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Abstract
Natural product discovery programs rely on diverse libraries of organisms to provide ac-

cess to a diverse pool of compounds. The quality and chemical diversity of these libraries are
therefore of utmost importance to the discovery efforts. Despite the heavy dependence on these
libraries, very little work has been done to determine the best way to construct these libraries.
Conventional approaches to library building assumes that the larger the library is the more di-
verse it will be and the higher the probability of finding novel bioactive compounds. However,
these large libraries are unwieldly to both manage and screen. The field of drug discovery would
benefit from tools that were able to assess the diversity and to direct future directions for library
construction.

Metabolomics is a sophisticated field that attempts to quantify the entire metabolic output
of an organism. The development of new metabolomics techniques has allowed the expansion of
metabolomics into many different fields, including drug discovery. Drug discovery libraries are
at the very heart of discovery efforts and the application of metabolomic tools to drug discovery
is an ideal way to investigate the diversity of drug discovery libraries. In an effort to address the
lack of concrete guidance about the construction of natural products libraries, we have tested two
aspects that are very important to the design of a drug discovery library: 1) the sampling depth
required for maximal chemical diversity, and 2) the collection strategy that results in improves
the library chemical diversity

While the normal course of drug discovery involves screening extract libraries and then
purifying compounds from active extracts based on bioassay data, this does not address the con-

cern of the library’s chemical diversity. Using metabolomic tools instead of those typical in dis-



covery labs may be a more appropriate strategy for answering basic questions about the construc-
tion of libraries. The combination of metabolomic tools with phylogenetic analysis allows for an
indirect extrapolation of chemical diversity in the library while making use of commonly used
tools that are used in library building. In Chapter 3, Alternaria was used to showcase a method
to build a library that encapsulates maximum levels of chemical diversity and suggests a strategy
to expand into previously unavailable chemistry. This study revealed that chemical diversity is
distributed within a genus in an unbalanced manner. Predictive analysis revealed that 99% of 4/-
ternaria chemical features would be detected if the collection consisted of 195 isolates. Feature
and scaffold accumulation analysis allows an observable level of the chemistry expected from a
group of organisms as well as identifying the contribution of new chemistry afforded by includ-
ing more individuals and leads to building a comprehensive library. These methods can improve
the chemical diversity of libraries that are the backbone of natural-product-based drug discovery.
Drug discovery efforts have in the past have emphasized the exploration of diverse envi-
ronments in the search for novel bioactive compounds. While this strategy has provided new
compounds, there is little evidence that new compounds cannot also be locally sourced. The use
of metabolomics tools has allowed the examination and comparison of the chemical diversity of
groups of organisms that were present in accessible as well as inaccessible environments. The
use of traditional metabolomics methods were used to compare the chemical profile of extracts
directly, while ecological methods were used to examine which scaffolds were present in both
populations or unique to one or the other population. In chapter 4, we use three species of Peni-
cillium that were present in both the sediments of Lake Michigan and soils from the states sur-
rounding this lake to investigate if the origin of the organism confers different chemical produc-

tion. The metabolic profile of each species showed marked overlap despite the different origin

xi



of organisms. The analysis of scaffolds revealed that between 78% and 83% of total scaffolds
were shared depending upon species. The community composition of these environments was
examined to determine how much overlap is present and while the two environments do share
some diversity, there is a community of fungi that is unique to the single environment. The re-
sults of this experiment suggest that the value of sampling diverse environments will be predomi-

nantly in those organisms that are unique to each space.
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Chapter 1: An Introduction to Metabolomics and its Uses

1.1 Metabolomics: a definition
Metabolomics is the study of the complete or near complete metabolic output of an organ-

ism,'” and is therefore characterized by detecting analytes at low concentrations in an extremely
complex matrix.” Metabolomics is the youngest of the “omics”, following in the footsteps of ge-
nomics, transcriptomics, and proteomics.” An “omics” field is one which takes a comprehensive
view on the field of study.” These metabolites are the summation of the genome, transcriptome,
and proteome.” Metabolites are the end products of many biosynthetic pathways; hence metabo-
lomics provides a downstream view of these cellular processes.’

As such, metabolomics can be used as a way to directly study the phenotype, but also has
larger opportunities and promise.””> Many metabolomics experiments focus on those compounds
involved with central carbon metabolism, this is likely due to the central importance of this me-
tabolism with downstream functions such as synthesis of nucleotides.® Metabolomics may be able
to provide answers to questions that reach across species boundaries than would genomics because
while the gene-structure may be very different from species to species, basic primary metabolites
are conserved and in most cases have similar function.’

In contrast to the older “omics”, metabolomics provides a direct snapshot of the influences
of genetics, environment, stage of development, etc. because it is most related to the phenotype of
the organism.”™*® A metabolomics study therefore shows what is actually happening chemically
in an organism as it reacts with its environment or in response to stimuli.>”

The complete collection of all small molecules (less than 1,000 Da) of an organism is re-
ferred to as the metabolome.® A wide range of techniques are currently in use for the analysis of

the metabolome. Because of the complexity of these samples (wide range both of compound type



and concentrations) the selection of a technique must be made by considering the focus of the
experiment.’ The successful application of metabolomics study therefore requires the use of sen-
sitive and efficient instrumentation. The diversity of the metabolome means that metabolomics can
be applied to a wide range of fields.

Metabolomics likely took longer to reach the prominence of genomics and proteomics be-
cause the instrumentation, data analytics, and computing power necessary to analyze the massive
amount of data to characterize the entirety of the detectible metabolome were slow to be devel-
oped.” This is understandable considering the many challenges inherent in metabolomics studies:
the vast number of metabolites produced, the variability of production of metabolites, the lack of
sufficient reference spectra to allow identification of metabolites, and variation in experimental
conditions that can cause inconsistencies in the data (instrument error or similar not related to
biology).® Many of these challenges are due to the complexity of organisms, and others are due to

limitations in the tools required to fully characterize that complexity.®

1.2 Targeted vs Untargeted metabolomics
Metabolomics studies are typically divided into either targeted (includes metabolite profil-

ing) or untargeted (metabolic fingerprinting) analyses.' A targeted metabolomics study involves
the investigation and quantification of a one or several target metabolites to the exclusion of all

1,9-10

other signals. This method is the most straightforward of the metabolomics experiments and

is often used for hypothesis driven analyses.” Targeted analyses are often the validation of an un-
targeted study that identifies the metabolites of interest.'’"'?
This type of analysis is appropriate if the compound of interest is known and can be ex-

pected in samples at a detectable level given appropriate sample preparation techniques.' However,

targeted metabolomics analysis largely ignores signals which are not associated with the target

2



compound, which leaves the vast majority of chemistry unstudied.' A variant of targeted metabo-
lomics is metabolite profiling. This technique quantifies the level of a suite of metabolites (often
related to a particular metabolic pathway).' The assumption of metabolite profiling is that there
would be an observable difference in the metabolite levels despite a non-observable phenotypic

. . 1
change in response to stimulus.

1.2.1 Targeted Metabolomics
Targeted metabolomics can also be used to observe the specific consequence of a disease,

condition, or environmental exposure on the metabolites of interest. Depending upon the experi-

11,13 10
* 7, or could be more targeted .

ment these metabolites could be involved in central metabolism
Targeted metabolomics can also be used in the study and diagnosis of disease states because they
involve the quantification of a known metabolite or metabolites. A targeted study of 19 neuro-
transmitters in patient plasma was conducted with the intention of developing an objective diag-
nostic for major depressive disorder by identifying diagnostic biomarkers for the condition.'
While more validation is required, the model was able to distinguish between plasma of a patient
with major depressive disorder and bipolar disorder.'’

The identification of plasma based biomarkers of early stage gastric cancer would lead to
greatly improved prognosis for patients.'’ In the course of a targeted metabolomics study, both
phenylalanine and tryptophan and their associated pathways were found to be perturbed in the
serum of patients of gastric cancer.”” While further work is necessary with larger sample sizes to
confirm that these are associated with the disease state and are similarly perturbed when analyzed
by other hands, this finding is useful in the context of understanding the disease."

Targeted metabolomics analysis can also be used in environmental contexts. This type of

analysis is useful to track the exposure of organisms overtime as well as develop risk assessments



associated with contamination of aquatic environments with pharmaceuticals or other environmen-
tal pollutant.'" A targeted metabolomics method was developed that was able to detect the selected
pharmaceuticals concentrations as low as ng/L for river water or ng/g in freshwater crustaceans
which are often used in biomonitoring studies.'' In response to the most toxic pharmaceutical
tested, there were significant differences in 19 of 29 metabolites, and the pattern of fold-change in
metabolites differed depending upon the pharmaceutical tested suggesting that different pathways

were disrupted."’

1.2.2 Untargeted Metabolomics
In contrast, untargeted metabolomics seeks to detect patterns in feature intensity that cor-

relate with experimental conditions.'* Untargeted metabolomics experiments are often considered
to be exploratory and hypothesis generating.”> For instance, extensive untargeted metabolomics
studies have shown that many neurotransmitters are perturbed in patients with major depressive
disorder.'” These studies informed the targeted study that has suggested some diagnostic criteria
for patients with this disorder which is currently being diagnosed based on subjective interpretation
of symptoms.'® The identification of biomarkers often begin with untargeted analyses which are
then validated by targeted analysis.

While targeted analyses ignore all signal that are not associated with the target compounds,
untargeted metabolomics experiments considers all metabolites above the limit of detection, with
the goal of identifying which metabolites are altered by the experimental conditions.” This tech-
nique is often referred to as metabolic fingerprinting because it observes the overall profile of
metabolites present in a sample without trying to quantify or identify all of these signals." This

technique is often applied to the discovery of metabolites that are markers of disease states.'



Untargeted analyses, such as fingerprinting, provide a more complete picture of the meta-
bolic output of the organism."> Metabolic fingerprinting is a technique which can and has been
used to determine the influence of a change on organisms. This change could be something as
organic as developmental changes as an organism matures or the differences between species, but
could also be used to probe the differences caused by environmental changes or the metabolic
consequences of a disease.” It is a technique which is easily adapted to a high throughput system
allowing the rapid analysis of the many small samples.®

Untargeted methods can be applied to the analysis of environmental and ecological samples.
The growing conditions (such as altitude, climate, soil, temperature, harvest time, etc.) have an

influence on the metabolomic profile of plants.'®"’

Untargeted metabolomics can be used to in-
vestigate taxonomic plasticity within loosely described phylogenies, such as those found in several
species of coffee.'” The analysis of leaf samples of 9 different species revealed that despite having
a unique metabolic profile associated with each species, that all species varied similarly when
samples were taken at different times throughout the growing season.”> This suggests that identi-
fication of species might be possible with only a leaf sample to analyze. This could potentially
indicate that common pathways are responsible for the seasonal changes observed.

Untargeted metabolomics experiments have been used to determine the ecotoxicological
repercussions of the application of common fungicidal compounds on the metabolic profile of
earthworms.'® Despite a lack of significant change in body weight of worms, PCA showed signif-
icant differences in the metabolomes of worms exposed to every tested dose of fungicide.'® This

is one of the most valuable aspects of metabolomics: detecting changes before the stimuli causes

visible change in the phenotype of the organism.'® Further, the two enantiomers of metalaxyl



showed different changes in the metabolome of treated worms: metalaxyl-M (97% R-enantiomer)
was found to have a lesser impact on the earthworm urea cycle than did the S-enantiomer alone.'®
Untargeted metabolomics can also be applied to the analysis of healthy vs diseased sam-

1919 Because there are quite distinct metabolic differences between healthy cells and malig-

ples.
nant breast cancer cells, metabolomics is a potentially valuable tool to differentiate between cell
types and provide early diagnostic, which could save lives."”” The use of untargeted NMR-based
metabolomics revealed a metabolic profile that showed near-complete separation between samples
from early patients as opposed to patients with metastatic breast cancer.'” However, examination
of a larger cohort is necessary to validate these results.'” In an additional study, untargeted metab-
olomic fingerprinting was able to distinguish between clinical strains of Bacillus cereus and non-
virulent laboratory strains.* This is important in the profiling of this organism because there were
no observable genetic differences to predict the pathotype of strains.*’

While both targeted and untargeted metabolomics have their individual strengths and
weaknesses, the most powerful use of metabolomics is to combine the quantitative aspects of tar-
geted metabolomics and the wide qualitative aspects of untargeted metabolomics, thereby identi-
fying previously unknown metabolites as well as tracking the level of such metabolites in response

to given experimental conditions.”' This is the case for the investigation of neurotransmitters as-

. . . . . 10
sociated with major depressive disorder .

1.3 Analytical tools used in Metabolomics
Metabolomics can make use of a number of analytical tools, but the most popular are

NMR'* %2 and mass spectrometry (MS)”® '>?**> NMR is a tantalizing option for metabolomics
analysis because it is a non-destructive technique, which will allow the reuse of sample."*' Addi-

tionally, NMR-based metabolomics requires minimal sample preparation of biofluids.>*'* NMR

6



is a relatively quick technique which is particularly suited for analysis of amino acids and carbo-
hydrates.'® However, the interpretation of the NMR spectra of complex mixtures is very difficult
and less appropriate for metabolites at low abundance. ' '"*! Despite this, NMR-based metab-
olomics have been used to investigate the metabolic consequence of environmental contamination
by fungicides'®, the differential effect of environmental conditions on green tea leaves'®, identifi-
cation of pathogenicity in a bacterial species®’, and the differentiation of cancer stage in plasma

19
samples .

1.3.1 Mass Spectrometry
MS is a sensitive technique appropriate to detect a wide range of metabolites, even at low

concentrations.' MS works by generating ions which are then separated based on their mass-to-
charge ratio (m/z) and detected by a mass detector.”® While the direct injection into the mass
spectrometer is a rapid method, which can be used for both metabolite fingerprinting or profiling,
the complexity of the data is problematic because ionization efficiency is reduced and there is no
way to distinguish between isomers which share a mass."”*' To improve the accuracy of data, MS
is often best utilized when coupled to a variety of front-ends which provides a separation of com-
pounds prior to mass analysis.' The inclusion of a separation step minimizes situations where iso-
baric metabolites are co-eluted and detected by the MS jointly.” This allows for the deconvolution
and separation of different metabolites which share a mass.*' This step is important because me-
tabolites are not generally sufficiently unique to be useful in a direct injection experiment.®
Hyphenated MS techniques detect a large number of metabolite “peaks” which are referred
to as “features” and are defined by the unique combination of retention time and mass-to-charge
(m/z) ratio.”> The term feature is used in preference of compound or metabolite in refereeing to

MS-based signals because in the course of ionization each compound may produce a number of



different ions: adducts, dehydrations, dimers, dimers of adducts etc.’® A mass analyzer which is
capable of MS® or MS" is the most helpful in metabolomics studies because it provides some
structural information based on the loss of characteristic mass losses or more largely characteristic
fragmentation patterns.”’ But despite this, most features cannot be identified from MS-based
metabolomics experiments without additional and extensive experimentation.”> The lack of anno-
tation of LCMS features is a major road block in the interpretation of metabolomics data.'* *>?’
MS is a valuable tool for metabolomics, not the least because of the adaptability of front
end systems.” Hyphenated MS is a marked improvement on direct injection because it allows the
separation based on polarity in addition to mass thus simplifying the composition of the mobile

1.14.28 Wwhile there is no one

phase when it arrives at the ionization source limiting co-suppression.
separation technique that will be uniformly acceptable for all metabolomics studies, the consider-
ation of the goals of the experiment and the available technology will allow allows an almost
infinite adaptability for separation. Hyphenated MS techniques include capillary electrophoresis
mass spectrometry (CEMS), gas chromatography mass spectrometry (GCMS), and liquid chroma-

tography mass spectrometry (LCMS). These techniques are variably appropriate for the analysis

of a wide range of analytes from a wide range of samples.

1.3.1.1 Hyphenated MS techniques: Capillary Electrophoresis Mass Spectrometry
One possible front-ends to supply a separation prior to MS analysis is capillary electro-
phoresis (CE). CE is a technique that separates by their size to charge ratio, making it appropriate
for the analysis of polar and charged compounds® %, thus it is a good candidate for the analysis
of many biomolecules.” Depending upon the coating of the capillary, CE can be used to sepa-

rate cationic or anionic molecules.® CEMS instruments are occasionally built in house, which



makes for creating the standardization that is required for metabolomics analyses difficult.’ This
has most likely contributed to the impression in the community that CE is not sufficiently repro-
ducible and sensitive to be useful when coupled to MS in the context of metabolomics experi-
ments.'” There have however been some advances that suggest that CEMS could be a contender
in the metabolomics field.'?

CE can separate compounds in an aqueous system, making it a valuable tool for the anal-
ysis of bio-fluids such as urine.’ There is additionally minimal sample preparation and is a tech-
nique that can be adapted to use minimal sample volumes (nL-range in some cases) . In some
cases CE able to analyze the contents of a single cell.”” These characteristics prompted tests to
discover the utility of this method to the field of metabolomics. This method was tested by ana-
lyzing plasma samples that had been spiked with a series of isotope labeled biomarkers at several
concentrations.'” This method was able to detect the differences in samples which were charac-
terized by presence/absence differences as well as differences in concentration of spiked in bi-

omarkers.'?

1.3.1.2 Hyphenated MS techniques: Gas Chromatography Mass Spectrometry
Gas chromatography (GC) is another potential front end which provides chromatographic
separation prior to MS analysis.> GCMS/MS is appropriate for the analysis of biological sam-
ples and using MS databases can provide putative identification of carbohydrates, alcohols,

amino acids, organic acids, and fatty acids.’*”'

However, GC occasionally requires derivatiza-
tion (a process that converts less volatile compounds to compounds that will be detected in the

gaseous state) prior to separation.® ! Depending upon the compounds of interest the derivatiza-



tion will be different.® GC is not appropriate for compounds that are not stable at high tempera-
tures.” GCMS has been used in a wide range of metabolomics experiments including, but not
limited to, analysis of changes in potato metabolome depending upon cultivar and length of stor-
age’', taxonomy of fungal species which had previously been possible using traditional mycolog-
ical techniques®, pathway analysis of the response of components added to growth medium?®,

and quantifying neurotransmitters associated with major depressive disorder'.

1.3.1.3 Hyphenated MS techniques: Liquid Chromatography Mass Spectrometry

LC is one of the most common front ends for MS-based metabolomics studies.> %11 13 13-

23273233 [ CMS has limit of detection that is significantly lower than those found in CEMS or
GCMS metabolomics experiments allowing the detection of features at low concentrations.® '
The combination of GCMS and LCMS/MS was used to quantify both high and low abundance
neurotransmitters.'’ The use of LCMS/MS allowed detection of neurotransmitters at concentra-
tions that were more than 2 orders of lower than those detected by GCMS in addition to overcom-
ing challenges associated with each method individually.'’

LCMS is considered to be particularly useful for the analysis of secondary metabolites—
especially those from plants—because these classes of metabolites are typically semi-polar.'’
LCMS is not typically appropriate for compounds that are highly polar because they are difficult
to separate on the most typical stationary phase columns.’ LCMS is a good candidate for metabo-
lomics experiments because of the ability to separate a wide range of metabolites of varying po-
larity, high reproducibility from run to run, and the simplicity of mobile phases which is ideal for

electrospray ionization (ESI).” LCMS metabolomics has been used for a very wide range of anal-

yses including: the analysis of environmental samples and model organisms to asses the inpact of
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contamination with pharmaceuticals'', the analysis of plants to determine the genetic and
p y p g

15, 32

environmental influences behing metabolic change ™ °°, investigation of metabolic consequences

. 13 . 10 . . .
of human diseases such as cancer” > and depression'’, and investigate the secondary metabolite

23,27

profiles of fungi

1.4 Metabolomics Workflow
The general steps of a metabolomics experiment based in mass spectrometry will include

the following basic steps data generation which consists of sample collection, preparation, and
sample analysis (including separation via LC and mass detection via MS); data processing which
takes the raw data files and creates an aligned peak list; and data analysis which includes a variety

of statistical techniques in addition to data interpretation.’

1.4.1 Data generation

1.4.1.1 Sample selection and preparation for metabolomics experiment

The Metabolomics Standards Initiative has a stated goal of creating a “minimum reporting
standards” for metabolomics experiments.”* As part of this work, this august group has made a
variety of recommendations for the design of metabolomics experiments, including the recom-
mendation that at least 3 but preferably 5 biological replicates be used for metabolomics analysis.'>
134 Despite these recommendations, a power analysis is the best way to determine the appropriate
number of samples for the specific experimental conditions.” A very typical conclusion from a
metabolomics experiment is that the study should be repeated with a larger number of samples to

validate the results.' 13031
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After the number of samples is determined, the next step is sampling and preparing the
samples. Because metabolite levels can differ based on when in the day they are sampled, con-
sistency is important when sampling, so that sampling artefacts are not interpreted as differences
between treatments.'> Samples are often flash frozen in liquid nitrogen to prevent metabolic con-
version which would skew the “metabolic snapshot”.!” Similarly, the extraction procedure should
be conducted such that enzymatic activity is minimized, usually by processing sample while main-

. 11,17,25,35
taining cold temperature. * "~

The best sample preparation steps should be fairly simple and
be applied universally to all samples of the study.’

To correct for these internal differences that are common in biological samples, it is good
practice to take several samples from each patient which when analyzed will give an idea of the
base-line variation to be expected in that patient.'” One of the challenges of metabolomics is the
innate variability in biological systems: it is conceivable that significant metabolic variation as a
result of patient age, gender, etc. ."”

To eliminate signal drift, a quality control sample that was generated from pooling exper-
imental samples should be run periodically with the experimental samples which were randomized
to reduce any confounding effects.'>*® Additionally, it is wise to analyze data in randomized order
to minimize the effect of subtle changes in the column or ionization source that occur as time

progresses.’’ It is also possible to adjust the retention/migration time using internal standards.’

The use of an internal standard also allows for more accurate quantification."’

1.4.2 Data processing
The peak list that is the output of a metabolomics study is a huge amount of data that is

then processed and transformed into manageable data which can be used to draw conclusions.'>
"The processing of data is critical to avoid false conclusions from metabolomics studies.”” This

often begins with the removal of signals from the data set that originate from the extraction process
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or media components allowing the focus of the analysis to be on the signals that are real and dis-
tinct based on the treatments.”’ Removal of spurious features is an important step in metabolomics
analysis: typically features that are present in blanks are not likely to be experimentally useful, nor
are feature that are present in only a single sample.” The addition of a MS2 fragmentation pattern
to these details can be used to dereplicate features.!

Not all variations in feature intensity are related to the biological differences between sam-
ples.” Errors in sample preparation, sample injection, or instrument performance can cause differ-
ences in peak intensity.”> Normalization is used to correct for these errors, and allow the biological

differences to become apparent.” '***

Normalization to the total ion current is the most typical
type of normalization, in which the intensity of each peak is normalized to the total sum of inten-
sities in each chromatograph.”’ Depending upon the questions of the study, the data may be nor-
malized to the internal standard allowing more accurate quantification of features.”® This tech-
nique is most successful if at least one isotope labeled internal standard is used.® An alternative
method is to transform the data to indicate presence/absence rather than the intensity of each peak.
This allows metabolites to have equal weight regardless of if they are high or low intensity peaks.'

Ultimately, this data will be analyzed and visualized using both supervised and unsupervised meth-

ods to determine the overlap profiles and define boundaries between groups.'?

1.4.3 Data analysis
Metabolomics has seen a renaissance in recent years as the computational tools required to

efficiently handle the massive amounts of data that are produced in a typical metabolomics study
are becoming more accessible.”” The objective of many metabolomics studies is to determine how

9,13,33

the metabolome of one population compares to different populations. This is accomplished

by adopting the null hypothesis that there is no variation of metabolomes between populations.'*
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3 After conducting a series of tests using either univariate or multivariate methods, the null hy-
pothesis may be rejected if the type I error is below the previously designated threshold (often at
5%)."*3° Many studies often then identify those metabolites that are responsible for the divergence
of profiles, 1% 12113 18.36

Univariate methods are used in metabolomics when specific features are being compared
between groups.” *° Univariate techniques are particularly well suited to targeted metabolomics
experiments because they consider the intensity of a specific feature across the sample set.” '*'"
*? These methods often include ANOVA or student t-tests, and each feature must be tested by an
ANOVA or t-test individually.” While it is manageable to test features individually up to a point,
it becomes very difficult to examine the entire metabolome, which may be made up of thousands
of features on an individual basis.” The complexity of metabolomics data often requires the use
of multivariate statistical models to reveal the trends hidden in the masses of data."> This is where
multivariate techniques come into shine. Multivariate techniques analyze multiple variables sim-
ultaneously, so are very well suited to analyzing metabolic profiling/fingerprinting experiments.'™®
223032 Depending upon the objective of the experiment, a strategic combination of multivariate
and univariate analyses can be beneficial to reducing the number of features that need to be ana-
lyzed.*®

Both supervised (PLS-DA, RF, etc.) and unsupervised (PCA, PCoA, etc.) methods of mul-
tivariate analysis are important tools for the analysis of metabolomics studies. The primary dif-
ference between supervised and unsupervised methods is the blinding of the data in unsupervised

40-41

methods. Supervised methods analyze for metabolic differences between classifications the
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investigator stipulates. These classifications would align with the experimental groups: dis-

eased/disease-free, drug treated/vehicle control, mutant/wild-type etc.” *'

While unsupervised
methods look for patterns in variables without prior knowledge of the groups.”!

Principal component analysis (PCA) is an unsupervised technique often used to define
trends in data by creating groupings that are not defined by metadata.'"® PCA only shows differ-
entiation if the within group variation is not much lower than the between group variation."> Fol-
lowing PCA, a supervised technique such as partial least squares-discriminant analysis (PLS-DA)
can be used to determine the metabolites that differentiate the treatments,'® >3 1536

Unsupervised methods examine the data simply based on the variations within the data,
without investigator classifications and are therefore unbiased analyses.” These methods are par-
ticularly useful when expected differences are small or when inter-sample variation is high because
supervised methods are only able to distinguish differences between defined groups only when the
out-of-group variation is higher than the in-group variation.*” Unsupervised methods only con-
sider the simultaneous relationships between the presence and intensity of the features and is there-
fore an unbiased analysis of the chemical profile of the sample.” One of the most commonly used
unsupervised metabolomics analytical tool is principal component analysis (PCA) because this
method is equally effect in either untargeted or semi-targeted studies.”'

Both PCA and PLS work by focusing the analysis on those variables (in the case of metab-
olomics features) that are diagnostic of the groups that are designated by the experiment, either as
determined by the investigator or on the merit of the data alone.® PCA uses linear transformations
to reduce the dimensionality of the data while maintaining as much variance as possible.® This

method, because it is unsupervised, requires that groups be rather homogenous, this makes it ap-

propriate for the analysis of untargeted metabolomics datasets.® PLS is another method of reducing
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the dimensionality of a data set, but it is a supervised method in which groups are designated by
the investigator, which make it a good choice for hypothesis driven untargeted metabolomics ex-
periments.®

While the data from supervised methods is useful, it is subject to being overfitted.” Over-
fitting occurs when the model is generated from an excessive number of variables.’>** The model
therefore appears to fit the existing data, but will fail to be validated by a repeated study.* This is
most likely the reason that despite considerable effort, there has been so little success in the dis-
covery of biomarkers for a variety of disease states: models were overfitted and therefore could
not be validated given a different sample pool.'> Overfitting of data is more likely when samples
are at low concentration, emphasizing yet again the importance of appropriate sample prepara-
tion.”” Overfitting can be avoided by dividing the data into a training dataset, a validation dataset,
and a test dataset.” If these datasets are assigned randomly and the trends remain the same through
several iterations of analysis, the results are likely not due to overfitting of the data and the use of
them will be a valid outcome of the experiment.’

Selection of the appropriate method must come from the experimental design. Because
PCA is an unsupervised method, it is generally best suited for analysis of exploratory experiments
with an aim to remain unbiased when testing the homogeneity of the groups.® The results of these
methods are scores which can be plotted in a scatterplot to visualize the differentiation of groups.®
However additional metrics must be used to determine the statistical relevance of the resultant

distributions.®
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1.5 Challenges associated with metabolomics (emphasis on MS)
The unparalleled sensitivity of MS achieves very low detection limits, so when used for

MS-based metabolomics results in a large number of low-intensity signals which are likely un-
known and are below the level of detection for most tools necessary to determine the structure (i.e,
NMR).?' While it is tempting to consider each signal/peak found in a MS-based study as an indi-
vidual compound, this is not the case.” Peaks in the chromatogram are generally referred to as
“features” rather than compounds or metabolites because a single metabolite might ionize in a
number of ways, form a variety of adducts, or fragment in the source resulting in multiple features
originating from a single metabolite.”

These features are identified by a unique combination of retention time (RT) and mass to

charge ratio (m/z).>*°

Each feature is exported along with its intensity, determined by calculating
the area under the curve of the peak.’® This value is a measure of the relative intensity of the
feature’s abundance.’® In many cases, features are typically matched by their UV and RT to an
libraries for dereplication and identification of potential new compounds, but this is not necessarily
transferable between instruments or laboratories.” Therefore, one of the most challenging aspects
of metabolite data analysis is the identification of the features detected in the analysis.” '**” Indeed
the vast majority of features detected in these experiments require extensive additional experimen-
tation to be fully confirmed.”

Despite these challenges, some feature identification can be achieved by matching MS2
spectra to libraries of spectra available either freely or by subscription.” These databases will gain
in value and accuracy if reference spectra are constantly being updated and expanded. And indeed
there are increasing numbers of libraries and databases which can be used to dereplicate features
in metabolomics studies based primarily on MS2 fragmentation patterns, but occasionally incor-

21

porating retention time and UV pattern.” Although these efforts are somewhat impeded by the
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fact that there will be differences in MS2 fragmentation patterns based on the mass analyzer or the
brand of the instrument, to say nothing about the variability associated with chromatographic sep-
arations.”'

However, matches to library spectra can only provide putative feature identification.>* *°
The confirmation of identity of these putatively identified metabolites is a major bottle neck in the

. 14,27
metabolomics workflow. ™

Despite the advances in the field, the unparalleled level of detection
of MS has meant that the vast majority of chemistry observed in metabolomics experiments cannot
be identified.** These identifications should ideally be confirmed by comparing the m/z and RT of
an authentic standard run under identical experimental conditions to the original experiment.** *°
This is particularly problematic for the analysis of secondary metabolites as opposed to primary
metabolites because of the wide diversity of secondary metabolites and the lack of commercial
standards which would allow the confirmation of feature identity.'” Because of the time investment
involved in making these putative matches, and the vast number of features in a metabolomics
analysis, a triage step is necessary to determine which features will be important in the context of
the study.’® This assessment is conducted with the help of either multi or univariate statistics.*®
Multivariate approaches are more efficient for LCMS metabolomics datasets because they analyze
multiple variables simultaneously, but the inherent complexity of the dataset and the complexity

of analysis there is a substantial risk of overfitting the model to the data such that the model be-

36
comes less accurate.

1.6 Applications for metabolomics
Metabolomics analysis can be applied to answer questions in many fields that involves the

1, 5, 11, 13, 15-16, 18-19

comparison of metabolite levels between groups. These include diseased to
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healthy organisms, mutant to wild type, stress due to abiotic factors to unstressed, mature to im-

1,5,11,13, 15-16, 18-19

mature, to name only a few. Metabolomics is particularly well suited to identify

biomarkers for a disease-state or track changes that occur as a result of a treatment, either by its
presence or absence.” > '

Cancer diagnostics is perceived to be a particularly promising target for metabolomic anal-
ysis because cancer is known to cause profound shifts in metabolism of cells even at early stages.™
119 1deally these biomarkers can be identified and traced back to a metabolic pathway to shed
light on to the metabolic consequence of the experimental conditions.'* Because there are quite
distinct metabolic differences between healthy cells and malignant cancer cells, metabolomics is
a potentially valuable tool to differentiate between cell types and provide early diagnostic, which
could save lives by allowing earlier detection.”” However, despite many metabolomics studies and
considerable effort dedicated to defining biomarkers of a variety of disease states, this has not
translated into the adoption of biomarkers in the clinic.

The diagnosis of major depressive disorders is currently a very subjective process, which
can often leave patients in a gray area where their actual diagnosis is unclear.'’ The use of metab-
olomics can perhaps allow a more objective approach to the diagnosis of this disorder and other
mental health disorders.'’ By focusing this analysis specifically on neurotransmitters rather than
more general metabolites, the authors were able to identify pathways that are perhaps pathogenic
of the disorder.'” This study found that patients with major depressive disorder had a different
metabolic profile than did those patients with bipolar disorder, which suggests that there is promise
for identifying biomarker that will objectively diagnose metal health diseases.'’ This points to-

wards improvements in accurately diagnosing the condition as well as investigating the mechanics

of the condition which might allow a novel treatment approach.'
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Related to this concept, metabolomics may be applied to monitoring and quantifying the
intermediates of metabolic pathways, to give a snapshot of the phenotype of the organism.”' The
examination of metabolomic information in the context of pathway analysis can provide a wealth
of information about disease progression in different populations of people’ or to how organisms

respond to environmental contaminants' " '®, '?

The understanding of the molecules that are altered
from a healthy state to a diseased state can help in identifying the metabolic pathways that are
influenced by the disease and can in turn suggest targeted therapeutics for the disease.”

More broadly, metabolomics experimentation can be used to observe metabolite fluctua-
tions in response to environmental conditions, ecological questions can be answered using metab-

7,11, 15-16, 18, 24

olomics. The investigation of the influence of biotic or abiotic stresses on the meta-

bolic output of plants or microorganisms can lead to better understanding of normal metabolism

7,18, 24
as well as stress responses.”

Metabolomics has the potential to expose the subtle changes in
metabolism in response to pollutants despite the lack of an observable phenotypic response.” This
would be useful to help ameliorate the effects of pollution because it gives a better idea of the

actual toll pollution is taking on the organism.”'®

Metabolomics analysis was also used to discover
the impact of pharmaceuticals on a sentinel aquatic organism.'' While studies with more pharma-
ceuticals would be beneficial, the observation of the impact of environmental contamination is an
important issue that metabolomics can perhaps begin to address.'' Metabolomics can be used to
assess the levels of contamination of the food supply”’ as well as determining the nutrient levels
of that food.*® Other applications of metabolomics to ecology are limited only by the imaginations

of investigators provided appropriate experimental design which will allow results to be meaning-

ful in the context of ecology.’
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Metabolomics also shows great promise for the analysis of complex extracts for natural
products discovery.” Metabolomics technology has progressed sufficiently, that not only are
metabolomics experiments expected to be able to provide putative identifications of natural prod-
ucts, potentially highlighting new metabolites in the process, but some work has been done to
highlight the active features in complex mixtures, which promises to define the future of natural
products discovery.*’

Traditional natural products discovery is approached through bioassay guided fractionation,
but this strategy is biased towards abundant compounds that are easily detected and isolated.’” The
wide range of natural products makes for a daunting isolation process because natural products are
not typically encountered as single molecules, but as sets of compounds representing the total
metabolic outputs of organisms.*® Metabolomics analysis can be used to expedite the discovery
process and allow the focus removed to the less abundant metabolites.”” This is especially true in
the hyphenated MS techniques. Modern separation science is able to achieve a high degree of
resolution with the help of ultra performance LC systems. This coupled to MS which is one of the
most sensitive instruments available gives great power to sift through signals both high and low.*"
*® The use of MS2 fragmentation patterns can also help to differentiate peaks with similar m/z and
RT, but different structure.*” Metabolomics is a valuable tool for focusing natural products dis-
covery on the bioactive metabolites in a complex mixture.”’

In the context of natural products, molecular networking is potentially a very powerful tool.
Natural product families or scaffolds shows higher correlation with the biosynthetic gene clusters
than do individual natural products.* This suggests that networking analysis based on MS2 pattern
is a valid approach to natural products metabolomics.*® Suggesting that if a single feature is found

to be active, then the other features, that share that same active scaffold by merit of being in a
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shared network, would be good candidates to probe structure activity relationships. Metabolomics

has become a valuable tool which can be used to probe many questions relating to natural products.

1.7 Chemical diversity and metabolomics
Metabolomics is a tool that has and can be applied to a wide range of fields. At the heart

of metabolomics is the description of chemical diversity. This is often interpreted as a comparison
between treatments, but can be applied more broadly to describing the chemical diversity of a
group of organisms. Metabolomics has previously been applied to some aspects of natural prod-
ucts discovery, but thus far has not been applied to assessing the chemical diversity of the libraries
used to discover natural products. This work represents the first steps in providing evidence-based

guidance to inform library building.

Chapter 2: Hypothesis and Chapter Overviews

2.1 Hypothesis
Drug discovery libraries make up the backbone of the natural products discovery pipeline.

Despite this reliance upon the library, there is little to no evidence-based research to guide the
construction of these libraries. Metabolomics is a valuable tool which can be used to examine
the metabolic output of an organism making it a valuable tool in the evaluation of natural product
library chemical diversity. With the aim of initiating rational natural products library assessment
and design, the hypothesis guiding my research was: metabolomics is a valuable tool that can
be combined with common diversity measurements to assess the diversity and inform the
design of drug discovery libraries. This hypothesis was tested via the following specific aims:
1. Use metabolomic analyses to investigate the chemical and genetic diversity within a fun-
gal genus to determine the appropriate library size to achieve maximal chemical diver-
sity.
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2. Use metabolomic analyses to probe the value of niche environments in the development

of a natural product extract library.

2.2 Building Natural Product Libraries Using Quantitative Clade-Based and Chemi-
cal Clustering Strategies
In Chapter 3, I present the development of a method to assess the chemical diversity of

natural products discovery libraries. Natural products libraries are often built upon the assump-
tion that genetic diversity will result in chemical diversity. The degree to which genetic diversity
results in chemical diversity is however unknown. The distribution of chemistry within a genet-
ically similar group is also largely unexplored but is particularly relevant to natural products li-
braries. Depending upon the chemical homogeneity of strains, library size could be inferred to
maximize chemical diversity. This work aims to address this question by combining chemical
and genetic analyses. While traditional metabolomics-based data analysis is employed, the
chemical diversity is explored using tools adapted from ecology. This hybrid approach to as-
sessing library diversity allows the prioritization of certain strains that would maximize the
chemical diversity of the library as a whole. This improvement in library building strategy could

result in more successful discovery efforts.

2.3 Assessing Metabolic and Biological Diversity to Support Natural Product Li-
brary Assembly
In Chapter 4, I discuss the investigation of the source of organisms included in natural

products discovery libraries and the value of these organisms to the chemical diversity of those
libraries. In the search for novel natural products, many extreme and remote environments have
been surveyed, the assumption being that organisms that have adapted to live in such environ-

ments will have chemical production capabilities that are not observed in organisms found in
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more accessible locations. While there have been cases that extremophiles have been found to
produce novel chemistry, the value of these organisms to libraries has not been firmly tested.
Does the environment shape any organism that can persist to survive in it to produce novel
chemistry, or does the environment select for organisms that are suited to that environment and
these organisms are inherently more likely to produce novel chemistry? This is a complex ques-
tion to answer and will require a different collection strategy based on the answer. In an effort to
address the first question, we investigate the first point and examine organisms that are found in
both inaccessible and accessible locations to determine if there is any evolutionary plasticity in
their chemical output. Answering this question will allow the refocusing of collection efforts
with the emphasis on those organisms most likely to increase the library’s chemical diversity.
This will in turn aid in the search for novel chemistry that will aid in the search that is the heart

of natural products discovery.

Chapter 3: Building Natural Product Libraries Using Quantitative Clade-Based and
Chemical Clustering Strategies
This chapter was adapted from a paper with the same title that has been submitted to mSys-

tems in May 2021. The authors are Victoria Anderson, Karen Wendt, Fares Z. Najar, Laura-Isobel
McCall, and Robert H. Cichewicz. The work presented in this chapter was conducted as follows:
Victoria Anderson performed fungal culture, DNA barcoding and phylogenetic analysis, fungal

extract preparation, LC-MS-MS data collection, and metabolomics data analysis.

3.1 Introduction
Drug discovery has changed tremendously during the last century, with the process un-

dergoing continuous reinvention to avail itself of new scientific methods and trends. Numerous
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ideas and tools have been put into practice, resulting in the creation of many chemical collections
used in modern drug screening and molecular probe development throughout academia, industry,
and government. Small-molecule libraries based upon organic compounds of various sizes (e.g.,
<900 Da for most synthetic libraries, but ranging up to around ~2,000 Da for some natural prod-
ucts) play a dominant role in such efforts, with collections accommodating a variety of screening
and discovery methodologies (e.g., fragment-based, target-focused, diversity-oriented, combina-

torial, DNA-encoded, repurposed, virtual, and more).*™>*

Despite the vast amounts of time, money, and energy poured into building small-mole-
cule screening collections, the answers to many basic questions about their design and develop-
ment, such as identifying optimal collection size, are largely driven by adherence to dogma or
convenience rather than evidence-based reasoning. Such questions grow increasingly relevant as
opinions influencing the last four decades of library design have shifted tremendously with the
large collections of the 1980s and 1990s (e.g., combinatorial chemistry””) being replaced by

56-57

smaller tailored collections (e.g., “focused” collections™ ") in the early 2000s, and now moving

58-60 61-63

toward mega-scale libraries (e.g., encoded libraries™ ™) in recent years.
While such trends are strongly linked to the creation of synthetic chemical collections, a
similar set of concerns applies to the construction of libraries assembled from natural sources
(e.g., microorganisms, plants, and more). Many ideas have emerged relating to best practices for
building natural product libraries with extracts, fractions, and pure compounds defining the three

64-67

dominant types of chemical complexity encountered in screening collections. Despite the tre-

mendous ingenuity and effort that has gone into assessing these and other methods of building
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natural product libraries, comparatively less consideration has been given to identifying optimal
sample sizes needed to construct nature-based screening collections. Answering such questions
are important since the degree of chemical diversity in a screening collection is considered a key

. . . . 68-69
contributor to the success (or failure) of bioassay screening endeavors.

A possible reason for neglecting this problem may stem from the fact that as opposed to
synthetic libraries, natural products are encountered not as single molecules, but as compound
sets (e.g., metabolomes) representing the total metabolic output of each organism. Given the de-
gree to which natural product biosynthetic gene clusters and their molecular controlling factors
are swapped, recombined, and otherwise altered within host organisms, even the metabolomes of
low-ranking monophyletic clades (e.g., a species or genera) can exhibit divergent chemical pro-
files. These factors can make the rational design of natural product libraries challenging. There-
fore, methods to perform chemical diversity measurements have the potential to aid in the design

of natural product drug screening collections.

Two examples help illustrate the practical need for solving this problem. In an intriguing
opinion piece offered by Baltz, various scenarios were offered to overcome the global slowing of
antibiotic discovery from actinomycetes (order: Actinomycetales Buchanan, 1917).”° Based on
that analysis, it was concluded that using traditional bioassay-guided antibacterial discovery
alone would require testing >10" actinomycetes to identify the next, major new class of antibi-
otic. Although this estimate was highly theoretical and predicated on standard bioassay-driven

screening methods, it provided a compelling starting point for considering how the integration of
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compound diversity measurements into bioassay screening could help serve as a chemically fo-
cused approach to assessing real and presumed barriers to natural product discovery. In another
case, Jensen and colleagues carried out a survey of natural product biosynthetic gene cluster di-
versity represented in 119 Salinispora sp. genomes.”' A key takeaway from the study was that
despite high levels of global gene conservation among Salinispora isolates, roughly half of all
the biosynthetic gene clusters detected were found in two or fewer isolates. Thus, deep sampling
of this genus was expected to continue yielding new families of natural products. With no end in
sight for the sustained emergence of novel natural product scaffolds,”” questions surrounding
how to define, measure, and construct optimally sized natural-product-based chemical libraries

take on critical importance.

Fungi epitomize many of the challenges inherent in sourcing natural products, and thus
serve as a useful starting point for establishing a quantitative approach to natural product library
design. Topmost among the difficulties working with fungi are the complex, and in many cases,
poorly resolved taxonomic relationships exhibited by these organisms. For example, many fungi
adopt different sexual states that are metabolically and morphologically distinct. Historically,
such cases have resulted in fungal isolates exhibiting gene-level equivalencies being assigned
different binomial names.” In other instances, the high degree of genetic diversity exhibited
within certain fungal clades has created taxonomic quagmires that have left some fungi loosely
classified into poorly defined species complexes, polyphyletic clades, and paraphyletic groups.’*
> Complicating these matters, the regional variation and global distribution of most fungal taxa

remains poorly defined, which has given rise to unresolved questions about the true extent of bi-

27



ological and chemical diversity throughout the fungal kingdom. Herein, we present a set of guid-
ing principles for combining, quantifying, and assessing chemical and source-organism diversity
during the construction of natural product libraries. Our efforts focused on Alternaria Ness,
which is a cosmopolitan and taxonomically perplexing fungal genus’®”’ known to produce many
types of metabolites’ ™. Although these experiments concentrated on fungi, we expect that the
procedures laid out here will be generally applicable to the evaluation of natural products from

other source organisms.

3.2 Results and Discussion

3.2.1 Basis for a bifunctional analysis tool to assess Alternaria I'TS barcode and chemical di-
versity.
The Alternaria isolates used in this study were obtained through the University of Okla-

8485 which to date has received 9,670 soil sam-

homa, Citizen Science Soil Collection Program,
ples from across the United States, yielding 78,581 fungal isolates identified by single-read inter-
nal transcribed spacer (ITS) sequencing data. A query performed on the ITS barcode data yielded
an initial set of 219 candidate Alternaria isolates, which was refined to a subset of 198 samples

8688 to Alternaria type strain data available in GenBank

having >90% ITS sequence similarity
and defined by Woudenberg et al.”’ Upon plating, all strains exhibited colony morphologies con-

sistent with the genus sensu stricto.

Alternaria exemplify many of the practical problems and limitations that researchers face
when developing natural product libraries. Specifically, Alternaria is a taxon in flux, having un-
dergone revisions as mycologists have striven to consider morphological characters, telemorphic

states, various marker genes, and more to delineate this group and its allied genera.”* **> While
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the outcomes of those efforts have differed, resulting in proposals supporting various combina-
tions of monophyletic species groups and species complexes, they have found agreement on the
grounds that Alternaria exhibit tremendous morphological and genetic plasticity. Recognizing
these problems are common throughout the microbial world, we adopted a hybrid method of li-
brary construction focused on assessing the prospective taxonomic affinity of each isolate (pref-
erably to a genus-level taxon using ITS barcode sequence results) in combination with LCMS
metabolome profiling data. This bifunctional approach offers insights into the relationship be-
tween phylogeny and chemistry, which enables (1) assessment of natural product chemical diver-
sity within species complexes, (2) identification of prospective pools of under- and over-sampled
secondary metabolite scaffolds, and (3) application of quantitative metrics to establish and track
goals concerning chemical diversity in an existing or growing natural product collection.
Whereas numerous tactics have been reported for guiding natural product library development’™
% we view our approach as a departure from prior schemes, considering its quantitative aspects

that we now explore.

3.2.2 Characterizing ITS barcode (clades) and metabolome (clusters) based groups in Alter-
naria.
While achieving a state of perfect knowledge about the evolutionally histories of micro-

organisms is nearly impossible to achieve, we can use certain low-cost and minimally intensive
tools to gain functional insights concerning their phylogenetic relationships. For fungi, the ITS
barcoding system serves as one such tool offering an efficient way to establish a working set of
phylogenetic associations among environmental isolates.” Phylogenetic analysis of the Alter-

naria ITS data revealed five sequence-based clades (Clades U, V, W, X, and Y). Whereas further
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taxonomic resolution might be achievable using additional genetic markers, ITS provides a rea-
sonable method to identify isolates and draw attention to potential points of evolutionary diver-

gence.”

Principal coordinate analysis was performed on the A/ternaria metabolomics data. The
components detected in Alternaria metabolomes were treated as chemical features based on a
combination of their LC retention times and mass-to-charge ratio. Those efforts resulted in a
model that supported the presence of six chemical clusters (Clusters 1, 2, 3, 4, 5, and 6) among

the Alternaria isolates.

The results generated from the ITS barcode and metabolomics data sets were overlaid
demonstrating a high degree of consensus between the two models (Figure. 3.1). The data indi-
cated that Clade U was composed primarily of chemical Cluster 1, Clade W was composed of
chemical Cluster 2, Clade X was composed primarily of chemical Cluster 6, and Clade Y was
composed of chemical Cluster 3. Notably, Clade V contained both Clusters 4 and 5. This under-
scored the value of layering chemical data (clusters) on top of genetic data (clade) to reveal oth-
erwise unexpected pockets of chemical divergence within genetic groups. A handful of cases
were noted in the principal coordinate analysis, revealing that some members of chemical Cluster
2 were embedded in Clades U, V, and X. Although the reasons behind these cases are uncertain,
we speculate that it may be due to culture-dependent effects on metabolite production and/or ge-
nomic/epigenome-scale events that resulted in the loss of chemical scaffolds, which served to

differentiate Clusters 1, 3, 4, 5, and 6 from Cluster 2.
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Figure 3.1. Genetic and chemical distribution of Alternaria. ITS phylogeny of Alternaria iso-
lates. Inner ring indicates the clade, while stars indicate the chemical cluster of isolate extracts.
The clade and clusters show remarkable overlap, but also reveal a hidden chemical cluster
within a single clade. Numbers indicate type strains from Genbank (Supplemental Table 3.1

Considering the geographic scope of the collection, the genetic clade and chemical clus-
ter data were evaluated to determine if their distributions might be limited to certain geographical
regions (Figure 3.2). Given the number of samples tested over such a large land mass, we are
cautious in interpreting our results; however, we did note that Cluster 5 was only detected in the
far western portion of the United States. Additionally, Clusters 3 and 4 were absent from the
southeastern portion of the United States. Both observations served to fuel speculation that the

occurrence of some Alternaria chemical features might be limited to circumscribed geographical
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ranges. Further investigation will be required to determine if these are veritable patterns or sam-

pling artefacts.

~Cluster 1 [ ‘ _Cluster 2

BT _Cluster 5

Figure 3.2. Chemical and geographical distribution of Alternaria. Geographic distribution of
isolates by chemical cluster. Chemical clusters overlap with Genetic clades with the exception of
Cluster 4 & 5 which are embedded in Clade V.

3.2.3 Chemical feature production among genetic clades.
Before proceeding, it is worth noting that in the comparisons presented here and in subse-

quent sections, the discussion could have been structured around evaluating Alternaria isolates
according to ITS clades (genetics) or chemical features (metabolomics). Apart from Clade V, our
tests demonstrated rather strong agreement between the two models, which indicated that both
clustering mechanisms worked well to organize data along seemingly natural divisions. Knowing
that taxonomically driven strategies continue to play prominent roles in natural product collec-
tion efforts, we have opted to analyze the chemical diversity findings in the context of ITS clades
(Figure 3.1). However, we see no reason why a chemistry-centric grouping could not be used,

and several examples of parallel tests based on chemical clusters are provided in the Appendix 1.

32



Median numbers of detected chemical features differed significantly between ITS-based
clades (p< 0.0001), with Clades U and Y containing isolates that produced the greatest total
numbers of chemical features (Figure 3.3A). This observation held true (p< 0.0001) after per-
forming sub-sampling of the clades to alleviate potential errors introduced due to sample size
non-equivalence (Supplemental Figure 3.1A). Relatively few outliers were detected within the
genetic clades indicating high levels of consistency for the metabolic output of the isolates in
each group. Clades V, W, and X were found to have significantly fewer features than Clade U
(Tukey’s HSD of ANOVA p<0.0001 in all cases), suggesting that Clade U is chemically more

diverse than the other clades.
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Figure 3.3Examining feature diversity of Alternaria. (A) Alpha diversity of genetic clades. Me-
dian number of chemical features differed significantly by clade. (B) Chemical overlap of fea-
tures by clade.

Only 1.9% of features (205) were detected in all clades, comprising the core metabolome

of the Alternaria isolates (Figure 3.3B, cluster-based analysis Supplemental Figure 3.2). While
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up to 40% of chemistry is shared between clades, we found that the bulk of features were limited
in occurrence to just a single clade. Progressing from the smallest to the largest number of clade-
specific features, 2.4% of features (261) were found only in Clade X, 5.9% of features (644)
were present only in Clade V, 7.2% of features (790) were detected only in Clade W, 10.1% of
features (1,111) were observed only in Clade Y, and 36.2% of features (3,976) were identified
only in Clade U. These results demonstrate that high levels of chemical diversity exist even

within the traditionally recognized boundaries that define Alternaria.

3.2.4 Making informed library building decisions based on chemical feature diversity.
To monitor and better understand how feature diversity could be used to make informed

decisions about constructing natural product libraries, feature accumulation curves were con-
structed from the metabolomics data (Figure 3.4A). The results showed that despite a large de-
gree of ascribed taxonomic diversity in Alternaria, a surprisingly limited number of isolates were
required to provide broad chemical coverage of the genus. Indeed, random sampling of the A/ter-
naria data found that on average, a set consisting of as few as 23 isolates was expected to pro-
vide 50% of the total pool of Alternaria features. Expanding on these findings, randomly se-
lected subsets consisting of 57, 104, 142, and 195 isolates were anticipated to provide 75%, 90%,
95%, and 99%, respectively, of Alternaria features (Figure 3.4A). Thus, it was determined that
feature accumulation data could serve as a useful tool for estimating levels of chemical feature

coverage within taxonomic groups.
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Figure 3.4 Extrapolating feature diversity of Alternaria. (A) Extrapolated rarefaction curve of
Alternaria. (B) Extrapolated rarefaction curves of clades within Alternaria. Clades are both ge-
netically and chemically distinct

Whereas the genus-based amalgamation of feature data provided useful insights into the
chemical diversity of Alternaria, a more granular exploration of feature accumulation results by
sub-genus clades has the potential to afford a complimentary perspective for library design.
Clade-based feature accumulation curves (Figure 3.4B) showed that feature coverage levels of
99% were achievable in Clades U (contained the most feature-rich isolates, Figure 3.3A) and X
(contained the most feature-poor isolates, Figure 3.3A) with 170 and 51 total isolates, respec-
tively. In contrast to the rank order of the median numbers of features per isolate, the point at
which 99% feature saturation occurred followed a different pattern for Clades V, W and Y.
Clade Y, which contained the second highest level of features per isolate (Figure 3.3A), was
found to require the fewest number of isolates (39 isolates) to achieve a level of 99% feature

coverage. Clade V contained the third highest level of features per isolate (Figure 3.3A), while
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also needing the second highest number of isolates (141 isolates) to achieve a level of 99% fea-
ture accumulation. These results are likely due to the presence of two chemical clusters embed-
ded in Clade V. Clade W, contained the second lowest number of features per isolate (Figure
3.3A), but was predicted to require the third highest number of isolates (66 isolates) to achieve a
level of 99% feature accumulation. Thus, feature accumulation curves utilizing ITS-based clades
offer a useful method for identifying and monitoring genetically-defined groups of organisms
that are likely to require increased efforts (i.e., more isolates) to achieve pre-specified levels of
feature accumulation coverage. Related to these efforts, the rarefaction curve slopes were plotted
in relationship to the number of samples representing each clade (Supplemental Figure 3.3). The
results of that analysis revealed an inverse relationship existed between the slopes of interpolated
rarefaction curves and the number of samples surveyed within a clade supporting the idea that in

this data set, the larger ITS-based clades tended to approach saturation of feature coverage.

3.2.5 Probing chemical scaffolds distribution and diversity in Alternaria.
Whereas the analysis of chemical features offers a straightforward approach to comparing

LC-MS data from different natural product sources, such results can be prone to misrepresenting
underlying chemical diversity trends. Specifically, the output from natural product biosynthetic
pathways tend to occur as assemblages of structurally related metabolites rather than as single
products due to several factors related to the in situ formation of natural products, including sub-
strate promiscuity, competing actions of multifarious tailoring enzymes, and more.**°”*® Con-
solidating chemical features that share underlying structural similarities into groups referred to as
scaffolds is one approach to account for this phenomenon. Molecular networking *”»**'%" is an
approach that has gained widespread use to build scaffold-level relationships in the field of natu-

39, 102-104
ral products.”
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Using molecular networking to identify structurally related metabolites from Alternaria,
the 10,991 molecular features were condensed into 5,754 of scaffolds (Figure 3.5A). Upon re-
moving singleton scaffolds (4,193) from the dataset, 17.2% of the scaffolds (285) were found to
be shared by all five ITS-based clades (Figure 3.5B and Supplemental Figure 3.4). These shared
scaffolds represented the core metabolome of the Alfernaria encountered in this study. We also
found that 32.5% (539) of the non-singleton scaffolds were detected in just a single clade. Clade
U contained the largest number of unique chemical scaffolds (19.6%, 326 unique scaffolds) fol-
lowed by Clades Y (5.1%; 84 unique scaffolds), W (3.6%; 59 unique scaffolds), V (2.9%; 48
unique scaffolds), and X (1.3%; 22 unique scaffolds). The rank order of the scaffolds detected in
a clade mirrored the respective levels of chemical features observed in each group (Figure 3.3A).
Thus, we speculate that the relative quantities of chemical features detected within taxa might
serve as a surrogate measure for predicting comparative levels of relative scaffold diversity in
other taxa. These results also highlighted the need to differentiate scaffold versus feature diver-
sity goals when establishing parameters for natural product library design since 17.2% of scaf-
folds were found to be shared by all clades of Alternaria, but only 1.9% of features were shared
by all clades. Furthermore 61.7% of chemical features were found to be unique to a single clade,
but this held true for only 32.5% scaffolds, which is not surprising given that scaffolds are more

highly conserved across Alternaria isolates.
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Figure 3.5 Examining scaffold diversity. (A) Molecular network of extracts showing 5,754 sub-
net-works/scaffolds. Nodes are colored by Clade. (B) Overlap of chemical scaffolds by clade.

3.2.6 Applying clade and cluster data to assess progress toward goals for natural product
library coverage.
Considering the entwined functions that phylogeny and chemistry play in natural product

library development, we explored how less abundant taxa might contribute to the overall chemi-
cal diversity within a screening library. Such models could be useful for understanding how rig-

orous efforts to include less abundant taxa, or purposeful endeavors to exclude highly abundant
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groups of organisms, might impact the representation of chemical scaffolds in a collection. We
first examined how forming a library by exclusively focusing on only the most abundant taxon,
Clade U, would affect the chemical diversity of a collection (Figure 3.6A and Supplemental Fig-
ure 3.6). The accumulation curves revealed that the 111 isolates in Clade U were capable of
providing access to 80.1% of all Alternaria scaffolds, while the remaining, less abundant Clades
V, W, X, and Y added just 7.0%, 5.4%, 1.7%, and 5.7%, respectively, of additional chemical
families (note that the order in which Clades V, W, X, and Y were added was arbitrarily chosen).
In contrast, when the scaffold accumulation data were examined with the focus placed on sam-
pling just the less abundant taxa, it was found that the 87 isolates representing Clades V, W, X,
and Y afforded access to 78.3% of total scaffolds encountered from Alternaria (Figure 3.6B).
This result was unanticipated with near-equivalent percentages of unique scaffolds afforded via
these contrasting approaches. We realize that most real-world library-building efforts are un-
likely to engage in such restrictive collection practices; however, these results could have practi-
cal implications for cases in which searching out less abundant (i.e., rare taxa) or difficult to cul-
ture organisms may add undue cost or time to building a natural products drug screening library.
Thus, modeling scaffold (or chemical feature) accumulation can help researchers focus on
achieving desired levels of chemical coverage in natural product libraries, as well as monitoring
whether collection efforts have led to oversaturation or under-sampling of the theoretical chemi-

cal diversity within a given taxon.
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Figure 3.6 Examining scaffold accumulation of Alternaria. (4) Feature accumulation curve or-

dered by clade (U, V, W, X, Y). (B) Feature accumulation curve ordered by clade (Y, X, W, V,
U).

3.3 Conclusions and Future Directions: Putting the pieces together to create natural
product chemical collections.
It is our opinion that to date, many efforts to construct natural products libraries have

been based largely on opportunism and subjective reasoning rather than founded on data-driven
goals and assessment. Whereas tremendous room exists to plot customized paths for building
collections of secondary metabolites based on different parameters (e.g., genetic clades versus
chemical clusters, features versus scaffolds), the best routes are likely to rely upon well-balanced
sample collection strategies that combine appropriate amounts of chemical breadth and depth in
the resultant libraries. The purpose of our effort to measure natural product diversity was to give
researchers opportunities to establish goals and provide the means for assessing progress toward
those goals during library development. However, such goals should also be considered in the

context of bioactive compound discovery, which in many ways is a heroic game of chance. To
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this point, we noted that within the Alternaria isolates studied here, 17.9% of metabolite features
were found in only a single culture. Thus, overly stringent measures aimed at simply capturing
just the core metabolome of genetic clades or chemical clusters risk missing outstanding pools of
unique chemical matter that may prove critical for the success of a drug discovery program. We
hope that these methods will help researchers set library building goals that are not only econom-
ical, but are also well poised to deliver the chemical matter needed to drive fruitful drug discov-

ery operations.

3.4 Materials and Methods

3.4.1 General sample selection and culture.
A subset of 198 fungal isolates from the University of Oklahoma, Citizen Science Soil

Collection that had been identified as Alternaria were used in this study (Supplemental Table
3.2). A map illustrating the sites where the isolates were obtained was generated in qGIS v 3.10.
The fungal isolates were identified based on BLASTN'® comparisons of their ITS sequence data
to the sequences of Alternaria type strains deposited in GenBank'®”. When cultured on Petri
plates containing a modified potato dextrose agar, all isolates were determined to be consistent
with the gross morphological features of Alternaria spp. For metabolomics experiments, the iso-
lates were cultured for 3 weeks in duplicate, on a solid-state medium composed of Cheerios”®
breakfast cereal supplemented with a 0.3% sucrose solution containing 0.005% chlorampheni-

106
col ™.

3.4.2 PCR and phylogenetic tree building.
Fungal cell lysates were prepared by removing fresh mycelium from each isolate and

placing the samples in microcentrifuge tubes containing 200 pL Tris-EDTA buffer (10 mM Tris-

41



HCI, 1 mM disodium EDTA, pH 8.0) and a 1:1 mixture of 1 mm and 0.5 mm zirconium oxide
bead. Samples were homogenized using a BulletBlender® (Next Advantage) set at maximum
speed for 5 minutes. The 5.8S-ITS region was amplified by PCR using primers ITS1 5-TCCG-
TAGGTGAACCTGCGG-3' and ITS4 5-TCCTCCGCTTATTGATATGC-3""". Amplification
and confirmation of PCR product formation was performed using a LightCycler 480 Instrument
IT (Roche) operated under the following conditions: 1 cycle of denaturation at 94 °C for 2
minutes followed by 40 cycles of denaturation at 94 °C for 1 minute, annealing at 50 °C for 1
minute, and extension at 72 °C for 1 minute. Samples were submitted to Genewiz for Sanger se-
quencing and forward and reverse reads were assembled using PhredPhrap (release #29) (mini-
mum phred score 50)' %%, Sequences were used for phylogenetic analysis using MEGA-X"'"".
ITS sequences for Alternaria type strains were obtained from the NCBI database (Supplemental
Table 3.1)'. An outgroup consisting of five Penicillium spp. and five Clonostachys spp. isolates
retrieved from the University of Oklahoma, Citizen Science Soil Collection were used for tree
rooting. Sequences were aligned using clustalW in Mega X. Neighbor joining tree analysis was

carried out with 500 bootstraps using Kimura2+G algorithm''*'"".

3.4.3 Metabolite sample preparation.
Samples for fungal metabolome analysis were prepared on an automated platform that

combined both extraction and partitioning steps. Fungal cultures prepared in 16 x 100 mm boro-
silicate tubes were placed on a Tecan Freedom EVO® platform and 3 mL of ethyl acetate was
added to each sample. After extracting for 4 hours, 3 mL of water were added to each tube to fa-
cilitate the partitioning process. Aliquots consisting of 2 mL of the upper ethyl acetate layers
were transferred to deep-well 96 well plates. While the ethyl acetate was being removed from the
samples in vacuo, the fungal culture tubes were each charged with an additional 3 mL of ethyl
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acetate to continue the partitioning process. The plates were returned to the liquid handler plat-
form at which point a second set of 2 mL aliquots of ethyl acetate was removed from the tubes

and deposited into the deep-well 96 well plates. The organic solvent was removed in vacuo and
the remaining organic residues were stored at -20 °C for liquid chromatography-tandem mass

spectrometry (LC-MS/MS) analysis.

3.4.4 LC-MS/MS analysis.
Extracts were resuspended in 135 pL of 9:1 methanol-water spiked with 0.5 pM sulfadi-

methoxine, which served as an internal standard. Samples were analyzed on a Thermo Fisher
Scientific Vanquish Flex Binary LC system, coupled to a Thermo Fisher Q Exactive Plus hybrid
quadrupole-orbitrap mass spectrometer, using a C;3 LC column (Kinetex, 50 x 2.1 mm, 1.7 um
particle size, 100 A pore size, Phenomenex, Torrance, USA). The mobile phase consisted of
LCMS-grade acetonitrile and water (Fisher Optima; both eluents contained 0.1% formic acid).
Sample elution was performed using a gradient system starting with 5% acetonitrile (held for 1
minute), which was increased to 100% acetonitrile over 8 minutes, and held at 100% acetonitrile
for 2 minutes. Between samples, the eluent was returned to 5% acetonitrile over 30 seconds and
held for 1 minute before the next injection occurred. The column compartment and autosampler
were held at 40 °C and 10 °C, respectively, for the duration of the analysis. Sample injection vol-
umes of 5 uL were used, and samples were introduced in random order. Blanks and pooled qual-
ity control samples were interspersed throughout the analysis after every 12 samples. Elec-

trospray conditions and data acquisition parameters are detailed in Supplemental Table 3.3.
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3.4.5 Data processing and analyses.
Data were processed using MZmine v2.33 with the parameters provided in Table S4'"%.

Data for the aligned peaks were exported from MZmine. All features identified as occurring in
controls (blanks) and test samples were removed, and the remaining features were normalized to
the total ion current (TIC) in the R statistical package. Principal coordinate analysis (PCoA) and
hierarchical clustering were performed on normalized tabulated data with QIIME1'" using a
Bray-Curtis distance metric''*. The selection of 6 clusters was determined to be optimal based on
a silhouette plot. Results were visualized using Emperor' . Silhouette analysis is used to deter-
mine how similar a data point, in this case each extract, is to the other datapoints within its own
cluster as compared to other clusters. The closer the silhouette score is to 1, the better the model
fits the data. In this case, the silhouette analysis was applied to the data considering between 2
and 13 clusters. The peak average silhouette score was highest when the data was grouped into 6
clusters, thus the selection of that model.

Feature accumulation curves were made in Vegan using binarized tabulated data'', and
plots were generated using a standard x-axis representing the whole data set. Extrapolated rare-
faction curves were generated in iNEXT with an endpoint of 500 duplicates.''”''* Alpha diver-
sity (observed chemical richness) was calculated using the Python package Scikit-Bio (version

0.2.0, http://scikit-bio.org) and analyzed using a one-way ANOVA and Tukey’s HSD test in

R'?’. To ensure that the differences in sample size did not skew analyses, balanced sets of ran-
domly generated sample were analyzed for alpha diversity. Venn analyses were conducted using

http://bioinformatics.psb.ugent.be/webtools/Venn/ and InteractiVenn'?'. GNPS feature-based

molecular networking was performed*”** using output from MZmine2''? with the parameters

described in Table S5. These parameters were modeled on those used by McCall et al. which

122

used the same instrument and method in their study. ©~ The network was then used to condense
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the features into scaffolds. This was accomplished by collapsing each subnetwork so it could be

considered as a whole rather than an assemblage of features. The code may be found on GitHub.

3.4.6 Data availability.
LC-MS/MS data were deposited in MassIVE under accession number MSV000083002.

The feature-based molecular networking method is accessible at: https://gnps.ucsd.edu/Prote-
oSAFe/status.jsp?task=f0608e9f1e0f4f3cb4d67bf16308e897. Sequencing data were deposited in
GenBank under accession numbers MW729050 - MW729257. Codes for other analysis methods

can be accessed on GitHub at https://github.com/NPDG/Alternaria.
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Chapter 4. Assessing Metabolic and Biological Diversity to Support Natural Product Li-
brary Assembly
This chapter was adapted from a manuscript which is currently being prepared for submission in

2021. The authors are Victoria Anderson, Karen Wendt, Fares Z. Najar, James B. Caughron,
Hagan Matlock, Nitin Rangu, Andrew N. Miller, Mark R. Luttenton, and Robert H. Cichewicz.
The work presented in this chapter was conducted as follows: Victoria Anderson fungal culture,
fungal extract preparation, LC-MS-MS data collection, mentoring of students who performed

growth analysis, and metabolomics data analysis.

4.1 Introduction
The search for bioactive natural products has brought researchers to virtually every part of

123-127 While these quests have yielded many pharmaceutical agents, they have also pro-

the globe.
vided an incredible wealth of knowledge about the structures, functions, and formation of natural
products. The past and ongoing successes of translating natural products into drug leads have

129

helped continue fueling new discovery efforts, which today include microbes'*®, plants'*’, and

marine life"*” from nearly every major environmental system around the globe.

Reflecting on the range of efforts applied to sampling organisms from locations far and
wide, it would seem that such exertions would be based on rigorous scientific knowledge demon-
strating that previously unsampled locations offer unique opportunities for accessing new natural
products. Whereas such arguments are verified for many types of macroscale flora (e.g., trees,
lianas, and more) and fauna (e.g., sponges, tunicates, and more) that live in circumscribed envi-
ronments, the same cannot be readily said for many microorganisms. In many ways, the lifestyles
of fungi and bacteria remain poorly understood with the natural ranges of most species not de-

131-133
d.

fine Further complicating these matters, is that fact that the biosynthetic genes responsible
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for producing many types of natural products are swapped among microorganisms enabling some
natural product scaffolds to encircle the globe, even though their host organisms occupy more

134-137

restricted geographical ranges. Thus, for many free-living microorganisms, it is difficult to

predict where they might exist and which natural products they produce.

Addressing such questions is important to the field of microbial natural products research
and drug discovery because one of the prevailing ideas within the field is that free-living microbes
obtained from different environmental sources are assumed to produce distinctive types of natural
products. This type of logic has been used to justify the pursuit of microbes and their natural prod-
ucts from many types of curious and extraordinary locations, but in most situations, the rationale

supporting those decisions remains untested.

To help develop an evidence-based understanding whether microorganisms obtained from
dissimilar environments generate different sets of natural products, we compared fungi from two
distinct ecosystems, sediments from the Great Lakes, USA, and soils from the surrounding states.
Additionally, our study examined how fungal biodiversity compared between these two systems
for the purpose of identifying candidate fungi that differentiate microbial communities. These re-
sults are expected to help enhance the efficiency of microbial natural products library building and
drug discovery efforts through the judicious exploration of the microbial communities that occupy

dissimilar ecosystems.
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4.2 Results and Discussion

4.2.1 Study Design and Selection of Fungal Isolates.
To assess the role that the environment might play in the process of influencing the selec-

tion of metabolomes that reflect adaption to specific ecological niches, we needed to identify a
suitable set of juxtaposed ecological systems that had experienced a sustained period of stabile
partitioning. The Great Lakes of North America and the land surrounding them (generally char-
acterized as the Eastern Temperate Forest ecoregion) were deemed to be a fitting study site (Fig-
ure 4.1) since they represent ecologically divergent environments that have persisted for 10,000-
12,000 years following the retreat of the Laurentide Ice Sheet. An examination of isolates from

8485 (source of “terrestrial”

the University of Oklahoma Citizen Science Soil Collection Program
samples) and sediments from Lake Michigan'*® (source of “aquatic” samples) enabled us to iden-
tify several candidate species that co-occurred in the two locations. We ultimately identified a
subset of 79 isolates, which based on ITS taxonomic analysis (Supporting Information Figure
4.1), were consistent with type strains and sequences reported in GenBank for Penicillium brevi-
compactum (12 terrestrial and 13 aquatic), Penicillium expansum (13 terrestrial and 13 aquatic),

and Penicillium oxalicum (14 terrestrial and 14 aquatic) (Figure 4.1 and Supporting Information

Figure 4.1, Table S1).
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Figure 4.1. Location of sampling sites for Penicillium isolates from Lake Michigan and the states
sur-rounding Lake Michigan. Species are indicated by marker shape and color (P. brevicompac-
tum: blue circles, P. expansum: red squares, P. oxalicum: green triangle) and environmental
sources are indicated by color saturation (darker = terrestrial, lighter = aquatic).

4.2.2 Phenotype Assessment of Fungal Isolates.
The question was raised whether fundamental differences in physiological characteristics

may exist resulting from adaptive changes within the fungal populations occupying these distinc-
tive environments. Looking at the gross morphological characteristics of the fungi, no intraspe-
cific variation was observed within each of the three species groups (data not shown). To further
probe the fungi for evidence of phenotypic variation, we focused on a key quantifiable variable,

temperature, and its relationship to growth rate. This was accomplished by monitoring the colony
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sizes of triplicate samples prepared from each of the isolates grown at 4 °C (mimicking the aver-
age temperature of the benthic environment in Lake Michigan) and 20 °C (representing average
summer temperatures of soils in portions of the southern Lake Michigan basin region). Two of
the isolate sets achieved significant differences in colony diameter: P. brevicompactum isolates
from the Great Lakes grew to greater colony diameters compared to terrestrial samples at 20 °C
and P. expansum isolates from the Great Lakes grew to greater colony diameters compared to
terrestrial samples at 4 °C (Figure 4.2). No significant differences were observed for the P. oxali-
cum sample set at either temperature. It is notable that the results of the test with P. brevicom-
pactum proved to be contrary to expectations that fungi from the Great Lakes might be better
able to grow at colder temperatures; however, we suspect that our surprise might be the product
of naive assumptions, as well as the need to disentangle the multifaceted influence of a single en-
vironmental variable (i.e., temperature) on a complex fungal physiological process (i.e., colony
diameter). Nevertheless, the results of this experiment hinted at possible physiological diver-

gence occurring within two of the three fungal species used in this study.
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Figure 4.2. Growth curves for Penicillium isolates, grouped by species and source. Error bars
indicate 95% confidence intervals. Species are indicated by color (P. brevicompactum: blue, P.
expansum: red, P. oxalicum: green) and environmental sources are indicated by color saturation
(darker = terrestrial, lighter = aquatic). (A) Colony diameters of Penicillium isolates at 20°C. *
p<0.0001 between aquatic and terrestrial P. brevicompactum (B) Colony diameters of Penicil-
lium isolates at 4 °C. * p<0.0001 between aquatic and terrestrial P. expansum at 20 °C.

4.2.3 Probing Metabolomics Feature Data.
Metabolomics provides a snapshot of the global small-molecule output representing the

results of physiological and biochemical processes occurring in living organisms. Those pro-
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cesses are dependent on the complex influence of biotic and abiotic factors (e.g., genetics, evolu-
tion, environment, and life history) on organisms. One of the quantifiable factors that we exam-
ined concerning the fungal metabolomes was chemical richness. Measuring chemical richness
can provide insight into the diversity of metabolites present in a population; however, it does not
account for potential differences in their relative abundances. To evaluate chemical richness, the
feature data for terrestrial and aquatic isolates from each fungal species were compared. No sig-
nificant differences were detected between the sediment and soil derived isolates within P.
brevicompactum (p=0.062), P. expansum (p=0.257), and P. oxalicum (p=0.361) indicating that
neither environmental source produced a statistically greater number of metabolites. These re-
sults are intriguing because one might anticipate that greater metabolic heterogeneity would be
found among fungi from a seasonally varying terrestrial environment as compared to the more
constant conditions experience in the benthic habitat of Lake Michigan.

Whereas chemical richness is a useful tool for comparing the numbers of metabolites be-
tween sample cohorts, it does not address whether the types of metabolites in those groups are
similar or different. Therefore, we performed a non-metric dimensional scaling analysis of the
LC-MS/MS-derived feature data representing the metabolomes of the aquatic and terrestrial iso-
lates to determine if their metabolic outputs varied based on the location from which the isolates
were obtained (Figure 4.3). The result showed no significant intraspecific resolution occurred
based on the different environmental sources for P. brevicompactum and P. oxalicum (PER-
MANOVA r* = 4.21% and 4.23% respectively, p value = 0.26 and 0.17 respectively), while P.
expansum showed a correlation between metabolic profile and isolation source (PERMANOVA
1’ = 5.84%, p value = 0.018). Although statistical significance was reached in the case of P. ex-

pansum, the r* value indicates less than 6% of the variance in metabolic profiles can be attributed
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to the environmental conditions. A visual inspection of the overlap of the features of these ex-
tracts (Supporting Information Figure 4.2) reveal that while each environment does produce or-
ganisms that produce different chemistry, a majority of the chemistry is shared between the envi-
ronments. In the case of P. expansum, isolates from the terrestrial environment cover over 85%
of the features detected and aquatic, over 80% (Supporting Information Figure 4.2). This sug-
gests that the amount of unique chemistry available in differing environments is not as high as

often assumed.
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Figure 4.3. Non-metric dimensional scaling (NMDS) analysis of metabolomic features detected
in aquatic and terrestrial Penicillium spp. using a Bray-Curtis matrix. The centroid of each group
is indicated by the point where the lines converge while the circle delineates the 95% confidence
interval of the SE. (A) Chemical profile of P. brevicompactum. (B) Chemical profile of P. expan-
sum. (C) Chemical profile of P. oxalicum
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A key hypothesis heading into this study had been the environmental disparities between
the sampling sites would generate different adaptive pressures resulting in the selection for traits
leading to dissimilarities in the metabolic outputs among the different isolate sets. However, the
lack of difference in metabolic output for two of the three species studied here demonstrates that
a more nuanced approach to sourcing isolates for natural product library building is necessary
(ie. the assumption that different environments produce different chemistry is not applicable to
all fungal species). Several reasons may explain the metabolic homogeneity between the groups
such as a lack of substantive adaptive pressures on genetic traits within fungal populations,
higher than anticipated retention of metabolic plasticity, greater than expected mobility of iso-
lates between samples sites, the possibility that some fungi persist in benthic settings only as via-
ble propagules, and more. Further investigation will be required to identify the factors contrib-
uting to the processes shaping the metabolomes of the isolates and the roles that divergent source
environments play in influencing the chemical output of these fungi. While the reasons behind
the metabolic consistency exhibited by the majority of the fungi from the two environmental
niches remains unknown, we noted that the results conflict with some aspects of conventional
wisdom used to justify strategies for sourcing organisms to expand chemical diversity in natural

product collections. For example, it has been suggested that fungi from unusual or niche environ-

139-143 144-145 125, 147

o . 146 . 148 1:
ments (e.g., acidic lakes , mines , caves , marine and freshwater ™ sediments,

123, 149-150
and more

) offered value in the form of access to distinctive sets of natural products.
While our results are limited in scope, they do indicate that such ideas may not be readily gener-

alizable to all fungi.
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4.2.4 Scaffold-Based Data to Informs Chemical Library Design.
Natural products are frequently encountered as sets of analogues that share underlying

chemical structures called scaffolds. In general, scaffolds may be considered the principal prod-
ucts of coordinated sets of biosynthetic process (e.g., natural product biosynthetic gene clusters)

151-152

with the contributing effects of accessory or tailoring enzymes'>>""**, kinetically'> or ther-

modynamically'*° favorable organic chemical processes, biosynthetic “stutter’">’ or off-load-

159-160

ing"*®, and more , contributing to the generation of structurally divergent analogues.

161-162

Whereas such analogues may afford evolutionary advantages to host organisms and natural

product chemists intent on identifying new bioactive compounds'®'**

, the multitudinous presen-
tation of metabolic products derived from just a handful of biosynthetic pathways can create an
unbalanced understanding of the actual scaffold-level chemical diversity within organisms. For

these reasons, we shifted to using scaffold-based measurements as a complementary means for

assessing and comparing the metabolomes of fungi from terrestrial and aquatic systems.

Venn diagrams were created for each of the Penicillium spp. scaffold-based datasets re-
vealing high levels of chemical overlap between the isolates obtained from the two environmen-
tal sources (Figure 4.4). A total of 83%, 81%, and 78% of scaffolds were shared by terrestrial
and aquatic isolates of P. brevicompactum, P. expansum, and P. oxalicum, respectively. In all
case, the terrestrial isolates produced slightly elevated levels of uniqe scaffolds compared to
aquatic isolates for P. brevicompactum (10% of scaffolds were unique to terrestrial isolates
versus 7% unique to aquatic isolates), P. expansum (11% of scaffolds were unique to terrestrial
isolates versus 8% unique to aquatic isolates), and P. oxalicum (14% of scaffolds were unique to

terrestrial isolates versus 8% unique to aquatic isolates).
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Figure 4.4. Examination of overlap of chemical scaffolds. Venn diagrams of scaffolds detected
in each species collected from two source environments.

The scaffold data were further analyzed using collector’s curves to model the effects of

what might happen if a natural product library were constructed using isolates from just a single




source environment. Whereas the conditions surrounding the theoretical need to limit collections
to a single environment may appear enigmatic, the practical challenges of dealing with real and
apparent barriers (e.g., costs of travel and collecting, limits imposed by geopolitical boarders,
and more) can in certain situations limit the breadth of natural product exploration. For this rea-
son, the collector’s curves were used to understand how mining single environmental sources
might impact the scaffold diversity of metabolites. It was observed that most of the scaffold di-
versity within each of the three fungal species was accessible through samples taken from just a
single source (Figure 4.5). This was surprising given that conventional wisdom suggested that
efforts to procure samples from alternative environments were justifiable based on the need to
access pools of otherwise untapped chemical diversity. Currently, we do not know if this trend
holds true for other fungi and organism types; however, these data do support the idea that large
proportions of metabolite scaffold diversity may be attainable through the exploration of a single
environment.

These results suggest that laboratory culture of organisms on a consistent medium from
different environments result in similar chemical profiles. This trend may be disrupted if the cul-
ture conditions were altered to mimic the environment from which these organisms originated.
As this is one of the first studies that compare the chemical profiles across environments, a com-
mon and easily implemented culture method was selected. Further study would be necessary to

probe the influence of culture conditions on the chemical profiles across environments.
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Figure 4.5. Examination of accumulation of scaffolds. Scaffold accumulation curves of each
species with terrestrial samples appearing first (left column). Scaffold accumulation curves of
each species with aquatic samples appearing first (right column).
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4.2.5 Fungal Biological Diversity in Aquatic and Terrestrial Environments.
The analysis of chemical features and scaffolds among the three Penicillium spp. from

terrestrial and aquatic environments showed a high degree of overlap suggesting that species-
level fungal taxa capable of occupying both systems might not offer the most favorable opportu-
nities for accessing unique or niche-specific metabolites. This led to the idea that a method aimed
at identifying the organisms that are unique relative to another environmental niche might serve
as a better option for increasing the likelihood of encountering new chemical scaffolds. A total of
3196 and 4183 isolates from the aquatic and terrestrial environments, respectively, were included
in this analysis. To initiate that search, bar graphs illustrating the percentages of fungi associated
with different classes indicated a remarkable degree of similarity in the community structure for
both the aquatic and terrestrial system (Supporting Information, Figure 4.3, Table 4.1). How-
ever, when the data were further analyzed at the order level, it uncovered substantial disparities
between the fungi occupying the two environments (Figure 4.6, Supporting Information Table

4.2).
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Figure 4.6. Summary of fungal families by environmental source: aquatic and terrestrial. Fungi
that could not be identified at the family level were removed (58 out of 317 genera from the
aquatic environment and 40 out of 328 genera from the terrestrial environment).
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To determine which fungi served as the drivers of this disparity, the genus-level assign-
ments for all isolates were analyzed using a modified volcano plot, which enabled the identifica-
tion of fungal specimens that served to strongly differentiate the two environments (Figure 4.7).
This method uncovered several fungal genera that numerically dominated their respective isolate
pools, and served to differentiate the culturable fungal communities of the Great Lakes and the
surrounding terrestrial areas. Substantially greater numbers of Trichoderma isolates were ob-
tained from aquatic sediments followed by Talaromyces, Pseudeurotium, Cladosporium,
Preussia, Coprinellus, Arthrinum, Hypoxylon, Gymnoascus, and Philota. In comparison, isolates
from Penicillium, Fusarium, Pseudogymnoascus, Acremonium, Humicola, Aspergillus, Metarhi-
zium, Pyrenochaetopsis, Sporomia, and Chaetomium served as the dominate culturable species
recovered from soil samples originating from the surrounding terrestrial settings. Although these
fungal genera and their constitutive species were not found exclusively in the locations refer-
enced above (Supporting Information, Table 4.3), these results help draw attention to the types of
fungi that exhibit higher levels of taxonomic diversity in a particular environment. Such results
could be used to help selectively mine for organisms that may potentially harbor niche-specific
compounds or elevated levels of metabolic diversity and thereby help improved the chemical

coverage of natural product libraries.
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Figure 4.7. Prevalence of isolates in either aquatic or terrestrial system. Genera of fungi from
aquatic and terrestrial environments are plotted with the difference between environment on the
x-axis and the number of isolates (log2) on the y-axis. Isolates at the center of the plot are repre-
sented equally or near equally in both environments. Genera identified at the upper left and up-
per right are more prevalent in the aquatic or terrestrial system, respectively.

4.3 Conclusions and further directions
From these results, the emphasis on ubiquitous organisms from different environments

does not seem to hold the most value in maximizing the chemical diversity of the library. If the
goal is maximizing over all chemical diversity, a combination of a scaffold level analysis and
focusing on organisms not found in other environments may be appropriate. Despite the similar-

ity of the chemical profiles of ubiquitous organisms, the community of culturable organisms
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from these environments provide an alternative strategy for identifying additional chemical di-

versity in libraries generated from multiple environments.

4.3 Materials and Methods

4.3.1 Fungal isolates.
The “aquatic” fungi used in this study were collected from sediment samples collected in

Lake Michigan, USA. The corresponding “terrestrial” fungi were procured from soil samples ob-
tained through the University of Oklahoma, Citizen Science Soil Collection. The fungi were
identified based on BLASTN'®’ comparisons of their ITS-sequences to type strain data for Peni-
cillium brevicompactum, Penicillium expansum, and Penicillium oxalicam that are available in
GenBank.'” A list of the isolates used in this study along with their identification codes, source
location data, and GenBank accession numbers is provided in the Supporting Information (Table
4.4). A map illustrating the sites from which the fungi were obtained was generated in qGIS v

3.10 and is shown in Figure 4.1.

4.3.2 Growth measurements.
Isolates were cultured on Petri plates containing MEA medium (malt extract 10 g, yeast

extract 1 g, gellan gum 7.5 g, CaCl, 0.5 g, H,O 1 L) in triplicate. Plates were incubated in the
dark at either 4 °C or 20 °C. Colony diameters were measured with a ruler and the data plotted in

Python using the Seaborn package'® with ANOVA and Tukey’s HSD calculated in R.'*

4.3.3 PCR and phylogenetic tree building.
Fungal cell lysates were generated by adding a small quantity of mycelium from each iso-

late to a microcentrifuge tube with 200 uL PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM

64



NaHPOy4, 1.8 mM KH,PO,) and a 1:1 (vol:vol) mixture of 1 mm and 0.5 mm zirconium oxide
bead. Samples were homogenized using a BulletBlender® (Next Advantage) at maximum speed
for 5 minutes. The ITS1-5.8S-ITS2 region was PCR-amplified and sequenced using primers
ITS1 5-TCCGTAGGTGAACCTGCGG-3' and ITS4 5'-TCCTCCGCTTATTGATATGC-3"'"".
Amplification and confirmation of PCR product formation was performed in a LightCycle 480
Instrument II (Roche) using the following conditions: 1 cycle of denaturation at 94 °C for 2
minutes followed by 40 cycles of denaturation at 94 °C for 1 minute, annealing at 50 °C for 1
minute, and extension at 72 °C for 1 min. After treatment with EXOSAPit, samples were then
submitted for Sanger sequencing by GENEWIZ. Sequences were used for phylogenetic analysis
using MEGA-X.""° ITS sequences for P. brevicompactum, P. expansum, and P. oxalicum type
strains (accession numbers NR 121299.1, NR 077154.1, NR 121232.1 respectively)and three
Beauveria species (NR_077147.1, NR_151832.1, NR _111595.1) were obtained from the NCBI
database to root the tree.'”” Sequences were aligned using clustal W in Mega X. Maximum likeli-
hood tree analysis was carried out with 500 bootstraps using Kimura2+G algorithm."'*!'"" The

tree then was visualized in Evolview. '

4.3.4 Metabolite sample preparation.
For metabolomics experiments, isolates were cultured for 3 weeks in duplicate, in boro-

silicate test tubes (16 x 100 mm) on a solid-state medium composed of Cheerios® breakfast ce-
real supplemented with a 0.3% sucrose solution containing 0.005% chloramphenicol.'” Cultures
were extracted with 3 mL ethyl acetate for 4 hours before being partitioned against 3 mL water
on a Tecan Freedom EVO® platform. Aliquots consisting of 2 mL of the upper ethyl acetate
layer were transferred to deep well 96 well plates. The ethyl acetate was removed from the sam-
ples in vacuo, and each of the cultures were subjected to a second round of partitioning following
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the addition of an additional 3 mL of ethyl acetate. After 2 hours, 2 mL aliquots of the ethyl ace-
tate layer from second round of partitioning were removed and transferred to 96-well plates. The
solvent was removed in vacuo and the samples stored in a freezer at -20 °C until liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS) analysis was performed.

4.3.5 LC-MS/MS analysis.
Samples were suspended in 200 pL of 9:1 methanol-water and sonicated. The plates were

centrifuged for 5 minutes at 16,000 rpm and the supernatants were transferred to new 96-well
plates. Samples were analyzed on a Thermo Fisher Scientific Vanquish Flex Binary LC system
using a Cg column (Accucore, 100 x 2.1 mm, 1.5 pM particle size, 80 A pore size, Thermo
Fisher Scientific Inc., Waltham, USA), which was coupled to a Thermo Fisher LTQ mass spec-
trometer. Mobile phases were LC-MS-grade acetonitrile and water (both with 0.1% formic acid).
Gradient elution was performed as follows: 10% acetonitrile held for 0.5 minutes before increas-
ing to 95% acetonitrile over the course of 7 minutes, and again, increasing to 100% acetonitrile
over 0.5 minutes. The gradient was held for 0.5 minutes at 100% acetonitrile before returning to
10% acetonitrile over 0.5 minutes. The column was held at 10% acetonitrile for a 2 minute equi-
libration period before the next injection. The column compartment and autosampler were main-
tained at 40 °C and 10 °C, respectively, for the duration of the analysis. Samples were injected (5
pL aliquots) in a randomly assigned order. Control samples consisting of culture medium and
MeOH blanks, as well as pooled quality control samples were run after every 12 samples. Elec-
trospray conditions and data acquisition parameters are provided in the Supporting Information

(Table 4.5).

66



4.3.6 Data processing and analyses.

Data were exported and processed using MZmine2.33'"? with the parameters described in

Supporting Information Table 4.6. Features identified as appearing in controls (medium only)
and solvent blanks were removed from the sample data sets. The remaining features were sorted
by source, species, and species-source for conversion to a presence-absence data matrix. Bray-

Curtis distance matrices were constructed from the tabulated data for each species group with the

116-167

function “vegdist” in Vegan. Matrices were used to perform non-metric dimensional scal-

116

ing with the metaMDS function and visualized with the ordihull function in Vegan. " Feature

16 and plots were generated

accumulation curves were prepared in Vegan using tabulated data
using a uniform x-axis representing the whole data set. Alpha diversity (observed chemical rich-

ness) was calculated using the Python package Scikit-Bio (version 0.2.0, http://scikit-bio.org)

and analyzed using a one-way ANOVA and Tukey’s HSD test in R."*” GNPS feature-based mo-

47,99

lecular networking was performed on the peak list and MS? data derived from MZmine2''?

using the parameters described in the Supporting Information, Table 4.7.

4.3.7 Data availability.
LC-MS/MS data were deposited in MassIVE under accession number MSV000087143.

Feature-based molecular networking methods are accessible at https://gnps.ucsd.edu/Prote-
oSAFe/status.jsp?task=572d4319657f451e92b930e2ddecd62a. Sequencing data were deposited
under accession number MZ362513 - MZ362590. Codes created for data analysis are accessible

on GitHub at https://github.com/NPDG/GreatLakes. .
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Supplemental Figure 3.1 Feature richness and diversity of Alternaria. (A) Feature count with
random selection of isolates from larger clades (n=26). Significant differences in the chemical
richness of clades persisted even when the sample size was sub-sampled to achieve a balanced
dataset (p<0.001). (B) Feature count by chemical cluster. Chemical clusters also showed
significant differences in chemical richness both when analyzed as a whole (p<0.001). (C)
Feature count with random selection of isolates from larger clusters (n=18). Chemical richness
of a balanced dataset (n=18) yielded significant differences between chemical clusters
(p=0.0338).
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Supplemental Figure 3.2 Venn diagram of features in chemical Clusters 1-6. Feature overlap by
chemical cluster is tremendously complex. Clusters were constructed based on hierarchical
clustering analysis using a Bray-Curtis distance metric. There is a high degree of overlap
between these clusters: 5166 (47.0%) features are shared by at least 2 chemical clusters. The
remaining 5825 (53.0%) features are unique to a single cluster: 2516 (22.9%), 1857 (16.9%),
863 (7.9%), 185 (1.7%), 217 (2%), and 187 (1.7%) of features were found to be unique to
Cluster 1, 2, 3, 4, 5, and 6 respectively.
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Supplemental Figure 3.3 Relationship between size of clade and proximity to chemical satura-
tion. In addition to using extrapolated rarefaction curves (Figures 3.44 & 3.4B), the slope at the
end of interpolated data in rarefaction curves reveals that larger clades have a lower slope
indicating that they are closer to saturation (slope=0). Thus, the chemistry of larger clades is
more fully described, and investigation of smaller clades may add more new features if sampled
more extensively.
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Supplemental Figure 3.4 Venn diagram of scaffolds in chemical Clades 1-6. 1185 (71.3%)
scaffolds were found to be shared between at least two chemical clusters, while the remaining
476 (28.7%) scaffolds were found to be unique to a single chemical cluster. Of these scaffolds,
197 (11.9%), 154 (9.3%), 76 (4.6%), 11 (0.7%), 21 (1.3%), and 17 (1%) were found to be unique
to chemical Clusters 1, 2, 3, 4, 5, and 6 respectively.
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Supplemental Figure 3.5 Adaption of collector's curve for metabolomics analysis. In addition to
rarefaction curves presented in Figure 3.4A and Figure 3.4B, the use of collector's curve can
shed additional light on the accumulation of chemistry. Collector’s curves differ from
rarefaction curves in that they present the raw data as entered, while the rarefaction analysis
creates a model for describing the smooth accumulation of diversity. Because this is raw data,
the order of data can vastly change the shape and smoothness of the resulting curve. To
illustrate the power of different arrangements of data on this method, the Alternaria dataset was
randomized 4 times in Microsoft Excel and scaffold accumulation curves were generated using
the collector’s method in vegan. These curves were overlaid above. While the beginning and
ending point of these curves, the shape between 1000 and 1400 scaffolds are quite different.
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Supplemental Figure 3.6 Exploration of scaffold-level diversity within chemical clusters. A
library that was constructed exclusively of isolates from the most abundant clade (Clade 1)
would provide access to 74.8% of scaffolds. The addition of Clusters 2, 3, 4, 5, and 6 provide an
additional 16.1%, 5.5%, 1.3%, 1.3% and 1.0%. However, if the library emphasized the smaller
clusters, the 96 isolates that make up Clusters 2-6 provide access to 87.9% of total scaffolds and
the addition of Cluster 1 only provides 12.1% of the total scaffolds.

Supplemental Table 3.1 Alternaria type strains identified in Genbank that were used to create
ITS-based clades. The Alternaria spp. are identified by number (i.e., Number in tree) in the
cladogram shown in Figure 3.1 of the manuscript.

Number in tree Type strain Accession number
1 Alternaria angustiovoidea MHS861939
2 Alternaria cerealis NR 136117
3 Alternaria arborescens NR 135927
4 Alternaria daucifolii NR 137802
5 Alternaria alstroemeriae NR 163686
6 Alternaria destruens NR 137143
7 Alternaria tropica MH&862449
8 Alternaria infectoria NR 131263
9 Alternaria dactylidicola NR 151852
10 Alternaria rosae NR 136017
11 Alternaria tellustris NR 135961
12 Alternaria molesta MHZ861376
13 Alternaria lolii NR 159632
14 Alternaria leptinellae NR 111866
15 Alternaria hungarica NR 135944
16 Alternaria hyacinthi NR 145168
17 Alternaria proteae NR 135930
18 Alternaria thalictrigena NR 135937
19 Alternaria zantedeschiae NR 160245

20 Alternaria sorghi NR 160246
21 Alternaria multiformis NR 077187
22 Alternaria terricola NR 103600

Supplemental Table 3.2 Source information for Alternaria isolates used in this analysis. Regions
are NOAA regions based on the state from which each soil sample was submitted. The number of
isolates in each group is indicated by a number in parentheses.

Region State City Sample ID Full ID Cryo ID
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Alaska (1) AK (1) Douglas (1) 106113 (1) AKO06113 RBM-3 200-A5
Central (15) IL (2) O'Fallon (1) 107958 (1) 1L07958 RBM+M-4 356-G10
Oak Park (1) 106098 (1)) 1L06098 RBM-1 330-C2
MO (9) Blue Springs (6) 104924 (1) MO04924 GVA-3 360-F7
104938 (1) MO04938 RBM-3 307-A3
104941 (3) MO04941 CZ-4 365-C8
MO04941 PFA-8 365-D8
MO04941 ZMA-1 365-D9
105221 (1) MO05221 TV8-3 275-C3
Lee's Summit (2) 104933 (2) MO04933 TV8-5 361-E4
MO04933 SEA-1 361-G5
Saint Louis (1) 109829 (1) MO09829 RBM-3 444-A2
OH (3) Dennison (1) 12530 (1) OH2530 CZSW-8 286-G9
Lakeside Marblehead (1) 12429 (1) OH2429 TV8-4 197-B1
Ravenna (1) 13669 (1) OH3669 PDA-2 354-B6
TN (1) Oak Ridge (1) 108832 (1) TN08832 RBM-2 411-C5
East North Central (8) MI (1) Kingsford (1) 106583 (1) MI06583 RBM+M-4 244-G12
MN (5) Andover (1) 101626 (1) MNO01626 TV8-2 175-F4
Bemidji (1) 11589 (1) MN1589 TV8-2 253-G9
Minneapolis (2) 11708 (2) MN1708 BSA-1 241-F8
MN1708 BSA-2 241-F9
Shakopee (1) 15936 (1) MN5936 TV8-2 170-A3
WI(2) Shawano (2) 105148 (2) WI05148 RBM-4 186-F11
WI05148 RBM-1 186-F8
Northeast (7) CT (2) Stamford (2) 105458 (1) CT05458 TV8-4 372-F4
105460 (1) CT05460 TV8-3 319-E8
MA (1) Mattapan (1) 102133 (1) MA02133 RBM-4 185-D9
MD (1) Sparrows Point (1) 108122 (1) MD08122 BIA-4 282-E10
NY (1) Eastchester (1) 101906 (1) NY01906 GVA-1 335-F9
PA (2) Allentown (1) 106591 (1) PA06591 TV8+M-1 245-E10
Lancaster (1) 19696 (1) PA9696 RBM-5 175-C5
Northwest (12) ID (3) Post Falls (1) 19935 (1) 1D9935 RBM-1 389-H2
Star (1) 107855 (1) ID07855 RBM+M-1 356-F7
Twin Falls (1) 108003 (1) ID08003 RBM+M-6 295-Cl1
OR (3) Portland (1) 105493 (1) OR05493 TV8-3 339-F8
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Roseburg (1) 103007 (1) OR03007 CZ-1 358-H1
Yachats (1) 105645 (1) OR05645 TV8-2 236-G1
WA (6) Endicott (1) 106230 (1) WA06230 TV8+M-1 279-H6
Republic (1) 104059 (1) WA04059 TV8-4 323-A8
West Richland (4) 106432 (4) WA06432 TV8-2 239-G9
WA06432 BIA-1 239-H3
WA06432 BIA-6 239-H7
WA06432 BIA-4 239-H8
South (18) KS (1) Auburn (1) 13211 (1) KS3211 TV8-3 165-C11
OK (9) Marlow (1) 106401 (1) OKO06401 TV8-1 347-D10
Mounds (2) 105088 (2) OK05088 RBM-3 342-G4
OK05088 RBM-4 342-G5
Oklahoma City (5) 102375 (1) 0K02375 RBM-4 333-Ell
104301 (3) 0OKO04301 TV8-7 177-El
OKO04301 RBM-4 177-E5
0OKO04301 RBM-5 177-E6
107080 (1) OK07080 RBM-4 310-G10
Tecumseh (1) 10626 (1) Tucker BIA-1 154-A4
TX (8) Alvin (1) 104415 (1) TX04415 CIT-4 349-G2
Austin (2) 106180 (2) TX06180 RBM-1 239-D10
TX06180 BIA-3 239-D12
Dallas (2) 103115 (1) TX03115 RBM-2 325-El1
103143 (1) TX03143 PFA-2 369-C2
El Paso (2) 15878 (1) TX5878 RBM-4 145-B9
18357 (1) TX8357 RBM-1 133-H4
Weslaco (1) 19737 (1) TX9737 BIA-2 380-A8
Southeast (8) AL (2) Birmingham (1) 12730 (1) AL2730 BIA-2 258-B8
Tuskegee (1) 106505 (1) AL06505 TV8+M-2 337-B2
FL (2) Cape Coral (1) 15539 (1) FL5539 TV8-3 201-E4
Niceville (1) 105029 (1) FL05029 TV8-1 331-B9
NC (2) Chapel Hill (1) 107859 (1) NC07859 RBM-3 431-A2
Clemmons (1) 14376 (1) NC4376 RBM-5 404-B10
SC (1) Columbia (1) 15920 (1) SC5920 TV8-1 101-H7
VA (1) Unionville (1) 19846 (1) VA9846 TV8-2 175-A7
Southwest (61) AZ (8) Phoenix (5) 101714 (1) AZ01714 RBM+M-5 333-A8
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CO (8)

NM (7)

UT (38)

Scottsdale (1)
Sonoita (1)

Tempe (1)
Alamosa (1)
Arvada (1)
Colorado Springs (1)
Denver (1)

Fort Collins (1)
Golden (1)

Grand Junction (1)
Grand Lake (1)

Albuquerque (6)

Serafina (1)

Hyde Park (2)

Layton (1)
Lindon (1)

Logan (15)
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105667 (3)

106110 (1)
105966 (1)
107035 (1)
100157 (1)
103739 (1)
17626 (1)
106011 (1)
15842 (1)
11330 (1)
15585 (1)
108658 (1)
105854 (1)

16512 (2)

16572 (1)
16579 (1)
101594 (1)
104076 (1)
13634 (1)

107209 (2)

107902 (1)
107814 (1)
106978 (1)
107120 (1)
107129 (1)
107162 (1)
107164 (1)
107193 (1)
107195 (1)
107285 (1)

107825 (3)

AZ05667 TV8-3

AZ05667 RBM-7

AZ05667 TV8-2

AZ06110 RBM-1

AZ05966 RBM-1

AZ07035 RBM+M-1

AZ00157 RBM-1

CO003739 RBM-5

CO7626 TV8-3

CO06011 RBM-4

CO5842 RBM-1

CO1330 RBM-3

CO5585 RBM+M-4

CO08658 RBM-4

CO05854 BIA-1

NM6512 RBM-2

NM6512 RBM-1

NM6572 TVS-3

NM6579 TVS-1

NMO01594 RBM-4

NMO04076 SULF-2

NY3634 TV8-2

UT07209 TV8-3

UT07209 TVS-1

UT07902 TV8+M-1

UT07814 RBM+M-1

UT06978 RBM-1

UT07120 TVS8-3

UT07129 RBM-2

UT07162 TVS8-3

UT07164 TVS8-1

UT07193 TV8-6

UT07195 RBM-2

UT07285 TVS-2

UT07825 RBM-3

339-All

340-B7

346-A6

310-A12

306-B5

337-A5

199-A7

315-H8

149-A5

360-C1

136-B12

147-B2

308-A12

421-C11

238-B1

134-D5

147-C6

139-F1

139-F2

179-A9

390-E1

159-E5

269-E10

269-E9

296-H5

356-B9

264-D2

267-F12

269-D2

267-A5

267-B12

264-C2

268-F1

355-C2

334-A8



UTO07825 TV8-6 355-B5
UTO07825 BIA-2 355-B6
109117 (2) UT09117 RBM-5 386-All
UT09117 SULF-4 386-A2
109210 (1) UT09210 TV8-3 383-G3
109630 (1) UT09630 RBM-4 444-A9
Orderville (9) 16905 (2) UT6905 TV8-4 194-H4
UT6905 RBM-4 197-D9
16917 (1) UT6917 RBM-30 197-E10
16918 (1) UT6918 RBM-1 170-F4
16921 (1) UT6921 RBM-1 164-D9
16925 (2) UT6925 TV8-1 169-E8
UT6925 TV8-2 169-E9
16926 (1) UT6926 RBM-1 157-H2
16927 (1) UT6927 RBM-1 190-D4
Orem (1) 101299 (1) UT01299 RBM-5 166-G4
Paradise (2) 109111 (2) UT09111 RBM-3 386-F1
UT09111 RBM-4 386-F2
Payson (1) 102892 (1) UT02892 RBM-3 331-G7
Provo (1) 106863 (1) UT06863 RBM+M-2 247-G9
Sandy (1) 12290 (1) UT2290 RBM-2 170-E12
Tremonton (2) 107838 (2) UT07838 RBM+M-3 282-B3
UT07838 TV8+M-2 282-B6
Wellsville (1) 108880 (1) UTO08880 RBM-4 385-D2
West Jordan (1) 106991 (1) UT06991 SULE-3 362-C3
West (58) CA (50) Canyon Country (2) 104365 (2) CA04365 RBM-7 272-A11
CA04365 RBM-3 272-A8
Capistrano Beach (3) 106897 (1) CA06897 TV8-1 253-D6
106910 (2) CA06910 TV8-2 260-D9
CA06910 RBM-5 262-B7
Dana Point (3) 106912 (1) CA06912 TV8-5 260-D5
107639 (1) CA07639 RBM-1 387-El
107649 (1) CA07649 BIA-1 390-D4
Dublin (2) 19212 (1) CA9212 RBM-2 152-B2
19443 (1) CA9443 RBM-1 166-H2
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Garden Grove (1)
La Puente (1)

Ladera Ranch (5)

Los Alamitos (1)
Marina (1)
Perris (1)

Pomona (2)

Redlands (1)

Rio Linda (2)

Riverside (1)

Sacramento (3)

San Clemente (2)

San Diego (1)

San Jose (5)

San Juan Capistrano (5)

Santa Ana (1)

Simi Valley (5)
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100516 (1)
19633 (1)

106893 (1)
106898 (1)
106905 (1)
106924 (1)
107564 (1)
106077 (1)
12503 (1)

105759 (1)

103709 (2)

105688 (1)
16630 (1)

105902 (1)
100382 (1)

102293 (3)

106904 (2)

100380 (1)

16130 (2)

105322 (1)

106256 (2)

106890 (1)
106919 (1)
106930 (1)
106932 (1)
107634 (1)
105894 (1)

100535 (5)

CA00516 RBM-2

CA9633 RBM-1

CA06893 RBM-1

CA06898 RBM-4

CA06905 RBM-2

CA06924 TVS-1

CA07564 RBM-1

CA06077 TV8-4

CA2503 RBM-2

CA05759 RBM+M-1

CA03709 SULF-5

CA03709 SULF-6

CA05688 RBM-4

CA6630 RBM-5

CA05902 RBM+M-3

CA00382 CEA-1

CA02293 RBM-3

CA02293 RBM-4

CA02293 RBM-2

CA06904 RBM-3

CA06904 TVS-1

CA00380 RBM-3

CA6130 CGA-1

CA6130 BIA-2

CAO05322 PFA-3

CA06256 RBM-5

CA06256 TVS-3

CA06890 TVS-1

CA06919 RBM-3

CA06930 RBM-3

CA06932 RBM-1

CA07634 TVS-1

CA05894 RBM-2

CA00535 MEA-4

CA00535 BFA-2

167-A11

151-A8

260-C1

268-B1

266-C12

267-G2

387-C3

380-H8

178-D1

280-A8

382-E5

382-E6

347-B1

168-E2

308-G8

365-G7

173-C6

180-B10

180-B9

263-C1

263-C2

157-F2

153-E12

155-ES

348-B5

280-B9

307-Cl11

387-A9

268-A6

266-H2

268-A8

386-G8

352-A7

359-A3

359-A7



CA00535 RBM-3 359-B7

CA00535 RBM-5 359-B9

CA00535 CZSW-2 359-D5

Turlock (1) 107860 (1) CA07860 TV8-2 421-A1

Yorba Linda (1) 100742 (1) CA00742 TV8-1 201-B8

NV (8) Dayton (1) 17690 (1) NV7690 TV8-2 158-H6

Fallon (2) 107695 (2) NV07695 RBM-3 316-El

NV07695 RBM-4 316-E2

Las Vegas (2) 102048 (1) NV02048 CIT-1 439-C7
108352 (1) NV08352 RBM-5 411-C10

Reno (2) 107748 (2) NV07748 CIT-1 423-E8

NV07748 SULF-5 423-F5

Sparks (1) 103768 (1) NV03768 TV8-1 326-C4

West North Central MT (3) Helena (1) 13034 (1) MT3034 RBM-4 148-E3

(10)

Melstone (2) 106089 (2) MT06089 RBM-3 353-E9

MTO06089 RBM-1 366-D1

ND (1) Gwinner (1) 101000 (1) ND01000 RBM-6 374-F7

NE (2) Chadron (1) 101209 (1) NE01209 TV8-7 185-F7
Hastings (1) 104278 (1) NE04278 TV8-8 347-D12

SD (1) Aberdeen (1) 16748 (1) SD6748 TV8-3 183-H4
WY (3) Carpenter (1) 14702 (1) WY4702 RBM-3 396-C10

Otto (2) 107136 (2) WY07136 RBM-2 269-B2

WY07136 RBM-4 269-B4

Supplemental Table 3.3 Data acquisition parameters for LC-MS/MS.

Parameter Value
Data acquisition mode positive
Scan range 100-1500 m/z
MS1 Resolution 35,000
MS 2 Resolution 17,500
Top N 5
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sheath gas

auxiliary gas

sweep gas

auxiliary gas temperature
spray voltage

S-lens RF

capillary temperature

Maximum injection time (MS1 & MS2)

MS1 AGC target
MS2 AGC target

Isolation window

Normalized collision energy increments

MS2 dynamic exclusion
Apex trigger
Exclude

35 L/min
10 L/min
0 L/min
350C
3.8kV
50V
320C
100 Ms
1E6

5ES
2m/z
20%, 30%, 40%
10s
2-8s

Unassigned charges

Supplemental Table 3.4 MZmine data processing parameters.

Process Parameter Value
Mass Detection MS1 Noise Level 4.0E5
MS2 Noise Level 6.00E+03
Mass Detector Centroid
Chromatogram Builder Minimum Time Span (min) 0.01
Minimum Height 1E7
m/z tolerance (ppm) 10
Chromatogram Deconvolu- Chromatographic threshold 20
tion: LOCAL MINIMA algo-
rithm
Search minimum in RT range (min) .08
Minimum relative height 26
Minimum absolute height 1E7
Min ratio of peak top/edge 1.19
Peak duration range (min) 0.01-1.00
m/z Range for MS2 Scan Pairing (Da)  0.01
RT Range for MS2 Scan Pairing (min) 0.1
Isotopic Peak Grouper Retention Time Tolerance (min) 0.1
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m/z tolerance (ppm) 10

Monotonic Shape Yes
Maximum Charge 3
Representative isotope Lowest m/z
Join aligner m/z tolerance (ppm) 15
m/z to RT weight 1-1
Retention Time Tolerance (min) 0.25
Row filtering Retention Time 0.20-12 min
Keep only peaks with MS2 scan Enabled
Minimum peaks in a row 2 (for duplicates)

Supplemental Table 3.5 GNPS parameters.

Parameter

Value

MS/MS fragment ions filtering
MS/MS spectra were window filtered
precursor ion mass tolerance

MS/MS fragment ion tolerance
cosine score

Minimum matched peaks

edges between two nodes

maximum size of a molecular family
analogue search mode

MS/MS spectra

matches kept between network spectra and li-
brary spectra
cosine score

Minimum matched peaks

91

+/- 17 Da of the precursor m/z

6 fragment ions in the +/- 50 Da window
0.02 Da

0.02 Da

>0.7

4

10 most similar nodes

100

enabled

200.0

>0.7
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4
e PRRRRR

m Terrestrial P. brevicompactum m Aquatic P. brevicompactum
m Terrestrial 1. expansum

m Aquatic 2. expansum
m Terrestrial P. oxalicum

m  Aquatic P. oxalicum

Supplemental Figure 4.1 ITS phylogenetic tree. Type strains indicated by yellow stars (P.
brevicompactum NR 121299.1, P. expansum NR 077154.1, and P. oxalicum NR_121232.1).
Outgroup of Beauveria indicated with black stars (NR_077147.1, NR_151832.1, NR_111595.1).

Tree generated with maximum likelihood analysis with 500 bootstraps. Branches are collapsed
at 70%.
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A

Terrestrial P. brevicompactum

Total features: 3603

686 Overlap: 67.1%
Unique to terrestrial samples: 19%
Unique to aquatic samples: 13.9%

Aquatic P. brevicompactum

B

Terrestrial P. expansum

Total features: 3655

Overlap: 65.2%

Unique to terrestrial samples: 19.2%
Unique to aquatic samples: 15.6%

Aquatic P. expansum

C

Terrestrial P. oxalicum

Total features: 3184

Overlap: 59.5%

Unique to terrestrial samples: 24.8%
Unique to aquatic samples: 15.7%

Aquatic P. oxalicum

Supplemental Figure 4.2 Examination of overlap of chemical features. Venn diagrams of fea-
tures detected in each species collected from two source environments.
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m Ustilaginomycetes

B Umbelopsidomycetes

B Tremellomycetes

B Sordariomycetes

W Saccharomycetes

M Polycystinea
Pezizomycetes
Orbiliomycetes

B Mucoromycetes

B Mortierellomycetes

B Microbotryomycetes

B Magnoliopsida

B Leotiomycetes

B Lecanoromycetes

H Exobasidiomycetes

W Eurotiomycetes

m Dothideomycetes

m Cystobasidiomycetes
Conoidasida

m Arthoniomycetes

® Agaricostilbomycetes

B Agaricomycetes

Supplemental Figure 4.3 Summary of fungal classes by environmental source: aquatic and ter-
restrial. Fungi that could not be identified at the class level were removed (5 genera from the

aquatic environment and 5 genera from the terrestrial environment).

Supplemental Table 4.1 Class level taxonomic information for fungi in the aquatic and terrestrial
environments. Numbers indicate the number of isolates identified within the respective class.

Class Aquatic Terrestrial
Agaricomycetes 177 21
Agaricostilbomycetes | 1 0
Arthoniomycetes 1 0
Conoidasida 0 1
Cystobasidiomycetes | 2 0
Dothideomycetes 480 771
Eurotiomycetes 842 1036
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Class Aquatic Terrestrial
Exobasidiomycetes 3 5
Lecanoromycetes 1 0
Leotiomycetes 353 347
Magnoliopsida 0 2
Microbotryomycetes | 19 2
Mortierellomycetes 5 15
Mucoromycetes 3 26
Orbiliomycetes 0 1
Pezizomycetes 1 3
Polycystinea 0 6
Saccharomycetes 19 5
Sordariomycetes 1063 1896
Tremellomycetes 39 40
Umbelopsidomycetes | 10 9
Ustilaginomycetes 40 11

Supplemental Table 4.2 Family level taxonomic information for fungi in the aquatic and terres-
trial environments. Numbers indicate the number of isolates identified within the respective fam-

ily.

Family Aquatic Terrestrial
Amanitaceae 1 0
Amorosiaceae 2 0
Apiosporaceae ) 59
Aplosporellaceae 1 0
Arachnomycetaceae 1 1
Arthrodermataceae 2 0
Ascodesmidaceae 1 0
Aspergillaceae 728 536
Bionectriaceae 95 19
Brachybasidiaceae 0
Capnodiaceae 5
Cephalothecaceae 17 )
Ceratocystidaceae 2 0
Chaetomellaceae 4 0
Chaetomiaceae 326 38
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Family Aquatic Terrestrial
Chaetosphaeriaceae 22 1
Cladosporiaceae 55 118
Clavicipitaceae 132 1
Coccodiscidae ) 0
Coniochaetaceae 58 78
Coniothyriaceae 19 0
Cordycipitaceae 68 21
Cucurbitariaceae 24 0
Cunninghamellaceae 4 0
Cyphellophoraceae 1 0
Cystofilobasidiaceae 4 0
Debaryomycetaceae 3 1
Dermateaceae 47 15
Diaporthaceae 1 1
Diatrypaceae 1 1
Dictyosporiaceae 2 0
Didymellaceae 63 50
Didymosphaeriaceae 48 19
Discinellaceae 2 0
Dothideaceae 1 1
Dothioraceae 1 1
Eimeriidae 1 0
Eremomycetaceae 9 0
Erysiphaceae 13 0
Filobasidiaceae 1 2
Glomerellaceae 14 )
Gymnoascaceae 1 35
Halosphaeriaceae 1 0
Helotiaceae 4 9
Herpotrichiellaceae 77 38
Hyaloscyphaceae 16 4
Hypocreaceae 144 397
Hypoxylaceae 2 51
Lachnaceae 1
Lamioideae 2 0
Lasiosphaeriaceae 21 27
Lentitheciaceae 5 0
Leotiaceae 6
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Family Aquatic Terrestrial
Leucosporidiaceae 0
Lichtheimiaceae 0
Lipomycetaceae 1 0
Lophiostomataceae 62 1
Lophiotremataceae 3 0
Massarinaceae 9 2
Melanommataceae 1 2
Microascaceae 91 8
Microdochiaceae 12 0
Minutisphaeraceae 1 0
Morosphaeriaceae 3 0
Mortierellaceae 15 5
Mrakiaceae 18 5
Mucoraceae 19 2
Mycosphaerellaceae 5 5
Myrmecridiaceae 14 0
Myxotrichaceae 26 24
Nectriaceae 382 73
Neopyrenochaetaceae 14

Niessliaceae 8
Omphalotaceae 3

Onygenaceae

Ophiocordycipitaceae 43 20
Ophiostomataceae 24 0
Orbiliaceae 1
Parapyrenochaetaceae 1

Periconiaceae

Phacidiaceae 29
Phaeosphaeriaceae 40 7
Piskurozymaceae 1 1
Plectosphaerellaceae 110 58
Pleosporaceae 69 30
Pleurostomataceae 4

Pleurotaceae

Polyporaceae 2
Psathyrellaceae 13 81
Pseudeurotiaceae 151 121
Pyrenochaetopsidaceae 77 2
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Family Aquatic Terrestrial
Pyronemataceae 2 0
Quambalariaceae 3 0
Rhizopodaceae 1 1
Rutstroemiaceae 2 1
Saccotheciaceae 2 10
Sarocladiaceae 81 2
Schizoparmaceae 2 2
Sordariaceae 3 3
Sporidesmiaceae 1 0
Sporocadaceae 8 9
Sporormiaceae 126 105
Stachybotryaceae 49 3
Sympoventuriaceae 43 1
Teichosporaceae 4 1
Teratosphaeriaceae 12 2
Tetraplosphaeriaceae 1 1
Thelebolaceae 2 9
Thermoascaceae 82 27
Thyridariaceae 15 2
Torulaceae 2 15
Trematosphaeriaceae 8
Trichocomaceae 87 156
Tricholomataceae 1 0
Trichomeriaceae 1 1
Trichomonascaceae 1 0
Trichosphaeriaceae 1 18
Trichosporonaceae 12 1
Trimorphomycetaceae 4 2
Tympanidaceae 1 2
Umbelopsidaceae 9 10
Ustilaginaceae 11 40
Valsaceae 1 13
Agaricaceae 0 1
Annulatascaceae 0 2
Arthopyreniaceae 0 3
Ascobolaceae 0 1
Biatriosporaceae 0 3
Boliniaceae 0 1
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Family

Aquatic

Terrestrial

Botryosphaeriaceae

Bulleribasidiaceae

Camptobasidiaceae

Cryptococcaceae

Dipodascaceae

Dissoconiaceae

Entylomataceae

Exobasidiaceae

Gelatinodiscaceae

Gloniaceae

Kondoaceae

Latoruaceae

Leptosphaeriaceae

Lindgomycetaceae

Lulworthiaceae

Meruliaceae

el il Y Y A el el el e e el DL 9S B e o J I

Microbotryaceae

—_
B~

Mytilinidiaceae

Nannizziopsiaceae

Nigrogranaceae

Opegraphaceae

Phaffomycetaceae

Physalacriaceae

Pichiaceae

Podoscyphaceae

Rhytismataceae

Sclerotiniaceae

Sporidiobolaceae

W =] = N = =] D =] N DN -

Strophariaceae

N
o8]

Symmetrosporaceae

Togniniaceae

Trapeliaceae

Tremellaceae

Venturiaceae

=) Nel Nel HelE=]lR=] =)=l Nel el el el ol Nel - K=l =] =] Nl Ne) Hel ol Hel Rl =] ol ol el Rol Nl Rol ol K= =

W B =] =] =
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Supplemental Table 4.3 Genus level taxonomic information for fungi in the aquatic and terres-
trial environments. Numbers indicate the number of isolates identified in the indicated genus.

Genus Aquatic Terrestrial
22
0
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Genus

Aquatic

Terrestrial
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Genus Aquatic Terrestrial
Chaetosphaeria 1 0
Cheilymenia 0 1
Chloridium 0 21
Chrysosporium 9 44
Circinella 0
Cladophialophora 0

Cladorrhinum 0

Cladosporium 113 55
Clathrosphaerina 1 0
Clonostachys 17 85
Coccidioides

Coleophoma

Colletotrichum 14
Coniella 2
Coniochaeta 78 58
Coniolariella 1 0
Coniothyrium 0 19
Coniozyma 1 0
Coprinellus 72 13
Coprinus 1 0
Corallomycetella 0 1
Cordana 1 1
Cordyceps 0 40
Cosmospora 6 19
Creosphaeria 2

Crocicreas 1

Cryptococcus 18

Cryptostroma 5

Curvularia 1 42
Cutaneotrichosporon 0 2
Cyberlindnera 4 0
Cycasicola 0 1
Cylindrocarpon 1 23
Cylindrocladiella 0 3
Cyphellophora 0 1
Cystodendron 1 0
Cystofilobasidium 0 4
Dactylaria 0 1
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Genus Aquatic Terrestrial
Dactylonectria 0 3
Daldinia 10 0
Darkera 0 1
Davidiella 4 0
Debaryomyces 1 2
Dendryphion 9 0
Devriesia 2 0
Dialonectria 0 7
Diaporthe 1 1
Diatrype 1 1
Dichotomopilus 0 7
Dictyochaeta 0 1
Dictyosporium 0 1
Didymella 0 23
Didymocyrtis 0 )
Didymosphaeria 0 42
Dimorphospora 3 0
Dipodascopsis 0 1
Discosia 0 2
Dokmaia 0 12
Doratomyces 0 2
Dothichiza 0 1
Dothidea 0 1
Dothiorella | 0
Edenia 0 1
Emericella 0 1
Emericellopsis 8 3
Entyloma 1 0
Epicoccum 7 25
Eucasphaeria 1 3
Exobasidium | 0
Exophiala 7 56
Exserohilum 0 1
Fimetariella 8 3
Flammula 2 0
Fusarium 37 226
Fusicolla 1 28
Galactomyces 3 0
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Genus

Aquatic

Terrestrial
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Genus

Aquatic

Terrestrial
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Genus Aquatic Terrestrial
Meyerozyma 0 |
Microascus 0 5
Microcera 0 1
Microdochium 0 9
Microsphaeropsis 0 1
Microsporum 0 1
Minutisphaera 0 1
Moesziomyces 0 10
Monochaetia 0 1
Monocillium 0 6
Monodictys 1 1
Mortierella 5 15
Mrakia 2 0
Mucor 2 17
Murilentithecium 0 |
Myceliophthora 0 1
Myrmecridium 0 14
Myrothecium 1 15
Mytilinidion 1

Nannizziopsis 2 0
Nectria 24 26
Nemania 15 |
Neocucurbitaria 0 5
Neofabraea | 0
Neopyrenochaeta 0 14
Neosartorya 0 2
Neoscolecobasidium 0 1
Neosetophoma 0 1
Neurospora 2 3
Niesslia 0 2
Nigrograna 2 0
Nigrospora 18 1
Nodulisporium 2 0
Nothophoma 0 1
Ochroconis 1 42
Ogataea | 0
Oidiodendron 22 26
Ombrophila 1 0
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Genus Aquatic Terrestrial
Opegrapha 0
Ophiostoma 0 1
Ovadendron 0 3
Paecilomyces 27 77
Papulaspora 0
Paraconiothyrium 5 0
Paramicrothyrium 2 0
Paraphaeosphaeria 12 5
Paraphoma 2 22
Parasarocladium 0 49
Parascedosporium 0 5
Parastagonospora 1 0
Parathyridaria 0 9
Parvothecium 0 1
Patinella 9 0
Penicillifer 0 2
Penicillium 474 615
Perenniporia 1 1
Periconia 5 3
Pestalotiopsis 9 4
Pezicula 1 0
Pezizella 0 3
Phacidiopycnis 1 0
Phaeosphaeria 3 11
Phaeosphaeriopsis 1 1
Phalangispora 0 2
Phialemoniopsis 0 1
Phialemonium 5 16
Phialocephala ) 1
Phialophora 31 19
Phlebia 1 0
Pholiota 33 0
Phoma 26 3
Phomopsis ) 0
Phragmocamarosporium 0 2
Piskurozyma 1
Plectosphaerella 20 56
Pleiochaeta 0 1
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Genus Aquatic Terrestrial
Pleospora 0 13
Pleurostoma 0 4
Pleurotus 0

Pochonia 0 47
Podocarpomyces 0 2
Podospora 11

Pogostemon 0

Polyphilus 0

Preussia 93 38
Protoventuria 1 0
Psathyrella 9 0
Pseudallescheria 4 1
Pseudeurotium 111 1
Pseudocercosporella 1 0
Pseudogymnoascus 0 147
Pseudombrophila 1
Pseudopithomyces 1
Pseudozyma 10 1
Psilocybe 4 0
Purpureocillium | 37
Pyrenochaeta 0 19
Pyrenochaetopsis 0 77
Quambalaria 0 3
Quixadomyces 0 1
Ramichloridium | 0
Ramularia 0 3
Rasamsonia 1 0
Rhizopus | |
Rhodocollybia 0 3
Rhodotorula 3 0
Rollandina 0 1
Roseodiscus 0 1
Roussoella 1 4
Rutstroemia 0 1
Sagenomella 2 1
Saitozyma 2 4
Sarocladium 2 32
Scedosporium 1 2
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Genus

Aquatic

Terrestrial
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Genus Aquatic Terrestrial
Tolypocladium 19 4
Torula ) 2
Tranzscheliella 7 0
Trematosphaeria 8 3
Tricellula 0 1
Trichocladium 1 23
Trichoderma 396 141
Tricholoma 0 1
Trichopeziza 0 1
Trichosporiella 0 45
Trichosporon 1 4
Trichurus 0 2
Umbelopsis 10 9
Ustilago 1 0
Valsa 7 1
Venturia 2 0
Verticillium ) 10
Vishniacozyma 1 0
Volutella 0 13
Wardomyces 2 17
Westerdykella 8 7
Wojnowiciella 0 1
Xanthothecium 1 0
Xepicula 2 0
Xylaria 9 3
Xylogone 0 )
Xylomelasma 4 2
Yunnania 0 1
Zalerion 1 0
Zopfiella 3 0

Supplemental Table 4.4 Isolates used in the analysis. Values in parentheses indicate the number
of isolates at each level.

Species

Source

State or
Sediment ID

full id

cryo

link

Genbank
accession
no.

P. brevicompactum (25)

CSSC (12)

IL (6)

1L02963 TV8-3 (1)

330-Co6

https://shareok.org/handle/11244/44943

MZ362515

1L05106 TV8+M-1 (1)

280-D11

https://shareok.org/handle/11244/44568

MZ362516
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Species Source State or full id cryo link Genbank
Sediment ID accession
no.
1L08989 BIA-1 (1) 426-B10 https://shareok.org/handle/11244/54424 MZ362518
1L12323 RBM+LICL-7 519-A7 https://shareok.org/handle/11244/316382 MZ362525
1)

1L3098 CEA-1 (1) 344-D2 https://shareok.org/handle/11244/29429 MZ362527
1L7520 TV8-3 (1) 209-C7 https://shareok.org/handle/11244/28218 MZ362528
MI (5) MI05057 RBM-3 (1) 380-F3 https://shareok.org/handle/11244/44567 MZ362572
MI06134 TV8-3 (1) 250-D12 https://shareok.org/handle/11244/44971 MZ362573
MI1347 TV8-6 (1) 149-D3 https://shareok.org/handle/11244/30002 MZ362578
MI4821 RBM-2 (1) 168-G7 https://shareok.org/handle/11244/29699 MZ362580
MI7656 RBM-1 (1) 194-C11 https://shareok.org/handle/11244/28273 MZ362581
WI(1) WI06424 TV8+M-6 (1) 247-F7 https://shareok.org/handle/11244/44500 MZ362588
GL (13) LMS 100 LMS 100-20 (1) GL38-H7 MZ362529
LMS 57 LMS 57-8 (1) GL40-A5 MZ362546
LMS 59 LMS 59-6 (1) GL39-B6 MZ362548
LMS 65 LMS 65-1 (1) GL37-C10 MZ362551
LMS 68 LMS 68-7 (1) GL37-E4 MZ362553
LMS 76(2) LMS 76-16 (1) GL36-B8 MZ362555
LMS 76-18(1) GL36-B9 MZ362556
LMS 77 LMS 77-12 (1) GL38-A5 MZ362558
LMS 83 LMS 83-4 (1) GL36-D1 MZ362559
LMS 86 LMS 86-9 (1) GL44-F11 MZ362561
LMS 94 LMS 94-9 (1) GL36-G2 MZ362563
LMS 95 (2) LMS 95-12 (1) GL36-G9 MZ362564
LMS 95-4(1) GL41-B2 MZ362565
P. expansum (26) CSSC (13) IL (3) 1L00446 RBM-31 (1) 203-E8 https://shareok.org/handle/11244/28751 MZ362513
IL12018 RBM-1 (1) 614-D5 https://shareok.org/handle/11244/320904 MZ362521
1L3098 BFA-4 (1) 293-D6 https://shareok.org/handle/11244/29429 MZ362526
MI (4) MI03494 TV8-3 (1) 342-F3 https://shareok.org/handle/11244/29116 MZ362571
MI06334 TV8-3 (1) 331-D7 https://shareok.org/handle/11244/44474 MZ362574
MI08762 RBM-1 (1) 383-D9 https://shareok.org/handle/11244/52497 MZ362577
MI17330 RBM-1 (1) 606-B6 https://shareok.org/handle/11244/320842 MZ362579
OH (3) OHO00563 TV8-3 (1) 242-B4 https://shareok.org/handle/11244/41911 MZ362582
OHO05830 RBM-5 (1) 329-F11 https://shareok.org/handle/11244/44306 MZ362583
OHO06145 TV8+M-2 (1) 247-B10 https://shareok.org/handle/11244/44419 MZ362584
WI (3) WI00343 RBM-4 (1) 180-G9 https://shareok.org/handle/11244/28735 MZ362587
WI07453 BFA-3 (1) 283-G4 https://shareok.org/handle/11244/47009 MZ362589
WI08376 ZMA-1 (1) 328-H4 https://shareok.org/handle/11244/51806 MZ362590
GL (13) LMS 123 LMS 123-5 (1) GL76-El MZ362531
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Species Source State or full id cryo link Genbank
Sediment ID accession
no.
LMS 143 LMS 143-1 (1) GL82-G1
LMS 153 LMS 153-4 (1) GL85-D2 MZ362535
LMS 182 LMS 182-25 (1) GL101-F4 MZ362536
LMS 187 LMS 187-18 (1) GL102-D8 MZ362537
LMS 205 LMS 205-10 (1) GL105-D10 MZ362539
LMS 49 LMS 49-2 (1) GL23-F7 MZ362544
LMS 58 LMS 58-1 (1) GL39-A12 MZ362547
LMS 68 LMS 68-6 (1) GL39-F1 MZ362552
LMS 71 LMS 71-6 (1) GL37-G1 MZ362554
LMS 77 LMS 77-10 (1) GL40-D9 MZ362557
LMS 85 LMS 85-6 (1) GL38-D6 MZ362560
LMSO 129 LMSO 129-8 (1) GL79-D7 MZ362567
P. oxalicum (27) CSSC (14) IL (7) 1002902 TV8-5 (1) 343-C8 https://shareok.org/handle/11244/42141 MZ362514
1008349 TV8-3 (1) 316-B9 https://shareok.org/handle/11244/51797 MZ362517
IL11455 PDAT-2 (1) 497-G10 https://shareok.org/handle/11244/301507 MZ362519
IL11999 RBM-2 (1) 614-B8 https://shareok.org/handle/11244/320884 MZ362520
IL12295 RBM-5 (1) 518-A5 https://shareok.org/handle/11244/316354 MZ362522
IL12312 RBM-2 (1) 518-E8 https://shareok.org/handle/11244/316370 MZ362523
IL12316 TV8-1 (1) 517-H3 https://shareok.org/handle/11244/316375 MZ362524
MI (5) MI00176 LBC-4 (1) 399-D8 https://shareok.org/handle/11244/28706 MZ362569
MI00803 RBM-1 (1) 157-A8 https://shareok.org/handle/11244/28814 MZ362570
MI08759 TV8-1 (1) 378-F11 https://shareok.org/handle/11244/52494 MZ362575
MI08761 TV8-1 (1) 385-F9 https://shareok.org/handle/11244/52496 MZ362576
MI1961 TV8-2 (1) 136-D1 https://shareok.org/handle/11244/29201
OH (2) OHO07215 RBM-5 (1) 381-A4 https://shareok.org/handle/11244/46974 MZ362585
OH9508 RBM-2 (1) 144-A7 https://shareok.org/handle/11244/28586 MZ362586
GL (14) LMS 121 LMS 121-10 (1) GL76-C9 MZ362530
LMS 13 LMS 13-19 (1) GL27-Al1 MZ362532
LMS 149 LMS 149-9 (1) GL82-H5 MZ362533
LMS 15 LMS 15-23 (1) GL21-C8 MZ362534
LMS 197 LMS 197-11 (1) GL104-A6
LMS 2 LMS 2-33 (1) GL21-Al1 MZ362538
LMS 29 (2) LMS 29-14 (1) GL22-C3 MZ362540
LMS 29-2 (1) GL26-H7 MZ362541
LMS 30 LMS 30-9 (1) GL21-G6 MZ362542
LMS 35 LMS 35-2 (1) GL22-D4 MZ362543
LMS 54 LMS 54-8 (1) GL23-G10 MZ362545
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Species

Source

State or full id cryo link
Sediment ID

Genbank
accession
no.

LMS 6 LMS 6-4 (1) GL21-B3

MZ362549

LMS 94 LMS 94-7 (1) GL36-F12

MZ362562

Supplemental Table 4.5 Data acquisition parameters for LC-MS/MS.

Parameter Value

Data acquisition mode

Scan range
Top N
sheath gas
auxiliary gas
sweep gas
spray voltage

S-lens RF

capillary temperature

positive
180-2000 m/z
5

40 L/min

5 L/min

0 L/min
45kV

95V

270 °C

Normalized collision energy increments  35%

Supplemental Table 4.6 MZmine data processing parameters.

Process Parameter Value
Mass Detection MS1 Noise Level 3.0E3
MS?2 Noise Level 1.5E2
Mass Detector Centroid
Chromatogram Builder ~ Min group size in # of scans 2
Group intensity threshold 4.0E4
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Min highest intensity 4.0E4

m/z tolerance (m/z) 1.1
Chromatogram Decon-  Chromatographic threshold 30%
volution: LOCAL MIN-
IMA algorithm Search minimum in RT range (min) 0.05
Minimum relative height 20%
Minimum absolute height 1.2E3
Min ratio of peak top/edge 1.19
Peak duration range (min) 0.01-1.00
m/z Range for MS2 Scan Pairing (Da) 0.01
RT Range for MS2 Scan Pairing (min) 0.1
Isotopic Peak Grouper Retention Time Tolerance (min) 0.1
m/z tolerance (ppm) 15
Monotonic Shape Yes
Maximum Charge 3
Representative isotope Lowest m/z
Join aligner m/z tolerance (ppm) 15
m/z to RT weight 1-1
Retention Time Tolerance (min) 0.25
Row filtering Keep only peaks with MS2 scan Enabled
Minimum peaks in a row 2 (for duplicates)

Supplemental Table 4.7 GNPS parameters.

Parameter Value

MS/MS fragment ions filtering +/- 17 Da of the precursor m/z

MS/MS spectra were window filtered 6 fragment ions in the +/- 50 Da window
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precursor ion mass tolerance 0.02 Da

MS/MS fragment ion tolerance 0.02 Da

cosine score >0.7

Minimum matched peaks 4

edges between two nodes 10 most similar nodes
maximum size of a molecular family 100

analogue search mode enabled

MS/MS spectra 200.0

cosine score >0.7

Minimum matched peaks 4
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