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Abstract 

Aerosols are small particles suspended in the atmosphere which affect global climate change via 

scattering and absorbing sunlight and serving as cloud condensation nuclei. Moreover, the 

prevalence of some anthropogenic and toxic aerosols has a direct adverse impact on public health. 

At present, aerosols remain the greatest source of uncertainty for radiative forcing. Though 

accurate characterization of spatially and temporally varying aerosols is difficult, two powerful 

remote sensing techniques, polarimetric and lidar measurements, have the complementary 

strengths of resolving column-effective and vertical distributions of aerosol properties, 

respectively. Vigorous development of these instruments has sparked our interest in 1) their 

collocation on ground-based, airborne, and space-borne platforms and 2) developing more 

efficient, versatile forward and inverse models that make use of combined lidar and polarimetric 

data to enhance aerosol remote sensing accuracy. In our effort to address target 2, the information 

content analysis (ICA) method is adopted in this study. It uses a priori information of speciated 

aerosol characteristics and various assumptions of measurement uncertainties as input. Combined 

with the use of a light scattering model and a radiative transfer model, lidar and polarimetric signals 

are simulated. The retrieval uncertainties of a suite of aerosol-related geophysical variables (GVs) 

are output by ICA, which allows us to explore the dependence of GV retrieval capabilities on a 

priori knowledge of aerosol properties and instrument accuracy. We analyze results to 1) check 

whether aerosol GV uncertainty thresholds established by NASA’s Aerosol and Cloud, 

Convection and Precipitation (ACCP) mission are met by different lidar and polarimetric 

instrument configurations and 2) identify a cost-effective, yet accurate, instrument combination 

for future missions. Five different methods are used to perturb a priori knowledge of state vector 

and measurement uncertainties across seven different lidar and/or polarimeter instrument 
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configurations. Calculated GV uncertainties output by our model are compared to threshold GV 

retrieval uncertainties established by ACCP’s Science and Applications Traceability Matrix 

(SATM). Results show clear impact of a priori knowledge on retrieval capabilities as well as the 

importance of specific measurements to accurate retrievals of the GVs considered. Across results, 

the 2𝛽 2𝛼 1𝛽attn lidar and polarimeter (L6+POL) instrument combination consistently showed 

superior abilities of retrieving the GVs considered within SATM-prescribed uncertainty ranges.
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Chapter 1. Introduction 

In practice, remote sensing of aerosol properties can be difficult. As the technological 

capabilities of the instrumentation typically used in remote sensing grow, there is a continuous 

need to effectively use this instrumentation to its maximal effect. Though this is the case in many 

research fields, rapid improvement of both the efficiency and efficacy of aerosol remote sensing 

tools — a term encompassing both physical instruments and modeling algorithms — is of 

paramount importance not only to science but also to the general public. The National Academies 

of Sciences, Engineering and Medicine (NASEM) 2017 Decadal Survey, which is used to set forth 

long-term science objectives that benefit society, established the ACCP initiative, through which 

several large-scale objectives were set forth as a call to researchers across several related subfields 

of the atmospheric sciences. There are two main outcomes of improving our knowledge of aerosol 

content and atmospheric interactions among aerosols, clouds, and the ambient environment. First, 

better understanding of the relative abundances of aerosols that can be harmful to humans will lead 

to informed suggestions to governments, companies, etc., of how to improve of air quality, 

particularly in highly industrial areas. From a climate perspective, a better understanding of aerosol 

type and distribution — as well as how aerosols interact with clouds — help scientists quantify the 

amount and sign of radiative forcing (i.e., negative for net cooling and positive for net heating) 

that different aerosols produce. Better representation of aerosol radiative forcing in climatological 

models is of paramount importance to improving their predictive capabilities (NASA 2017). 

During this period of history, communities around the world — particularly those in highly 

urbanized areas — are seeing declines in air quality that result in increased rates of respiratory 

illnesses, exacerbation of pre-existing health conditions and, far too often, death (Bowe et al. 2019; 

Brauer et al. 2019; Shiraiwa et al. 2017). Though several studies show evidence of natural causes 
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and exacerbators of high aerosol concentration (e.g., dust storms, volcanic eruptions), 

anthropogenic activities such as industrial combustion, mass use of fossil fuel-burning vehicles, 

and biomass burning also contribute to air quality decline across various parts of the world 

(Karagulian et al. 2015; Viana et al. 2008; Yang et al. 2017). Additionally, numerous studies during 

recent years have shown that aerosol contributions to climate change are subject to high 

uncertainties, with various sources disagreeing on not only the magnitude of different aerosols’ 

contributions but also how these contributions will impact the climate, moving forward (Andreae 

et al. 2005; Intergovernmental Panel on Climate 2013). Though a full discussion of the intricacies 

surrounding this very active research area are beyond the scope of this research, rapid improvement 

and implementation of tools used to study the phenomenon of aerosol radiative forcing are needed 

if we are to better understand and prepare for the ways in which the climate is changing. Because 

of their key role in reducing air quality and increasing the rate of climate change, aerosols in the 

atmosphere must be analyzed and better understood in terms of prevalence, location and species 

before meaningful changes can be made to climatological models, public health directives, and the 

policies that govern and fund both efforts. 

In an effort to meet these two broadly defined goals, the ACCP mission has set forth a 

number of standards that establish concrete criteria to define what level of accuracy must be 

reached in the aerosol remote sensing of various geophysical variables (GVs) to constitute progress 

that meaningfully advances the capabilities of the field (see Section 4.1 for more detail). These 

GVs are compiled in the Science and Applications Traceability Matrix (SATM), where the general 

descriptions of GVs of particular interest are given, along with the acceptable retrieval errors for 

each (NASA 2019). Any research moving forward as part of this broader initiative must first ensure 

that retrieval of these GVs is possible within the SATM-established margins of error for each GV. 
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Those GVs considered in this study are listed, along with short descriptions as well as their SATM 

requirements, in Table 1. 

Table 1: Geophysical variables, their definitions, and their target uncertainties, as defined 
by ACCP’s Science and Applications Traceability Matrix (NASA 2019).  

GV GV description GV uncertainty in 
SATM* 

SSA, column Aerosol single scattering albedo - as 
placeholder for Aerosol Absorption 
Optical Depth (Column and BL) ±0.04 SSA, BL 

geff, column Aerosol Asymmetry Parameter ±0.02 

LR, column 
Aerosol Extinction to Backscatter Ratio 
(Column and BL) ±25% LR, BL 

τfine, column 
Aerosol Fine Mode Optical Depth 
(Column and BL) ±0.02±0.05τfine τfine, BL 

τ, column 

Aerosol Optical Depth (Column and BL) ±0.02±0.05τ τ, BL 

mr, column 
Aerosol Real Index of Refraction 
(Column and BL) ±0.025 mr, BL 

α, profile Aerosol Extinction (Profile) Max of (0.02 km-1, 20%) 

*Uncertainties reported are for 50×50 km horizontal resolution and 250 m vertical 
resolution. 

Viewing Table 1, one can see that there are several GVs for which retrieval capabilities 

must still be improved. The GVs considered in this study were chosen because reducing their 

retrieval uncertainties is a critically important first step to developing more advanced retrieval 

algorithms and eventually fabricating new instrumentation that can be used to address the ACCP 

mission’s science goals. Additionally, polarimetric and lidar observations are well-suited to 

retrieve the environmental information necessary for the calculation of the GVs considered in this 

study. As mentioned previously, the primary underlying barrier to the improvement of GV retrieval 
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capabilities is the complexity of aerosols. Atmospheric aerosols not only vary greatly in terms of 

their intrinsic optical properties (e.g., complex refractive index) and microphysical properties (e.g., 

size and shape) but also in their spatial and temporal distributions (Dubovik et al. 2019). The sheer 

number of properties that must be considered to differentiate aerosol species make real-time 

monitoring of aerosol loading in the atmosphere quite difficult, especially on a large scale. Much 

money and time has been invested into the development of instruments that have more complete 

retrievals due to multi-angle and/or multi-spectral capabilities, and researchers often must balance 

the cost of instrumentation and experimentation with the benefit of additional data (Eloranta 2005; 

Hansen et al. 1995).  

Though several missions utilizing polarimeters have been sent into orbit [e.g., see 

(Deschamps et al. 1994; Tanré et al. 2011)] and some in situ studies using aircraft have been 

performed, even recently (Knobelspiesse et al. 2020), there is often considerable monetary expense 

to these experiments. Additionally, it is difficult — even for those experiments considered 

successful in terms of producing useful data — for many operational instruments to reach the 

hoped-for retrieval accuracies obtained theoretically (Dubovik et al. 2019). There is need, 

therefore, to utilize more cost-effective ways to test retrieval accuracies of various instrument 

combinations prior to their design, fabrication, and eventual launch. Sensitivity studies like the 

one performed in this paper are one example of a way in which many different potential instrument 

combinations and retrieval techniques may be tested prior to instrument fabrication, such that cost 

of instrument development may be minimized from the outset and the specifications of the 

instrument may be calibrated to fit specific science goals (Mishchenko et al. 2007). To accomplish 

the ACCP-defined goals described earlier, this sensitivity study analyzes several combinations of 

two different kinds of instrument: polarimeter and lidar. 
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As regards this sensitivity study, the primary focus is to contribute to ACCP’s broader 

mission by developing a tool that uses information content analysis (ICA) of combined polarimeter 

and lidar measurements to improve the accuracy of retrievals of aerosol properties in both the 

boundary layer as well as the entire vertical column of the atmosphere. This method is used to 

determine GV retrieval uncertainties given a priori knowledge of the environment contained 

within a state vector (see Section 3.1.1) and observational configurations (along with their 

associated errors, described in detail in Section 4.1). By altering these input data, one can test the 

impacts of a priori constraints on retrieved GV uncertainties. Because of the relatively simple 

design of this method, ICA has several strengths that make it a desirable and useful method, 

particularly in early stages of algorithm development. For example, ICA can be used — as it is in 

this study — to easily compare the relative abilities of different observational configurations. 

Additionally, this method allows for efficient calculation of a large number of different aerosol 

loading scenarios, which should prove useful in future research using this particular algorithm, 

particularly as regards improving the generalizability of our model. 

Though the specifics of the exact polarimeter and lidar systems tested will be described in 

greater detail in later sections, the benefits of using each type of instrument must first be 

established. For the last several decades, numerous studies have shown the potential for use of 

polarimetric data in remote sensing of aerosols. Many polarimeters that have been deployed for 

operational use are passive sensors (i.e., they receive reflected light from the sun) that measure 

three (I, Q, U) of the four parameters contained within the Stokes’ vector (Deschamps et al. 1994; 

Deuzé et al. 2001). Note that the fourth Stokes’ parameter — V, which describes circular 

polarization — is typically ignored because of its relatively small magnitude, compared to those 

of the linear polarization Stokes’ parameters Q and U (Coulson 1988). These three parameters 
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contain information regarding the intensity and depolarization of the incident light after a single 

scattering event — an improvement over previous methods that used intensity-only retrievals 

(Hasekamp and Landgraf 2005). It is important to note here that “intensity” will be used throughout 

the remainder of this paper as a shorthand for the physical quantity intensity of polarized radiance. 

Single-view polarimeters are generally able to retrieve well the spectral AOD, effective radius, 

and refractive index of different aerosol species (Hasekamp and Landgraf 2007; Mishchenko and 

Travis 1997). However, by using different view angles, more parameters that are species-specific 

(e.g., complex refractive index) can be retrieved to a higher accuracy due to the increase in 

available information content (Chen et al. 2017; Russell et al. 2014). Additionally, the use of 

multiple angles increases already present sensitivities to the shape and vertical distributions of 

aerosols, which can further help in increasing the accuracy of aerosol characterization (Dubovik 

et al. 2019). 

To supplement polarimetric data, this sensitivity study also employs the use of lidar for 

aerosol characterization. Lidar (short for Light Detection and Ranging) instruments are active 

sensors (i.e., they both transmit and receive signals) that are useful for aerosol remote sensing 

because of the optical wavelengths (typically visible or near-visible wavelengths) at which they 

operate, where the sensitivities of these instruments to particulates in the atmosphere are strong 

(Collis and Russell 1976). The benefits of using lidar, which typically measures backscatter and/or 

extinction coefficients, include high spatial resolution, though it should be noted that increased 

spatial resolution comes with the trade-off of having smaller spatial coverage (Comerón et al. 

2017). The greatest strength of lidar compared to other remote sensing methods (e.g., spectroscopy 

of emitted radiation) is its vertically resolved measurements that allow for better understanding of 

vertical distributions of aerosols as well as the relative locations of aerosol species to each other 
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and clouds (Zuev and Naats 2013). By adding spectral variability to lidar instruments (i.e., adding 

more wavelengths of transmitted light), researchers have been able to expand the capabilities of 

lidar over the past few decades to better discern optical properties (e.g., lidar ratio) that can be 

useful for aerosol characterization (Müller et al. 2000). Moreover, advanced lidar systems can use 

the additional information content provided by multi-spectral measurement to discern more 

microphysical properties (e.g., particle concentration, effective radius) than could be retrieved by 

earlier systems (Ansmann et al. 2012). 

Because of the complementary nature of polarimetric and lidar measurements — the ability 

to discern vertical profiles of aerosol loading and species-specific aerosol properties, respectively 

— a combined retrieval algorithm that makes use of both types of instrument should improve 

model sensitivity to aerosol characteristics (Burton et al. 2016). So, to address the two broad goals 

of improving the ability to remote sense the optical and microphysical properties of aerosols — 

that is, to reduce the adverse public health impacts caused by the increasing presence of aerosols 

and to improve the ability to accurately represent aerosol uncertainties within climatological 

models — we set forth two hypotheses that align with the two primary goals of performing 

information content analysis in this study: 

H1: To address Goal 1, which is finding out whether the GVs considered in this study may be 

adequately constrained by a combined lidar-polarimeter approach, we hypothesize that the 

instrument combination that is able to retrieve the most information content from its 

measurements will be able to constrain all of the GVs within their SATM threshold 

uncertainty requirements. 
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H2: To address Goal 2, which is to find (if possible) a cost-effective recommendation for which 

instrument combination to use, we hypothesize that there will be one instrument 

combination that will consistently outperform other configurations. 

Chapter 2. Toy model of information content analysis 

2.1 Error propagation method 

 Before directly performing ICA of combined retrieval methods, it was necessary to 

understand the concept of error propagation. To know how error will propagate through 

calculations of these measurements, one must establish a priori ranges of expected values of the 

observed variables and account for the error inherent in the measuring of these dimensions. By 

using Eq. (2.1), which is often used in error propagation studies, it is possible to analyze how 

changes in a priori knowledge of variables to be retrieved or changes in measurement error 

compound to affect the overall uncertainty of retrieved variables (or that of quantities derived from 

said variables). 

 𝐒$%& = 𝐉'𝐒(%&𝐉 + 𝐒)%& (2.1) 

The boldface type in Eq. (2.1) indicates that the quantity is a matrix, while T and -1 represent 

the transpose and inverse matrix operations, respectively. In this equation, Sa represents the a 

priori error covariance matrix, a square matrix with dimensions of (n × n), where n is the number 

of variables observed. The diagonal of this matrix gives the variances correlated with a priori 

uncertainties of each variable to be observed. The off-diagonal terms in this matrix represent 

crosstalk uncertainties between variables, which are assumed to be zero. The Sε term represents 

the observation (measurement) error covariance matrix, which is also square with dimensions (m 

× m), where m is the number of measurements made for each observation. The resultant retrieved 

error covariance matrix, given here by Sr, must be square of (n × n) dimension. Its diagonal gives 
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the 1-σ uncertainty of retrieved parameters. The Jacobian matrix J shows how sensitive a forward 

model is to changes in the parameters to be retrieved by that model. It is necessarily of dimension 

(m × n), and its components are calculated by the following formula, 

 
𝐽*+ =

¶	𝐹*(𝒙)
¶	𝑥+

»	
𝐹*(𝒙,) − 𝐹*(𝒙)

𝑥′+ − 𝑥+
	, 

(2.2) 

where the partial derivative of some measurement F(x) for a set of parameters within a state vector 

x is computed for each observation m and each parameter n (Knobelspiesse et al. 2012; Li et al. 

2018). Small perturbations to the state vector (represented here by x’) can be made to approximate 

the Jacobian at different levels of uncertainty for each parameter and observation.  

In practice, the Jacobian must be recalculated repeatedly for small, incremental 

perturbations so that the linearity assumption of this calculation will remain valid over a larger 

domain — a method known as “finite differencing” (Knobelspiesse et al. 2012). This calculation 

is relatively easy for the table toy model case (and may even be found analytically), but when the 

number of variables or observations becomes large, as is the case when considering the radiative 

transfer model used in this study, calculation of the Jacobian becomes more complex. 

2.2 Description of toy model 

Prior to conducting ICA of the radiative transfer model as it relates to the combined 

instrument retrieval considered later in this paper, a toy model was designed to increase the 

readers’ understanding of the link between the mathematics behind error propagation and the 

physical meaning of matrix components within Eq. (2.1). To this end, a simple experiment was 

performed to show how error propagation works in practice by using the example of measuring a 

table. First, we defined two parameters, length (L) and width (W) of the table, in meters. Also 

defined were three observational measurements that can be calculated from these parameters: area 

of the tabletop (A), perimeter of the tabletop (P) and parameter Q, defined as the ratio of the table’s 
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dimensions. In terms of the toy model input variables, the formulae for the three measurements 

considered are as follows: 

 𝐴 = 𝐿𝑊 (2.1) 

 𝑃 = 2(𝐿 +𝑊) (2.4) 

 𝑄 =
𝐿
𝑊 (2.5) 

2.3 Calculations of component matrices 

To determine components of Sa, some a priori error and truth values must be assumed for 

both L and W. For this experiment, L = 3 meters and W = 2 meters were chosen as the true length 

values, and the relative error (ε) for both variables was set at a value of 3%. Multiplying each truth 

value with its associated error gives half the range of values one can reasonably expect a 

measurement to lie within. By adding and subtracting this value from the truth, the full range of 

possible values a given true value may equal in reality is given. For example, the length value may 

be calculated by finding Lmax and Lmin using the following: 

 𝐿*)- = 𝐿.$/0 + 𝐿.$/0𝜀1 

 

(2.6) 

 𝐿*2+ = 𝐿.$/0 − 𝐿.$/0𝜀1 (2.7) 

The same method (this time, using εW) is used to calculate Wmax and Wmin values. Now, Sa 

may be written using values from Eqs. (2.6) and (2.7) as well as width calculations as: 

 

𝑺) =

⎣
⎢
⎢
⎢
⎡=
𝐿*)- − 𝐿*2+

2 >
3

0

0 =
𝑊*)- −𝑊*2+

2 >
3

⎦
⎥
⎥
⎥
⎤
	. (2.8) 

Here, off-diagonal terms are zero because we assume there is no correlation between the errors 

inherent in either variable’s expected value. There is a one-half multiplicative factor that must be 
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taken into account after finding the whole range (the maximum/minimum difference) because the 

resultant maximum/minimum terms both have an error factor. By squaring the resultant quantity, 

the full variance of each component is found by squaring each scaled difference term. 

Now that initial expected error of variables within the state vector has been accounted for, 

the other component matrices of Eq. (2.1) must be found. To find the components of the 

measurement error covariance matrix (Sε), individual measurements (y) are multiplied by their 

inherent errors (εy) to get the window of uncertainty (Δy) within which values may vary and still 

be considered truth, as follows: 

 𝑦𝜀4 = 𝛥𝑦	. (2.9) 

Once percentage errors have been turned into measurement error via Eq. (2.9), 

measurement variances are placed along the diagonal of the square matrix Sε. Each measurement 

is considered independent of all others, so crosstalk between measurement error is assumed to be 

negligible. Thus, Sε is, for the toy case, a diagonal matrix of the form 

 

𝑺( =

⎣
⎢
⎢
⎢
⎢
⎡
1
𝛥𝛢3

0 0

0
1
𝛥𝑃3

0

0 0
1
𝛥𝑄3⎦

⎥
⎥
⎥
⎥
⎤

	. (2.10) 

Once the Jacobian matrix is calculated as in Eq. (2.2), the toy model is able to output 

uncertainties for each parameter, based on error propagation of the a priori and measurement 

errors. If one adds a multiplicative scale factor to the error terms and runs this code iteratively, it 

is possible to watch as the resultant error in a given state variable grows larger before eventually 

saturating. That is, at some point, the amount of uncertainty in any variable will reach a maximum. 

For this toy model, the objective was to gain an understanding of the basic inputs to the error 

propagation method used, as well as to show the ideal behavior of error saturation curves when 
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either measurement errors or a priori error are well-characterized. By perturbing any one 

measurement or variable’s initial uncertainty and running the code iteratively over many 

perturbations, one can see to what extent having knowledge about a specific measurement or 

variable’s true value beforehand is necessary for constraining the uncertainties of other variables. 

This process will be expounded upon more within the methods section. 

Chapter 3. Information content analysis for combined lidar-polarimeter remote sensing 

Now that the simple case of the table toy model has been described, description of the 

inputs used in the ICA algorithm may proceed. Though this forward modeling process is more 

complicated than that described in Chapter 2, the terms involved are analogous. For example, the 

table length and width parameters are analogous to the GVs considered in the state vector 

(described later in this chapter). Likewise, measurements involving parameters (e.g., area, in the 

toy model) will also be taken into account in the ICA model. The only difference is that these 

measurements will come from the lidar and polarimetric instruments involved in retrieval. It 

follows that the Jacobian calculation, which is shown in its general form in Eq. (2.2), will also 

apply to the ICA model. In this study, the set of m observations will be the combined number of 

lidar and polarimeter measurements, as opposed to those given in Eqs. (2.3)-(2.5), and the n 

parameters within the state vector x will consist of speciated aerosol and surface properties. It is 

important to note a few key limitations of ICA, as it is used in this study. To use this analysis 

method, we must assume that our successful retrievals converge to a true solution. Additionally, 

we utilize a linearized model that results in more efficient calculations of iterative perturbations to 

the Jacobian matrix, at the cost of simplifying the model to the extent that some error (in relation 

to a more realistic setup) is inherently added to results from its use. 
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3.1 Forward model inputs 

The inputs to the model include a) the preset truth of GVs and surface conditions contained 

in the state vector x and b) simulated polarimeter information in combination with different lidar 

signals. Scattering due to spherical particles is calculated using Mie theory (van de Hulst, 1981). 

However, calculating the Mie scattering properties that must be used as inputs to RT model and 

simulations of lidar signal is computationally inefficient. To avoid computing the Mie scattering 

properties within the algorithm itself, aerosol phase matrix elements 𝑃56,a
(s)  and extinction 

[scattering] coefficients 𝐾ext[sca],	a
(A)  for 𝑁bin size bins and refractive indices are precalculated and 

saved in look up tables [LUTs, (Xu et al. 2021)]. The LUTs themselves are three-dimensional and, 

therefore, contain values calculated from all the possible bin combinations of three different state 

vector parameters: 𝑚$
(A),  𝑚2

(A),	and	𝑟m
(A) . Specifics regarding bin size, number, etc. for these 

parameters are listed in Table 2. 

Additionally, throughout the remainder of the paper — particularly in Sections 3.1.2 and 

3.1.3 — there will be references to “truth values” of the GVs whose uncertainties are the primary 

focus of this study. Some of these GVs are members of the state vector (see Section 3.1.1), whereas 

many are calculated from single-scattering aerosol properties contained within the state vector (see 

Sections 3.1.2 and 3.1.3). The GVs considered in this study were listed earlier in Table 1, along 

with brief definitions of each and the methods by which their uncertainties are calculated, 

according to the current SATM requirements. 
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Table 2: Parameters used for calculating the Mie scattering properties saved in our LUTs are 
shown, along with their minimum and maximum range values, number of equally spaced 
bins used to span these ranges, and method of spacing between values within these ranges. 

Parameter Space # of Bins Range (min,max) 

Refractive index, real (𝑚$) Linear 22 (1.3, 1.7) 

Refractive index, imaginary (𝑚2) 

Linear in 

logarithmic 

space 

5 (1×10-8, 3×10-4) 

15 (5×10-4, 0.5) 

Mean radius (𝑟*) 

Linear in 

logarithmic 

space 

50 (5 [nm], 50 [μm]) 

3.1.1 State vector 

Variables under sensitivity analysis are included in a state vector, which includes 

environmental information (i.e., surface reflectance and wind speed characteristics) as well as 

speciated aerosol properties pertaining to particle size, number, composition and distribution, 

which must be altered for each canonical case to change the aerosol loading for each specific case 

considered. Note that throughout this paper, “knowledge of the environment” will refer 

specifically to how well-characterized the a priori state vector is. Additionally, the uses of 

“canonical case” and “Case 61” used throughout are used for internal consistency with ongoing 

research within our research group. The use of “Case 61” specifically refers to the case considered 

for this thesis and is defined as such by the specific aerosol loading (type and location) depicted in 

Table 3. 

The algorithm used is designed to retrieve multiple (𝑁A) aerosol species at once by using 

different combinations of lidar and polarimetric measurements, each of which provides different 

information content. This information is dependent on the specific lidar chosen, with regards to 
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the inclusion of extinction and backscatter/attenuated backscatter, the number of wavelengths 

included, and the vertical resolution. Additionally, information content from polarimetric data can 

be altered by the inclusion of different view angles and/or spectral channels. To handle multiple 

aerosol species at once, the state vector x includes the retrieval parameters for 𝑁A species as 

 x = Mx(&); 	x(3); 	⋯ ;	x(E!); 	x(ocean)P, (3.1) 

where 𝑁 is the total number of retrieved properties and vectors x(s) contain 𝑁aer = 6 speciated 

aerosol properties for the sth aerosol species, which can be expressed as 

 x(A) = Q𝑚$
(A); 	𝑚2

(A); 	𝑟m
(A); 	𝜎m

(A); 	𝐶v
(A); 	𝑓v

(A)U
Eaer×&

 . (3.2) 

For the sth species in Eq. (3.2), mr and mi are layer-resolved real and imaginary parts of 

aerosol refractive index, respectively; rm and σm contain layer-resolved geometric volume mean 

radius and logarithmic standard deviation of size distribution, respectively; Cv is the total column 

aerosol concentration (m3/m3); and fv contains layer-resolved aerosol volume fractions (Xu et al. 

2021). The remaining component of the state vector, given in Eq. (3.1) as x(ocean), includes 

environmental parameters that contribute to ocean surface reflectance, such as wind speed and 

chlorophyll-a concentration, which is included to account for the impact of biological materials 

within the ocean on radiance measurements returning from the surface. Additionally, empirically 

derived Lambertian surface reflectance terms are included as the last elements of x(ocean). 

3.1.2 Aerosol single scattering properties for radiative transfer calculation 

Having introduced the state vector x and its speciated components, we will now describe 

how those properties are calculated to get layer-resolved as well as column-effective values for 

use in the calculation of different species’ single scattering quantities.  
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Before making calculations, we assume a lognormal volumetric size distribution dv%
(!)($)
d	ln$

 for 

each of 𝑁A  different aerosol species (see Section 4.1). This quantity is calculated using two 

elements of x, the geometric volume mean radius 𝑟*
(A) and logarithmic standard deviation 𝜎*,K

(A), for 

the sth species in the lth atmospheric layer according to the following: 

 
	 . (3.3) 

Additionally, the speciated size distribution in Eq. (3.3) may be combined with speciated, 

layer-resolved values of volume concentration (Cv,K
(A) ) to get sub-column values of volume 

concentration for 𝑁A species over l atmospheric layers by using 

 
	 . (3.4) 

The speciated, layer-resolved volume concentration term in Eq. (3.4) is, itself, found for 

each species at the lth layer by taking the product of the species’ fractional volume at that level 

(𝑓v,K
(A)) and its total column volumetric concentration (Cv

tot,	(A)), both of which are elements of x. 

To calculate single scattering properties for use in our RT model, several of which are 

among the target GVs (e.g., AOD, SSA), it is necessary to account for differences in the sizes of 

aerosols whose properties are used in retrieval by defining 𝑁L2+ number of size bins. Additionally, 

the algorithm assumes that the volume fraction of particles in the lth layer (𝑓v,K
(A)) consists only of 

spherical aerosol particles. Once these steps are taken, the extinction[scattering] coefficients for 

particles in the ith size bin (𝐾ext[sca],a,2
(A) ) may be used to calculate volumetric extinction coefficient 

and volumetric scattering coefficient via 

dv l
(s) (r)
d ln r

= 1

2πσ m,l
(s)
exp −

(ln r − ln rm,l
(s) )2

2(σ m,l
(s) )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dVl (r)
d ln r

= Cv,l
(s) dv l

(s) (r)
d ln rs=1

Ns

∑
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𝐾ext,a,K
(A) =W𝑓v,2,K

(A)𝐾ext,a,2	
(A)

Ebin

2M&

	 (3.5) 

 𝐾sca,a,K
(A) = ∑ 𝑓v,2,K

(A)𝐾sca,a,2	
(A)Ebin

2M& , (3.6) 

where 𝑓v,2,K
(A) is the speciated volumetric fraction within the ith size bin and is, itself, calculated using 

the central radius of the respective size bin (𝑟2 ) as well as the log-normal volumetric size 

distribution [from Eq. (3.3)] via 

 
	𝑓v,2,K
(A) =

dvK
(A)(𝑟2)
d	ln	𝑟2

. (3.7) 

Using the same binning procedure, individual elements (𝑃56,a,K) of the aerosol phase matrix 

Pa,l are calculated using 

 
𝑃56,a,K
(A) =

∑ 𝑓v,2,K
(A)𝐾sca,a,2	

(A) 𝑃56,2
(A)Ebin

2M&

∑ 𝑓v,2,K
(A)𝐾sca,a,2	

(A)Ebin
2M&

 (3.8) 

Now that aerosol particle size differences have been accounted for, layer-effective values 

of total extinction coefficient may be calculated by summing the contributions of all 𝑁A species: 

 
	 	. (3.9) 

In a similar manner, the total SSA contributed by all species within a layer may be 

calculated by combining speciated extinction coefficient and speciated scattering coefficient 

values — from Eq. (3.5) and Eq. (3.6), respectively — with speciated volume fraction within the 

level (𝑓v,K
(A)) via 

Kext, a ,l = Kext, a ,l
(s)

s=1

Ns

∑
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	 . (3.10) 

Similarly, layer-effective values for elements of the aerosol phase matrix are given by 

 

	 . (3.11) 

To find speciated values of AOD for the lth level, speciated extinction coefficient values 

calculated using Eq. (3.5) are multiplied by their correlating layer volume concentration values: 

 	 . (3.12) 

Once again, we must sum the speciated contributions calculated in Eq. (3.12) to find the 

total AOD of the layer, 

 
	 . (3.13) 

Moreover, total column[BL] values for AOD must be calculated via 

 
∆𝜏N,OPO[QR] = W ∆𝜏N,K

E+,+[./]

KM&

	, (3.14) 

where 𝑁tot = 16 and 𝑁BL = 8 are the number of layers considered when calculating total column 

and BL values, respectively. Now, column-effective[BL] values of SSA and mr, as well as total 

column and BL values of fine-mode AOD may be calculated. For fine-mode AOD calculation, 

Eqs. (3.12)-(3.14) are used again. For SSA and mr — as well as for asymmetry parameter, 

discussed later — AOD weighting of GVs in the total[BL] column was used in the following 

equations 

ω0,a , l =
fv, l

(s)Ksca, a , l
(s)

s=1

Ns

∑

fv, l
(s)Kext, a , l

(s)

s=1

Ns

∑

Pjk ,a , l =
fv, l

(s)Ksca, a , l
(s)

s=1

Ns

∑ Pjk ,a , l
(s)

fv, l
(s)Ksca, a , l

(s)

s=1

Ns

∑

Δτ a,l
(s) = Cv,l

(s)Kext,a,l
(s)

Δτ a,l = Δτ a,l
(s)

s=1

Ns

∑
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𝜔0,a,tot[BL] =

∑ ∆𝜏a,K𝜔V,a,K
Etot[BL]
KM&
∆𝜏a,tot[BL]

 (3.15) 

 
𝑚$,tot[BL] =

∑ ∆𝜏a,K𝑚$,K
Etot[BL]
KM&
∆𝜏a,tot[BL]

 (3.16) 

to give truth values of SSA (𝜔0 ) and real part of refractive index for error calculation and 

comparison. Though this weighting method is not perfect, it gives results that match well the 

results from previous retrieval simulations as well as real data analysis (Xu et al. 2017; Xu et al. 

2016). 

Last of the GVs calculated from RT model input is the asymmetry parameter (g), which is 

defined as the first moment of the scattering phase function 𝑃(Θ) (see Eq. [3.11]) and is calculated 

for a target volume of particles by 

 
g =

1
2 d𝑃(Θ)cos	(Θ)𝑑(cosΘ)

&

%&

	, (3.17) 

where the scattering angle is Θ and the scattering phase function is calculated using Mie theory. 

When considering column-effective asymmetry parameter, one must consider that 1) Mie 

scattering theory was used in pertinent calculations [e.g., for 𝑃(Θ)] for this sensitivity study and 

2) logarithmic size distributions of each species were included as input data to the model. 

Methodologically, these two factors should yield reasonable calculated “truth” values of the 

asymmetry parameter (Marshall et al. 1995). As with several GVs discussed previously, the truth 

value of column-effective asymmetry parameter (geff) is found by AOD weighting values via 

 
gXYY =

∑ [𝑔(A) ∗ ∑ Δ𝜏N,K
(A)E+,+

KM& ]E!
AM&

∆𝜏N,OPO
	, (3.18) 

where g(A)  is the speciated asymmetry parameter for each of 𝑁A  aerosol species considered 

(Andrews et al. 2006). 
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3.1.3 Aerosol single scattering properties for lidar equation 

To utilize lidar measurements within the retrieval algorithm, all the single scattering 

aerosol properties that are used in the lidar equation (e.g., extinction and backscatter), must first 

be calculated (Liou 2002). 

By using the speciated AOD values calculated in Eq. (3.12), one can calculate the speciated 

extinction due to aerosols 𝛼a,K
(A) (units, m-1) in a layer of thickness Δ𝐻K by 

 
	 , (3.19) 

and the total extinction coefficient for the lth layer can be calculated by summing the values given 

by Eq. (3.19) over 𝑁A aerosol species within the layer: 

 
	 . (3.20) 

To calculate backscatter, the aerosol scattering coefficient 𝛽sca,K
(A)  (units, m-1) must be 

calculated for each species within a layer of thickness	Δ𝐻K by 

 
	 , (3.21) 

from which speciated backscatter values may then be calculated using 

 
	 . (3.22) 

First noting that 𝛽a,K
(A) has units of m-1Sr-1 because of normalization over a solid angle in Eq. 

(3.22), total backscatter (same units) within the lth layer can now be calculated by accounting for 

all 𝑁A aerosol species within the layer: 

α a, l
(s) =

Δτ a, l
(s)

ΔHl

=
Cv, l

(s) Kext,a, l
(s)

ΔHl

α a, l = α a, l
(s)

s=1

Ns

∑

βsca, l
(s) =

Cv, l
(s) Ksca ,a, l

(s)

ΔHl

βa, l
(s) = βsca, l

(s) P11, l
(s) (180!)

4π
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(3.23) 

To find the lidar ratio (LR) total column[BL] values, the ratio of extinction to backscatter 

is used within 

 
𝐿𝑅OPO[QR] =

∑ 𝛼N,K
E+,+[./]
KM&

∑ 𝛽N,K
E+,+[./]
KM&

	, (3.24) 

where extinction and backscatter are calculated via Eq. (3.20) and Eq. (3.23), respectively. 

3.2 Error propagation components 

This information content analysis via linear-error propagation model is subject to two 

major assumptions: a) the retrieved solution is representative of the solution space and b) retrieval 

errors are linearly proportional to the measurement errors. These assumptions can be problematic 

in situations where the model and/or observation errors are large. Moreover, the observation 

covariance matrix in our current study assumes no correlations among observation elements so 

that its off-diagonal elements of the observation error covariance matrix Se are zero. In practice, 

however, observation errors can be highly correlated between neighboring spectral bands and/or 

angular measurements. More accurate characterization is necessary for an accurate information 

content analysis. In addition, the a priori covariance matrix also assumes no error dependency 

between state vector elements, so the off-diagonal terms of Sa are also zero. These are potential 

error sources of our error estimate model. Without sufficient characterizations of the correlations 

between instrument errors and interference between cross terms in the a priori matrix, we tested 

several different error assessment methods. 

Having addressed important assumptions made when using this ICA tool, we will use the 

rest of this section to a) describe the application of the error propagation formula discussed in 

βa, l = βa, l
(s)

s=1

Ns

∑
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Chapter 2 to our ICA model and b) describe the recommended methods used to calculate GV 

uncertainties. Among the various error assessment methods tested before conducting this 

sensitivity study, those recommended within this section were found to best fit our physical 

understanding while agreeing well with results from direct combined retrieval simulations being 

developed in tandem with this tool (Xu et al. 2021). 

3.2.1 Calculation of Jacobian matrix 

To calculate the total Jacobian J as it appears in Eq. (2.1), one can use the general relation 

shown in Eq. (2.2), applying it to the retrieval model. Because there are multiple observations 

being considered in our algorithm, one can first break the total Jacobian into its observational 

components 

 𝐉 = M𝐉R, 𝐉Z[R\, 𝐉] , 𝐉^P
_, (3.17) 

where each Jacobian is computed by taking the partial derivative of each measurement with respect 

to all components of the state vector x in a manner similar to that given in Eq. (2.2). Each of the 

component Jacobians in Eq. (3.25) may be written in their full matrix forms. For example, the 

radiance Jacobian JL may be expanded as 

 

𝐉R =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐿&
𝜕𝑥&

𝜕𝐿&
𝜕𝑥3

⋯
𝜕𝐿&
𝜕𝑥E

𝜕𝐿3
𝜕𝑥&

𝜕𝐿3
𝜕𝑥3

⋯
𝜕𝐿3
𝜕𝑥E

⋮ ⋮ ⋱ ⋮
𝜕𝐿E5
𝜕𝑥&

𝜕𝐿E5
𝜕𝑥3

⋯
𝜕𝐿E5
𝜕𝑥E ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	, (3.18) 

where 𝑁 is the total number of elements of x and 𝑁1 = 𝑁 ,L × 𝑁view, where the elements on the 

right-hand side of the equation represent number of spectral channels and number of view angles 

used by the polarimeter, respectively. One can also calculate the Jacobian for DOLP by using Eq. 

(3.26) and replacing “L” with “DOLP.” 
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For the extinction and backscatter coefficient calculations, the Jacobian is slightly more 

complex in form because of the layer-resolved nature of these measurements. The extinction 

coefficient Jacobian may be written as 

 

𝐉! =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐉!!"#(𝑚"

($)) 𝐉!!"#(𝑚&
($)) ⋯ 𝐉!!"#(𝐶'

($)) 𝐉!!"#(𝑓',)*+
($) ) 𝟎 ⋯ 𝟎 𝟎

𝐉!!"$(𝑚"
($)) 𝐉!!"$(𝑚&

($)) ⋯ 𝐉!!"$(𝐶'
($)) 𝟎 𝐉!!"#(𝑓',)*,

($) ) ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ 𝟎 𝟎

𝐉!%&'()*(𝑚"
($)) 𝐉!%&'()*(𝑚&

($)) ⋯ 𝐉!%&'()*(𝐶'
($)) 𝟎 𝟎 ⋯ 𝐉!%&'()*(𝑓',-&'()*

($) ) 𝟎
𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎./012⎦

⎥
⎥
⎥
⎥
⎥
⎤

	, (3.19) 

where 𝑁layer is the total number of vertical layers into which the atmosphere is resolved. For each 

layer considered, the Jacobian was calculated by taking partial derivatives of the extinction 

coefficient with respect to each element of x, as in Eq. (2.2), at each wavelength 𝜆-	(1 ≤ 𝑥 ≤ 𝑁]) 

used, where 𝑁] is the number of wavelengths used by the lidar in question. Consequently, the 

format of these layer-effective Jacobians is 

 

𝐉],K(𝑓d
(A)) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝛼K(𝜆&)
𝜕𝑓d,K

𝜕𝛼K(𝜆3)
𝜕𝑓d,K
⋮

𝜕𝛼K(𝜆e6)
𝜕𝑓d,K ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	. (3.20) 

To retrieve the Jacobians for backscatter, the same process used in Eq. (3.28) was used for 

each layer (just replace “𝛼” with “𝛽”). However, the overall backscatter coefficient Jacobian 

ignores the surface contribution considered in the calculation of J] in Eq. (3.27), yielding a slightly 

different Jacobian given by 

 
𝐉3 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐉3!"#(𝑚"

($)) 𝐉3!"#(𝑚&
($)) ⋯ 𝐉3!"#(𝐶'

($)) 𝐉3!"#(𝑓',)*+
($) ) 𝟎 ⋯ 𝟎

𝐉3!"$(𝑚"
($)) 𝐉3!"$(𝑚&

($)) ⋯ 𝐉3!"$(𝐶'
($)) 𝟎 𝐉3!"#(𝑓',)*,

($) ) ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ 𝟎

𝐉3%&'()*(𝑚"
($)) 𝐉3%&'()*(𝑚&

($)) ⋯ 𝐉3%&'()*(𝐶'
($)) 𝟎 𝟎 ⋯ 𝐉3%&'()*(𝑓',-&'()*

($) )⎦
⎥
⎥
⎥
⎥
⎤

	. (3.21) 
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3.2.2 Calculation of covariance matrices 

For the observational covariance matrix Sε described in Section 2.3 applied to our 

algorithm, it is assumed that correlation among signals is negligible such that off-diagonal “cross-

talk” error terms may be ignored. The result is a diagonal covariance matrix that, like the total 

Jacobian described in the previous section, has individual components for each observation 

considered, resulting in 

 

𝐒( =

⎣
⎢
⎢
⎡
𝐒(,R 𝟎 𝟎 𝟎
𝟎 𝐒(,Z[R\ 𝟎 𝟎
𝟎 𝟎 𝐒(,] 𝟎
𝟎 𝟎 𝟎 𝐒(,^⎦

⎥
⎥
⎤
	. 

(3.22) 

By applying Eq. (2.9) to incorporate each jth signal for each measurement (𝑦5) and its 

uncertainty (𝜀5), each element for all 𝑦 covariance matrices may be calculated by 

 𝐒(,4,55 = 𝜀53𝑦53	. (3.23) 

To calculate the a priori covariance matrix, the general method shown in Eq. (2.8) was 

used. The only difference is that each subsequent element 𝑥5 (1 ≤ 𝑗 ≤ 𝑁, where 𝑁 is number of 

state vector parameters) along the diagonal of S) is calculated relative to the range of the first 

parameter 𝑥& in the following manner: 

 

𝐒) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 ⋯ 0

0
(𝑥3,fNg − 𝑥3,fhi)3

(𝑥&,fNg − 𝑥&,fhi)3
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
(𝑥E,fNg − 𝑥E,fhi)3

(𝑥&,fNg − 𝑥&,fhi)3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

	, (3.24) 

where [𝑥5,min, 	𝑥5,max] are the minimum and maximum values of the jth parameters, respectively, 

and are calculated using Eqs. (2.6) and (2.7). 
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3.2.3 Calculation of geophysical variable (GV) uncertainties 

Before describing the various methods by which the ICA model was altered to retrieve GV 

uncertainties, it is necessary to describe how GV uncertainties were calculated. For these 

experiments, 7 GVs were considered. Five of the GVs were calculated for both the BL and the 

entire column: aerosol optical depth (AOD, represented by τ), fine mode AOD (τfine), single 

scattering albedo (SSA, represented by ω), extinction-to-backscatter ratio (or lidar ratio, 

abbreviated LR), and the real part of aerosol refractive index (mr). One GV, aerosol asymmetry 

parameter (g), is only reported as a column-effective value. The final GV considered in this study, 

extinction (α), is reported as a layer-resolved value for each of the 16 layers into which the 

atmospheric column was divided for this algorithm. Each of these GVs, along with their 

descriptions and SATM retrieval uncertainty goals, are given in Table 1. 

Because most of the GVs considered (e.g., SSA, LR) are not contained within the state 

vector itself but, rather, are derived from the directly retrieved elements of the state vector, the 

uncertainties of these GVs must account for error contributed by each component involved in their 

calculations. This process, known as error propagation, utilizes the chain rule to calculate GV 

uncertainties via 

 

𝜎4 = yWW𝑺𝒓,25
𝜕𝑦
𝜕𝑥2

𝜕𝑦
𝜕𝑥5

E

5M&

E

2M&

	, (3.25) 

where 𝜎4 is the one-sigma uncertainty value for the yth GV considered, y is a given GV, 𝑥2 and 𝑥5 

are elements of the state vector x, and 𝑺𝒓,25  are elements of the state error covariance matrix, 

representing the product of infinitesimal changes in the two state vector elements being considered 

(Burton et al. 2016).  
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With application of the above chain rule, the uncertainties of the derived GVs within this 

sensitivity study agree well with the uncertainty magnitudes from retrieval simulations-based 

uncertainty analysis as well as real data analysis (Xu et al. 2017; Xu et al. 2016). For the 

uncertainty calculations of asymmetry parameter (column-effective only) and real part of 

refractive index (column and BL), AOD weighting of uncertainties for all 𝑁A species considered 

was performed according to Eq. (3.34) and Eq. (3.35), respectively, giving results that were more 

sensible in magnitude compared to the results of Xu et al. (2017); Xu et al. (2016). These AOD-

weighted uncertainty analyses used the following equations: 

 

𝜎geff = geff	yWz
Δ𝜏a,tot

(A) 	Δ𝑔(A)

∆𝜏a,tot
{
3E!

AM&

 (3.26) 

 
𝜎*8,tot[BL] = 𝑚r,tot[BL]	|∑ }

lma,tot[BL]
(!) 	Δ*r

(!)

∆ma,tot[BL]
~
3

E!,tot[BL]
AM& 	.	 (3.27) 

When calculated according to the above equations, these two GVs’ uncertainties are likely 

more realistic because of the relative gain of information content when AOD weighting is included. 

Before delving into the specific methods used for this study, it is important to note one 

difference in the ways relative uncertainties for various GVs were calculated. Full error 

propagation including all elements of the Jacobian matrix was used in the calculation of AOD and 

extinction only. For all other GVs, only the diagonal elements were used to calculate error. The 

decision to (not) include certain elements of the Jacobian in calculation of each GV was made after 

several slightly different uncertainty calculation methods were attempted for each GV. Uncertainty 

calculation decisions concerning the Jacobian were then chosen based upon how well each agreed 

with previous results that had been internally validated by direct retrieval simulation and real data 

analysis methods. 
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Chapter 4. Methods 

The ICA algorithm outlined above was developed together with direct combined retrieval 

simulation by Xu et al. (2021). In this section, we apply it to the analysis of a specific test case, 

which will be described within this chapter. Refer to Table 3 for specifics regarding the aerosol 

loading for the test case. Table 4 is also included at the beginning of this chapter to link the GV 

uncertainty calculations from Table 1, the “true” state vector parameters listed in Table 2, the case-

specific information contained within Table 3, and results within Chapter 5, in which information 

from Table 4 has been used directly to generate all of the figures shown. 

Table 3: Description of test case (Case 61). Aerosol types, their relative positions (FT and BL), and their 
concentrations (high/low) are provided. The number concentration (𝑵𝒙, units of m-3), median radius 
(𝒓𝒙, units of μm), and logarithmic size distribution (ln𝝈𝒙) for each type is given, where subscript 𝒙 =
f [c] indicates fine [coarse] mode aerosol. Characteristics are color-coded for smoke (red) and marine 
(blue). 

Species  

(Concentration) 

Number	

concentration	

(𝑵f	[m-3])	

Number	

concentration	

(𝑵f	[m-3])	

 

Median	

radius	

𝒓f	[µm]	

Median	

radius	

𝒓c	[µm]	

Logarithmic	

size	

distribution	

ln𝝈f	

Logarithmic	

size	

distribution	

ln𝝈c	

Free 

Troposphere 

Smoke 

(high) 
8.993× 108 9.251× 106 0.12 0.36 0.40 0.45 

Boundary 

Layer 

Marine 

(low) 
2.818× 107 4.954× 106 0.20 0.60 0.45 0.70 
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Table 4: GVs are listed in the left column. Their truth values, as calculated within the ICA 
algorithm via the equations detailed in Sections 3.1.2 and 3.1.3 are in the middle column. 
The column on the right gives the threshold (or maximum) GV uncertainty values allowed 
for the specific case considered in this study. These values were either given directly by the 
SATM matrix requirements or were calculated from GV truth values using the methods 
provided by SATM (see Table 1). These GV threshold uncertainties were used as the 
denominator when calculating the error ratios depicted on the ordinal axis of a majority of 
results shown (excepting extinction profiles). N.b. that two different values are given for 
the truth values and uncertainty thresholds of the extinction (α) profiles. The difference in 
truth values is due to the confinement of each aerosol species to either the BL or the FT. 
Threshold extinction uncertainty differences between the BL and FT occur because of the 
SATM calculation requirement for extinction profile (see Table 1). 

GV GV truth values GV threshold uncertainties for 
case considered 

SSA, column 0.89 
±0.04 

SSA, BL ~0.99 

geff, column 0.70 ±0.02 

LR, column 45.93 ±11.48 

LR, BL 24.09 ±6.02 

τfine, column 0.25 ±0.03 

τfine, BL 0.03 ±0.02 

τ, column 0.36 ±0.04 

τ, BL 0.10 ±0.03 

mr, column 1.488 
±0.025 

mr, BL 1.378 

α, profile, FT 129.20 [Mm-1] ±25.84 [Mm-1] 

α, profile, BL 50.31 [Mm-1] ±20.00 [Mm-1] 

4.1 Algorithm description and major assumptions 

Within this section, some constant characteristics of the algorithm used are described, 

along with elaboration upon the key assumptions made during the algorithm’s development. For 
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each case, the atmospheric column is divided into 20 layers, with the bottom 4 km of the 

atmosphere (i.e., the troposphere) making up the bottom 16 layers, spaced at 250 m vertical 

resolution. Within the uppermost four layers, Rayleigh scattering dominates, and no aerosols are 

present. Thus, these layers are largely ignored in the calculation of aerosol GVs. For this study, 

the boundary layer (BL) is operationally defined as the bottom eight layers of the atmospheric 

column (0-2 km above sea level). Free troposphere (FT), then, will describe the eight layers (2-4 

km above sea level) between the BL and the Rayleigh-dominated layers. Though calculations for 

“total” column and column-effective values of the GVs include all layers, the vertical extinction 

profile is only given for the 16 layers in which aerosols are present, where Mie scattering theory 

applies. The view angle for all trials aligns with the principal plane, and three solar zenith angles 

(0º, 30º, 60º) could be considered so that any angular dependence of resultant GV uncertainties 

may be parsed out. After analyzing two different instrument combinations for our test case at all 

three solar zenith angles, it became clear that averaging the results from those three angles gave 

GV uncertainty values that were not significantly different than those obtained by only considering 

the 30º solar zenith angle. Thus, for all results reported within this paper, the 30º solar zenith angle 

was used as a proxy for the angle-averaged results to minimize computational time, thereby 

making the ICA tool more efficient. 

Throughout all experimental trials, the same polarimeter (POL) was used. This polarimeter 

receives signals at seven wavelengths (360, 380, 410, 550, 670, 870, and 1650 nm) and 10 different 

angles between ±57º, inclusive (±57º, ±44º, ±32º, ±19º, ±6º). The proposed polarimeter’s view 

angles and received wavelength channels were decided upon by combining strengths of earlier 

airborne MAPs SPEX airborne (Smit et al. 2019) and AirHARP (Puthukkudy et al. 2020). More 

specifically, these specifications closely mirror those of the proposed NASA PACE mission 
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(Cetinic et al. 2018a, 2018b), which will use three collocated satellite-borne instruments, including 

updated versions of the previously mentioned airborne MAPs, HARP2 and SPEXone (Fernandez 

Borda et al. 2018; Hasekamp et al. 2019; Martins et al. 2018). The proposed polarimeter has 

reference measurement uncertainty values of ΔΙ/I = 3% for intensity and ΔDOLP = 0.005 for 

degree of linear polarization. 

For this study, three different instrument combinations were tested, each of which used 

polarimeter combined with one lidar. Throughout the remainder of this paper, the different lidars 

will be referred to as lidar 5 (L5), lidar 6 (L6), and lidar 9 (L9). Lidar 5 may be described as 1𝛽 

1𝛼 1𝛽attn, for it measures backscatter and extinction at 532 nm as well as attenuated backscatter 

(𝛽attn) at 1064 nm, mimicking the specifications of the airborne HSRL instrument (Hair et al. 

2008). In general, the number preceding a measurement within the full lidar description gives the 

number of wavelengths at which information is retrieved. Following this convention, L6 may be 

described as 2𝛽 2𝛼 1𝛽attn, where extinction and backscatter are measured at 355 and 532 nm and 

attenuated backscatter is measured at 1064 nm [see (Burton et al. 2016)]. Likewise, L9 may be 

described as 2𝛽attn, where only attenuated backscatter is measured at both 532 and 1064 nm, which 

is similar to the CALIOP lidar system used on the CALIPSO mission [see e.g., (Hunt et al. 2009; 

Winker et al. 2009)]. For all three lidars, the reference measurement uncertainties are Δα = 1.7e-5 

[m-1] for extinction and Δβ/β = 5% for backscatter. For ease of reference, specifications of the 

three lidar systems and polarimeter considered have been summarized in Table 5.  



 
 

31 

Table 5: Instruments used in this sensitivity study and their directly measured quantities. 
Truth measurement error values are listed for all four measurements, where 𝜹𝒙  and 𝝈𝒙 
represent relative and absolute uncertainty, respectively. Wavelengths and view angles at 
which each instrument makes observations are also listed, where applicable. 

Instrument 
Retrieved/Calculated 

Measurements 

Measurement 

Reference 

Uncertainty 

Wavelengths 

[nm] 

View 

angles 

Polarimeter 
Intensity δΙ = 3% 

360, 380, 410, 550, 670, 

870, 1650 

±57º, ±44º, 

±32º, ±19º, 

±6º DOLP σDOLP = 0.005 

Lidar 5 

Extinction (𝛼) 
σα = 1.7e5 

[Mm-1] 
532 

Nadir 

Backscatter (𝛽) δβ = 5% 
𝛽 𝛽attn 

532 1064 

Lidar 6 

Extinction (𝛼) 
σα = 1.7e5 

[Mm-1] 
355, 532 

Nadir 

Backscatter (𝛽) δβ = 5% 
𝛽 𝛽attn 

355, 532 1064 

Lidar 9 

Extinction (𝛼) 
σα = 1.7e5 

[Mm-1] 
– 

Nadir 

Backscatter (𝛽) δβ = 5% 
𝛽 𝛽attn 

– 532, 1064 

 Having discussed characteristics of the ICA algorithm — including its resolution, internal 

calculation methods, and available instrumentation choices — it is necessary to describe additional 

assumptions made and requirements adhered to during the development of the forward model, as 
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well as the inherent uncertainties associated with each. Though the methods of calculating the 

maximum uncertainty thresholds for each GV considered in this study (see Table 1) are taken 

directly from the SATM requirements established by NASA’s ACCP mission, a brief explanation 

of the body of research that has led to the development of these specific target uncertainties is 

necessary to legitimize the choices made during the development of this algorithm. 

Since the nascence of climate studies, accurately quantifying net global radiative forcing 

(RF) has been of paramount importance. Because aerosols’ numerous and widely varying 

interactions with clouds — as well as their relative abundances, spatiotemporal distributions, etc. 

[see Chapter 1] — greatly affect RF magnitude, a long-standing objective of the aerosol remote 

sensing community has been the improvement of observational and model capabilities such that 

species- and interaction-specific contributions may be parsed out from the already well-established 

total anthropogenic RF (IPCC 2014). To further this goal, many studies in recent years have 

focused on reducing the retrieval uncertainties of aerosol properties (e.g., the GVs in Table 1). As 

a part of NASA’s Glory mission, Mishchenko et al. (2004) set forth ambitious retrieval uncertainty 

thresholds for several GVs (e.g., AOD, SSA, and 𝑚$), which were to be accomplished by the 

proposed Aerosol Polarimetry Sensor (APS). The APS instrument ultimately failed to produce 

useful data due to its inability to reach orbit; however, advances in the accuracy and variety of 

observational and modeling capabilities remained continuous. As a result, NASA’s subsequent 

Aerosol Cloud and Ecosystems (ACE) mission utilized the capabilities of lidar in addition to 

polarimetry to set even higher accuracy thresholds (i.e., lower GV retrieval uncertainty goals) for 

a larger suite of GVs (Loeb and Su 2010, among others). 

Because of these (and many other) successful advances, the accuracy of estimated total 

aerosol and cloud RF was greatly improved between the IPCC’s fourth (AR4) and fifth (AR5) 
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assessment reports. However, uncertainty values surrounding this estimate increased during this 

same period due to the addition of many different modeled and observationally derived data used 

in calculation of the estimate. As a result, aerosols, clouds, and their interactions remain the largest 

sources of uncertainty in RF estimation (IPCC 2014). To promote more efficient use of this 

proliferation of new modeling capabilities and rich observational data, the 2017 Decadal Survey 

called for a twofold reduction of the aerosol-generated RF uncertainties reported in AR5 (NASA 

2017). NASA subsequently established the ACCP mission, which has allowed for greater multi-

center collaboration on instrument and model development to reach this goal. Because the total 

RF uncertainty is essentially the result of a complex error propagation problem (see Section 2.1), 

preliminary work on the ACCP mission included solving the inverse problem for a large suite of 

aerosol GVs to find the maximum acceptable uncertainty ranges for each (NASA 2019). The GV 

uncertainty calculation methods listed in Table 1 (SATM threshold uncertainties) represent a select 

few of these ranges. 

Now that the origin of the GV reference uncertainties in Table 1 — which are used as a 

metric for the relative success/failure of the various instrument combinations considered in this 

study — has been thoroughly explained, it is necessary to acknowledge a few major assumptions 

made within the ICA model used. Each assumption concerns the properties and/or interactions of 

any aerosols whose characteristics are used as model input. 

By far the least potentially confounding assumption is that of a bimodal lognormal size 

distribution. In general, nearly any single-population (in this case, single-mode) distribution within 

a natural system may be approximated as a normal distribution, given a large enough sample size 

of similarly sized individual samples of the entire population. Because normal distributions are, 

by definition, centered at a mean value of zero, lognormal distributions must be used for any 
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physical quantity for which negative values are impossible. The assumption of a bimodal size 

distribution is, in a word, conventional. Many previous aerosol modeling studies have used this 

assumption, and its validity has been backed by numerous in situ studies. It should be noted that 

there have been case-by-case outlier instances in which trimodal size distributions have been 

discovered. However, these cases are exceedingly rare. As such, it is generally seen as safe to 

ignore such cases without losing model generality, significantly increasing model error, or 

impacting the accuracy of theory-based calculations. 

Another major assumption of the ICA model regards the mixing state of aerosols used as 

model input. Though the model allows for separation of the column into 20 vertically resolved 

layers (of which only 16 are considered [see Section 4.1]), the version used for this study assumed 

two major layers (BL and FT), each of which contained only one aerosol species (see Table 3). 

Thus, mixing in each layer consisted only of internal mixing between fine and coarse mode 

particles. Moreover, this internal mixing was assumed to be both vertically and horizontally 

homogenous across the entire layer volume. Because the BL and FT were considered distinct, non-

interacting layers, no external mixing was considered. The primary reason for these assumptions 

is that for every aerosol species considered, an effective set of aerosol properties is used as input 

so that measured signals may be reproduced reliably and used for more reliable comparison with 

results from real data analysis and inverse modeling results. 

Because we assume homogeneity of aerosol distributions in these ways, it is likely that the 

calculated GV uncertainties of GVs which use lidar measurements for their calculations are not 

representing error accurately due to the uniformity of aerosol loading throughout each vertical 

layer. Moreover, it is likely that the impact of using vertically homogenous aerosol distributions 

results in an underrepresentation of GV relative error (particularly with extinction) due to the 
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ability of lidar to retrieve vertically resolved GVs well. That is, if the vertical homogeneity 

constraint within our model were to be relaxed, the calculated GV errors — which are calculated 

always in a sense relative to the true GV values — would be higher than shown in our current 

results, at least for those GVs that use lidar measurements and/or are vertically resolved. 

Though the spatiotemporal diversity of aerosols is, in reality, typically quite different than 

the setup used within this model, the aforementioned benefits of making such an assumption are 

of greater importance at this stage of model development, when the overall validity of the model 

is still being established. Allowing for more realistic aerosol mixing at this point would add a 

considerable number of new error sources to the model, which would make establishing the 

internal validity of the model far more difficult. 

Whereas the previous assumption concerned extrinsic properties of aerosols as well as their 

(non)interactions with aerosols of a different species, the last major assumption within the ICA 

model concerns a physical characteristic of each particle within the sample volume: sphericity. 

Again, it is known that in reality, many aerosols are not spherical. However, there are several 

reasons that the sphericity assumption is made in this and many other aerosol modeling studies, at 

least during initial trials. A few large factors limiting the inclusion of non-spherical particles in 

many studies are that most MAP-based retrievals of nonsphericity are based on the assumptions 

of 1) inclusion of a single but effective aerosol species and 2) spheroidal shape for all non-spherical 

particles. For the retrieval of multiple aerosol species from a combined use of lidar and polarimeter, 

some preliminary studies have to be performed first to identify 1) the valid species-specific non-

spherical particle shapes that must be considered and 2) how to best improve algorithms 

accordingly to parse out various species identities, relative quantities, etc. from the complex data 

retrieved from more realistic sample volumes containing more than one aerosol species. Some very 
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recent studies have begun to include spheroidal particles within their models (e.g., Xu et al. 2021); 

however, including particles of one higher-order shape dimension adds a large amount of 

complexity to the scattering theory calculations, and we exclude them in this thesis for simplicity.  

As is the case with nearly any assumption made regarding a computational model, each of 

the three assumptions described within this section are, to varying extents, over-simplifications of 

reality. However, two of the assumptions have significant precedence in the literature, particularly 

in studies concerning the early stages of new model development. The other major assumption — 

that aerosols typically obey a bimodal lognormal size distribution — is firmly established in the 

literature across modeling, remote sensing, and in situ studies. 

4.2 Perturbation methods utilized 

Having, now, an algorithm within which Sa and Sε are easily altered, several analyses of 

the relative importance of information content within the algorithm were done using the same basic 

concepts learned from the toy model. The goal is simple: to find the extent to which the accuracy 

of measurements taken and knowledge of the environment a priori add to the successful retrieval 

of GV uncertainties. In any model, it is important to know the dependence of retrieval accuracy of 

GVs on the observational and a priori constraints imposed on aerosol properties. To see the 

impacts of a priori, the algorithm was run for several different scenarios. For each of the methods 

used, either quantities contained within the state vector or measurement errors were initialized at 

some uncertainty range, which were subsequently widened over 100 iterations of the model. In 

essence, for each different method, some set of quantities remains static and known while the 

uncertainty associated with either a priori knowledge of the environment or measurement 

precision is gradually increased. Because of the varying scales that must be used for these 

perturbations across the various methods utilized, each method must be described in more detail. 
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 In the first scenario (i.e., altering state vector parameters’ a priori uncertainties), the 

measurement errors are all left at their reference values, and the a priori state vector is initialized 

with minimum values set at truth. Initial maximum values for the state vector parameters 𝑚$
(A), 

𝑚2
(A), 𝑟m

(A),	and	𝜎m
(A),	were set at a value of 1.0001𝑥truth, where 𝑥truth represents the “true” (i.e., 

case-specific data input directly into the model) a priori values of these parameters. The ultimate 

multiplicative scale factor (i.e., the factor used for the largest uncertainty window) for each of 

these four parameters has to be different to maintain a physically reasonable range of uncertainties. 

For example, having a scale factor that is a whole number quickly becomes unphysical for 

𝑚$
(A),	regardless of species or situation considered, for typical values of the real part of refractive 

index range from 1.33 – 1.7. Moreover, 𝑟m
(A) may have values that reasonably range about an order 

of magnitude, and 𝑚2
(A) can easily range several orders of magnitude, depending on the species 

being considered. The final state vector parameters whose ranges vary with each iteration of the 

ICA code, 𝑓v
(A)	and	𝐶v

(A), also make use of scale factors. However, the uncertainty ranges for these 

two parameters are calculated in a slightly different way than was done for the first four state 

vector parameters described. More specifically, the minimum and maximum values for 

𝑓v
(A)	and	𝐶v

(A) were determined using Eqs. (4.1) and (4.2): 

 𝑥min = 𝑥truth ∆𝐹min⁄  (4.1) 

 𝑥max = 𝑥OstOu∆𝐹max	, (4.2) 

where ∆𝐹min, the scale factor for the minimum value of the uncertainty range, is 1.0001, as it is for 

the other four parameters mentioned. It should be noted that using Eq. (4.1) does, indeed, reduce 

the values of the minimum uncertainty range to just below the truth; however, such a small 
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difference in value is, in practice, equivalent to setting the minimum value at truth, as was done 

for 𝑚$
(A), 𝑚2

(A), 𝑟m
(A),	and	𝜎m

(A).  

As discussed previously, the scale factor values used to determine the maximum value of 

each parameter’s uncertainty range are necessarily different. Therefore, Table 6 is included to 

show speciated state vector parameters for Case 61 whose a priori uncertainty range was perturbed 

along with its associated range of actual values associated with the range of each speciated state 

vector parameter value. Each parameter’s set of scale factors was one of 100 evenly spaced values 

between ∆𝐹min and ∆𝐹max, in linear space. Running the model 100 times by iteratively increasing 

the multiplicative scale factors represents a continuous decrease in the a priori knowledge of the 

environment being considered. That is, as the multiplicative scale factors increase, one knows less 

prior information about aerosol and surface properties because of the use of a less accurate aerosol 

and surface climatology, meaning that the measurements themselves are being relied upon more 

to constrain the resultant GV uncertainties.  
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Table 6: Speciated parameter values for real part of refractive index (𝒎r), imaginary part of refractive index 
(𝒎i), median radius (𝒓m), logarithmic size distribution (𝝈m), fractional volume (𝒇v), and volumetric 
concentration (𝑪v) are listed for the four species considered in our test case. The actual parameter values — or 
calculation methods used to obtain them — that are associated with the maximum scale factor value for the 
first perturbation and final perturbation are also given. 

Parameter 𝒙max,𝟏 𝒙max,𝟏𝟎𝟎 

𝑚$ 1.0001𝑚$,truth 1.7 

𝑚𝑖 1.0001𝑚𝑖,truth 0.1 

𝑟* 1.0001𝑟*,truth 10𝑟* 

𝜎* 1.0001𝜎*,truth 5𝜎* 

𝑓x 1×10-6 1.0 

Q𝐶x,y=𝐶x,y>𝐶x,z=𝐶x,z>U 1×10-10 [0.27, 0.09, 0.05, 0.81] 1×10-8 [0.27, 0.09, 0.05, 0.81] 

The other two methods involve iteratively increasing the measurement uncertainty ranges 

used in calculating GV uncertainties while leaving the a priori state vector information static. 

Because four different measurements (see Section 4.1) are used to calculate GVs in the combined 

retrieval setting — each of which must be altered while the other three measurements are held at 

their reference uncertainty values — a total of eight different sets of results are obtained from the 

two methods that involve increasing measurement uncertainties. Common to all of these trials is 

the use of a formula analogous to Eq. (4.2) to determine the maximum measurement error value 

for each subsequent iteration. As was the case for the a priori state vector parameters, the 

maximum values of measurement error scale factors may not be the same and still make physical 

sense. Moreover, of the four measurements utilized within the algorithm, backscatter and intensity 

report uncertainties as relative error (𝛿-), whereas DOLP and extinction report absolute error (𝜎-), 
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where 𝑥 is the measurement in question. Initial measurement uncertainty values (reference values) 

are provided in Table 5 (see Section 4.1), and the value of ∆𝐹max for the first iteration across all 

measurement error perturbation trials was set at a very small value of (1+1× 10-8). 

Because a relative error of 1 indicates 100% error, the largest values of ∆𝐹max for intensity 

and backscatter were chosen such that measurement uncertainty values of the last iteration are 

𝛿- ≈ 1. Because DOLP represents the portion of incident wave that is polarized, a value of 

𝜎DOLP = 1 (complete polarization) was set as the maximum uncertainty value for DOLP. The 

maximum value of extinction uncertainty for these trials is 𝜎] = 85 [Mm-1]. For extinction and 

backscatter perturbations, the channels for all wavelengths considered are perturbed 

simultaneously. 

Now that the method by which various measurement uncertainties are altered has been 

described in detail, the two different static a priori setups for elements of the state vector must be 

explained. Generally speaking, the two different setups may be described as “known environment” 

and “relaxed environment,” each of which refers to the relative size of the a priori uncertainty 

ranges used for elements of the state vector. In other words, uncertainty ranges in the “known” 

cases were set such that one would have a reasonably good idea of the environmental and surface 

conditions of the volume being sampled, whereas parameters’ uncertainty ranges for the “relaxed” 

cases are set sufficiently large that essentially nothing is known about the specifics of the 

environment within the sample volume. For both environmental setups, the minimum values of 

the uncertainty ranges for 𝑚$
(A), 𝑚2

(A), 	𝑟m
(A),	and	𝜎m

(A) are set at truth. For the known environment 

setup, the maximum value of 𝑚$
(A) is 1.65 and the maximum values for 𝑚2

(A), 	𝑟m
(A),	and	𝜎m

(A), are all 

set at 2(𝑥truth). The scale factors used to compute minimum and maximum values of 𝑓v
(A)	and	𝐶v

(A) 

for the known environment setup are ∆𝐹min = 1.0001 and ∆𝐹max = 10, respectively. On the other 
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hand, the scale factors used to compute 𝑓v
(A)	and	𝐶v

(A) in the relaxed environment setup are ∆𝐹min =

∆𝐹max = 20 . Though these values do not seem, at first glance, to produce a larger range of 

uncertainty than those used in the known environment setup, one can quickly verify these relations 

using Eqs. (4.1) and (4.2). As far as the relaxed environment maximum values of the other state 

vector parameters are concerned: 𝑚$,max
(A) = 1.7 , 𝑚2,max

(A) = 0.1 , 	𝑟m,max
(A) = 10�𝑟m,truth

(A) � , 𝜎m,max
(A) =

5�𝜎m,truth
(A) � . For a consolidated list of minimum/maximum state vector values used for the 

known/unknown environment settings, see Table 7 and Table 8. 

Table 7: Speciated parameter values for real part of refractive index (𝒎r), imaginary part of refractive index 
(𝒎i ), median radius ( 𝒓m ), logarithmic size distribution (𝝈m ), fractional volume ( 𝒇v ), and volumetric 
concentration (𝑪v) are listed for the four species considered in our test case. The actual parameter values — or 
calculation methods used to obtain them — that are associated with the static a priori minimum/maximum 
scale factor values for the state vector variables in the known environment case are also given. 

Parameter 𝒙min 𝒙max 

𝑚$ 𝑚$,truth 1.65 

𝑚𝑖 𝑚2,truth 2𝑚2,truth 

𝑟* 𝑟*,truth 2𝑟* 

𝜎* 𝜎*,truth 2𝜎* 

𝑓x 0.125 1.000 

Q𝐶x,y=𝐶x,y>𝐶x,z=𝐶x,z>U 1×10-10 [0.27, 0.09, 0.05, 0.81] 1×10-9 [0.27, 0.09, 0.05, 0.81] 
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Table 8: Speciated parameter values for real part of refractive index (𝒎r), imaginary part of refractive index 
(𝒎i ), median radius ( 𝒓m ), logarithmic size distribution (𝝈m ), fractional volume ( 𝒇v ), and volumetric 
concentration (𝑪v) are listed for the four species considered in our test case. The actual parameter values — or 
calculation methods used to obtain them — that are associated with the static a priori minimum/maximum 
scale factor values for the state vector variables in the unknown environment case are also given. 

Parameter 𝒙min 𝒙max 

𝑚$ 𝑚$,truth 1.7 

𝑚𝑖 𝑚2,truth 0.1 

𝑟* 𝑟*,truth 10𝑟* 

𝜎* 𝜎*,truth 5𝜎* 

𝑓x 0.0062 1.0000 

Q𝐶x,y=𝐶x,y>𝐶x,z=𝐶x,z>U 1×10-11 [0.13, 0.05, 0.02, 0.41] 1×10-8 [0.05, 0.02, 0.01, 0.16] 

In all three methods used, the retrieval code was run for a total of 100 incrementally 

increasing a priori uncertainty ranges, which are controlled by the various multiplicative scale 

factors described previously. The resultant GV error ratios were plotted as a function of 

perturbation number or instrument error for the a priori state vector perturbation method and 

measurement error perturbation methods, respectively. For purposes of this paper, “error ratio” is 

defined as the ratio of the retrieved GV error (𝜎calc) to the SATM target uncertainty (𝜎SATM). Thus, 

an error ratio value of 1 means that the GV error is as large as allowed by the SATM requirement. 

For ease of analysis across GVs and cases, an asymptote at this error ratio value (denoted by a 

black, dashed line) has been included on each error saturation plot. Then, any error saturation curve 

exceeding this asymptote at all points shows that the GV in question’s uncertainty cannot be well-

constrained, even under the most ideal circumstances. If the error curve saturates completely at a 

value under the asymptote, the GV error is well-constrained for that particular setup. For instances 
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in which the curve crosses the asymptote, one may extrapolate from the intersection of these curves 

how large the a priori uncertainties of state vector parameters or of specific measurements may be 

before particular GVs can no longer be retrieved within an acceptable range of error. 

Chapter 5. Results 

As we begin to consider the various error perturbation methods, the general structure of 

the chapter must be described. Each subsection will follow a structure similar to that of Section 

5.1, in which the results of the first perturbation method (i.e., increasing a priori error of state 

vector parameters) are discussed. Within Sections 5.2–5.5, we gauge the importance of each 

measurement accuracy to the ability of our model to constrain calculated GV uncertainties and 

analyze the impact of a priori knowledge on retrieval ability as each measurement accuracy 

declines by directly comparing results from the known and unknown environment methods 

described in Section 4.2. The following research questions are addressed throughout analyses 

within Chapter 5, and all conclusions we can draw by answering these questions are included in 

Chapter 6. 

RQ1. Which, if any, of the GVs considered in this study may not be retrieved within their 

SATM-defined threshold uncertainties when a priori knowledge of state vector parameters 

is poorly characterized (i.e., “unknown environment” setup)? 

RQ2. What is the impact of including more observational information content from lidar 

measurements (i.e., increasing the number of receiving channels) on GV retrieval abilities? 

RQ3. Which observational configuration(s) tested is (are) able to constrain the greatest 

number of GVs in the most realistic sample environment (i.e., “unknown environment” 

setup)? 
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RQ4. Of the four measurements considered, which is most essential for our model’s 

ability to adequately constrain GV uncertainty values within an “unknown” environment? 

RQ5. Assuming measurement errors are minimized, to what extent must the a priori state 

vector parameters be known to guarantee adequate GV uncertainty constraint ability? 

Before any analysis of results, we must check for internal consistency with our initial a priori 

perturbation method (see Section 5.1). Even though the starting uncertainty windows for a priori 

state vector parameters are slightly different (i.e., larger) than those used for the known 

environment method, the initial error ratio values in the known environment case (left column) 

should be similar to those values found within the first few a priori perturbations shown in 

Section 5.1.1. Because initial values appear to be within a reasonable range of previous results 

(and continue to do so throughout subsequent sections), we may conclude that the model has 

internal validity. 

As a brief caveat, note well that much of the analysis within the subsections of Chapter 5 will 

be qualitative in nature, for the primary purpose of this study is to show the advantages of 

combined lidar-polarimeter retrievals of aerosol properties relative to those performed by lidar or 

polarimeters alone. However, tables have been included at the end of each subsection to provide 

— in a consolidated, easy-to-reference format — more specific, quantitative results. These data 

are useful to include for future research applications that may use this model. Additionally, 

including specific numeric results allows for researchers using slightly different models, 

methodologies, etc., to have something concrete against which past studies’ findings may be 

compared. Moreover, inclusion of these data could impact the focus of future forward modeling 

and ICA studies by showing areas in which improvement can and must be made more starkly than 

could be accomplished through qualitative analysis alone. 
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5.1 Effects of relaxing a priori environmental knowledge 

5.1.1 Conventional GV uncertainties 

For AOD, there is an expectation the polarimeter will have reasonable ability to constrain 

column-integrated values of AOD because of MAPs’ sensitivity to column-integrated values. 

Additionally, the range of view angles used by this polarimeter should work well for AOD retrieval 

because of oblateness of view angle (Xu et al. 2017). Another reasonable expectation, given Eq. 

(3.12), is that lidars with extinction measurement should also be able to constrain AOD values 

well. Thus, any combination of these should be able to constrain. There is little reason to think that 

L9 should be able to constrain AOD at all because of its backscatter-only measurement abilities. 

 

Figure 1: Test case total AOD (𝛥𝜏) error ratio versus a priori state vector scale factor (𝛥𝐹#) for boundary layer (BL, left panel) 
and total Mie scattering portion of atmospheric column (col, right panel), where n is the perturbation number (n=1,…,100). 

Results are shown for four single-instrument setups and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-
dot), L9 (black dash-dot), POL(blue dotted),  L5+POL (green solid), L6+POL (magenta solid), and L9+POL (black solid) 

Overall, the results in Fig. 1 seem to agree with expectations. The polarimeter-only case is 

unable to constrain within boundary layer likely because of interference by layers above (that is, 

the AOD of the FT). Because the additive uncertainty of AOD is hard to parse out, particularly 

because of the relatively poor ability of the polarimeter to give vertically resolved values of single-

scattering properties). Additionally, the relatively lower number of particles within the BL sample 
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volume (compared to the column) likely reduces the polarimeter’s ability to constrain AOD. This 

agrees with the inverse relationship between aerosol loading and AOD uncertainty described by 

Knobelspiesse et al. (2012). Because of polarimeter’s relatively better ability to detect column-

integrated values, it does show relatively greater ability to constrain total column uncertainty of 

AOD (though underperforming in BL case, as described previously). Though every instrument 

setup (other than L9) is able to constrain column AOD, all three instrument combinations perform 

better than any single-instrument setup. Moreover, though L9- and POL-only cases are unable to 

constrain AOD values within the BL, L9+POL is able to constrain, even when a priori 

environmental knowledge is scarce. 

 

Figure 2: As in Fig. 1, except for fine mode AOD (𝛥𝜏$%#&) error ratio. 

As regards the fine-mode AOD retrieval uncertainty, it should not be surprising that the 

overall ability to constrain is generally worse for polarimeter and combined instrument retrievals 

than it is for total AOD, for lower AOD values should yield higher relative AOD retrieval 

uncertainties (Knobelspiesse et al. 2012). It is clear in Fig. 2 that L9 and L5 are not viable options 

for AOD constraint, which makes sense, considering the lower amount of extinction coefficient 

information contained in these measurements versus L6. The reason for the relatively poor BL 
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performance of instrument combinations and polarimeter is the same as before: lower AOD yields 

higher AOD uncertainty. Regardless of vertical range considered, L5+POL and L6+POL 

combinations are able to constrain fine-mode AOD, even when the environment is unknown. 

Polarimeter sensitivity to fine-mode aerosols combined with the added information content of L5 

and L6’s vertically resolved extinction coefficient measurements explains why the AOD 

uncertainties are smallest for the L5+POL and L6+POL instrument combinations. As long as the 

environment can be somewhat well-characterized, the L9+POL combination would be able to 

constrain AOD, though this clearly limits that combination’s comparative utility. Because of the 

POL-only inability to constrain well the fine-mode AOD within the BL, one can already see the 

limitations of polarimetric measurements, even when the environment is well-characterized. This 

shows clearly that combined instrument retrievals are superior to polarimeter- or lidar-only 

retrievals, at least as regards AOD. 

 

Figure 3: As in Fig. 1, but for single scattering albedo (ΔSSA) error ratio. 

Referring to the SSA uncertainty plots, it is clear that as long as the environment is 

somewhat well-characterized, column values of SSA can be well-retrieved by all instrument 

choices, except perhaps L9. However, neither L9 nor L5 can adequately constrain SSA error within 
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the BL. The extra backscatter and extinction receivers added as one moves from L9 to L5 to L6 

explains the relative success of those three instruments, as well as their respective combinations 

with the polarimeter measurements. Overall, the ability of the polarimeter to constrain well the 

SSA error makes sense, for MAPs tend to retrieve size distributions and shape information very 

well (Marshall et al. 1995). 

Now one must consider why there is a relatively lower ability of the polarimeter to 

constrain the column SSA error. This is likely caused by the addition of the FT layer, which 

contains lower values of SSA because of the relatively higher absorption by smoke particles. 

Additionally, given a GV truth value and a window of error that is increasing, the magnitude of 

uncertainty relative to reported GV value gets larger faster for smaller truth values. Addition of 

polarimetric measurements (which are sensitive to the angular distribution of scattering) does help 

the combined instrument cases retrieve SSA better for the entire column versus the BL, which is 

likely attributable to a combination of factors. First, simply the addition of more information 

content could have helped improve the retrieval accuracy. Also, adding lidar adds vertically 

resolved extinction coefficient values which affect AOD values at every level. Since the SSA 

values used in this study were AOD-weighted, anything affecting the AOD should also affect the 

SSA. 
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Figure 4: As in Fig. 1, but for real part of refractive index (𝛥𝑚') error ratio. 

Despite the sensitivity of MAPs to the complex refractive index, the polarimeter and all of 

the combined instrument cases constrain RRI error only as long as the environment is moderately 

well-known. However, considering that RRI is one of the a priori state vector parameters that is 

having its initial uncertainty window expanded to yield these results, one would naturally expect 

for this particular GV to be somewhat harder to constrain than the others. The most important 

takeaway from this set of figures is that the relative ability of all three combined instrument 

retrieval methods to constrain RRI is greater than that of any single-instrument method. 

For this particular GV, it is important to note the differences between the BL and column 

results. Specifically, it seems counterintuitive that the polarimeter-only and combined instrument 

retrievals would perform better in the BL than for the entire column, considering the unavoidable 

two-way attenuation due to the FT layers that any signals would be subjected to. There are likely 

several contributing/competing factors that allow for relatively better ability to constrain RRI 

within the BL versus over the whole column. First, there is a relatively high concentration of smoke 

particles within the FT layers for Case 61. Though this adds a considerable information content, it 

also introduces, in this setup, two size modes of an entirely different species (i.e., smoke) with 
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different complex indices of refraction. So, one possible reason the BL values are more well 

constrained by the polarimeter and combined retrievals is that though there is less information 

contained in the BL retrievals, the amount of associated uncertainty is less because of the fewer 

number of different sizes/species of aerosols considered.  

In addition, other competing factors may potentially add to this interesting relationship. 

For example, MAPs are sensitive to size distribution, and the FT is loaded with smoke particles 

that have smaller size distributions relative to those of the marine particles in the BL (Xu et al. 

2017). This greater sensitivity should reduce uncertainties; however, the composition of the 

species confined to the FT may actually add enough extra uncertainty to overcome the added 

benefit of MAP sensitivity. That is, the widened a priori uncertainty ranges likely impact the 

species within the FT more so than those in the BL for Case 61, particularly due to the larger 

contribution of imaginary part of refractive index uncertainty to accurate retrievals of smoke 

particles relative to retrievals of salt particles. On the other hand, lidars are sensitive to particle 

concentration, so adding layers of high particle concentration as happens with Case 61 could give 

enough extra information content to help constrain the entire column better than the BL alone, 

which can be observed when looking at the lidar-only retrievals (Ansmann and Müller 2005; 

Burton et al. 2016). Though the exact relationships between all of these factors is not yet well-

understood, further analysis of cases with different aerosol loading in different layers may shed 

some light on the underlying reasons for such a relationship to exist in this environmental setup. 

Now considering the asymmetry parameter retrievals, one can see that the lidar-only 

retrievals are relatively poor in their ability to constrain retrieval of geff. Though the study used a 

scanning mobility particle sizer, not a polarimeter, Andrews et al. (2006) found that inclusion of 

aerosols with diameters greater than 0.15μm — which is the case for this study — within Mie 
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theory  calculations  result in the ability to capture 95%  of the asymmetry parameter’s  true value. 

Because MAPs are sensitive to particle size distribution, it makes sense that the polarimeter-only 

setup was able to adequately constrain geff , even with almost no a priori environmental 

information. Though polarimeter alone is sufficient to constrain this particular GV, the 

comparative advantage of all three combined instrument retrievals should be noted. 

 

Figure 5: As in Fig. 1, but for column-effective asymmetry parameter (𝛥𝑔&$$) error ratio. 

5.1.2 Lidar-sensitive GV uncertainties 

Of all the GVs considered in this sensitivity study, the only one reported as a vertically 

resolved value is extinction. The uncertainties associated with the various instrument combinations 

(including single-instrument cases) agree well with results from direct retrieval simulations and 

previous ICA performed using an earlier version of the retrieval algorithm used for this study (Lan 

Gao, personal communication). More so than for nearly any other GV, the vertically resolved 

extinction plots clearly show that polarimeter-only retrievals should not be considered sufficient 

for constraining several GVs. Shown in Figure 6 are profiled uncertainties at a few selected a 

priori uncertainty scales. Note that even small increases in the a priori uncertainties of state vector 
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Figure 6: 250-meter vertically resolved truth values of extinction (colored circles) along with one-sigma error bars for a small 
state vector uncertainty window (left panel, n=5) and the maximum uncertainty window (right panel, n=100). Shown are four 

single-instrument setups and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), 
POL (blue dotted), L5+POL (green solid), L6+POL (magenta solid; bolded), and L9+POL (black solid). The L6+POL 

combination is bolded for ease of identification. Vertical dashed black lines represent SATM one-sigma error requirement 
threshold. Horizontal solid black line shows boundary between boundary layer (BL) and free troposphere (FT). 

parameters are enough for a posteriori extinction error to exceed SATM requirements. Nearly as 

poor at constraining this particular GV is L9, when used alone. As was the case for several other 

GVs considered, this fact should be somewhat obvious, considering L9 has no channels that 

receive extinction. It is important to note, however, that the complementary strengths of L9’s 

ability to retrieve vertically resolved quantities and the polarimeter’s ability to retrieve AOD well 

result in the L9+POL combination meeting the SATM requirements, regardless of how well-

characterized the a priori environment is. Based on our results, the most predictive factor for 

relative ability to constrain extinction is number of 𝛼-channels used during retrieval. Inclusion of 

polarimetric data adds enough information content that — as mentioned previously — any of the 

combined instrument retrieval methods would be sufficient. However, unlike for several other 

GVs, lidar-only retrievals for L5 and L6 performed better than the L9+POL combination. 

Moreover, any method including L6 out-performed every other retrieval method, which lends 
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credence to the aforementioned positive impact on extinction retrieval abilities by adding more 𝛼-

receiving channels to the lidar. 

Before continuing, a few caveats regarding the extinction error profiles shown throughout 

this thesis must be addressed. One would expect extinction uncertainty to increase as altitude 

decreases; however, this is not a consistent trend in our results. Moreover, the author is aware that 

the opposite trend is present in vertically resolved extinction uncertainties for several of the 

instrument combinations used. Additionally, some instrument combinations’ uncertainty values 

seem to remain static across all the various perturbations, in the FT, and in the BL. Closer analysis 

of these data has shown that the appearance of static extinction uncertainty values within the BL 

and FT is false. Moreover, the trend of increasing GV uncertainty as a priori state vector 

parameters’ uncertainty increases does, in fact, hold true. As regards the seemingly unphysical 

trends in extinction error (many of which are more evident in extinction error profiles shown in 

later sections): finding a particular reason for this is not a focus of this thesis, nor is it within the 

scope of this thesis to discover. It is important to note that the differences level-to-level — even 

throughout one of the two major layers — are incredibly small for most instrument combinations, 

and for purposes of this thesis, the general trends that were expected are supported by the data.  
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Figure 7: As in Fig. 1, except lidar ratio (ΔLR) error ratio. 

Having discussed the extrinsic property of extinction, we now move to discussion of a 

derived intrinsic property, the LR. One can see relatively better ability to constrain over the whole 

column than in the BL, again likely related to the additional information content added by having 

twice as many lidar-provided extinction coefficient measurements in the column case. 

Additionally, the values of extinction are far higher in the FT than in the BL for Case 61, so the 

column values have more information content as well as higher values of extinction and lower 

values of backscatter, explaining the greater ability to constrain LR over the entire column. 

Although the polarimeter does not measure extinction or backscatter, its inclusion adds 

information content via its sensitivity to volume concentration. As long as the environment is 

somewhat well-characterized, any of the lidar-polarimeter combinations could adequately 

constrain LR error; however, for an entirely unknown environmental setup, using L9+POL could 

prove insufficient for accurate LR retrievals within the BL.  
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Table 9: Quantitative results to accompany the figures within Section 5.1. GVs considered 
are in the left-most column, and the seven different instrument combinations considered 
are listed across the top. Gray hatched boxes indicate instances in which an instrument 
combination was unable to constrain a particular GV over the entire perturbation domain 
(i.e., at a priori ΔFn, n=100). Green highlighted boxes indicate that the GV considered was 
adequately constrained over the entire domain, and the numbers give the GV uncertainty 
at the maximum perturbation. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column             0.03 0.03 0.03 
SSA, BL          0.04 0.02 0.02 0.02 
geff, column          0.02 0.01 0.01 0.01 
LR, column             11.25 10.31    
LR, BL                5.47    
τf, column             0.03 0.02 0.03 
τf, BL             0.01 0.01    
τ, column 0.02 0.02    0.02 0.01 0.01 0.01 
τ, BL 0.01 0.01       0.01 0.01 0.02 
mr, column                      
mr, BL                      

5.2 Effects of increasing intensity measurement error 

Before exploring the results gathered by increasing the error of the polarimeter’s intensity 

measurement, we preemptively address one trend that remains true throughout this section. 

Because the measurement error being altered throughout this method does not factor into lidar 

calculations, all lines depicting lidar-only instrument choices within Section 5.2 should be 

constant. This result is to be expected and may, at first, seem trivial to include. However, these 

data were included so that direct comparisons can still be drawn across all methods used within 

this study, as well as between the relative efficacies of all instrument combinations. Moreover, the 

fact that the GV errors calculated using lidar-only setups are constant when intensity measurement 

error is altered does not preclude the ability of lidar-only retrievals to adequately constrain several 
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of the GVs considered. Knowledge of these lidar systems’ capabilities will help inform future 

studies. 

5.2.1 Conventional GV uncertainties  

As in Section 5.1.1, we begin by analyzing AOD results. According to prior reasoning used 

in Section 5.1 and within Eqs. (3.12)-(3.14), we expect that instrument combinations including L5 

and L6 will perform better than those with L9. This is due to L9’s lack of channels which directly 

measure extinction. Additionally, we expect the polarimeter-only method to perform worse than 

all other instrument setups (except L9-only) because intensity is one of the two quantities measured 

by the polarimeter.  
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Figure 8: Test case total AOD (𝛥𝜏) error ratio versus percent relative error of intensity measurement (𝛿() for known environment 
setup boundary layer (BL, top left) and total column (col, top right) vertical ranges, as well as for unknown environment setup 

BL (bottom left) and col (bottom right) values. Results are shown for four single-instrument setups and three instrument 
combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), POL (blue dotted), L5+POL (green solid), 

L6+POL (magenta solid; bolded), and L9+POL (black solid). 

At first glance, the impact of having better a priori knowledge of the environment (top 

row) is clearly noticeable for L9- and POL-only cases, as well as for the L9+POL setup. The 

expectation regarding L9’s inability to constrain is confirmed, and the better performance of 

L5+POL and L6+POL relative to L9+POL is obvious. Additionally, the expectation that the 

polarimeter would be the most strongly impacted instrument when intensity measurement accuracy 

is reduced is confirmed by these results. Despite this, every instrument choice considered (except 

L9) is able to constrain column values of AOD, even with completely unreliable intensity 
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measurements and little specific knowledge about the environment being sampled. For BL 

retrievals, even very small increases in the intensity error cause the polarimeter-only setup to be 

unable to constrain AOD. The reasons for this likely have to do with the relatively lower aerosol 

number concentration in the BL as well as uncertainty added by two-way attenuation by the FT 

aerosols. It is notable that L5- and L6-only instrument choices are sufficient for constraining AOD 

in either spatial range, for this confirms our expectation that having receivers for extinction would 

give these instruments a higher capacity to constrain than L9.  

Overall, the L5+POL and L6+POL combined instrument cases clearly perform better than 

others, when the environmental setup is known. Even when a priori knowledge is poor, these two 

combinations are among the best performers. However, L6+POL obviously performs best of all 

and is able to constrain AOD regardless of the reliability of intensity measurements or how well-

characterized a priori knowledge is. 
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Figure 9: As in Fig. 8, except for fine mode AOD (𝛥𝜏$%#&) error ratio. 

Considering the previous reasoning presented in Section 5.1.1 and the AOD results for all 

species included, the general relationships between different instruments’ efficacies should not be 

surprising. When the environment is relatively well known, all three combined instrument methods 

can successfully constrain fine-mode AOD, regardless of the vertical range considered or whether 

any intensity information is available. More importantly, only the L6+POL method is able to 

constrain across any vertical range when the environmental setup and intensity measurements are 

unknown. Thus far, this is the first instance of the clear superiority of one instrument choice over 

all others tested. 
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Figure 10: As in Fig. 8, except for single scattering albedo (𝛥𝑆𝑆𝐴) error ratio. 

Though the effect of reducing a priori knowledge of the environment is obvious for several 

GVs investigated in this study, the SSA results show striking differences in the BL and total 

column effects, when comparing known and unknown environment cases. Once again, the L9-

only retrieval is inferior to the retrieval abilities of all other instrument combinations. Because it 

is unable to constrain column-effective SSA even when intensity error is at a minimum and the 

environment is well-characterized, it bears no further discussion in this section. 

Whereas the reasoning used in Section 5.1.1 mostly holds for these results, the abilities of 

the polarimeter are of particular interest when using this error perturbation method because it 

directly measures radiance. When the environment is known, the accuracy of intensity 
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measurements is unimportant for the constraint abilities of polarimeter-only and combined 

instrument methods. This implies that as long as DOLP measurements are within a reasonable 

margin of σDOLP (and environmental characteristics are well-known), SSA may be adequately 

constrained in both vertical ranges by all of the combined instrument configurations, as well as by 

the polarimeter only.  

Having discussed relative constraint abilities when the environment is known, we turn now 

to comparing those results to the unknown environment case. In this more generalized case, all 

three combined instrument retrieval methods still perform well in the BL; however, no 

instrument(s) show any ability to constrain column values of SSA when the environment is 

unknown. This specific result is telling, in that it points to the possibility of even the best overall 

instrument combination (L6+POL) failing to meet the column SSA SATM requirement any time 

the environment is unknown, as it is defined within this study. Further research is needed to more 

precisely assess how well-characterized the environment must be for column-effective values of 

SSA to be adequately constrained without any radiance information so that specific maximum 

error thresholds of the polarimeter’s radiance measurement capabilities may be reported.  
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Figure 11: Test case real part of refractive index (𝛥𝑚') error ratio versus percent relative error of intensity measurement (𝛿() 
for known environment setup boundary layer (BL, left panel) and unknown environment setup BL (right panel) ranges. Results 

are shown for four single-instrument setups and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 
(black dash-dot), POL (blue dotted), L5+POL (green solid), L6+POL (magenta solid; bolded), and L9+POL (black solid). 

In analyzing Fig. 11, it is immediately obvious that only those combined instrument 

retrieval methods that include extinction channels in their lidar systems are able to constrain 𝑚$ 

within the BL. Moreover, this is only the case when the environment is well-characterized, which 

is clear when looking at the right panel of Fig. 11. As was the case with column-effective values 

of SSA, finding the extent to which one must know specific environmental parameters to 

adequately constrain 𝑚$ bears further research. Conspicuously missing from this section are the 

results for known/unknown environment results for total column 𝑚$ error. The reason for this is 

that no instrument configuration tested was able to achieve SATM requirements, even when the 

environment was well-known and the intensity measurement error was at its reference error level. 

These results show the importance of accurate radiance measurements as a necessity for adequately 

retrieving our entire suite of GVs. 
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Figure 12: Column-effective asymmetry parameter (𝛥𝑔&$$) error ratio versus percent relative error of intensity measurement 
(𝛿() for known (left panel) and unknown (right panel) environment setups. 

Though we have already seen in Section 5.1.1 that a priori knowledge of the environment 

is unnecessary for the polarimeter and all of its combinations with lidar to adequately constrain 

𝑔eff, we have yet to parse out how lack of measurement accuracy may affect this ability. Viewing 

Fig. 12, the left panel shows good agreement with results from Section 5.1.1, in terms of ability to 

constrain 𝑔eff when the environment is known. The right panel of the figure, on the other hand, 

reveals the importance of accurate radiance measurements for retrieval capabilities of the 

polarimeter-only and L9+POL instrument choices. An important takeaway is that neither 

environmental knowledge or intensity measurement is necessary for adequate constraint of 𝑔eff by 

L6+POL or L5+POL combined retrieval methods. 

5.2.2 Lidar-sensitive GV uncertainties 

To begin analysis of the effects of increasing intensity measurement error on GVs used in 

the lidar equation (Liou 2002), we start by viewing Fig. 13, which gives the extinction profile for 

our test case with related uncertainties for the fifth (𝑛 = 5) and hundredth (𝑛 = 100) perturbations 

of intensity error in the known environment (top row) and unknown environment (bottom row) 

cases. We know from Section 5.1.2 that polarimeter-only and L9-only cases are unable to constrain 
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the entire extinction profile, even when the environment is rather well-characterized. The known 

environment results depicted in Fig. 13 bear out these findings. Overall, the impact of having little 

a priori environmental knowledge is apparent for L9-only, polarimeter-only, and the combination 

of these two instruments. All other instrument combinations (including L5-only and L6-only) 

easily constrain the entire vertically resolved column of extinction values, regardless of a priori 

knowledge. In other words, it appears that without significant knowledge of the environment or 

accurate intensity measurements, combined instrument retrievals which include a lidar system that 

has extinction receivers show clear advantage over other retrieval methods, in addition to meeting 

SATM requirements throughout the entire atmospheric column.  
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Figure 13: 250-meter vertically resolved truth values of extinction (colored circles) along with one-sigma error bars for known 
environment setup small intensity measurement uncertainty window (top left, n=5) and maximum uncertainty window (top right, 
n=100). Also shown are results for unknown environment setup small intensity measurement uncertainty window (bottom left) 

and maximum uncertainty window (bottom right). Results are given for four single-instrument setups and three instrument 
combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), POL (blue dotted), L5+POL (green solid), 
L6+POL (magenta solid; bolded), and L9+POL (black solid). The L6+POL combination is bolded for ease of identification. 

Vertical dashed black lines represent SATM one-sigma error requirement threshold. Horizontal solid black line shows boundary 
between boundary layer (BL) and free troposphere (FT). 
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Although the reasoning behind the differences for ability to constrain LR in the column 

and BL is somewhat more complex than is the case for several other GVs (see Section 5.1.2), the 

importance of accurate intensity measurements to retrieval of LR has not yet been discussed. The 

first thing to note is that results showing the unknown environment case are not shown here, for 

no instrument retrieval was able to constrain LR in the BL or total column. Additionally, the 

relative superiority of combined instrument retrievals is evident. From simply viewing the error 

saturation plots, it is clear that these combined retrievals adequately constrain LR when the 

environment is somewhat well-characterized; however, the shallowness of these curves show that 

the accuracy of intensity measurements is unimportant to the constraint ability of combined 

instrument retrieval of LR. 

 

Figure 14: Test case lidar ratio (𝛥𝐿𝑅) error ratio versus percent relative error of intensity measurement (𝛿() for known 
environment setup boundary layer (BL, left panel) and total column (col, right panel) ranges. Results are shown for four single-
instrument setups and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), POL 

(blue dotted), L5+POL (green solid), L6+POL (magenta solid; bolded), and L9+POL (black solid).  
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Table 10: Quantitative results to accompany the figures within Section 5.2 that depict 
“known environment” results. GVs considered are in the left-most column, and the seven 
different instrument combinations considered are listed across the top. Gray hatched boxes 
indicate instances in which the three measurements other than intensity were unable to 
constrain a particular GV at nearly any point over the entire perturbation domain (i.e., 
when δΙ > 3%). Green highlighted boxes indicate that the GV considered was adequately 
constrained over the entire domain, and the numbers give the GV uncertainty at the 
maximum perturbation (δΙ,max). Yellow highlighted boxes indicate that an instrument 
combination was able to constrain GV uncertainty over a portion of the perturbation 
domain, and numbers within give the value of δΙ at which the GV may no longer be 
constrained by the other three measurements. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column 0.04 0.03    0.03 0.03 0.02 0.03 
SSA, BL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
geff, column          0.02 0.01 0.01 0.01 
LR, column             9.45 8.69 9.67 
LR, BL          12.80% 3.92 3.59 4.37 
τf, column          24.55% 0.02 0.02 0.02 
τf, BL    0.02       0.01 0.01 0.02 
τ, column 0.02 0.01    0.03 0.01 0.01 0.02 
τ, BL 0.01 0.01       0.01 0.01 0.01 
mr, column                      
mr, BL             0.02 0.02    
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Table 11: As in Table 10, but for figures within Section 5.2 that depict “unknown 
environment” results. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column               
SSA, BL       3.00% 0.02 0.02 0.03 
geff, 
column       7.90% 0.02 0.02 24.55% 
LR, 
column               
LR, BL               
τf, column         8.88% 0.03 3.00% 
τf, BL         0.02 0.01   
τ, column 0.02 0.02   0.03 0.01 0.01 0.02 
τ, BL 0.01 0.01     0.01 0.01   
mr, 
column               
mr, BL               

5.3 Effects of increasing DOLP measurement error 

5.3.1 Conventional GV uncertainties 

From the outset, it is clear that AOD uncertainties are sensitive to increases in DOLP error, 

though the added uncertainty saturates quickly. This implies that σDOLP is only useful as a 

constraint for AOD when its value is very small (i.e., close to the reference uncertainty value). As 

regards the different environmental scenarios, the impact of a priori knowledge is noticeable for 

both vertical ranges, but is far more noticeable in the BL. One takeaway is that L9+POL is nearly 

useless in the unknown environment BL case, making it the only combined instrument retrieval 

with issues constraining in this range. More importantly, neither accurate DOLP measurements 

nor a priori knowledge are necessary for accurate AOD retrievals. These trends, taken together, 

point to the primary importance of extinction measurement accuracy in the ability to constrain 

AOD, though this will be examined further in Section 5.3. 



 
 

69 

 

Figure 15: As in Fig. 8, except 𝛥𝜏 error ratio is plotted versus absolute error of degree of linear polarization measurement 
(𝜎)*+,). 

As far as fine-mode AOD is concerned, some trends remain the same. For example, the 

AOD error still saturates rather quickly, hinting at some sensitivity to σDOLP. Additionally, it is 

known that DOLP measurements have great sensitivity to fine-mode particles, which further 

explains the quick saturation of error. One factor that likely causes the fine-mode AOD to have 

worse retrievals than total AOD is the sensitivity of DOLP to AOD (Boesche et al. 2006). Because 

of the large differences in total versus fine-mode AOD, the overall abilities of our instrument 

retrievals appear to be worse at retrieving fine-mode AOD. Given Fig. 16, one can see that 

L5+POL and L6+POL combined retrievals perform best of any instrument choices; however, these 
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combinations are only able to constrain fine-mode AOD when the environment is relatively well-

characterized. If the environment is unknown, σDOLP must also be near its reference uncertainty 

value to yield accurate fine-mode AOD retrievals. That is, DOLP accuracy is of major importance 

to the retrieval of this GV, which is perhaps one of the most important GVs to retrieve accurately 

(particularly in the BL) for purposes of improving air quality. 

 

 

Figure 16: As in Fig. 15, except for fine mode AOD (𝛥𝜏$%#&) error ratio. 

When analyzing Fig. 17, one notices many similar characteristics to Fig. 10. Again, we see 

a quick saturation of error for all instrument choices in all of the different methods shown. Several 

reasons cause this, including the sensitivity of DOLP to AOD, which is used in the calculation of 
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SSA, and real part of refractive index (Boesche et al. 2006). For these reasons, in the known 

environment case, every instrument combination is able to constrain SSA within the BL, and all 

but L9-only are able to constrain column-effective values of SSA. Once again, the impact of a 

priori on retrieval capabilities is marked.  

Though all the combined instrument retrieval methods are able to constrain SSA within the 

BL in the unknown environment case, none of the instruments are capable of the same over the 

entire column. The reasons for this are likely somewhat interconnected in the impacts they have. 

First, DOLP is sensitive to the real part of refractive index, but it is the imaginary part of refractive 

index becomes significantly more important when the FT levels containing absorbing smoke 

particles are added in for the total column calculations. Additionally, the particle concentrations in 

the FT in Case 61 are much higher (at least one order of magnitude) for both size modes, adding 

larger quantities with associated uncertainties. 

Overall, the impact of increasing σDOLP has relatively little effect on the ability of combined 

instrument methods to retrieve well values of SSA when the environment is well-known. That is, 

DOLP measurements can be essentially nonexistent in this instance, and as long as the other three 

measurements are operating at their reference uncertainties, SSA can be constrained, regardless of 

vertical depth considered. When less a priori is available, combined instrument retrievals appear 

to be sufficient to constrain BL values of SSA. However, further research including more of our 

Canonical Cases is necessary to determine what factor or combination of factors is causing the 

lack of ability to constrain SSA over the entire column when a priori isn’t well-known. It is 

possible that these results are tied strongly to the particular aerosol loading chosen for Case 61, so 

the addition of more experimental cases in the future should offer more insight regarding the 

generalizability of the trends shown here. 
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Figure 17: As in Fig. 15, except showing single scattering albedo (ΔSSA) error ratio. 

Whereas the ability to constrain GVs has, thus far, required a bit of explanation, there is 

relatively little to say about the abilities of our various instrument configurations to constrain 𝑚$ 

when σDOLP is increased even slightly. As noted previously, DOLP is very sensitive to RRI 

(Boesche et al. 2006). Moreover, these results seem to show the necessity of minimizing σDOLP as 

much as possible to retrieve RRI with any kind of accuracy and, thereby, also show that radiance 

and lidar measurements (even in combination) are unable to adequately constrain RRI. It should 

be noted that Fig. 18 shows the known environment case, so again, more work must be done to 
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find out exactly how well-characterized the environment must be to allow reasonable retrieval 

capabilities that also allow for the measurement error of DOLP to vary more. 

 

Figure 18: Real part of refractive index (𝛥𝑚') error ratio versus absolute error of DOLP measurement (𝜎)*+,) for known 
environment setup boundary layer (BL, left panel) and total column (col, right panel) ranges. Results are shown for four single-
instrument setups and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), POL 

(blue dotted), L5+POL (green solid), L6+POL (magenta solid; bolded), and L9+POL (black solid). 

 

Figure 19: Column-effective asymmetry parameter (𝛥𝑔&$$) error ratio versus absolute error of DOLP measurement (𝜎)*+,) for 
the known environment setup. 

When analyzing Fig. 19, it should be no surprise that the ability to constrain asymmetry 

parameter is greatly affected by the magnitude of DOLP measurement error. Asymmetry 

parameter is strongly tied to size distribution, and DOLP is sensitive to that characteristic. So, even 

if all three other measurements are within their reference errors, even small changes to DOLP 
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measurement accuracy have a large effect on the ability to constrain asymmetry parameter. Note 

that the only panel of Fig. 19 shows the known environment case, which accentuates even more 

the importance of minimizing σDOLP. 

5.3.2 Lidar-sensitive GV uncertainties 

As in previous sections, only a few examples of extinction error vertical profiles are shown 

here: one in which DOLP error is still close to the reference uncertainty and the most extreme case, 

in which the magnitude of σDOLP makes the DOLP measurement essentially useless. Viewing the 

top row of Fig. 20, which shows the results from the known environment case, one can see that 

there appears to be very little difference in the two plots, despite the large difference in σDOLP 

between the two retrieval trials. This implies that — at least when the environment is well-

characterized — the accuracy of DOLP measurements is wholly unimportant to the ability of 

combined instrument retrieval methods to adequately constrain vertically resolved extinction 

profiles. 

For reasons already explained in Section 5.1.2, there is little reason to expect the 

polarimeter-only retrievals to be able to constrain the vertically resolved extinction profile, even 

when there is a considerable amount of a priori knowledge. Additionally, for the same reasons as 

discussed in Section 5.2.2, L9-only should not be able to constrain extinction in any instance. The 

results bear out these expectations. 

Now considering the bottom half of Fig. 20, which shows results from the same magnitude 

scale factor trials (but for the unknown environment setting), one can see similar trends as seen in 

Fig. 13 (see Section 5.2.2). One notable difference is that the L9+POL combination performs even 

worse when σDOLP is increased than it did when 𝛿L  was increased. Though it is possible that 
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accurate DOLP measurements are more important to constraining extinction error than are 

accurate intensity measurements, it is more likely that this is due to the relatively larger amount 

σDOLP was increased from trial to trial. This conclusion is supported by the fact that the combined 

instrument retrievals that include extinction channels showed no significant difference in values 

between correlating plots depicting increases of σDOLP and 𝛿L.  

To summarize, the magnitudes of the effects on extinction error caused by increasing σDOLP 

and 𝛿L may not be directly comparable. That is, in the absence of a true one-to-one scale factor 

comparison, this conclusion cannot yet be stated as fact, though future research should attempt to 

clarify this relationship. More importantly, the impact of a priori knowledge can still be seen in 

the widening of extinction error bars between the known and unknown cases for all three combined 

instrument methods. Additionally, the inferiority of L9+POL instrument combination relative to 

the other combined instrument retrieval methods has been shown, once again. 
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Figure 20: As in Fig. 13, except results are from perturbing a priori DOLP measurement error (𝜎)*+,). 

As we examine the effects of increasing σDOLP on the ability to retrieve LR, it should first 

be noted that, once again, only the results from the known environment case are shown, for even 

before DOLP measurement error is perturbed beyond its initial reference error, no instrument 

configuration is able to constrain LR in either vertical range. Looking at the known environment 
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case in Fig. 21, one can see that the only instrument configurations that can constrain LR 

irrespective of the depth considered are the combined instrument setups. Therefore, the superiority 

of these methods for LR retrieval — at least for the environment in Case 61 — is evident. It is not 

surprising that polarimeter-only retrievals are of relatively poor quality for LR. For one, the results 

of widening a priori error (see Section 5.1.2) have already shown that the environment must be 

relatively well-characterized for polarimeter to constrain LR by itself. By adding larger DOLP 

error, this ability suffers even more, especially considering that DOLP is measured by the 

polarimeter.  

Considering the shallowness of the combined instrument retrieval curves — in addition to 

the fact that each of these methods is able to constrain LR with essentially no reliable DOLP 

measurement — show that σDOLP is unimportant to the LR constraint abilities of the combined 

instrument configurations. In other words, as long as the other three measurements (in particular, 

those for extinction and backscatter) are retrieving information at the reference uncertainty, LR 

can be constrained by combined instrument methods when the environment is somewhat well-

characterized. The lack of constraint ability in the unknown environment setup shows the 

importance of having a priori knowledge and/or a polarimeter that has higher DOLP measurement 

precision. 
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Figure 21: As in Fig. 14, except results are from perturbing a priori DOLP measurement error (𝜎)*+,). 

Table 12: Analogous to Table 10, but for figures within Section 5.3 depicting “known 
environment” results retrieved by perturbing σDOLP. It follows that GV uncertainties within 
green boxes show how well the three non-DOLP measurements can constrain the respective 
GVs. Additionally, yellow boxes give the magnitude of σDOLP at which a GV may no longer be 
constrained by the other three measurements. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column 0.04 0.03    0.03 0.03 0.02 0.03 
SSA, BL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
geff, 
column          0.015 0.025 0.035 0.025 
LR, 
column             10.28 9.31 10.69 
LR, BL          0.015 5.05 4.61 5.87 
τf, 
column          0.025 0.03 0.02 0.03 
τf, BL    0.02       0.02 0.01 0.015 
τ, column 0.02 0.01    0.03 0.01 0.01 0.02 
τ, BL 0.01 0.01       0.01 0.01 0.02 
mr, 
column                      
mr, BL             0.005 0.015    

  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DOLP Absolute Error ( DOLP)

0

0.5

1

1.5

2

2.5

3

Er
ro

r R
at

io
 [

ca
lc

/
SA

TM
]

Case 61 LRBL Error

L5
L6
L9
POL
L5+POL
L6+POL
L9+POL
SATM Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DOLP Absolute Error ( DOLP)

0

0.5

1

1.5

2

2.5

3

Er
ro

r R
at

io
 [

ca
lc

/
SA

TM
]

Case 61 LRcol Error

L5
L6
L9
POL
L5+POL
L6+POL
L9+POL
SATM Threshold



 
 

79 

Table 13: As in Table 12, except for figures within Section 5.3 depicting “unknown 
environment” results. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column               
SSA, BL       0.005 0.02 0.02 0.03 
geff, 
column       0.005 0.005 0.005 0.005 
LR, 
column               
LR, BL               
τf, column         0.005 0.015 0.005 
τf, BL         0.025 0.045   
τ, column 0.02 0.02   0.03 0.01 0.01 0.02 
τ, BL 0.01 0.01     0.01 0.01   
mr, 
column               
mr, BL               

5.4 Effects of increasing extinction measurement error 

As we move into discussion of the effects of increasing extinction measurement error on 

the ability of various instrument configurations to adequately constrain our suite of GVs, we set 

forth a few expectations for this section. In Sections 5.2-5.3, there was an expectation that lidar-

only retrievals would have constant results for those perturbation methods, considering intensity 

and DOLP observations are measured by the polarimeter. Similarly, the expectation is that in 

Sections 5.4-5.5, polarimeter results will be constant, for extinction and backscatter are only 

measured by the lidar systems in question. Moreover, L9 should also show constant error ratio 

values within this section, because it uses only backscatter measurements. 

5.4.1 Conventional GV uncertainties 

First considering AOD, there are few surprises. Our expectations regarding L9 and POL 

are both confirmed, and both L5 and L6 are unable to constrain error because of their dependence 

on extinction channels. All combined instrument retrievals are clearly superior in constraint ability, 
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despite the lack of extinction measurement. Additionally, the shallowness of the error saturation 

curves for the combined instrument retrievals show a lack of sensitivity to extinction measurement 

error. As discussed in Section 5.3.1, this points to the importance of DOLP measurement in the 

ability to constrain AOD. Moreover, it is important to note that Fig. 22 is showing only the 

unknown environment setup, meaning that L5+POL and L6+POL are able to constrain AOD when 

extinction measurement is useless and a priori knowledge of the environment is minimal. 

 

Figure 22: Total AOD (𝛥𝜏) error ratio versus absolute error of extinction measurement (𝜎-) for unknown environment setup 
boundary layer (BL, left panel) and total column (col, right panel) ranges. Results are shown for four single-instrument setups 

and three instrument combinations: L5 (green dash-dot), L6 (magenta dash-dot), L9 (black dash-dot), POL (blue dotted), 
L5+POL (green solid), L6+POL (magenta solid; bolded), and L9+POL (black solid). 

 

Figure 23: As in Fig. 22, except showing fine mode AOD (𝛥𝜏$%#&) error ratio. 
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Though Fig. 23 doesn’t warrant much discussion, we will mention a few of the trends that 

are constant to further establish consistency of results and reasoning. First, we are again only 

showing the unknown environment setup, showing that a priori environmental knowledge is 

unnecessary for L6+POL to constrain AODfine, even when extinction measurements are not 

included. Moreover, this figure shows a clear advantage of L6+POL over all other instrument 

combinations, when considering both vertical ranges for which the variable must be constrained 

to adequately meet SATM requirements. 

As we turn to discussion of the effects of increasing 𝜎] upon the retrieval uncertainties of 

SSA in the BL and column, first note that Fig. 24 includes the known and unknown environment 

methods. One would expect that the retrievals of BL aerosols would be relatively good, 

considering the BL is loaded with sea salt particles, which have a much higher value of SSA than 

the relatively darker smoke particles in the FT do. Even in the known environment case (top row), 

adding FT layers into the error propagation calculation greatly reduces the retrieval capabilities of 

all the instrument combinations considered. This is likely due to the dependence of SSA on 

extinction. By factoring in two-way attenuation of light through twice as much distance as in the 

BL case, it seems that the uncertainty of SSA would increase by virtue of the uncertainty of 

extinction increasing with every subsequent layer added. Moreover, the sample volume added by 

including the FT in this case contains smoke particles, which add to the magnitude of extinction 

values. The ability of sensing column-effective SSA becomes complicated, considering we are 

adding a large concentration of absorbing particles to a small concentration of particles with 

extremely high albedo. However, it does appear that the addition of a large concentration of 

absorbing particles, which would add to the magnitude of extinction, causes a corresponding 

increase in SSA retrieval uncertainty. However, this increase in uncertainty is not enough to 
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prevent several instrument configurations — including L6, which has been of particular interest 

throughout our analysis thus far — from adequately constraining SSAcol. 

On the other hand, in the unknown environment case, the impact of having little a priori 

knowledge of state vector parameters is clear. There are similarities in the relative abilities to 

constrain when comparing BL to column, and retrieval capabilities are reduced when comparing 

known to unknown environment setups, regardless of vertical range considered. Of particular 

interest is the failure of all instrument combinations to constrain SSAcol when the environment is 

unknown, even when extinction receivers are operating at their reference uncertainties. It is clear 

that, in the environmental setup considered, the amount of a priori knowledge of the sample 

environment state is very important, even if all measurements are operating at low uncertainties. 
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Figure 24: As in Fig. 8, except showing effect of perturbing absolute error of a priori extinction measurement (𝜎-). 

Continuing its pattern of being the hardest-to-constrain GV considered, the real part of 

refractive index is quite hard to constrain when increasing 𝜎]. Figure 25 shows the only instance 

in which 𝑚$ can be adequately constrained, given this perturbation method and aerosol loading. 

Not only must the environment be relatively well-characterized for any instrument configuration 

to constrain 𝑚$  retrieval uncertainty, but also the only instrument combination capable in this 

instance is the L6+POL combination that has been consistently the most capable configuration, 

across the board. Moreover, the only vertical range over which retrieval is possible given the a 

priori uncertainties provided for the known environment calculations is the BL.  
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In other words, even when the environment is somewhat well-characterized a priori and 

all the measurements are operating near their reference uncertainties, 𝑚$,�P� retrieval error may not 

be adequately constrained by any instrument configuration. Because we know from Section 5.1.1 

that 𝑚$,�P� retrieval error may, in fact, be constrained in this same instance at a lower value of a 

priori perturbation, more analysis would need to be done to find out quantitatively to what extent 

the environment must be known a priori for 𝑚$,�P�  uncertainty for the total column to be 

constrained. However, considering that 𝑚$  uncertainty cannot be constrained in either vertical 

range in the more realistic scenario, it is unlikely that using any of the currently proposed 

instrument combinations would be sufficient for constraining this particular GV. This implies that 

the single most important factor to constraining real part of refractive index is the extent of a priori 

environmental knowledge. 

 

Figure 25: Real part of refractive index (𝛥𝑚') error ratio 
versus a priori absolute error of extinction measurement 

(𝜎-) for known environment setup and BL range. 

 

Figure 26: As in Fig. 25, except showing column-effective 
asymmetry parameter (𝛥𝑔&$$) error ratio in unknown 

environment setup.

As we look at Fig. 26, which shows the retrieval uncertainty of asymmetry parameter after 

perturbing 𝜎]  in the unknown environment case, a few things are obvious. First, only the 

polarimeter and combined instrument retrievals are able to constrain this GV. That the POL-only 
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case is sufficient shows how great of an impact there is on the ability of polarimetric instruments 

to accurately sense column-effective values. Also of note is the unimportance of extinction 

measurement accuracy to 𝑚$  retrieval capabilities, as long as polarimetric measurements are 

included. 

5.4.2 Lidar-sensitive GV uncertainties 

As before, we will first consider the effect of increasing measurement uncertainty — this 

time, uncertainty of extinction — on the vertically resolved values of extinction. One would likely 

assume that the effects of perturbing this specific measurement would have the greatest effect on 

the retrieval capabilities of extinction. This is, in fact, the case. We see in Fig. 27 in the top right 

panel that, even when the environment is well-known and extinction measurement error is 

relatively low, POL- and L9-only instruments are unable to constrain, which follows earlier 

patterns. Comparing this result to the top right, it is obvious that extinction error does have an 

impact on the ability to retrieve extinction, which was expected. Moreover, comparing each known 

(top row) to each corresponding unknown (bottom row), impact of a priori can be seen, as more 

instrument combinations fail when the environment is unknown, even when extinction 

measurement error is low. Most importantly, however, is that even when extinction measurement 

is essentially worthless and the environment is poorly characterized a priori, L6+POL is able to 

adequately constrain extinction throughout the column. Having said this, we must also note that 

L6-only configuration is unable to constrain extinction in the same instance, which shows the 

importance of polarimetric information content (specifically, the accuracy of DOLP measurement) 

to the ability to retrieve profiled extinction values. 
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Figure 27: As in Fig. 13, except results are from perturbing a priori extinction measurement error (𝜎-). 
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Figure 28: Lidar ratio (𝛥𝐿𝑅) error ratio versus a priori absolute error of extinction measurement (𝜎-) for known environment 
setup boundary layer (BL, top left) and total column (col, top right) ranges, as well as for unknown environment setup BL 

(bottom left) and col (bottom right) ranges. 

Whereas the L6+POL combined instrument technique is sufficient to constrain the vertical 

profile of extinction error itself, even in the unknown environment case, this is not the case with 

LR. In the known environment setup, extinction measurement can be nearly ignored, and several 

instrument combinations can still constrain values of LR. However, when the environment is 

unknown a priori, no combination can meet the SATM requirement. The differences between 

these results and those seen for extinction only speak to the importance of error propagation to 

extinction and backscatter measurements, when they are used together. That is, the added ability 

of polarimetric measurements to determine column-effective distributions is not sufficient to offset 
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the addition of backscatter measurement uncertainty (even when small) in LR calculations when 

the environment is not well-characterized. This shows the importance of knowing a priori 

characteristics of the environment to accurate retrieval of LR, which has great impacts on the 

ability to retrieve much speciated information about the environment, considering LR is an 

intrinsic property of aerosols. 

Table 14: Analogous to Table 10, but for figures within Section 5.4 depicting “known 
environment” results retrieved by perturbing σα (units of [Mm-1]). It follows that GV 
uncertainties within green boxes show how well the three non-extinction measurements 
can constrain the respective GVs. Additionally, yellow boxes give the magnitude of σα at 
which a GV may no longer be constrained by the other three measurements. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column 3.21×10-5 0.03    0.03 0.02 0.02 0.02 
SSA, BL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
geff, 
column          0.01 0.01 0.01 0.01 
LR, 
column             8.95 8.38 8.98 
LR, BL          5.53 4.13 3.83 4.12 
τf, 
column          0.02 0.02 0.02 0.02 
τf, BL    4.17×10-5       0.02 0.01 0.02 
τ, column 4.31×10-5 1.00×10-4    0.01 0.01 0.01 0.01 
τ, BL 4.45×10-5 1.00×10-4       0.01 0.01 0.01 
mr, 
column                      
mr, BL             3.07×10-5 0.02    
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Table 15: As in Table 14, except for figures within Section 5.4 depicting “unknown 
environment” results. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column               
SSA, BL       0.04 0.02 0.02 0.02 
geff, 
column       0.02 0.01 0.01 0.01 
LR, 
column               
LR, BL               
τf, column         0.03 0.03 0.03 
τf, BL         1.00×10-5 0.02   
τ, column 3.83×10-5 5.00×10-5   0.02 0.01 0.01 0.01 
τ, BL 3.62×10-5 1.00×10-4     0.02 0.02   
mr, 
column               
mr, BL               

5.5 Effects of increasing backscatter measurement error 

For Section 5.5 as a whole, the same expectations are made regarding the behavior of POL-

only retrieval abilities as are made for Section 5.4. One important difference is that throughout 

Section 5.5, instrument configurations including L9 should show a much greater effect, 

considering that instrument contains only backscatter measurement capabilities. 

5.5.1 Conventional GV uncertainties 

As we have done with several figures before, we will show only the results for the unknown 

environment case for the ability to retrieve AOD while increasing 𝛿^, because several instrument 

combinations are still able to constrain AOD when the environment is poorly characterized. First, 

note that L6+POL remains the best option as far as constraint abilities are concerned. As regards 

the reasons that total column AOD values are being better constrained than BL values, one thought 

is that this result is mostly a factor of the aerosol loading considered in this specific case. By 
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including the smoke particles in the top layer, the backscatter values themselves, as a whole, should 

increase because of the relatively smaller size of smoke particles (both fine and coarse mode) than 

marine particles. Because smaller particles have the property of greater symmetry regarding 

forward and backward scattering, more backscatter information content is being added by sensing 

the contents of the entire column versus the BL alone. Most importantly, it is clear that backscatter 

measurements and a priori knowledge of the environment are unnecessary for many of the 

instrument combinations (in particular, L6+POL) to constrain AOD. 

 

Figure 29: As in Fig. 22, except showing results from perturbing a priori percent relative error of backscatter measurement (𝛿.). 

Following previous reasoning, the abilities of our various instrument combinations to 

constrain fine mode AOD should be worse. That is, when not including coarse mode particles, the 

relative importance of backscatter will be greater because of the lack of interference by the strong 

forward scattering that larger particles produce. Considering Fig. 30, this expectation is borne out 

in the results. Again, results from the unknown environment setup are shown, meaning that even 

when a priori state vector and backscatter measurement errors are very large, the other three 

measurements are able to constrain fine mode AOD retrievals. 
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Figure 30: As in Fig. 29, except showing fine mode AOD (𝛥𝜏$%#&) error ratio. 

 

Figure 31: Single scattering albedo (ΔSSA) error ratio versus a priori percent relative error of backscatter measurement (𝛿.). 
Results are shown for the known environment (left panel) and unknown environment (right panel) setup, both over the total 

column range. 

In an effort to avoid repeating prior reasoning, the BL results showing the impact of 

increasing 𝛿^  have not been included here. Even when the environment is not well-known, 

L6+POL is able to constrain SSA retrievals in the BL. In Fig. 31, the retrieval ability of column-

effective SSA are shown for the known (left pane) and unknown (right pane) setups. The 

importance of a priori knowledge is clear, given the stark contrast between retrieval abilities of all 

instrument configurations when a priori uncertainties are increased. One reason for the relatively 

worse column-effective retrieval ability has to do with the calculation of SSA itself. By greatly 
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increasing the amount of absorption within the target volume (i.e., including a high concentration 

of low-SSA black carbon particles), the overall values of SSA are reduced, increasing the 

uncertainty values overall because of the added uncertainties of each FT layer. 

 

Figure 32: As in Fig. 18, except showing results for perturbing a priori percent relative error of backscatter measurement (𝛿.). 

As we return again to analyzing the ability to constrain real part of refractive index, the 

results are not promising. In Fig. 32, only those results from the known environment case are 

shown, for the only instance in which any of the instrument combinations can constrain 𝑚$ when 

𝛿^ is increased is when L6+POL combination is used to sample the BL. The importance of a priori 

knowledge of the environmental state cannot be overstated, in this instance, because even in the 

one instance (i.e., combination of method, vertical range, and instrument combination) in which 

there is some ability to constrain 𝑚$ , the possibility only exists when the value of 𝛿^  is still 

relatively small. 

For the asymmetry parameter, only the unknown environment case will be shown because 

of the ability of the POL-only (and all combined instrument techniques) to constrain this column-

effective value. Though scattering angle is certainly important to the calculation of the asymmetry 

parameter, this GV may still be adequately constrained when there is little environmental 
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information and essentially no help is offered by the lidar backscatter channels. Especially 

considering that every lidar-only configuration has error ratios so large that they don’t even show 

up in Fig. 33, these results show a strong dependence of accurate asymmetry parameter retrieval 

on accurate polarimetric measurements, which makes sense considering the relatively strong 

abilities of MAPs to constrain column-effective values. 

 

Figure 33: As in Fig. 26, except showing effects of perturbing a priori percent relative error of backscatter measurement (𝛿.). 

5.5.2 Lidar-sensitive GV uncertainties 

Because there is little difference in the known/unknown environment setups when 

considering the retrieval abilities for extinction profiles, only selected runs of the unknown 

environment setup as 𝛿^ is increased will be shown. In Fig. 34, it is clear that any configuration 

involving L9 has no ability to constrain extinction, even when 𝛿^ is very small.  

Though the retrieved a posteriori values of 𝜎] do grow larger when the environment is less 

well-characterized and when the accuracy of backscatter measurement is reduced, several 

instrument configurations — most importantly, L6+POL — are capable of constraining the entire 

extinction column. This means that lidar systems that include extinction receivers are still able to 

offer reasonable constraint even without backscatter measurement accuracy, likely by virtue of the 
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inclusion of well-operating extinction measurements that are able to offset the lack of information 

content that backscatter can provide. 

Figure 34: As in Fig. 27, except showing only the unknown environment setup results for perturbing a priori percent relative 
error of backscatter measurement (𝛿.). 

 

Figure 35: Lidar ratio (𝛥𝐿𝑅) error ratio versus a priori percent relative error of backscatter measurement (𝛿.) for known 
environment setup boundary layer (BL, left) and total column (col, right) ranges. 

As was the case when 𝜎] was increased, when 𝛿^ is increased, LR can only be constrained 

when, as in Fig. 35, the environment’s a priori state is well-characterized. Moreover, the trends of 

relative constraint ability are the same as those seen in Section 5.5.1. We know from Section 5.1.2 
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that at least two combined instrument configurations are able to constrain LR, regardless of vertical 

range considered, when all four measurements are operating at their reference uncertainties. So, 

though the sensitivity of LR retrieval to changes in 𝜎] and 𝛿^ seem relatively small, it is clear that 

both measurements must be very accurate for adequate LR constraint ability in the case of an 

unknown environment. If the environment is well-known, on the other hand, the superior 

instrument combination is, once again, the L6+POL combination. 

Table 16: Analogous to Table 10, but for figures within Section 5.5 depicting “known 
environment” results retrieved by perturbing δβ. It follows that GV uncertainties within 
green boxes show how well the three non-backscatter measurements can constrain the 
respective GVs. Additionally, yellow boxes give the magnitude of δβ at which a GV may no 
longer be constrained by the other three measurements. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column 7.88% 82.73%   0.03 0.02 0.02 0.03 
SSA, BL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
geff, 
column       0.01 0.01 0.01 0.01 
LR, 
column         9.96 9.70 11.26 
LR, BL       5.53 4.21 4.09 5.15 
τf, 
column       0.02 0.02 0.02 0.02 
τf, BL   8.84%     0.01 0.01 50.10% 
τ, column 0.02 0.02   0.01 0.01 0.01 0.01 
τ, BL 0.01 0.01     0.01 0.01 0.02 
mr, 
column               
mr, BL         7.88% 20.35%   
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Table 17: As in Table 16, except for figures within Section 5.5 depicting “unknown 
environment” results. 

GV L5 L6 L9 POL L5+POL L6+POL L9+POL 
SSA, 
column               
SSA, BL       0.04 0.03 0.03 0.04 
geff, 
column       0.02 0.01 0.01 0.02 
LR, 
column               
LR, BL               
τf, column         0.03 0.02 14.60% 
τf, BL         0.02 0.02   
τ, column 0.02 0.02   0.02 0.01 0.01 0.02 
τ, BL 0.01 0.01     0.01 0.01   
mr, 
column               
mr, BL               

 

Chapter 6. Conclusions and future research implications 

To be as thorough as possible in stating our conclusions, we will analyze whether H1 and 

H2 were confirmed in Section 6.1, then we will analyze how well our research questions were 

answered by our data analysis in Section 6.2. Finally, in Section 6.3 we will discuss implications 

of our current conclusions and how those should impact the direction and focus of future research. 

6.1 Tested hypotheses 

H1: This hypothesis is not supported by our analysis. Though L6+POL was able to constrain 

many GVs across several of our perturbation methods, there was failure of any instrument 

combination to adequately retrieve 𝑚$ (in BL or column) and 𝑔XYY when 𝜎DOLP was perturbed 

to be even slightly larger than its reference uncertainty. 
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H2: Though H1 wasn’t entirely supported, the L6+POL instrument combination clearly 

outperformed all other combinations, regardless of GV, vertical range considered, and level of 

a priori knowledge of the environment or measurement accuracy. 

6.2 Research questions 

RQ1. Among the GVs considered, real part of refractive index is the only one which 

cannot be accurately retrieved within SATM-defined uncertainty limits by any of the 

observational configurations tested. 

RQ2. Throughout all our results, there exists a consistent positive trend between 

increasing the number of lidar receiving channels and improved GV retrieval accuracy. 

RQ3. Across all perturbation methods in which the a priori characteristics of state vector 

parameters were essentially unknown, the L6+POL configuration was consistently able to 

constrain the greatest number of GVs of any observational configuration tested. When 

perturbing DOLP error and backscatter error, the L5+POL configuration was able to 

constrain the same number of GVs, though the L6+POL configuration was able to constrain 

each GV within the same (or lower) uncertainty window. 

RQ4. Whether viewing the error saturation figures in Section 5.3 or comparing the tables 

at the end of Sections 5.2–5.5, it appears that DOLP is the most essential measurement for 

adequate retrieval of GV uncertainties. That is, GV uncertainty constraint ability is rapidly 

reduced by relatively small increases in DOLP measurement error.  

However, drawing any firm conclusions regarding the greater relative importance 

of DOLP measurement accuracy should be avoided at this early stage of analysis, for the 

criteria used within this study to define what constitutes an extremely large measurement 

error were somewhat subjective. This is particularly true for measurement error values 
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reported as absolute uncertainties (i.e., σα and σDOLP). The author suggests the development 

of more consistent “large error” criteria for absolute error values before drawing strong 

conclusions regarding the relative importance of the measurements considered. 

RQ5. This particular research question is intentionally broad and was included with the 

hope that many useful, parameter-specific results could be gleaned from analysis of our 

results. However, early attempts to iteratively increase the a priori uncertainties of state 

vector parameters one-by-one resulted in error curves that, in most cases, became saturated 

over a negligibly small range of corresponding calculated GV uncertainties. It is likely that 

there is simply not enough information content contained within individual species-specific 

state vector parameters to yield useful results. 

It is possible to backtrack through the algorithm results to find the a priori 

uncertainty values associated with every state vector parameter at the exact point at which 

calculated GV uncertainties exceed SATM requirements. However, within our current 

algorithm, the entire state vector is being perturbed at once by multiplicative scale factors 

that scale each individual parameter at different rates relative to the magnitudes of their 

truth values. Because of this, each potential result showing how well state vector 

parameters must be characterized a priori to guarantee adequate GV uncertainty retrievals 

would necessarily consist of an entire suite of species- and parameter-specific 

requirements. Any state vector uncertainty results stemming from this analysis method 

would be too complicated to use efficiently within our model. Moreover, each result would 

only be useful in highly specific environmental setups. Giving such results too much 

credence could potentially reduce the generalizability and/or potential uses of our model.  
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6.3 Discussion and future research 

Overall, our first hypothesis was too broad to be fully supported. However, there is enough 

evidence to support our second hypothesis and conclude that, all things considered, the instrument 

configuration that is most adept at retrieving every GV considered in this study is the combined 

L6+POL configuration. This remains true regardless of which a priori uncertainties are increased 

or which vertical ranges are considered (i.e., BL, column, and vertically resolved). 

Because we have now established which instrument configuration outperforms all the 

others, we will assess how well it is able to constrain specific GVs. AOD was able to be accurately 

retrieved in every setup considered. Moreover, fine mode AOD was also accurately retrieved by 

L6+POL, except when environmental knowledge was not well-characterized and 𝜎Z[R\  was 

greater than its reference uncertainty. This result is quite important because of the aforementioned 

risk this specific GV poses to human health. SSA was well-constrained across all perturbation 

methods within the BL; however, the only time column-effective SSA could be adequately 

retrieved was when all measurement uncertainties were at their reference uncertainties. Thus, it 

seems as though SSA’s relationship with every measurement is important in some meaningful 

way, when smoke particles are included in the retrieval situation. The relatively low SSA and high 

concentration of these particles is likely the reason for the poor retrieval capabilities of this GV 

when considering the entire column. The vertically resolved extinction values were well 

constrained across all setups, with no exceptions. Asymmetry parameter was also well-constrained 

by the L6+POL configuration, except when DOLP uncertainty was larger than its reference 

uncertainty. 

Both of the GVs that describe intrinsic properties of aerosol species were far more 

complicated in their reactions to different instrument measurement perturbations, even when the 
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most accurate instrument configuration was used. In particular, the real part of refractive index 

could not be accurately retrieved in any of the unknown environment cases, regardless of which 

measurement error was being altered. Moreover, the real part of refractive index is the only GV 

that could not be constrained by L6+POL when all measurements were kept at their reference 

uncertainties and a priori environmental parameters are the only inputs whose uncertainties were 

increased. The other intrinsic GV, lidar ratio, was able to be well-retrieved when only a priori state 

vector information was unknown, as well as when both state vector information and a priori 

measurement error of either intensity or DOLP were being increased. This makes sense, 

considering the LR relies on measurements made by the lidar (i.e., extinction and backscatter). 

When either of those measurement errors are perturbed, the ability to accurately retrieve LR is 

only possible when the environment is well-characterized. 

Though best attempts have been made to explain the general trends of LR uncertainties 

over both vertical ranges considered throughout the results presented in Chapter 5, some of the 

results yielded from the algorithm in its current form are non-physical. This is evident in all of the 

LR uncertainty figures presented. For example, Figure 7 depicts the expected comparative 

advantages among the single instrument lidar systems and their respective polarimeter 

combinations; however, the same figure shows better performance of the polarimeter versus L5 

and L6 instruments. Because L5 and L6 both directly measure extinction and the polarimeter does 

not, these results do not agree with the physical intuition stemming from basic knowledge of these 

instruments’ measurement capabilities. Moreover, in LR uncertainty figures within Sections 5.2 

and 5.3 — in which measurement error is increased only for measurements taken by the 

polarimeter — the single-instrument lidar results exceed uncertainty values expected using direct 

measurement uncertainties across the entire perturbation domain, which disagrees with results 
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presented in Section 5.1. However, the single versus multiple instrument results are correct in their 

relative constraint abilities, and the shape (flat) of the LR error saturation curves in Figs. 14 and 

21 is consistent and matches physical expectations. It is likely, then, that the anomalous results are 

not being caused by misapplication of theory but, rather, reflect a magnitude issue caused by some 

systematic error present within the ICA model used, in its current form. 

Though we have yet to find the specific cause of this error, the author suspects that one 

contributing factor may be the way in which extinction uncertainty is calculated (see Section 

3.2.3). It is possible that uncertainty values of LR, which is the extinction-to-backscatter ratio, are 

larger because extinction is one of only two quantities for which full error propagation is used. 

That is, by including more sources of uncertainty in calculation of extinction versus those included 

in calculation of backscatter uncertainty, the numerator of the LR uncertainty (that of extinction) 

would be anomalously large compared to that of backscatter. This is just one possibility to explain 

the unreasonable single-lidar instrument results regarding the LR retrieval capabilities of this 

algorithm. Though finding the source of this major limitation of our algorithm is necessary to 

establish greater validity of the model, such a task proved to be beyond the scope of this study. 

All things considered, the current recommendation as far as instrument combinations that 

should be considered a contender for fabrication and future use on an ACCP mission would be the 

L6+POL combination. However, even if we may assume that all four observations measured by 

the lidar-polarimeter instrument are operating at their reference uncertainties, future research 

should take a closer look into exactly how well the a priori state of the sample environment must 

be characterized (quantitatively) to adequately constrain the retrieval error of the real part of 

refractive index. If this range is within reason, then this instrument setup would be our 

recommendation for fabrication and use on a space-borne mission. 
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In the future, other ways to improve upon the current retrieval capabilities of the L6+POL 

instrument combination should be explored. Perhaps the most important first step to take is adding 

more test cases that use different initial aerosol setups. For example, changing the spatial 

distributions within the two broad layers (e.g., no longer assuming homogeneity of aerosol 

distribution throughout the BL) as well as the spatial relation (e.g., marine particles over smoke 

particles) could have an effect on retrieval capabilities. Additionally, new cases should consider 

entirely different species combinations, at least several of which include some level of non-

sphericity among the particles within the sample volume. All of these steps would give a more 

complete picture of how generalizable the current algorithm is, as well as how useful, theoretically, 

this proposed instrument combination could be, in practice.  

Another example of potential improvement to our model would be using our current 

instrumentation but adding data retrieved from results that stem from considering different solar 

zenith angles could potentially add to the information content available, resulting in improved 

retrieval capabilities. Another option, which involves adding hardware to the current 

recommended system, is adding more view angles to the lidar. Some research has shown that using 

lidar systems with more than one view angle has the result of adding enough information content 

to significantly improve the retrieval capabilities of multiple GVs (Alexandrov and Mishchenko 

2017). Within the current design of the ICA algorithm, we also have the capability of including 

polarization in the lidar measurements, though during these somewhat preliminary stages of 

algorithm development, we are seeing how well the instruments combinations operate without 

such additional information content. Additionally, the algorithm used for this study could be 

altered to improve the multispectral capabilities of L6 or POL; however, these additions can 

become more expensive very quickly. Because an important part of our secondary goal is to 
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recommend a cost-effective instrument for fabrication, we suggest first looking into the other 

options mentioned before adding theoretical measurements that will result in real added costs.  
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