

Soil Moisture Monitoring with LoRa Radios and UAVs

Introduction

Soil moisture levels are critically important to crop yields, yet they are often estimated based on experience, visible signs of stress in crops, and/or feel of soil. Soil moisture sensors add badly needed precision to watering but are often inconvenient for farmers due to reasons such as:

- They require wired power or regular battery maintenance
- The equipment (antennas and sensors) are partially located within crops above ground, creating obstacles for field equipment to avoid.
- They have short signal range, require wired networking, or manual data retrieval. [2]

We present a low-power, fully wireless IoT solution that utilizes completely buried sensors and UAVs to measure, record, and convey soil moisture levels.

Importance

- According to a recent study by the US Department of Agriculture, only 89 of 78,531 farms use soil moisture monitoring to determine when to water crops. [3]
- Water usage in Oklahoma is quickly rising and must be managed more deliberately.
- According to the EPA, topsoil erosion is the leading cause of pollution of lakes and rivers. This erosion can be attributed to overuse of water, among other things. [4]
- The technology of this system can be applied to control and monitor the effectiveness of irrigation methods and to measure other important soil properties.

Goal:

Method:

Acknowledgments (Thank you!)

- OSU-VPR, Summer Research Expo
- OK NSF-EPSCoR Award #OIA-1946093
- USGS Award #G16AP00077 •
- OSU Unmanned Systems Research Institute
- Taylor Mitchell, Allan Burba, and Andrew Cole

Unmanned Systems Research Institute

Levi Captain^{*}, Fahim Hossain^{*}, Russ Messenger^{*}, Dr. Jamey Jacob[§], Dr. Saleh Taghvaeian[†], Dr. Sabit Ekin^{*}, Dr. John O'Hara^{*} **Oklahoma State University** *Electrical and Computer Engineering [§]Mechanical and Aerospace Engineering ⁺Biosystems and Agricultural Engineering

Research Goal, Method, and Results

To determine if buried LoRa radios produce sufficiently strong signals in propagation through various soils to enable communication of soil moisture data to a UAV-based LoRa receiver hovering overhead, and to determine the communication link margins via determination of RSSI (received signal strength indicator).

Buried LoRa radios convey soil sensor data wireless a short distance through the ground with very low power and excellent battery life.

• The UAV has a LoRa receiver as payload and visits each sensor to collect data. Soil sensors buried at 1 foot deep with antenna polarization recorded.

• Measurements validated with research grade sensor (Campbell Scientific Hydrosense II) • Soil moistures during measurements ranged from 3 feet to 15 feet.

Parallel Polarization Tests

The antenna mounted on the drone and the antenna mounted on the buried LoRa transmitter are parallel.

• 4,000+ RSSI measurements were collected at heights of 3, 6, 9, 12, and 15ft in an approximately 150 ft x 150 ft square centered on buried transmitter.

RSSI indicate very usable communication is possible (RSSI > -80dB) at all heights, even out to transverse distances > 70ft.

Cross Polarization Tests

- perpendicular.
- 4000+ RSSI measurements were collected at heights of 3, 6, 9, 12, and 15ft, in an approximately 150 ft x150 ft square centered on buried transmitter.
- RSSI indicate very usable communication is possible (RSSI > -80dB) at all heights, even out to transverse distances > 70ft.

References

- Trellis soil moisture monitoring systems: https://mytrellis.com/
- Akyildiz, I.F. and Stuntebeck, E.P., 2006. Wireless underground sensor networks: Research challenges. Ad Hoc Networks, 4(6), pp.669-686.
- United States Department of Agriculture: 2017 Census of Agriculture: https://www.nass.usda.gov/Publications/AgCensus/2017/index.php.
- Five Major Challenges Facing North American Agriculture: http://seedstock.com/2012/04/18/five-major-challenges-facing-northamerican-agriculture/.

• The antenna mounted on the drone and the antenna mounted on the buried LoRa transmitter are

