}\) \\
\hline \multicolumn{2}{|r|}{. 0000} & \multicolumn{2}{|r|}{- 12550.50} & \multicolumn{2}{|r|}{\(V G=6.690\)} \\
\hline 1.8 & c.16.50 & 3.57.86 & 740.0 & 26.6 & 4. \\
\hline \({ }_{2}^{1}\) & ¢. 11660
0.16 .55 & \({ }_{\text {10, }}^{10.36066}\) & 740.1 & 26:6 & 10.739 \\
\hline & C.16.65 & 10.49.25 & 740 & 26.6 & 10.915 \\
\hline & c.16.65
\(C .16 .65\) & \({ }^{12.0859 .54}\) & 74000 & 26.6
26.6 & 4.139
13.075 \\
\hline & c.16:80
0.16 .75 & 25.059. \({ }_{\text {a }}\) & 77000 & 2606 & 25:726 \\
\hline & --20.0000 & & 15 cc .50 & & - \({ }^{6.636}\) \\
\hline & -15.60 & 12.259 & 74001 & \({ }_{26.6}^{26}\) & \(\xrightarrow{30.469}\) \\
\hline & C.15.60
\(\substack{15.60 \\ 0.608}\) & 4.38.52 & 74000 & 26.6 & 3. \\
\hline & - 015.60 & 12.40.68 & 740.0 & 26.6 & 10.688 \\
\hline & C.115.65
0.15 .70 & \begin{tabular}{l}
14.49 .15 \\
4.40 .78 \\
\hline
\end{tabular} & & 26.6 & 12.376
3.894 \\
\hline & 0.15 .65 & 25.59.2c & 240 & & 21.702 \\
\hline \multicolumn{6}{|l|}{**************************************} \\
\hline & & & & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{- 9.25870}} \\
\hline SwD & 23 & & & & \\
\hline & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & C.44.25 & 0.47 P 6 & 733.3 & & \\
\hline & C.44.40 & 21.42.32 & 733.3 & 24 & 11.343 \\
\hline & C.44.45 & - 1.49 .64 & 733.3 & 24:1 & 11:464 \\
\hline & 0.44.35 & 0.470 .04 & 73.3 & 24.0 & 4.931 \\
\hline & 0.44.35 & 2.47.58 & \({ }_{73} 7\) & & 16.988 \\
\hline & 0.44 .60 & 10.14.27 & \({ }_{733} 3\) & 24 & 63.966 \\
\hline & -0.0.0000 & & c1.50 & & \\
\hline & 0.34.65 & 1.11 .76 & \({ }^{7} 4.5\) & \(22^{\circ} 2\) & 4.818 \\
\hline & - & & \({ }_{74}^{7} \mathbf{4} 4\) & & \(\begin{array}{r}11.323 \\ 4.850 \\ \hline\end{array}\) \\
\hline & C.34.50 & 2.51 .22 & 741.7 & 22.4 & 11.518 \\
\hline & C.34.65
0.34 .50 & 1.12.5c & 74.23 & 22.2 & 4.865 \\
\hline & 0.34.65 & 1.11.96 & 742.1 & 22.2 & 1.8.828 \\
\hline & 0.34.50 & 14.56.15 & 741.5 & 22 & 60.269 \\
\hline \multicolumn{2}{|r|}{0} & \multicolumn{2}{|c|}{F - 400} & \multicolumn{2}{|r|}{\(v \mathrm{v}=6.500\)} \\
\hline & ¢. 28.65
0.28 .70 & 1.56.38 & \({ }_{71} 10\) & 22.5
22.6 & 10.4 \\
\hline & \(0 \cdot 28.65\) & 1.57.84 & & 22 & \\
\hline & 0.28880
0.28 .65 & 4.52.02 & & 22 & \({ }^{11.085}\) \\
\hline & 0.28.80 & 6.4 & 740 & 22.6 & 15.254 \\
\hline & C. 28.65
0.28 .80 & \({ }^{1.57 .14}\) & \({ }_{740}^{741}\) & \({ }_{22}^{22}\) & 51.4717 \\
\hline
\end{tabular}

\title{
RAW DATA FOR CARBON DIOXIDE AND HYDROGEN SULFIDE K-VALUES IN THE METHANE+N-OCTANE SYSTEM FROM THE CHROMATOGRAPHIC EXPERIMENT
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\mathrm{B}}\) & & \(t_{B}\) & \(\mathrm{Pa}_{\text {a }}\) & \[
\begin{aligned}
& \mathrm{r}_{\mathrm{a}} \mathrm{~V}_{\mathrm{R}} \\
& \hline
\end{aligned}
\] & \(t_{B}\) & \(t_{R} \quad P_{d}\) & \(\mathrm{T}_{\mathrm{a}} \quad \mathrm{V}_{\mathrm{R}}\) \\
\hline & & & & & & & \\
\hline \multirow{3}{*}{} & \multirow[b]{3}{*}{} & & & & \begin{tabular}{lll}
1 \\
1 & 8 & 0.31 .60 \\
1 \\
\hline
\end{tabular} & \(\xrightarrow{2.0989}\) & \(\cdots\) \\
\hline & & & & & \(\begin{array}{lll}1 \\ 2 & 8 & 0.31 .60 \\ 2 & \\ 3\end{array}\) & & \\
\hline & & (en & & & & & \\
\hline & .67 743.8 23.7 6.092 & \begin{tabular}{l}
4 \\
4 \\
4 \\
¢ \\
\hline
\end{tabular} 0.19 .19 .50 & & 25:3 \({ }^{25}\) & & & \\
\hline (1) & & \({ }_{8}{ }^{\top}-32.30000\) & & & 「-. 32.0000 & 588.50 & 281 \\
\hline & & (1) & & & & & \\
\hline 为 & & (1) & & & \({ }^{1}\) & & \\
\hline & & \begin{tabular}{lll}
\\
\\
3 & 8 \\
\hline
\end{tabular} & & & & \({ }_{\text {a }}^{2}\) & \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & cile & (1) & 5:5 & - \({ }^{\text {¢ }}\) & & \\
\hline & & \multirow[t]{4}{*}{} & \multirow[t]{3}{*}{:} & \(\cdots\) & \({ }^{\top}=32.000\) & F = ecce 50 & \\
\hline & & & & - & & (enter & \\
\hline & & & & & & \(c\) & \\
\hline & & & & ch - 9.25865 & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \({ }_{\substack{\text { a }}}^{1} \mathrm{c}\) & (ention & & & & & - -1 cce. 50 & vo - 6.205 \\
\hline & & (enter & & (10.7 & & & (eneme \\
\hline & & & & & & & \\
\hline \({ }_{8}{ }^{\top}-3.820 .0000\) & \multirow[t]{2}{*}{} & & & & (e) & \begin{tabular}{c}
3.16.16 \\
10.43 .83 \\
\hline 7000 \\
7004
\end{tabular} & 25:0 \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{5}{*}{}} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & 8.08 .4 & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

The columns in the tables are: \(t_{B}\), bubble time in \(V_{B} ; t_{R}\), retention time; \(\mathrm{P}_{\mathrm{A}}=\) ambient pressure \((\mathrm{mmHg}) ; \mathrm{T}_{\mathrm{a}}=\operatorname{ambient}\) temperatures \(\left({ }^{\mathrm{O}} \mathrm{C}\right)\). The column labeled \(V_{R}\) refers to the calculated retention volume. \(T, P\), and \(V_{g}\) refer to the system temperature \(\left({ }^{\circ} F\right)\), system pressure (psia) and the calculated free gas volume. \(V_{R}\) and \(V_{g}\) are not actually a part of the raw data.

Three sets of data are present for the methane-octain system at \(0^{\circ} \mathrm{C}\), corresponding to the three runs which tested experimental consistency of the data.

\section*{APPENDIX J}

\section*{NOMENCLATURE}
a - parameter from original Redlich-Kwong equation
A - Redlich-Kwong term \(=\frac{\mathrm{ap}}{\mathrm{R}^{2} \mathrm{~T}^{2.5}} \quad\) (Eq. 3-27)
\(a^{\prime}(T)=\) parameter in Soave modification of \(R-K\)
\(a-\sum_{j k} n_{j} n_{k} a_{j k}\)
b - parameter from original Redlich-Kwong equation
B - Redlich-Kwong term \(=\frac{\mathrm{bp}}{\mathrm{RT}}\) (Eq. 3-28)
\(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}\) - empirical correlation factors [Eq. (3-50) to (3-53)]
\(b-\sum_{j k} n_{j} n_{k} b_{j k}\)
CW - crucible weight (Eq. 5-1)
\(f, f_{a}\) - carrier gas flow at system conditions and ambient conditions
\(f_{i L}, f_{i g}-1 i q u i d\) and vapor fugacity for component i
GLC - gas liquid chromatography
\(\Delta H\) - heat of adsorption
\(k_{i}\) - partition coefficient (Eq. 3-1)
\(k_{i j}^{\prime}\) - empirical correlation parameter for components \(i\) and \(j\). Modifies the energy term (\(\mathrm{T}_{\mathrm{cij}}\)) for one parameter method.
\(k_{i j}\) - empirical correlation parameter for components \(i\) and \(j\) Modifies the energy term (\(T_{c i j}\)) for two parameter method.
\(K_{i}-K\)-value of component \(i\)
L - length of the chromatograph column (Eq. 3-5)
L - weight of liquid on solid support in packing mixture

LMW - solvent of molecular weight
\(\ell_{i j}\) - empirical correlation parameter for components \(i\) and \(j\). Modifies the distance term (\(V_{c i j}^{\prime}\)) for two parameter method.
\(m_{i}-\) slope of \(\alpha^{0.5} \mathrm{vs} \cdot \mathrm{T}_{\mathrm{R}}^{0.5}\) (Eq. 3-36)
PCE - weight of GLC column empty, that is, stainless stell tubing and fittings
\(n\) - number of moles of a component
P, \(P_{a}\) - system and ambient pressure
\(P_{c}\) - critical pressure
PCF - weight of GLC column full of solvent saturated solid support
\(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\) - water vapor pressure (Eq. 3-18a)
R - gas constant
\(R F_{i}\) - response factor of component i
\(=\frac{\text { number of counts of component } i}{\text { number of moles of component } i}\)
\(\mathrm{R}_{1 i}\) - relative response of methane to component \(i\) (Eq. 3-20)
S - weight of solid support in packing mixture
SWW - solid weight wet, that is, weight of solid support + solvent + crucible

SWD - solid weight dry, that is, weight of solid support + crucible
\(\mathrm{T}, \mathrm{T}\) - system and ambient temperature
\(T_{c}\) - critical temperature
\(T_{R}-\) reduced temperature \(-T / T_{c}\)
\(t_{R i}\) - retention time of component \(i\), that is, the time required for a sample of component \(i\) to elute from the sample valve to the strip chart recorder.
\(t_{B}\) - residence time of a bubble in \(V_{B}\)
u - velocity
\(V_{B}\) - calibrated volume of the bubblemeter
\(V_{R i}\) - retention volume of solute \(i\)
\(V_{L}\) - volume of liquid in the GLC column
\(V_{g}\) - void volume, or free gas volume, in the GLC column
\(\mathrm{V}_{\mathrm{c}}^{\prime}\) - ideal critical volume \(=\frac{\mathrm{RT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\)
\(\overline{\mathrm{V}}\) - molar volume \(=\frac{\mathrm{V}}{\mathrm{n}}\)
WFL - weight fraction liquid on the GLC column (Eq. 5-1)
\(W_{L}^{o}\) - moles of pure stationary liquid on the GLC column
\(W_{L}\) - moles of stationary liquid and gas solution on the GLC column
\(W_{i}\) - acentric factor of component \(i\)
\(x_{i}\) - liquid mole fraction of component \(i\) (sometimes used to denote any mole fraction)
\(\chi_{1}\) - solubility (or mole fraction) of methane in the liquid phase
\(y_{i}\) - vapor mole fraction of component \(i\)
Z - compressibility factor
\(Z_{g}\) - carrier gas compressibility factor
\(\alpha_{i}(T)\) - correlation factor of Soave modification of \(R-K\) equation
\(\alpha_{i}-\) polarizability of component \(i\)
\(\beta\) - extrapolation parameter for determining \(V_{g}\)
\(\varepsilon_{i}\) - maximum expected uncertainty in property \(i\)
\(\rho\) - density
\(\phi_{i}\) - fugacity coefficient of component \(i\)
Subscripts
Ar - argon
a - ambient conditions
c - critical
```

ci - component i
CO}2 - carbon dioxid
C1 - methane
C8 - octane
C7 - heptane
g - vapor phase
He - helium
H2S - hydrogen sulfide
i - component i
L - liquid phase
MCH - methylcyclohexane
TOL - toluene
Superscripts
B - indicates run was made when GLC column was being bypassed
C - indicates run was made while GLC column was in stream
Other
\alpha - "proportional to"
\cong - "approximately equal to'"

```
vita
Charles Joseph Mundis
Candidate for the Degree of
Doctor of Philosophy

Thesis: VAPORIZATION EQUILIBRIUM RATIOS FOR \(\mathrm{CO}_{2}\) AND \(\mathrm{H}_{2} \mathrm{~S}\) IN PARAFFINIC, NAPHTHENIC, AND AROMATIC SOLVENTS

Major Field: Chemical Engineering
Biographical:
Personal Data: Born in Jefferson City, Missouri, August, 1945, the son of Mr. and Mrs. L. E. Mundis.

Education: Graduated from Muskogee Central High School, Muskogee, Oklahoma, in May, 1963; received Bachelor of Science degree from Oklahoma State University in July, 1968, with a major in Chemical Engineering; received Master of Science degree from Oklahoma State University in May, 1970, with a major in Chemical Engineering; completed requirements for Doctor of Philosophy degree in May, 1976.

Professional Experience: Employed as a process engineer trainee by Phillips Petroleum Company during the summer of 1967. Employed as a research engineer trainee by Monsanto Company during the summer of 1969. Employed as a research engineer trainee by Amoco Production Company during the summer of 1970. Currently employed as a research engineer by Cities Service Oil Company, Tulsa, Oklahoma.```

